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ABSTRACT

UNIFICATION OF INTEGRABLE q-DIFFERENCE
EQUATIONS

DUYGU SOYOGLU
Ph.D. in Applied Mathematics and Statistics
Graduate School of Natural and Applied Sciences
Supervisor: Assoc. Prof. Dr. Burcu Silindir Yantir
Co-Supervisor: Assoc. Prof. Dr. Asli Pekcan
January 2017

In this thesis our aim is to detect an equation which is a unification of inte-
grable g-difference equations. This generalized equation, namely q-Hirota-Miwa
equation, is in Hirota bilinear form. We search the existence of its integrability
and find three-q-soliton solutions by Hirota’s method. This generalized equa-
tion includes bilinear forms of several g-difference equations, such as g-analogues
of Toda, KdV and sine-Gordon equations. Not only one of the most impor-
tant point is to meet with suitable reductions for constructing bilinear forms
from Hirota-Miwa equation, but also the key point is that Hirota bilinear forms
must also recover their continuous bilinear forms. In this thesis, as a result of
q-deformed Hirota bilinear forms reduced from q-Hirota-Miwa equation, we con-
struct standard form of q-Toda, q-KdV and g-sine-Gordon equations as well as
their three-q-soltions solutions.

Keywords: Integrability, gq-exponential identity, q-soliton solutions, q-difference
KdV equation, q-difference-q-difference Toda equation, q-difference sine-Gordon
equation, Hirota direct method.
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0Z
INTEGRE EDILEBILEN q-FARK DENKLEMLERININ
BIRLESTIRILMESI

DUYGU SOYOGLU
Uygulamali Matematik ve Istatistik, Doktora
Fen Bilimleri Enstitiisii
Tez Danigsmani: Doc. Dr. Burcu Silindir Yantir

Ikinci Tez Danigsmani: Dog. Dr. Asli Pekcan
Ocak 2017

Bu tezdeki amacimiz integre edilebilen q-fark denklemlerini birlestirici tek
bir denklem elde etmektir. Bu genellestirilmis q-Hirota-Miwa adindaki den-
klem, Hirota bilineer formdadir. Bu denklemin integrallenebilirligini arastirdiktan
sonra Hirota methodu ile iig-q-soliton ¢oziimlerini bulduk. Bu denklem c¢esitli
q-fark denklemlerinin, Toda, KdV ve sine-Gordon gibi denklemlerin Hirota bi-
lineer formlarii igcermektedir. Calismadaki en 6nemli nokta, bu bilineer form-
lar1 olusturmak icin uygun kisitlarin Hirota-Miwa denkleminden elde edilmesi ve
bu lineer formlarin siirekli Hirota bilineer formlara indirgenmesidir. Bu tezde,
q-Hirota-Miwa denkleminden elde edilen q-Hirota bilineer formlar sonucunda,
g-Toda, g-KdV ve g-sine Gordon denklemlerinin standart formlarinin yam sira
lig-g-soliton ¢oziimlerini de insa ettik.

Anahtar Kelimeler: Integre edilebilirlik, g-iistel 5zdeslik, q-soliton goziimler, g-
fark KdV denklemi, g-fark Toda denklemi, q-fark sine-Gordan denklemi, Hirota
metodu.
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Chapter 1

Introduction

Up to present, by the virtue of the superposition principle a wide amount of
studies have been made for linear differential equations. Critical progress for
solving nonlinear equations has been widely approached especially for the last 40
years. Integrability of nonlinear partial differential equations has a critical role in
physical applications since the integrable equations express real features in differ-
ent areas of science, electronics, fluid mechanics, string theory, nonlinear optics,
gravitation and field theory, etc. There does not exist a unique mathematical
definition for integrability. Existence of infinite hierarchies of symmetries, con-
servation laws and regular behavior of solutions are some of the main definitions
of this concept. Another integrability concept named C -integrability arises as ex-
istence of a transformation from nonlinear partial differential equations into linear
equations [3]. Apart from the above mentioned integrability definitions, there is
also a heuristic notion called S-integrability, the equations that are solved by the
Inverse Scattering Method (IST). The method was found by Gardner, Greene,
Kruskal, and Miura in 1967 [6] and used to solve initial value problems by as-
suming that the initial conditions tends to zero as x —» =oo. This method is not
a direct method but it is a nonlinear analogue of Fourier transform for nonlinear
differential equations. In IST, the solutions of nonlinear partial differential equa-
tions are mapped into a potential function of another equation which determines

its time evolution. Secondly the potential is determined by inverting the process



and problem becomes to find the solution of linear ordinary differential equations
with the time evolution of the scattering data. As it can be understood from
its structure, method contains heavy machinery calculations but it is the first
exact method to analyze the existence of soliton solutions and produces them in
the form of exponential functions. The key point that we should emphasize on
the word “soliton” is that it is a nonlinear wave with unchanging shape. Soliton
phenomena was discovered in a shallow water channel while doing experiments
to find the most efficient design for canal boats by Russel in 1834 [32]. In 1965,
Zabusky and Kruskal [37] introduced the concept of solitons.

Definition. [5] A soliton is a solution of nonlinear differential or difference equa-

tion or a system, that

1. is a wave equation in permanent form.
il. interacts with another one and after interaction they retain their identity.

iil. is localized i.e. (they are rapidly decaying functions) as x - oo the wave

vanishes.

Being inspired by Russel’s research in [37] soliton solutions are studied by
numerical experiments. The numerical results were brought a light for investiga-
tion the existence of many conservation laws which reveals another approach for
integrability criteria. In [27], conserved densities of each order was found for KdV
equation. While searching the conservation laws for KdV equation, Miura [28]
introduced a transformation that reduces nonlinear partial differential equations
to easy solvable ones. This transformation is a leading work for inverse scattering
method and Lax pair [25]. Lax formalism is based on writing nonlinear equation
as the compatibility condition of linear equations and finding the so-called Lax

pair which allows us for a new aspect of integrability.

Noether [29], who was another scholar studying on the conservation laws,
also discovered the connection between the conservation laws of a system and
its symmetry properties. This relationship is a remarkable property for Hamilto-

nian structures [26] and recursion operator technique [31] which are also crucial
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indicators for integrability. Recursion operator constructs infinite number of sym-
metries with a mapping while Hamiltonian operator is a mapping between the
symmetries and the co-symmetries. Also in [9], Giirses et al. developed a general
procedure for finding the recursion operators for nonlinear integrable equations

admitting Lax representation.

The necessity of existence of algebraic or analytic structures can also be taken
as other definition for the integrability. For instance, Painlevé property, which
states the singularities of the solutions in complex plane, is a sufficient condition

for the integrability of partial differential equations [4].

Hirota developed his own technique to construct soliton solutions, called Hi-
rota Direct Method in 1971 [14], by inspiring from exponential type of solutions.
The most important differences between Hirota method and IST can be explained
in two points. The first one is Hirota method is a direct method while IST is not.

The second one is that Hirota method is algebraic while IST is analytic.

Another crucial turning point of Hirota’s method is that it allows to check
whether a nonlinear partial differential or difference equation is integrable or
not [11, 12, 13]. Hirota’s method has its own integrability condition in terms
of its own derivative operator the so-called Hirota D-operator. In the literature
the equations which can be written in terms of Hirota derivative operator and
which have at least 3-soliton solutions are named as Hirota integrable equations.
Moreover we want to emphasize that Hirota integrable equations are generally

admitted to be integrable if they pass Painlevé property.

We mentioned about various different definitions of integrability so far. In the

end, we want to gather them under a single roof.

Definition. The nonlinear differential or difference system or equation is said to



be integrable if it satisfies one of the followings

1) the equation is linearized with a suitable variable transformation, e.g.
a Miura transformation (i.e C-integrability),

i1) the nonlinear system can be solvable through inverse scattering
transformation (i.e S-integrability),

1i1) the system possesses the required number of independent integrals
of motion (conserved quantities),

iv) the equation has bi-Hamiltonian structures,

v) the nonlinear equation has multi-soliton solutions,

vi) there exist Lax pair for the nonlinear equation,

vii) there exist infinite hierarchies of symmetries,

viii) there exist Recursion operator for the hierarchies of symmetries,

ix) the system passes the singularity confinement criterion (Painleve test).

Hirota Direct Method is the roof of this thesis. In the next chapter we present
the method and emphasize the applicability of the method to discrete equations.
For this purpose, we apply the method to a differential-difference type of an equa-
tion explicitly. The third chapter presents the findings of the pioneering article
[33] which includes a vital type of equation, a g-difference equation analyzed by
Hirota’s method. In [33], Silindir stated that q-difference equations obtained by
q-difference operators, are not isomorphic to lattice systems. Following this fact,
in [33], it was shown that Hirota Direct Method is applicable to differentiable-
q-difference Toda and q-difference-q-difference Toda equations to produce their
g-soliton solutions. Based on the article [35], in the fourth chapter we present a
unifying framework for g-discrete equations. We present a generalized q-difference
equation namely q-Hirota-Miwa equation in Hirota bilinear form which arises as
a roof for various q-discrete type of equations equipped with their g-soliton so-
lutions. In continuation of this chapter, we construct not only appropriate g-
deformed Hirota bilinear forms of sine-Gordan, KdV, Toda equations resulting

from this generalized equation, but also their corresponding g-soliton solutions.



Significantly, these q-deformed Hirota bilinear forms provide g-analogues of cor-
responding equations as they fall into the associated continuous ones with limit
procedure. In the final chapter, we explain the non-existence of multi-soliton
solutions on q-differential equations by q-discretization via q-differential opera-
tors in the case of q-differential-q-difference Toda equation. In the final chapter,
we conjecture the non-existence of other unifying approaches to derive multi-q-
soliton solutions on arbitrary time scales with nonconstant step size by the use

of classical Hirota perturbation.



Chapter 2

Hirota Direct Method

In this thesis, we focus on the soliton solutions of q-difference equations as well
as the unification of such equations by the help of Hirota direct method. Before
investigating q-difference equations, we mention about the behavior of the soliton
solutions of Toda lattice and q-Toda lattice which was studied by Silindir in [33].
For this purpose, we briefly present Hirota direct method to construct soliton

solutions.

Let
F [u] = F (X7 t7 U, Uy, U, Uxx, Ugt, " ° ) = 07 (21)

be a nonlinear partial differential or difference equation. Due to the difficulty of
finding solutions for nonlinear equations, it is useful to apply a transformation to
simplify the nonlinear equation. This transformation is the first step of Hirota
method. Before explaining the method, we explain Hirota’s idea behind the

transformation.

In [24], it was pointed out that the solutions of KdV equation are in the form
of elliptic functions. Also, later on, Gardner et al. [6] showed that soliton type
of solutions of KdV equation can only be given by the exponential functions. Hi-
rota realized the connection between these two foundations and wrote the elliptic

functions in terms of exponential functions which gives a rational function whose



both denominator and numerator includes exponential functions. The transfor-
mation idea emerges when it is understood that it is necessary to convert the
function by a rational dependent variable transformation and it brings out two

coupled bilinear equations which are nonlinear equations of second degree.

In the light of this idea, the first step of Hirota’s method is to rewrite the
nonlinear equation F [u] into a form by a transformation u = T[f(x, t,- - - )] where
the new dependent variable comes out bilinearly. Here, it should be emphasized
that all nonlinear equations cannot be transformed to single bilinear equations.
For instance, Sine-Gordon (sG) [16], Modified Korteweg-de Vries (mKdV) [15],
and nonlinear Schrodinger equations (nIS) [17] are some examples where trans-

formations reduce to multiple bilinear forms [7].

When bilinear form of KdV equation was obtained, Hirota realized the distinc-
tion of Liebniz rule of differentiation of product of two functions. This variation
implied the emergency to introduce Hirota D-operator which describes a new

calculus with its special features.

Definition. [14] Assume V is a space of smooth functions f and g. Then Hirota

D-operator D : V XV - V is introduced as

[DxnlDy R ]{fg} = [(ax_axo)nl(ay_ayo)n2 . .]f(X, y,.. .)xg(x[)’ y[), .. -)lx‘]:x,yozy,...

(2.2)
where x,y,... are independent variables and i =1,2,...,n; Z".
For instance, Hirota derivatives can be given as
Dy{f-g} = fyg - fgya (2.3)
Dg{fg} = fyyg - fygy - fygy + fgyya (24)
Dy{f.g} = fyy,g — 3f,g, + 3£ g,y — fg,,. (2.5)

Note that D-operator can also be described by the exponential identity espe-

cially for the study of difference type of equations.

7



Theorem 2.1 [21] Let a(x), b(x) be continuously differentiable functions and 6

be a parameter. Then the following exponential identity holds

e®P{a(x)b(x)} = *¥a(x + y)b(x — y)l,_o (2.6)
=a(x + d)b(x — ). (2.7)

Proof. Let us expand exponential function in a Taylor series for the left hand side
of the equation (2.6).

X
™ {a(x).b(x)} = ;!(SDX)“{a(X).b(X)}

n=0

= 1+06Ds + 218 2DX2 + —31'63D3 +..- {a(x).b(x)}

1
= a.b+d(axb — aby) + 2ﬁ&z(axx— Axbx + byx) + -

1
= a+3ax+1—a7axx +oe b=8by o by — e,
2 2
62
which gives Taylor series expansions of a(x + 6)b(x — 6) around d. ]

The next step is to rewrite the bilinear form of F [u] in terms of Hirota D-

operator as
P (D}{f.f} =0, (2.8)

which is named as Hirota bilinear form. Here we must mention that, it is impos-
sible to formulate how to write Hirota bilinear form of a given nonlinear partial
differential or difference equation. Also, Hirota bilinear form of an equation is
not always single, but it can be seen trilinear or multilinear forms [7] in some
instances. It will be useful to touch upon another point regarding integrability.
If an equation is completely integrable, then its Hirota bilinear form can be con-
structed. But the converse is not true i.e., some equations admit Hirota-bilinear

forms although they are not integrable.

Proposition 2.2 [21] Let P (D) be an arbitrary polynomial of D acting on two

smooth functions g(x,y,...) and f(x,y,...) then we have



i. P(D){g.f} =P (—D){fg},

ii. P(D){g.1}= P (9)(g) and P(D){l.g}= P (—0)(2),
where O is the usual partial differential operator.

Proof. For simplicity consider the case P(D) = D%, n Z" since P (D) is an

arbitrary polynomial.

1. For the first part consider

P (D){g.f} = D {g.f}
xX . n
— (=D k g(n*k)xka (2.9)
k=0

- anf - ng(nfl)xfx_k . o s (_l)ngfnx

where g, and fi, are the i order partial derivatives with respect to x.

Rewriting the order in minus sign,

P (D){g.f} =gmf — ngu-nxfit+ -+ (=1)"ghix
=(—1)"[gfx — g fn_1)x + -+ (=D 'ngm-ixfi
+ (1) g 1]
=P (—-D){f.g},

which implies P (D){g.f} =P (—D){f.g}.

il. For the second part of the proof, it is obvious that if we put 1 instead of

in (i), we get P (D){g.1} = P (0)(g) and from the first item we can conclude
P(D){1.g}= P (=0)(®). O

The final step of Hirota’s method is the ordinary perturbation technique, the

so-called Hirota perturbation which produces soliton solutions. In this step we



write an arbitrary function f in terms of a perturbation parameter € in a way
that
f=f+eff +Hh+ef+e'f+ -,

where f is constant and 1= 1,2, -, f; = fi(x, t) are smooth functions. Con-

sider the product f.f and without loss of generality take f, = 1, then

f.f = 1.1+e(fi. 1+ 1.6)+ (6. 1+ .+ 1.6+ (6. 1+6. 6+ . H+1.6)+ - - .
(2.10)
Substitution of (2.10) into (2.8), and the linearity property of P (D) lead to

P (D){f.f} =P (D){1.1}+ ¢P (D){1.f; + f,.1} + &P (D){E:.1 + 1.6+ f.fi}

+ &P (D){fs.1 + 1.5+ .5, + .3+ .- =0.
(2.11)

Theorem 2.3 [21] Let P (D){f.f} = 0 where P (D) is an arbitrary polynomial
of D and f(x,t, ) is a smooth function. If the conditions
i. P(D) =P (-D),

ii. P(0)=0,

are satisfied, then P (D){f.f} = 0 has at least two-soliton solutions.

By the virtue of the above theorem, we assume P (0) = 0 to guarantee the
existence of 1-soliton solution . We equate the coefficients of €' to zero for each
i= 0 to analyze the conditions for integrability of (2.8). Clearly P (D){1.1} = 0.

Secondly from the coefficient &,
P(D){1.f; + £1.1} = 2P (0){f 1 }= 0. (2.12)

The solution of the equation (2.12) turns out to be exponential function in general.
Since other solutions are in terms of the function fi, it is clear that 1, every f;
can be written in the form of f;. However in this thesis we will show that the

equation (2.12) does not always admit exponential type of solutions when D is

10



in terms of q-forward jump operators. After finding one soliton solution by the
virtue of (2.12), the method continues with two, and higher order soliton solutions

by collecting the coefficients of &' for i = 2.

2.1 Toda Lattice Equation

In this section, as an illustration, Hirota method is used to find the soliton solution
of Toda equation which was presented by Hirota in [19]. This equation is a
mechanical model with a chain of particles as
d? _ _ 4
m—yzn —afe "™ —e "] a, b are arbitrary parameters
dt (2.13)

'n = ¥n~ ¥Yn—1, 1 Z+

where m is mass of particle, a and b are repulsive and attractive forces respec-
tively. In other words, Toda equation illustrates motion of an anharmonic one-

dimensional lattice for n'* particle. If we suggest
Vo (t) = afe ™ — 1], (2.14)

which is the force of the n' spring in lattice, equation (2.13) turns into

dz

a2 log(1+Va(t)) = Var1(t) + Vo1 (t) = 2Va(t), Voa=V(n,t), n Z, t R.
(2.15)

In order to find soliton solutions of (2.15) let us begin with the first step i.e., the

transformation.

Step 1: Transformation : We use the logarithmic transformation and get

'
N _ ft,n) _ fi(t n).f(t n) — £(t, n)f(t, n)
Vn(t) = @ 10g f(t, n) = m t fz(t, n) .

(2.16)

Step 2: Bilinearization: Our aim is to construct Hirota bilinear form. For this

purpose we begin with using the anti-derivative of (2.15) with respect to t and

11



use (2.16),

log(1 + V,(t))= [log f(t, n + 1) +log f(t, n — 1) — 2 log f(t, n)] (2.17)
_ f(t,n+Df(t,n —1)
log (0. 1) , (2.18)
then we get

ft,n+ Dft,n— 1)
f2(t, n)

Va(t) = 1. (2.19)

Equating (2.19) to (2.16) we derive

ft,n+Df(t,n—1) | — f(t, n).f(t, n) — £(t, n) £(t, n),
fz(t, n) r fz(ta 1'1) ’

(2.20)
which can be written as
ft,n+Df(t,n —1)— fz(t, n) = f(t, n)q.f(t, n) — £(t, n)£(t, n);. (2.21)

2
Dﬂﬂ. Note that the left hand

side is equivalent to (ePn + e Pn — 2)(f(t, n).f(t, n)) , thus we can write Hirota

Right hand side ofthe equation is equivalent to
bilinear form as
[D; — (eP» + e P —2){f(t, n).f(t, n)} = 0. (2.22)

Equation (2.22) is called Hirota bilinear form of Toda lattice equation (2.15).

Step 3: We use finite perturbation expansion in the bilinear form. Inserting

f(t,n) =1+ef D, n) + P, n) +EFV @, n) +...,

12



in (2.8) we get

P (D){f(t, n).f(t, n)} = &"P (D){1.1}+ £'P (D){fV(t, n).1 + 1.fV(t, n)}
+ &P (D)Y@ (¢, n).1 + 1.f9(t, n) + £V (¢, n).fD (¢, n)}
+ &P (DY (t, n).1 + 1., n) + £ (t, n).fV(t, n)
+ £ (t, n).f@(t, n)}+ - =0,

where ¢ is a constant called perturbation. We collect the coefficients of €', i= 0.

The coefficient of £° vanishes. The coefficient of &! gives
PMO{fY 1+ 1.fY}=PO{fV.1}+ PD){Ll.fY}=2Pp O fV. (2.23)

Our aim is to find a starting solution of the equation (2.23). One can show that

one of the solution of this equation has exponential form.
fO(t, n) = aePtrm, (2.24)

where o, B,y are arbitrary constants. To understand the relation between the
constants, the function (2.24) is inserted into (2.23).

[at2 _ (eé’n + e*ﬁn _ 2)]f(1) (t, n) — aBZGﬁt+yn_ aeBt+y(n+l) _ aeBter(nfl) 4+ 2aeBt+yn

= aeP B - —e ¥ +2]=0. (2.25)

Thus we have
BP—e' —e ¥ +2=0,

which implies
B> =e' +e ¥ —2 = 4sinh’(y/2),

and provides the relation between B and y

B = +2sinh(y/2). (2.26)

13



The relation (2.26) is named as dispersion relation. For the coefficient of €2 we

obtain
P (D){1.f? + @ 1+ £V _ fO}=2P (6)f® + P (D){fV .fV}, (2.27)
that can be written as
[Df = (ePn +e P = {1V} = =2[37 — (e™ +e P —2))fP. (2.28)

Here we note that £, which is of the form (2.24), satisfies (2.28). Evaluating
this equality, we concluded that £@ = 0. Hence fori = 2, £® = 0. Hereupon for
i-soliton solution, it can be accepted f® =0, k = i+ 1. Resultantly, without
loss of generality, taking € = 1, we obtain one-soliton solution of Toda lattice
equation as

f=1+acPt™m, (2.29)

equipped with B = *2 sinh(y/2). Now our next aim is to find two soliton solu-

tions. For this purpose consider
£ = a; P TN 4 gy eP2tren, (2.30)

as a starting solution, where o;, P; and vy; are arbitrary constants 1 = 1,2.

Following the same steps, we collect the coefficients of &', i= 0. From &°, we
get

P(D){1.1}=D? — (P +e P = 2){1.1}=0—-(1+1-2)=0,  (2.31)

while from ¢!, we obtain

P (DHED .1+ 1.0} =P @)FD = [62 — (e +e o — 2 (232)
B [atz B (ean + eian - 2)]{(116[31 thyin a2632t+yzn}’
(2.33)
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where

[07 = (™ +e % =)oy " 4 e}
—o P Y B — @ —e V' + 2]

+ e Bl — e —e P +2] =0,
which reveals dispersion relation as
Bi=eli+e -2 i=1,2.
Similarly, & implies
P(DY{1.fP + @ 1+ fD £} =2p )f® + P (D){fV.fV} =0, (2.34)

where

P (D){f(l) ,f(l)} — _alaze(31+ﬁz)t+(Y1+yz)n[(Bl _ B2)2 — el Y2 — VY2 4 2]

= —2P (0)f?.
(2.35)
We conclude that f® is in the form of relations of two waves
f(2) — A(l, 2)0(1 aze(ﬁl+ﬁz)t+(vl+vz)n_ (2.36)

Plugging £® given in (2.36) into the equation (2.35), we get the interaction
coefficient A(1, 2),

B =B (A2 = 2)
B+ [32)2 —(entv2 e riTY2 — 2)'

A(l,2) = (2.37)

Remark. We define the vector notations are defined as p; = (o, B;, Vi) and
P(p) =PBi - (e"+e " =2)=0,
thus we have

P(pyE£p) =B £B)° — ("2 +e "2 —2),
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Hence, we rewrite A(1,2) as

P(p1 —p2)

All2)= _P(Pl +py)

Furthermore if we collect the coefficients of €3, we get £ = 0. Thus the solution

of two-soliton solutions is derived as
f=1+a,ePr™n 4+ qeft2n 4+ A1, 2)aq, a, PP 120, (2.38)
To construct three-soliton solutions, we begin with
) = ;P10 4 P2 4 gy e T, (2.39)
where a; and vy; are constants for i = 1,2, 3. Similarly we collect €', i=0. The

coefficients of € vanishes. From the coefficients of ' we get

P (D)Y{1.fD + £V 1}= 0,

which gives the dispersion relation as
B =¢¥i+e V=2, i=1,2,3. (2.40)
Collecting the coefficient of &2, we get
P (D){1.f@ + £ fO + £@ 13=p D{fD fO}+2P ) f? =0. (2.41)
One can find f® by evaluating P (D){f®" .f},

P (D){f(l) ,f(l)} =—2 o aze(ﬁl+ﬁ2)t+(¥1+¥2)n[(ﬁl _ [-))2)2 N (N G A g 2]
+ 0.10L3e(Bl+Bs)t+(Y1+v3)n[(Bl _ B3)2 — eV T — B Y 4 )]

+ aza3e(ﬁz+[33)t+(vz+v3)n[(ﬁz — B3)2 — V273 QY2 2] .

(2.42)
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If we insert (2.42) into (2.41), £ arises as

@ =A(1,2)0 0pe PPN L A(]3) g gy B YR

(2.43)
+A(2, 3)(12OL3e(B2+B3)t+(Y2+y3)n’
where
A(1,2) = _Pi—p) _ (B — B — el v —er M 42
5 P(p1+@) (Bl +B2)2 _eYlﬂz_efyl,YZ_Fz,
P - _— 2 Y1 —Y3 — aY3 Y1 + 2
ALY = —F@r=p) B =) —e g o
P(p1 +p) (By + a2 — el +s — g V173 + 2
A(z, 3) - —P(p2—_p3) T _Jd (B2 r B3)2 - 672773 — eY3 —Y2 +2

P (p> +p3) (B +B3)? —er i —e s 42

Similarly, from the coefficient of &> we find out
P (D){1.£O+£D fO+£0 O£ 13 = P (DD £+ £2}+2P (0)F =0,

which implies

— 2P (O)f® =P (D){f? .V + £ £}, (2.45)

Our aim is to find £®. For this purpose we replace f» given in (2.43) and (V)
(2.39) into (2.45) which gives

P (D){fV £@ + £ £}

=—2 aA(l, 2)ePr PPt YIn[g — B — By)F — e VY2 — g 3TYIHY2 4 )]
+ A2, 3)ePr PPttty g — B, — B3)2 — et TY2TY2 — g V1T2HYs 4 )]
+ oy A(1, 3)ePr BBttt van (g, — B, — B3)? — g2 TVITY2 — V2tV 4 9]

where A(i, j) is given as in (2.44). We suggest £ as

£ = A(1, 2,3)0, 0, 03 e(Bl"‘BZ"‘BS)H'(YI+Y2+Y3)n, (2.46)
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and substitute into the equality (2.45), A(1,2,3) is found as

_ 03A(l, 2)P (ps —p1 — p2) + AL, 3)P (p2 — p1 — ps)

A(l,2,3) =
P, +p+
(p1 +p2 +p3) (2.47)
N A2, 3)P (p1 —p2 —p3)
P (p; +p2+p3)
where
P:— pi— p)=@;s— Bi— By — e 2= g W4
Py— pi— p) == Bi— By — e "= e M4,
POi—p= p) =@ — Bo— B — " - e ),
P(pr+pa+ps) =B1 +Py+Bs)° —el e 4,
On the other hand if we consider the coefficient of &*
P(D){L.f9 + £ & 4 £ @ 4 £ £ 4+ £& 1} =0, (2.48)
we get
A(1,2,3) = A(1, 2)A(1, 3)A(2, 3). (2.49)

Since both (2.47) and (2.49) represent A(1, 2,3), we equate them and reach to an

expression called as three-soliton solution condition (3SSC) in the literature

P(pi + p2+p3)P (p1 + p2)P (p1 — p3)P (p2 — p3)+
P — p2— p3)P(p1 +p2)P (p1 +p3)P (p2 — p3)+

(2.50)
P (p, —p1 = p3)P (p1 +p2)P (p2 +p3)P (p1 — p3)+
P (ps —pi1 —p2)P (p1 +p3)P (p2 +p3)P (p1 —p2) =0,
equivalently
X X A\
P Gipi P(Gipi_ GJpJ) :O, 1,_] = 1,2,3. (251)

o==+1 i=1 i<j

(3SSC) given with (2.51) is a restriction for P (D). It determines that P (D)
cannot be selected arbitrarily but should satisfy equation (2.51). On the other
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hand, if an equation can be written in Hirota bilinear form and meets the 3-
soliton solution condition, it is defined as Hirota integrable. Generally, Hirota
integrability is extended to integrability with Painlevé test. In [11], it is concluded
that Hirota integrability has a close relationship with traditional definitions of

integrability.

Finally, the coefficients of €' for all i = 5 vanishes, and we obtain three-soliton

solution of TLE equation as

f=1]1 + (al GBI thyin 0Lzel32t+v2n + 0L3e[33t+}'3n) + (A(l, 2)alaze(ﬁl+[32)t+(yl+yz)n
+ A(1, 3)aaaeP PO 1A (D 3) g, g2 PO 2t rm)

+ A(1, 2, 3)a o 03P PP YN,
(2.52)
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Chapter 3

gq-discretization

A soliton does not change its amplitude, velocity, and shape after a collision
with another soliton wave. Solitons, as is evident from its definition, are kinds of
solutions of wave equations having nonlinearity and dispersion. In the previous
chapter, the fastest algebraic method, Hirota Direct Method is explained to find
soliton solutions. Hirota introduced the method for KdV equation in [14], since it
is the simplest nonlinear partial differential equation. After a short time, Hirota
showed that the method is not only valid for differential equations, but also for
difference equations [18],[19]. Although for both for differential and difference
equations, Hirota method can produce multi-soliton solutions, its application to

g-analogues of equations remained unsolved until the pioneering article [33].

In [1], it was shown that an isomorphism does not exist between q-difference
systems on R~ and the lattice systems on R. Motivated by this inequivalence
in the pioneering article [33], q-discretization of equations are investigated. In
[33], Silindir presented the g-analogue of Toda lattice equation and showed the
existence of multi-soliton solutions by Hirota Direct Method. In [33] gq-difference
equations are constructed by means of g-difference operator while g-differential
ones are built with the help of g-derivative operator. In the article, differential-
q-difference, g-difference-q-difference and q-differential-q-difference Toda equa-
tions are presented. For differential-q-difference and q-difference-q-difference Toda

equations, three-soliton solutions are found by Hirota’s method. Contrary to the
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expectations the solutions are not exponential functions, however they are in the
form of polynomial of power functions and they obey the usual soliton behaviors.
This type of solutions are introduced as g-soliton solutions. For g-differential-q-
difference Toda equation, Hirota’s method is not valid. Silindir showed that even
if g-differential-q-difference Toda equation can be written in Hirota bilinear form,

the multisoliton solutions cannot be produced by Hirota direct method.

The theory presented in this chapter is based on the landmark article [33].

3.1 g-Exponential Identity

In this section, our aim is to present q-difference equations , so it is necessary
to recall Hirota D-operator in terms of exponential function (2.6). To show the
applicability of Hirota method to q-difference equations, we investigate the g-
analogue of the exponential identity. For this purpose, we present the findings of
the article [1]

Suppose 6 : R -~ R and p: R - R are the forward and backward jump
operators, respectively. If there exists inverse maps p ' and o ! such that
p (%) = 6(x) and ¢ '(x) = p(x), X R, then o and p are bijective and

they determine discrete one parameter group of bijections on R

n7- {o,:R - R}, where oy = idg, n R.

Instead of one parameter group of bijections, we introduce one parameter
group of diffeomorphisms as we focus on systems of differential equations. Thus

Jet h R, and h 7- o, be a continuous one-parameter group of
diffeomorphisms.

We expand o}, around h =0,

dGh(X) 2
i +0(h?), (3.1)

on(x) =x + h.

which clearly implies that o), is generated by a vector field which we denote it by
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x(X)0x, i.e. oy(x) = x + h.x(x) + O(h?), where x(x) is smooth on R except at
most finite number of points and it is said to be infinitesimal generator of the one-
parameter group of diffeomorphisms. Referring [30], for such o, it is beneficial

to compute one-parameter group in terms of exponentiation of the vector field
on (x) = ey, (3.2)

if and only if
th(X)axg(X) — g(ehx(x)axx) — g(ch (X)), (33)

where g(x) is a smooth function. It is convenient to propose y(x)0x= x' "0, on

R. For n = 1 we have,
on(x) = e"*x =x+h iff e"¥g(x) =g +h), (3.4)

which is nothing but forward jump operator in discrete variables. Furthermore,

for n = 0, we have,

hxoix = ex =qx  iff e™%g(x) = g(qx), (3.5)

on(x) = e
which turns out to be g-forward jump operator, equipped with q = e".

Definition. [33] The g-forward jump operator E; is defined to be

Eq(g(x)) = ™% g(x) = g(qx), (3.6)

where x R, h is a parameter and g C™(R). In the same manner, we define

q-backward jump operator E;l as

E! *

g 8(x) = e Mig(x) =g q (3.7)
Proposition 3.1 [35] g-forward jump operator E; recovers its continuous case

lim Eq (x) = lim o, (x) = x. (3.8)
q—1 h—0
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Proof. Expanding Taylor series of E,(x) with respect to h near zero we have

lim Eq (x) = lim[x + hy(x)0x{x} + h;(X(X)ﬁx)z{X}ﬂL O(h*)]

= lim[x + hx0,{x}+ h72(><8x)2{x}+ O(h’)]

:X,

and also

lim Eq (x) = limgx = x.
q—1 q—1

We stress that, discrete systems generated by y(x)0x are not equivalent. In
order to verify this fact, suggest y(x) = x!™™, for odd n, and n = 0 to compare
with )(x") = 1. Here we get x' = *x" which is a bijection on R — {0}. To sum up,
all discrete systems determined by y(x)0x = x!"™0x (n is odd) are isomorphic
to each other. On the other hand, if we compare x(x) = x and ¥'(x)) = 1,

x = ¢¥the transformation is found which is not a bijection on R™.

As it is evident, there is not an isomorphism between q-difference systems on

R™ obtained by g-forward jump operators, E; = e and lattice systems on R.

Hereafter, we g-discretize continuous equations by the use of q-forward jump
operator E,. Hence, we must present and prove the g-analogue of exponential
identity, which was first introduced in [33]. This identity is based on E; and is

crucial to construct Hirota bilinear forms of q-differential equations.

Theorem 3.2 [33] Let g(x), f(x) C™(R). Then we present the g-exponential
identity as
e Prg()f(x) =Egg(xE, 'f(x), x R, (3.9)

where h and q do satisfy q=e" and D, is given in (2.2).

Proof. Note that, the proof does not follow the proof of Theorem 2.1 since the

operator Dy := xDy is not associative. Instead, integrate with respect to x, which
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implies x = ¢¥. Then
e P f(x)g(x) = e"Pvf(e¥)g(e). (3.10)
Using the equation (3.4) and Theorem 2.1, we obtain

P g(x)F(x) = e"Prg(e).F(e) = g(e¥ (e )
— 2@ ™) = 2(@IFC) = B0, ().

3.2 The differential-q-difference Toda equation

In this section, our goal is to present the differential-q-difference Toda equation
and its multi-soliton solutions. First, we present the difference operator, intro-
duced in [33].

Definition. [33] The central q-difference operator A2 acting to an arbitrary

smooth function g(x) is defined as

X

Aig(x>=g(qx>+g<g>—2g(x>, gq=1 and x R (3.11)

We introduce the differential g-difference Toda equation as

2

d
g log(1 +V (x, ) = AV (x, ) = V(gx, )+ V %,t —W(x,t), (3.12)

where V is rapidly decaying function and x,t R. We mean by a rapidly decaying

function, is a function whose all derivatives vanish as | x |- oo,

The next step is to write Hirota bilinear form of (3.12). For this purpose, we

use the dependent variable transformation as

2
V(x,t) = % log(f(x, t)). (3.13)
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Similar to the previous discussions in Section (2.1), to reach Hirota bilinear form

firstly we apply anti-derivative twice to (3.12) twice with respect to t
log(1+V(x,t))=0,> AZV(x,t)
and then we use the transformation (3.13) to get

log(1 +V (x, t)) = A} log(f(x, 1)).
Using A? defined in (3.11), we get

f(ax, (X, )

X
log(1 + ) = log f(qx, t) + log f(=. t) — =
og(1 +V(x, t)) = log f(gx, t) + log (q,t) 2log f(x, t) = log £(x. 1)

which implies
Flax, DFC, 0
2(x, 1)
If we put the described V (x, t) in (3.13) on the left hand side ofthe above equation,

we obtain

V(x, t)=

fu(x, OF(x, ) = f2(x, t) _ Flax, Of (.0
2(x, t) 2(x, t) ’

which gives us Hirota bilinear form of differential-q-difference Toda equation as

follows
[D — (e"™Px+ ¢ ™Px — ))I{f(x, t).f(x, t)} = 0. (3.14)

After obtaining Hirota bilinear form, the perturbation technique is used around

a perturbation parameter ¢ to obtain soliton solutions where
P (D){f(x, t).f(x, O} = [D? = (™ + e ™ =) {f(x, t).f(x, )}, (3.15)

and
fx,)=1+efVx t)+fPx O+ )+ .
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We substitute this fi(x, t) into (3.15) then we get

P (D){f(x, t).f(x, )} =P (D){1.1}+ &P (D){1.fD + £ 1} + 2P (D){1.f®
+ @ 1+ D fOY+ P (DY{1.£P + O 1+ £@ £ + £ £}
+ &P (D){1.fYD + £ 1+ D £ 4 £O £ 4 £ £FOY ..

Our aim is to find one soliton solution of the equation of (3.12). Therefore, we

begin to analyze the coefficients of e. The coefficient of &°
P (D){1.1}= [D? — (e"™Px+ ¢ ™Px —2)]{1.1},
vanishes clearly. From the coefficient of &',

P (D){L.fV + fD 1} = 2P (&)fV

(3.16)
=2[0] — (M™% + e ™% — 2))f.

From which the coefficient of €!, £ can be constructed.

Remark. The significant point of Hirota method is the form of the solution of
(3.16). Here we cannot suggest an exponential form for £ since it does not
satisfy the above equation (3.16). Our starting function should include a power

function as
U (x, t) = x%ePt, (3.17)

where a, B, n are arbitrary constants, as a result of the g-discrete variable coun-
terpart. We rename such distinctive solutions as g-solitons as defined explicitly
in [33].

Definition. [33] We introduce a g-soliton solution as a solution which has clas-

sical soliton attitudes and additionally power counterparts for discrete variables.
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If we substitute the starting solution (3.17) into the equation (3.16), we con-

clude

[DF — (&™Px+ e ™ Px — ) {1FD + £ 1} = 2[5 — (™% + e ™% — 2)]x P
=2(B% —q* —q *+2)x%P"M = 0.
(3.18)

Then the relation between the parameters results as
B2 =q"+q “ =2, (3.19)

in order to satisfy (3.18). Here the relation (3.19) is said to be dispersion relation.

The coefficient of €2 implies

P (D){1.f? + @ 1+ £V £}
_ [Df _ (ehxDxe—hxDx _ 2)]{1_f(2) P14+ x“eBt+“.x°‘eBt+“} =0,

where

P(D){fV .fV} = [Df — (eMPx 4 ¢ hxDx — ) {x %Pt x %Pt}

a

_ B2X2ae2(ﬁt+n) _ B2X2(xe2(ﬁt+n) — 2" X Q2B _ 5 20.2(Bth)  — ()
q
Since P (D){f" .fM} = —2P (6)f®, with the above equivalence, £® will be

determined. As a result, it is convenient to say n = 2, f®™ = 0 for one g-soliton
solution. The generalization of this equation provides us for i solution £® = 0
for all k =1+ 1. In the end, without loss of generality taking & = 1, one g-soliton
15 B2x%ehtH

(3.20)

where f(x, t) =1+ x%eP*" and B, a are interrelated as (3.19). For two g-soliton

solutions, we propose the solution as

£ = xuehrtim 4 oz fatiny (3.21)
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Similarly to the previous arguments, the coefficient of &', gives the dispersion
relation
Bl =q% +q “—2 i=1,2. (3.22)

The coefficient of €% gives the solution for @ as
£f2 = A(l, 2)Xa1+aze(ﬁl+ﬁz)t+m+nz, (3.23)

where

B =B (@2 H+qg ™) =2 P(p1—p2)

A(1,2) = .
(1.2) (B1 +B2)* —(quT2 +qm92) —2 P(pi +p2)

Consequently, @ =0 and the solution of two soliton is
fix,t)=1+ x®ebrtn 4 gz fatina 4 A(l, 2)X(11+Olze(l31+[32)t+m+n2_ (3.24)

Coming up to three soliton solution, we start with

X
f = xoighittni (3.25)
i=1

Then the dispersion relation arises as
B =q% +q % =2 1=1,2,3, (3.26)

and from the coefficient of &2, by the virtue of (3.25), £® emerges as

&
f@ = A, j)x@ruePirrmit (3.27)
i<j
where
AG,H=——"—""L, i<j, i,j=1,2,3. (3.28)
D P (pi +p;)

From the coefficient of €}, we obtain

£ = A(1, 2, 3)x™ ozt gPrbarPtnatn (3.29)
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where

_AL2)P (p; —p1 —p2) FA(L3)P (p2 —p1 —p3) T AQ2,3)P (p1 —p2 —p3) .

A(l1,2,3) =
( ) P (p1 +p2+p3)
(3.30)
The coefficient of ¢* gives us a relation for A(1,2,3),
A(1,2,3) = A(1, 2)A(1, 3)A(2, 3). (3.31)
If we combine the equations (3.30) and (3.31), the (3SSC) appears as
!
X X A'd
P GipPi P (Gipi — Gjpj) = O, 1,_] = 1,2, 3. (332)
oi==1 i=1 i<j
Finally, the three g-soliton solution is found as
X x
f(x,t) =1 + x%ighithni 4 A, j)x%ito eBitBtnitmy (3.33)
i=1 i<

_|_A(1 2 3)X(x1+(x2+a3e(B1+B2+B3)t+m+n2+n3'
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Chapter 4

Unification of g-difference

Equations

Hirota direct method, which converts nonlinear partial equations into bilinear
equations, can be applied for a wide variety of differential and difference type of
equations. In the previous chapter, following the work in [33] we presented that
the method is applicable to g-difference type of equations to obtain g-soliton solu-
tions and to seek for their integrability. In [33], differential-q-difference Toda and
g-difference-q-difference Toda equation were investigated under Hirota’s method
and their g-soliton solutions were developed. Similarly, one can find g-soliton
solutions of various q-difference type of equations. However, our aim is to find
a main equation which unifies several qg-difference type of equations. For this
purpose, we introduce an equation in Hirota bilinear form, g-discrete analogue of
Hirota-Miwa equation, which includes several g-difference equations. Following
the approach in [33], in [35] we show the applicability of Hirota’s method to such

a unified q-difference soliton equation and develop its g-soliton solutions.

The important point is to analyze appropriate reductions on g-difference ana-
logue of Hirota-Miwa equation, which provides proper q-deformed Hirota bilinear
forms. The continuous limit of those Hirota bilinear forms meet the classical Hi-

rota bilinear forms of various equations. Furthermore, such Hirota bilinear forms
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allows to derive standard form of g-difference equations under considerations.
Moreover, in order to discuss the integrability, we utilize Hirota direct method

and develop their 3-g-soliton solutions.

The theory presented in this chapter is based on the article [35].

4.1 g-difference analogue of Hirota-Miwa equa-

tion and its’ g-soliton solutions

In this section, we analyze the unification of g-difference equations and the appli-
cability of Hirota Direct Method on a generalized q-difference soliton equation.

q-discrete analogue of Hirota-Miwa equation

X
P (Dy, Dy, D3)){f : £} = A cosh(D){f -} =0, 4.1)

i=1

where A;’ s are parameters, D;’ s are given
D; = a;tD,+ b;xD, + Cinya a;,bi,; R, 1=1,2,3 (42)

as linear combinations of tDy, xDy, yD, .

It is beneficial to express the g-analogue of exponential identity in three vari-

ables which is represented in g-shift operators.

Corollary 4.1 [35] We present the g-exponential identity in t,x,y R as follows

t
exp(aitD¢+ bixDx + ciyDy)g(t, x, y)f(t, X, y) = g(pit, rix, q;y)f ;, r—,% y’
(4.3)

where €% = p;, e% =13, and €% = q;, for all i = 1,2, 3, respectively and g, f are

arbitrary smooth functions.

In order to construct g-soliton solutions first we expand f(t, x, y) around a
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formal perturbation parameter ¢
fit,x,y)=1+ef D, x, y)+F x, y)+... . (4.4)

Then substitution of (4.4) into our generalized Hirota bilinear form (4.1), we

conclude

P (Dy, Dy, D3){f(t, x,y) - f(t, X, y)}

=P (Dy,D,, D3){1.1}+ &P (Dy, D,, Dy){1 - £ + £V 1} 4.5)
+¢&°P(D;,D,y, D){1 - @ + P 1+ £ . £}

+ &P (D, Dy, D3){1 - O + £ . 14+ £ 4 £ . £} ... =0

where we use the linearity of the polynomial P (D;, D,, D;). In the final step, we

collect and vanish the coefficients of €', for all i = 0. The coefficient of €° is
P(D1 ,Dz, D3){1 ' 1}= 7\,1 —f_}\,z +7L3.

It is helpful to remind the sufficient conditions to have at least two soliton solu-
tions via Hirota method, stated in Theorem 2.3. Thus we have a restriction on
parameters

P(0,0,0) =i, + A, +A; =0. (4.6)

From the equation (4.5), the coefficient of ¢! implies

X
P (Dla Dz, D3 ){f(l) d+1- f(l)} = 2P (81, 82, 83)f(1) =2 ;Li COSh(ai)f(l)
i=1
Xy,
= 7(exp (a;td, +b;xd, +¢;yd,) +exp (—a;td — bxd, —c;yd,)f" = 0.
i=1

4.7)
From the previous experiences, as a consequence of change of variables, we must
offer a solution that includes power form for q-discrete variables. Thus we start

with the solution of the form

Ot x, y) =nt’x°y’, (4.8)
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where 1,0, (, 0 are arbitrary constants. Such kind of solutions provide g-soliton

solutions, determined in Definition 3.2.

Inserting this solution into the equation (4.7), we derive the dispersion relation

as

X 5.6 0 —5..—C _—0
P(v) = Ai(piryq; +p; °r; g ) =0, (4.9)
i=1

where v is in vector notation v = (9, (,0).

Let us investigate the coefficient of €2 from (4.5)

P (D, Dy, Dy){1 - £@ + £ . £ + £@ 1} =0, (4.10)

which implies
P (D, Dy, D){" - £} = 2P (8, 0,,0) . (4.11)

If we plug £V as defined in (4.8) into the left hand side of (4.11)

X
P (Dy, Dy, D){fV . fO} =" A cosh(D){nt’x°y’ nt*x"y"}
i=1
X t
= MO ERE (@) (=P () (L)

(4.12)

- (7\,1 —+ 7\,2 —+ 7\,3 )1’]21:26)(2C y29

which vanishes by the assumption (4.6). Therefore we can say that £9) = 0, for
all j = 2. If we generalize this for i-g-soliton solution, f® = 0 forall k = i+ 1.

For simplicity, take € = 1, then one g-soliton solution is
f(t, x,y) = 1 +nt°x°y". (4.13)

For two-q-soliton solutions, we begin with the solution

X
£ = nitSiXCiyei’
i=1
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where n;, 8;, §;’ s are constants for all i = 1,2. The coefficient of €° vanishes
P(Dy, Dy, D3){1.1}=X% +2, +2A3 =0 (4.14)
by the constraint (4.6). We continue to search for the coefficient of &!.
P (D, Dy, D){1.f0 + £ 1} = -2P (8}, 5, 35)f?. (4.15)

We have to investigate P (0,,0,,0;)fV to find the dispersion relation, thus

X
P (0,,0,,0,)f) = Ai cosh(0;){n x5 y¥ +mpt2x= y*}

i=1
;L M1t @)™ (@y)” + 2P Ex) 2 (qy)™ +mi p—tl " :—1 ) %91
1 pil ’ o ” 3 ’ 22 0" (207 @)+ 0™ 0 (@)
o ' = ) Zl—zel o ’ = - z R 0" 0 )"
+a(p3) (130 (g3y)" + 1, p—z " - ' 2—391 + 1, p—z " = ) = ’
=Xn1t5*x@ T Q) M g ei)+%(pzir%iq3i+p?irz “g, ™)

i=1

—(p e ps Tyt (4.16)

Remember that (4.16) is equal to zero and since the terms n;t*x%y% cannot be
identically zero, thus we get the dispersion relation among two-g-soliton solutions

as

P(Vj)=P(5j,Cj,9j)= (p1 rig’ +p,Ur Vg ) =0, j=12. (417

i=1

The coefficient of &% determines that

P(Dy, Dy, D){1 - f@ + £V . £ 4+ £ .1} = 0, (4.18)
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which implies

P (Dl ’ D27 D3){f(1) ! f(l)} = _2P (al ) 627 83)f(2) : (419)
Thus we have

P (D17 D2 5 D3){f(1) ' f(l)}
=P (Dy, Dy, D3){n £ x% y? 2 x& y? 698 y? g tx® y

Hat2x Y x5y Y+ npt?x YRt x y™ )

which is equivalent to

Ai t o X & y 0
> N3 (pit)’ (i) (qiy)” — s AN
i=1 i T di
) & 02
X
M (i) (%) (qiy)" m2 - Lo+
‘ P (4.20)
t 31 X G y 01
M2 (pit)*2 (%) (qiy) ™y iy - G +
62 Cz 92
t X y
2 ) & 0>
it > i i _ z
M5 (pit) 2 (rix) > (qiy) o n "
Utilizing the dispersion relation (4.17) in the equation (4.20), we get
P (Dy, Do, D{f" - £V}
= n1n2t61+62XC1 +§2y91+92 X Qgi-[péislﬁzrfl — i91*92 + p?z*f)lriézfclqiez—el ]’
i=1
4.21)
and we can derive the form of f® as
£ = A(L, 2)nmpt® 2 x5 ey, (4.22)

One can explicitly discover the interaction coefficient A(1, 2) by plugging (4.22)
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into (4.19)

31+8 + 01-+6
12XC1C2y 1162

X
—mmA(L,2) (i) Rt R (qy)" T o - —

i=1 1 T di
X 5
— nln2t81+62XC1 +§2y91+92 5 [piﬁl—ﬁzriCI Czq?1—92_|_ pi—61+82ri Ql—'—gzqi_el_._ez].
i=1
(4.23)
Thus A(1,2) is
P3 i [01—0 - 01—06 —01+062_—C1+ —01+6
AL 2) = — it 3T TR gy g
? 3 ; — &1 — 1 — 0 —
ol Lz,_[pi&-'-ﬁzriCl +C2qi91+92 + p; 31 Szri 1 Czqi 01 92] (4.24)
__Pvi—w)
P(vi+vy)

Similar to the previous discussions for all i = 3, all terms f' = 0 and taking

e = 1, two-q-solitons can be expressed as
f(t, X, y) = 1+n x5y 4+ 1,t2x8 y% + A(1, 2)nmpt® 028 oyt (4 25)

For three-q-soliton solutions, we start with

X
Ot xy) = mtxy*, (4.26)
i=1

where 1, 8;, n;, §; are constants for i = 1,2,3. We investigate the coefficient of &’

X
P(D,, Dy, D3){1-1}=  Acosh(D){1.1}=A + X +4;3 =0 (4.27)

i=1

results from (4.6). The coefficient of €! gives us

P (D, Dy, D3){1 - £V + £ . 1} = —2P (8, 5, 35)fV. (4.28)
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Writing (4.26) in the equation (4.28), we get

—2P (01,02, O Mt x" y* +matx= y* + 1t x> y*}
XX Si+aj L Citby  Oitoj Si—aj L Gi—bj Bi—¢;j
=— A (it xR Ot o SR TN 0Ty (4.20)
j=1 i=1
which yileds the dispersion relation
X, .. _
P (6;,G,05) = 2(pIJrJqlJﬂLp1 Jr J)—O j=12,3. (4.30)

i=1

From the coefficient of €2, we have
P (D, Dy, D){f" - £V} = 2P (0y,0,,3)f?, (4.31)

where

P (D, Dy, Dy){f" - £V}
X
— [n2t281X2C1y291 _|_n nZtBI 52X§1 —> 91 92(p51 Bzr — 91 92)
i=1
+n1ﬂ3t61 —03561 -G 91 93(p51 —d3 Cl (& .91*93)

1

1

+n N t751+62X*C1+C2y 91+92(p1 61+62r C1+C2q 91+92)+n22t252 2C2y292 (432)

1

+n2ﬂ3t62 LR 92 93(p52 53rC2 92 93)

1

ST S A (T

—32+03 X_C2+C"3 .

00403 0203 —CoHCs  —02+0 2,285 205 20
TP g Y Hpttx Sy,

+ menst y

Using the dispersion relation (4.30) in (4.32), we obtain

= h = i
CP@)ED = XG0 l;(qi‘ 5 Gy B Gy
i<j k=1
P (4.33)
where @) is the summation of all elements for i < jand i,j = 1,2,3 and we

1<)
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find the form of f® as

f(2) = A(l, 2)n1n2t61+62X€1 +C2y91+92 + A(l’ 3)n1n3t61+63xgl +C3yel+e3
-+ A(2, 3)n2n3t62+63 XCZ +C3 y92+93 .

(4.34)
More precisely,
=
t,X,y) = Lt xSy, :
f(Z) A - 11]6+6 Gi+Gj (,0i+0 4.35
i<
where 1 <j,1,j = 1,2,3 and
P3 Air 005 Gi—C; _ 0;—0; —8;+8; —C;+C;  —0;+0;
Al j)=—-P slai 'pi Uryt T g T et U 'l P(vi— )
(4.36)

Finally our aim is to obtain £®, so continue with the coefficient of €, then
P(Dy, Dy, Dy){1 - @ + £ . £ 4+ £@ . £ 4 £O . 11 = 0, (4.37)
which can be written as
—P (D}, Dy, D)V - £ + £ . £} =P (D), D, Dy{1 - £ + £P}. (4.38)
Consider the left hand side of (4.38)

P (D, D,, Dy){f? - £ + £ . £F@}
= 2P (D}, Dy, D3){(mit>' x% y? +mpt?x® y% +m3tBx5 y*) - (A1, 2mmpt® 2x8 Ty it
+ A(l, 3)n1n3t61+63xg1 +C3y91+93 + A(Z, 3)n2n3t62+63xgz +C3y92+93)}

xX
= A AL 2)mmpt® TR TRy i 0y (p 0y g % M)
i=1

5 Oy B0, Lo —D 5 0 5 O3 83, L3 —0 5 0
+mt2x2 y" (0,722 q + p 2 ") et xSy (0O g+ p = )]

+ A(1, 3 mat® xS Tyt [ 818y O (O o g T 4 p P g ™)
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5 P S 5 0 5 O3 B3, L3 —B 5 0
+mt2x2 y" (0,22 q + p 2 ") st xSy (0 P g+ p = ™)

+ A(2, 3)n2n3t52+53 XCz +C3 y92+93 [n1t51XC1 y91 (pi—ﬁlri—glqi—% + pi51 riC1 qiel)

824G 05 (11 02 —Co 0 5 0 83 G 03 (g3 1. —Ca . —0 5 0
Mty (py 2 2 PR ™) sttt YR (o U P R T g)]

(4.39)
It can be seen that the summation (4.39) is simplified by the dispersion relation
(4.30) and we get

P (D,,D,,D){fM . f@ + £f@ . £}

- X ki n1n2n3t61+62+63xg1 +g2+§3y91+92+e3 [A(2, 3)(pi51—52_53

i=1

B Y 31 +82+83 . — —61+62+8
rigl G §3qil . 3+pi 1-+82+ 31 C1+C2+C3qi 1702+ 3) (4.40)
+ AL 3)(pi MR g e g p o

riC1 —G2+C3 qi91—92+93) + A(1, 2)(pi51+82—53 riCl +0—C3 qi91+92—93

—81—02+83,. —C1—Ca+ —01—02+0
+pi 12y Gi—G C3qi 1—02 3)]

By the equality (4.38), we can say that f® is of the form
£ = A(1, 2, 3)nmomy 020 TRt Gyl 0als, (4.41)

To see the connection between A(l,2), A(1,3), A(2,3) and A(1,2,3) we expand
the right hand side of (4.38) as

P (Dy, Dy, D3 ){1 - & + £ . 1}= 2P (0, 0, a3)f(3)
=P (al, 62, 63)A(1’ 2, 3)n1n2n3t61+62+63XC1 +C2+§3y91+92+93
X
— _l[p_51+62+63rig1 +0+C3 qi61+92+93 (442)

D) i
i=1

8518003 . —C1—o—Cs y.—01 020
+pi 2y €1 C2C3q 1762763

i

x A(l, 2’ 3)n1n2n3t81+82+83xcl +§2+<‘;3y91+92+93

which implies the relationship between the coefficients A(1, 2), A(1, 3), and A(2, 3)
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with A(1, 2,3).

A(l, 2’ 3)pi51+52+53 ricl +0+C3 qi91+92+93 + pi—§1—52—53 ri—§1—§2—§3q —01—0>—03

i

— 81 +062—% — 61+02—0 —81—82+83,. —C1— —01—02+6
— A(1, 2)(p; 17+32 3riC1+C2 qui 1702 Spp 0 2+ i g2+g3qi 102403

+ A(l, 3)(pi51*52+53riC1 *C2+C3qi91*92+93 + pi*51+52*53ri*C1+C2*C3qi*91+92*93)
4+ A(z’ 3)(pi51*62*53 riglfC,z*C} qielfezfeg, + pi761+62+63 ri7C1+C2+C3 qi791+92+93)
(4.43)
leading to
A(L, 2)P (v3 — vy —vy) + A(1,3)P (v — vi —v3)
P (vi + vy +v3)

. A(2,3)P(vi — vy, —V3)
P(v; + vy, +v3)

A(l,2,3) =—

(4.44)

If we write the coefficient of €*, then we know that £® = 0, but it reveals us

another expression for A(1,2,3)
A(1,2,3) = A(1, 2)A(1, 3)A(2, 3). (4.45)

The equivalence of (4.44) and (4.45) for A(1, 2, 3) provides the three-soliton solu-
tion condition (see [35]) (3.32). In conclusion, the condition (3.32) on P, guaran-
tees the existence of three-q-soliton solutions. Thus, we deduce the three-q-soliton

solutions as
X
fox, ) =1+ nqtdixGy% + AG, jmntd T xG TGy t
= i<j (4.46)
+ A1, 2)A(1, 3)A(2, 3)nMunstd 2038 Tt yfiHoaths

4.2 Reductions

In the previous section, we present q-discrete analogue of Hirota-Miwa equation
(4.1) and find its three g-soliton solutions. Now, our aim is to obtain its special
cases, 1.e., q-analogues of Toda, KdV and sine-Gordon equations by determining

suitable reductions on (4.1).
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4.2.1 The g-difference-q-difference Toda equation

In [33], the g-difference-q-difference Toda equation was introduced and its three-
g-soliton solutionsare developed.In this section, our goal is to reconstruct g-
difference-q-difference Toda equation by a proper reduction on the generalized

equation (4.1). For this purpose, we set

D, =mD,, D,=hyD,, Dy=0, A, =2h"', X=-2, d=2-2h",
(4.47)
in (4.1) which results

X
P (Dl ,D2, D3 ){f.f} = ;Li COSh(Di){f.f}

i=1
= [2h ' cosh(ht D, — 2 cosh(hyD,) + (2 — 2h~ ") {f.f}

— [h—l(eh‘c D + e—hrDT _ 2) _ (eEyDy + e—ByDy _ 2)]{ff},

(4.48)

and leads us Hirota bilinear form of q-difference-q-difference Toda equation [33]

as

h!(e"™Pr + ¢ 1Pr — 2) (4.49)
_ (eByDy + e_ﬂyDy — 2) {f(T, Y) ) f(Ta Y)} = 0. .

Next we prove that Hirota bilinear form (4.49) generalizes the continuous case as

follows.

Proposition 4.2 [33] Hirota bilinear form of the g-difference-q-difference Toda

equation
hfl (ehTDT + e*h‘L‘Dr — 2)

) B 4.50
— (e™Py + ¢ Dy — 2y Lf(1,y) f(1,y)}= 0 @0

reduces to Hirota bilinear form of the differential-q-difference Toda equation
[DZ — (e®YPy) + 0Dy — )1Ef(t, y) - £(t, y)} = 0, (4.51)
as h tends to zero.
ht

Proof. To prove the proposition, we interchange h by h? in (4.50) and set t = e™,
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then D, = heMD, implies D, = ht D, . Putting these transformations in the left
hand side of the equation (4.50), we get,

hfl(ehrDr + efhrDr _ 2) _ (ehyDy —+ e*hyDy — 2)

— h2(MDe 4 ¢ D — 2) — (NYDy o YDy — ), (4.52)

Finally, if we consider the limit as h - 0,

eth + e—th — 2

lim - — (@D e Py —2) =D2 —("YPr+¢ Py —2) (4.53)
we end up with (4.51). ]

Next we present the standard form of g-difference-q-difference Toda equation,
stated in [33].

Proposition 4.3 [33] The standard form of the q-difference-q-difference Toda
equation is
Allog(1+V (t,y)) = A} log(1 +hV (t, y)). (4.54)

Proof. We begin with (4.50) and expand the operators

h'[f(qr. y) f(%, y)+ f(%, y) - f(qr,y) — 2£(1, y)°]

3 y y B ) (4.55)
= f(T, qY) ' f(T, a—)+ f(T, a—) ' f(Ta qY)_ 2f(T, Y) s
which implies
f(qr,y) - (¢, f(z, qy)- f(t,
po Hany) gq »_, ey E D1 4.56)
f(z,y) f(z,y)
Let us define the following transformation
f(gr,y) - (¢, f(z,qy) f(t, ¥
Vi) = b (qr,y) - £, y)_1 _ . qy) - £( q)_l. 4.57)

f(t,y) f(t,y)

To reach our aim, we use central-difference operator which is given in (3.11) and
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evaluate from the right hand side of (4.57)

f(T, qY) ' f(T, y_)
f(t,y)

log(1 +V (1, y)) = log = log f(x, qy)+ log f T, % —2log (1, y)

leading to
log(1+V(t,y)) =Allogf 1,y , (4.58)

and from the left hand side of (4.57) we get

fqr.y) - £, )

log(1 +hV (x, =lo
g( (T, y) g o y)

— log f(qr. y) + log f(g, y) — 2log £(z, y)
which is equivalent to
log(1 +hV (t,y)) = Allog f(x, y). (4.59)

Since log(1l + V (1,y)) = log(1 + hV (1,y)) from (4.57), the standard form is
written as
Allog(1+V(t,y)) = A} log(1 +hV (t, y)). (4.60)

]

Up to now, we have found standard form and Hirota bilinear form of the equation.
The next is to mention about its g-soliton solutions which were presented already
in [33]. Here, we recompute them by using the reductions (4.47) in the findings
of the Section 4.1.

Proposition 4.4 [35] We present one-g-soliton solution of q-difference-q-

difference Toda equation (4.54) as

Nt°yo[q° +q © —2]

A aeyie (4.61)

V(t,y)=

with the dispersion relation

h'(@+q?=2)=q"+q =2 (4.62)
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1s satisfied.

Proof. From the reductions (4.47), it is obviously seen that we have the below

identifications

t=1, x=y, 0=0, a=h, b =nh,
(4.63)
a2=a3=b1=b3=cl=c2=c3=0.

We will use these identifications to obtain one-q-soliton solution and the disper-

sion relation. We substitute above reductions into this £V to conclude
£ = ntdy©. (4.64)

We verify the dispersion relation (4.62) by putting (4.64) into Hirota bilinear
form (4.49), then we have

[h ! (e®P0) 4 e hTDe) _ 9y — (ghyDy) 4 oChyDy) _ y1rpgdyly —
which implies (4.62) immediately

h'(@*+q°=2)—(+q°=2)=0

where e" =qand e" = q.
Secondly, if we put £ =1+ nt’y* into (4.57), we get

f(z, qy) - £z, *)

L UL ACHRC )
f(t,y)’ (1 +ntdys)?

V(t,y)=

(4.65)

which finishes the proof. 0

Remark. With the conditions T,y q% namely t =q"and y=q™, n,m Z,

the g-difference-q-difference Toda equation (4.54) turns out to be

(1+V @™ @)1 +V (@ L (@™)
(1 +V(g", (@™))?
_ (I +hV(@", @™ ) +hV (g™ @™ ")
(1 +hV (@, (@) ’

(4.66)
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and it has one-q soliton solution explicitly

N9"°(@)"™ [(@)° + () — 2]
(1+ngo(@m)*

V(t,y)= (4.67)

Subsequently, two-q-soliton and three-g-soliton solutions can be written by using

the reductions and identifications, respectively

fr,y) =1+t y" +nry® + AL 2mmpr® 2y e, (4.68)
where
h—l 51—062 + —01+d2 2) — 1—C2 —+ G+ 8 — 2
Al 2)=— —1(q5 5 q—5 = A (gg +C g—g g )’
h (ql 2—|—q 1 2—2)—(q1 2—|—q 1 2—2)
and

=X
fr,y) =1+ ntoyS+  A@, jmnto Oy rs

i=1 i<

+ A(1, 2)A(1, 3)A(2, 3 Mot Ry et

where

b (g% % 4+ —2) = @9 +q 916 - 2)

A = g r g — ) — @@ e g o6 —2)

i<j i,j=1203.

Remark. We present the graph of three-q-soliton solutions of g-difference-q-
difference Toda equation. The solitonic behavior of the waves can be observed
from the graph. Since the form of the solutions is polynomials in power func-
tions, we conclude that the length of the wave increases as x increases. In the
graph we set q = 1,25, ¢ = 2, h = In(q), 8, = 6, 3, = 4, and &; = —7 then
from the dispersion relation we get {; = 3.487750814, {, = —2.494747127 and
G = —3.933630763.
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Figure 1: Three-q-soliton solutions of q-difference-q-difference Toda Equation
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Figure 1: Three-q-soliton solutions of q-difference-q-difference Toda Equation
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4.2.2 The g-difference-q-difference KdV equation

In this section, our first step is to find Hirota bilinear form of g-difference-q-
difference KdV equation from the generalized equation (4.1). For this purpose
we have to propose a Hirota bilinear form for the g-difference-q-difference KdV in

a way that it reduces to the continuous one. Using the following reductions [35]
_ 1 2 ﬁ I P 12 _ 1, 2
Dy =5-GhtD +hyDy, Do=Z-(htD; +3hyDy), D; = ~(h'zDd yDy),
—h
}\,1 =1, 7\,2 =2h, 7\,3 =_1_2h,
(4.69)
in (4.1), we get

X
A; cosh(D){f - £} = [A; cosh(D;) + A, cosh(D, ) + A3 cosh(D3 )[{f - £}

i=1

1 — 1 —
= cosh(§(3hzrDT +h’*yD,)) +2h cosh(z(hQIDT +3h’yD,))

+(—1—2h) cosh(-zl(hzrDT — h2yD, ) {f.f}

h’tD, + hzyDy
2

= sinh [h™' sinh(h®t D; ) -+ 2 sinh(h 2yDy )|{f.f}.

In conclusion

h2tD, + h%yD
2

sinh

Y [0 ! sinh(h?t D, )+2 sinh  h?yD, {f(x, y)-f(z, y)} = 0,

(4.70)
is offered to be Hirota bilinear form of the g-difference-q-difference KdV equation.

Proposition 4.5 [35] Hirota bilinear form of gq-difference-q-difference KdV equa-

tion
h2tD, + h?yD -
sinh —— - Y=Y [h" sinh(h? tD, ) + 2sinh(h 2yD, ) {£(z, y) - £z, y)} = 0,
(4.71)
recovers Hirota bilinear form of the continuous KdV equation [14]
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by taking small limit of h, h.

Proof. Beginning with the equation (4.71), we have to reach the bilinear form
(4.72). For this purpose, let T = e™, then (4.70) becomes

hD, + h%yD,

5 [h™! sinh(hDy) + 2 sinh(h 2yD, ) [{f - £} = 0. (4.73)

sinh

Taking limit as h tends to 0 in (4.73), we obtain

h2yD
sinh }; 2

[D, -+ 2 sinh(h 2yDy )[{f(t, y) - £(t, y)} = 0. (4.74)

Secondly, setting y = ehx implies D, = ﬁyDy, we get

sinh h2D" [D, + 2 sinh(h DO, x) - £(t, x)}= 0. (4.75)

Last transition Dy = B3—3Dt - 21_1DX in (4.75) gives us

hD, h’D,

sinh — 2hD, + 2sinh(hDy) {f f}=0. (4.76)

To reach the continuous KdV equation in Hirota bilinear form (4.72), finally we
divide (4.76) by h* we have

hDx/2 __ e*th/Z h3Dt

e - - - 1
li —2hDy+e"D,—e "Px = ~(DDx+D}) (4.77
hoo 2h? 3 ¢ (D ) (4.77)
by using L’Hospitals Rule four times. O

Hence (4.71) is the general form of Hirota bilinear form of (4.72).

After showing the bilinear form of g-difference-q-difference KdV equation, our
aim is to find its standard form but first we give basic properties and definitions

to describe the details.

Lemma 4.6 [21] Let f,g C*(R). Then the followings hold
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(i) sinh 1(D; —Ds){sinh }(D; +Ds) -2sinh D; f- f}.{cosh(5(D; +Ds) — D{)f-
£} = sinh D;{coshD, f - £} - {cosh D5f - f},

(i) coshD;{cosh D, f -t} {cosh D,f f} = coshD,{coshD,f:f}.{coshD,f-f},

Box f _ BDx g
(i) ()= P pap b

where D;’s satisfy (4.2) and B is a constant.
Proof. We prove the second and third items, since the first one is similar.

(i) Beginning with cosh D,{f(t, x) - f(t, x)} = f(t+ p,, X + 1) f(t— pr, X —13)

gives us

coshD;{cosh D,f - f} - {cosh D,f - f}
=f(t+p +py,x+r +)f(t+p, —p,x +1—17) (4.78)

f(t—p, +p,x—r+r)f(t—p, —pi,x — 12— 1)).
On the other hand

coshD,{coshD;f - f} {coshD,f - f}
=f(t+tp+tp,x+tr+rPf(t+p, —p,x+r2—17) 4.79)

f(t—p, +p,x =1 +r)f(t—p, = p;,x — 15— 1}).

The equivalence of the equations (4.78) and (4.79) ends the proof of (ii).

BDx
(iii) We begin with the right hand side of eﬁax(g) = C;&%,
ePPx{f.g} = f(x +P)g(x — ), (4.80)
and
cosh(BDx){g.g}= g(x +P)g(x —P). (4.81)
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Dividing equation (4.80) to (4.81), the left hand side is obtained clearly as

TP po £
gx+p) )

]

Definition. [35] The g-difference operator 9, acting on a function h(x), is given
as
5.h(x) = h(qx) —h(g), x R, q=1. (4.82)

Proposition 4.7 [35] We present the standard form of the q-difference-q-
difference KdV equation

5. ( ) = —2h"23,V (1, y), (4.83)

1
Vi(t,y)

with the dependent variable transformation

£(z, g(r, §
fqr. NG, y)’

V(tr,y) = — (4.84)

where ¢! = q and " = q.

Proof. In order to facilitate our work, we begin with an equivalent form of g-
difference-q-difference KdV equation (4.71) and simplify it by changing h*> and
h? by h and l’_l, respectively. Then we obtain

htD, — hyD htD, + hyD
sinh %y {sinh %y [h~/2 sinh(ht D, )

— htD. — hyD (4.85)
+ 2sinh(h yD,)]f - £} - {cosh %y £.£}=0.
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We separate the equation (4.85)

htD, — hyD htD, + hyD

sinh %y {sinh %y -h ™2 sinh(ht D, )f - £}

htD, — hyD
. {cosh %Y f.f}

htD; —hyD htD, + hyD - (4.86)

— — sinh %y {sinh %y . 2sinh(hyD,)]f - £}

htD, — hyD
. {cosh %y f.f}

In equation (4.86), using the property of property (i) of Lemma with D; =htD,,
D, =htD; and D; = EyDy, left hand side of equality becomes

sinh hTD+EyDY {sinh wy -h~"?sinh(ht D, )f - f}
- {cosh hrD+—EyDy f- £} (4.87)
= h~ " sinh(ht D, ){cosh(htD, )f - £} {cosh(hyD,)f - £}
and the right hand side arises
— sinh % {sinh w . 2sinh(hyD,)]f - £}
feosh hTD+5yDy . (4.88)
= =2 sinh(ﬁ yDy ){cosh(htD, )f - f}.{cosh(t_lyDy )y - £},
Combining the equations (4.87) and (4.88), we get
h~'""2 sinh(ht D, ){cosh(htD, )f - £}.{cosh(hyD,)f - £} (4.89)

= —2sinh(hyD, ){cosh(ht D, )f - £} {cosh(hyD,)f - f}.

If we divide (4.89) with the results in (ii) of Lemma, equipped with D; =htD,,
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D, = EyDy, we reach

h™~"2 sinh(ht D, )(cosh(ht D, )f - f).(cosh(h yDy)f - f)
cosh(ht D; )(cosh(h yDy)f - f) - (cosh(hyD,)f - f)

_ —2sinh(hyDy )(cosh(ht D, )f - £).(cosh(h yDy)f - f)

B cosh(hyDy )(cosh(ht D; f - £)) - (cosh(ht D; )f - f) ’

and using (ii1) of Lemma, equation yields as

cosh(ht D, )f - £
cosh(hyD)f - £

cosh(hyD,)f - £

—1/2
h™'/* sinh(ht & )( cosh(ht D )f - f

) = —2sinh(hyd, )(

). (4.90)

If we make use of the g-exponential identity on . (4.90) we derive

f@uyfey)  feyfey) ., f@Ofcs) @ e@pfay)
fqr,qy)- flqr,”) £C.qy) £, fqr.?) (.5 f(qr.qy)- £, qy)
4.91)
where e" = q and e® = q. Using the dependent variable transformation defined

in (4.84), in the equation (4.91), we obtain

1
= —2h'?3,V 4.92
by the help of gq-difference operator & defined in (4.82). ]

Proposition 4.8 [35] One-g-soliton solution of the g-difference-q-difference KdV
equation (4.83) is

_ [ +nt(gy)* +nt°(@ °y° +nPr®y*]

V(t,y)= (1 +n(qr)PyS)( +n18(q)%y%) ’

(4.93)

with the dispersion relation

@47 —q 1+@ 7 [q > —q*)+20{* (@ —(@ *1+q2 (@) —@ =0
(4.94)
satisfied.

Proof. Recall the reductions (4.69) which we have used to obtain bilinear form

of g-difference KdV equation. If we match these reductions with general bilinear
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form we can conclude the identifications

3h
t=1, x=y, 0=0, a=—, b=

A 2
h 3h
o =a =, b2=7, by = —

, (4.95)

=

, C1=Cz=C3=0.

Y=

Leading us to the function £ = 1+ nt®y® with identifications (4.95). If we
substitute £V into V (1, y) defined in the equation (4.84), we obtain

~ (@) +nTi(2)°)

) = a0 1 pye)

where " = q and e" = q. Hence one-g-soliton solution arises as (4.93). Moreover

from the coefficient of &'
P (D, Dy, D)V - 1+1-fD3}=2P (4, 6,, 331 °y°. (4.96)

We obtain the dispersion relation

— & 35 _3 — =C _ =335 3 [p— T ——& =5, — =3¢ — &
@77 —q 1+ @7~ ]+2h{e* (@7 —(@ *]+qr (@ 2 —@7 [} =0,
where we plug Hirota bilinear form (4.71) and £V = nt®y¢. [

Remark. Furthermore, ift,y ¢4 ie, T =q"and y=q", n,m Z, then

one-g-soliton solution (4.93) can be rewritten as

[1 + nqnﬁ(q)C(erl) + nqnﬁ(q)c(mfl) + T]2,':2n8 y2m6; ]
(1 +n ()@ D(q)m )(1 +ng®@D(q)m*)

Besides, two-q-soliton and three-q-soliton solutions can be written by using

the reductions and identifications as

f(r,y) = 1 +mty" +r2y® + AL 2yt 2ys e (4.98)
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where

AL ==h@ T —g @ g ]
— 31 3¢ _. —{1+¢ —31+& — —3L1+3¢ _ C
@@ g M@ @
h_ (—)C1+‘§2[ 381 ;362 _ qf 127 ]+ (q) fgl ‘:2[ 736127382 _ qé}l;(%z
_ 3G+ . —3g1—3¢ —_ &+
— @ @ T @ T — @
and
> i, Gi = = 3 8i+06j ,Ci+Gj
flr,y) =1+ ne%yS+  AG, jmyt* oye
i=1 i<
+ A(1, 2)A(1, 3)A(2, 3 Mot R yE eTE
where
GG 3838 —8;+38; GG —38i+33; 8;—8;
<MRD=—hﬂm)2T zJ—q T+ @ g T —q ]
Ci+G5 —8;+3; _ 3G +3&; _ GG
@ T @ T g @ @
- Gi+C  38;+33; —8;—3j Gt 3839 8;+5;
'@ gz —q 7 ]+@ 2 [a = —q7]
36 +3G5 _ &g —8i—8;  _ 363G _ Gitg

@ T @ T g @ T —@
foralli<jand i,j =1,2,3.

Remark. We present the graph of two-g-soliton solutions of g-difference-q-
difference KdV equation. The solitonic behavior of the waves can be observed
from the graph. Since the form of the solutions is polynomials in power functions,

we conclude that the length of the wave increases as x increases.
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Figure 2: Two-q-soliton solutions of gq-difference-q-difference KdV Equation

(a) (b) ()

(d) (e) (e)



We set q = 1,25, q = 2, h = In(q), 8, = —6 and &, = 4, then from the
dispersion relation we get {; = —3.015059298 and (, = —2.251766226.

4.2.3 The g-difference sine-Gordon equation

The last equation that we determined from our generalized equation (4.1) is g-
analogue sine-Gordon equation. Our aim is to write Hirota bilinear form for

q-difference sine-Gordon equation. Thus we propose the reductions

D; =h*D, +h%yD,,

D, =h’t D, +h’yD, +kzDz, (4.99)
D; =h’tD, — h’yD,,
M =1, % =hh, A =—1—hh, (4.100)

on (4.1) which reveals the bilinear form as

[2sinh(h2yD, ) sinh(h? tD; ) + hh cosh(h?tD, + h%yD, + kzDz)

_ _ (4.101)
— hh cosh(hzr D, — hzyDy)]{f(t, y,z) - f(t,y,2)}= 0.

As we have proved for the previous equations, we will show how the bilinear
form of g-difference sine-Gordon (4.101) falls into Hirota bilinear form of classical
one [16]. Because of the decomposed Hirota bilinear form of the continuous sine-
Gordon equation, we require a proper decomposition form from (4.101). To revise

the equation, first we have to mention about periodicity on g-numbers.

Definition. [35] A function h(x) is called as q™-periodic function if
h(@"t)=h(t), q>1, m Z t K, (4.102)

Proposition 4.9 [35] Hirota bilinear form of q-difference sine-Gordon equation,
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(4.101) recovers its continuous form [16]
(4.103)
0, (4.104)

D,D{g.f; =g f,
DXDt{f.f - E'Q

as h and H tend to zero.

Proof. Suppose that f in (4.101) is q>-periodic function i.e.,

f(q22) = £(2),

or f
(@2) = f( %

Then if we consider a function f and its g-shifted version, say f , 1.e., we have
kzo, _ — N . £
e f(z) = f(qz) = f(2),

provided that e = q. We use this periodicity in Hirota bilinear equation (4.101)
ie., cosh(kzD, }{f.f} = 2£(qz).f(¢) = 2f(2).f(z) and divide (4.101) by 2(hh) ",
_ — 1 —
(hh) ™! sinh(h *yDy ) sinh(h*tD; ) — 3 cosh(h’*tD, —h’yD,) {f(r,y,2) - f(z, y,2)}

1 - - -
=3 cosh(h?tD, +h?yD,){f(t,y,2).f(t,y,2)}.
(4.105)

If we utilize from the property
cosh(h?t D, — h?yD,){f.f}— cosh(h’z D, + h%yD, {f.f;
= cosh(h? yDy )[cosh(h®t D, }{f.f — f.f}]
then the equation (4.105) turns into

[(hh) " sinh(h?yD, ) sinh(h® tD, )|{f - £}
(4.106)

1 — .
=3 cosh(h*yDy ) cosh(h*t D )|[{f - £ — f.f .
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If we set
f=f+ig f=f—ig, (4.107)

on (4.106), we have

[(hh) ! sinh(h2yD, ) sinh(h® 1D, ){g - f

_ - , _ - (4.108)
cosh(h“yDy) cosh(h“t D )|[{g- £}

and
sinh(h2yDy ) sinh(h® tD, }{f.f — g.g} = 0. (4.109)

We set y = el and 1 = eM in (4.108) and (4.109) and take limit as h, h-o0

lim llm(hh) ! s1nh(h yD, ) sinh(ht D, ){g - f }

3 4 (4.110)
= lim hm cosh(hyD ) cosh(ht D; )[{g - £ 1
h—0 h—0
which gives us
D,D{g.f; =g.f.
Similarly we conclude the second counterpart of bilinear form
D, DA{f.f—g.g}t=0.
(]

In the above proposition we have showed the decomposed bilinear forms
(4.108), (4.109) bring us Hirota bilinear forms of continuous sine-Gordon equa-
tion. Our second aim is to construct the standard form of g-difference sine-Gordon

equation.

Definition. [35] The q-sum operator Iy, operating on any function f(x) is defined
as
I, f(x) = f(qx) +f(§), x R, q=1. 4.111)
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Proposition 4.10 [35] The standard form of the g-difference sine-Gordon equa-
tion is
sin[8,8, ¢(, y)] = (hh )"/ sin[Ty I o(z, y)1, (4.112)

where g-sum operator is defined in (4.111) and q-difference operator is defined
in(4.82).

Proof. We interchange h? and h? by h and E, respectively and we get

[(hh) '/ sinh(h yD, ) sinh(ht D )]{g.f ; = cosh(hyD, ) cosh(ht D, )[{g.f 1,
(4.113)

sinh(hyD, ) sinh(ht D, ){f.f — g.g} = 0. (4.114)

Since f is complex conjugate of f given in (4.107) we can rewrite f =

exp” . cos(¢), g := exp® .sin(¢) and convert the equations (4.113) as

(1 — (hh)72) expP@=P**(D) sin(o(qr, py) + (= 2))

_ v y T (4.115)
= (1+ (hh)"?) exp™ ™ »"PC ) sin(o(qr, =) + @(=. py));
p q
where e" = q and eh — p. Secondly, rewriting (4.114) we get
exp” TP PED . cos(p(qr, py) + 9(—, 2))
aPp (4.116)

= exp™ T ») PGP cos(o(qr, %) + @(%, py))-

From the equations (4.115) and (4.116) we find the below relation for the function
¢

sin(o(qt, py) + 0, 2) = (gt Z) — (p(z,py))
_ TP ey (4.117)
= (hh)""? sin(p(qt, py) + oG- ) ot )+ o(.py)).

which implies (4.112) ]
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In the end we give one-q-soliton solution.

Proposition 4.11 [35] One-g-soliton solution of the q-difference sine-Gordon
equation (4.112) is
¢ =4tan '(nt%yPz"), (4.118)

with the dispersion relation
@ =q 9" —p ") +hhg"@* @' —p *)+q *@ P@ 7 —pHI=0. 4.119)

Proof. The reductions (4.99),(4.100) lead the identifications as

t=1,x=y,y=2z a =a, —a; =h, b1=b2=t_1, (4.120)
¢, =k by=—h, ¢ =c;=0, (4.121)
and we can conclude the starting solution as £ =n1%yPz’. We have f and g.

From f = exp(p). cos(e), g = exp(p). sin(¢) it can be found out that

= tan ¢.

|02

If we write expansion f and g around &,

f=1+f® + ¥ + .

g=ef W+ + .
and suggest g/ f=1f () with taking € = 1. Then one-g-soliton solution can be

obtained as (4.118). Further, the dispersion relation (4.119) can be obtained by
using the reductions (4.120), (4.121) on (4.9). O
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Chapter 5

q-differential-q-difference Toda

equation

Up to this chapter, we have analyzed q-discretization of equations by the use of
q-difference operator. In this chapter our aim is to g-discretize the equations by
q-derivative operator 0y [22]
h(qt) — h(t)
O, th(t) = ———, 5.1

(0 = = (5.1)
where h is g-differentiable function. The fundamental feature of this chapter is
to analyze whether Hirota method is applicable to g-differential equations deter-
mined by the g-derivative operator 0. For this purpose we present the g-analogue

of Hirota D-operator. This chapter is based on the article [33].

Definition. [33] q-Hirota D-operator acting on q-differentiable functions f, g de-

fined as
DI {f.g} = (Og.— 0, f®Og()|p—, m Z". (5.2)

We emphasize here that if we take limit as q - 1, 04y » & and Dy - D;.

Note that g-Hirota D-operator satisfies the properties similar to continuous case.
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Proposition 5.1 [33] Let P (Dy) be a polynomial in D, then

(1) P (Dq ){g ' f} =P (_Dq){f ) g}:

(i) P(Dg){g 1} =P (0g0)g; P(Dy){1-g}= P (—0q1)g,

where g, f are g-differentiable functions.

Proof. Since P (D) refers to a polynomial let us consider simply P (D) = DT ..
Using the definition (5.2)

P (Dg){g - £} = (Dg,)" g(OL(1)
= (=D"g® f®O + (=D™ 'mdgg®ag, ' f(t)+ - + F()IT ()

m _ail
o K F(1)0% & (1)

— mX k
= D™ EDF Y

k=0
= (Dg,0)" £(g(t) = P (—=Dy){f - g},

m
k

t. Second property is a consequence of (i) when we plug 1 instead of one of the

where is binomial coefficient and 8{;,t is the j™ g-derivative with respect to

functions. ]

We present the following equation, introduced in [33],
£(x, ©0; £(x, 1) = (0q. £(x, ©)* = [f(qx, OF (%, t) — f2(x, )] = 0 (5.3)

for g-differential-q-difference Toda equation. It is clear that the left hand side
of (5.3) is qu’t in terms of q-Hirota-D-operator (5.2). Hence, we can conclude
Hirota bilinear form of q-differential-q-difference Toda equation as

P (D){f(x, t) - f(x, O} = [D] , = (™P*+ e ™Px —2)|{f - £} = 0. (5.4)

If we take limit as q -~ 1and h - 0in (5.4), Hirota bilinear form of g-differential-
q-difference Toda equation falls into Hirota bilinear form of differential-difference

Toda equation (2.22). This result brings us the preciseness of Hirota bilinear form
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of g-differential-q-difference Toda equation. Similar to the previous equations, we
follow the same steps for perturbation technique. Beginning with the coefficient

of €2, we get
P(D){1.1}= [D], — ("™Px+ e ™Px = 2)[{1.1}= 0 (5.5)
obviously. Secondly, we collect the coefficient of ¢! and get
PD){1- £V + D 1}=pP @) =0, — (" >+ e ™= IfV =0. (5.6)

The solution of (5.6) should not be only in polynomial of a power form but also

in g-exponential form. Hence taking " as
£ = gxP el (5.7)
and plugging it in (5.6), we obtain the dispersion relation
nw=q" +q P -2, (5.8)

where C, B are arbitrary constants and e’(‘; is Jackson’s g-exponential function [23],

el —X v (5.9)
N
where [n]=1+q+q*+---+q> ', [n]!=[n]n—1]---[1],forall n =1, [0]! = 1.

We continue to vanish the coefficients. From the coefficient of €2, we get

P(D){1-f® + D £ 4+ £ .1} =, (5.10)

which yields to
—2[0;  — (™ + e ™ — 2)]f) = (5.1D)
[DF = (e™Pr+ e M Px — ) {1V £V}, (5.12)

When we put £V defined in (5.7) into (5.12), then f® = 0 and one g-soliton

solution is £ = 1+(xP e‘]]t. If we continue in this way to construct two-g-soliton
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solutions, we may choose ) as
£ = xPrel * + GxP2 e, (5.13)

where {;, B; are arbitrary constants 1= 1,2. Then dispersion relation emerges
similarly as
nw=q¢+qP -2, i=12. (5.14)

Let us investigate the coefficient of €2 from

—2[62, — (™% + e — )1 = (5.15)
[Dé,t _ (ehxDx 4+ e—hxDx _ 2)]{f(1) .f(l)} (516)

which gives us

P (@) = =Gl — o)’ — (@7 P2+ q PP — )P Pzelitent (5.17)

The form of £ has two chances. First one is
£ = A1, 2)xPriPeln )t (5.18)

If we put (5.18) into (5.17), we must have additive property of q-exponentials [?]
as
=™, (5.19)

which holds only if m, n are q-commuting variables as mn = qnm. In this case
our condition yields as n;t> = qnMat® and it is satisfied if and only if either

m =0 =0)orn, =0 (B, =0). As a second choice, if we select ¥ as
£ = A(1, 2)xPrP2elitert, (5.20)

But in this case, A(l,2) depends on t, since we have the product rule for g-
derivate as Jq4(a(t)b(t)) = a(t)d,(b(t)) + b(qt)dga(t). Both in two cases carry out
the nonexistence of £®. Some other approaches for £@ even very general ones
fall into these two cases.
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In conclusion, although g-differential type of equations have Hirota bilinear

forms, they cannot produce multi soliton solutions by Hirota perturbation.

Hence, we conjecture that it is not possible to construct a different unifying
approach than the one constructed in the article [35] and in this thesis, for inte-
grable equations on arbitrary time scales with nonconstant step size; by classical

Hirota perturbation.

On regular time scales with arbitrary graininess, integrability of equations is
analyzed and developed in [2, 8, 34, 36] by Lie algebraic setting and construction

of bi-Hamiltonian structures.

To sum up, in spite of previous discussions, on such time scales, we conjecture
that classical Hirota perturbation does not produce another unifying framework

for integrable o6-differential equations.
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Chapter 6

Conclusion

Hirota Direct Method is one of the most preferred method not to only find soliton
solutions, but also investigate the integrability nature of a partial differential or
difference equation. However this method has not been applied to q discrete type
of equations up to the article [33]. Silindir [33] proved that the method can be
applicable to g-difference type of equations such as differential-q-difference Toda
equation and q-difference-q-difference Toda equation in order to construct the
desired g-soliton solutions. Inspired by this foundation, we presented a generic
equation, g-analogue of Hirota-Miwa equation and found its three-q-soliton so-
lutions by Hirota direct method. Besides, based on Hirota-Miwa equation, we
presented Hirota bilinear forms of q-difference-q-difference Toda, qg-difference-q-
difference KdV, and q-difference sine-Gordon equations. This is a vital develop-
ment as Hirota bilinear forms of such equations consisted of not only g-soliton

solutions but also their standard forms.
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