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ABSTRACT

UNIFICATION OF INTEGRABLE q-DIFFERENCE
EQUATIONS

DUYGU SOYOĞLU
Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences
Supervisor: Assoc. Prof. Dr. Burcu Silindir Yantır

Co-Supervisor: Assoc. Prof. Dr. Aslı Pekcan
January 2017

In this thesis our aim is to detect an equation which is a unification  of inte-
grable q-difference equations. This generalized equation, namely q-Hirota-Miwa
equation, is in Hirota bilinear form. We search the existence of its integrability
and find three-q-soliton solutions by Hirota’s method.    This generalized equa-
tion includes bilinear forms of several q-difference equations, such as q-analogues
of Toda, KdV and sine-Gordon equations. Not only one of the most impor-
tant point is to meet with suitable reductions for constructing   bilinear forms
from Hirota-Miwa  equation, but also the key point is that Hirota  bilinear forms
must also recover their continuous bilinear forms. In this thesis, as a result of
q-deformed Hirota  bilinear forms reduced from q-Hirota-Miwa equation, we con-
struct standard form of q-Toda, q-KdV and q-sine-Gordon equations as well as
their three-q-soltions solutions.

Keywords: Integrability, q-exponential  identity, q-soliton solutions, q-difference
KdV equation, q-difference-q-difference Toda equation, q-difference sine-Gordon
equation, Hirota direct method.
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ÖZ

İNTEGRE EDİLEBİLEN q-FARK DENKLEMLERİNİN
BİRLEŞTİRİLMESİ

DUYGU SOYOĞLU
Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü
Tez Danışmanı: Doc. Dr. Burcu Silindir Yantır

İkinci Tez Danışmanı: Doç. Dr. Aslı Pekcan
Ocak 2017

Bu  tezdeki amacımız integre edilebilen q-fark denklemlerini birleştirici tek
bir denklem elde etmektir. Bu genelleştirilmiş q-Hirota-Miwa adındaki den-
klem, Hirota bilineer formdadır. Bu denklemin integrallenebilirligini araştırdıktan
sonra Hirota methodu ile üç-q-soliton çozümlerini bulduk. Bu denklem çeşitli
q-fark denklemlerinin, Toda, KdV ve sine-Gordon  gibi denklemlerin Hirota bi-
lineer formlarını içermektedir. Ç alışmadaki en önemli nokta, bu bilineer form-
ları oluşturmak için uygun kısıtların Hirota-Miwa denkleminden elde edilmesi ve
bu  lineer formların sürekli Hirota bilineer formlara indirgenmesidir. Bu tezde,
q-Hirota-Miwa denkleminden elde  edilen q-Hirota bilineer formlar sonucunda,
q-Toda, q-KdV ve q-sine Gordon denklemlerinin standart formlarının yanı sıra
üç-q-soliton çozümlerini de inşa ettik.

Anahtar Kelimeler : İntegre edilebilirlik, q-üstel özdeşlik, q-soliton çozümler, q-
fark KdV denklemi, q-fark Toda denklemi, q-fark sine-Gordan denklemi, Hirota
metodu.
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for their helps and for all the fun we have had in the last four years.
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Chapter 1

Introduction

Up to present, by  the virtue of the superposition principle a wide amount of
studies have been  made for linear differential equations. Critical progress for
solving nonlinear equations has been widely approached especially for the last 40
years. Integrability of nonlinear partial differential equations has a critical role in
physical applications since the integrable equations express real features in differ-
ent areas of science, electronics, fluid mechanics, string theory, nonlinear optics,
gravitation and field theory, etc. There does not exist  a unique mathematical
definition  for integrability. Existence of infinite hierarchies of symmetries, con-
servation laws and regular behavior of solutions are some of the main definitions
of this concept. Another integrability concept named C -integrability arises as ex-
istence of a transformation from nonlinear partial  differential equations into linear
equations [3]. Apart from the above mentioned integrability definitions, there is
also a heuristic notion called S-integrability,  the equations that are solved by the
Inverse Scattering Method (IST). The  method was found by Gardner, Greene,
Kruskal, and  Miura in 1967 [6] and  used to solve initial value problems by as-
suming that the initial conditions tends to zero as x → ±∞. This method is not
a direct method  but it is a nonlinear analogue of Fourier transform for nonlinear
differential equations. In IST, the solutions of nonlinear partial differential equa-
tions are mapped into a potential function of another equation which determines
its time evolution. Secondly the potential is determined by inverting  the process
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and problem becomes to find the solution of linear ordinary differential equations
with the time evolution of the scattering data. As it can be understood from
its structure, method contains heavy  machinery calculations but it is the first
exact method to analyze the existence of soliton solutions and produces them in
the form of exponential functions. The key point that we should emphasize on
the word “soliton”  is that it is a nonlinear wave with unchanging shape. Soliton
phenomena was discovered in a shallow water channel while doing experiments
to find the most efficient design for canal boats by Russel in 1834 [32]. In 1965,
Zabusky and Kruskal [37] introduced the concept of solitons.

Definition. [5] A soliton is a solution of nonlinear differential or difference equa-
tion or a system, that

i. is a wave equation in permanent form.

ii. interacts with another one and after interaction they retain their identity.

iii. is localized i.e. (they are rapidly decaying functions) as x →	 ∞	 the wave
vanishes.

Being inspired by Russel’s research in [37] soliton solutions are  studied by
numerical experiments. The numerical results were brought a light for investiga-
tion the existence of many conservation laws which reveals another approach for
integrability criteria. In [27], conserved densities of each order was found for KdV
equation. While searching  the conservation laws for KdV equation, Miura [28]
introduced a transformation that reduces nonlinear partial differential equations
to easy solvable ones. This transformation is a leading work for inverse scattering
method and Lax pair [25]. Lax formalism is based on writing nonlinear equation
as the compatibility condition of linear equations and finding the so-called Lax
pair which allows us for a new aspect of integrability.

Noether [29], who was another scholar studying on the conservation laws,
also discovered the connection between the conservation laws of a system and
its symmetry  properties. This relationship is a remarkable property for Hamilto-
nian structures [26] and recursion operator technique [31] which are also crucial
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indicators for integrability. Recursion operator constructs infinite number of sym-
metries with  a mapping while Hamiltonian operator is a mapping between the
symmetries and the co-symmetries. Also in [9], Gürses et al. developed a general
procedure for finding the  recursion operators for nonlinear integrable equations
admitting Lax representation.

The necessity of existence of algebraic or analytic structures can also be taken
as other definition for the integrability. For instance, Painlevé property, which
states the singularities of the solutions in complex plane, is a sufficient condition
for the integrability of partial differential equations [4].

Hirota developed his own technique to construct soliton solutions,  called Hi-
rota Direct  Method in 1971 [14], by inspiring from exponential type of solutions.
The most important differences between Hirota method and IST can be explained
in two points. The first one is Hirota method is a direct method while IST is not.
The second one is that Hirota method is algebraic while IST is analytic.

Another crucial turning point of Hirota’s method is that it  allows to check
whether a nonlinear partial differential or  difference equation is integrable or
not [11, 12, 13]. Hirota’s method has its own integrability condition in terms
of its own derivative operator the so-called Hirota D-operator. In the literature
the  equations which can be written in terms of Hirota derivative operator and
which have at least 3-soliton solutions are named as Hirota  integrable equations.
Moreover we want to emphasize that Hirota  integrable equations are generally
admitted to be integrable if they pass Painlevé property.

We mentioned about various different definitions of integrability so far. In the
end, we want to gather them under a single roof.

Definition. The nonlinear differential or difference system or equation is said to
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be integrable if it satisfies one of the followings

i) the equation is linearized with a suitable variable transformation,  e.g.

a Miura transformation (i.e C-integrability),

ii) the nonlinear system can be solvable through inverse scattering

transformation (i.e S-integrability),

iii) the system possesses the required number of independent integrals

of motion (conserved quantities),

iv) the equation has bi-Hamiltonian structures,

v) the nonlinear equation has multi-soliton solutions,

vi) there exist Lax pair for the nonlinear equation,

vii) there exist infinite hierarchies of symmetries,

viii) there exist Recursion operator for the hierarchies of symmetries,

ix) the system passes the singularity confinement criterion (Painleve test).

Hirota Direct Method is the roof of this thesis. In the next chapter we present
the method and emphasize the applicability of the method to discrete equations.
For this purpose, we apply the method to a differential-difference type of an equa-
tion explicitly. The third chapter presents the findings of the pioneering article
[33] which includes a vital type of equation, a q-difference equation analyzed by
Hirota’s method. In [33], Silindir stated that q-difference equations obtained by
q-difference operators, are not isomorphic to lattice systems. Following this fact,
in [33], it was shown that Hirota Direct Method is applicable to differentiable-
q-difference Toda and q-difference-q-difference Toda equations to produce their
q-soliton solutions. Based on the article [35], in the fourth chapter we present a
unifying framework for q-discrete equations. We present a generalized q-difference
equation namely q-Hirota-Miwa equation in Hirota bilinear form which arises as
a roof for various q-discrete type of equations equipped  with their q-soliton so-
lutions. In continuation of this chapter, we construct not  only appropriate q-
deformed Hirota bilinear  forms of sine-Gordan, KdV, Toda equations resulting
from this generalized equation, but also their corresponding q-soliton solutions.
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Significantly, these q-deformed Hirota  bilinear forms provide q-analogues of cor-
responding  equations as they fall into the associated continuous ones with limit
procedure. In  the final chapter, we explain the non-existence of multi-soliton
solutions on q-differential equations by q-discretization via q-differential opera-
tors in the case of q-differential-q-difference Toda equation. In the final chapter,
we conjecture the non-existence of other  unifying approaches to derive multi-q-
soliton solutions on arbitrary time scales with nonconstant step size by the use
of classical Hirota perturbation.
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Chapter 2

Hirota Direct Method

In this thesis, we focus on the soliton solutions of q-difference equations as well
as the unification of such equations by the help of Hirota  direct method. Before
investigating q-difference equations, we mention about the behavior of the soliton
solutions of Toda lattice and q-Toda lattice which was studied by Silindir in [33].
For this purpose, we briefly present Hirota direct method to  construct soliton
solutions.

Let
F [u] = F (x, t, u, ux, ut, uxx, utt, · · · ) = 0, (2.1)

be a nonlinear partial differential or difference equation. Due to the difficulty of
finding solutions for nonlinear equations,  it is useful to apply a transformation to
simplify the nonlinear equation. This transformation is the first step  of Hirota
method. Before explaining the method, we explain Hirota’s idea behind the
transformation.

In [24], it was pointed out that the solutions of KdV equation are in the form
of elliptic functions. Also, later on, Gardner et al. [6] showed that soliton type
of solutions of KdV equation can only be given by the exponential functions. Hi-
rota realized the connection between these two foundations  and wrote the elliptic
functions in terms of exponential functions which gives a rational function whose
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D2

D3

both denominator and numerator includes exponential functions. The transfor-
mation idea emerges when it is understood that it is necessary to  convert the
function by a rational dependent variable transformation and it brings out two
coupled bilinear equations which are nonlinear equations of second degree.

In the light of this idea,  the first step of Hirota’s  method is to rewrite the
nonlinear equation F [u] into a form by a transformation u = T [f (x, t, · · · )] where
the new dependent variable comes out bilinearly. Here, it should be emphasized
that all nonlinear equations cannot be transformed to single bilinear equations.
For instance, Sine-Gordon (sG) [16], Modified Korteweg-de Vries (mKdV) [15],
and nonlinear Schrödinger equations (nIS) [17] are some examples where trans-
formations reduce to multiple bilinear forms [7].

When bilinear form of KdV equation was obtained, Hirota realized the distinc-
tion of Liebniz rule of differentiation of product of two functions. This variation
implied the emergency  to introduce Hirota D-operator which describes a new
calculus with its special features.

Definition. [14] Assume V is a space of smooth functions f and g. Then Hirota
D-operator D : V × V → V is introduced as

[Dx
n1Dy

n2 . . .]{f.g} = [(∂x−∂x0)n1(∂y−∂y0)n2 . . .]f (x, y, . . .)×g(x0, y0, . . .)|x0=x,y0=y,...

(2.2)
where x, y, . . . are independent variables and i = 1, 2, . . ., ni ∈ Z+.

For instance, Hirota derivatives can be given as

Dy {f.g} = fyg − fgy, (2.3)

y{f.g} = fyyg − fygy − fygy + fgyy, (2.4)

y{f.g} = fyyyg − 3fyygy + 3fygyy − fgyyy. (2.5)

Note that D-operator can also be described by the exponential identity espe-
cially for the study of difference type of equations.
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x 2

Theorem 2.1 [21] Let a(x), b(x) be continuously differentiable functions and δ
be a parameter. Then the following exponential identity holds

eδDx{a(x).b(x)} = eδ∂y a(x + y)b(x − y)|y=0 (2.6)

= a(x + δ)b(x − δ). (2.7)

Proof. Let us expand exponential function in a Taylor series for the left hand side
of the equation (2.6).

∞

eδDx{a(x).b(x)} =
X

n=0

1
(δDxn!

)n{a(x).b(x)}
1 2 2 1 3 3= 1 + δDx + 2δ Dx + 3!δ

1 2

Dx + · · · {a(x).b(x)}
= a.b + δ(axb − abx) + 2δ (axx− axbx + bxx) + · · ·
= a + δa + 1 δ2

x 2
axx + · · · b − δb + 1

δ2

bxx − · · · ,

which gives Taylor series expansions of a(x + δ)b(x − δ) around δ.

The next step is to rewrite the bilinear form of F [u] in terms of Hirota D-
operator as

P (D){f.f} = 0, (2.8)

which is named as Hirota bilinear form.  Here we must mention that, it is impos-
sible to formulate how to write Hirota bilinear form of a given nonlinear partial
differential or difference equation. Also, Hirota bilinear form of an equation is
not always single, but it  can be seen trilinear or multilinear forms [7] in some
instances. It will be useful to touch upon another point regarding integrability.
If an equation  is completely integrable, then its Hirota bilinear form can be con-
structed. But the converse is not true  i.e., some equations admit Hirota-bilinear
forms although they are not integrable.

Proposition 2.2 [21] Let P (D) be an arbitrary polynomial of D acting on two
smooth functions g(x, y, . . .) and f(x, y, . . .) then we have
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x

x

n

−

i. P (D){g.f} = P (−D){f.g},

ii. P (D){g.1} = P (∂)(g) and P (D){1.g} = P (−∂)(g),

where ∂ is the usual partial differential operator.

Proof. For simplicity consider the case P (D) = Dn, n ∈ Z+ since P (D) is an
arbitrary polynomial.

i. For the first part consider

P (D){g.f} = Dn{g.f}
n

=
X

(−1)k

k=0

n
k

g(n−k)xfkx

n

(2.9)

= gnx f − ng(n−1)xfx+ . . . + (−1) gfnx

where gix and fix are the ith order partial derivatives with respect to x.
Rewriting the order in minus sign,

P (D){g.f} =gnxf − ng(n−1)xfx+ · · · + (−1) gfnx

=(−1)n[gfnx − ngxf(n

+ (−1)ngnx f]

=P (−D){f.g},

1)x + · · · + (−1)n−1ng(n−1)xfx

which implies P (D){g.f} = P (−D){f.g}.

ii. For the second part of the proof, it is obvious that if we put 1 instead of f
in (i), we get P (D){g.1} = P (∂)(g) and from the first item we can conclude
P (D){1.g} = P (−∂)(g).

The final step of Hirota’s method is the ordinary perturbation technique, the
so-called Hirota perturbation which produces soliton solutions. In this step we
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write an arbitrary function f in terms of a perturbation parameter ε in a way
that

f = f0 + εf1 + ε2f2 + ε3f3 + ε4f4 + · · · ,

where f0 is constant and ∀i = 1, 2, · · · , fi = fi(x, t) are smooth functions. Con-
sider the product f.f and without loss of generality take f0 = 1, then

f.f = 1.1+ε(f1.1+1.f1)+ε2(f2.1+f1.f1+1.f2)+ε3(f3.1+f2.f1+f1.f2+1.f3)+· · · .
(2.10)

Substitution of (2.10) into (2.8), and the linearity property of P (D) lead to

P (D){f.f} =P (D){1.1} + εP (D){1.f1 + f1.1} + ε2P (D){f2.1 + 1.f2 + f1.f1}
+ ε3P (D){f3.1 + 1.f3 + f1.f2 + f2.f1} + · · · = 0.

(2.11)

Theorem 2.3 [21] Let P (D){f.f } = 0 where P (D) is an arbitrary polynomial
of D and f(x, t, · · · ) is a smooth function. If the conditions

i. P (D) = P (−D),

ii. P (0) = 0,

are satisfied, then P (D){f.f} = 0 has at least two-soliton solutions.

By the virtue of the above theorem, we assume P (0) = 0 to guarantee the
existence of 1-soliton solution . We equate the coefficients of εi to zero for each
i ≥ 0 to analyze the conditions for integrability of (2.8). Clearly P (D){1.1} = 0.
Secondly from the coefficient ε,

P (D){1.f1 + f1.1} = 2P (∂){f1}= 0. (2.12)

The solution of the equation (2.12) turns out to be exponential function in general.
Since other solutions are in terms  of the function f1 , it is clear that ∀i, every fi

can be written in the form of f1. However in this thesis we will show that the
equation (2.12) does not always admit exponential type of solutions when D is
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in terms  of q-forward jump operators. After finding one soliton solution by the
virtue of (2.12), the method continues with two, and higher order soliton solutions
by collecting the coefficients of εi for i ≥ 2.

2.1 Toda Lattice Equation

In this section, as an illustration, Hirota method is used to find the soliton solution
of Toda equation which was presented by Hirota in [19]. This equation is a
mechanical model with a chain of particles as

d2ynm
dt2 = a[e−brn − e−brn+1 ], a, b are arbitrary parameters

+
(2.13)

rn = yn − yn−1, n ∈ Z

where m is mass of particle, a and b are repulsive and attractive forces respec-
tively. In other words, Toda equation illustrates motion  of an anharmonic one-
dimensional lattice for nth particle. If we suggest

Vn(t) = a[e−brn − 1], (2.14)

which is the force of the nth spring in lattice, equation (2.13) turns into

d2

dt2 log(1 + Vn(t)) = Vn+1(t) + Vn−1(t) − 2Vn(t), Vn = V (n, t), n ∈ Z, t ∈ R.
(2.15)

In order to find soliton solutions of (2.15) let us begin with the first step i.e., the
transformation.
Step 1: Transformation : We use the logarithmic transformation and get

d2
Vn(t) := dt2 log f(t, n) = f(t, n)t

!

=
f(t, n)

t

ftt(t, n).f(t, n) − f(t, n)tf(t, n)t

f 2(t, n)
.

(2.16)
Step 2: Bilinearization: Our aim is to construct Hirota bilinear form. For this
purpose we begin with using the anti-derivative of (2.15) with respect to t and
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D2

t

use (2.16),

log(1 + Vn(t)) = [log f(t, n + 1) + log f(t, n − 1) − 2 log f(t, n)] (2.17)
f(t, n + 1)f(t, n − 1)= log f 2(n, t) , (2.18)

then we get

Vn(t) = f(t, n + 1)f(t, n − 1)
f 2(t, n) − 1. (2.19)

Equating (2.19) to (2.16) we derive

f(t, n + 1)f(t, n − 1)
f 2(t, n) − 1 =

f(t, n)tt.f (t, n) − f(t, n)tf(t, n)t

f 2(t, n) , (2.20)

which can be written as

f(t, n + 1)f(t, n − 1) − f 2(t, n) = f(t, n)tt.f (t, n) − f(t, n)tf(t, n)t. (2.21)

Right hand side of the equation is equivalent to t{f.f} . Note that the left hand
2

side is equivalent to (eDn + e−Dn − 2)(f(t, n).f(t, n)) , thus we can write Hirota
bilinear form as

[D2 − (eDn + e−Dn − 2)]{f(t, n).f(t, n)} = 0. (2.22)

Equation (2.22) is called Hirota bilinear form of Toda lattice equation (2.15).
Step 3: We use finite perturbation expansion in the bilinear form. Inserting

f(t, n) = 1 + εf (1) (t, n) + ε2f (2) (t, n) + ε3f (3) (t, n) + . . . ,
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t

in (2.8) we get

P (D){f(t, n).f(t, n)} = ε0P (D){1.1} + ε1P (D){f (1) (t, n).1 + 1.f (1) (t, n)}
+ ε2P (D){f (2) (t, n).1 + 1.f (2) (t, n) + f (1) (t, n).f (1) (t, n)}
+ ε3P (D){f (3) (t, n).1 + 1.f (3) (t, n) + f (2) (t, n).f (1) (t, n)

+ f (1) (t, n).f (2) (t, n)}+ · · · = 0,

where ε is a constant called perturbation. We collect the coefficients of εi, ∀i ≥ 0.
The coefficient of ε0 vanishes. The coefficient of ε1 gives

P (D){f (1) .1 + 1.f (1) } = P (D){f (1) .1} + P (D){1.f (1) } = 2P (∂)f (1) . (2.23)

Our aim is to find a starting solution of the equation (2.23). One can show that
one of the solution of this equation has exponential form.

f (1) (t, n) = αeβt+γn, (2.24)

where α, β, γ are arbitrary constants. To understand the relation between the
constants, the function (2.24) is inserted into (2.23).

[∂2 − (e∂n + e−∂n − 2)]f (1) (t, n) = αβ2eβt+γn − αeβt+γ(n+1) − αeβt+γ(n−1) + 2αeβt+γn

= αeβt+γn[β2 − eγ − e−γ + 2] = 0. (2.25)

Thus we have

which implies

β2 − eγ − e−γ + 2 = 0,

β2 = eγ + e−γ − 2 = 4 sinh2(γ/2),

and provides the relation between β and γ

β = ±2 sinh(γ/2). (2.26)
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The relation (2.26) is named as dispersion relation. For the coefficient of ε2 we
obtain

P (D){1.f (2) + f (2) .1 + f (1) .f (1) } = 2P (∂)f (2) + P (D){f (1) .f (1) }, (2.27)

that can be written as

[D2 − (eDn + e−Dn − 2)]{f (1) .f (1) } = −2[∂2 − (e∂n + e−∂n − 2)]f (2) . (2.28)t t

Here we note that f (1) , which is of the form (2.24), satisfies (2.28). Evaluating
this equality, we concluded that f (2) = 0. Hence for i ≥ 2, f (i) = 0. Hereupon for
i-soliton solution, it can be accepted f (k) = 0, k ≥ i + 1. Resultantly, without
loss of generality, taking ε = 1, we obtain one-soliton solution of Toda lattice
equation as

f = 1 + αeβt+γn, (2.29)

equipped with β = ±2 sinh(γ/2). Now our next  aim is to find two soliton solu-
tions. For this purpose consider

f (1) = α1 eβ1 t+γ1n + α2eβ2t+γ2n, (2.30)

as a starting solution, where αi , βi and γi are arbitrary constants ∀i = 1, 2.
Following the  same steps, we collect the  coefficients of εi, ∀i ≥ 0. From ε0, we
get

P (D){1.1}= D2 − (eDn + e−Dn − 2){1.1}= 0 − (1 + 1 − 2) = 0, (2.31)

while from ε1, we obtain

P (D){f (1) .1 + 1.f (1) } = P (∂)f (1) = [∂2 − (e∂n + e−∂n − 2)]f (1) (2.32)

= [∂2 − (e∂n + e−∂n − 2)]{α1eβ1 t+γ1n + α2eβ2t+γ2n},
(2.33)



15

t

1 − e

2 − e

β2

1

1

where

[∂2 − (e∂n + e−∂n − 2)]{α1eβ1 t+γ1n + α2eβ2t+γ2n}
=α1eβ1t+γ1n[α1β2 γ1 − e−γ1 + 2]

+ α2eβ2t+γ2n[α2β2 γ2 − e−γ2 + 2] = 0,

which reveals dispersion relation as

i = eγi + e−γi − 2, i = 1, 2.

Similarly, ε2 implies

P (D){1.f (2) + f (2) .1 + f (1) .f (1) } = 2P (∂)f (2) + P (D){f (1) .f (1) } = 0, (2.34)

where

P (D){f (1) .f (1) } = −α1α2e(β1+β2)t+(γ1+γ2)n[(β1 − β2)2 − eγ1 −γ2 − e−γ1+γ2 + 2]

= −2P (∂)f (2) .

We conclude that f (2) is in the form of relations  of two waves
(2.35)

f (2) = A(1, 2)α1 α2e(β1+β2)t+(γ1+γ2)n. (2.36)

Plugging f (2) given in  (2.36) into the equation (2.35), we get the interaction
coefficient A(1, 2),

(β1 − β2)2 − (eγ1−γ2 + e−γ1+γ2 − 2)
A(1, 2) = − (β

. (2.37)
+ β2)2 − (eγ1+γ2 + e−γ1−γ2 − 2)

Remark. We define the vector notations are defined as pi = (αi, βi, γi) and

P (p1) = β2 − (eγ1 + e−γ1 − 2) = 0,

thus we have

P (p1 ± p2) = (β1 ± β2)2 − (eγ1±γ2 + e−γ1±γ2 − 2).
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1

Hence, we rewrite A(1, 2) as

P (p1 − p2)A(1, 2) = −P (p
.

+ p2)

Furthermore if we collect the coefficients of ε3, we get f (3) = 0. Thus the solution
of two-soliton solutions is derived as

f = 1 + α1eβ1t+γ1n + α2eβ2t+γ2n + A(1, 2)α1 α2 e(β1+β2)t+(γ1+γ2)n. (2.38)

To construct three-soliton solutions, we begin with

f (1) = α1eβ1t+γ1n + α2eβ2t+γ2n + α3 eβ3 t+γ3n, (2.39)

where αi and γi are constants for i = 1, 2, 3. Similarly we collect εi, ∀i ≥ 0. The
coefficients of ε0 vanishes. From the coefficients of ε1 we get

P (D){1.f (1) + f (1) .1} = 0,

which gives the dispersion relation as

i = eγi + e−γi − 2, i = 1, 2, 3. (2.40)

Collecting the coefficient of ε2, we get

P (D){1.f (2) + f (1) .f (1) + f (2) .1} = P (D){f (1) .f (1) } + 2P (∂)f (2) = 0. (2.41)

One can find f (2) by evaluating P (D){f (1) .f (1) },

P (D){f (1) .f (1) } = − 2 α1α2e(β1+β2)t+(γ1+γ2)n[(β1 − β2)2 − eγ1 −γ2 − eγ2 −γ1 + 2]

+ α1α3e(β1+β3)t+(γ1+γ3)n[(β1 − β3)2 − eγ1 −γ3 − eγ3 −γ1 + 2]

+ α2α3e(β2+β3)t+(γ2+γ3)n[(β2 − β3)2 − eγ2 −γ3 − eγ3 −γ2 + 2] .

(2.42)
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If we insert (2.42) into (2.41), f (2) arises as

f (2) =A(1, 2)α1α2e(β1+β2)t+(γ1+γ2)n + A(1, 3)α1α3e(β1+β3)t+(γ1+γ3)n

+ A(2, 3)α2α3e(β2+β3)t+(γ2+γ3)n,
(2.43)

where

P (p1 − p2) (β1 − β2)2 − eγ1 −γ2 − eγ2 −γ1 + 2A(1, 2) = −
P (p

=
+ p ) (β

,
+ β )2 − eγ1 +γ2 − e−γ1−γ2 + 21 2 1 2

P (p1 − p3) (β1 − β3)2 − eγ1 −γ3 − eγ3 −γ1 + 2
(2.44)A(1, 3) = −

P (p
=

+ p ) (β
,

+ β )2 − eγ1 +γ3 − e−γ1−γ3 + 21 3 1 3
2 γ2 −γ3 γ3 −γ2P (p2 − p3) (β2 − β3) − e − e + 2A(2, 3) = −

P (p
=

+ p ) (β
.

+ β )2 − eγ2 +γ3 − e−γ2−γ3 + 22 3 2 3

Similarly, from the coefficient of ε3 we find out

P (D){1.f (3) +f (2) .f (1) +f (1) .f (2) +f (3) .1} = P (D){f (2) .f (1) +f (1) .f (2) }+2P(∂)f (3) = 0,

which implies − 2P (∂)f (3) = P (D){f (2) .f (1) + f (1) .f (2) }. (2.45)

Our aim is to find f (3) . For this purpose we replace f (2) given in (2.43) and f (1)

(2.39) into (2.45) which gives

P (D){f (1) .f (2) + f (2) .f (1) }
= − 2 α3A(1, 2)e(β1+β2+β3)t+(γ1+γ2+γ3)n[(β3 − β1 − β2)2 − eγ3 −γ1−γ2 − e−γ3+γ1+γ2 + 2]

+ α1A(2, 3)e(β1+β2+β3)t+(γ1+γ2+γ3)n[(β1 − β2 − β3)2 − eγ1 −γ2−γ2 − e−γ1+γ2+γ3 + 2]

+ α2 A(1, 3)e(β1+β2+β3)t+(γ1+γ2+γ3)n[(β2 − β1 − β3)2 − eγ2 −γ1−γ2 − e−γ2+γ1+γ3 + 2] ,

where A(i, j) is given as in (2.44). We suggest f (3) as

f (3) = A(1, 2, 3)α1 α2 α3 e(β1+β2+β3)t+(γ1+γ2+γ3)n, (2.46)
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and substitute into the equality (2.45), A(1, 2, 3) is found as

α3A(1, 2)P (p3 − p1 − p2) + α2A(1, 3)P (p2 − p1 − p3)A(1, 2, 3) = − P (p1 + p2 + p3)
(2.47)

+ α1A(2, 3)P (p1 − p2 − p3) ,
P (p1 + p2 + p3)

where

P (p3 − p1 − p2) = (β3 − β1 − β2)2 − eγ3 −γ1−γ2 − e−γ3+γ1+γ2 + 2,

P (p2 − p1 − p3) = (β2 − β1 − β3)2 − eγ2 −γ1−γ2 − e−γ2+γ1+γ3 + 2,

P (p1 − p2 − p3) = (β1 − β2 − β3)2 − eγ1 −γ2−γ2 − e−γ1+γ2+γ3 + 2,

P (p1 + p2 + p3) = (β1 + β2 + β3)2 − eγ1 +γ2+γ3 − e−γ1−γ2−γ3 + 2.

On the other hand if we consider the coefficient of ε4

P (D){1.f (4) + f (1) .f (3) + f (2) .f (2) + f (3) .f (1) + f (4) .1} = 0, (2.48)

we get
A(1, 2, 3) = A(1, 2)A(1, 3)A(2, 3). (2.49)

Since both (2.47) and (2.49) represent A(1, 2, 3), we equate them and reach to an
expression called as three-soliton solution condition (3SSC ) in the literature

P (p1 + p2 + p3)P (p1 + p2)P (p1 − p3)P (p2 − p3)+

P (p1 − p2 − p3)P (p1 + p2)P (p1 + p3)P (p2 − p3)+

P (p2 − p1 − p3)P (p1 + p2)P (p2 + p3)P (p1 − p3)+

P (p3 − p1 − p2)P (p1 + p3)P (p2 + p3)P (p1 − p2) = 0,

(2.50)

equivalently

3 (3)X
P

X
σipi

Y
P (σipi − σjpj) = 0; i, j = 1, 2, 3. (2.51)

σ=±1 i=1 i<j

(3SSC ) given with (2.51) is a restriction for P (D). It determines that P (D)
cannot be selected arbitrarily but should satisfy equation (2.51). On the other



19

hand, if an equation can be written in Hirota bilinear form and meets the 3-
soliton  solution condition, it is defined as Hirota integrable. Generally, Hirota
integrability is extended to integrability with Painlevé test. In [11], it is concluded
that Hirota integrability has a close relationship with traditional definitions of
integrability.

Finally, the coefficients of εi for all i ≥ 5 vanishes, and we obtain three-soliton
solution of TLE equation as

f =1 + (α1 eβ1 t+γ1n + α2eβ2t+γ2n + α3eβ3t+γ3n) + (A(1, 2)α1α2e(β1+β2)t+(γ1+γ2)n

+ A(1, 3)α1α3e(β1+β3)t+(γ1+γ3)n + A(2, 3)α2α3e(β2+β3)t+(γ2+γ3)n)

+ A(1, 2, 3)α1α2α3e(β1+β2+β3)t+(γ1+γ2+γ3)n.
(2.52)
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Chapter 3

q-discretization

A soliton does not change its amplitude, velocity, and shape after a  collision
with another soliton wave. Solitons, as is evident from its definition, are kinds of
solutions of wave equations  having nonlinearity and dispersion. In the previous
chapter, the fastest  algebraic method, Hirota  Direct Method is explained to find
soliton solutions. Hirota introduced the method for KdV equation in [14], since it
is the simplest nonlinear partial differential equation. After a short time, Hirota
showed that the method is not only valid for differential equations, but  also for
difference equations [18],[19]. Although for both for differential and  difference
equations, Hirota method can produce multi-soliton solutions, its application to
q-analogues of equations remained unsolved until the pioneering article [33].

In [1], it was shown that an isomorphism does not exist between q-difference
systems on R− and the lattice systems on R. Motivated by this inequivalence
in the pioneering  article [33], q-discretization of equations are investigated. In
[33], Silindir presented the q-analogue of Toda lattice equation and showed the
existence of multi-soliton solutions by Hirota Direct Method. In [33] q-difference
equations are constructed by means of q-difference operator while q-differential
ones are built with the help of q-derivative operator. In the article, differential-
q-difference, q-difference-q-difference and q-differential-q-difference Toda equa-
tions are presented. For differential-q-difference and q-difference-q-difference Toda
equations, three-soliton solutions are found by Hirota’s method. Contrary to the
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expectations the solutions are not exponential  functions, however they are in the
form of polynomial of power functions and they obey the usual soliton behaviors.
This type of solutions are introduced as q-soliton solutions. For q-differential-q-
difference Toda equation, Hirota’s method is not valid. Silindir showed that even
if q-differential-q-difference Toda equation can be written in Hirota bilinear form,
the multisoliton solutions cannot be produced by Hirota direct method.

The theory presented in this chapter is based on the landmark article [33].

3.1 q-Exponential Identity

In this section, our aim is to present q-difference equations , so it is necessary
to recall Hirota D-operator in terms  of exponential function (2.6). To show the
applicability of Hirota method to q-difference equations, we investigate the q-
analogue of the exponential identity. For this purpose, we present the findings of
the article [1]

Suppose σ  : R →	 R and ρ : R →	 R are  the forward and backward jump
operators, respectively. If  there exists inverse maps ρ−1 and σ−1 such that
ρ−1(x) = σ(x) and σ−1(x) = ρ(x), ∀x ∈ R, then σ and ρ are bijective and
they determine discrete one parameter group of bijections on R

n 7→	 {σn : R → R}, where σ0 ≡ idR, n ∈ R.

Instead of one parameter group  of bijections, we introduce one parameter
group of diffeomorphisms as we focus on systems of differential equations. Thus
,let h ∈ R, and h 7→	 σh be a continuous one-parameter group of
diffeomorphisms.
We expand σh around h = 0,

dσh (x) 2σh (x) = x + h.
dh h=0

+ O(h ), (3.1)

which clearly implies that σh is generated by a vector field which we denote it by
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q

x

χ(x)∂x, i.e. σh (x) = x + h.χ(x) + O(h2 ), where χ(x) is smooth on R except at
most finite number of points and it is said to be infinitesimal generator of the one-
parameter group of diffeomorphisms. Referring [30], for such σh it is beneficial
to compute one-parameter group in terms of exponentiation of the vector field

σh (x) = ehχ(x)∂xx, (3.2)

if and only if
ehχ(x)∂xg(x) = g(ehχ(x)∂xx) = g(σh (x)), (3.3)

where g(x) is a smooth function. It is convenient to propose χ(x)∂x= x1−n∂x on
R. For n = 1 we have,

σh (x) = eh∂xx = x + h iff eh∂xg(x) = g(x + h), (3.4)

which is nothing but forward jump operator in discrete variables. Furthermore,
for n = 0, we have,

σh (x) = ehx∂xx = eh x = qx iff ehx∂xg(x) = g(qx), (3.5)

which turns out to be q-forward jump operator, equipped with q = eh .

Definition. [33] The q-forward jump operator Eq is defined to be

Eq (g(x)) := ehx∂xg(x) = g(qx), (3.6)

where x ∈ R, h is a parameter and g ∈ C∞(R). In the same manner, we define
q-backward jump operator E−1 as

E−1

−hx∂x
q g(x) := e g(x) = g . (3.7)

q

Proposition 3.1 [35] q-forward jump operator Eq recovers its continuous case

lim Eq (x) = lim σh (x) = x. (3.8)
q→1 h→0
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q

2

Proof. Expanding Taylor series of Eq (x) with respect to h near zero we have

lim Eq (x) = lim[x + hχ(x)∂x{x} + h2
(χ(x)∂x)2{x} + O(h3)]

q→1 h→0

= lim[x + hx∂x{x}+
h→0

= x,

2
h2

(x∂x)2{x}+ O(h3)]

and also
lim Eq (x) = lim qx = x.
q→1 q→1

We stress that, discrete systems generated by χ(x)∂x are not equivalent. In
order to verify this fact, suggest χ(x) = x1−n , for odd n, and n = 0 to compare
with χ0(x0) = 1. Here we get x0 = 1 xn which is a bijection on R − {0}. To sum up,
all discrete systems determined by χ(x)∂x = x1−n∂x (n is odd) are isomorphic
to each other.    On the other hand, if we compare χ(x) = x and χ0(x0) = 1,
x = ex0 ,the transformation is found which is not a bijection on R−.

As it is evident, there is not an isomorphism between q-difference systems on
R− obtained by q-forward jump operators, Eq = ehx∂x, and lattice systems on R.

Hereafter, we q-discretize continuous  equations by the use of q-forward jump
operator Eq . Hence, we must present and prove the q-analogue of exponential
identity, which was first introduced in [33]. This identity is based on Eq and is
crucial to construct Hirota bilinear forms of q-differential equations.

Theorem 3.2 [33] Let g(x), f(x) ∈ C∞(R). Then we present the q-exponential
identity as

ehxDx g(x)f(x) = Eq g(x)E−1f(x), x ∈ R, (3.9)

where h and q do satisfy q = eh and Dx is given in (2.2).

Proof. Note that, the  proof does not follow the proof of Theorem 2.1 since the
operator Dy := xDx is not associative. Instead, integrate with respect to x, which
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x

implies x = ey. Then

ehxDxf(x)g(x) = ehDyf(ey )g(ey ). (3.10)

Using the equation (3.4) and Theorem 2.1, we obtain

ehxDx g(x)f(x) = ehDyg(ey).f(ey ) = g(ey+h)f(ey−h)

= g(eyeh )f (ey e−h) = g(qx)f(x ) = E g(x)E−1f(x).
q q q

3.2 The differential-q-difference Toda equation

In this section, our goal is to present the differential-q-difference Toda equation
and  its multi-soliton solutions. First, we present the difference operator, intro-
duced in [33].

Definition. [33] The central q-difference operator Λ2 acting to an arbitrary
smooth function g(x) is defined as

x
Λ2

xg(x) = g(qx) + g( q ) − 2g(x), q = 1 and x ∈ R. (3.11)

We introduce the differential q-difference Toda equation as

d2
2 x

dt2 log(1 + V (x, t)) = ΛxV (x, t) = V (qx, t) + V q , t − 2V (x, t), (3.12)

where V is rapidly decaying function and x, t ∈ R. We mean by a rapidly decaying
function, is a function whose all derivatives vanish as | x |→ ∓∞.

The next step is to write Hirota bilinear form of (3.12). For this purpose, we
use the dependent variable transformation as

V (x, t) := d2

dt2 log(f(x, t)). (3.13)
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Similar to the previous discussions in Section (2.1), to reach Hirota bilinear form
firstly we apply anti-derivative twice to (3.12) twice with respect to t

log(1 + V (x, t)) = ∂−2 Λ2 V (x, t)

and then we use the transformation (3.13) to get

log(1 + V (x, t)) = Λ2 log(f(x, t)).

Using Λ2 defined in (3.11), we get

log(1 + V (x, t)) = log f(qx, t) + log f( x
q , t)− 2 log f(x, t) = log

f(qx, t)f(x , t)
f 2(x, t)

which implies

V (x, t) =
f(qx, t)f(x , t)

f 2(x, t) − 1.

If we put the described V (x, t) in (3.13) on the left hand side of the above equation,
we obtain

ftt(x, t)f (x, t)− f 2(x, t)
f 2(x, t)

=
f(qx, t)f(x , t)

f 2(x, t) − 1,

which gives us Hirota bilinear form of differential-q-difference Toda equation as
follows

[D2 − (ehxDx + e−hxDx − 2)]{f(x, t).f(x, t)} = 0. (3.14)

After obtaining Hirota bilinear form, the perturbation technique is used around
a perturbation parameter ε to obtain soliton solutions where

P (D){f(x, t).f(x, t)} = [D2 − (ehxDx + e−hxDx − 2)]{f(x, t).f(x, t)}, (3.15)

and
f(x, t) = 1 + εf (1) (x, t) + ε2f (2) (x, t) + ε3f (3) (x, t) + · · · .



26

t

t

We substitute this f(x, t) into (3.15) then we get

P (D){f(x, t).f(x, t)} = P (D){1.1} + εP (D){1.f (1) + f (1) .1} + ε2P (D){1.f (2)

+ f (2) .1 + f (1) .f (1) } + ε3P (D){1.f (3) + f (3) .1 + f (2) .f (1) + f (1) .f (2) }
+ ε4P (D){1.f (4) + f (4) .1 + f (1) .f (3) + f (3) .f (1) + f (2) .f (2) } + · · · .

Our aim is to find one soliton solution of the equation of (3.12). Therefore, we
begin to analyze the coefficients of ε. The coefficient of ε0

P (D){1.1}= [D2 − (ehxDx + e−hxDx − 2)]{1.1},

vanishes clearly. From the coefficient of ε1,

P (D){1.f (1) + f (1) .1} = 2P (∂)f (1)

= 2[∂2 − (ehx∂x + e−hx∂x − 2)]f (1) .
(3.16)

From which the coefficient of ε1, f (1) can be constructed.

Remark. The significant point of Hirota  method is the form of the solution of
(3.16). Here we cannot suggest an exponential form for f (1) , since it does not
satisfy the above equation  (3.16). Our starting function should include a power
function as

f (1) (x, t) = xαeβt+η, (3.17)

where α, β, η are arbitrary constants, as a result of the q-discrete variable coun-
terpart. We rename such distinctive solutions as q-solitons as defined explicitly
in [33].

Definition. [33] We introduce a q-soliton solution as a solution which has clas-
sical soliton attitudes and additionally power counterparts for discrete variables.
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If we substitute the starting solution (3.17) into the equation (3.16), we con-
clude

[D2 − (ehxDx + e−hxDx − 2)]{1.f (1) + f (1) .1} = 2[∂2 − (ehx∂x + e−hx∂x − 2)]xαeβt+η
t t

= 2(β2 − qα − q−α + 2)xαeβt+η = 0.
(3.18)

Then the relation between the parameters results as

β2 = qα + q−α − 2, (3.19)

in order to satisfy (3.18). Here the relation (3.19) is said to be dispersion relation.
The coefficient of ε2 implies

P (D){1.f (2) + f (2) .1 + f (1) .f (1) }
= [D2 − (ehxDx e−hxDx − 2)]{1.f (2) + f (2) .1 + xαeβt+η.xαeβt+η} = 0,

where

P (D){f (1) .f (1) } = [D2 − (ehxDx + e−hxDx − 2)]{xαeβt+η.xαeβt+η}
= β2x2αe2(βt+η) − β2x2αe2(βt+η) − x α

2(qx)α

q
e2(βt+η) − 2x2αe2(βt+η) = 0.

Since P (D){f (1) .f (1) } = −2P (∂)f (2) , with the above equivalence, f (2) will be
determined. As a result, it is convenient to say ∀n ≥ 2, f (n) = 0 for one q-soliton
solution. The generalization of this equation provides us for ith solution f (k) = 0
for all k ≥ i + 1. In the end, without loss of generality taking ε = 1, one q-soliton
is

V (x, t) = β2xαeβt+η

(1 + xαeβt+η)2 , (3.20)

where f(x, t) = 1 + xαeβt+η and β, α are interrelated as (3.19). For two q-soliton
solutions, we propose the solution as

f (1) = xα1eβ1 t+η1 + xα2eβ2 t+η2 . (3.21)
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1
−

β2

i

Similarly to the previous arguments, the coefficient of ε1, gives the dispersion
relation

i = qαi + q−αi − 2 ∀i = 1, 2. (3.22)

The coefficient of ε2 gives the solution for f (2) as

f (2) = A(1, 2)xα1+α2e(β1+β2)t+η1+η2 , (3.23)

where

(β1 − β2)2 − (qα1−α2 + q−α1+α2) − 2 P (p1 − p2)A(1, 2) = − (β
=

+ β2)2 − (qα1+α2 + q−α1−α2) − 2 P (p1
.

+ p2)

Consequently, f (3) = 0 and the solution of two soliton is

f(x, t) = 1 + xα1eβ1 t+η1 + xα2eβ2 t+η2 + A(1, 2)xα1+α2e(β1+β2)t+η1+η2 . (3.24)

Coming up to three soliton solution, we start with

3

f (1) =
X

xαieβit+ηi . (3.25)
i=1

Then the dispersion relation arises as

i = qαi + q−αi − 2 i = 1, 2, 3, (3.26)

and from the coefficient of ε2, by the virtue of (3.25), f (2) emerges as

(3)

f (2) =
X

A(i, j)xαi+αj e(βi+βj)t+ηi+ηj , (3.27)
i<j

where
P (pi − pj)A(i, j) = −P (p

, i < j, i, j = 1, 2, 3. (3.28)
+ pj)

From the coefficient of ε3, we obtain

f (3) = A(1, 2, 3)xα1+α2+α3e(β1+β2+β3)t+η1+η2+η3 , (3.29)



29

where

A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)A(1, 2, 3) = − P (p1 + p2
.

+ p3)

The coefficient of ε4 gives us a relation for A(1, 2, 3),
(3.30)

A(1, 2, 3) = A(1, 2)A(1, 3)A(2, 3). (3.31)

If we combine the equations (3.30) and (3.31), the (3SSC ) appears as

X

σi=±1

3

P
X

σipi
i=1

! (3)Y
P (σipi − σjpj) = 0, i, j = 1, 2, 3. (3.32)

i<j

Finally, the three q-soliton solution is found as

3 (3)

f(x, t) =1 +
X

xαieβit+ηi +
X

A(i, j)xαi+αj e(βi+βj)t+ηi+ηj (3.33)
i=1 i<j

+ A(1, 2, 3)xα1+α2+α3e(β1+β2+β3)t+η1+η2+η3 .



30

Chapter 4

Unification of q-difference
Equations

Hirota direct method, which converts nonlinear partial equations into bilinear
equations, can be applied for a wide variety  of differential and difference type of
equations. In the previous chapter, following the work in [33] we presented that
the method is applicable to q-difference type of equations to obtain q-soliton solu-
tions and to seek for their integrability. In [33], differential-q-difference Toda and
q-difference-q-difference Toda  equation were investigated under Hirota’s method
and their q-soliton solutions were developed. Similarly, one can  find q-soliton
solutions of various q-difference type of equations. However, our aim is to find
a main  equation which unifies several q-difference type of equations. For this
purpose, we introduce an equation  in Hirota bilinear form, q-discrete analogue of
Hirota-Miwa equation, which includes several q-difference equations. Following
the approach in [33], in [35] we show the applicability of Hirota’s method to such
a unified q-difference soliton equation and develop its q-soliton solutions.

The important point is to analyze appropriate reductions on q-difference ana-
logue of Hirota-Miwa equation, which provides proper q-deformed Hirota bilinear
forms. The continuous limit of those Hirota bilinear forms meet the classical Hi-
rota bilinear forms of various equations. Furthermore, such Hirota bilinear forms
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allows to derive standard form of q-difference equations under considerations.
Moreover, in order  to discuss the integrability, we utilize Hirota direct method
and develop their 3-q-soliton solutions.

The theory presented in this chapter is based on the article [35].

4.1 q-difference analogue of Hirota-Miwa equa-
tion and its’ q-soliton solutions

In this section, we analyze the unification of q-difference equations and the appli-
cability of Hirota Direct Method on a generalized q-difference soliton equation.
q-discrete analogue of Hirota-Miwa equation

3

P (D1, D2, D3 ){f · f} :=
X

λi cosh (Di){f · f} = 0, (4.1)
i=1

where λi’ s are parameters, Di’ s are given

Di = aitDt + bixDx + ciyDy , ai, bi, ci ∈ R, i = 1, 2, 3 (4.2)

as linear combinations of tDt, xDx, yDy .

It is beneficial to express the q-analogue of exponential identity in three vari-
ables which is represented in q-shift operators.

Corollary 4.1 [35] We present the q-exponential identity in t, x, y ∈ R as follows

t x y
exp(aitDt + bixDx + ciyDy )g(t, x, y)f(t, x, y) = g(pit, rix, qiy)f , , ,

p r qi i i
(4.3)

where eai = pi, ebi = ri, and eci = qi, for all i = 1, 2, 3, respectively and g, f are
arbitrary smooth functions.

In order to construct q-soliton solutions first we expand f(t, x, y) around a
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3

formal perturbation parameter ε

f(t, x, y) = 1 + εf (1) (t, x, y) + ε2f (2) (t, x, y) + . . . . (4.4)

Then substitution of (4.4) into our generalized Hirota bilinear form (4.1), we
conclude

P (D1, D2, D3){f(t, x, y) · f(t, x, y)}
= P (D1 , D2, D3){1.1} + εP (D1, D2, D3){1 · f (1) + f (1) .1} (4.5)

+ ε2P (D1 , D2, D3){1 · f (2) + f (2) .1 + f (1) · f (1) }
+ ε3P (D1 , D2, D3){1 · f (3) + f (3) · 1 + f (1) · f (2) + f (2) · f (1) } + · · · = 0

where we use the linearity of the polynomial P (D1, D2, D3). In the final step, we
collect and vanish the coefficients of εi, for all i ≥ 0. The coefficient of ε0 is

P (D1 , D2, D3){1 · 1} = λ1 + λ2 + λ3 .

It is helpful to remind the sufficient conditions to have at least two soliton solu-
tions via Hirota method, stated in Theorem 2.3. Thus we have a restriction on
parameters

P (0, 0, 0) = λ1 + λ2 + λ3 = 0. (4.6)

From the equation (4.5), the coefficient of ε1 implies

3

P (D1, D2, D3 ){f (1) .1 + 1 · f (1) } = 2P (∂1, ∂2, ∂3)f (1) = 2
X

λi cosh(∂i)f (1)

i=1

=
X λi (exp (a t∂ + b x∂ + c y∂ ) + exp (−a t∂ − b x∂ − c y∂ ))f (1) = 0.

2i=1
i t i x i y i t i x i y

(4.7)
From the previous experiences, as a consequence of change of variables, we must
offer a solution that includes power form for q-discrete variables. Thus we start
with the solution of the form

f (1) (t, x, y) = ηtδxζ yθ, (4.8)
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t
i

where η, δ, ζ, θ are arbitrary constants. Such kind of solutions provide q-soliton
solutions, determined in Definition 3.2.

Inserting this solution into the equation (4.7), we derive the dispersion relation
as

3

P (v) =
X

λi(pδrζqθ + p−δr−ζ q−θ) = 0, (4.9)
i=1

i i i i i i

where v is in vector notation v = (δ, ζ, θ).

Let us investigate the coefficient of ε2 from (4.5)

which implies

P (D1, D2, D3 ){1 · f (2) + f (1) · f (1) + f (2) .1} = 0, (4.10)

P (D1 , D2, D3){f (1) · f (1) } = −2P (∂1 , ∂2, ∂3)f (2) . (4.11)

If we plug f (1) as defined in (4.8) into the left hand side of (4.11)

3

P (D1, D2 , D3){f (1) .f (1) } =
X

λi cosh(Di){ηtδxζ yθ.ηtδxζ yθ}
i=1

3

=
X

λiη2(pit)δ(rix)ζ (qiy)θ(
p

i=1

= (λ1 + λ2 + λ3)η2t2δx2ζ y2θ

)δ ( x
ri

)ζ ( y )θ
qi

(4.12)

which vanishes by the assumption (4.6). Therefore we can say that f (j) = 0, for
all j ≥ 2. If we generalize this for i-q-soliton solution, f (k) = 0 for all k ≥ i + 1.
For simplicity, take ε = 1, then  one q-soliton solution is

f(t, x, y) = 1 + ηtδxζ yθ. (4.13)

For two-q-soliton solutions, we begin with the solution

2

f (1) =
X

ηitδixζiyθi ,
i=1
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1

p

p p

where ηi, δi, ζi’ s are constants for all i = 1, 2. The coefficient of ε0 vanishes

P (D1, D2, D3){1.1} = λ1 + λ2 + λ3 = 0 (4.14)

by the constraint (4.6). We continue to search for the coefficient of ε1.

P (D1, D2, D3 ){1.f (1) + f (1) .1} = −2P (∂1, ∂2, ∂3)f (2) . (4.15)

We have to investigate P (∂1 , ∂2, ∂3)f (1) to find the dispersion relation, thus

3

P (∂1 , ∂2, ∂3)f (1) =
X

λi cosh(∂i){η1tδ1xζ1 yθ1 + η2tδ2xζ2 yθ2 }
i=1

λ1= η1(p1t)δ1 (r1x)ζ1(q1y)θ1 + η2(p1t)δ2(r1x)ζ2(q1y)θ2 + η1
t δ1 x ζ1 y θ1

2
t δ2 x ζ2 y θ2 λ2

p1

δ1 ζ1 θ1

r1 q1

δ2 ζ2 θ2+ η2
1 r1 q1

+ 2 η1(p2t) (r2x) (q2y) + η2(p2t) (r2x) (q2y)

t δ1 x ζ1 y θ1 t δ2 x ζ2 y θ2 λ3 δ1 ζ1 θ1+ η1
2 r2 q2

+ η2
2 r2 q2

+ 2 η1(p3t) (r3x) (q3y)

+ η2(p3t)δ2(r3x)ζ2 (q3y)θ2 + η1
t δ1 x ζ1 y θ1

+ η2
t δ2 x ζ2 y θ2

2 λ

p3 r3 q3

λ

p3 r3 q3

=
X

ηitδixζiyθi (pδirζi qθi + p−δir−ζiq−θi) + 2 (pδirζiqθi + p−δir−ζiq−θi)
i=1

λ3

2 1 1 1 1 1 1 2 2 2 2 2 2 2

+ (pδ1 rζ1qθ1 + p−δ1r−ζ1 q−θ1) . (4.16)
2 3 3 3 3 3 3

Remember that (4.16) is equal to zero and since the terms ηitδixζiyθi cannot be
identically zero, thus we get the dispersion relation among two-q-soliton solutions
as

3 λP (vj) = P (δj , ζj , θj) =
X

(pi ri qi + pi ri qi ) = 0, ∀j = 1, 2. (4.17)i

2
i=1

δj ζj θj −δj −ζj −θj

The coefficient of ε2 determines that

P (D1, D2 , D3){1 · f (2) + f (1) · f (1) + f (2) · 1} = 0, (4.18)
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3 t

t x y

i

p

p

which implies

P (D1 , D2, D3){f (1) · f (1) } = −2P (∂1 , ∂2, ∂3)f (2) . (4.19)

Thus we have

P (D1, D2 , D3){f (1) · f (1) }
=P (D1, D2 , D3){η1tδ1 xζ1 yθ1 .η1tδ1 xζ1 yθ1 + η1tδ1xζ1 yθ1 .η2tδ2xζ2 yθ2

+ η2tδ2xζ2 yθ2 .η1tδ1 xζ1 yθ1 + η2tδ2xζ2 yθ2 .η2tδ2 xζ2 yθ2 }
which is equivalent to

X λi η2 δ1

δ1
ζ1 θ1

x ζ1 y θ1

2
i=1

1(pit) (rix) (qiy)
i

+
ri qi

η1(pit)δ1(rix)ζ1(qiy)θ1 η2
t δ2 x ζ2 y θ2

+
pi ri qi (4.20)

η2(pit)δ2(rix)ζ2(qiy)θ2 η1
t δ1 x ζ1 y θ1

+
pi ri qi

η2 δ2

δ2 ζ2 θ2
ζ2 θ2

2(pit) (rix) (qiy)
i

.
ri qi

Utilizing the dispersion relation (4.17) in the equation (4.20), we get

P (D1, D2,D3){f (1) · f (1) }
3 λ= η1η2tδ1+δ2xζ1 +ζ2yθ1+θ2

X
[pδ1−δ2 ζ1 −ζ2 θ1 −θ2 δ2−δ1 ζ2 −ζ1 θ2 −θ1

2
i=1

and we can derive the form of f (2) as

i ri qi + pi ri qi ],

(4.21)

f (2) = A(1, 2)η1η2tδ1+δ2xζ1 +ζ2 yθ1+θ2 . (4.22)

One can explicitly discover the interaction coefficient A(1, 2) by plugging (4.22)
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i

1

into (4.19)

3− η1η2A(1, 2)
X

(pit)δ1+δ2(rix)ζ1+ζ2(qiy)θ1 +θ2 +
t δ1 +δ2 x ζ1 +ζ2 y θ1 +θ2

i=1
3 λ

pi ri qi

= η1η2tδ1+δ2xζ1 +ζ2yθ1+θ2
X

[pδ1−δ2 ζ1 −ζ2 θ1 −θ2 −δ1+δ2 −ζ1+ζ2 −θ1+θ2

Thus A(1, 2) is

2
i=1

i ri qi + pi ri qi ].

(4.23)

P3 λi [pδ1−δ2rζ1−ζ2qθ1−θ2 + p−δ1+δ2r−ζ1+ζ2 q−θ1+θ2 ]
A(1, 2) = − i=1 2 i i i i i iP3 λi δ1+δ2 ζ1 +ζ2 θ1 +θ2 −δ1−δ2 −ζ1−ζ2 −θ1−θ2

i=1 2 [pi ri qi + pi ri qi ] (4.24)
P (v1 − v2)= −
P (v

.
+ v2)

Similar to the previous discussions for all i ≥ 3, all terms f i = 0 and taking
ε = 1, two-q-solitons can be expressed as

f(t, x, y) = 1 + η1tδ1xζ1 yθ1 + η2tδ2xζ2 yθ2 + A(1, 2)η1η2tδ1+δ2xζ1 +ζ2yθ1+θ2 . (4.25)

For three-q-soliton solutions, we start with

3

f (1) (t, x, y) =
X

ηitδixζiyθi , (4.26)
i=1

where η, δi, ηi, ζi are constants for i = 1, 2, 3. We investigate the coefficient of ε0

3

P (D1, D2, D3){1 · 1} =
X

λi cosh(Di){1.1} = λ1 + λ2 + λ3 = 0 (4.27)
i=1

results from (4.6). The coefficient of ε1 gives us

P (D1, D2, D3){1 · f (1) + f (1) · 1} = −2P (∂1, ∂2, ∂3)f (1) . (4.28)
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3

k

2

i<j

δjr q i r q

p r k p r

Writing (4.26) in the equation (4.28), we get

−2P (∂1,∂2, ∂3){η1tδ1xζ1 yθ1 + η2tδ2xζ2 yθ2 + η3tδ3 xζ3 yθ3 }
3 3

= −XX
λj(ηitδi+ajxζi+bj yθi+cj + ηitδi−ajxζi−bj yθi−cj ), (4.29)

j=1 i=1

which yileds the dispersion relation

3 λP (δj , ζj , θj) =
X

(pi2
ζj θj
i i + p−δj −ζj

i
−θj
i ) = 0, ∀j = 1, 2, 3. (4.30)

i=1

From the coefficient of ε2, we have

P (D1 , D2, D3){f (1) · f (1) } = −2P (∂1 , ∂2, ∂3)f (2) , (4.31)

where

P (D1, D2, D3){f (1) · f (1) }
=

X λi [η2t2δ1x2ζ1 y2θ1 + η η tδ1−δ2xζ1 −ζ2yθ1−θ2(pδ1 −δ2 ζ1 −ζ2 θ1 −θ2

2 1 1 2
i=1

i ri qi )

+ η1η3tδ1−δ3xζ1 −ζ3yθ1−θ3(pδ1 −δ3 ζ1 −ζ3 θ1 −θ3
i ri qi )

(4.32)
+ η1η2t−δ1+δ2x−ζ1+ζ2y−θ1+θ2(p−δ1+δ2 −ζ1+ζ2 −θ1+θ2 2 2δ2 2ζ2 2θ2

i ri qi ) + η2t x y

+ η2η3tδ2−δ3xζ2 −ζ3yθ2−θ3(pδ2 −δ3 ζ2 −ζ3 θ2 −θ3
i ri qi )

+ η1η3t−δ1+δ3x−ζ1+ζ3y−θ1+θ3(p−δ1+δ3 −ζ1+ζ3 −θ1+θ3
i ri qi )

+ η2η3t−δ2+δ3x−ζ2+ζ3y−θ2+θ3(p−δ2+δ3 −ζ2+ζ3 −θ2+θ3 2 2δ3 2ζ3 2θ3
i ri qi ) + η3t x y ].

Using the dispersion relation (4.30) in (4.32), we obtain

(3) 3 λ−P(∂)f (2) =
X

ηiηjtδi+δjxζi+ζjyθi+θj
hX

(qδi−δj
k

ζi−ζj
k

θi−θj
k +qδj−δi ζj−ζi

k
θj−θi
k )

i
,

i<j k=1
(4.33)

where
P(3) is the summation of all elements for i < j and i, j = 1, 2, 3 and we
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find the form of f (2) as

f (2) = A(1, 2)η1η2tδ1+δ2xζ1 +ζ2 yθ1+θ2 + A(1, 3)η1η3tδ1+δ3xζ1 +ζ3 yθ1+θ3

+ A(2, 3)η2η3tδ2+δ3xζ2 +ζ3 yθ2+θ3 .
(4.34)

More precisely,

(3)

f (2) (t, x, y) =
X

A(i, j)ηiηjtδi+δjxζi+ζj yθi+θj , (4.35)
i<j

where i < j, i, j = 1, 2, 3 and

P3 λi [qδi−δj pζi−ζjrθi−θj + q−δi+δj p−ζi+ζjr−θi+θj ]
A(i, j) = − i=1 2 i i i i i i = −P (vi − vj).P3 λi δi+δj ζi+ζj θi+θj −δi−δj −ζi−ζj −θi−θj P (v + v )

i=1 2 [qi pi ri + qi pi ri ] i j

(4.36)
Finally our aim is to obtain f (3) , so continue with the coefficient of ε3, then

P (D1, D2 , D3){1 · f (3) + f (1) · f (2) + f (2) · f (1) + f (3) · 1} = 0, (4.37)

which can be written as

− P (D1, D2, D3 ){f (1) · f (2) + f (2) · f (1) } = P (D1, D2 , D3){1 · f (3) + f (3) }.  (4.38)

Consider the left hand side of (4.38)

P (D1, D2 , D3){f (2) · f (1) + f (1) · f (2) }
= 2P (D1, D2, D3 ){(η1tδ1xζ1 yθ1 + η2tδ2xζ2 yθ2 + η3tδ3xζ3 yθ3 ) · (A(1, 2)η1η2tδ1+δ2xζ1 +ζ2 yθ1+θ2

+ A(1, 3)η1η3tδ1+δ3xζ1 +ζ3 yθ1+θ3 + A(2, 3)η2η3tδ2+δ3xζ2 +ζ3yθ2+θ3)}
3

=
X

λi
i=1

A(1, 2)η1η2tδ1+δ2xζ1 +ζ2yθ1+θ2 [η1tδ1xζ1 yθ1 (pi
−δ1ri

−ζ1 qi
−θ1 + pi

δ1 ri
ζ1 qi

θ1 )

+ η2tδ2xζ2 yθ2 (pi
−δ2ri

−ζ2 qi
−θ2 + pi

δ2 ri
ζ2 qi

θ2 ) + η3tδ3xζ3 yθ3 (pi
−δ3ri

−ζ3 qi
−θ3 + pi

δ3 ri
ζ3 qi

θ3 )]

+ A(1, 3)η1η3tδ1+δ3xζ1 +ζ3 yθ1+θ3 [η1tδ1xζ1 yθ1 (pi
−δ1ri

−ζ1qi
−θ1 + pi

δ1 ri
ζ1 qi

θ1 )
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3

+ η2tδ2xζ2 yθ2 (pi
−δ2ri

−ζ2 qi
−θ2 + pi

δ2 ri
ζ2 qi

θ2 ) + η3tδ3xζ3 yθ3 (pi
−δ3ri

−ζ3 qi
−θ3 + pi

δ3 ri
ζ3 qi

θ3 )]

+ A(2, 3)η2η3tδ2+δ3xζ2 +ζ3 yθ2+θ3 [η1tδ1xζ1 yθ1 (pi
−δ1ri

−ζ1qi
−θ1 + pi

δ1 ri
ζ1 qi

θ1 )

+ η2tδ2xζ2 yθ2 (pi
−δ2ri

−ζ2 qi
−θ2 + pi

δ2 ri
ζ2 qi

θ2 ) + η3tδ3xζ3 yθ3 (pi
−δ3ri

−ζ3 qi
−θ3 + pi

δ3 ri
ζ3 qi

θ3 )] .

(4.39)
It can be seen that the summation (4.39) is simplified by the dispersion relation
(4.30) and we get

P (D1 , D2 , D3){f (1) · f (2) + f (2) · f (1) }
3

=
X

λi
i=1

η1η2η3tδ1+δ2+δ3xζ1 +ζ2+ζ3yθ1+θ2+θ3 [A(2, 3)(pi
δ1 −δ2−δ3

ri
ζ1 −ζ2−ζ3 qi

θ1 −θ2−θ3 + pi
−δ1+δ2+δ3ri

−ζ1+ζ2+ζ3 qi
−θ1+θ2+θ3)

+ A(1, 3)(pi
−δ1+δ2−δ3ri

−ζ1+ζ2−ζ3qi
−θ1+θ2−θ3 + pi

δ1 −δ2+δ3

ri
ζ1 −ζ2+ζ3 qi

θ1 −θ2+θ3) + A(1, 2)(pi
δ1 +δ2−δ3ri

ζ1 +ζ2−ζ3 qi
θ1 +θ2−θ3

(4.40)

+ pi
−δ1−δ2+δ3ri

−ζ1−ζ2+ζ3 qi
−θ1−θ2+θ3)] .

By the equality (4.38), we can say that f (3) is of the form

f (3) = A(1, 2, 3)η1η2η3tδ1+δ2+δ3xζ1 +ζ2+ζ3yθ1+θ2+θ3 . (4.41)

To see the  connection between A(1, 2), A(1, 3), A(2, 3) and A(1, 2, 3) we expand
the right hand side of (4.38) as

P (D1, D2, D3 ){1 · f (3) + f (3) · 1} = 2P (∂1 , ∂2, ∂3)f (3)

= P (∂1, ∂2, ∂3)A(1, 2, 3)η1η2η3tδ1+δ2+δ3xζ1 +ζ2+ζ3yθ1+θ2+θ3

=
X λi [p δ1 +δ2+δ3r ζ1 +ζ2+ζ3q θ1 +θ2+θ3 (4.42)

2 i i i
i=1

+ pi
−δ1−δ2−δ3ri

−ζ1−ζ2−ζ3 qi
−θ1−θ2−θ3 ]× A(1, 2, 3)η1η2η3tδ1+δ2+δ3xζ1 +ζ2+ζ3yθ1+θ2+θ3

which implies the relationship between the coefficients A(1, 2), A(1, 3), and A(2, 3)
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with A(1, 2, 3).

A(1, 2, 3)pi
δ1 +δ2+δ3ri

ζ1 +ζ2+ζ3qi
θ1 +θ2+θ3 + pi

−δ1−δ2−δ3ri
−ζ1−ζ2−ζ3qi

−θ1−θ2−θ3

= − A(1, 2)(pi
δ1 +δ2−δ3ri

ζ1 +ζ2−ζ3qi
θ1 +θ2−θ3 + pi

−δ1−δ2+δ3ri
−ζ1−ζ2+ζ3qi

−θ1−θ2+θ3)

+ A(1, 3)(pi
δ1 −δ2+δ3ri

ζ1 −ζ2+ζ3 qi
θ1 −θ2+θ3 + pi

−δ1+δ2−δ3ri
−ζ1+ζ2−ζ3qi

−θ1+θ2−θ3)

+ A(2, 3)(pi
δ1−δ2−δ3ri

ζ1−ζ2−ζ3qi
θ1−θ2−θ3 + pi

−δ1+δ2+δ3ri
−ζ1+ζ2+ζ3qi

−θ1+θ2+θ3)
(4.43)

leading to

A(1, 2)P (v3 − v1 − v2) + A(1, 3)P (v2 − v1 − v3)A(1, 2, 3) = − P (v1 + v2 + v3) (4.44)
+ A(2, 3)P (v1 − v2 − v3)

P (v1 + v2 + v3)

If we write the coefficient of ε4, then we know that f (4) = 0, but it reveals us
another expression for A(1, 2, 3)

A(1, 2, 3) = A(1, 2)A(1, 3)A(2, 3). (4.45)

The equivalence of (4.44) and (4.45) for A(1, 2, 3) provides the three-soliton solu-
tion condition (see [35]) (3.32). In conclusion, the condition (3.32) on P , guaran-
tees the existence of three-q-soliton solutions. Thus, we deduce the three-q-soliton
solutions as

3 (3)

f(x, t) = 1 +
X

ηitδixζiyθi +
X

A(i, j)ηiηjtδi+δjxζi+ζjyθi+θj

i=1 i<j (4.46)

+ A(1, 2)A(1, 3)A(2, 3)η1η2η3tδ1+δ2+δ3xζ1 +ζ2+ζ3 yθ1+θ2+θ3 .

4.2 Reductions

In the previous section, we present q-discrete analogue of Hirota-Miwa equation
(4.1) and find its three q-soliton solutions. Now, our aim is to obtain its special
cases, i.e., q-analogues of Toda,  KdV and sine-Gordon equations by determining
suitable reductions on (4.1).
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4.2.1 The q-difference-q-difference Toda equation

In [33], the q-difference-q-difference Toda equation was introduced and its three-
q-soliton solutionsare developed.In this section, our goal is  to reconstruct q-
difference-q-difference Toda equation by a proper reduction on the generalized
equation (4.1). For this purpose, we set

D1 = hτ Dτ , D2 = h̄yDy , D3 = 0, λ1 = 2h−1, λ2 = −2, λ3 = 2 − 2h−1,
(4.47)

in (4.1) which results

3

P (D1 ,D2, D3 ){f.f} =
X

λi cosh(Di){f.f}
i=1

= [2h−1 cosh(hτ Dτ − 2 cosh(h̄yDy ) + (2 − 2h−1)]{f.f}
= [h−1(ehτ Dτ + e−hτDτ − 2) − (eh̄ yDy + e−h̄yDy − 2)]{f.f},

(4.48)

and leads us Hirota bilinear form of q-difference-q-difference Toda equation [33]
as

h−1(ehτDτ + e−hτDτ − 2)
(4.49)− (eh̄yDy + e−hyDy − 2) {f(τ, y) · f(τ, y)} = 0.

Next we prove that Hirota bilinear form (4.49) generalizes the continuous case as
follows.

Proposition 4.2 [33] Hirota bilinear form of the q-difference-q-difference Toda
equation

h−1(ehτDτ + e−hτDτ − 2)
(4.50)− (eh̄yDy + e−hyDy − 2) {f(τ, y) · f(τ, y)} = 0

reduces to Hirota bilinear form of the differential-q-difference Toda equation

¯ ¯[Dt
2 − (e(hyDy) + e(−hyDy) − 2)]{f(t, y) · f(t, y)} = 0, (4.51)

as h tends to zero.

Proof. To prove the proposition, we interchange h by h2 in (4.50) and set τ = eht,
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t
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q q̄

·

q̄

then Dτ = hehtDt implies Dt = hτ Dτ . Putting these transformations in the left
hand side of the equation (4.50), we get,

h−1(ehτDτ + e−hτDτ − 2) − (eh̄yDy + e−h̄yDy − 2)

= h−2(ehDt + e−hDt − 2) − (eh̄ yDy + e−h̄yDy − 2). (4.52)

Finally, if we consider the limit as h → 0,

lim
h→0

ehDt + e−hDt − 2
h2 −(eh̄yDy +e−h̄yDy −2) = D2 −(eh̄ yDy +e−h̄yDy −2) (4.53)

we end up with (4.51).

Next we present the standard form of q-difference-q-difference Toda equation,
stated in [33].

Proposition 4.3 [33] The standard form of the q-difference-q-difference Toda
equation is

Λ2 2
τ log(1 + V (τ, y)) = Λy log(1 + hV (τ, y)). (4.54)

Proof. We begin with (4.50) and expand the operators

τ
h−1[f(qτ, y) f(

q
τ, y) + f(
q

, y) · f(qτ, y) − 2f(τ, y) ]
y y 2

(4.55)
= f(τ, q̄y) · f(τ, q̄ ) + f(τ, q̄ ) · f(τ, q̄y)− 2f(τ, y) ,

which implies

h−1 f(qτ, y) · f( τ , y)
f(τ, y)2 − 1

f(τ, q̄y) · f(τ, y )
=

f(τ, y)2 − 1. (4.56)

Let us define the following transformation

f(qτ, y) · f( τ , y) f(τ, q̄y) · f(τ, y )
V (τ, y) := h−1 q

f(τ, y)2 − 1 =
f(τ, y)2 − 1. (4.57)

To reach our aim, we use central-difference operator which is given in (3.11) and
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y

τ

evaluate from the right hand side of (4.57)

f(τ, q̄y) · f(τ, y )
log(1 + V (τ, y)) = log q̄

f(τ, y)2
y= log f(τ, q̄y) + log f τ,
q̄

− 2 log f(τ, y)

leading to

log(1 + V (τ, y)) = Λ2 log f τ, y , (4.58)

and from the left hand side of (4.57) we get

f(qτ, y) · f( τ , y)
log(1 + hV (τ, y)) = log q

f(τ, y)2
τ

= log f(qτ, y) + log f( q , y) − 2 log f(τ, y)

which is equivalent to

log(1 + hV (τ, y)) = Λ2 log f(τ, y). (4.59)

Since log(1 + V (τ, y)) = log(1 + hV (τ, y)) from (4.57), the standard form is
written as

Λ2 2
τ log(1 + V (τ, y)) = Λy log(1 + hV (τ, y)). (4.60)

Up to now, we have found standard form and Hirota bilinear form of the equation.
The next is to mention about its q-soliton solutions which were presented already
in [33]. Here, we recompute them by using the reductions (4.47) in the findings
of the Section 4.1.

Proposition 4.4  [35] We present one-q-soliton solution of q-difference-q-
difference Toda equation (4.54) as

V (τ, y) = ητ δyζ [q̄ζ + q̄−ζ − 2]
(1 + ητ δyζ)2 , (4.61)

with the dispersion relation

h−1(qδ + q−δ − 2) = q̄ζ + q̄−ζ − 2 (4.62)
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q̄

is satisfied.

Proof. From the reductions (4.47), it is obviously seen that we have the below
identifications

t = τ, x = y, θ = 0, a1 = h, b2 = h̄,

a2 = a3 = b1 =b3 = c1 = c2 = c3 = 0.
(4.63)

We will use these identifications to obtain one-q-soliton solution and the disper-
sion relation. We substitute above reductions into this f (1) to conclude

f (1) = ηtδyζ . (4.64)

We verify the dispersion relation (4.62) by putting (4.64) into Hirota bilinear
form (4.49), then we have

[h−1(e(hτDτ ) + e(−hτDτ ) − 2) − (e(h̄ yDy) + e(−h̄yDy) − 2)]{ητ δyζ} = 0,

which implies (4.62) immediately

h−1(qδ + q−δ − 2) − (q̄ζ + q̄−ζ − 2) = 0

where eh = q and eh̄ = q̄.

Secondly, if we put f (1) = 1 + ηtδyζ into (4.57), we get

V (τ, y) =
f(τ, q̄y) · f(τ, y ) ητ− 1 =

δyζ(q̄ζ + q̄−ζ − 2)

f(τ, y)2 (1 + ηtδyζ)2 (4.65)

which finishes the proof.

Remark. With the conditions τ , y ∈ qZ, namely τ = qn and y = q̄m, n, m ∈ Z,
the q-difference-q-difference Toda equation (4.54) turns out to be

(1 + V (qn+1, (q̄)m ))(1 + V (qn−1, (q̄)m ))
(1 + V (qn, (q̄)m ))2

(1 + hV (qn, (q̄)m+1))(1 + hV (qn, (q̄)m−1))
= ,

(1 + hV (qn, (q̄)m ))2

(4.66)
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−and it has one-q soliton solution explicitly

ηqnδ(q̄)mζ [(q̄)ζ + (q̄)−ζ 2]
V (τ, y) =

(1 + ηqnδ(q̄)mζ )2 . (4.67)

Subsequently, two-q-soliton and three-q-soliton solutions can be written by using
the reductions and identifications, respectively

f(τ, y) = 1 + η1τ δ1 yζ1 + η2τ δ2 yζ2 + A(1, 2)η1η2τ δ1 +δ2yζ1 +ζ2 , (4.68)

where

h−1(qδ1−δ2 + q−δ1+δ2 − 2) − (q̄ζ1 −ζ2 + q̄−ζ1+ζ2 − 2)A(1, 2) = −
h−1(qδ1+δ2 + q−δ1−δ2 − 2) − (q̄ζ1 +ζ2 + q̄−ζ1−ζ2 − 2)

,

and

3 (3)

f(τ, y) = 1 +
X

ηiτ δiyζi +
X

A(i, j)ηiηjτ δi+δjyζi+ζj

i=1 i<j

+ A(1, 2)A(1, 3)A(2, 3)η1η2η3τ δ1 +δ2+δ3yζ1 +ζ2+ζ3 ,

where

h−1(qδi−δj + q−δi+δj − 2) − (q̄ζi−ζj + q̄−ζi+ζj − 2)
A(i, j) = −h−1(qδi+δj + q−δi−δj − 2) − (q̄ζi+ζj + q̄−ζi−ζj − 2), i < j i, j = 1, 2, 3.

Remark. We present the graph of three-q-soliton solutions of q-difference-q-
difference Toda equation. The solitonic behavior of the waves can be observed
from the graph. Since the form of the solutions  is polynomials in power func-
tions, we conclude that the length of the wave increases as x increases. In the
graph we set q = 1, 25, q̄ = 2, h = ln(q), δ1 = 6, δ2 = 4, and δ3 = −7 then
from the dispersion relation we get ζ1 = 3.487750814, ζ2 = −2.494747127 and
ζ3 = −3.933630763.



Figure 1: Three-q-soliton solutions of q-difference-q-difference Toda Equation

(a) (b)

(c) (d)



Figure 1: Three-q-soliton solutions of q-difference-q-difference Toda Equation

(e) (f)

(g)
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4.2.2 The q-difference-q-difference KdV equation

In  this section, our first step is to find Hirota bilinear form of q-difference-q-
difference KdV equation from the generalized equation (4.1). For this purpose
we have to propose a Hirota bilinear form for the q-difference-q-difference KdV in
a way that it reduces to the continuous one. Using the following reductions [35]

D = 1 (3h2τ D + h̄1 2 τ
2yD ), D = 1 (h2 τD + 3h̄y 2 2 τ

2yD ), D = 1 (h2τ D− h̄

2yDy ),

in (4.1), we get

λ1 = 1, λ2 = 2h, λ3 = −1 − 2h,
(4.69)

3X
λi cosh(Di){f · f} = [λ1 cosh(D1) + λ2 cosh(D2 ) + λ3 cosh(D3 )]{f · f}

i=1

= cosh( (3h2 τDτ + h̄2yDy )) + 2h cosh(
2

(h2 τDτ + 3h̄2yDy ))
2

1 2 2+ (−1 − 2h) cosh(
2

(h τDτ − h̄

h2τDτ + h̄2yDy

yDy )){f.f}
= sinh [h−1 sinh(h2τ Dτ ) + 2 sinh(h̄ 2yDy )]{f.f}.

In conclusion

h2τDτ + h̄2yDysinh
2

[h−1 sinh(h2τ Dτ )+2 sinh h̄2yD ]{f(τ, y)·f(τ, y)} = 0,

(4.70)
is offered to be Hirota bilinear form of the q-difference-q-difference KdV equation.

Proposition 4.5 [35] Hirota bilinear form of q-difference-q-difference KdV equa-
tion

sinh h2τDτ + h̄2yDy

2
[h−1 sinh(h2 τDτ ) + 2 sinh(h̄ 2yDy )]{f(τ, y) · f(τ, y)} = 0,

(4.71)
recovers Hirota bilinear form of the continuous KdV equation [14]

[Dx(Dt + D3 )]{f(t, x) · f(t, x)} = 0, (4.72)
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by taking small limit of h, h̄.

Proof. Beginning with the equation (4.71), we have to reach the bilinear form
(4.72). For this purpose, let τ = eht, then  (4.70) becomes

hDt + h̄2yDysinh [h−1 sinh(hDt) + 2 sinh(h̄ 2yDy )]{f · f} = 0. (4.73)

Taking limit as h tends to 0 in (4.73), we obtain

h̄2yDysinh [Dt + 2 sinh(h̄ 2yDy )]{f(t, y) · f(t, y)} = 0. (4.74)

Secondly, setting y = eh̄x implies D = h̄yDy , we get

sinh h̄Dx

2 [Dt + 2 sinh(h̄ Dx)]{f(t, x) · f(t, x)} = 0. (4.75)

h̄3 Dt ¯Last transition Dt = 3 − 2hDx in (4.75) gives us

sinh
h̄Dx h̄3Dt − 2h̄Dx + 2 sinh(h̄ Dx) {f · f} = 0. (4.76)2 3

To reach the continuous KdV equation in Hirota bilinear form (4.72), finally we
divide (4.76) by h̄4 we have

lim
eh̄Dx/2 − e−h̄Dx/2 h̄3D − x +eh̄ D −e−h̄Dx

1
= (DtDx +D4 ) (4.77)

h̄→0 2h̄4 3 6

by using L’Hospitals Rule four times.

Hence (4.71) is the general form of Hirota bilinear form of (4.72).

After showing the bilinear form of q-difference-q-difference KdV equation, our
aim is to find its standard form but first we give basic properties and definitions
to describe the details.

Lemma 4.6 [21] Let f, g ∈ C∞(R). Then the followings hold
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(i) sinh 1 (D2 −D3 ){sinh 1 (D2 +D3) ·2 sinh D1 f ·f}.{cosh( 1 (D2 +D3) − D1)f ·2 2 2

f} = sinh D1{cosh D2 f · f} · {cosh D3f · f},

(ii) cosh D1 {cosh D2 f ·f}·{cosh D2f ·f} = cosh D2{cosh D1f ·f}.{cosh D1f ·f},

(iii) eβ∂x(f ) = eβDx{f}.{ g },
g cosh(βDx)g.g

where Di’s satisfy (4.2) and β is a constant.

Proof. We prove the second and third items, since the first one is similar.

(ii) Beginning with cosh D2{f(t, x) · f(t, x)} = f(t + p2, x + r2)f(t− p2, x − r2)
gives us

cosh D1{cosh D2f · f} · {cosh D2f · f}
= f(t + p1 + p2, x + r1 + r2)f(t + p2 − p1, x + r2 − r1) (4.78)

f(t− p2 + p1, x − r2 + r1)f(t− p2 − p1, x − r2 − r1).

On the other hand

cosh D2{cosh D1f · f} · {cosh D1f · f}
= f(t + p2 + p1, x + r2 + r1)f(t + p2 − p1, x + r2 − r1) (4.79)

f(t− p2 + p1, x − r2 + r1)f(t− p2 − p1, x − r2 − r1).

The equivalence of the equations (4.78) and (4.79) ends the proof of (ii).

(iii) We begin with the right hand side of eβ∂x(f ) = eβDx{f.g} ,
g cosh(βDx)g.g

eβDx{f.g} = f(x + β)g(x − β), (4.80)

and
cosh(βDx){g.g} = g(x + β)g(x − β). (4.81)
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f(qτ, y)f( τ , y)

Dividing equation (4.80) to (4.81), the left hand side is obtained clearly as

f(x + β)
g(x + β) = eβ∂x(f ).

g

Definition. [35] The q-difference operator δx, acting on a function h(x), is given
as

x
δxh(x) := h(qx) − h( q ), x ∈ R, q = 1. (4.82)

Proposition 4.7 [35] We present the standard form of the q-difference-q-
difference KdV equation

1
δτ (V (τ, y)) = −2h1/2δyV (τ, y), (4.83)

with the dependent variable transformation

f(τ, q̄y)f(τ, y )
V (τ, y) := − q̄

q
, (4.84)

where eh = q and eh̄ = q̄.

Proof. In order to  facilitate our work, we begin with an equivalent form of q-
difference-q-difference KdV equation (4.71) and simplify it by changing h2 and
h̄2 by h and h̄, respectively. Then we obtain

sinh hτDτ − h̄yDy

2
{sinh

hτDτ + h̄yDy

2
[h−1/2 sinh(hτ Dτ )

(4.85)
+ 2 sinh(h̄ yDy )]f · f} · {cosh hτDτ − h̄yDy

2
f · f} = 0.
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We separate the equation (4.85)

sinh hτDτ − h̄yDy

2
{sinh

hτDτ + h̄yDy

2
· h−1/2 sinh(hτ Dτ )f · f}

· {cosh
hτDτ − h̄yDy

2 f · f}
(4.86)

= − sinh hτDτ − h̄yDy

2
{sinh hτDτ + h̄yDy

2
· 2 sinh(h̄ yDy )]f · f}

· {cosh
hτDτ − h̄yDy

2 f · f}
In equation (4.86), using the property of property (i) of Lemma with D1 = hτ Dτ ,
D2 = hτ Dτ and D3 = h̄yDy , left hand side of equality becomes

sinh hτDτ − h̄yDy

2
{sinh

hτDτ + h̄yDy

2
· h−1/2 sinh(hτ Dτ )f · f}· {cosh

hτDτ − h̄yDy

2
f · f} (4.87)

= h−1/2 sinh(hτ Dτ ){cosh(hτDτ )f · f}.{cosh(h̄yDy )f · f}
and the right hand side arises

hτDτ − h̄yDy hτDτ + h̄yDy− sinh 2 {sinh 2 · 2 sinh(h̄ yDy )]f · f}· {cosh
hτDτ − h̄yDy

2 f · f} (4.88)

= −2 sinh(h̄ yDy ){cosh(hτDτ )f · f}.{cosh(h̄yDy )f · f}.

Combining the equations (4.87) and (4.88), we get

h−1/2 sinh(hτ Dτ ){cosh(hτDτ )f · f}.{cosh(h̄yDy )f · f}
= −2 sinh(h̄ yDy ){cosh(hτDτ )f · f}.{cosh(h̄yDy )f · f}.

(4.89)

If we divide (4.89) with the results in (ii) of Lemma, equipped with D1 = hτ Dτ ,
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q2 q̄2

D2 = h̄yDy , we reach

h−1/2 sinh(hτ Dτ )(cosh(hτ Dτ )f · f).(cosh(h̄ yDy )f · f)
cosh(hτ Dτ )(cosh(h̄ yDy )f · f) · (cosh(h̄ yDy )f · f)

= −2 sinh(h̄ yDy )(cosh(hτ Dτ )f · f).(cosh(h̄ yDy )f · f) ,
cosh(h̄yDy )(cosh(hτ Dτ f · f)) · (cosh(hτ Dτ )f · f)

and using (iii) of Lemma, equation yields as

cosh(hτ Dτ )f · f cosh(h̄yDy )f · f
h−1/2 sinh(hτ ∂τ )(

cosh(h̄yDy )f · f ) = −2 sinh(h̄ y∂y)( cosh(hτ Dτ )f · f ). (4.90)

If we make use of the q-exponential identity on . (4.90) we derive

f(q2τ, y)f(τ, y) f(τ, y)f( τ , y) 1/2 f(τ, y)f(τ, y ) f(τ, q̄2y)f(τ, y)
f(qτ, q̄y) · f(qτ, y )

−
f( τ , q̄y) · f( τ , y )

= 2h
f(qτ, y ) · f( τ , y )

−
f(qτ, q̄y) · f( τ , q̄y)

.
q̄ q q q̄ q̄ q q̄ q

(4.91)
where eh = q and eh̄ = q̄. Using the dependent variable transformation defined
in (4.84), in the equation (4.91), we obtain

1
δτ (V (τ, y)) = −2h1/2δyV (τ, y), (4.92)

by the help of q-difference operator δ defined in (4.82).

Proposition 4.8 [35] One-q-soliton solution of the q-difference-q-difference KdV
equation (4.83) is

V (τ, y) = − [1 + ητ δ(q̄y)ζ + ητ δ(q̄)−ζ yζ + η2τ 2δy2ζ ]
(1 + η(qτ)δ yζ)(1 + ητ δ(q)−δyζ) , (4.93)

with the dispersion relation

ζ 3δ δ −ζ −3δ δ δ 3ζ ζ −δ −3ζ ζ
(q̄) 2 [q 2 − q− 2 ] + (q̄) 2 [q

satisfied.

2 − q 2 ] +2h{q 2 [(q̄) 2 − (q̄)− 2 ] +q 2 [(q̄) 2 − (q̄) 2 ]} = 0
(4.94)

Proof. Recall the reductions (4.69) which we have used to obtain bilinear form
of q-difference KdV equation. If we match these reductions with general bilinear
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form we can conclude the identifications

t = τ, x = y, θ = 0, a1 = 3h h̄
2 , b1 = 2 , (4.95)

h 3h̄ h̄
a2 = a3 = 2 , b2 = , b3 = − , c1 = c2 = c3 = 0.

Leading us to the function f (1) = 1 + ητ δyζ with identifications (4.95). If we
substitute f (1) into V (τ, y) defined in the equation (4.84), we obtain

V (τ, y) =
(1 + ητ δ(q̄y)ζ)(1 + ητ δ( y )ζ )
(1 + η(qτ)δ yζ)(1 + η( τ )δ yζ),

where eh = q and eh̄ = q̄. Hence one-q-soliton solution arises as (4.93).  Moreover
from the coefficient of ε1

P (D1, D2 , D3 ){f (1) · 1 + 1 · f (1) } = 2P (∂1 , ∂2, ∂3)ητ δyζ . (4.96)

We obtain the dispersion relation

ζ 3δ δ −ζ −3δ δ δ 3ζ ζ −δ −3ζ ζ
(q̄) 2 [q 2 −q− 2 ]+(q̄) 2 [q 2 −q 2 ]+2h{q 2 [(q̄) 2 −(q̄)− 2 ]+q 2 [(q̄) 2 − (q̄) 2 ]} = 0,

where we plug Hirota bilinear form (4.71) and f (1) = ηtδyζ .

Remark. Furthermore, if τ , y ∈ qZ, i.e., τ = qn and y = q̄m, n, m ∈ Z, then
one-q-soliton solution (4.93) can be rewritten as

V (τ, y) = − [1 + ηqnδ(q̄)ζ(m+1) + ηqnδ(q̄)ζ(m−1) + η2τ 2nδ y2mζ ]
(1 + η(q)δ(n+1)(q̄)mζ )(1 + ηqδ(n−1)(q̄)mζ ) . (4.97)

Besides, two-q-soliton and three-q-soliton solutions can be written by using
the reductions and identifications as

f(τ, y) = 1 + η1τ δ1 yζ1 + η2τ δ2 yζ2 + A(1, 2)η1η2τ δ1 +δ2yζ1 +ζ2 (4.98)
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where

A(1, 2) = − h−1(q̄)
ζ1−ζ2

2 [q
3δ1 −3δ2

2 − q
−δ1+δ2

2 ] + (q̄)
−ζ1+ζ2

2 [q
−3δ1+3δ2

2 − q
δ1 −δ2

2 ]
δ1 −δ2 3ζ1−3ζ2 −ζ1+ζ2 −δ1+δ2 −3ζ1+3ζ2 ζ1−ζ2+ {q 2 [(q̄) 2 − (q̄) 2 ] + q 2 [(q̄) 2 − (q̄) 2 ]}

h−1(q̄)
ζ1+ζ2

2 [q
3δ1 +3δ2

2 − q
−δ1−δ2

2 ] + (q̄)
−ζ1−ζ2

2 [q
−3δ1−3δ2

2 − q
δ1 +δ2

2 ]− {q
δ1 +δ2

2 [(q̄)
3ζ1+3ζ2

2 − (q̄)
−ζ1−ζ2

2 ] + q
−δ1−δ2

2 [(q̄)
−3ζ1−3ζ2

2 − (q̄)
ζ1+ζ2

2 ]}
and

3 (3)

f(τ, y) = 1 +
X

ηiτ δiyζi +
X

A(i, j)ηiηjτ δi+δjyζi+ζj

i=1 i<j

+ A(1, 2)A(1, 3)A(2, 3)η1η2η3τ δ1 +δ2+δ3yζ1 +ζ2+ζ3

where

A(i, j) = − h−1(q̄)
ζi−ζj

2 [q
3δi−3δj

2 − q
−δi+δj

2 ] + (q̄)
−ζi+ζj

2 [q
−3δi+3δj

2 − q
δi−δj

2 ]
δi−δj 3ζi−3ζj −ζi+ζj −δi+δj −3ζi+3ζj ζi−ζj

+ {q 2 [(q̄) 2 − (q̄) 2 ] + q 2 [(q̄) 2 − (q̄) 2 ]}
h−1(q̄)

ζi+ζj
2 [q

3δi+3δj
2 − q

−δi−δj
2 ] + (q̄)

−ζi−ζj
2 [q

−3δi−3δj
2 − q

δi+δj
2 ]− {q

δi+δj
2 [(q̄)

3ζi+3ζj
2 − (q̄)

−ζi−ζj
2 ] + q

−δi−δj
2 [(q̄)

−3ζi−3ζj
2 − (q̄)

ζi+ζj
2 ]}

for all i < j and i, j = 1, 2, 3.

Remark. We present the graph of two-q-soliton solutions of q-difference-q-
difference KdV equation. The solitonic behavior of the waves can be observed
from the graph. Since the form of the solutions is polynomials in power functions,
we conclude that the length of the wave increases as x increases.



Figure 2: Two-q-soliton solutions of q-difference-q-difference KdV Equation

(a) (b) (c)

(d) (e) (e)
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We set q = 1, 25, q̄ = 2, h = ln(q), δ1 = −6 and δ2 = 4, then from the
dispersion relation we get ζ1 = −3.015059298 and ζ2 = −2.251766226.

4.2.3 The q-difference sine-Gordon equation

The last  equation that we determined from our generalized equation (4.1) is q-
analogue sine-Gordon equation. Our aim is to write Hirota bilinear form for
q-difference sine-Gordon equation. Thus we propose the reductions

D1 = h2τ Dτ + h̄2yDy ,

D2 = h2τ Dτ + h̄2yDy + kzDz,

D3 = h2τ Dτ − h̄2yDy ,

(4.99)

λ1 = 1, λ2 = hh̄, λ3 = −1 − hh̄, (4.100)

on (4.1) which reveals the bilinear form as

[2 sinh(h̄ 2yDy ) sinh(h2 τDτ ) + hh̄ cosh(h2 τDτ + h̄2yDy + kzDz)− hh̄ cosh(h2τ Dτ − h̄2yDy )]{f(τ, y, z) · f(τ, y, z)} = 0.
(4.101)

As we have proved for the previous equations, we will show how the bilinear
form of q-difference sine-Gordon (4.101) falls into Hirota bilinear form of classical
one [16]. Because of the decomposed Hirota bilinear form of the continuous  sine-
Gordon equation, we require a proper decomposition form from (4.101). To revise
the equation, first we have to mention about periodicity on q-numbers.

Definition. [35] A function h(x) is called as qm-periodic function if

h(qm t) = h(t), q > 1, m ∈ Z, t ∈ Kq. (4.102)

Proposition 4.9 [35] Hirota bilinear form of q-difference sine-Gordon equation,
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}

q̄

} }

}

1
2

2

(4.101) recovers its continuous form [16]

DxDt{ḡ.f̄ = ḡ.f̄ , (4.103)

DxDt{f̄ .f̄ − ḡ.ḡ} = 0, (4.104)

as h and h̄ tend to zero.

Proof. Suppose that f in (4.101) is q̄2-periodic function i.e.,

f(q̄2z) = f(z),

or
z f

(q̄z) = f( ).
q̄

Then if we consider a function f and its q-shifted version, say f̃ , i.e., we have

ekz∂zf(z) = f(q̄z) := f̃(z),

provided that ek = q̄. We use this periodicity in Hirota bilinear equation (4.101)
i.e., cosh(kzDz ){f.f} = 2f(q̄z).f ( z ) = 2f̃ (z).f̃ (z) and divide (4.101) by 2(hh̄)−1,

(hh̄ )−1 sinh(h̄ 2yDy ) sinh(h2 τDτ ) − cosh(h2 τDτ − h̄2yDy ) {f(τ, y, z) · f(τ, y, z)}
1 2 2= −2 cosh(h τDτ + h̄

If we utilize from the property

yDy ){f̃(τ, y, z).f̃(τ, y, z)}.
(4.105)

cosh(h2τ Dτ − h̄2yDy ){f.f}− cosh(h2τ Dτ + h̄2yDy ){f̃ .f̃

= cosh(h2 yDy )[cosh(h̄2τDτ ){f.f − f̃ .f̃ ]

then  the equation (4.105) turns into

[(hh̄)−1 sinh(h̄ 2yDy ) sinh(h2 τDτ )]{f · f}
1 (4.106)

= cosh(h̄2yDy ) cosh(h2τ Dτ )]{f · f − f̃ .f̃ .
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}}

}

If we set

on (4.106), we have

f = f̄ + iḡ f̃ = f̄ − iḡ, (4.107)

[(hh̄)−1 sinh(h̄ 2yDy ) sinh(h2 τDτ )]{ḡ · f̄
(4.108)

= cosh(h̄2yDy ) cosh(h2τ Dτ )]{ḡ · f̄
and

sinh(h̄ 2yDy ) sinh(h2 τDτ ){f̄ .f̄ − ḡ.ḡ} = 0. (4.109)

We set y = eh̄x and τ = eht in (4.108) and (4.109) and take limit as h, h̄ → 0

lim lim(hh̄ )−1 sinh(h̄ yDy ) sinh(hτ Dτ )]{ḡ · f̄
h̄→0 h→0

}
= lim lim cosh(h̄yDy ) cosh(hτ Dτ )]{ḡ · f̄ (4.110)

h̄→0 h→0
}

which gives us
DxDt{ḡ.f̄ = ḡ.f̄ .

Similarly we conclude the second counterpart of bilinear form

DxDt{f̄ .f̄ − ḡ.ḡ} = 0.

In the above proposition we have showed  the decomposed bilinear forms
(4.108), (4.109) bring us Hirota bilinear  forms of continuous sine-Gordon equa-
tion. Our second aim is to construct the standard form of q-difference sine-Gordon
equation.

Definition. [35] The q-sum operator Γx, operating on any function f(x) is defined
as

x
Γxf(x) := f(qx) + f( q ), x ∈ R, q = 1. (4.111)
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} }

−

Proposition 4.10 [35] The standard form of the q-difference sine-Gordon equa-
tion is

sin[δyδτ φ(τ, y)] = (hh̄ )1/2 sin[ΓyΓτ φ(τ, y)], (4.112)

where q-sum operator is defined in (4.111) and q-difference operator is defined
in(4.82).

Proof. We interchange h2 and h̄2 by h and h̄, respectively and we get

[(hh̄)−1/2 sinh(h̄ yDy ) sinh(hτ Dτ )]{ḡ.f̄ = cosh(h̄yDy ) cosh(hτ Dτ )]{ḡ.f̄ ,
(4.113)

sinh(h̄ yDy ) sinh(hτ Dτ ){f̄ .f̄ − ḡ.ḡ} = 0. (4.114)

Since f̄ is complex conjugate of f given in (4.107) we can rewrite f̄ :=
expρ . cos(φ), ḡ := expρ . sin(φ) and convert the equations (4.113) as

τ y τ y(1 (hh̄ )1/2) expρ(qτ,py)+ρ( q , p ) . sin(φ(qτ, py) + φ( , ))
q p

y τ y τ (4.115)
= (1 + (hh̄ )1/2) expρ(qτ, p )+ρ( q ,py) . sin(φ(qτ, ) + φ(

p q
, py)),

where eh = q and eh̄ = p. Secondly, rewriting (4.114) we get

τ y τ yexpρ(qτ,py)+ρ( q , p ). cos(φ(qτ, py) + φ( , ))
q p

y τ y τ (4.116)
= expρ(qτ, p )+ρ( q ,py) . cos(φ(qτ, ) + φ(

p q
, py)).

From the equations (4.115) and (4.116) we find the below relation for the function
φ

τsin(φ(qτ, py) + φ( ,
q

y
p) − φ(qτ,

y τ
p) − φ( q

, py))
(4.117)

= (hh̄ )1/2 sin(φ(qτ, py) + φ(τ , y ) + φ(qτ, y ) + φ(τ , py)).

which implies (4.112)

q p p q
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In the end we give one-q-soliton solution.

Proposition 4.11 [35] One-q-soliton solution of the q-difference sine-Gordon
equation (4.112) is

φ = 4 tan−1(ητ αyβ zγ ), (4.118)

with the dispersion relation

(qα − q−α)(pβ − p−β) + hh̄[qα(pβ (q̄)γ − p−β) + q−α(p−β(q̄)−γ − pβ )] = 0. (4.119)

Proof. The reductions (4.99),(4.100) lead the identifications as

t = τ, x = y, y = z a1 = a2 = a3 = h, b1 = b2 = h̄, (4.120)

c2 = k b3 = −h̄, c1 = c3 = 0, (4.121)

and we can conclude the starting solution as f (1) = ητ αyβ zγ . We have f̄ and ḡ.
From f̄ = exp(ρ). cos(φ), ḡ = exp(ρ). sin(φ) it can be found out that

ḡ
f̄

= tan φ.

If we write expansion f̄ and ḡ around ε,

f̄ = 1 + ε2f (2) + ε4f (4) + . . .

ḡ = εf (1) + ε3f (3) + . . .

and suggest ḡ/f̄ = f (1) , with taking ε = 1. Then one-q-soliton solution can be
obtained as (4.118). Further, the dispersion relation  (4.119) can be obtained by
using the reductions (4.120), (4.121) on (4.9).
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Dm
t0=t

m

Chapter 5

q-differential-q-difference Toda
equation

Up to this chapter, we have analyzed q-discretization of equations by the use of
q-difference operator. In this chapter our aim is to q-discretize the equations by
q-derivative operator ∂q [22]

∂q,th(t) = h(qt) − h(t), (5.1)
qt − t

where h is q-differentiable function. The fundamental feature of this chapter is
to analyze whether Hirota method  is applicable to q-differential equations deter-
mined by the q-derivative operator ∂q . For this purpose we present the q-analogue
of Hirota D-operator. This chapter is based on the article [33].

Definition. [33] q-Hirota D-operator acting on q-differentiable functions f, g de-
fined as

q,t{f.g} := (∂q,t − ∂q,t0 ) f(t)g(t0 )| , m ∈ Z+. (5.2)

We emphasize here that if we take limit as q → 1, ∂q,t → ∂t and Dq,t → Dt.

Note that q-Hirota D-operator satisfies the properties similar to continuous case.
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q,t

q,t

q,t

q,t

−

Proposition 5.1 [33] Let P (Dq ) be a polynomial in Dq,t, then

(i) P (Dq ){g · f} = P (−Dq){f · g},

(ii) P (Dq ){g · 1} = P (∂q,t)g; P (Dq ){1 · g} = P (−∂q,t)g,

where g, f are q-differentiable functions.

Proof. Since P (Dq ) refers to a polynomial let us consider simply P (Dq ) = Dm .
Using the definition (5.2)

P (Dq ){g · f} = (Dq,t)m g(t)f(t)

= (−1)mg(t)∂m f(t) + (−1)m−1m∂q,tg(t)∂m−1f(t) + · · · + f(t)∂m g(t)q,t
m m

q,t q,t

= (−1)m
X

(−1)k ∂m−kf(t)∂k g(t)
k=0

k q,t q,t

= (Dq,t)m f(t)g(t) = P (−Dq){f · g},

where m is binomial coefficient and ∂j is the jth q-derivative with respect tok q,t

t. Second property is a consequence of (i) when we plug 1 instead of one of the
functions.

We present the following equation, introduced in [33],

f(x, t)∂2 f(x, t)− (∂q,tf(x, t))2− [f(qx, t)f( x, t) f 2(x, t)] = 0 (5.3)
q

for q-differential-q-difference Toda equation. It is clear that the left hand side
of (5.3) is D2 in terms of q-Hirota-D-operator (5.2). Hence, we can conclude
Hirota bilinear form of q-differential-q-difference Toda equation as

P (D){f(x, t) · f(x, t)} = [D2 − (ehxDx + e−hxDx − 2)]{f · f} = 0. (5.4)

If we take limit as q → 1 and h → 0 in (5.4), Hirota bilinear form of q-differential-
q-difference Toda equation falls into Hirota bilinear form of differential-difference
Toda equation (2.22). This result brings us the preciseness of Hirota bilinear form
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q,t

q,t

q , (5.7)

q

q,t

[D

q

t

of q-differential-q-difference Toda equation. Similar to the previous equations, we
follow the same steps for perturbation technique. Beginning with the coefficient
of ε0, we get

P (D){1.1}= [D2 − (ehxDx + e−hxDx − 2)]{1.1} = 0 (5.5)

obviously.  Secondly, we collect the coefficient of ε1 and get

P (D){1 · f (1) + f (1) · 1} = P (∂)f (1) = ∂2 − (ehx∂x + e−hx∂x − 2)]f (1) = 0. (5.6)

The solution of (5.6) should not be only in polynomial of a power form but also
in q-exponential form. Hence taking f (1) as

f (1) = ζxβ eηt

and plugging it in (5.6), we obtain the dispersion relation

η2 = qβ + q−β − 2, (5.8)

where ζ, β are arbitrary constants and eηt is Jackson’s q-exponential function [23],

∞ n
et

X
q =

n=0

, (5.9)[n]!

where [n] = 1 + q + q2 + · · · + qn−1, [n]! = [n][n − 1] · · · [1], for all n ≥ 1, [0]! = 1.
We continue to vanish the coefficients. From the coefficient of ε2, we get

P (D){1 · f (2) + f (1) .f (1) + f (2) · 1} = 0, (5.10)

which yields to

−2[∂2 − (ehx∂x + e−hx∂x − 2)]f (2) = (5.11)
2
q,t − (ehxDx + e−hxDx − 2)]{f (1) .f (1) }. (5.12)

When we put f (1) defined in (5.7) into (5.12), then f (2) = 0 and one q-soliton
solution is f (1) = 1+ζxβ eηt. If we continue in this way to construct two-q-soliton
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q + ζ2x q

η2

q,t

[D

q . (5.18)

solutions, we may choose f (1) as

f (1) = ζ1xβ1eη1 t β2 eη2 t, (5.13)

where ζi, βi are arbitrary constants ∀i = 1, 2. Then dispersion relation emerges
similarly as

i = qβi + q−βi − 2, ∀i = 1, 2. (5.14)

Let us investigate the coefficient of ε2 from

−2[∂2 − (ehx∂x + e−hx∂x − 2)]f (2) = (5.15)
2
q,t − (ehxDx + e−hxDx − 2)]{f (1) .f (1) } (5.16)

which gives us

P (∂)f (2) = −ζ1ζ2[(η1 − η2)2 − (qβ1 −β2 + q−β1+β2 − 2)]xβ1 +β2eη1 teη2 t. (5.17)q q

The form of f (2) has two chances. First one is

f (2) = A(1, 2)xβ1+β2e(η1 +η2)t

If we put (5.18) into (5.17), we must have additive property of q-exponentials [?]
as

em n m+n
q eq = eq , (5.19)

which holds only if m, n are q-commuting variables as mn = qnm. In this case
our condition yields as η1 η2 t2 = qη1 η2t2 and it is satisfied if and only if either
η1 = 0 (β1 = 0) or η2 = 0 (β2 = 0). As a second choice, if we select f (2) as

f (2) = A(1, 2)xβ1+β2eη1 teη2 t. (5.20)q q

But in this case, A(1, 2) depends on t, since we have the product rule for q-
derivate as ∂q (a(t)b(t)) = a(t)∂q (b(t)) + b(qt)∂q a(t). Both in two cases carry out
the nonexistence of f (2) . Some other approaches for f (2) even very general ones
fall into these two cases.
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In conclusion, although q-differential type of equations have Hirota bilinear
forms, they cannot produce multi soliton solutions by Hirota perturbation.

Hence, we conjecture  that it is not possible to construct a different unifying
approach  than  the one constructed in the article [35] and in this thesis, for inte-
grable equations  on arbitrary time scales with nonconstant step size; by classical
Hirota perturbation.

On regular time scales with arbitrary graininess, integrability of equations  is
analyzed and developed in [2, 8, 34, 36] by Lie algebraic setting and construction
of bi-Hamiltonian structures.

To sum up, in spite of previous discussions, on such time scales, we conjecture
that classical Hirota perturbation does not produce another unifying framework
for integrable δ-differential equations.
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Chapter 6

Conclusion

Hirota Direct Method is one of the most preferred method not to only find soliton
solutions,  but also investigate the integrability nature of a partial differential or
difference equation. However this method has not been applied to q discrete type
of equations up to the article [33]. Silindir [33] proved that the method can be
applicable to q-difference type of equations such as differential-q-difference Toda
equation and q-difference-q-difference Toda equation in order to construct the
desired q-soliton solutions.   Inspired by this foundation, we presented a generic
equation, q-analogue of Hirota-Miwa equation and  found its three-q-soliton so-
lutions by Hirota direct method. Besides, based  on Hirota-Miwa equation, we
presented Hirota bilinear forms of q-difference-q-difference Toda, q-difference-q-
difference KdV, and q-difference sine-Gordon equations. This is a vital develop-
ment as Hirota bilinear forms of such equations consisted  of not only q-soliton
solutions but also their standard forms.
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