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ABSTRACT
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NEURAL NETWORKS
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Co-Supervisor: Asst. Prof. Mehmet TÜRKAN

July 2018

An important factor to keep players interested in a gaming environment is

the game content. However, the exponential increase of both gamer population

and the production cost over the last decade caused the game content to meet

new scalability challenges. To minimize costs related to the creation of content,

procedural content generation techniques are used, which automates game content

generation.

The significant part of the content for many games is a terrain. An interesting

terrain will help to keep the player inside the game. There are many techniques

used to generate terrain procedurally, but the main drawback of those techniques

is that it is hard to control the generation process. Because of lack of control over

generation process, it is hard to get the desired result that the user requires.

In this study, the procedurally generated terrains are evaluated using artificial

and convolutional neural networks to meet the user requirements. In order to give

a good evaluation result artificial and convolutional neural networks are trained

using the real-world map data. Real-world map data are classified into three

classes, such as sealevel, lowland, and mountain. The Diamond-Square Algorithm

and Perlin Noise are used to procedurally generate terrains. The procedurally

generated terrains are then evaluated using the ANN and CNN models until the

desired class type is generated according to the user requirements.

Keywords: Procedural Content Generation, Procedural Terrain Generation, Neu-

ral Network, Convolutional Neural Network, TensorFlow.
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ÖZ

YAPAY VE KONVOLÜSYONLU SİNİR AĞLARI
YOLUYLA PROSEDÜREL ÜRETİLEN ARAZİLERİN

DEĞERLENDİRİLMESİ

GANI RAHMON

Bilgisayar Mühendisliği, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Dr. Öğr. Üyesi Kaya OĞUZ

İkinci Tez Danışmanı: Dr. Öğr. Üyesi Mehmet TÜRKAN

Temmuz 2018

Oyun içeriği, oyuncuların oyun ortamlarında yer almasında önemli bir

faktördür. Bununla birlikte, hem oyuncu nüfusunun hem de son on yılda üretim

maliyetlerinin katlanarak artması nedeniyle yeni ölçeklenebilirlik zorluklarıyla

karşılaşmaktadır. İçerik oluşturma ile ilgili maliyetleri en aza indirmek için

oyun içerik üretimini otomatikleştiren prosedürel içerik oluşturma teknikleri kul-

lanılacaktır.

Arazi, birçok oyun için içeriğin önemli bir parçasıdır ve ilginç bir arazi oyun-

cunun oyun içinde kalmasını sağlar. Araziyi prosedürel olarak üretmek için

kullanılan birçok teknik vardır, ancak bu tekniklerin temel dezavantajı, üretim

sürecini kontrol etmenin zor olmasıdır. Üretim süreci üzerinde kontrol eksikliği

nedeniyle, kullanıcının istediği sonucu elde etmek zordur.

Bu çalışmada, prosedürel olarak üretilen araziler, kullanıcı gereksinimlerini

karşılamak için yapay ve evrişimli sinir ağları kullanılarak değerlendirilmiştir. İyi

bir değerlendirme sonucu elde etmek için yapay ve evrişimli sinir ağları gerçek

dünya haritası verileri kullanılarak eğitilmiştir. Gerçek dünya haritası verileri

deniz seviyesi, ova ve dağ gibi üç sınıfa ayrılır. Elmas-Kare Algoritması ve Per-

lin Gürültüsü, prosedürel olarak araziler oluşturmak için kullanılır. Prosedürle

üretilen alanlar, kullanıcı gereksinimlerine göre istenen sınıf tipi üretilinceye

kadar, ANN ve CNN modelleri kullanılarak değerlendirilmektedir.

Anahtar Kelimeler : Prosedürel İçerik Üretimi, Prosedürel Arazi Üretimi, Sinir

Aği, Konvolüsyonel Sinir Aği, TensorFlow.
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Öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Background 4

2.1 Procedural Content Generation (PCG) . . . . . . . . . . . . . . . 4

2.2 Reasons to Use PCG . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Hierarchical Structure of PCG . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Game Space: Indoor and Outdoor Maps . . . . . . . . . . 7

2.4 Games using PCG . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Procedural Terrain Generation (PTG) . . . . . . . . . . . . . . . 8

vi



2.6 Terrain Representation . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Terrain Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7.1 Fractal-based Generation . . . . . . . . . . . . . . . . . . . 11

2.7.2 Physics-based Generation . . . . . . . . . . . . . . . . . . 18

2.7.3 Texture-based Generation . . . . . . . . . . . . . . . . . . 19

2.7.4 Comparison of Terrain Generation Techniques . . . . . . . 20

2.8 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methods 24

3.1 Processing Real Terrain Images . . . . . . . . . . . . . . . . . . . 24

3.1.1 Choice of Data Structure . . . . . . . . . . . . . . . . . . . 24

3.1.2 Real Terrain Images Source . . . . . . . . . . . . . . . . . 26

3.1.3 Classification of Real Terrain Data . . . . . . . . . . . . . 28

3.1.4 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . 28

3.1.5 Other Statistics . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . . . 33

3.2.1 Types of ANN . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . 40

3.3.1 Understanding Convolution . . . . . . . . . . . . . . . . . 40

vii



3.3.2 Feature Map . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Introducing Non-Linearity (ReLU) . . . . . . . . . . . . . 42

3.3.4 Layers Used to Build CNNs . . . . . . . . . . . . . . . . . 43

3.3.5 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 TensorFlow (TF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Parallelism in TensorFlow . . . . . . . . . . . . . . . . . . 47

3.4.2 Architecture of a TensorFlow . . . . . . . . . . . . . . . . 48

3.4.3 Image Representation as Tensors . . . . . . . . . . . . . . 48

3.4.4 Tensors in TF . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Procedural Terrain Generation Techniques . . . . . . . . . . . . . 50

3.5.1 Diamond-Square Algorithm . . . . . . . . . . . . . . . . . 50

3.5.2 Perlin Noise Algorithm . . . . . . . . . . . . . . . . . . . . 50

4 Implementation 51

4.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Statistical Data . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Slope Data . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.4 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



4.2 ANN Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Different Feature Combinations for ANN . . . . . . . . . . 58

4.2.2 ANN Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 CNN Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Architecture of the CNN . . . . . . . . . . . . . . . . . . . 62

4.3.2 Augmenting Data . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Reading Inputs . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 CNN Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.5 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.6 Optimization and Accuracy . . . . . . . . . . . . . . . . . 67

4.4 PTG Techniques Implementation . . . . . . . . . . . . . . . . . . 67

4.4.1 Diamond-Square Algorithm . . . . . . . . . . . . . . . . . 68

4.4.2 Perlin Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Feature Extraction of Procedurally Generated Terrains . . 71

4.4.4 Evaluation of Procedurally Generated Terrains . . . . . . . 73

5 Results & Discussion 74

5.1 Feature Combination for ANN . . . . . . . . . . . . . . . . . . . . 74

5.2 Convolutional Neural Network Test . . . . . . . . . . . . . . . . . 80

5.3 Evaluation of Procedurally Generated Terrains . . . . . . . . . . . 82

6 Conclusion & Future Work 86

ix



LIST OF TABLES

2.1 Comparison between the noise functions [13]. . . . . . . . . . . . . 17

2.2 Comparison of terrain generation techniques [6]. . . . . . . . . . . 21

4.1 Number of features in each category. . . . . . . . . . . . . . . . . 57

4.2 Different combinations of the features. . . . . . . . . . . . . . . . 58

4.3 Ranges for each class. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Feature combination network results using 10 hidden neurons. . . 75

5.2 Feature combination network results using 20 hidden neurons. . . 76

5.3 Feature combination network results using 30 hidden neurons. . . 76

5.4 Feature combination network results using 40 hidden neurons. . . 77

5.5 Results of the 10-folds cross-validation . . . . . . . . . . . . . . . 78

5.6 CNN test image samples results . . . . . . . . . . . . . . . . . . . 81

5.7 Sealevel generation using Diamond-Square Algorithm. . . . . . . . 82

5.8 Lowland generation using Diamond-Square Algorithm. . . . . . . 84

5.9 Mountain generation using Perlin Noise . . . . . . . . . . . . . . . 85

x



LIST OF FIGURES

2.1 Hierarchical structure of the taxonomy of PCG [3]. . . . . . . . . 6

2.2 2D height-map image (left). 3D render of height-map image (right). 9

2.3 TIN model representation. (a) Top-down. (b) Perspective view [6]. 10

2.4 Poisson Faulting on different iterations [6]. . . . . . . . . . . . . . 12

2.5 General process of Diamond-Square Algorithm [8]. . . . . . . . . . 14

3.1 Overall Structure and Flow of the Algorithm. . . . . . . . . . . . 25

3.2 Height map of city Izmir. . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Layout of terrain.party [20]. . . . . . . . . . . . . . . . . . . . . . 27

3.4 A positive (left) and negative (right) skewed distribution [22]. . . 29

3.5 A positive (left) and negative (right) kurtosis example [22]. . . . . 30

3.6 Histogram example of a height map. Generated using R. . . . . . 32

3.7 First derivative with respect to x and y. . . . . . . . . . . . . . . . 33

3.8 Single neuron computation [23]. . . . . . . . . . . . . . . . . . . . 34

3.9 Types of neural network [24]. . . . . . . . . . . . . . . . . . . . . 35

3.10 Single hidden layer neural net backpropagation [25]. . . . . . . . . 37

xi



3.11 Neural Network Learning Process Review. . . . . . . . . . . . . . 39

3.12 Convolution operation process [26]. . . . . . . . . . . . . . . . . . 41

3.13 Obtaining rectified feature map [26]. . . . . . . . . . . . . . . . . 42

3.14 A simple CNN Architecture. . . . . . . . . . . . . . . . . . . . . . 45

4.1 Feature Extraction Algorithm. . . . . . . . . . . . . . . . . . . . . 52

4.2 Circular Ruggedness Flowchart. . . . . . . . . . . . . . . . . . . . 55

4.3 Histogram with range between 0 - 9000 meters. . . . . . . . . . . 56

4.4 10-folds cross-validation example over the data samples. . . . . . . 61

4.5 K-fold cross-validation flowchart. . . . . . . . . . . . . . . . . . . 62

4.6 Architecture of our CNN. . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Flowchart of Diamond-Square Algorithm. . . . . . . . . . . . . . . 68

4.8 Diamond-square height map example. . . . . . . . . . . . . . . . . 69

4.9 Perlin noise height map example. . . . . . . . . . . . . . . . . . . 70

5.1 Confusion Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 ROC Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Color region representation. . . . . . . . . . . . . . . . . . . . . . 83

5.4 2D height-map image (left). 3D render of height-map image (right). 83

5.5 2D height-map image (left). 3D render of height-map image (right). 84

5.6 2D height-map image (left). 3D render of height-map image (right). 85

xii



Chapter 1

Introduction

Nowadays, computer games take an important place in our lives. Daily, millions

of people throughout the world play computer games. They are amused with

games such as League of Legends, StarCraft, FarmVille, and Minecraft. Game

content from three-dimensional items up to difficult puzzles presents a significant

amusement role for them.

According to the report named “Two-Thirds of American Households Regu-

larly Play Video Games” done in 2017 by the US Entertainment Software Associ-

ation (ESA) reveals that American families playing video games regularly include

65% of the population and 72% of those game players age are older than 18 years

old. Moreover, the average of the game player age is 35 years old. Yet, the report

“Essential Facts About the Computer and Video Game Industry” done in 2017

reports that American families having a device which is used to play video games

indicates 67% of the population [1].

To keep a game player entertained while playing a computer game the quality

of the game content should match the demands of the player community. In other

words, an important factor to keep players interested in a gaming environment is

game content. However, the exponential increase of both gamer population and

the production cost over the last decade caused the game content to meet new

1



CHAPTER 1. INTRODUCTION 2

scalability challenges. The construction of a difficult game is not easy. It is a time-

consuming work affecting the project costs and budget. To minimize costs related

to the creation of content, Procedural Content Generation (PCG) techniques are

used, which automates game content generation. The principal idea behind PCG

is that game content is created by the use of computers performing a correctly

implemented algorithm or procedure and not manually with the help of human

designers.

The significant part of the content for many games is the terrain. An interest-

ing terrain will help to keep the player immersed in a video game. Terrains can be

generated in different ways, such as using design tools or generate them procedu-

rally. Creating a good quality terrain using design tools requires too much effort

and experience from the design artist. However, generating terrains procedurally

will save a lot of time, but it has its own drawbacks.

There are many techniques used to generate terrain procedurally, but the

main drawback of these techniques is that it is hard to control the generation

process. Since procedural terrain generation techniques use pseudo-random num-

ber generators to simulate randomness that is observed in nature, each time the

different terrain will be generated when these techniques are executed. Because

of this randomness and lack of user control, it is hard to get the desired result

that the user requires.

In recent years, the heuristic approaches became a popular topic for the re-

searchers and many papers are published every year related to this topic. Since

the heuristic approaches become popular, new methods using these approaches

are defined for procedural terrain generation, which gives more control to the user

on the generation process of the terrain.

Moreover, another field of computer science which mimics the human brain

function, known as Artificial Neural Network (ANN), is now a trending topic for

many applications. The human brain can recognize the human faces, road signs

and objects easily, but it is a difficult process for the computers. Because of it, the

Artificial Neural Network (ANN) is applied to interpret the images, road signs,
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and human faces. The new type of neural network, known as Convolutional Neu-

ral Network (CNN) become popular in recent years, which has a great influence

in an image recognition.

Having such great tools is there any possibility to get the realism that we are

accustomed to as an outcome of procedurally generated terrain.

The results of a procedurally generated terrain cannot be defined as good

or bad; although they may contain certain parameters and features, they may

not give us the realism that we are accustomed to. Therefore, the main purpose

of this study is to evaluate a procedurally generated terrain with artificial and

convolutional neural network so that the produced terrain is close to the desired

one. In order to give a good evaluation result artificial and convolutional neural

networks need to be trained using the real-world map data. The key requirements

to promote this purpose is as follows:

• Finding the real-world maps data having a height-map structure.

• Analyzing the existing techniques for Procedural Terrain Generation and

selecting the ones suitable for this study.

• Processing the height-map images derived from the real-world data and

extracting features from them.

• Training the Artificial Neural Network (ANN) and Convolutional Neural

Network (CNN) for evaluation of a procedurally generated terrains.

The main contribution of this study is the introduction of a new approach for

getting the desired output terrain from a procedural terrain generation techniques

by evaluating the outcomes with artificial and convolutional neural networks since

the user has a lack of control over the generation process.

The structure of the study is represented by the following chapters. In Chapter

2 procedural content and terrain generation is discussed. Chapter 3 provides

methods used in this study. Implementation of methods is described in Chapter

4. Chapter 5 indicates the results and discussions. The conclusion of the thesis

and suggestions for the future work are presented in Chapter 6.



Chapter 2

Background

This chapter provides a number of points that assist as essential background

material to understand the procedural terrain generation methods. First, the

procedural content generation is explained. Afterwards, the procedural terrain

generation is discussed and common representations of the terrain data are de-

fined. Then, a variety of methods for producing terrain is discussed and this is

followed by describing important procedural terrain generation techniques. Fi-

nally, the discussion of similar works concludes this chapter.

2.1 Procedural Content Generation (PCG)

In order to understand PCG, the key term should be well understood. The key

term is “content” and the content can be identified as an object, character, maps

and etc. in video games. The well-defined algorithm or a procedure, which are

used to generate something, is defined by the terms “procedural” and “genera-

tion”. The PCG indicates an algorithmic creation of game content such as maps,

characters, or weapons with limited or no human participation [2].

As mentioned before the principal idea behind PCG is that a game content is

created by the use of computers performing a correctly implemented algorithm

4
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or procedure and not manually with the help of human designers. In order to

have control of the design process, the human designers should be able to modify

the parameters of the method to influence the final product.

2.2 Reasons to Use PCG

There are a number of different reasons for using PCG in video games. Perhaps

the most obvious reasons are to reduce the content generation time and to simplify

the work of a human designer.

In order to make a good quality game that will stand out in the application

market, hundreds of people consisting of designers, audio engineer, and program-

mers need to work on it. Many of them are needed to work on creating game

content. However, with the usage of PCG in games, small companies, which

can’t afford many people to work for them, with a small group of six or seven

game developers are able to create content-rich games that can rival with large

companies in the market.

Allowing entirely new kinds of games is another reason to use PCG. There is

no reason why the games need to end if there is a software which is able to create

game content at the rate the game is played.

Customization of the game content to the demands and tastes of the game

player is another reason for using PCG in video games. The neural network

model can be applied to understand the player’s preferences in the game and to

generate player-adaptive contents in the game that will maximize the enjoyment

of the player playing the game.

Finally, many procedural algorithms randomly generate content and some-

times the new content can be created which a human might not think of.
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2.3 Hierarchical Structure of PCG

M. Hendrikx et al.[3] proposes a hierarchical structure which contains the different

possible varieties of content that can be generated procedurally in which indicates

several layers, where lower level composed by what he calls Game Bits, that

consists of basic features such as vegetation and textures, which may or may not

be used by upper layers to form elements that result in final form. Figure 2.1

illustrates this proposed taxonomy.

Figure 2.1: Hierarchical structure of the taxonomy of PCG [3].

The fundamental factors of game content, that basically don’t occupy user if

regarded separately, are known as game bits. The place where a game is played is

known as the game space. Moreover, the game space is crowded with game bits

between which player travel. To make games convincing and attractive the game

systems are used. The game scenarios basically explain the process and form in

which game stories discover. The design of a game consists of content like goals,

such as what is player trying to succeed, and rules, such as what can be done

in the game. A derived content can help the player to dive deep into the game

environment, such as many players record their game skills for inspection outside

or inside of the game.
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2.3.1 Game Space: Indoor and Outdoor Maps

Indoor and outdoor maps are not similar. It is very important to understand

the difference between them, because later in this study we will dive deep into

outdoor maps generation. The composition and a corresponding location of an

indoor area divided into the rooms is a description of indoor maps. Different

layers can be connected using stairs, rooms are connected using corridors, and all

can be merged to make dungeons. Caves are a different kind of indoor maps.

Outdoor maps are descriptions of the structure and elevation of the outdoor

terrain. Many games which have outdoor maps have also an indoor map. The

change among indoor and outdoor maps is done separately, because of the ma-

jor technological diversity in the illustration and rendering among them. For

instance, the popular game World of Warcraft has extensive outdoor maps and

various indoor maps and the passage among those maps are done with the help

of specific entrance regions and teleportation gates. Many successful games on

the market like World of Super Mario, perform a great use of outdoor maps and

some other games use a mix of indoor and outdoor maps.

2.4 Games using PCG

Procedural content has been used in games from the early eighties. One of the

first games that use procedural content generation techniques is the game Rogue,

a dungeon-crawling game where the player controls an adventurer through dun-

geons, which are generated dynamically by an algorithm of procedural generation

every time the new game starts. The Diablo series was inspired by the Rogue.

Placement of items and monsters and generation of maps are the procedural

content generation used in a video game Diablo. A turn-based strategy game

Civilization IV provides a novel game-play experience using a random map gen-

eration. The generation of the complete world and its content is done using

PCG procedures in a very popular game Minecraft. A roguelike-platform game

Spelunky uses a PCG to automatically generate different of game levels [2].
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Other games that use PCG for games techniques is Left4Dead. According to

the computer-analyzed anxiety level of the player, the scenarios are produced by

forming enemy fights dynamically in Left4Dead.

2.5 Procedural Terrain Generation (PTG)

The terrain is the most fundamental feature of many games, which the player

needs to explore. An interesting terrain will help to keep the player immersed

in a game. Producing a game terrain for a player to discover needs a significant

amount of resources and time which may lead to increase in a cost of development.

PTG can help to reduce much of the work with the help of using pseudo-random

algorithms.

Terrain and texture can be generated with the help of procedures that tends

to create noise. The outcome of the created noise may look like random, but it

is the outcome of a pseudo-random set of operations known as a noise function.

The noise which is created with the help of these operations can be useful because

it is not totally random instead it has a structure.

2.6 Terrain Representation

An interesting terrain should be used to keep player excited to discover different

areas and spend more time playing. Because of it, an important decision needs to

be taken to represent a terrain. Selecting data structure to represent terrain will

influence the number of accessible tools in generating terrains. Also, limitation

in some kinds of terrain features is possible with different representation.

The terrain representation that is most widely used nowadays is probably

the height-map because it is the simplest representation of terrain and has a

two-dimensional grid-based data structure. Because of their uniform grid-based

nature, height-maps are easy to use. To express mathematically, a height-map
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is a scalar function of two variables, where x and y are coordinate points for

determining the location of an elevation value h as shown in the equation below

[16].

h = f(x, y) (2.1)

Figure 2.2 demonstrated an example of height-map described as a two-

dimensional image on the left and the matching three-dimensional rendering on

the right. The intensity of pixels describes the elevation data of the terrain, which

is saved as a grayscale image with a single channel. Moreover, the intensity of the

elevation data in a grayscale image can be interpreted as black being the lowest

and white being the highest point. The grayscale image gives an advantage to

height-maps when processing an image in order to compress, adjust or analyze

terrain models. Such as implementing a Gaussian filter to make the rocky terrain

look smoother.

Figure 2.2: 2D height-map image (left). 3D render of height-map image (right).

Height-maps can be encoded by applying a variable number of bits. The for-

mat will identify the number of bits used in an height-map image. Such as single

channel with 8-bit will allow only 256 potential height values and representing a

very complicated terrain will be harder with those number of bits. Most Digital

Elevation Model (DEM), which refers to a height-map digital form, files are saved

by applying 16-bit images, resulting in 65,536 height values. Another advantage

of height fields is that many portions of the real-world terrain data are available

in DEM form.
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Another alternative for representing terrain is the voxel grid. Voxels describe

a value on a regular grid in a 3D space. Moreover, voxels are able to save data

like opacity and color. The main advantage that voxels have is that they are

capable of generating terrain with overhangs and caves. However, they have also

disadvantages and the main disadvantage is that voxel grids have a large memory

and storage overhead. One of the popular examples of a voxel-based environment

is a game Minecraft.

The paper presented by Gerrit Greff [4] use the voxels to for terrain repre-

sentation. Gerrit defines “an interactive terrain design system, which enables the

user to generate localized, specific terrain features, as well as generalized global

characteristics.”

The common style of managing terrain is to describe its surface being a

random mesh of two-dimensional primitives embedded in the three-dimensional

space. A triangular irregular network (TIN) is a kind of mesh structure in which

terrain is formed from a collection of coupled, different sized triangles. To pro-

duce a proper representation of terrain, the vertices of the triangles are accurately

determined, usually with a Delaunay triangulation algorithm [5]. TINs are capa-

ble of capturing 3D structures such as caves and maintain a level-of-detail (LOD)

system. For instance, less detailed areas represented with few larger triangle,

while higher density areas are represented with few larger triangles. The storage

overhead for TINs is small, because of the LOD system. The Figure 2.3 taken

from the paperwork of Justin Crause [6] demonstrates an example of TIN model.

Figure 2.3: TIN model representation. (a) Top-down. (b) Perspective view [6].
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One of the advantages of using this method is that many computer modeling

and animation tools maintain this model. However, due to their non-uniform

structure, the process of automatically generating using procedural methods is

not clear.

Height-maps are the widely used terrain representation and supported by

common terrain generation packages, such as Terragen. Also, for height-map

images implementing image processing procedures are easy. Moreover, one of the

main reason to use height-map in our study is that real landscape data produced

from the satellites is stored in this format.

2.7 Terrain Generation

The procedural terrain generation methods can be classified into three categories:

Fractal-based, Physics-based, and Texture-based. Shortly, to simulate the charac-

teristics of a real terrain fractal surface is produced using a stochastic procedure.

The erosion procedures are used to the terrain surface in order to increase the

level of realism of a terrain and these procedures are known as physical simu-

lations. Lastly, texture-based techniques get procedures from texture synthesis

and basically replicate data of a source image to create a novel terrain. There

are some programs, such as Terragen, which are using procedural methods for

generating terrains quickly.

2.7.1 Fractal-based Generation

Benoit Mandelbrot was the first to use the term fractal in his book named “The

Fractal Geometry of Nature” in 1982. Mandelbrot noticed that natural forms

often include self-similar patterns and zoomed regions are statistically alike to

the original form. This leads him to the introduction of a fractal geometry [6].
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Two key properties represent fractals: self-similarity and chaotic. Dividing a

fractal into a miniature variant of itself is referred as self-similarity. Due to the

fractals infinite complexity, they are described as chaotic.

The term ‘fractal-based’ is used because not all techniques are really fractal.

Methods that create terrain which displays self-similar patterns despite the fact

that the algorithm is not mathematically fractal are classified with this term.

The method of presenting those self-similar patterns are defined as Fractional

Brownian motion (fBm). A series of iterations of a stochastic algorithm is involved

in order to achieve fBm.

The earliest form of fractal terrain generation is known as Poisson Faulting.

This method includes making use of a sequence of Gaussian random displacements

or faults to a plane. To explain more simply, a line is selected throughout the

plane and one aspect replaced with an arbitrary height value and this value is

decreased after every fault to keep away from sudden height adjustments within

the very last ensuring terrain. Example of the faulting procedure, which are

captured at different synthesis states are demonstrated in the Figure 2.4.

Figure 2.4: Poisson Faulting on different iterations [6].
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2.7.1.1 Noise Function

Noise algorithm is a fundamental part of many procedurally generated terrain

algorithms. Noise appearance may completely look random and distinctive, but

it is usually the results of a pseudo-random collection of methods referred to as

a noise function.

One of the important notation is that a lot of noise functions aren’t naturally

fractal. Some algorithms like Perlin Noise and Simplex Noise are alternatively

used in conjunction with fBm to generate fractal pictures. To achieve fBm, sev-

eral octaves of noise is generated, each of them is produced with an increased

frequency and decreased amplitude and afterward, these octaves are summed to-

gether. However, the results are more detailed noise. There are many different

algorithms for noise generation and the popular one will be discussed in the next

section.

2.7.1.2 Noise Generation Techniques

There are many different techniques to generate noise and the following techniques

are the most popular ones:

• Diamond-Square Algorithm

• Value Noise

• Perlin Noise

• Simplex Noise

• Worley Noise

2.7.1.2.1 Diamond-Square Algorithm

One of the methods to generate a height-map is a diamond-square algorithm.

This method was originally proposed by Fournier, Fussell, and Carpenter at 1982
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[7] and it is an improvement to the midpoint displacement algorithm. The Figure

2.5 demonstrates the general process of the diamond-square algorithm.

Figure 2.5: General process of Diamond-Square Algorithm [8].

Basically, the diamond-square algorithm starts with a 2D square array and

initial values of the four corners points are set. Then the diamond and square

steps are done in a loop with a condition that all values of the array are set. In

the diamond step, the center point of a square in the array is found by taking

the average of the four points located in the corners and adding a random value.

This process is done for every square in the array. In the square step, the center

point of a diamond in the array is found by taking the average of the four points

located in the corners and adding a random value. This process is done for every

diamond in the array.

The size of a random value should be decreased with every iteration. When

the square steps are performed sometimes the edge points of the array will have

only three adjacent values initialized instead of four. To handle such kind of a

situation there are many different methods, but the simplest one is to take the

average of those three adjacent values.
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2.7.1.2.2 Value Noise

Value Noise is not naturally fractal like Midpoint Displacement. The basic char-

acteristic of the fractal image is self-similarity, where zooming an image will give

the same result as the large one, but Value Noise does not have this property. As

mentioned earlier a function called Fractional Brownian Motion (fBm) is used in

conjunction with Value Noise.

One of the advantages of the Value Noise is that it is not difficult to implement.

An arbitrary grid is set over the plane. A random value is given for every grid-

factor. The cost is an interpolation among the nearest grid-factors for each pixel

in-between those grid-factors, such as in 1D, among the two nearest grid-factors

and in 2D, among the closest four grid-factors. In order to locate the nearest

grid-factors, the location variables should be rounded up and down. While this

is trivial, the interpolation function should be selected carefully [9].

Cosine, cubic and linear are three common interpolation functions. Linear

interpolation, known as LERP, not only used in the noise production. It of-

fers quick results, however, creates a rough line. Cosine interpolation is barely

slower but offers rounded outcomes. Cubic interpolation is extraordinarily slow,

however, offers best outcomes. Choosing between them is mostly depend on the

application. Linear is needed for real-time noise map generation. However, if

time is not the main factor, usage of cubic interpolation will give good results [9].

2.7.1.2.3 Perlin Noise

Perlin Noise was developed by Ken Perlin in 1983 and was formally described

in 1985 on a paper named “An Image Synthesizer” [10]. It is a very effective

algorithm that is used often in PCG. Perlin noise can be used for any type of

rough, wave-like texture or material in game development, such as fire effects,

clouds, water and procedural terrain generation.

Perlin Noise can be described for any dimensions, but most commonly used in

2 or 3-dimensional function. Implementation of Perlin Noise normally involves 3
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steps, which are defining a grid with random gradient vector, computation of the

dot product among the distance-gradient vectors and linearly interpolate among

those values.

The complexity of Perlin Noise is O(2n) for n representing dimensions because,

for every assessment of the noise function, at every node of the including grid cell

the dot product of the gradient vectors and placement have to be evaluated.

2.7.1.2.4 Simplex Noise

Simplex Noise was developed by Ken Perlin in 2001 [11]. The main reason of

Simplex Noise is to overcome the weaknesses of Perlin Noise.

One of the main advantages of a Simplex Noise over Perlin Noise is that it

has a lower computational cost and needs little multiplications. The complexity

of Simplex Noise is O(n2) for n representing the dimensions.

Using hypercubes as the grid is the main weak point of a Perlin noise. In

two dimension it will be square and in three dimensions it will become a cube.

Moreover, for every used pixel this equates to 2n corners for each in a given

dimension.

Simplex noise solves the main weakness of the Perlin noise by using simplices

rather than hypercubes. The form with a little corner in a dimension is known

as simplex. Such as a triangle in 2D, a pyramid in 3D, and a shape with n+1

corners in n dimensions.

Implementation of Simplex Noise normally involves 4 steps:

• Coordinate skewing

• Simplicial subdivision

• Gradient choice

• Kernel summation
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2.7.1.2.5 Worley Noise

Worley Noise is a noise function introduced in 1996 by Steven Worley [12]. It

is basically used to generate procedural textures, such as the texture of stone or

water. However, it is not very useful for terrain generation when used alone.

The simple concept of a Worley Noise is to take random factors in the surface

after for each factor in surface take the distance to the nth-closest point as some

kind of color data. To be more precise:

• Scatter random points onto a surface

• Noise Fn(x) is a distance to nth-closest point to x

2.7.1.3 Comparison of Noise Generation Techniques

The Table 2.1, taken from the paper of Thomas J. Rose and Anastasios G.

Bakaoukas [13] demonstrates the comparison between the noise functions men-

tioned in a previous section.

Table 2.1: Comparison between the noise functions [13].

Algorithm Speed Quality
Memory

Requirements
Diamond-Square

Algorithm
Very Fast Moderate High

Value Noise Slow - Fast* Low - Moderate* Very Low
Perlin Noise Moderate High Low

Simplex Noise Moderate** Very High Low
Worley Noise Variable Unique Variable

* Depends on what interpolation function is used.
**Scales better into the higher dimensions than Perlin Noise

The comparison is done based on a standard: speed, memory requirement,

and quality. The speed suggests what number of photos may be generated in one

second on the test hardware. Quality is mostly subjective and depends on the

application.
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Objective evaluation is needed to determine the quality of the procedurally

generated terrains and this is the main focus of our study.

In conclusion, it can be understood from the table above that if speed is

essential and memory is not an issue than Diamond-Square Algorithm is the best

option to choose. However, the best algorithm among all is Simplex Noise, but it

is difficult to understand and debug. In many of the occasions, the classic Perlin

Noise will probably be satisfactory.

The main reason for choosing Perlin Noise instead of Simplex Noise in our

study is that Simplex Noise is difficult to understand and debug. Since 2D and

3D is a point of interest in our study, Perlin and Simplex Noise have almost the

same performance in these dimensions.

2.7.2 Physics-based Generation

The noise itself can generate exciting terrains, however, erosion can assist by

adding an extra layer of realism to the generated terrains. Physics-based genera-

tion techniques are used to enhance the realism of procedurally generated terrain

by simulating physical influences that happen in nature such as erosion. The

most popular erosion techniques are thermal and hydraulic erosions.

2.7.2.1 Thermal Erosion

Thermal erosion is a simulation where the soil falls to a lower area if the angle is

too sharp. This operation continues in a loop until the condition, which is reach-

ing the maximum angle of balance for the material, is meet. Thermal erosion

is one of the simplest erosion techniques to model. Moreover, it runs efficiently

and works quickly. By changing the type of the neighborhood the running time

can be improved for this algorithm. The Von Neumann neighborhood, the Moore

neighborhood, and the rotated Von Neumann neighborhood are three standard

neighborhood types. While increasing in speed, the rotated Von Neumann neigh-

borhood offers good outcomes. However, the Moore neighborhood is the slowest
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but gives the best outcomes [9].The drainage patterns simulation cannot be done

using thermal erosion. However, this can be performed using hydraulic erosion.

2.7.2.2 Hydraulic Erosion

Hydraulic erosion is a simulation which stores water on the points of the terrain

and let it move down into basins, eroding the surface on its way. Hydraulic

erosion is very slow but gives good quality outcomes and needs a lot of memory.

While the thermal erosion work with the source image, hydraulic erosion needs

a sediment and water table, which results in the use of the memory three times

more than of thermal erosion.

At first in the algorithm, a water and sediment tables are set up. A water

table is an array of the image size that keeps the water amount in every pixel

and sediment table is used to follow the sediment amount in the water. There

are four parts that are done for every pixel [9]:

1. Rainfall: add how much rain falls per iteration to each pixel

2. Erosion: move the amount of eroded soil from the base image to sediment

3. Movement: if possible move water downhill

4. Evaporation: remove the percentage of the evaporated water from the pixel

The above steps are done for each pixel in each iteration. Because of it this

technique gives good quality outcomes but tends to work slowly. The resulting

image looks apparently that it has been eroded.

2.7.3 Texture-based Generation

Texture-based generation strategies obtain methods from the sector of texture

synthesis. In computer graphics especially for procedural texture generation, tex-

ture synthesis is a widely used approach. Textures can be structured or stochastic,



CHAPTER 2. BACKGROUND 20

such as stochastic textures comprise little structure, being near to random noise

while structured textures defined as owning a repetitive, ordinary pattern.

There are two most important techniques for texture synthesis, which are

patch-based and pixel-based. In the pixel-based technique, the texture is gen-

erated pixel by pixel, where the next pixels value is defined by its local neigh-

borhood. The disadvantage of the pixel-based technique is that they have a

tendency to mislay their global formation. This drawback is eliminated in patch-

based techniques. Duplicating and sewing section of pixels of origin to the result

is the main technique of a patch-based strategy. These methods suitably for re-

alistic texture-based terrain generation, because they maintain global structure

and patterns.

Raffe et al. [14] present an evolutionary algorithm to help in the creation of

three-dimensional terrain with the help of selecting miniature height-map patches

that were derived from sample maps for the in-game terrain generation. To

satisfy the user’s expectations novel patch-based terrain model is improved, which

improves control over the development process. In this work the advantages of

an interactive two-level parent selection operation are defined and also how to

seamlessly join patches of terrain together is demonstrated.

Turk et al. [15] offer a new patch-based system for terrain synthesis which

uses digital elevation model files and generates difficult outcomes. The operation

begins with a user’s sketch and DEM example file. The method gets patches form

the sample data that suit the characteristics observed in the user’s sketch.

2.7.4 Comparison of Terrain Generation Techniques

The Table 2.2, which is taken from the paper of Justin Crause [6] demonstrates

the comparison between the terrain generation techniques mentioned in a previous

section.

To conclude, fractal-based methods are able to run fast on current CPUs

and the generation process is not fully controlled. The parameters that are set
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Table 2.2: Comparison of terrain generation techniques [6].

Speed User-Control Realism Main Limitations

Fractal-based Very fast Low-High Low
- Absence of natural erosion
- Non-intuitive control parameters
- Pseudo-random output terrain

Physics-based

Thermal:
Fast

Hydraulic:
Slow

Low

Thermal:
Medium

Hydraulic:
High

- Complex to implement
- Requires a base terrain
- Minimal user control

Texture-based Slow Medium High
- Limited user control
- Output dependant on number
of input terrains (exemplars)

do not impact the outcome directly, which results in a lack of user control over

the generation process of a terrain. Physics simulation may be used to increase

realism to a base terrain with the help of combining actual weather influences.

However, this technique frequently relies on the base terrain quality, because it

also suffers from the low level of user control. Texture-based techniques make

terrain generation more realistic by obtaining methods from the sector of texture

synthesis and use the real terrains as their data source. When the generation

process is controlled thru sketches the user gains more control. Using the GPU

the runtime of these methods is not quite long.

In our study we are dealing with the fractal-based methods, especially with

Diamond-Square Algorithm and Perlin Noise, to generate realistic terrains.

2.8 Related Works

When reviewing literature for similar studies, several papers were found that were

similar to aspects of our study in some ways.

The study “Terrainosaurus: Realistic Terrain Synthesis Using Genetic Al-

gorithms” by Ryan L.Saunders [16] present Terrainosaurus “a new design-by-

example method for synthesizing terrain height-maps.” The user outlines the

design of the landscape by drawing out easy areas with the help of CAD-style in-

terface and defines the preferred terrain properties of every area by giving height
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map example displaying these properties. The height map provided as an ex-

ample will basically come from real-world GIS (Geographic Information System)

data sources. A genetic algorithm is used to mix together pieces of elevation data

from an example height-maps in a visually attainable way to produce a height-

map similar to the user’s design at a different level of detail. The main benefit

of the recommended approach is that unlimited variety of reasonable realistic

terrain can be generated with the little help of user effort and expertise.

Terrainosaurus is similar to our approach in a way that we both use the GIS

data sources to extract properties of the realistic terrain in order to come up

with the realistic terrain as an outcome.Also, a sample mean, standard deviation,

skewness and kurtosis are used to measure the similarity of two terrains in this

study, but we are using these statistics to extract features for our neural network

model.

Another study “Fast, Realistic Terrain Synthesis” by Justin Crause [6] pro-

pose “a patch-based terrain synthesis system that utilizes a user sketch to control

the location of desired terrain features, such as ridges and valleys.” Digital eleva-

tion models of real terrains are applied as example terrain, from which candidate

patches of information are obtained and rivaled in opposition to user’s shape. The

final terrain is generated by seamlessly merging the best candidates. However,

usage of real terrains results in highly appearing realistic terrains.

This method has some similarities to ours in a way that we both use real

terrains to have a realistic terrain as an outcome.

The study “Example-Based Realistic Terrain Generation” by Li et al. [17]

propose “a new approach to terrain generation based on terrain examples.” They

provide a semiautomatic terrain generation technique using a four process genetic

algorithm method in order to create a different kind of terrain samples by applying

just user inputs. A rough sketch of terrain silhouette map is specified by the users

then terrain samples are retrieved based on support vector machine (SVM) form

the terrain dataset and to complete the terrain silhouette map the areas are cut

from terrain examples.
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The main commonality of this approach with our method is that we both use

terrain datasets to have a realistic terrain as an outcome.

Digne et al. [18] in study “Interactive Example-Based Terrain Authoring

with Conditional Generative Adversarial Networks” present “an example-based

authoring pipeline that uses a set of terrain synthesizers applied to particular

tasks and every time terrain synthesizer is a Conditional Generative Adversarial

Network (CGAN) trained via using real-world terrains and their drawn comple-

ments.” Artists create a coarse sketch of the main terrain features, such as rivers

and valleys then an algorithm synthesizes a terrain automatically suitable to an

artist’s sketch applying the learned features of the training samples. This frame-

work gives a high level of realism and presents simple terrain authoring for the

least design price.

The main similarity of this approach with our study is that we both use

real-world terrains to train the Neural Network. This study uses CGAN neural

network to synthesize a terrain, but we are using a neural network in our study

to evaluate a terrain.

The study “Terrain Generation Using Genetic Algorithms” by Ong et al. [19]

present “a procedure using genetic algorithms to generate 3D terrain datasets.”

They use a two-pass genetic algorithm procedure to generate different types of

terrain applying only intuitive user inputs. They permit a user to define an

unfinished sketch of the terrain region limits, and the genetic algorithm is used to

improve these limits. Then they pair this with a database of given terrain data

to create an artificial terrain, that is going to be optimized by applying a second

genetic algorithm.

The main similarity of this approach with our study is that they are using

mean, variance, minimum, maximum, and slope of the sample elevations for

measurements of the likelihood of their generated region with the source example.

But we are using mean, variance and slope of a real-world terrain to extract

features for our neural network model.
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Methods

In the Figure 3.1 the overall structure and the flow of the algorithm is demon-

strated. Each stage is covered in more details in subsequent sections.

3.1 Processing Real Terrain Images

The image contains information, such as color and by processing or analyzing an

image it can be converted to a mathematical representation. For instance, an

image has a width and height and the information contained in it can be repre-

sented by a two-dimensional matrix. The features can be extracted by processing

an image.

3.1.1 Choice of Data Structure

The terrain is the critical part of our algorithm, so the representation of it is very

important. Two facts were taken into account when choosing the data structure

to represent terrain. The first one is that what type of data structure is used

for terrain in most current, real-time applications and the second one is that the

real elevation terrain data are presented in which form of data structure. After

24
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Figure 3.1: Overall Structure and Flow of the Algorithm.
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doing background research we decided to choose the height-map as terrain data

structure. The Figure 3.2 demonstrates a simple example of a height-map.

Figure 3.2: Height map of city Izmir.

3.1.2 Real Terrain Images Source

In order to understand the level of realism of generated terrains, we need to

compare them with real-world terrains. There are many agents providing the

Digital Elevation Model (DEM) of the places, but many of them have some

restrictions. Some provide only 5-6 areas and the user is limited to the data

which is provided by them. The free choice is eliminated in such cases.

The real-world terrain images are acquired from the online resource http:

//terrain.party which provides real-world terrain images. It provides a free

choice over the world’s map. The range of choice in the area is represented with

a square of 8 × 8 km and 60 × 60 km.

Basically terrain.party provides height maps for the Cities: Skylines map

editor. It produces a height map of 16-bit PNG’s covering 1081 × 1081 pixels.

The Figure 3.3 demonstrates the layout of the terrain.party.
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Figure 3.3: Layout of terrain.party [20].

The selected area of the map can be downloaded as ZIP file and the following

data will be available inside these ZIP file [20]:

• ASTER 30m: a recent public survey of elevation on Earth having high

coverage and high 30m resolution, however, occasional gaps are created in

the data, because of the confusion by high concentrations of clouds and

mountains.

• SRTM3 v4.1: is the result of significant work from CGIAR-CSI and has

a 30m resolution in the US and 90m resolution elsewhere.

• SRTM30+: a 900m resolution dataset which is used to follow the general

contours of the land without having every single contour.

• Merged: it a mix of ASTER 30m, USGC NED 10m, and SRTM30+, which

provides a good global elevation data (ASTER) and better US elevation

data (USGS NED) with hole0filling and bathymetry from SRTM30+.

The specification is not needed, because terrain.party will provide all of the

data mentioned above inside a ZIP file and also a README file explaining all

this as appropriate.
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From all of those available data merged height-map should be selected because

it is a mix of other data in a way that tries to be sensible and also README file

suggest to look for this one as a height map.

3.1.3 Classification of Real Terrain Data

In our study we are classifying terrain data into three classes:

1. Sealevel: this class contains terrain height maps which are basically taken

from the lakes and seas of the real world map.

2. Lowland: this class contains terrain height maps which are taken from the

areas such as airports and cities where the surface is somehow flat.

3. Mountain: this class contains terrain height maps which are taken from

the well known real-world mountains such as Nanga Parbat and Everest.

3.1.4 Descriptive Statistics

The descriptive statistics explain the data in a way that make sense. In our

algorithm, measured statistics are used as an input parameter for ANN in order to

train the neural net to distinguish between the terrain classification. Basically, the

descriptive statistics used in this study are mean, standard deviation, skewness

and kurtosis.

The mean is one of the best-known statistics and the average value found in

a sample. The equation below is used to calculate the mean value of a sample.

x̄ =

∑
xi
n

(3.1)

The mean is the first-order measure of a statistical distribution. In addition,

mean is a value about which the distribution is focused.
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The standard deviation is a very useful statistic. It reveals how tightly data

are grouped about the mean. The equation below is used to calculate the standard

deviation value of a sample.

s =

√∑
(x− x̄)2

n− 1
(3.2)

The standard deviation is a second-order measure of a statistical distribution

defining the range in which the distribution propagates.

The skewness is the third statistic, which is a measurement of the symmetry

of a distribution. It describes how much a distribution differs from a normal

distribution, either to the right or to the left. It can be negative, positive or zero.

When a skewness value is zero it means that the distribution is symmetrical

around the mean. However, if the skewness value is positive or negative then

this means that the distribution is either shifted to the right or left of the mean

(Figure 3.4).

Figure 3.4: A positive (left) and negative (right) skewed distribution [22].

The equation [21] below demonstrates how to find the skewness value for a

univariate data.

g1 =

∑N
i=1 (xi−x̄)3/N

s3
(3.3)

where s is the standard deviation and x is the mean and N is the number
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of samples. The above equation for skewness is known as the Fisher-Pearson

coefficient of skewness [21].

If the data is collected to the left a positive skew occurs and if the data is

collected to the right a negative skew occurs.

The kurtosis is the fourth statistic, which measures if the dataset is heavy-

tailed or light-tailed as opposed to a normal distribution. When a kurtosis value

is zero it means that the distribution is normal. However, if the value of kurtosis

is high it indicates that the data set is heavy-tailed, also known as leptokurtic,

and if the value of kurtosis is low it indicates that the data set is light-tailed, also

known as platykurtic (Figure 3.5).

Figure 3.5: A positive (left) and negative (right) kurtosis example [22].

The equation [21] below demonstrates how to find a kurtosis value for a uni-

variate data.

kurtosis =

∑N
i=1 (xi−x̄)4/N

s4
(3.4)

where s is the standard deviation and x is the mean and N is the number of

samples.
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3.1.5 Other Statistics

Besides the four statistics mentioned in the previous section, three more statistical

data are used as an input parameter in this study, which are slope, histogram,

ruggedness.

The slope is very important when we want to find a line between two points,

which tells how steep the line is, such as the higher the number, the steeper the

line. Shortly, a slope is a value that defines both the direction and the steepness

of the line and denoted by letter m. It is a measure of a rate of how slow or fast

changes are taking place. The equation below demonstrates how to calculate the

slope between two points.

Slope =
rise

run
=
y2 − y1

x2 − x1

(3.5)

In our study, we need an equation to calculate slope between two points in

a 3-dimensional space because height maps are in form of grayscale images and

they have width, height and elevation data as luminosity. The equation below

demonstrates how to calculate the slope of two points in 3D space.

Slope =
rise

run
=

∆z√
∆x2 + ∆y2

(3.6)

First of all the distance is calculated between the two points, which results to

run. The height will be the rise. Then height is divided to the distance, which is

similar to dividing rise with a run, to get the slope between two points in a 3D

space. In addition, Δx is equal to Δx = xb - xa, Δy is equal to Δy = yb-ya and

Δz is equal to Δz = zb-za, between two points having (xa, ya, za) and (xb, yb, zb)

as their coordinates.

A histogram is a plot of statistical information that uses rectangles to under-

line frequency distribution of a set of data allowing for the inspection of data for

its underlying distribution, such as normal distribution, outliers, kurtosis, and
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skewness. The Figure 3.6 shows the histogram of a mountain region height map.

Figure 3.6: Histogram example of a height map. Generated using R.

In order to find the ruggedness or edge of an image, the first derivative is

taken. In an image, edges are produced by different factors, such as surface color

discontinuity, surface normal discontinuity, depth discontinuity, and illumination

discontinuity. To characterize an edge is a place where a rapid change in the

image intensity function. To detect those changes the first derivative is taken

and the extreme values of derivative will correspond to the edges. In order to

differentiate a digital image, we are going to take a discrete derivative. The

Equation 3.7 demonstrates this process.

∂f

∂x
≈ F [x+ 1, y] − F [x, y] (3.7)

This equation can also be taken with respect to y and will give different results

than with respect to x. The Figure 3.7 demonstrates those differences.

Another way to find the ruggedness of an image is by selecting points by

traversing in a circular movement. In this method, points are taken from different

places, rather than from a neighborhood like in previous section method. By doing

so the points, which are not close to each other are taken and then the equation

from the previous section is used to understand the ruggedness of an image.
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Figure 3.7: First derivative with respect to x and y.

The equation below is used to find the coordinate points while traversing in

a circular movement on an image, where r is the radius and α is an angle.

x = r cos(α), y = r sin(α) (3.8)

3.2 Artificial Neural Network (ANN)

Our brain easily makes interpretation of what we see. It would not take any

effort for us to tell the difference between the cat and dog or understand another

person’s emotion. However, those are without a doubt hard issues to solve with

a computer, or machine.

An artificial neural network (ANN) is a computational model that is inspired

by the human brain. It consists of an interconnected network of simple processing

units which could learn from experience with the aid of enhancing its connections.
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Structures of interconnected neurons that transfer information among each

other are the common representation of ANNs. Synapses are simply weighted

values and artificial neurons are connected through them. In order to make a

neural net adaptive to inputs and able to learn, the connections have numeric

weights.

The equation below demonstrates how artificial neurons compute their out-

puts.

y = f(w>x+ b) (3.9)

where f is a nonlinear function, w is the connection weights, x is the input,

and b is the bias term.

The Figure 3.8 shows how to compute the output for a single neuron, where

output of neuron is Y = f(w1.x1 + w2.x2 + b)

Figure 3.8: Single neuron computation [23].

3.2.1 Types of ANN

There are two types of neural networks. The first one is a simple neural net-

work, also known as multilayer perceptron, and deep neural network. Figure 3.9

demonstrates these types of neural networks.

Input data is given to the input layer and passes after processing to the out-

put layer to give a result. Moreover, the main processing and calculation is a
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Figure 3.9: Types of neural network [24].

responsibility of the hidden layers. By increasing the number of hidden layers,

we move from a shallow neural network to a deep neural network. Deep neural

networks are capable of significantly more complex behavior than their shallow

counterparts.

3.2.2 Activation Functions

The inputs are processed in a neuron using an activation function. The activation

functions main purpose is to introduce nonlinearity into the output of the neuron,

because many real-world data is nonlinear. The networks behavior depends on

the selection of the activation function. There are many activation functions, but

three of them will be discussed briefly.

3.2.2.1 Step Functions

The first function designed for machine learning algorithms was the step function.

It basically consists of a simple threshold function that changes the Y value from

0 to 1. The step function has been historically used for classification problems,

such as logistic regression with two classes.

The step function actually work as a limiter. Each input that goes into this

function might be applied to receive either assigned a value of 0 or 1. Because of
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that, it is simple to see how it can be helpful in classification problems.

3.2.2.2 Sigmoid Functions

The sigmoid functions are very beneficial in the sense that they squash their

given inputs into a bounded interval. They are called sigmoid functions due to

their shape in the Cartesian plane, which looks like an S shape. They can be

very useful in combination with other functions, such as step function. The most

popular one of the sigmoid functions, which can be found in an application, are

hyperbolic tangent and logistic functions.

3.2.2.2.1 Logistic Function (Sigmoid)

As the name mentions, the logistic function is generally applied in logistic re-

gression. The equation below shows how it is defined and the result will give a

sigmoid over the (0,1) interval,

f(x) =
1

1 + e−x
. (3.10)

3.2.2.2.2 Hyperbolic Tangent Function

The hyperbolic tangent function is based on the tangent function. The hyperbolic

tangent, also known as TanH, is defined as the equation below.

f(x) =
2

1 + e−2x
− 1 (3.11)

It generates a sigmoid over the (-1,1) interval. The hyperbolic tangent is used

in many application and is probably the most used function of the sigmoid family.
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3.2.3 Backpropagation

Backpropagation is used to understand if the neural network is correctly predict-

ing in each epoch. The backpropagation is one of the easiest and most common

techniques used for supervised training of multilayer neural network. In super-

vised training, the network output is compared with a target output and the

network error is computed depending on the difference between them. Backprop-

agation is just a gradient descent approach [25] to decrease the total squared error

of the output measured by the network.

Figure 3.10: Single hidden layer neural net backpropagation [25].

Figure 3.10 above demonstrates a multilayer neural network with a single

hidden layer and the direction of the data flow is feed-forward. The hidden units

and output units may also have biases. However, during the backpropagation,

error signal is sent in the opposite direction.

Three steps are required to train the neural network by backpropagation:

• Feed-forward or forward-propagation

• Calculation and backpropagation of the compared error

• Weights arrangement
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In the feed-forward, the weights are initialized randomly and the data is sent to

the hidden units. Each hidden unit then makes computations using its activation

function and sends the results to the next layer, which is output units. Finally,

each output unit makes a computation using its activation function to make a

prediction of the network for the given input model. This step is also known as

forward-propagation, because the flow is in the forward direction.

When the feed-forward step is executed the predicted results will be available.

Loss function is then measured, which is the comparison of the predicted results

with its target results, determining the compared error for that model. For clas-

sification problems, two types of loss functions are used the most, which are the

mean square error (MSE) and cross-entropy error. However, for classification

problems, the cross-entropy error often does better than MSE.

MSE is calculated using the below equation,

Etotal =
∑ 1

2
(target− output)2. (3.12)

Cross-entropy error is calculated using the below equation, where t is the

target and y is the output.

E = −
nout∑
i=1

(tilog(yi) + (1 − ti)log(1 − yi)) (3.13)

When the total error is calculated the backpropagation step will begin. The

main purpose of the backpropagation is to decrease the error of the network for

each output by adjusting the weights in the network and to make the output

predicted by a network to be closer to the target output.

In the backpropagation, how much a difference in a weight influences the total

error is analyzed. The derivative of the functions is taken in order to find how the

change in a weight affecting the total error. For example, in order to calculate

the change in w3 affecting the total error the following equation is used, which is
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also known as the gradient with respect to w3.

∂Etotal

∂w3

=
∂Etotal

∂outo1

× ∂outo1

∂neto1

× ∂neto1

∂w3

(3.14)

After calculating how the change in a weight affects the total error, the new

weight is computed and updated using the equation below, where η represents

the learning rate,

w3 = w3 − η × ∂Etotal

∂w3

. (3.15)

To make the weight adjustments very slowly and smoothly the very small

constant is presented known as learning rate.

The whole process will iterate until the convergence. It may need many iter-

ations in order to learn because the weights are adjusted with little delta step at

a time.

Figure 3.11 below reviews the learning process of neural networks.

Figure 3.11: Neural Network Learning Process Review.
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3.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks, abbreviated as CNN’s or ConvNets, are deep

neural networks which are very useful in image classification and recognition.

Also, they might be used commonly to categorize photos, such as naming the

objects in the photo, group them by similarity, an example can be an image

search, and carry out object identification inside scenes. CNNs are algorithms

which do pretty good job in identifying human faces, street signs, tumors and

lots of different factors of visual data. Another application field of ConvNets is

audio when the audio is represented visually as a spectogram. The influence of

ConvNets in an image recognition is one of the main reasons for the increase

of study of deep learning in the recent years around the world. ConvNets are

powering predominant advances in computer vision, which has an application for

self-driving cars and robots.

3.3.1 Understanding Convolution

From Latin, “convolver”, “to convolve” meaning to roll together. An integral

measure of how much two functions overlay when one passes over the other is a

mathematical explanation of the convolution.

CNN’s derive their call from the “convolution” operation. Extracting features

from the input photo is the main objective of the convolution in a CNN case.

Convolution maintains the spatial relationship between pixels with the aid of

learning picture capabilities using small squares of input data.

An image can be expressed as a matrix holding pixel values. The RGB image

will have three channels and three matrices for each channel. Grayscale will have

the only single channel and a single matrix for this channel. For example, an

image with a 5 × 5 matrix of pixel values are only 1 and 0 and another matrix

with 3 × 3 with 1 and 0 values. The convolution of the 5 × 5 image and 3 × 3

matrix will give an output, which is known as feature map. The whole process is

demonstrated in Figure 3.12 below.
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Figure 3.12: Convolution operation process [26].

The final result is computed by sliding the 3 × 3 matrix over the 5 × 5 image

by 1 pixel, known as “stride”, and for each position. Element-wise multiplication

among the two matrices are carried out and the multiplication results are added

to get the final result which forms a single element of the output matrix.

In ConvNet terminology, the 3 × 3 matrix is known as filter or kernel and

the resultant matrix generated by sliding the kernel over the original image and

calculating the dot product is known as Convolved Feature or Feature Map. The

main purpose of filters is to detect features form the original image depending on

the filter characteristics.

3.3.2 Feature Map

Basically, a ConvNet using a training session determines the values of the filters,

but there is a need of specification of some parameters such as filter size, number of

filters and etc before the training session. The number of image features depends

on the number of filters and having more filters will result in more features and

the better neural network will become at recognizing patterns in images.

There are three parameters which control the size of feature map:

1. Depth: represents a number of filters used in the convolution process, every

filter tends to learn something different in the input image.
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2. Stride: number of a pixel value that is used to slide the filter. In order to

slide pixel value by one, the stride should be one. Smaller feature maps are

created by increasing the stride number.

3. Zero-padding: fills the input matrix with zero values around the border.

The main advantage provided with this is the size control of the feature

maps. Wide convolution term is used when zero-padding is used and narrow

convolution term is used when zero-padding is not used.

3.3.3 Introducing Non-Linearity (ReLU)

ReLU is a non-linear procedure and the name is a shortage of Rectified Linear

Unit. Basically, after each convolution operation, the ReLU is used. The main

function of the ReLU is to change all negative values appearing in the feature

map to zero and it is an element-wise procedure used for each pixel. Convolution

is a linear operation and we convert the result to non-linear with the help of

ReLU function. Introducing non-linearity in the CNN is the main purpose of the

ReLU.

To understand the ReLU operation more clearly, Figure 3.13 is given. The

feature map is obtained from the original image and the ReLU operation is applied

to this feature map.

Figure 3.13: Obtaining rectified feature map [26].

Other nonlinear functions like sigmoid or tanh may be used as well in place

of ReLU. However, ReLU has better performance in many cases.
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3.3.4 Layers Used to Build CNNs

A simple CNN is build using several layers. Those layers using differentiable

operation convert one volume of activations to other. To construct a CNN archi-

tecture three most important type of layers are used, which are stacked to form

an overall CNN architecture. The layers are convolutional layer, pooling layer,

and fully connected layer

3.3.4.1 Convolutional Layer

Most of the hard computational calculations are done in the convolutional layer

and it is the fundament of a ConvNet. In the convolutional layer, the convolution

operation discussed in Section 3.3.1 is performed. Since neurons perform the

convolution operation to input, they are known as convolutional neurons. One of

the important parameters in a convolutional neuron is the filter size.

For instance, when convolutional layer applied to the image with a 7 × 7

matrix and 3 color channels, at each step, the 3x3x3 sized chunk is picked from

an image and the convolution is calculated using the filter. The convolution

operation results in a single output and the bias is added to this output. The

convolution filter is slid over an image to calculate the output and the number of

slides are called a stride, which was discussed in the previous sections. Connecting

all outputs in two dimensions an output feature map is formed with the size of

3×3. Having two filters in one convolutional layer will result in an output of size

3×3×2.

3.3.4.2 Pooling Layer

Usually after convolutional layer, pooling layer is applied to decrease the sample

size. The main function of the pooling layer is to decrease the number of param-

eters and calculations in CNNs and additionally to manage over-fitting. Various

types of the pooling exist, such as average, max, and sum. However, the max
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pooling used in most applications. In max pooling, a filter with size M × M

is taken and the max operation is applied to an image. When an input size is

w1xh1xd1 and the filter size is m×m with stride S this will result in an output

size of w2xh2xd2 as shown in the below equation.

w2 = (w1 −m)/S + 1, h2 = (h1 −m)/S + 1, d2 = d1 (3.16)

The filter size of 2×2 with a stride of 2 is a common pooling layer parameters

applied to many applications, which approximately decreases the size of input by

half.

3.3.4.3 Fully Connected Layer

The fully connected layer is a traditional multilayer perceptron, which applies a

softmax operation on the output layer. The name “Fully Connected” mention

that all neurons from previous and next layers are connected to each other.

High-level features of the input photo is an outcome of the convolutional and

pooling layers. The main goal of a fully connected layer is to use the outcome

features for matching an input photo to different categories according to the

training dataset.

Fully connected layer gives a result with probabilities summing up to one. To

maintain the result the softmax is used as an activation function in the output

layer of a fully connected layer. The main purpose of a softmax function is to

crush the vector values between 0 and 1, which sums up to 1.
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3.3.5 Summing Up

As mentioned in the previous sections, the fully connected layer behaves as a clas-

sifier while convolution layer and the pooling layer behave as a feature extractors

from the input image.

Figure 3.14: A simple CNN Architecture.

The step by step simple explanation is as follows:

• The original input image is examined for features using a filter that passes

over it.

• Features maps are generated, one for each filter, as outputs and stacked

over one another.

• The feature maps reduces using pooling.

• A new set of feature maps is created by passing filters over the first pooled

stack.

• The second pooling is done, which reduces the second set of feature maps.

• A fully connected layer is applied that classifies output.
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The general training procedure of the convolutional neural network can be

summarized as follows:

• Step 1:Randomly initialize all parameters and filters values.

• Step 2: The neural net gets a training input image, process via the forward

propagation step and discovers the output probabilities for every class.

• Step 3: Compute output layers total error. The equation of this computa-

tion is shown below.

TotalError =
∑ 1

2
(target probability − output probability)2 (3.17)

• Step 4: Backpropagation is applied to measure the gradient of the failure

to all weights. Moreover, to reduce the output error, gradient descent is

used to arrange all parameter and weights values.

• Step 5: Repeat steps 2-4 with all dataset within the training set.

This is how the CNN is trained using the above steps, indicating that CNN is

able to correctly classify photos of the training set by optimizing its weights and

parameters.

The network will perform a forward propagation and give the result as a

probability for every class when a new photo is inputted into the CNNs. If the

training set is big enough and correctly constructed, the CNNs will correctly

classify the new test images into categories.

The number of convolution and pooling layers could be replicated many times

in a CNN. In addition, many best performing CNNs nowadays have tens of con-

volutional and pooling layers. Before having a pooling operation there can be

many convolutions and ReLU operations in sequence.
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3.4 TensorFlow (TF)

TensorFlow is a library developed by Google. TensorFlow was basically designed

for jobs that need complex mathematical calculations, but it is a greatly versatile

library. This is the main reason why TensorFlow was adjusted against the problem

of deep neural nets and machine learning. Nowadays, TensorFlow holds the

leading position on GitHub among all machine learning libraries. Google uses

this library for implementing ML in almost all programs. As an example, Google

voice search uses TensorFlow models.

The main component of TensorFlow is a computational graph because the

structure of TensorFlow is based on the execution of a data flow graph and

tensors which traverse among all the nodes through edges.

Two basic units of a data flow graph are as follows:

• A mathematical procedures are described as nodes.

• A multi-dimensional arrays, also known as a tensor, are described as edges.

The tensor can be described as an N-demensional vector mathematically. In-

dicating that it has an ability to describe an N-dimensional data set. New tensors

are generated as a result of an operation in the graph and this process described

as flow in a computational graph.

3.4.1 Parallelism in TensorFlow

One of the important property of TensorFlow is parallelism. In order to execute

operations faster, TenforFlow provides users to use parallel computing devices.

For parallel computing, the processes are scheduled automatically. There are two

aspects of the distributed execution.

In the first one, it is a single system distributed execution where a single TF

session creates a single worker and the worker is responsible for scheduling tasks
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on different devices. In the second one, the number of workers increased and each

is able to be on a separate or on same machines, every worker is responsible to

operate its individual context.

3.4.2 Architecture of a TensorFlow

The architecture of TensorFlow is flexible and permits using calculation on more

than one GPUs or CPUs. All this process can be done using a single API. To

construct and execute computational graphs TensorFlow has a python interface,

which is simple to use.

3.4.3 Image Representation as Tensors

The tensor structure helps us through giving the freedom to shape the dataset in

the manner that is needed. It is very helpful when dealing with images, due to

the nature of how information in images are encoded.

It is easy to understand that image has a width and height, because of it,

it is logical to represent the information contained in the image with a two-

dimensional matrix. However, images also have colors and another dimension

is needed to store the color information and that is when tensors become very

helpful.

Images are encoded into color channels, the image data is represented by each

color intensity in a color channel at a given point. The most common type of

image is RGB, which stand for red, green, blue. The intensity of each channel at

each point with width and height can be represented by a matrix and ending up

having three matrices and by combining them a tensor is formed.
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3.4.4 Tensors in TF

TensorFlow holds data in tensors and tensor may be expressed in a variety of

ways.

• Constants: defining tensor as a constant we will not be able to change it

later on.

• Variables: variables can hold different values as opposed to constants. To

be able to use variables in a computation graph it is necessary to initialize

then before running the graph in a session.

• Placeholders: in order to feed data to a TF model from outside a model,

the placeholders are used. Placeholders can be seen as holes in the model

in which the data is passed. However, in order to pass the data into a

model using placeholder the type of data along with its precision should be

specified, such as float32 or int16.

3.4.5 Summing Up

TensorFlow is a very powerful library when making a convolutional neural net-

work model. In addition, it is an open source library. It is very useful for our

study because many mathematical computations are already defined inside the

library for CNN and many documentation and tutorials are available online.

Many popular companies such as ebay, Uber, and Google use TensorFlow [27].
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3.5 Procedural Terrain Generation Techniques

There are many techniques to procedurally generate terrains, many of them were

discussed in Section 2.7.1.2 in Chapter 2. Two types of PTG techniques are used

in our study, which are Perlin Noise and Diamond-Square Algorithm.

3.5.1 Diamond-Square Algorithm

The result of an improvement of a midpoint-displacement algorithm is a diamond-

square algorithm and it is fractal based. The main advantage of this algorithm is

speed. However, the disadvantage of this algorithm is the memory consumption.

When speed is essential and plenty of memory is available this algorithm best fits

to generate terrain procedurally. The detailed implementation will be discussed

in the next chapter.

3.5.2 Perlin Noise Algorithm

Perlin noise algorithm is one of the widely used noise generation algorithms. It

is not fractal, but in combination with fBm, it is capable of generating fractal

terrains. In order to achieve fBm, we generate several octaves of noise, each of

them is generated with a decreased amplitude and increased frequency, and these

octaves are all summed together to produce the fractal terrain. The detailed

implementation will be addressed in the next chapter.
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Implementation

In this chapter, an important implementation details of the algorithms used in

this study will be discussed.

4.1 Feature Extraction

As mentioned in the previous chapter, the height-map was chosen as the terrain

data structure. The height map has a two-dimensional grid-based data structure,

where x and y are coordinate points determining the location of an elevation

value h as demonstrated in the Equation 2.1 on Chapter 2.

The terrain.party web application was used to get real-world height maps.

The height-maps provided from terrain.party is a height map of 16-bit PNGs

covering 1081 × 1081 pixels. All height-maps are cropped to have a resolution of

1024 × 1024 in our study. All of this cropping is done by native image toolbox

and the crop regions are selected randomly. As a result, 16-bit PNGs covering

1024 × 1024 pixels are obtained.

However, the original elevation range provided from terrain.party is for 1081×
1081 pixels and after cropping the number of pixels are going to decrease and for

this reason, an original elevation range is converted to a new cropped image range.

51
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The process of conversion is simple and it is done by providing the old range

and new range and then making conversion between those ranges. The equation

below is used to make those conversions.

rangeOld = maxOld−minOld

rangeNew = maxNew −minNew

valueNew = (((valueOld−minOld) ∗ rangeNew)/rangeOld) +minNew

(4.1)

The range conversion is done using R application. R is widely used language

in statistical calculations and graphical analysis.

As mentioned in the previous chapter the terrain data is classified into three

classes, such as sealevel, lowland, and mountain. Fifty height maps for each class

for training purpose and fifteen height maps for each class for a testing purpose

are obtained from terrain.party. The Figure 4.1 demonstrates the basic flow of

the feature extraction algorithm.

Figure 4.1: Feature Extraction Algorithm.

To extract features of the height map a C# script running on the Unity3D

engine is used. Unity3D is a user-friendly and powerful cross-platform 3D engine

development environment, which is easy to use.

The height map with the converted original elevation range for each class is

set as an input parameter. Then in the process, each pixel of the height map is

traversed and the elevation data is saved in a 2D array. After the elevation data

is saved in a 2D array the feature extraction begins. In this study the features

are classified into 5 categories:



CHAPTER 4. IMPLEMENTATION 53

• Statistical data

• Slope data

• Partitioning

– The first derivative of parts (Zero Ruggedness)

– The circular ruggedness of parts (Circular Ruggedness)

• Histograms

4.1.1 Statistical Data

In the statistical data, the basic statistics of a height map, such as mean, standard

deviation, skewness, and kurtosis are calculated. All of them is calculated as

meter unit.

The statistical data will provide the basic knowledge about the distribution

of the elevation data of a height-map image and it can help to better understand

the type of a height-map image.

4.1.2 Slope Data

In the slope data, six slopes from the height map are obtained. The first slope

is the main slope of the height map, which is calculated by finding the minimum

and maximum elevation points and if there are many same max and min points

then the first one which is met is taken. In order to find the slope between those

points, the slope in a three-dimensional space should be calculated because height

maps are in form of grayscale images and they have a width, height and elevation

data as intensity. The Equation 3.6 from the previous chapter is used to calculate

a slope.

Remaining five slopes are the slope of five ranges. The height map elevation

data has a range between 0 and 1. A division of this range into 5 subranges
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are performed. Such as the first subrange is between 0 - 0.2, the second one is

between 0.2 - 0.4, the third one is between 0.4 - 0.6, the fourth one is between

0.6 - 0.8 and the last one is between 0.8 - 1. The slope is calculated by finding

the minimum and maximum elevation points for each subrange.

The slope data will provide the level of the steepness of a height-map image

and it can help to better distinguish between different terrain types.

4.1.3 Partitioning

The height map is divided into 16 equal parts. The resolution of the height map is

1024× 1024 and the part resolution is 256× 256 each. The height map is divided

into parts in order to understand which part of the map has the highest and the

lowest ruggedness. Two methods were used to find the ruggedness of height-map

image parts. Those methods are as follows: the first derivative of parts (Zero

Ruggedness) and the circular ruggedness of parts (Circular Ruggedness). The

name in the parenthesis is used in the results table of this study.

4.1.3.1 The First Derivative of Parts

The ruggedness or edge of a height map can be found by taking the first derivative.

An edge is a place where the rapid change in the image intensity occurs and to

detect these changes the first derivative is taken and the extreme values of the

derivative will give the edges. To differentiate the height map a discrete derivative

will be taken and the Equation 3.7 from previous chapter, will be used.

A counter is incremented when an edge is detected and in order to detect the

extreme values, a threshold is set in a our function.
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4.1.3.2 The Circular Ruggedness of Parts

Another way to find the ruggedness in each part is by selecting points by travers-

ing in a circular movement.

The radius of the circle and an angle are defined. Using those parameters the

location of a point x and y and the elevation data at this location can be found.

In order to find the x and y location, the Equation 3.8 from the previous chapter

is used. The flowchart of the operation process is shown in the Figure 4.2.

Figure 4.2: Circular Ruggedness Flowchart.

First, the radius parameter is defined and an array is created to hold the

elevation data of a point. After in each part, the middle point is found and an

angle value is set. By using an angle value and the radius, x and y coordinate

point are found. When the point is located the elevation value of that point is

stored in an array. Each time the angle value is increased to get another point

until the full circle is made. After that, the radius value is decreased and a circle
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making process starts again. The whole process is performed for each part of an

image. Finally, the first derivative of the resultant array values are taken and

from the result the number of zeros is count.

The ruggedness data will provide the level of the ruggedness of a height-map

image and it can help to distinguish between terrains with a high and low level

of ruggedness.

4.1.4 Histograms

Two separate histograms with different ranges are used in this study. The main

goal of separating histogram into two parts is because of data range. Data range

changes between 0 - 8880 meters. Because the highest point of the world is taken

into account, which is the peak of Mountain Everest.

One histogram has a range of 0 - 9000 meters, named as Histogram Two in

this study, and divided into 9 class with a range of 1000 meters. The Figure 4.3

below demonstrates this histogram example.

Figure 4.3: Histogram with range between 0 - 9000 meters.

This histogram is very useful to distinguish lowland and sealevel from a moun-

tain types of terrain. But it not very helpful to distinguish sealevel from lowland
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types of terrain. Because of this, another histogram is introduced, named as His-

togram One in this study, which has a range of 0 - 500 meters and divided into

ten class with a range of 50 meters. It is very helpful to distinguish sealevel from

lowland types of terrain.

The histogram data results in large numbers because a height map has exactly

1024 × 1024 = 1048576-pixel values. Basically, in a histogram, the pixel value

going to which class is counted. When all of these class values of the histogram

are added the result will give 1048576 and because of that to make the values

look small, the normalization can be done by dividing each class value with the

1048576.

The histogram data will provide how the elevation data of a height-map image

are distributed in a histogram range and it can help to better distinguish between

different terrain types.

4.1.5 Results

After the feature extraction algorithm is complete the result will provide 61 fea-

tures for each height-map image. These features are stored in an Excel spread-

sheet and used later to train an ANN model. The number of features for each

category is demonstrated in the Table 4.1 below.

Table 4.1: Number of features in each category.

Category Number of features Included

Statistical Data 4

Mean
Standard Deviation (std)

Skewness
Kurtosis

Slope Data 6
Main Slope

Range Slopes
First Derivative of parts 16 Zero Ruggetness of each part

Curcular Ruggetness of parts 16 Circular Ruggetness of each part
Histograms 19 Histogram One and Two
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4.2 ANN Implementation

The important details about ANN were mentioned in the previous chapter. In

this section, the main architecture of the ANN that is used in our study and how

to train the ANN with the extracted features from the previous section will be

discussed. The best features to select for the further processes in the ANN will be

obtained. In order to select features to get good results on test samples, different

combinations of the extracted features are made.

4.2.1 Different Feature Combinations for ANN

As mentioned in the previous section 61 features for each height maps were ex-

tracted. The resultant number of features was derived from the five categories

discussed in the previous section. In order to find how features influence the per-

formance of an ANN, the different combinations of the extracted features will be

used and the combination is basically done within the five categories. The Table

4.2 shows the different combination of the features.

Table 4.2: Different combinations of the features.

Number of
Inputs

Input Name Description
Number of

Inputs
Input Name Description

61 Inputs All Inputs Included 29 InputsNoZeroCircular
Circular and Zero
Ruggetness Not

Nncluded

45 InputsNoCircular
Circular Ruggetness

Not Included
26 InputsNoZerohist

Zero and All
Histograms Not

Included

51 InputsNoHistOne
Histogram One
Not Included

35 InputsNoZeroHistOne
Zero and Histogram
One Not Included

52 InputsNoHistTwo
Histogram Two
Not Included

36 InputsNoZeroHistTwo
Zero and Histogram
Two Not Included

55 InputsNoSlopes Slopes Not Included 39 InputsNoZeroSlope
Zero and Slope
Not Included

45 InputsNoZero
Zero Ruggetness

Not Included

4.2.2 ANN Setup

The results of different feature combinations are obtained in two different ways.

The first way is by using Pattern Recognition MATLABs Neural Network Toolbox
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for pattern recognition and classification. Another way is by using K-Fold cross-

validation technique.

4.2.2.1 Pattern Recognition

To create pattern recognition network MATLABs Neural Network Toolbox is

used. Basically, data is selected after the creation of a network by setting a

number of neurons in the hidden layer and dividing an original data into train,

validation and test data. When those parameters are set a network is trained and

the evaluation results are obtained along with the trained neural network model.

As mentioned earlier the original data samples are divided into three kinds of

samples randomly, which are train, validation, and test data samples.

• Training: the sample data which is used to train the network.

• Validation: the sample data which is applied to control network gener-

alization, and to terminate the training process when generalization ends

advancing.

• Testing: the sample data which is used to test the trained network model

to find out the performance of the network.

After the data samples are divided into train, validation and test samples the

number of hidden neurons is given and when the network performance is poor

the number of neurons can be changed for further training.

Then the training function for the network is selected. A different number

of training functions are available to train the network, but the default training

function for pattern recognition in Matlab is scaled conjugate gradient (SCG)

backpropagation.

SCG backpropagation is a network training function which adjusts bias and

weight condition with respect to the SCG method. To bypass the time-consuming
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line search the SCG algorithm was developed by Moller. The basic idea of the al-

gorithm is to connect the model-trust region method with the conjugate gradient

method. It uses less memory and suitable in low memory situations.

When generalization finishes progressing the training will automatically end,

as shown by an expansion in the cross-entropy failure of the validation examples.

After the training ends the results of the trained network is obtained. Those

results include percent error and cross-entropy. A percent error shows the portion

of samples that are classified incorrectly, 0 indicating no misclassification and 100

indicating maximum misclassification in the result. In cross-entropy, the lower

values in the result are better and zero indicates that there is no any error. The

evaluation of the network performance is done using cross-entropy and confusion

matrices.

Moreover, two plots are available in order to better understand the results.

These are confusion and ROC (receiver operating characteristic) plots.

• ROC: a plot applied to control the quality of classifiers. The false and true

positive rates are computed for every class over the interval [0, 1].

• Confusion: a plot of a confusion matrix, where the diagonal cells show the

correctly classified observations. The column demonstrates the target and

the row demonstrates the output.

After the network model is trained and has a good performance the model

can be saved for further usage.

4.2.2.2 K-Fold Cross-Validation

The conventional analytical tools for deciding the performance of the system is

required to create an efficient machine learning solution. The powerful method,

which provides a correct evaluation of the right efficiency of the system is a cross-

validation. The sample data is separated into small validation set and a large
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training set in a cross-validation. Afterward, for training the train set is applied

and to measure the accuracy validation set is applied.

In K-folds cross-validation, the data is randomly sorted and then divided into

k folds. The most commonly used values for k is ten and hence the data is divided

into ten parts. After the division of data, the cross-validation runs k times and

during every iteration, one fold is selected for validation purpose and the rests

are used for training. After training completes using validation set the accuracy

of a network is measured. Finally, a cross-validation accuracy is computed by

taking the average of all accuracy.

The Figure 4.4 below demonstrates the visualization of the ten-fold cross-

validation and the accuracy calculation. The Final Accuracy = Average(Round

1, Round2, ...).

Figure 4.4: 10-folds cross-validation example over the data samples.

It is easy to make k-fold cross-validation in MATLAB. The Figure 4.5 demon-

strates the flowchart, which is used to generate the overall accuracy of the network

and to find out which feature combination gives the best results.

The results of the different feature combinations with using pattern recog-

nition and K-fold cross-validation will be provided in the next chapter and the

detailed analysis is done to choose the correct combination for further processes.
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Figure 4.5: K-fold cross-validation flowchart.

4.3 CNN Implementation

A detailed explanation of CNN is done in the previous chapter. In this section,

the architecture of a CNN that is used in our study with the selected layers are

explained. As mentioned in the previous chapter about TensorFlow, this library

is going to be used for our CNN implementation.

4.3.1 Architecture of the CNN

The architecture that we are going to use for CNN is not complicated and easy

to understand and compute on a CPU. The Figure 4.6 below demonstrates the

architecture of our CNN.
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Figure 4.6: Architecture of our CNN.

The input image from all classes (sealevel, lowland, mountain) is given to a

convolutional layer. Three convolutional layers are used sequentially. When all

convolutional layer has processed the results of an output from the last convolu-

tional layer is flattened. When the results are flattened the two fully connected

layers are applied. Three outcomes representing the probability of a sample im-

age being sealevel, lowland or mountain are the results of the last fully connected

layer. In total 12 layers are used to build CNN architecture.

4.3.2 Augmenting Data

In order to make CNN give accurate results, augmentation of input data is done

because in this study only fifty images for each class are used. To increase the

number of input images the augmentation is done. Augmentation of images can

be easily done in Matlab.

The following three steps are done in the augmentation process:

• Flip-flopping

• Rotation

• Resizing

The three steps are used in combination with each other. Such as the original

image is flipped then rotated and resized giving the augmented image as a result.
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The following 15, 30, 45, 60, and 75 angles are used to rotate an image. Each

image is rotated with these angle values. The original image size is 1024 × 1024

and resizing it to 680 × 680 and 2024 × 2024 is done. In order to avoid black

corners after rotating an image, the middle of the image cropped with the half

size of the original image and the result is saved.

After making augmentation for each image we are ending up having 1600

image samples for each class summing up to 4800 samples in total.

4.3.3 Reading Inputs

The 4800 images of sealevel, lowland, and mountain are used as input images.

Basically, the input images are divided into 3 parts:

1. Training data: 80% (3840) of images are applied for training.

2. Validation data: the rest 20% (960) of the images are applied for validation

to compute accuracy.

3. Test data: 360 separate images, which are not used in either training or

validation. Generated by augmenting the 45 test image collected from ter-

rain.party.

4.3.4 CNN Layers

Convolutional layer, flattened and fully connected layer constructs the CNN in

this study. In this section, the layers are explained in detail. Such as how input

parameters are set for each layer and which methods are used in conjunction with

the layers.
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4.3.4.1 Convolutional Layer

It is easy to build a convolutional layer in TensorFlow. The programming lan-

guage used to implement the CNN with TensorFlow library is python. The inputs

for a convolutional layer is as follows:

• Input: is a 4D tensor. The input of the first convolutional layer is going

to be a number of images, size of an image and number of channel in an

image. In the next layers, the output of the previous layer is given.

• Filter: the filter is represented by the variables that are going to be trained.

It is a 4D tensor.

• Strides: the number of sliding the filter when doing convolution is defined

with this input. In order to not skip images in our batch, we define this

parameter as 1.

• Padding: to make output dimension same as input the SAME is used, which

fills the input matrix with zero around the border.

Next, a max pooling on the resultant layer is performed after the biases are

added. The filter of length 2 × 2 with a stride of 2 is applied in max pooling.

At a final part, a ReLU is used as an activation function, which applies the

ReLU operation over the result of a max pooling. The procedures mentioned

above are all done in a single convolutional layer and the pseudocode of this pro-

cedures is as follows:

Convolutional Layer : Input, Number of Channels, Number of Filters, Conv Filter Size

Layer = Convolution Operation : Input, filter , strides , padding

Layer = Layer + biases

Layer = Max Pooling : Layer, kSize, strides , padding

Layer = ReLU: Layer

Return Layer
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4.3.4.2 Flattening Layer

Multi-dimensional tensor is the result of a convolutional layer. In order to convert

this result to a single dimensional tensor flattening layer is used. This is simply

done by the use of reshaping operation.

4.3.4.3 Fully Connected Layer

A fully connected layer has a similarity with the shallow neural network. The

weights and biases are defined first as a random normal distribution. Then a regu-

lar z = wx + b process is conducted for all inputs. In order to add a non-linearity

to the result, there is a possibility to add ReLU to the layer. The pseudocode of

this procedure is as follows:

Create Fully Connected Layer : Inputs, Inputs Number, Outputs Number, ReLU Usage

Weights = create weights : shape = [Inputs Number, Outputs Number]

Biases = create biases : Outputs Number

Layer = matmul : input, weights + biases

If ReLU usage

Layer = ReLU : Layer

Return Layer

4.3.5 Predictions

The softmax activation function is applied to the outcome of a second fully con-

nected layer to obtain the probability values for each class.

To calculate the cost cross entropy with softmax will be used on the output

of last fully connected layer and the average will give the cost. To reach the

optimum value of the weights the cost needs to be minimized.



CHAPTER 4. IMPLEMENTATION 67

4.3.6 Optimization and Accuracy

Most of the optimization functions are implemented in TensorFlow. To reach

an optimum value of weight and to measure a gradient, the Adam Optimizer

function is used. In an Adam Optimizer function, the objective of minimizing

the cost along with a learning rate of 1.00E-4 should be specified.

True and predicted labels are used to calculate the accuracy of training and

validation. Since a number of images used in training are higher than validation,

training accuracy should give higher results.

The batch size is defined as 48 in our algorithm. The batch size is the number

of training samples offered in a single batch. We have 3840 training samples

and by dividing this number by the batch size the number of batches will be

obtained which is used to make an epoch. In other words, when entire samples

passed forward and backward inside the network once, it will form an epoch.

So by dividing the 3840 by 48, 80 batches are obtained to make one epoch. The

network is going to be trained in 4000 iterations, which is going to make 50 epochs.

After each epoch, the training and validation accuracy and the validation loss are

reported. From the report, it is possible to observe if the training process in our

network is going in the right direction, which means that the accuracy should get

increased at each epoch in the training datasets. The report results will be given

in the next chapter with a detailed analysis.

Finally, when the CNN training process finishes the model will be saved and

it can be used later to test other samples.

4.4 PTG Techniques Implementation

In this section, the implementation of the Diamond-Square algorithm and Perlin

Noise are presented.



CHAPTER 4. IMPLEMENTATION 68

4.4.1 Diamond-Square Algorithm

The result of an improvement of a midpoint-displacement algorithm is a diamond-

square algorithm. It is naturally fractal and easy to implement. The main draw-

back of this method is a memory and the advantage is the speed.

Implementation of a diamond-square algorithm is done in Unity3D with C#

programming language. The flowchart of the algorithm is demonstrated in the

Figure 4.7 below.

Figure 4.7: Flowchart of Diamond-Square Algorithm.

Basically, the diamond-square algorithm starts with a two-dimensional square

array with width and height size of 2n+1 and initial values of the four corners

points are set. Then the diamond and square steps are done in a loop with a

condition that all values of the array are set.

In the diamond step, the center point of a square in the array is computed by

taking the average of the four points located in the corners and adding a random

value. This process is done for every square in the array.

In the square step, the center point of a diamond in the array is computed by

taking the average of the four points located in the corners and adding a random

value. This process is done for every diamond in the array.
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The size of a random value is decreased with every iteration. When the square

steps are performed sometimes the edge points of the array will have only three

adjacent values initialized instead of four. To handle such kind of a situation

there are many different methods, but the simplest one is to take the average of

those three adjacent values.

After all array values are set a Gaussian Smoothing is applied to make the

generated terrain smoother.

The Figure 4.8 below demonstrates the height map example generated using

a Diamond-Square algorithm that is used in our study.

Figure 4.8: Diamond-square height map example.

4.4.2 Perlin Noise

Perlin noise does not generate fractal results and in order to generate fractal

results, we are going to use it with the conjunction of Fractional Brownian Motion

(fBm). To achieve fBm, several octaves of Perlin noise is generated, each of them

is produced with an increased frequency and decreased amplitude and afterward,

these octaves are summed together. The persistence value has a range of [0, 1].

The pseudocode of Perlin noise algorithm is as follows:
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Generate Perlin Noise : x, y, number of octaves, persistence , lacunarity

Set amplitude to 1

Set frequency to 1

Set total noise to 0

For i = 0 to a number of octaves

Perlin Value = Perlin Noise ( x∗ frequency, y∗frequency)

Total Noise = Total Nose + Perlin Value ∗ amplitude

Amplitude = amplitude ∗ persistence

Frequency = frequency ∗ lacunarity

End of Loop

Return Total Noise

The Figure 4.9 below demonstrates the height map example generated using

the Perlin noise that is used in our study.

Figure 4.9: Perlin noise height map example.



CHAPTER 4. IMPLEMENTATION 71

4.4.3 Feature Extraction of Procedurally Generated Ter-

rains

The feature extraction of procedurally generated terrains is very similar to the

feature extraction of real-world height map images. However, there is one impor-

tant difference that needs to be mentioned when the features are extracted. In

the real-world height map feature extraction, the minimum and maximum points

of the height map were given by the source in meter unit and those points were

used as an input parameter for feature extraction algorithm. But procedurally

generated terrains has only range between 0 and 1. The conversion of this ranges

to meter unit should be done in order to extract features correctly.

To do the conversion correctly the conversion parameters needs to be defined.

To find the necessary parameters the ranges for each class needs to be defined

first. In order to define the ranges for each class, all real-world height map data

are analyzed and mean, standard deviation, minimum and maximum points are

calculated. After calculating those parameters for each class the average of each

calculated parameter is taken. The Table 4.3 below demonstrates those results

in detail.

Table 4.3: Ranges for each class.

Sealevel Lowland Mountain
Min 0 - 0.043 0 - 0.075 0.015 - 0.87
Max 0.08 - 0.25 0.085 - 0.65 0.1 - 0.96
Mean 0.004 - 0.082 0.05 - 0.3 0.3 - 0.6
Std 0.0005 - 0.04 0.0045 - 0.14 0.12 - 0.23

Range
in meters

0 - 100 0 - 381 0 - 5251

Range
in doubles

0 - 0.1 0 - 0.21 0 - 0.953

There is an if-else statement for each range and the counter increment by one

when the parameters of the procedurally generated terrains fall into that ranges.

After the counter of each class is compared to each other and the one having the

highest number wins and the range conversion happens using that counter class

parameter.
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For example, let’s say we procedurally generated terrain using a Diamond-

Square algorithm and the min-max value of the generated heightmap are 0 and

0.23 and the standard deviation and mean are 0.054 and 0.051. Then we will look

at a table above and find out that min value falls into the range of sealevel and

lowland so the counters of that class are incremented. Looking at the maximum

point we can see that it falls into the range of sealevel and lowland again. Till

now there is a tie between lowland and sealevel classes. So we continue looking

for mean and standard deviation. The mean falls into the sealevel and lowland

class again so the counter of both classes incremented and standard deviation

falls into the range of lowland only. As a result, the counter of lowland class will

be equal to 4 and the counter of sealevel class will be equal to 3 and we are going

to select 0 - 381 ranges as meter units and 0 - 0.21 units as double points and

convert min and max points to meter using the conversion algorithm discussed

in the previous section.

Moreover, if the counter of a class will be equal to another classes counter after

the calculation is done, the range of which class to select will be done randomly.

When the parameter of generated terrain falls out of range of classes the mountain

ranges are used for evaluation.
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4.4.4 Evaluation of Procedurally Generated Terrains

The terrains are procedurally generated using Diamond-Square Algorithm and

Perlin Noise and the features of these terrains are extracted. In order to under-

stand if the desired terrain is generated via procedural methods, the evaluation of

those terrains is done using ANN and CNN. The pseudocode below demonstrates

the evaluation process in more detail.

Begin Loop

Generate Terrain using Perlin Noise

Generate Terrain using Diamond−Square Algorithm

Test the generated terrains using CNN and ANN

If (CNN or ANN results >= 80% to the selected class)

End Loop

Otherwise continue

End Loop

As mentioned in the previous chapter the terrains are classified into three

classes, such as sealevel, lowland, and mountain. The desired terrain class is

selected by the user and the procedural terrain generation techniques start to

generate terrains. The generated terrains will be saved as height-map images and

the features of each terrain will be extracted. Then the features are tested using

ANN and the height-map images are tested using CNN. If the testing results

give higher than 80% of the desired terrain class the process will terminate and

the final result will demonstrate after how many iterations the desired terrain is

reached.
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Results & Discussion

A discussion of the result obtained with ANN and CNN will be done in this chap-

ter. Which feature combination will give the good test results will be observed.

Finally, the results of a height map generated with Diamond-Square Algorithm

and Perlin Noise will be tested using ANN and CNN model and the outcomes of

those test results will be discussed.

5.1 Feature Combination for ANN

Different feature combination mentioned in the previous chapter were tested using

pattern recognition and K-fold cross-validation.

Since weights and biases are randomly generated in the Artificial Neural Net-

work the train results will be different each time the network is trained. The

feature combinations are trained ten times for each selected feature combination.

The network model, which is created after each training, is used to test the test-

ing images and the average results of the tests are taken in order to understand

how well the network model classifies the testing images. To better observe the

performance of the network model a varying number of neurons are applied.

74
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The Table 5.1 below demonstrates the results generated using 10 hidden neu-

rons and dividing the samples into 70% of training, 15% validation and 15%

testing samples.

Table 5.1: Feature combination network results using 10 hidden neurons.

Cross - Entropy Percent Error Testing Results
Number
of inputs

Description Training Validation Testing Training Validation Testing
True

Percentage
Failure

Percentage

61
All inputs
included

3.456 5.338 5.341 1.68 3.7 2.32 95.75 4.25

45
Circular Rugg.
not included

1.255 3.4 3.45 4.04 1.3 4.784 94.4 5.6

51
Hist. One

not included
1.67 4.68 4.664 2.9 2.8 3.5 96.64 3.36

52
Hist. Two

not included
2.1 5.8 5.87 0.48 3.04 4.8 97.67 2.33

55
Slopes

not included
2.66 7.58 7.6 1.152 1.95 6.3 97.67 2.33

45
Zero Rugg.

not included
2.07 5.78 5.79 1.68 2.825 1.74 97.35 2.65

29
Circular and Zero

Rugg. not included
1.67 4.58 4.567 2 3.26 5.867 94.85 5.15

26
Zero and All

Hist. not included
1.145 3.3 3.36 2.88 4.779 6.5 95.9 4.1

35
Zero and Hist

One not included
1.77 4.8 4.9 2.3 3.257 5.43 97.66 2.34

36
Zero and Hist

two not included
2.03 5.77 5.78 0.576 3.045 2.61 98.8 1.2

39
Zero and Slope

not included
1.72 4.7 4.79 2.3 1.52 4.78 97.3 2.7

By analyzing the table above it can be seen that the feature combination that

does not contains zero ruggedness and histogram two, which is the histogram

with a range of 0 - 9000 meters, gives the good results among other feature

combinations while testing images.

To better observe the performance of the network model the number of hidden

neurons increased to 20 and the samples are divided as in the previous one. The

Table 5.2 demonstrates the results generated using these network parameters.

Observing the Table 5.2 it can be seen that the same feature combination as

in the previous table gives the good results among other feature combinations.

The number of hidden neurons increased to 30 and the samples are divided as

in the previous one to observe the performance of the network model. The Table

5.3 demonstrates the results generated using these network parameters.

It can be observed from Table 5.3 that the same feature combination as in

the previous tables gives the good results among other feature combinations.
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Table 5.2: Feature combination network results using 20 hidden neurons.

Cross - Entropy Percent Error Testing Results
Number
of inputs

Description Training Validation Testing Training Validation Testing
True

Percentage
Failure

Percentage

61
All inputs
included

2.27 5.9 5.9 1.87 2.4 3.475 96.54 3.46

45
Circular Rugg.
not included

1.768 4.895 4.915 2.155 4.995 6.51 95.4 4.6

51
Hist. One

not included
1.7575 4.825 4.814 2.25 5.51 3.915 96.67 3.33

52
Hist. Two

not included
1.5 4.17 4.14 0.48 2.174 1.74 97.9 2.1

55
Slopes

not included
2.284 6.3 6.3 1.7 3 2.61 97.8 2.18

45
Zero Rugg.

not included
2.5 7.1 7.1 1.48 3.9 3.26 97.5 2.5

29
Circular and Zero

Rugg. not included
2.24 4.586 6.15 1.4 1.955 5.2 96.9 3.1

26
Zero and All

Hist. not included
1.88 5.2 5.15 2.68 4.345 3.475 96.5 3.5

35
Zero and Hist

One not included
1.374 3.77 3.77 3.64 3.48 8.2 96.8 3.2

36
Zero and Hist

two not included
1.95 5.4 5.4 0.384 2.175 2.175 98.6 1.4

39
Zero and Slope

not included
2.66 7.37 7.4 1.344 2.6 3.48 97.85 2.15

Table 5.3: Feature combination network results using 30 hidden neurons.

Cross - Entropy Percent Error Testing Results
Number
of inputs

Description Training Validation Testing Training Validation Testing
True

Percentage
Failure

Percentage

61
All inputs
included

2.0757 5.784 5.7987 1.104 2.822 6.085 98.84 1.16

45
Circular Rugg.
not included

1.9317 5.356 5.379 2.016 4.563 4.994 95.37 4.637

51
Hist. One

not included
1.745 4.929 4.946 2.304 2.169 6.518 98.99 1.01

52
Hist. Two

not included
2.8595 8.233 8.201 0.096 2.175 3.915 99.07 0.93

55
Slopes

not included
2.114 5.903 5.937 1.584 3.475 4.131 98.54 1.46

45
Zero Rugg.

not included
2.6017 7.303 7.321 1.392 1.955 3.477 98.92 1.08

29
Circular and Zero

Rugg. not included
2.63 5.02 5.04 1.778 3.912 4.129 95.71 4.29

26
Zero and All

Hist. not included
1.67 4.581 4.613 3.072 4.78 6.515 97.42 2.58

35
Zero and Hist

One not included
1.626 4.444 4.419 3.218 3.476 4.132 98.15 1.85

36
Zero and Hist

two not included
2.448 6.964 6.982 0.288 3.045 3.915 99.1 0.9

39
Zero and Slope

not included
2.345 6.621 6.6 1.488 4.13 3.045 98.57 1.43

To make final observation on the performance of the network model the num-

ber of neurons increased to 40 and the samples are divided as in the previous one.

The Table 5.4 demonstrates the results generated using these network parameters.

From the Table 5.4 it can be observed that the same feature combination as

in the previous tables gives the good results among other feature combinations.
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Table 5.4: Feature combination network results using 40 hidden neurons.

Cross - Entropy Percent Error Testing Results
Number
of inputs

Description Training Validation Testing Training Validation Testing
True

Percentage
Failure

Percentage

61
All inputs
included

2.726 7.732 7.775 1.248 1.52 7.169 98.95 1.05

45
Circular Rugg.
not included

1.532 4.214 4.207 2.736 2.175 4.567 95.17 4.83

51
Hist. One

not included
1.699 4.743 4.718 3.124 2.17 3.695 98.66 1.34

52
Hist. Two

not included
2.022 5.697 5.699 0.958 3.48 1.305 98.23 1.77

55
Slopes

not included
2.431 6.846 6.858 1.104 4.125 3.042 98.58 1.42

45
Zero Rugg.

not included
2.502 7.18 6.994 1.584 2.39 3.912 98.45 1.55

29
Circular and Zero

Rugg. not included
2.39 6.574 6.592 1.488 4.127 5.215 96.22 3.78

26
Zero and All

Hist. not included
1.652 4.597 4.618 2.784 4.785 6.52 97.7 2.3

35
Zero and Hist

One not included
1.812 5.012 5.016 3.648 3.04 2.605 97.33 2.67

36
Zero and Hist

two not included
2.069 5.879 5.91 1.152 2.61 3.915 99.19 0.81

39
Zero and Slope

not included
2.973 8.292 8.331 2.682 4.346 4.347 97.9 2.1

The results above were achieved using the pattern recognition neural network

toolbox of MATLAB. The other way to test the feature combination is by using

K-fold cross-validation. The K-fold cross-validation is initialized with the 10 and

20 number of hidden neurons and setting the number of a fold to ten. The results

of the testing sample using this method are shown in the Table 5.5.

According to the results provided in the Table 5.5 the good combination of

feature among other using K-fold cross-validation method is the same as the

result of the pattern recognition built-in tool of Matlab. The performance of

network, test, and train are calculated by taking the average of all folds. Since

ten folds were given the performance results and test results demonstrate the

average results of those folds.

After performing pattern recognition and K-fold cross-validation tests on the

feature combinations the features zero ruggedness and histogram two should not

be included in our final network model, which is going to be used for testing of

procedurally generated height maps.
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Table 5.5: Results of the 10-folds cross-validation

Neural Pattern Recognition with K Fold (K=10)
NN Input

Parameters
Performance Testing Results

Number
of Inputs

Description
Number of

Hidden Neurons
Network Test Train

True
Percentage

Failure
Percentage

61
All Inputs
Included

10 5.30E-05 11.7341 1.2003 95.44 4.56

61
All Inputs
Included

20 0.0024 12.2504 1.2554 95.97 4.03

45
Circular Ruggetness

Not Included
10 4.82E-06 14.3115 1.6393 94.53 5.47

45
Circular Ruggetness

Not Included
20 8.55E-08 13.0172 1.4604 95.12 4.88

51
Histogram One
Not Included

10 3.39E-07 14.6089 1.7596 93.42 6.58

51
Histogram One
Not Included

20 0.0089 13.6497 1.4823 96.31 3.69

52
Histogram Two
Not Included

10 2.35E-06 11.5945 1.2017 97.95 2.05

52
Histogram Two
Not Included

20 1.44E-07 12.6 1.4848 97.53 2.47

55
Slopes

Not Included
10 0.0017 11.9917 1.3858 95.21 4.79

55
Slopes

Not Included
20 9.71E-06 11.302 1.2891 94.65 5.35

45
Zero Ruggetness

Not Included
10 3.03E-07 11.2702 1.2509 96.23 3.77

45
Zero Ruggetness

Not Included
20 1.37E-07 11.7486 1.227 95.12 4.88

29
Circular and Zero

Ruggetness Not Included
10 7.45E-08 14.468 1.7017 94.54 5.46

29
Circular and Zero

Ruggetness Not Included
20 0.0037 14.207 1.7113 93.876 6.124

26
Zero and All

Hist Not Included
10 4.89E-03 14.4452 1.6955 92.4 7.6

26
Zero and All

Hist Not Included
20 3.32E-07 12.9554 1.4099 93.21 6.79

35
Zero and Hist

One Not Included
10 3.52E-07 14.4524 1.5242 96.432 3.568

35
Zero and Hist

One Not Included
20 0.0044 12.8297 1.4708 95.432 4.568

36
Zero and Hist

Two Not Included
10 7.27E-08 10.8152 1.2184 98.553 1.447

36
Zero and Hist

Two Not Included
20 7.91E-04 11.2019 1.2617 98.323 1.677

39
Zero and Slope
Not Included

10 1.81E-07 11.2927 1.2583 96.342 3.658

39
Zero and Slope
Not Included

20 1.72E-07 11.9321 1.3896 96.974 3.026

To create the final neural network model 36 generated features were used,

zero ruggedness and histogram two were excluded, with ten number of hidden

neurons and by dividing the samples into 70% of training, 15% validation and

15% testing samples.

The figures below demonstrate the ROC and confusion matrix of the trained

network model.
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Figure 5.1: Confusion Plot.

Figure 5.2: ROC Plot.
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It can be observed that there was one confusion in the test sample and the

sealevel was confused by lowland in that sample. However, in general, the network

model gives good results. This model is saved for testing procedurally generated

height maps.

5.2 Convolutional Neural Network Test

The Convolutional Neural Network was created using a TensorFlow library. The

number of input images was augmented in order to train the CNN. The test im-

age was also augmented and after the augmentation, the number of test images

increased to 360, each class containing 120 images. The CNN model was created

with 80% of the image samples to train and the remaining 20% of the image

samples were used to validate the network. The following results are obtained

during the training and validation of the CNN.

(targetDirectory) ganirahmon CNN-tf-8-bit-augment $ python train.py

Reading training images

Reading sealevels images (Index: 0)

Reading lowlands images (Index: 1)

Reading mountains images (Index: 2)

Reading input images complete.

Training-set images number: 3840

Validation-set images number: 960

Epoch 1 --- Training Accuracy: 33.3%, Validation Accuracy: 29.2%, Validation Loss: 1.090

Epoch 2 --- Training Accuracy: 95.8%, Validation Accuracy: 89.6%, Validation Loss: 0.159

Epoch 3 --- Training Accuracy: 95.8%, Validation Accuracy: 89.6%, Validation Loss: 0.136

Epoch 4 --- Training Accuracy: 95.8%, Validation Accuracy: 95.8%, Validation Loss: 0.120

Epoch 5 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.113

Epoch 6 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.106

Epoch 7 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.102

Epoch 8 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.098

Epoch 9 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.095

Epoch 10 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.089

.

.

.
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Epoch 25 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.057

Epoch 26 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.053

Epoch 27 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.058

Epoch 28 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.048

Epoch 29 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.047

Epoch 30 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.046

Epoch 31 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.043

Epoch 32 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.054

Epoch 33 --- Training Accuracy: 97.9%, Validation Accuracy: 97.9%, Validation Loss: 0.057

Epoch 34 --- Training Accuracy: 97.9%, Validation Accuracy: 100.0%, Validation Loss: 0.033

.

.

Epoch 46 --- Training Accuracy: 100.0%, Validation Accuracy: 100.0%, Validation Loss: 0.005

Epoch 47 --- Training Accuracy: 100.0%, Validation Accuracy: 100.0%, Validation Loss: 0.004

Epoch 48 --- Training Accuracy: 100.0%, Validation Accuracy: 100.0%, Validation Loss: 0.005

Epoch 49 --- Training Accuracy: 100.0%, Validation Accuracy: 100.0%, Validation Loss: 0.004

Epoch 50 --- Training Accuracy: 100.0%, Validation Accuracy: 100.0%, Validation Loss: 0.005

When entire samples are passed forward and backward inside the network

once will form an epoch. In each epoch, the training, validation accuracy and

validation loss are calculated. The predicted and true values are used to calculate

the accuracy of training and validation. The results demonstrate that the training

process in the network is going in the right direction, which is indicated by the

increase in accuracy at each epoch.

After creating the CNN model test image samples were used to make the test

on the generated model. The Table 5.6 below show the results generated after

testing test image samples.

Table 5.6: CNN test image samples results

Test Samples
Sealevel Lowland Mountain

Results
Sealevel 81.57% 2.06% 0.00%
Lowland 18.43% 97.94% 7.44%

Mountain 0.00% 0.00% 92.56%

Overall Results
True Percentage 90.69%

Failure Percentage 9.31%
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The CNN model has the overall of 90.69% in evaluating the test samples

correctly. There are some problems in evaluating sealevel. The model confuses

sealevel with lowland in some cases, but the overall result is good and the test of

procedurally generated terrains is done using this CNN model.

5.3 Evaluation of Procedurally Generated Ter-

rains

To procedurally generate terrains two techniques are used, which are Diamond-

Square Algorithm and Perlin Noise. The terrain generated with these algorithms

are saved as 8-bit PNGs. The feature extraction algorithm is used to extract

features of the generated terrain.

The evaluation of the generated terrain is done using ANN and CNN. If we

want to have a sealevel terrain as a result, the algorithm will generate terrain,

save as height map image and extract features. Then the features are tested using

ANN model and height map image is tested using CNN model. If the result of

the testing gives higher than 80% for that target class generation of new terrains

stops and the number of iterations to reach the target terrain is observed.

The Table 5.7 demonstrates after how many iterations the sealevel is generated

using Diamond-Square Algorithm.

Table 5.7: Sealevel generation using Diamond-Square Algorithm.

ANN Result
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

sealevel 0 0 0 0.1231 0 0 0.9176
lowland 1 1 1 0.8769 1 1 0.0824

mountain 0 0 0 0 0 0 0

CNN Result
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

sealevel 1.80E-05 5.37E-18 8.02E-18 5.77E-07 9.08E-15 9.36E-10 8.90E-01
lowland 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.10E-01

mountain 1.89E-05 1.20E-13 1.76E-12 1.27E-09 1.39E-13 3.21E-10 1.09E-04
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It can be seen that the sealevel is generated at seventh iteration and the

previous iterations generated lowland terrains.

To render the generated height-map different colors used to represent different

regions. The colors region were accurately identified by testing the original height-

maps. The Figure 5.3 shows colors representing each regions to render the height-

map.

Figure 5.3: Color region representation.

The Figure 5.4 demonstrates the height-map generated at seventh iteration as

a two-dimensional image on the left and the matching three-dimensional rendering

on the right. To generate and render height-map images Unity3D was used.

Figure 5.4: 2D height-map image (left). 3D render of height-map image (right).
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The Table 5.8 demonstrates after how many iterations the lowland is generated

using Diamond-Square Algorithm.

Table 5.8: Lowland generation using Diamond-Square Algorithm.

ANN Result
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

sealevel 1 0.9972 0.9999 1 1 0
lowland 0 0.0028 0.0001 0 0 1

mountain 0 0 0 0 0 0

CNN Result
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

sealevel 8.80E-01 1.00E+00 1.00E+00 1.00E+00 6.62E-01 7.67E-13
lowland 1.20E-01 2.30E-06 1.75E-04 2.73E-06 3.37E-01 1.00E+00

mountain 4.56E-04 2.91E-06 3.60E-06 1.11E-06 5.30E-04 3.06E-12

It can be seen that the lowland is generated at sixth iteration and the previous

iterations generated sealevel terrains. Also, it can be observed that our Diamond-

Square Algorithm is good in generating lowland and selevel, but not good in

generating mountain.

The Figure 5.5 demonstrates the height-map generated at sixth iteration as a

two-dimensional image on the left and the matching three-dimensional rendering

on the right.

Figure 5.5: 2D height-map image (left). 3D render of height-map image (right).

The Table 5.9 demonstrates after how many iterations the mountain is gen-

erated using Perlin Noise.
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Table 5.9: Mountain generation using Perlin Noise

ANN Result
Iteration 1 Iteration 2 Iteration 3 Iteration 4

sealevel 0 0 0 0
lowland 0 0 0 0

mountain 1 1 1 1

CNN Result
Iteration 1 Iteration 2 Iteration 3 Iteration 4

sealevel 0.00E+00 0.00E+00 0.00E+00 0.00E+00
lowland 5.44E-19 8.66E-15 1.86E-12 1.68E-20

mountain 1.00E+00 1.00E+00 1.00E+00 1.00E+00

It can be observed that the mountain is generated in first iteration and the

iterations after that also generate mountain regions. For generating mountain

Perlin Noise is a good choice.

The Figure 5.6 demonstrates the height-map generated at first iteration as a

two-dimensional image on the left and the matching three-dimensional rendering

on the right.

Figure 5.6: 2D height-map image (left). 3D render of height-map image (right).
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Conclusion & Future Work

Procedural terrain generation techniques produce terrains which are usually frac-

tal in nature, but the main disadvantage of this techniques is that they are difficult

to control. Because of this, the evaluation with the help of neural network helps

to interpret the generated terrains correctly and hence generate the type of ter-

rain that is required. Since procedural terrain generation techniques generate

terrains using pseudo-random number generator, each time different terrain will

be generated. Because of it the targeted type of the terrain sometimes may take

longer iterations to be generated.

The contribution of this study is that with the help of Artificial and Convo-

lutional Neural Networks procedurally generated terrains are evaluated to match

the user requirements. In addition, Artificial and Convolutional Neural Networks

are trained with the real-world map data to make an interpretation.

Diamond-Square algorithm and Perlin noise were used to generate terrains

and the outcomes of those algorithms were evaluated. After the evaluation, it

can be observed that Diamond-Square algorithm tends to generate terrain of

sealevel and lowland class. However, Perlin noise tends to generate terrain of

mountain class.

86
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There are many aspects to improve for the future works. New features can be

extracted to improve the working of Artificial Neural Network and to interpret

the result more correctly. Instead of increasing the number of real-world map

data using augmentation the new real-world map data can be obtained from

sources. By doing so the Convolutional Neural Network will give the more correct

result while doing an interpretation of the terrains. Some improvements in the

architecture of the Convolutional Neural Network can be done to make network

model predict correctly. The normalization of the generated terrains using Perlin

Noise can be done in order to generate a different type of the terrain classes.



BIBLIOGRAPHY

[1] US Entertainment Software Association (ESA). 2017. Two-Thirds of

American Households Regularly Play Video Games. Article. Available

from: <http://www.theesa.com/article/two-thirds-american-households-

regularly-play-video-games/>. [19 April 2017].

[2] Togelius, J., N. Shaker, and M. J. Nelson. 2016. Procedural Content Genera-

tion in Games: A Textbook and an Overview of Current Research. Springer.

Chapter 1: Introduction, 1-15.

[3] Hendrikx, M. et al. 2013. Procedural Content Generation for Games: A

Survey. ACM Trans. Multimedia Comput. Commun. Appl. 9, 1, Article 1

(February 2013), 22 pages.

[4] Greeff, G. 2009. “Interactive voxel terrain design using procedural tech-

niques.” MSc Thesis. University of Stellenbosch.

[5] Fowler, J. Robert, and James J. Little. 1979. Automatic Extraction of Irreg-

ular Network Digital Terrain Models. SIGGRAPH ’79 Conference Proceed-

ings. August, 1979. vol. 13 ; no. 2: pp. 199-207.

[6] Crause, J. 2015. “Fast, Realistic Terrain Synthesis.” MSc Thesis. University

of Cape Town.

[7] Fournier, A., D. Fussell, and L. Carpenter. 1982. Computer Rendering of

Stochastic Models. In Communications of the ACM. Vol. 25. No. 6. ACM

Press. New York, NY. 371-384.

[8] Christopher, E. 2015. Visualization of the Di-

amond Square Algorithm. Available from:

88



BIBLIOGRAPHY 89

<https://commons.wikimedia.org/wiki/File:Diamond Square.svg>. [20

August 2015].

[9] Travis, A. 2011. “Procedurally Generating Terrain.” Study. Morningside Col-

lege.

[10] Perlin, K. 1985. An Image Synthesizer. In Proceedings of SIGGRAPH ’85.

ACM Press. New York, NY. 287-296.

[11] Perlin, K. 2001. Noise hardware. In Real-Time Shading SIGGRAPH Course

Notes. Olano M., (Ed.).

[12] Worley, S. 1996. A cellular texture basis function. Proceedings of the 23rd

annual conference on computer graphics and interactive techniques. acm.org.

pp. 291-294.

[13] Rose, T. J., and A. G. Bakaoukas. 2016. Algorithms and Approaches for Pro-

cedural Terrain Generation - A Brief Review of Current Techniques. 2016 8th

International Conference on Games and Virtual Worlds for Serious Applica-

tions (VS-GAMES), Barcelona, pp. 1-2.

[14] Raffe, W., F. Zambetta, and X. Li. 2011. Evolving patch-based terrains for

use in video games. Genetic and Evolutionary Computation Conference,

GECCO’11. 363-370.

[15] Zhou, H., J. Sun, G. Turk, and J. M. Rehg. 2007. Terrain Synthesis from

Digital Elevation Models. in IEEE Transactions on Visualization and Com-

puter Graphics, vol. 13, no. 4, pp. 834-848.

[16] Saunders, L. R. 2006. “Terrainosaurus: Realistic Terrain Synthesis Using

Genetic Algorithms.” MSc Thesis. Texas A&M University.

[17] Qicheng, L., G. Wang, F. Zhou, X. Tang, and K. Yang. 2006. Example-

Based Realistic Terrain Generation. In Proceedings of the 16th international

conference on Advances in Artificial Reality and Tele-Existence (ICAT’06),

Zhigeng P., A. Cheok, M. Haller, R. H. Lau, and H. Saito (Eds.). Springer-

Verlag, Berlin, Heidelberg, 811-818.



BIBLIOGRAPHY 90

[18] Digne, J. et al. 2017. Interactive example-based terrain authoring with con-

ditional generative adversarial networks. ACM Trans. Graph. 36, 6, Article

228, 13 pages.

[19] Teong, J. O., R. Saunders, J. Keyser, and J. J. Leggett. 2005. Terrain gener-

ation using genetic algorithms.GECCO ’05, Hans-Georg Beyer (Ed.). ACM,

New York, NY, USA, 1463-1470.

[20] Terrain Party. The easiest way to get real-world height maps for Cities: Sky-

lines. Available from: <http://terrain.party/>. [27 November 2017].

[21] e-Handbook of Statistical Methods. 2012. Engineering Statistics Handbook.

Chapter 1.3.5.11: Measures of Skewness and Kurtosis. Available from:

<https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm>.

[April 2012].
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