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ABSTRACT

UNRELATED PARALLEL MACHINE SCHEDULING WITH SEQUENCE
DEPENDENT SETUP TIMES BY ANT COLONY OPTIMIZATION IN TEXTILE
INDUSTRY

ONEM, Ebru

M.Sc. in Industrial Engineering

Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Kamil Erkan KABAK
September 2018, 89 pages

This study involves a real production problem of minimizing total weighted
tardiness in knitted fabric stage of a textile company. The knitted fabric production
has a number of unrelated parallel machines. Also, setup times are sequence
dependent in the knitted fabric production system. In addition, different and varied
types of release dates for customer orders are defined in the system. To solve the
problem, a mixed-integer mathematical model is proposed and it is justifed as NP-
hard through experimental results. After, a new heuristic algorithm based on ant
colony optimization (ACO) approach is generated to solve the problem with varying
problem instances tested with the experimental design. The results show that ACO is

an practicable application that can give sufficiently quick solutions.

Keywords: unrelated parallel machine scheduling, sequence dependent setups,
weighted tardinesss, ant colony optimization, textile industry
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TEKSTIL SEKTORUNDE SIRALAMA BAGIMLI KURULUM SURESI KISITLI
[LISKiSiZ PARALEL MAKINE CiZELGELEMESININ KARINCA KOLONISI
ILE OPTIMIZASYONU

Onem, Ebru

Endiistri Miithendisligi Yiiksek Lisans Programi

Fen Bilimleri Enstitiisu

Tez Danismani: Yard. Dog¢. Dr. Kamil Erkan KABAK
Eyliil 2018, 89 sayfa

Bu c¢alisma bir tekstil firmasinin 6rgii kumas asamasindaki toplam
agirliklandirilmis gecikmeyi en aza indirgeyen gergek bir iiretim problemini
igermektedir. Orgii kumas iiretiminde belirli sayida iliskisiz paralel makine vardur.
Ayrica, orgii kumas liretim sisteminde kurulum zamanlari siralamaya baglidir. Buna
ek olarak, sistemde farkli ve degisen g¢esitte miisteri siparislerinin {iretimine
baglayabilecegi zamanlar da tanmimlanmigtir. Problemi ¢ézmek igin, bir karigik
tamsayili matematiksel model Onerilmistir ve problemin zor bir problem oldugu
deneysel sonuglarla gosterilmistir. Sonra, deneysel tasarimla test edilen degisen
problem durumlariyla ¢oziilerek test edilen karinca kolonisi eniyilemesi yaklagimi
tabanli yeni bir sezgisel algoritma gelistirilmistir. Sonuglar, algoritmanin yeterince

hizli ¢oziimler tireten pratik bir uygulama oldugunu gostermektedir.

Anahtar kelimeler: iliskisiz parallel makine cizelgelemesi, siralama bagimli
kurulumlar, agirliklandirilmis gecikme, karinca kolonisi optimizasyonu, tekstil

endustrisi
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CHAPTER 1

1.1 Introduction

This chapter starts with the research motivation of this thesis in Section 1.2.
Then, definition of unrelated parallel machine scheduling and knitted fabric
production system scheduling are highlighted in Section 1.3. Also, main
characteristics and challenges of this scheduling problem including sequence
dependent setup times are explained in Section 1.4. In Sections 1.5 and 1.6, problem
definition and research methodology are presented, respectively. Finally, thesis

chapters are summarized in Section 1.7.

1.2 Research Motivation

According to the sectoral evaluation report of the first quarter of 2018 of the
Aegeans Exporters’ Associations (AEA, 2018), exportation in textile and raw
materials such as cotton, yarn, knitted and woven fabric presents a continuously
increasing trend. This trend is also pointed out by Ngai et al. (2014, p. 87). They
mention increased number of research and applications of decision support and

intelligent technologies in the textile industry.

Knitted fabric production has several complexities (see Section 1.4). The
knitting machines might be unrelated and parallel. The machines that have similar
properties could show differences due to their ages or brands. This results in increase
the complexities of the problem (Kerkhove et al., 2014; p. 2630). Furthermore, setup
times among products have high varieties, and these product varieties are
significantly high in the textile industry. Anderson (1995) mentions this complexity
and investigates the impact of product mix heterogeneity (PMH) on manufacturing
overhead cost in three different fabric production companies. She highlights
variations in sequence dependent setup times that are causes of product varieties in
the textile industry.

1



The main motivation of this study is based on low scheduling performance of
knitted fabric production of the selected company for this thesis study. This low
scheduling performance is explained by total penalty costs attributed for delayed
customer orders. The penalty cost of the company consists of the cost of quality, cost
of tardiness and the other conflicts that are faced with the customers. Forty
percentage of the penalty costs of the interested company is arised from high
tardiness. This tardiness depends on the weights of customers that are defined
according to priorities of customers. For this reason, minimizing total weighted
tardiness in the knitted fabric production is significant for this company. Another
motivation of this study is that only few studies exist on scheduling of knitted fabric
stage in the textile production literature, and systematic scheduling policies are not
widely applied in this area (Koulamas et al., 1996, Pimentel et al., 2006 and
Kerkhove et al., 2014) (see Chapter 4).

Next section introduces unrelated machine scheduling and defines scheduling

in knitted fabric production systems briefly.

1.3 Scheduling in Knitted Fabric Production Systems

Unrelated parallel machine scheduling (Rm) is the generalization of the
identical parallel machine scheduling (Pm) and uniform parallel machines
scheduling (Q@m) (see Pinedo, 1995; p. 14). Arnout et al. (2009) mention that Rm is
generalization of Pm. In the identical parallel machines (Pm) environment, there are
m identical parallel machines. A job j needs only one production operation and this
operation can be performed by any of these identical parallel machines (Pm) with the
same speed v, where k is in machine and v, = 1, so the processing time of job j on
machine k is p; = pjx =pj/vr (Pinedo, 1995; p. 14). When speeds of these
machines are different and they do not depend on the job types, then the problem is
identified as parallel machines with different speeds (Qm), and the notation of
speeds of the machines is shown as v,. However, vy, is not equal for the machines
(Pinedo, 1995; p. 14). If machines are unrelated and parallel, then the speeds of the
machines may be different for the different jobs (Pinedo, 1995; p. 14). While the

speed of a job is shown by the notation, v, in the identical and uniform parallel



machine scheduling, it is shown in the unrelated parallel machine scheduling by the
notation vy, which is identified by the speed of job j on machine k (Pinedo, 1995; p.
14). The processing time of each machine is calculated by the formula of p; = pj), =
p;/vjr (Pinedo, 1995; p. 14). For both identical, uniform and unrelated parallel
machine scheduling, if there is a machine eligibility (M;) constraint, then the jobs can

be assigned only to machines in the eligibile machine set (Pinedo, 1995; p. 17).

In the production systems, sequence dependent setup times (S;;) are incurred
when a time is needed for preparing the machine if the job i precedes the job j for the
next job that is processed on that station or machine (Pinedo, 1995; p. 70). Sequence-
dependent setup times affect performance of the schedule (Pinedo, 1995; p. 84).
Hamzadayi et al. (2017) and Kerkhove et al. (2014) are the studies that use the
sgeuence-dependent setup time constraints.

In the knitted fabric production facilities, machines are unrelated and parallel
(Rm). In other words, processing times are different for different products for the
same machine, and sequence dependent setup times (S;;) affect the performance of
the production schedule. Furthermore, products cannot be assigned to all machines
available in the machine set. They can be assigned to the machine that is in the

eligibile machine set (M;) of this product.

Next section presents the challenges in knitted fabric production systems

briefly.

1.4 Challanges in Knitted Fabric Production

The main challenges of knitted fabric production are listed in the following.

Each challenge is then discussed shortly.

High product variety (Sen, 2008 and Ngai, 2014)

Long sequence-dependent setup times (Kerkhove et al., 2014)

Unrelated parallel machines (Kerkhove et al., 2014)

Short lead times and product life cycles (Sen, 2008 and Ngai, 2014)
Unpredictable global fashion market demand (Sen, 2008 and Ngai, 2014).

o~ w0 D



The textile industry has high product variety, short life cycles, unbalanced
and unpredictable global market demand that makes all processes from production to
delivery hard to manage (Sen, 2008 and Ngai, 2014). In the production system of
interest, the product variety varies from 1 to 380 (see Chapter 5). The market demand
for the products is collected from a real system and they are analysed in Chapter 5.
Accordingly, it does not represent a unique pattern (see Chapter 5). Besides all of the
complexities of market characteristics, long sqeuence-dependent setup times and
different machine types with different processing times also cause the complexities
in the production part of the knitted fabric (Kerkhove et al., 2014; p. 2630). In this
study, the data for the sequence dependent setup times varies from 1 hours to 10
hours (see Chapter 5).

1.5 Problem Definition

In this thesis, a scheduling problem in a knitted fabric production facility is
studied. The sequence dependent setup times, machine eligibility and order release
dates are defined as processes restrictions and constraints for this problem. Setup
times are sequence dependent since knitted machines require additional gauges and
preparations for each product. Each product may need different needle permutation
to give the requested effect to the fabric produced. Furthermore, additional time is
also required to clean the machine for the next product. Therefore, durations of the
setups may change from product to product in general in knitted fabric production.
Furthermore, the processing time of each product is different according to the
machine that the product is produced, and products cannot be assigned to any
machine in the production facility. Each product has an eligible machine set for

production.

Tardiness is defined as the number of tardy days of an order, and tardiness
function is one of due date related penalty cost function (Pinedo, 1995; p. 18). The
late delivery causes a penalty cost that is the combination of customer dissatisfaction
and financial cost of tardiness (Pinedo, 1995; p. 2). Total weighted tardiness, which
is the generalization of total tardiness function (Pinedo, 1995; p. 57), is computed as
the performance measure of this problem since each order has a weight that could be

more critical for some clients. For this reason, due date performance becomes an
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important measure under some challenges like unpredictable fashion market demand,
short lead times and short product life cycles (see Section 1.2).

In the interested company, the weighted tardiness cost is one of the major
penalty cost that is targeted to minimize (see Section 1.2). Therefore, studies that
minimize penalty costs carry a vital importance for the company of interest. By
increasing the scheduling performance, rapid changes in the demand and the other
challenges in the processes restrictions and constraints can be managed more
efficiently. That is, decreasing delays and increasing customer satifaction can be

reduced implicitly.

The aim of this study is to minimize the total weighted tardiness while
scheduling the given orders on the predefined number of unrelated parallel machines
(Rm) under complexities like sequence dependent setup times (S;;), release date of
orders (r;) and machine eligibility (M;). In the scheduling environment, these types of
problems are denoted by the following notation, Rm | 7;,S;;, M; | X w;T; (Pinedo,
1995) (see Chapter 3).

1.6 Research Methodology

In this section, the methodology approach followed in this thesis is explained
briefly.

The research methodology of this thesis can be defined under the category of
quantitative-model based Operations Management (OM) research. Bertrand and
Fransoo (2002) distinguished the quantitative-model based OM research by two
subcategories. These subcategories are axiomatic and empirical research. In
particular, axiomatic quantitative research is applied as the research methodology of
this thesis. Furthermore, this thesis consists of four operational research phases,
which are conceptualization, modelling, model solving and implementation
(Bertrand and Fransoo, 2002; p .253). The Chapter 2 and Chapter 3 cover the
conceptualization parts of this thesis. Additionaly, data collection, data analyses and
data structure of the study are given in Sections 5.2 and 5.3 of Chapter 5 as the
quantitative analyses of the system. Modelling and model solving phases are covered
in Chapter 6 and 7 which include model development and heuristic application,

respectively.



Final phase, implementation phase, experimental design and analysis of
variance (ANOVA) are given, respectively in Chapter 8.

- Literature Research
Research Questions

Literature Review (Ch. 4}

A
' :——1- Comparison (Ch. 4}
Feelhback 1
H Feedback
= A
| |
Initial Study |
Data Collecton ~ f--------- |
Data Analysis  f------ !
i = Modeling
Feedback i Mathematical Modeling (Ch. 5}
Y ¥ Y

Collecting Data Analysis and Conluding

Data Collection (Ch. 5) Experimental Results (Ch. 6 & &)

Heuristic Development (Ch. 6)

Data Analysis (Ch. 5)

Experimental Design(Ch. 7)

Discussion and Conclusion (Ch. 8)

Figure 1 Research Procedure

According to Figure 1, data collection and analysis are the starting points of
this study. The relevant literature is discussed and it provides feedbacks on research
questions and problem statement of this study. Before developing the mathematical
model of the problem, conceptual model of the problem is given. Then, the
mathematical model is developed with the collected data. With regard to the
experimental results of the mathematical model, it is proven that a heuristic
algorithm is necessary to solve the real problem. For this reason, a heuristic
algorithm based on ant colony approach is developed and applied using real dataset.
An application on total weighted tardiness minimization is created to be used in

textile industry. The study is ended with concluding remarks and discussions.



1.7 Summary

This section summarizes the steps of this study briefly. In Chapter 2, main
production stages of the textile industry are briefly explained and the knitted fabric
production steps are clarified. In Chapter 3, problem statement is presented. The
literature research on scheduling and textile industry is covered in Chapter 4.
Literature survey and discussion on the relevent papers are presented in this chapter.
Chapter 5 describes the proposed methodology for this thesis. Also, the steps of
methodology, data collection and data structure in the system are presented in this
chapter. Furthermore, the mathematical model of the problem and the experimental
results are defined in Chapter 5. After justification of the heuristic algorithm, the
proposed ACO heuristic algortihm is presented in Chaper 6. Chapter 7 shows
computational results of the proposed heuristic based on the experimental design.
Finally, Chapter 8 covers concluding remarks and presents future research.



CHAPTER 2: PRODUCTION SYSTEM OF KNITTED FABRIC

2.1 Introduction

In this chapter, main production stages of the textile industry and relations of
among these stages are introduced in Section 2.2. Then, knitted fabric production
processes that are observed from a real production facility are explained in Section
2.2. In Section 2.3, the production planning in the knitted fabric facility is explained
briefly.

2.2 Main Production Stages of the Textile Industry

Three major processes exist in the textile industry. First major process is yarn
production. Second one is knitted fabric production, and the third one is garment
production or in the other words the apparel industry. These classifications of the
processes are shown in Figure 2. These major processes and their subprocesses are
explained briefly in the rest of this section.

First, cotton is collected and then it goes through some production processes
to obtain fibers. Then, fibers are used to produce yarns, and it is ended by the yarn
production.

In the second major process, the yarn is processed on the knitted machine (see
Figure 3), and knitted fabric is produced. After this process, knitted fabrics are
received from knitted machine transfered to the dyeing or printing facility. In dyeing
process, the knitted fabrics are encolored with chemicals and dyes according to the
recipes that are predefined by the laboratorians. In the shop floor, recipes are used to

define the proportions of the dyes and the chemicals used in dyeing machines.

The knitted fabrics enter into the printing process after dying if the order
request is printed fabric. After the production of dyed fabric, fixing and quality

control processes are performed.



In the third major process, the fabrics, outputs of the second major process,
are used for garment production. In the garment production, first, fabrics are
prepared for the cutting process. The fabrics are cut up in order to obtain the
minimum waste. After that, fabric pieces which are cuts of body sizes of garments
enter into the printing, emroidery or embelishment processes if any of them is
neccessary. Then, sewing process is started. Finally, quality control and ironing

process is completed.

Yarn Production Fabric Production Garment Production (Apperal Inds.)
Production of Cotton HP‘?:{’ESEU"I_IC Fﬂﬁg;l-lsgi ng
v
Cotton Picking e e " or Enbalshant |
l > »
Fiber Froduction Fixing Process Sewing Process
}
Quality Kontrol Ironing and Quality
‘Yarn Production Process Kontrol Process

Figure 2 General production flow chart of textile industry.

The next section describes the fabric production in the textile production of interest.



2.3 Description of Knitted Fabric Production System

Two different shapes for knitted fabric machines exist in the facility, open
end and tube. Open-end fabric machines are used to produce single-layer fabric. The
knitted machines have round shapes as shown in Figure 3. If the fabric is not cut
before wraping to the cyclinder during the process in the machine, it is called tube
fabric. Otherwise, it is cut with an additional equipment in the machine and named as

an open-end fabric.

Figure 3 An example of an open end knitting machine view (TTM Machine
Company, 2018).

The production process of knitted fabric has just one production stage as
shown in the Figure 4. The yarns are aligned on the knitting machine and production

starts. Almost 20-22 kg knitted fabric is received in the roll-shape.

Raw Clothing Eabric Roll
Yarn —» Production anric ho
Machine (20-22 kg)

Figure 4 Production stage of knitted fabric.
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New yarns are aligned on the machine again before finishing yarns on the
machine, and by this way, the machine is not interrupted and does not wait for the
yarns until the quantity of the order on that machine finishes. The sequence
dependent set-up times exist between the orders and it is differentiated according to

the product types of orders.

The interested company focuses on the second major process of the textile
industry. That is, it procures the yarns from the suppliers and produces the knitted
fabric. Dyeing and printing processes are performed after knitted fabric production.
Then, fixing and quality control processes are also performed in this facility.
However, this thesis only covers the knitted fabric production step of second major

process (See Figure 2).

2.4 Production Planning in Knitted Fabric System

Production planning in the knitted fabric system first starts with entering the
the customer orders into the ERP system by the customer representatives (see Figure
5). If there is sufficient knitted fabric in the inventory that is left over from previous
orders or canceled orders, the required knitted fabric quantity is supplied from the
stock. Otherwise, the dyeing house planning gives an order to the knitted fabric
plant. After that, the procedure begins with checking the inventory level of the yarn.
If there is not enough yarn in the stock, then the production planners receive the due
date information from the procurement department, then they build the production
plan according to critical production constraints. General work flow of the planning

process until knitted fabric production planning is shown in the Figure 5.
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Entering
customer order

Yas

Check for

Raw Clothing Planning for

Inventory Dyeing House

Gives order to
raw clothing

Check for
warn

vas Knitted Fabric
Production
PFlanning

immentory

| ‘waiting for yarn
due date

Chedk for
wamn dus
date

Yes

Figure 5 General work flow of the process until planning.

2.5 Concluding Remarks

In this chapter, main production stages of the textile industry and knitted
fabric production system in the interested company are described briefly.
Furthermore, production-planning procedure in the knitted fabric production system
is explained shortly. Next chapter describes main issues in the fabric production and

introduces the problem statement of this thesis.
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CHAPTER 3: PROBLEM STATEMENT

3.1 Introduction

In this chapter, main issues in the textile industry are briefly descrined in
Section 3.2. Then, weighted tardiness minimization is explained by means of
references from the scheduling literature in Section 3.3. Finally, the problem

statement is given and discussed in Section 3.4.

3.2 Issues in the Knitted Fabric Production

In the knitted fabric production area, production planners assign an
production order to the machines according to the machine types, machine
availability, order release date, due dates and sequence dependent setup times. As
mentioned previously in Section 1.3, one of the sectoral challenges is high product
variety (Sen, 2008 and Ngai, 2014). High product variety affects the scheduling
performance directly in the case of sequence dependent setup times (Anderson, 1995;
p. 366).

The other challenge is existence of variation in the quantities of demands
(Chen et al., 2007; p.182). High production flexibility to be able supply wider ranges
of quantities is a competitive advantage for a company in stiff competing
environments (Chen et al.,, 2007; p. 182). Furthermore, in the knitted fabric
production systems, the machines are unrelated and parallel (Kerkhove et al., 2014,
p. 2630). This type of machine environment is defined as NP-hard class in the
complexities hierarchy of deterministic scheduling problems (Pinedo, 1995; p. 51).
Under these complexities, the companies in this sector should be able to produce
efficient production schedule and maximize the customer satisfaction to be able to
stay ahead of competitors (Chen et al., 2007; p. 182). For this purpose, scheduling
the machines is studied to decrease the total weighted tardiness according to the

customer orders in this thesis.
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3.3 Weighted Tardiness Minimization in Knitted Fabric Production

Total weighted tardiness (TWT) (3 w;T;) can be defined as the sum of the
weighted tardiness of each job in the problem and it is defined as a due date related
objective function (Pinedo, 1995; p. 57). Furthermore, total weighted tardiness
funtion is the generalization of the total tardiness (Pinedo, 1995; p. 57). Weigths
(w;) are used as an importance factor like holding cost. In this study, it represents the

priority of the customers.

Minimizing total weighted tardness is one of the ways to minimize the
penalty costs of the company of interest (see Section 1.2), and a due date related
objective function is necessary to decrease this penalty cost of scheduling of the
company. The total tardiness fuction is also a due date related objective function,
however, the weigths of customers are significant parameters for the company of
interest. This is the reason that total weighted tardiness function is used as the
objective function in this study. Karp et al. (1972) and Ho and Chang et al. (1995)
showed that parallel machine scheduling are NP-Hard problems. Nevertheless, they
have just two parallel machine in their problem. It is also an another reason to

consider the problem as NP-hard in this thesis.

3.4 Problem Statement

This section introduces the problem statement of this thesis. The problem
statement is defined according to the planning performance. That is, it is the tardiness
minimization for all jobs for the knitted fabric production. After introducing the
production challenges in previous section, the problem statement is given in the
following.

Problem Statement: the aim of this study is to minimize the total weighted
tardiness under sequence dependent setup times with unrelated parallel machines in

the knitted production of textile production environment.
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In the company of interest, the machines are unrelated and parallel (see
Section 1.4). Total weighted tardiness, which is a due date related function, tends to
be hard even for single machine scheduling (1||> w;T;) (Pinedo, 1995; p. 137).
Therefore, parallel machine scheduling with the objective of total weigted tardiness
is not as easy as the single machine scheduling with the objective of total weigted
tardiness (Pinedo, 1995; p. 137).

Yarns are the primary raw material for the production. Procurement due date
of yarns is defined as the release date of an order. Release date means the earliest
time that is the starting time of a job on a machine or a station to its processing
(Pinedo, 1995; p. 14). Therefore, it is concluded that procurement due date of yarns
forces the starting time of an order on a machine that is more than or equal to due

date of yarns in this problem.

The other significant parameter that is considered in knitted fabric production
and scheduling is sequence dependent setup times. In manufacturing environment,
setup times means the required time to prepare a machine or station for a new item
that is processed on the same machine or a station (Pinedo, 1995; pp. 70). It is
possible to classify setup times as sequence-dependent and sequence-independent
(Pinedo, 1995, p. 16; Allahverdi, Aldowaisan, & Gupta, 1999). In the sequence
independent types, the setup times are added to processing times of the jobs (Pinedo,
1995; p. 16; Hamzadayi et al., 2017; p. 287). However, in the sequence dependent
setup, setup time does not only depend on the job that is currently scheduled, but also
it depends on the previous scheduled job (Hamzadayi et al., 2017; p. 287). In the
knitted fabric production, setup times can have a range approximately from 15
minutes to more than 480 minutes (Kerkhove et al., 2014; p. 2630). In the interested
company, this range is between approximately 60 minutes and 24 hours for the
complex setups. Therefore, it is concluded that setup times have significant effect on
finish times of the jobs (Kerkhove et al., 2014; p. 2630). In the company of interest,
there are almost 380 different types of products. These products are grouped
according to their technical specifications like “knitting types”, “pus” and “fein”.
Therefore, eligibile machine set of products directly depends on the groups of
products in the company of interest.
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The demands of products are deterministic, the production is not a make to
stock type production, and the range of order sizes is between 20 and 10000 kg. The
annual production volume of the interested company is almost 800 tones according
to the last year data, and it is assumed that 66 tones knitted fabric are produced
monthly. Therefore, order volume variety is quite high.

In the production facility, in total 97 knitting machines and 46 different types
of machines exist. These types are classified according to the “knitting types”, “pus”
and “fein” like the specifications of the products. The terms “pus” and “fein” are
used to indicate the diameter of the knitting machine and the number of the needle in
one inch, respectively. The orders are assigned to the machines according to their
knitting types, pus and also fein. The machines knitting type Id, pus and fein values
are given in Appendix C, machine knitting type definitions are shown in Appendix

B, and a list of pus and fein values are given in Appendix A.

In this thesis, real knitted fabric production facility is observed and the
sample data is gathered from this facility. The interested company does not control
and schedule the knitted fabric production system using with an optimization tool,
and majority of the textile companies is still lack of an application using an
optimization tool for their production facilities (The Textile Hub, 2013). To
illustrate, a recent study by Kerkhove et al. (2014) develops a meta-heuristic
algorithm for a knitted fabric production scheduling which is a combination of a
genetic algortihm and a simulated annealing to minimize total weigted tardiness. In
their paper, they show an algorithm that population-based meta-heuristics show
better results for real scale problems, and ant-colony optimization is the other most

commonly used population-based heuristic algorithm (Kerkhove et al. 2014).

However, there are not any existing applications for the ACO algortihm in
these types of scheduling problems in the textile industry when the literature research
is surveyed. For this reason, this study represents a methodology to decrease the total
weigted tardiness in the textile industry with a rarely used heuristic algorithm, ant
colony optimization (see Chapter 4.3). The survey of relevant literature is given in

the following section.
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CHAPTER 4: LITERATURE REVIEW

4.1 Introduction

This section presents the relevant literature review on knitted machine
scheduling, weigted tardiness minimization and scheduling, and also meta-heuristic
applications in Section 4.2. Then, a summary table of the literature is presented in
Section 4.3. Finally, concluding remarks about the literature review of this study are

given in Section 4.4.

4.2 Literature Review

The optimal solution for single machine scheduling problems are known as
NP-hard (Pinedo, 1995; p. 50). For this reason, unrelated parallel machine scheduling
problems with sequence dependent setup times can be characterized as NP-hard too.
The compexity for these types of scheduling problems in most of the papers are
discussed first in the literature (Behnamian et al. 2013, Joo et al. 2015, Kayvanfar et
al. 2014, Hamzadayi et al. 2017). Therefore, simple heuristics, local search and
population-based heuristics or meta-heuristics are used to evaluate better solutions
with large intances from more realistic and real life scenarios.

Pimentel et al. (2006) solve a knitted fabric-scheduling problem with the aim
of minimizing the lateness. They generate an integer programing model, however,
because of the NP-hardness, the model does not give a solution in a proper time.
Therefore, they develop a simple heuristic method for this problem.

However, their study excludes the setup times and the machines are identical
in parallel. Kerkhove et al. (2014) also solve a knitted fabric-scheduling problem
with the aim of minimizing total weighted tardiness with unrelated parallel machines.
Their problem includes the sequence dependent setup times, order relase dates and

due dates.
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Additionally, this paper includes the changeover interference problem that
occurs when required number of changeover exceeds the number of technicians.
They solve this problem into two different phases. In the first phase, a mathematical
model is improved and solved for small instances. Then, a hybrid meta-heuristic
algorithm is generated with a combination of genetic algorithm and simulated
annealing.

They construct the initial solution by simple heuristics like earliest due date,
shortest and longest processing time. After that, they apply some machine selection
rules such as machine load balancing and minimal production time. Local simple
heuristics are also applied to improve the initial solution. Then, the initial solution is
used in the hybrid metaheuristic. In the second phase, changeover interference
problem is solved with simple heuristic dispatching rules. Chen et al. (2007) use
genetic algorithm for knitted fabric production scheduling with wide ranges of
quantities of demanded. They prove that the makespan increases by the rise in the
range of the quantities. However, in this paper, the machines are identical in parallel
and the setup times just depend on the machines.

Koulamas et al. (1997) generate a decomposition and hybrid simulated
annealing heuristic to minimize total tardiness under identical parallel machines.
Bilge et al. (2004) apply the tabu search algorithm to minimize the total tardiness. In
their problem, the machines are uniform in parallel and the jobs have different due
dates and release times. They conclude that their algorithm gives better solution
when it is compared to the other applications in the literature. Tavakkoli et al. (2009)
generate a genetic algorithm to solve bi-objective scheduling problem. In their
problem, the unrelated parallel machines exist and the orders have non-identical due
dates and release dates. Furthermore, the setup times are sequence dependent. Their
study shows effective results for small and large size instances. Lin and Hsieh (2013)
generate a mixed integer programing model to find the minimum value of total
weighted tardiness. Machines are unrelated in parallel and setup times are sequence
and machine dependent. Jobs have non-identical due dates and release dates in their
problem. Also, they provide a heuristic and iterated hybrid meta-heuristic algorithm
that can find nearly optimal solution for the same problem. Then, they compare their
iterated hybrid meta-heuristic algorithm with tabu search and ant colony
optimization. Their results present that their suggested algorithm shows better results

than TS and ACO for all size of instances in the terms of total weighted tardiness.
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Lin et al. (2013) apply the ACO to solve unrelated parallel machine
scheduling to minimize total weigted tardiness. The jobs have non-identical due
dates, and all of them are ready to be produced at time zero. Additionally, their
problem does not include the setup times. Vallada et al. (2011) generate a genetic
algorithm that includes fast local search and local search developed crossover
operator. In their conclusion, they prove that their suggested algorithm performs
better than the existing applications by comparing with using the benchmark sets of

instances.

4.3 Discussion of the Literature

This section discusses the studies that are mentioned in previous sections.
Comparison of literature review section is analysed under the following
specifications. These specifications are properties of problem, machine types,
solution methodology and objective of the problem in addition to the specifications
given by Kerkhove et al. (2014). The summary table organised under these

specifications is given in Table 1.

Table 1 proves that exact optimization solution methodology is not used alone
to solve parallel machine scheduling problems. Additional heuristic algorithms are
necessary to solve these types of scheduling problems. Furthermore, it is also
concluded that the second solution methodology, simple heuristics, are not generally
used without additional local search or population based algorithm. These types of
heuristics are applied to solve small problems. Furthermore, these types of heuristics
are applied as a part of the algorithm of local search and population based heuristics
(Kerkhove et al. 2014).

The third solution methodology is local search based meta-heuristics.
Simulated annealing (Koulamas (1997), Kim et al (2002), Radhakrishnan et al.
(2010), Lin et al. (2011), Lin et al. (2013)) and tabu search algorithms (Mendes et al
(2002), Bilge et al. (2004) and Lee et al. (2013)) are observed as the most popular of
them. Besides of these known algorithms, Lin et al. (2013) generate an iterated
hybrid meta-heuristic that can find nearly optimal solutions for unrelated parallel
machine scheduling problem with machine and sequence dependent setup times,

different job releases dates and due dates.
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Table 1 Summary Table for the Literature of PMS

Objectives of

Properties of Problems ~ Machine Types Solution Methodology Problem

DD RD ST PC|lI UNF UNR |EO SH LSM PBM |MS L T ET S
Behnamian et al. (2009) - - SD - |x - - - - X X X - - - -
Bilge et L. (2004) X X - - |- X - - - X - - - X -
Joo, Kim (2015) - X I\/SS - |- - X X - - X X - - - -
Kerkhove, Vanhoucke N x SD - |- ) X ) X X X - % - .
(2014)
Koulamas (1997) X - - - Ix - - - X X - - - X - -
Lin, Lee, Ying, Lu (2011) | x x SD - [x - - - X - - - X - - -
Mendes et al. (2002) - - SD - [x - - - - X X X - - - -
Kayvanfar et al. (2014) X - I\gS - |- - X X - - X X - - X -
Hamzadayi, Yildiz (2017) | - - SD - [x - - X - X X X - - - -
Radhakrishnan, Ventura X sD X X ) o X -
(2010)
Tavakkoli-Moghaddam et MS
al. (2009) X X D X X - X X - X -
Arnaout, Rabadi, Musa ) . Ms . X < - )
(2009) D
Lin, Lin, Hsieh (2013) X - - - |- - X - - X X - - X - -
Vallada, Ruiz (2011) X - I\gS - |- - X - - - X X X X X -
Lee et al. (2013) X - I\gS - |- - X - X X - - - X - -
Lin, Hsieh al. (2013) X X I\gS - |- - X X X X - - - X - -
Pimentel et al. (2006) X - - - IXx - - X X - - - X - - -
Chen, Hung, Wu (2007) X - MD - [X - - - - - X - - - - X

* DD: Due date of jobs, RD: Release date of jobs, ST: Setup Time (Sequence Dependent Setup(SD), Sequence
Independent Setup(Sl), Machine and Sequende Dependent Setup(MSD), PC: Precedence constraint of jobs, I:
Identical Machines, UNF: Uniform Machines, UNR: Unrelated Machines

** EO: Optimization, SH: Simple Heuristic, LSM: Local Search Based Heuristic, PBM: Population Based
Heuristic, MS: Makespan, L: Lateness, T: Tardiness, ET: Earliness and Tardiness, S: Setup Time

The population based meta-heuristic algorithms show better performance
when comparing with local search based meta-heuristics because of their ability to
find better solutions by combining good solutions in wider search area (Kerkhove et
al. 2014). Genetic algorithm and ant-colony optimization are the best-known
population based meta-heuristic algorithms used in parallel machine scheduling area.
Kerkhove et al. (2014), Joo et al. (2015), Kayvanfar et al. (2014), Arnout et al.
(2009) and Lin et al. (2013), Vallada et al. (2011) apply population-based meta-
heuristic algorithms in their studies, and both of them solve unrelated parallel
machine scheduling problems. Table 1 shows most of the studies on unraleted
parallel machine scheduling that use the population-based meta-heuristic algortihms

stand-alone or together with the other solution methodologies.
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4.4 Concluding Remarks

The literature review in knitted fabric production scheduling and unrelated
parallel machine scheduling with total weighted tardiness minimization is given in
Section 4.1. Furthermore, the discussion table is given, and the methologies used
generally in parallel machine scheduling are mentioned in Section 4.2. The next
chapter describes the steps of the methodology applied in this thesis.

21



CHAPTER 5: METHODOLOGY

5.1 Introduction

In this chapter, the methodology followed in this thesis is described briefly.
Accordingly, first the proposed methodology and its steps are explained in Section

5.1. Then, the data collection and data types are mentioned in Section 5.2.

5.2 Proposed Methodology

In this thesis, the system is analyzed to determine the problem statement in a
knitted fabric production facility. High product variety, number of different unrelated
parallel machines, high setup times between the orders and variety of order amounts
complicate the assignment and scheduling the orders on the machines. First,
objectives and constraints, data types, parameters and performance measures are
explained in Section 5.3 briefly. They are determined according to the problem
definition by observing the real system. Data assumptions are specified in order to
determine the boundaries of the problem. Furthermore, an improved mathematical
model is defined and applied with small intances to represent its complexity in
Section 5.4.

5.3 Conceptual Model

This section includes the objective and constraints, data types and the

assumptions of the thesis problem wunder the following subsections.
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5.3.1 Objective and Constraints

The conceptual model for the problem together with its objective function,

and its constraints are given in the following.

Minimize Total Weighted Tardiness
Subject to
Constraint 1: A position of a machine can process at most one order at the same time

Constraint 2: Each order can be assigned to one position of any machines at the same
time

Constraint 3: An order can be assigned to the first empty position on a machine

Constraint 4: Completion time of an order must be greater than or equal to the
summation of processing time of that order on that machine, sequence dependent
processing time between this order, the previous order and completion time of the

previous order

Constraint 5: Completion time must be greater than or equal to the summation of

processing time of this order on that machine and the release date of that order

Constraint 6: Completion time of jobs which are assigned to position 1 of any
machines must be greater than or equal to total processing time of that order on that

machine

Constraint 7: Completion time of an order must be greater than or equal to the
summation of release time of that order and processing time of that order on that

machine

Constraint 8: Number of tardy days of an order must be greater than or equal to

substracting of due date of that order from the completion day of that order

The identical parallel machines scheduling problem with the aim of
minimizing Cmax is considered as NP-hard even when number of machine is equal
to 2 (Karp 1972; Garey and Johnson1979). Therefore, it is possible to say that Rm |
15,15, M; | X w;T; is also NP-hard. Additionally, the NP-hardness of the problem is
also proven by the computation time of the mathematical model that is discussed in

the Section 5.4.
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5.3.2 Data Analysis and Types

The data used in this problem is deterministic and defined in Table 1 briefly

in the following.

Table 2 Data Used in This Problem

Data Name

Explanation

Unit Processing Time (P;,,)

Time is needed to produce 1 kg of order i
on machine m (in minutes)

Release Time of Order (R;)

Ready time to produce order i (in hours)

Due Date of Order (D;)

Customer due date of order i (in days)

Quantity of Order (Q;)

Demand quantity of order i (in kg)

Sequence Dependent Setup time (S;;)

Time is needed to produce order j after
order i (in hours)

Machine Eligibility Matrix (U;,)

Eligible machines of order i can be
assigned

Weight (w;)

Customer associated weight for order i

Number of Machines (M)

Total number of machines

Number of Orders (N)

Total number of orders

Number of Positions (K)

Number of position on each machine
(this value is equal to number of orders
because of the possibility to assign the all
orders on only one machine)

Unit processing time is the time needed to produce 1 kg of an order on a

specific machine. Release time of an order is defined as ready time to produce an

order on any machine. Due dates (D;) and quantities (Q;) of orders are gathered from

the ERP system of the facility. Sequence dependent setup times are gathered by the

time study in the shop floor. Machine eligibility matrix is prepared by analyzing of

fabric type, pus and fein values of the orders and machines (see Sections 3.4).
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These parameters were not available in the database of the company.
Therefore, it was necessary to analyze these parameters from the given information
like machines’ “pus”, “fein” and “type” that was avaliable in the database
separately. An order has the same type of specifications with the machines. These
specifications are “pus”, “fein” and “type”. Each triplet of “pus”, “fein” and “type”
corresponds to one type of machine and order. To be able to assign an order onto a
machine is constrained by these triplets (pus/fein/type) (see Sections 3.4).
Weights of orders (w;) represent the priorities of the orders according to the
customers. These priorities are defined according to groups of the customers which
are A, B and C. The major customers are group A customers, and the customers that
have less priorities than others are group C customers. Group B customers have
intermediate priorities in the facility. In the problem, these groups are enumerated as

1, 2 and 3 for groups C, B and A, respectively.

5.3.3 Assumptions

The assumptions that are considered in this study are summarized as follows.

e No pre-emption is allowed

e The mean time between failures and mean time to failure of the machines are
ignored

e Orders to be scheduled are known at the beginning of the scheduling

e Setup operators’ availability constraint is ignored. That is, machines do not
wait for available setup operators

e Variable tardiness cost of the orders are weighted between the values {1,2,3}
according to the priorities of customers

e There is no lot sizing

5.4 Model Development

In Section 5.4.1, the generated mathematical model and its formulation is
given. Then, a simple application of the mathematical and experimental results are
shown in Section 5.4.2.
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5.4.1 Mathematical Model

There are m different parallel machines in the system and setup times are
dependent to the sequence of orders. Furthermore, M; stands for the set of machines
that can process order j. The objective function minimizes total weighted tardiness
cost. This mathematical model is the modified version of the model that is used by
Kerkhove et al. (2014). According to the characteristics of the problem, some
addditional variables are determined in this version. One of the additional parameters
IS U[j,m] which is used to determine the eligible machine set of each order. The
other parameters are Cday and Q. Cday is necessary to convert the completion time
to completion day. The processing time unit is in minutes. Then, it is needed to
convert the completion times to completion days to calculate tardy days of orders.
The facility has three shifts, therefore the production works 24 hours. Therefore, the
Cday of an order is calculated by the division of the completion time of that order
into 24 hours. For instance, if completion time of an order | (C;) is 60 hours, the
Cday is calculated by 60 hours divided by 24 hour/day. Then, Cday; is found as 3
days, when C; is rounded up. It is necessary to calculate the number of tardy days
(Tday) in a day since the due date of each order is given in days in the problem set.
Finally, Q is added to define the order amounts, and P is redefined as the unit
processing time of an order on a machine. The different location part property of the
previous version of the model, that is generated by Kerhove et al. (2009), was not
applied in this model though it is not required for this problem.

Indices

i,j Order:i,jeN ={1,...,N}

k Position: ke K = {1, ...,K}

m Machine:meM = {1, ..., M}

Parameters

w; Variable unit cost of tardiness per order i

R; Release time of order i

D; Due date of order i

Pim Unit production time of order i on machine m
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Q; Demand quantity of order i

Sji Sequence dependent setup time needed when order j

precedes the order i

Uim 1if order j can be processed by machine m, 0 otherwise
N Number of orders

K Number of positions

M Number of machines

BM A big positive number

Variables

C; Completion time of order i in hour

Cday; Completion time of order i in day

T; Number of tardy days of order i

Xikm 1if order iis assigned to position k of machine m;0 o/w

According to the notation given in Section 1.5 and conceptual model defined
in Section 5.3, the mathematical model that includes the objective function and

constraints determined for the problem are given as follows.

Objective Function:
Minimize YN (w; * T;) (1)

Subject to:

C; .
[Z] < Cday; VieN (2)

M K

szikm=1 VieEN|Uy =1 (3)
m=1k=1

N
Z Xigm <1 V keK ,VmeM (4)
i=1

1 Xikem — 2teq Xi(k—1ym < 0 VkeK|k>1,VmeM (5)
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Pim*Qj

Ci + BM(Z — Xikm — xj(k—1)m) = 60 + Sjl + C]
Vi,jeN,meM,keK|k>1,i=1j (6)
M K p Q
. * .
C;> R; + Zz ””60 L% Xipem VieN (7)
m=1k=1
K M
Ti > Cdayl- - z z Xikm * Di V ieN (8)
k=1m=1
Xiem € {0,1} VieNmeMkeK (9)
C;,Cday;, T; = 0 and Cday; is integer Vie N
(10)

Constraint (1) minimizes the total weighted tardiness cost. Constraint (2)
calculates the completion day of each order. Constraint (3) guarantees that the orders
can be assigned to only one machine in its eligible machine set. Constraint (4)
ensures that only one order can be processed on a position of a machine. Constraint
(5) forces as a full position among all positions over a machine. To be clear, it forces
to assign jobs to positions respectively to avoid having an empty position. To
illustrate, position 2 is empty while position 3 is busy. Completion times of the
orders that are assigned to positions except position 1 are calculated in Constraint
(6). Constraint (7) guarantees that orders cannot start to be processed before their
release dates. Constraint (8) calculates the number of tardy days for each order.
Finally, constraint (9) and constraint (10) define binary variables and nonnegative
variables, respectively.

5.4.2 Experimental Design

The mathematical model given in the previous section is run for different data
sets. The results together with statistics of mathematical model in OPL are given in
Table 3. The model is run for 12, 16 number of orders for five machines respectively.
Then, the number of machines is increased to 6 machines, and the model is run for
16, 20, 22 orders respectively. The objective function values and the machines
sequences for each iteration are also given in Table 3. It appears that computation

time increases by increasing the number of intances. According to this situation, it is
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concluded that the problem is NP-hard. Therefore, a heuristic algorithm is required to
solve the problem with large problem instances.

Table 3 Results of the Computational Experiments for the Mathematical model

Comp .
M N .Time = )- Machine Sequences Tardy Orders
(min)) unc.

5 12 007 12 M1={8,10,12} 1,2,4,9,11
M2= {6,3}
M3={2,1}
M4= {4,9}
M5= {5,7,11}

16 45 19  Mil={2,6} 11,1,15,9,6,4,3,2
M2= {8,10,12,14,1}
M3= {16,3}
M4= {4,13,15}
M5= {5,7,9,11}

6 16 0.26 16 M1={2,1} 1,2,4,9,15
M2= {8,16,12}
M3= {10}
M4= {5,7,4}
M5= {11,9,13,15}
M6= {6,3,14}

20 9 26 M1={2,20} 4,17,15.2,1
M2= {16,1}
M3= {8,10,12,19,18}
M4= {5,11,13,4}
M5= {9,7,17,15}
M6={6,3,14}

22 51 29  M1={2,20,21} 4,17,15.2,1
M2= {8,10,1}
M3= {16,12,18,19}
M4= {5,11,13,22,4}
M5={9,7,17,15}
M6= {6,3,14}

Apart from the results of computational experiments of mathematical model
given in Table 3, the input data of the developed mathematical model are explained

in Tables 3, 4, 5, 6 an 7 in the following.
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Table 4 Order Numbers, Product Types and Qantities for the Mathematical Model

Order No | Product | Quantity of | Order Product Quantity of

(1) Type of | Orderi (Qi) | No (i) Type of Order i (Qj)
Order i (kg) Order i (kg)

1 Type 1 500 12 Type 1 400

2 Type 1 391 13 Type 2 250

3 Type 1 350 14 Type 1 250

4 Type 2 1000 15 Type 2 700

5 Type 2 500 16 Type 1 650

6 Type 1 450 17 Type 2 800

7 Type 2 300 18 Type 1 450

8 Type 1 275 19 Type 1 500

9 Type 2 300 20 Type 1 600

10 Type 1 500 21 Type 1 500

11 Type 2 500 22 Type 2 350

The order set has two types of products, each order stands for a particular
product type. The orders (product) types and order quantities used in this

experimental design are shown in the Table 4.

The unit processing times of orders on their eligible machine set are shown in
Table 5. In matrix Pjy, processing times are equal to zero if the order cannot be
produced on the machine m. Uiy, is equal to 1 if order i can be produced on machine
I.

Table 6 represents the sequence dependent setup times between the orders.

The sequence dependent setup times (S;;) are equal to zero if the order i and j cannot

be assigned to same machines because of their eligible machine sets.

Table 7 represents the release time and due date of each order that are used in

the experimental design of the mathematical model.
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Table 5 Processing Times (Pim) and (Uim)

Processing Times (Pin) in

Minutes Uin
I(\)l(r)d(ei; Pr(;’fdg%?f’e M1 | M2 | M3 | M4 | M5 | M6 | M1 [M2|M3| M4 | M5 | M6
1 Type 1 3403 (3210 |0 [31]1 |1 |1 o |o |1
2 Type 1 36323410 |0 [35]1 |1 |1 [0 |o |1
3 Type 1 3532 (3110 |0 [33]1 |1 |1 [0 |o |1
2 Type 2 0 o |o [325]37]0 |0 o |o |1 |1 |o
5 Type 2 0 o |o |35 (380 |0 |0 |o |1 |1 |o
6 Type 1 36(3 |4 |0 |0 [32]1 |1 |1 [0 lo |1
7 Type 2 0 |0 |0 |34 (360 [0 o |0 |1 |1 |o
8 Type 1 3 [25(29(0 |0 [35]1 |1 |1 [0 |o |1
9 Type 2 0 |o |0 |35 (380 [0 |0 |0 |1 |1 |o
10 Type 1 3 [25(32(0 |0 [34]1 |1 |1 [0 |o |1
11 Type 2 0 |o |0 |35 (380 [0 |o |0 |1 |1 |o
12 Type 1 3 25340 |0 [32]1 |1 |1 [0 |o |1
13 Type 2 0 o |o |35 [38]0 |0 |0 |o |1 |1 |o
14 Type 1 3 [25(33(0 |0 [32]1 |1 |1 [0 |o |1
15 Type 2 0 o |o |35 [38]0 |0 o |o |1 |1 |0
16 Type 1 3 [25(3 |0 |0 [31]1 |1 |1 o lo |1
17 Type 2 0 o |o |35 (380 |0 |0 |o |1 |1 |0
18 Type 1 3 [25(29(0 |0 [31]1 |1 |1 o lo |1
19 Type 1 3 3403 [0 |0 [32]1 |1 |1 [0 |o |1
20 Type 1 3 [35(29(0 |0 [35]1 |1 |1 [0 |o |1
21 Type 1 3 [35(3 |0 |0 [33]1 |1 |1 [0 |o |1
22 Type 2 0 o |0 |35 (380 [0 |o |0 |1 |1 |o
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Table 6 Setup Times (S;j) in hours
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Table 7 Release Time (R;) and Due Date (D;) of Order i

Due
Date in

Days

Order
No (i)

12
13
14
15
16
17
18
19
20
21

22

Due
Date in

Days

Order
No (i)

10
11

Release
Time in

Hours
24
32

24
12
12
24
48

48

24
24
24

Order
No (i)
12
13
14
15
16
17
18
19
20
21

22

Release
Time in

Hours
10
12
12
12

24

24
18
24

Order
No (i)

10
11
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CHAPTER 6: AN ACO APPLICATION DEVELOPMENT

6.1 Introduction

In this chapter, an application of ant colony optimization (ACO) is explained.
Steps of the proposed ACO heuristic algorithm are shown with a flow chart in Figure
6, and they are explained in Section 6.2. Then, the pseudo-code of the proposed ACO
heuristic algorithm is given in Section 6.3. Steps and pseudo-code of local search
algorithm are explained step-by-step in Section 6.4. Finally, the complexity of the
proposed ACO heuristic algorithm and concluding remarks about this chapter are

given in Sections 6.4 and 6.5, respectively.

6.2 Ant Colony Optimization (ACO)

Ant colony optimizations are first mentioned by the studies of Dorigo (see
Dorigo et al. 1999) as an approach to solve combinatorial optimization problems.
Ant algorithms are generated by using observations of real ant colonies. Ants are
social insects. That is, they work for the benefit of colony for which they belong to,
they do not work for individual benefits. For this reason, the behavior of social
insects gain much attention of the scientists (Dorigo et al. 1999; p. 1). The most
attractive behavior of ant colonies is their ability to find the shortest path from their
nest to the food source and this behavior is named as foraging behavior (Dorigo et al.
1999; p.1). The ants deposit pheromone trail. That is, a chemical substance that they
deposit while they move between nest and food source. This behavior is known as
stigmergy (Dorigo et al. 1999; p. 3). Stigmergy enables ants to perform their foraging
behavior (Dorigo et al. 1999; p. 3). Ants smell the pheromone and they find their
way by selecting the way that has strong pheromone concentrations (Dorigo et al.
1999; p. 1). Even a single ant can find a way from nest to food source, a colony of

ant can find the shortest path from nest to food source.
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Another significant property of real ants is autocatalytic mechanism (positive
feedback) that works with implicit evaluation of solutions (Dorigo et al. 1999; p. 4).
In the shorter paths, ants complete the path earlier than the ants on the longer paths.
That is, pheromones are deposited by the ants sooner in the shorter path, and it
results that more ants choose the shorter path. In addition, pheromones are
evaporated over the time, and by this way the ant colony forgets the past history and
work on the search space without being over-restriction by past decisions (Dorigo et
al. 1999; p. 6).

In the ant colony optimization, artificial ants are used instead of real ants, and
artificial ant colonies are used to find good solutions for difficult discrete
optimization problems (Dorigo et al. 1999; p. 5). Both real and artificial ants have the
same purpose, finding the shortest path. However, artificial ants have more abilities
than the real ants (Dorigo et al. 1999; p.5). The artificial ants have the all
characteristic of real ants and as addition of these characteristic, they can deposit
pheromone with respect to the quality of the solution that they find. Moreover, the
time to deposit pheromone can be arranged according to the problem. The other most
significant additional characteristic of an artificial ant is deamon actions which are
used to improve efficiencies of the artificial ants and give them extra capabilities
(Dorigo et al. 1999; p. 6). These deamon actions are lookahead, local optimization
and backtracking (Dorigo et al. 1999; p. 6). Local optimization is commonly used for
them when it is compared to lookahead and backtracking (Dorigo et al. 1999; p. 6).

In the ACO meta-heuristic, incremental constructive approach is used to find
feasible solution. In other words, the algorithm generates a solution by adding
individual components of the problem. For instance, in TSP, the solution is
constructed by adding or selecting a node and finally a feasible solution is generated
at the end with the all predefined nodes. The main procedure of the ACO is
composed of three main functions: ant generation and activity, pheromone
evaporation, deamon actions (Dorigo et al. 1999). Deamon actions are optional and
they depend on the construction of the algorithm and the problem. The first ACO
algorithm in the literature was Ant System (AS) and it was built to solve Traveling
Salesman Problem (TSP) (Dorigo et al. 1999). The algorithm executes a number of

iterations. In each iteration, each ant finds a solution for the problem. That means,
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after an iteration, number of ant solutions are generated. To illustrate, a solution is a

tour which includes all nodes and arcs once without any sub-tours in a TSP.

An ant visits the nodes (cities) step by step, and finally, it constructs a tour.
Ant-decision table (a;;) is used to decide which node is added to the tour. This table
is obtained by the pheromone trail values and the heuristic values. In this problem,
pheromone trail value is defined for an arc (i,j) and heuristic value is calculated by
using the distance between node i and node j. With this table, the probability of an

ant selects to go from node i to node j in an iteration (p;;). « and g are used for the

favorability between pheromone trail and heuristic value. After all ants complete
their tour, the pheromone update on all arcs is occured. The pheromone update
includes an addition (increase) and evaporation (decrease). Addition means that each
ant deposits an amount of pheromone on each arc that it is visited. The amount is
proportional with performance of the solution of this ant. In the evaporation part, the
pheromone amount on each arc is decreased with using evaporation rate. This rate is

also defined as a parameter like « and 8 (Dorigo et al. 1999).

In this section, the summary of developed ACO algorithm is given briefly. In
next section, steps of the ACO algorithm applied in this study are presented and

explained briefly.

6.3 Steps of Proposed ACO Algorithm

Proposed ACO heuristic algorithm is composed of four main parts. In the Part
1, the vector S1 that represents machine assignment of each order, is found. S1 is a
vector that has N (Number of Orders) components. The components in this vector
should be populated with the machine numbers. For instance, if the problem set has 8
orders and 3 machines S1 can be like S1=[112 31 2 3 1]. It means, orders 1,2,5
and 8 are assigned to machine 1, orders 3 and 6 are assigned to machine 2, and orders
4 and 7 are assigned to machine 3. In the flow chart, the steps between 4 and 6 are
used to find S1. Part 2 includes steps 7 and 8. In this part, S2 matrix that has M
(number of machines) number of rows and N (number of orders) number of columns
(positions) is found. S2 matrix presents a machine sequence. More clearly, each row

1 85 2 0 00 O
represents sequence of orders on a machine. S2=|6 3 0 0 0 0 0 Ofis

4 7 00 0 0 O0 O
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can be given as an example for the same example above. For instance, machine 1 has
a sequence as 1-8-5-2, machine 2 has a sequence as 6-3, and machine 3 has a

sequence as 4-7 on this example.

In the Part 3, TWTy (Total Weighted Tardiness), where k € NbANT
(Maximum Number of Ants), is calculated according to S2, and BESTSOL (best
solution of the algorithm) is updated if an ant can find a better solution than current
BESTSOL. Part 3 includes the steps 10, 11, 12 and 13. In the Part 4, the local search
algorithm runs for each S2 that is found by an ant, and TWTx and BESTSOL are
updated if the local search algorithm can find better solution. After that, the
pheromone is updated with pheromone deposit and evaporation. Part 4 contains the

steps 14, 15, 16, 17, 18 and 19. These steps are represented in detail in Figure 6.

In this algorithm, two different pheromone trails are used, 7/, for machine

selection and rl’]’ for order sequence, where i,j € N and m € M. In equation 1, the

probability of assigning an order to a machine (Probl) is calculated. n?,, suggests a
machine which has the processing time for that order. It is used as heuristic
information and calculated by equation 2. Equations 3 and 4 give the formula to
calculate the probability of order i that precedes order j (Prob2) and heuristic

11

information (n;;) that is proportional to setup times between orders i and j,

respectively. a,, f, and a,, B, are used to determine the importance of pheromone
amount over the heuristic value while Probl and Prob2 are calculated, respectively.
After all ants find a solution, the pheromones evaporate for each 7/, and ;.

Evaporation formula is given in equation 5.

Probl = z(:?’(’;){;;(*ﬁ;’g;ll (1
Nim = W (2)
Prob2 = Z;;{(JIT);;( Z({j;;zﬁz 3)
M) = Serupy @
T = (1= p) * Tiy, i =1 —p)*tf] (5)
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After finding S1 and S2, TWT is calculated for each solution. In this problem,
the constraints are the same with the mathematical model applied in Chapter 5. The
orders can be assigned only to the machine in their eligible machine set, and orders
can not be processed before their release dates. Therefore, the completion time of
each order is computed with respect to release date of that order, or the completion
time of the order which precedes that order. The completion time is not enough to
calculate TWT since due dates are in days, therefore it is necessary to convert them
into days. After finding the completion day of each order, the TWT is calculated by
subtracting the completion day of an order from the due date of an order if the value

IS negative.
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Figure 6 Flow Chart of ACO Algorithm
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The explanations of steps of the ACO algorithm are presented in rest of this

section.

Step 1: The algorithm initializes the ACO parameters and assings BESTSOL as
infinitive. Since this is a minimizing problem, heuristic tries to find a smaller

solution than the best solution.

Step 2: The first loop of the algorirthm starts by setting the it=1.
Step 3: The second loop, which is for ant generation, starts setting k=1.

Step 4: By using the parameters t/,,,, 0., , a1, f1and the equation 1 and 2 in Section

6.3, transition probabilities of assigning the order i to the machine m are calculated.

Step 5: By roulette wheel selection method, a machine is selected to assign for each

order and vector S1 is found.

Step 6: By using the parameters, t{] 7/} a.. f, and equation 3 and 4 in section 6.2,

the probality to process the order i before order j is calculted.

Step 7: S2 matix is found by using the probability matrix that is calculated in step 6.
Step 8: Evaluate Total Weighted Tardiness (TWTy) according to S2 matrix. This
calculation is shown in the pseudo code of the ACO algorithm in Procedure
Evaluate TWT (k,i) in Figure 7.

Step 9: The algorithm checks for the solution if it is better than the best solution of

the algorithm (TWT, < BESTSOL). If it is better, the algorithm continues with step

10, otherwise continues with Step 11.

Step 10: Update BESTSOL with TWT and go Step 11.
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Step 11: The algorithm checks for the ant number. If Ant > NbAnts (maximum
number of ants), then algorithms continues with step 12; otherwise the algorithms go

to step 3 by updating the ant number as (k=k + 1).

Step 12: After all ants find indiviualt solutions, these solutions enter to the local
search algorithm described in Section 6.4.

Step 13: The algorithm checks for the solution that is found in the local search, is
better than the solution of the ant that is tried to be improved. If the local search finds
a better solution than the solution of that ant (TWTy), the algorithm updates the ant’s
solution with the value TWT_Local in step 14. If the solution is also better than the
best solution (BESTSOL) of the algorithm, then the best solution is also updated in
step 14. If local search cannot find better solution, the algorithm continues with the
step 15.

Step 14: Update BESTSOL or TWTy, then go Step 15

Step 15: The algorithm updates the pheromone trails 7}, 7/, as shown in the

pseudo code of ACO in the procedure Pheromone_Deposit in Figire 7.

Step 16: The algorithm updates the pheromone trails by the evaporation of them with

the parameter p as shown in the procedure Pheromone_Evaporation() in Figure 7.
Step 17: The algorithm checks for the iteration number is smaller than the MaxIt
(maximum number of iterations). If it is greater than the MaxIt, the algorithm stops.
Otherwise, the iteration number it is updated by the formula it (it= it+ 1) and the
algorithm goes back to the step 2.

The Steps for the ACO Algorthm is listed below.

Step 1: Parameter Intialization t/,, T/} p, a1 p1, a2, B2, Ni, M}, ¢, BESTSOL=inf

Step 2: Initiate Iteration it
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Step 3: Initiate Ant k

Step 4: Calculate Transition_Probabilities_for_Machine_Selection()with /..., /..,

, 01, f1
Step 5: Find S1 vector using Roulette Wheel Selection

Step 6: Calculate Transition_Probabilities_for_Sequencing() with 7/} ni} a.

Step 7: Find S2 Matrix with Transition_Probabilities_for_Sequencing()

Step 8: Evaluate Total Weighted Tardiness (TWTy) according to S1 and S2

Step 9: If TWT,< BESTSOL, go Step 12; otherwise go Step 13

Step 10: Update BESTSOL and go Step 13

Step 11: If Ant > NbAnts (maximum number of ants), then go to Step 14; otherwise
update Ant number (k=k + 1) and go to Step 3

Step 12: Execute the local search algorithm described below

Step 13: If TWT_Localy< TWTy & TWT,<BESTSOL, go Step 16; otherwise go
Step 14: Update BESTSOL and TWTy, then go Step 17

Step 15: Update 7}, 7/,, for each ant (deposit pheromone)

Step 16 : Pheromone Evaporation with the parameter p

Step 17 : If i > MaxIt (maximum number of iterations), STOP; Otherwise update it

(it=it+ 1) and go to Step 2
6.4 Pseudo-Code of Proposed ACO Algorithm

This section represents the pseudo-code for the proposed ACO heuristic
algorithm explained in the previous section. Figure 7 represents the pseudo-code of

proposed ACO heuristic algorithm.

In the algorithm, three main activities of ACO algorithm exist. In the first
activity, ants are generated and each ant find a solution that includes machine
assignment and machine sequencing. The second activity is Local search Procedure.
Local search activity is placed in the algorithm to improve the solution of each ant in
each iteration.The third one is applied for pheromone deposit and the last one is for

pheromone evaporation.
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Procedure ACO_Meta_Heuristic()

While (it # Maxlteration)
Ant_Generation_and_solution finding();
Local_Search_Procedure();

Pheromone Deposit();
Pheromone_Evaporation();
end while
end procedure

procedure Ant_Generation_and_solution finding()
generate new ant;
While (k # NbANT)
While (i # NbOrders)
Probl= calculate_machine_selection_probabilities_with_ eg2;
S1= RouletteWheelSelection();
Prob2=calculate_sequencing_probabilities_for_all_orders_
assigned_same_machine_with_eqg4;
S2=apply_ant_decision_policy_sequencing();
Evaluate_ TWT(K,i);
Update Best Solution;
end while
end while
End procedure

Procedure Evaluate_ TWT(k,i)
While (m # NbMachines)

If i is the first order on a machine
CompTime(k,S[m,i])=Release_time(S[m,i])+ProcessingTime(S[m,i],
m)

Elself CompTime(k, S[m,i])< Release_time(S[m,i])
CompTime(k, S[m,i])= Release_time(S[m,i]) +
ProcessingTime(S[m,i],m)

Else
CompTime(k, S[m,i])= CompTime(k, S[m,i-1]) +
ProcessingTime(S[m,i],m)

End If

TWT(k,i)= CompTime(k, S[m,i]) — d(S[m,i])
End procedure

Procedure Pheromone Deposit()
While (k # NbANT)
While (i # NbOrders)
While (m # NbMachines)
If S1[i]=m
T, =th +0 | TWT,
End if

end while

While ( m %= NbMachines)
While (y # NumberOfAssignedOrderOnMachine m-1)
Télz[m,y] S2[my—1]= Télz[m,y] S2[m,y—1] to / TWTy
end while
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end while
end while
end while
end procedures

procedure Pheromone_Evaporation()
t'=(1-p) !
‘L'”:(l- ,0) ‘L'”

end procedures

procedure Roulette_Wheel_Selection()
generate a random number between[0,1];
C=CumulativeSum(Probl);
Selected_Machine=find(r<=C);

end procedures

Figure 7 Pseudo-code for ACO Meta-heuristic

6.5 Steps and Pseudo Code of Local Search Algorithm

In this section, local search algorithm applied in the ant colony optimization
algorithm is represented and explained step-by-step. The flow chart of local search
algorithm is presented in Figure 8. Then, pseudo code of the local search is shown in

Figure 9.

Local search algorithms are one of deamon actions that can be used in ant
colony optimizations to improve efficiency of the algorithm (Dorigo et al. 1999; p.
6). Ant colony optimization algortihms generally provide good solution when it is

applied with a local search algortihms (Arnout et al. 2009; p. 696).

The local search algorithm is performed in each iteration for each ant
solution. Therefore, the first loop of the algorithm repeats as the number of ants.
Then, the second loop repeats with the number of MaxItLoc (maximum number of
local iteration). In each iteration, a machine is randomly selected, and two orders
assigned on the selected machine are chosen. Then, the algorithm swaps these two
orders and calculates the TWT_Local(Ant), where it is the objective function value
of the local search, with new sequence (S2). If the local search algorithm improves
the solution of the ant, then it updates the S2 matrix and objective function value of
the ant. If the solution of the local search is also better than the best solution of the

algorithm (BESTSOL), then it is also updated by the solution found in local search.
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Figure 8 Flow Chart of Local Search Algorithm
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The Steps for the Local Search Algorthm is listed below.

Step 1: Set Ant=1

Step 2: Set Local_Iteration=1

Step 3: Randomly select a machine

Step 4: Randomly select two orders on the selected machine

Step 5: Swap the positions of selected orders

Step 6: Calculate TWT_Local(Ant) with new sequence(S2) /* where TWT _Local is
the objective function value found in local search algortihm */

Step 7: If TWT_Loc(Ant)<TWT(Ant), then go Step 8; Otherwise go step 9

Step 8: Replace S2 with the ones found in local search and update TWT(Ant) and
BESTSOL

Step 9: If Local Iteration > MaxltLoc, go step 10; Otherwise, Locallteration =
Locallteration + 1 and go back to step 2

Step 10: If Ant > NbANT, End the local search; Otherwise, Ant=Ant +1 and go back
tostep 1

Procedure Local_Search_Procedure()
While (ant #= Max_Number_of _Ant)
While (Current State2 = Max_Iteration_Number_of_Local_Search)
Randomly _select_a_machine;
Randomly_select_two_orders;
Swap_the_positions_of selected_orders_on_selected_machine

S;
Evaluate . TWT_Local(ant);
If TWT_Local(ant)<TWT (ant)
Update_S2(Ant);
Update_ TWT(Ant);
Update_best_solution(it);
end if
end while
end while

end procedures

Figure 9 Pseudo-code of Local Search Algorithm
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6.6 Complexity of ACO Algorithm

The complexity of the developed ACO algorithm is explained in two parts in
this section. First, the complexity of the thesis problem on which the ACO algorithm
is applied is discussed with the scheduling literature. Then, the complexity of the
ACO algorithm is discussed by considering the parameters of the algorithm, loops in
the algorithm and the computation times from the experimental design of

mathematical model and the algorithm under optimized parameters.

With regard to the complexity of the thesis problem, it is regarded as NP-hard
by Pinedo (1995; pp. 51), and the other studies in scheduling literature such as Karp
et al. (1972) and Ho and Chang et al. (1995). Pinedo (1995; pp. 51) points out that
the problem with the objective of tardiness is NP-hard, therefore the weighted

tardiness is also considered as NP-hard given in its complexity classes in scheduling.

With regard to the complexity of the developed ACO algorithm,
ACO_Meta_Heuristic() that is given in Figure 6 encapculates an outer while loop
that is defined by the NbANT parameter. Inside of this loop, there is an another while
loop that is defined by the NbOrders parameter, and then this procedure calls the
Evaluate_ TWT(K,i) procedure has a loop defined by the parameter of NbMachines.
Therefore, the complexity of the ACO algorithm can be represented by O(NbANT*
NbOrders* NbMachines). In this complexity representation, it is noted that the
complexity is linearly proportional to by the change in the number of orders
(NbOrders) or number of machines (NbMachines). In addition, computation times
oin Table 3 in Section 5 show significant increases under certain number of machines

when the number of orders is increased.

6.7 Concluding Remarks

In this chapter, the ant colony optimization algorithm and reasons to apply it
for optimization problems are explained briefly in Section 6.2. Then, the proposed
ACO algorithm is explained step-by-step with using the flow chart and the pseudo
code (see Figures 6 and 7). The local search algorithm integrated with the ACO is

explained together with the flow chart and the pseudo code (see Figure 8 and 9).
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CHAPTER 7: RESULTS

7.1 Introduction

In this chapter, results of ACO algorithm and experimental design for the
problem are given. The ACO parameters which are used in experimental design is
given in Section 7.2. Experimental design and the parameters that are used as the

factors of experimental design are explained in Section 7.3.

7.2 Optimization of ACO Parameters

Taguchi method is applied to determine the proper values of the ACO
parameters which minimize the total weighted tardiness (TWT). Taguchi method is a
statistical method which is developed for improving the quality of goods in
manufacturing (Atherya et al., 2012; p.13). It is used to determine proper values of
control factors to optimize the results of the process. Orthogonal Arrays (OA) are

used to define set of experiments in this method.

In this study, the factors and their levels that are considered in the
experimental design are shown in Table 8. In the application of Taguchi method for

this problem, smaller objective function values represent better types, and the
objective function of the analysis is based on S/N= —1010g10l ™, y?, where

n=Sample Size and y;= Objective Function Value of the ACO Heuristic Algorithm

in the run i. Standart L,; orthogonal array is used in Table 9.
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Table 8 Selected Factors and Their Levels

Levels
Factors
0 1 2
NbANT 40 60 80
p 0.01 0.1 0.5
0 0.01 0.5 1

Table 9 Orthogonal Array (OA) L7

Experiment

No p ) NbANT
1 0 0 0
2 0 1 1
3 0 2 2
4 1 0 0
5 1 1 1
6 1 2 2
7 2 0 0
8 2 1 1
9 2 2 2
10 0 0 1
11 0 1 2
12 0 2 0
13 1 0 1
14 1 1 2
15 1 2 0
16 2 0 1
17 2 1 2
18 2 2 0
19 0 0 2
20 0 1 0
21 0 2 1
22 1 0 2
23 1 1 0
24 1 2 1
25 2 0 2
26 2 1 0
27 2 2 1
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After applying 10 iterations for each experiment, the values used in
experiment 11 give a better S/N ratio as shown in Table 10. Therefore, p: 0.01, ¢: 0.5
and NbANT: 80 are chosen as the best ACO parameters.

Table 10 OA with Control Factors and Results of the Experiments

ExperimentNo| p @ |[NDANT| 1|2 |3|4|5|6|7|8|9|10|Mean| SIN
1 0.01{0.01| 40 |35|34(33|33|35|34|33(33|36|34| 34 |-30.6333
2 0.01| 0.5 60 |36|35|34|34|36|34|33|33|35|34| 34.4 |-30.735
3 0.01| 1 80 |33|34|35(32|34(32(34|34(33|34| 33.5 |-30.5042
4 0.1 |0.01| 40 |36(33|38|35/35|34|36|34|34|35| 35 |-30.8877
5 0105 60 |35|36|36|34|35|32|36|33|36|34| 34.7 |-30.8131
6 01| 1 80 |35|33(35(34|34(32(34|34(34|34| 33.9 |-30.6066
7 05 (001 40 |36(35|34|35|34|35|35|35|34|32| 34.5 |-30.7602
8 05|05 60 |33]|33|33|35|35|36|33|34|33|34| 33.9 |-30.6081
9 05| 1 80 |34|35(35(34|35(34(33|36(35(36| 34.7 |-30.8095
10 0.01{0.01| 60 |34[34|35|33|33|35|34(32|36|34| 34 |-30.6341
11 0.01| 0.5 80 |32|31|31(33|34(33(33(33(32(34| 32.6 |-30.2686
12 001 1 40 |36(32(34|35[32(35|34|35|36|36| 34.5 |-30.7639
13 0.1 |0.01| 60 |34]34|33|35|33|36|33|35|34|35| 34.2 |-30.6841
14 01|05 80 |32|35(33(35(33(34(34(33(34|34| 33.7 |-30.5557
15 01| 1 40 |35(35(34|36(34(35|37|35|36|36| 35.3 |-30.9583
16 05 (0.01| 60 |34]35|34|32|35|34|34|33|33|36| 34 |-30.6341
17 05|05 80 |34|33(33(35(35(34(35(32(34|34| 33.9 |-30.6074
18 05| 1 40 |35|36|35(34|35(36(34(35(34(35| 34.9 |-30.8583
19 0.01{0.01| 80 |31|34|34|34|36|34|34|35|34|33| 33.9 |-30.6096
20 0.01| 0.5 40 |35|35(34(34|35(36(36(36(35(34| 35 |-30.8835
21 0.01| 1 60 |34|34|35|35|34|34|34|34|34|35| 34.3 |-30.7067
22 0.1 (0.01| 80 |34]34|33|35|34|33|35|35|34|34| 34.1 |-30.6569
23 0105 40 |36|35|35(33|35(35(35(36(34(34| 34.8 |-30.8343
24 01| 1 60 |36|35|34|35|31|34|33|35|33|34| 34 |-30.6363
25 05 (0.01| 80 |34|34|34|32|33|34|34|36|34|33| 33.8 | -30.582
26 05|05 40 |37|35|34|35|35(35(34|34(35(36| 35 |-30.8842
27 05| 1 60 |34|36|34|34|33|34|35|33|36|32| 34.1 |-30.6606
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7.3 Comparison of ACO Algorithm to Mathematical Model

In this section, results of the mathematical model (see Section 5.4.2), and the
results of the ACO algorithm are compared. The ACO algorithm is run by 5
machines with 12 orders and 6 machines with 22 orders, which are the smallest and
the biggest parameter sets in the mathematical model (see Section 5.4.2).
Accordingly, the ACO algorithm can find the optimal solution with the smallest
parameter set, and it can find near optimal solution with the biggest parameter set.

This disparity is represented in Table 8. Furthermore, when the mathematical model
can find the optimal solution in 51 minutes with the biggest parameter set, the
proposed ACO algorithm can find near optimal solution in 1.5 minutes. The
sequence of the machines, objective function values and the computation times in
minutes are given in Table 8. These results represent that the proposed algorithm

performs better than mathematical model when the problem size gets bigger.

Table 11 Comparison of Mathematical Model and ACO Algorithm

TWT

M- of TWT Sequences of Math Computation Computation
of g " Sequences of ACO  Time of Math.  Time of ACO
N~ Math. — \cq Model Model (in min)  (in min)
Model '

5-12 12 12 M1={810,12} M1= {8,10} 0.07 0.1
M2= {6,3} M2={6,3,12}
M3={2,1} M3={2,1}
M4= {4,9} M4= {4,9}
M5= {5,7,11} M5= {5,7,11}

6-22 29 31 M1={2,2021} M1={10,3,19} 51 1,5
M2={8,10,1} M2={8,2,12,14,18}

M3={16,12,18,19} M3={1,20,21}
M4={5,11,13,22,4} M4={511,13,17,15}
M5={9,7,17,15}  M5={9,7,22,4}
M6={6,3,14} M6={16,6}

50



7.4 Experimental Design

This section explains the experimental design for the ACO algorithm
developed. It employes three factors and two levels. Therefore, 2°*3' general
multilevel experimental design is performed. Accordingly, this section first defines
the factors in Subsection 7.4.1. Then, the results of experimental design are given in
Subsection 7.4.2.

7.4.1 Definition of Factors

The proposed ACO heuristic algortihm is implemented by Matlab R2018a
running on Windows 8.1 with a Intel Core i5 processor with 4 GB of RAM. The
Matlab code is given in Appendix F. The algorithm is run by different combinations
of the factors of the experimental design by using the best ACO parameters which
are obtained in the Section 7.2. These factors are number of orders, number of
machines and number of order (product) type. Each order has one type of product,

this why an order type defines a product type.

Number of orders is one of the factors for this experimental design. It impacts
the performance of the algorithm. When the number of order is increased, the
complexity of the problem is also increased. This characteristic is shown in the

mathematical model results for this problem in Section 5.4.2.

Number of machines is an another factor of the experimental design.
According to the results of the mathematical model given in Section 5.4.2, the
number of machines affects the performance of the scheduling. For this reason, it is
selected to see the impact of this parameter.

Number of product types is also a significant factor for both the scheduling
problems and the industry. As it is discussed in Section 1.4, it is one of the
challenges of the scheduling. For this reason, the impact of this parameter is inquired

using the experimental design.
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7.4.2 Results of Experimental Design

The proposed ACO algorithm is run with the experiments as shown in Table
9. According to the 2**3' general multilevel factorial experimental design, 12
number of different combinations are observed by the ACO algorithm in the

experimental design and results of them are shown in Appendix G.

The ACO algorithm is also run with a real factory data and this experiment
was added to Table 12 as experiment 13. In this experiment the number of machines
is 42 and the number of orders is 218. This is the real number of machines that is
capable to produce the product type focused in this thesis in the company. 218 is
chosed as the number of orders because it is the average number of orders for the

product type focused in this thesis in the company.

The deviation ratio between the experiments are calculated by the equation
below. The deviation ratio of the experiments are shown in the Table 12. It is
obvious that, when the production capacity increases, total weigted tardiness

decreases and therefore, deviation ratio also decreases.

MWTCEoc = The minimum total weighted tardiness cost in experiment ¢ obtained
from ACO

MTWcCCPel = The minimum total weighted tardiness cost in among all

combinations obtained from ACO

MWTCé’O(:al _ MTwcGlobal
MTW CGlobal /
100

Deviation Ratio = (
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Table 12 Deviation Ratio and Average Computation Times of Experiments

_ Number of o Average
Experiment Numbe_r of Order Number DeV|a't|on Computation
No Machine (Product)  of Orders Ratio . R
Time (in minutes)
Type

1 6 4 60 0.0275 1.40
2 6 4 80 0.115 1.93
3 6 4 100 0.0725 2.42
4 6 7 60 0.1 1.78
S 6 7 80 0.125 2.06
6 6 7 100 0.12 2.61
7 8 4 60 0 1.85
8 8 4 80 0.075 2.10
9 8 4 100 0.095 2.50
10 8 7 60 0.0275 1.7

11 8 7 80 0.0725 2.00
12 8 7 100 0.0875 2.23
13 42 22 218 0.7575 16.5

Figure 10 and 11 represent the average computation time of experimental design in
minutes and minimum total weighted tardiness of the experiments, respectively.

3,000
2,500
2,000
1,500
1,000

,500

Average Computation Time

,000
1 2 3 4 5 6 7 8 9 10 11 12

Experiment Numbers

Figure 10 Average Computation Time of Experimental Design in Minutes
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Figure 11 Minimum Total Weighted Tardiness of the Experiments

7.4.2.1 Results of Experimental Design by Minimum Objective Function

Experimental design is employed first by using the minimum objective
function value. Accordingly, the results of experimental design are examined first by
the main effects plot that is given in Figure 12. According to the results, as number
of machines is increased from 6 to 8, the weighted tardiness drops significantly
below 30. With regard to number of product types, as number of product varieties is
increased from 4 to 7, the weighted tardiness increases significantly beyond 40.
These increases are linearly proportional as in the cases of number of machines and
number of product types. However, the changes in the weighted tardiness when the
number of orders is increased from 60 to 100, it presents a non-linear behavior, it
increases from 60 to 80, however at this point, it starts to decrease until 100. It is
noted that the weighted tardiness is still beyond 40 when the number of orders is 100.
Also, it shows the minimum objective value, that is 20, when the number of orders is
60.
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Figure 12 Main Effects Plot for Minimum Objective Function
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Figure 13 Interactions Plot for Minimum Objective Function
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Second, the interactions plot is given in Figure 13. According to the results in
Figure 11, in the case of interaction of number of machines and number product
types, the increase is substantial when the number of machines is 6 and when the

number of product types is increased from 4 to 7.

However, in the case of 8 machines, the increase in the weighted tardiness
when the number of product types is increased is very little, and not substantial. The
interaction between the number of machines and number of orders represents
significant changes as number of orders is increased. The weighted tardiness
increases significantly as number of orders is increased from 60 to 80 and it drops
from 80 to 100. This behavior is similar to the main effects of number or orders
given in Figure 10. The changes are similar when the number of machines is 8,
however the weighted tardiness values are smaller. When the increaction is between
number of product types and number of orders, the increase impact in the increase of
number of orders under both product types are similar. It represents similar increase
in the weighted tardiness until the number of orders is 80, then it represents decrease

until the number of orders is 100.

7.4.2.2 Results of Experimental Design by Average Computation Time

Experimental design is employed first by using the average computation time
value. Accordingly, the results of experimental design are examined first by the main
effects plot that is given in Figure 14. According to the results, as number of
machines is increased from 6 to 8, the average computation time increases
significantly to above 1.95 minutes. With regard to number of product types, as
number of product varieties is increased from 4 to 7, the average computation time
increases significantly to above 1.95 minutes. With regard to number of orders, as
number of orders increases from 60 to 100, the average computation time increases
too from 1.55 minutes to almost 2 minutes. These increases are linearly proportional
as in the cases of number of machines, number of product types and number of

orders.
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Second, the interactions plot is given in Figure 15. According to the results in
Figure 15, in the case of interaction of number of machines and number product
types, the increase when the number of machines is 6 and when the number of
product types is increased from 4 to 7, is substantial. Then, in case of 8 machines,
almost same amount of incease is observed when the number of product types is
increased. The interaction between the number of machines and number of orders
represents significant changes as number of orders is increased. The average
computation time increases significantly as number of orders is increased from 60 to
100. The changes are similar when the number of machines is 8, however the
average computation time values are smaller. When the interaction is between
number of product types and number of orders, the increase impact in the increase of
number of orders under both number of product types are similar for the number of
orders between 60 to 80. However, after 80 number of orders, the average
computation time decreases when the number of product types is 4 and the average

computation time continue to increase when the number of product types is 7.

Main Effects Plot

Number of Machines Number of Product Types
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1,95 - /' e
1,80 / —
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1,50 -

6 8 4 7
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1,65

1,50 - T T T
60 80 100

Figure 14 Main Effects Plot for Average Computation Time
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Figure 15 Interactions Plot for Average Computation Time

7.4.2.3 Regression Model by Average Computation Time

Based on the multilevel experimental design, the regression model of the
design is computed to show the main effects. The regression model is calculated as in
the following.

Min Obj Func = 17,2 - 6,42 Number of Machines + 3,39 Number of Product
Types + 0,550 Number of Orders

The normal probability and residual plots for the regression model is also
presented in Figure 14. However, it is noted that R square value is calculated less
then 90%, that represents the fitting on the regression could be better with the

increased number of problem instances (see Appendix L).
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Figure 16 Residual Plots for Minimum Weighted Tardiness

7.5 Concluding Remarks

In this Chapter, the appropriate ACO parameters are found. Then, the
mathematical model is compared with ACO algorithm and discussed. After that, the
experimental design is performed with the appropriate ACO parameters.
Furthermore, the developed ACO algorithm is also run for the real data of the
company. The average computation time is found as 16.5 minutes for 42 number of
machines, 22 number of product types and 218 number of orders. In this experiment,
the objective function minimum objective function value is found as 307 and 35
number of tardy orders are observed. Finally, the results are represented in Section
7.4.2.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In this chapter, the conclusions are given in section 8.1 and the future

research is discussed in Section 8.2.

8.1 Conclusions and Discussions

This thesis considers a real life problem in a textile company that produces
knitted fabric. The problem is to minimize the total weighted tardiness on the knitted
fabric production. In this study, a mathematical model is improved which minimizes
total weighted tardiness based on recent literature. The model considers machine
eligibility constraints and sequence-dependent setup times. The mathematical model
is run for a number of machines and orders. The weighted total tardiness values are
recorded for different scenarios under the mathematical model developed. It is
observed that the unrelated parallel machine problem with weighted tardiness
objective is an NP-hard problem and it takes significantly long time to find a solution

using the optimization software.

An ant colony optimization algorithm is developed to solve the problem with
real size dataset extracted from a real textile company and it shows acceptable
computation times. To show the effectiveness of the developed ACO algorithm, the
algorithm is first compared with the mathematical model and it is proven that the
ACO algorithm performs better than the mathematical model. However, this results

should be examined with more problem instances and data.

Furthermore, the best ACO parameters are found by several experiments.
Then, design of experiments is performed for the proposed ACO algorithm and their
results are analyzed by ANOVA, with the factors as follows: number of orders,

number of machines and number of product types.
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The interactions between these factors are shown by using ANOVA. It is
shown that the best weighted tardiness values are obtained when the number of
orders is 60, number of machines is 6 and the number of product types is 4. This is
also verified by the average computational results. In additon to the main effects
representation of these factors, a regression model is computed using statistical
software and normality of results with residuals are verified. According to the
regression model, number of machines has negative reducing impact on tardiness. An
increase on the number of machines causes to decrease the total weigted tardiness.
While the number of order number has low impact on the objective function, the
number od product types has higher impact on the total weighted tardiness.

In short, this thesis contributes to the literature under the following points.

e It applies a real scheduling problem using real data in the textile
industry as it lacks of such optimization studies.

e With a detailed literature, it is verified only a few population based
heuristics are applies on scheduling of textile production systems, and
this thesis adds a problem categories on a recent literature.

e The mathematical model applied incorporates machine eligibility
constraints that adds additional complexity on running the model.

e The results of developed ACO algorithm are compared to the results
of the mathematical model. Significant savings on computational
times are observed.

e The ACO algorithm is validated on a large scale problem with real
industry data and its efficiency is verified by obtaining an acceptable

solution.

8.2 Future Research

This study can be further improved using a mix of further methods. Such
methods could be hybrid heuristics that could improve the solution quality especially
under larger size of real datasets. In addition, ant colony approach can be further
combined specifically under daemon actions, local search. Further, lookahead and

backtracking on the solutions could be added on obtaining better results. Moreover,
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the developed ACO algorithm should be examined with bigger data sets under real
production environment. In addition, the algorithm can be improved by adding the

lot sizing property so that the algorithm can schedule the orders by splitting them.

Apart from improvements regarding with the ACO algorithm, there can be
further analyses with different sets of customer priorities and tardiness weights. The
overall penalty costs can be correlated with weighted tardiness values. Further,

experiments on product types can be improved.

62



REFERENCES

AEA, Sectorial Information Center, Aegean Textile and Raw Materials First Quarter
Report of 2018, address: http://upload.eib.org.tr/20150512/00000000005036.pdf

Allahverdi, A., Aldowaisan, T., & Gupta, J. N. D. 1999. “A review of scheduling
research involving setup considerations.” Omega, Vol. 27, No. 2, pp. 219-239.

Anderson S.W. 1995. “Measuring the Impact of Product Mix Heterogeneity on
Manufacturing Overhead Cost.” The Accounting Review, Vol. 70, No. 3, pp. 363-
387

Arnaout, J.-P., G. Rabadi, and R. Musa. 2009. “A Two-stage Ant Colony
Optimization Algorithm to Minimize the Makespan on Unrelated Parallel Machines
with Sequence-dependent Setup Times.” Journal of Intelligent Manufacturing, Vol.
21, No. 6, pp. 693-701

Athreya, S., and Venkatesh, DR. Y. D. 2012. “Application Of Taguchi Method For
Optimization Of Process Parameters In Improving The Surface Roughness Of Lathe
Facing Operation.” International Refereed Journal of Engineering and Science, Vol.
1, No. 3, pp. 13- 19

Behnamian, J., M. Zandieh, and S. Fatemi Ghomi. 2009. “Parallel-machine
Scheduling Problems with Sequence-dependent Setup Times Using an ACO, SA and
VNS Hybrid Algorithm.” Expert Systems withApplications, Vol. 36 No. 6, pp.
9637-9644.

63


http://upload.eib.org.tr/20150512/00000000005036.pdf

Bertrand, J. and Fransoo, J. 2002. Operations Management Research Methodologies
Using Quantitative Modeling. International Journal of Operations & Production
Management, Vol. 22, pp. 241-264.

Bilge, U., F. Kirag, M. Kurtulan, and P. Pekgiin. 2004. “ATabu Search Algorithm for
Parallel MachineTotal Tardiness Problem.” Computers & Operations Research, Vol.
31, pp. 397-414.

Chen R.-C., P.-H. Hung, M.-C. Wu. 2007. “Scheduling Production Using Genetic
Algortihm for Elastic Knitted Fabrics with Wide Ranges of Quantities Demanded.”
Proceedings of the 7" WSEAS International Conference on Simulation, Modelling
and Optimization, Beijing, China, September 15-17, pp. 182-187.

Dorigo, M., Di Caro, G. and Gambardella, LM. 1999. “Ant algorithms for distributed
discrete optimization.” Artificial Life Vol. 5 No. 2, pp. 137-172

Garey, M. R., and Johnson, D. S. 1979. “Computers and Intractability: A Guide to
the Theory of NP-Completeness.” San Francisco: W. H. Freeman and Company,
Vol.5 No.1B,

Hamzadayi, A. and G. Yildiz. 2017. “Modeling and Solving Static m Identical
Parallel Machines Scheduling Problem with a Common Server and Sequence-

dependent Setup Times.” Computers & Industrial Engineering, Vol. 106, pp. 287—
298

Joo, C.M. and B.S. Kim. 2015. “Hybrid Genetic Algorithms with Dispatching Rules
for Unrelated Parallel Machine scheduling with Setup Time and Production

Availability.” Computers & Industrial Engineering, Vol. 85, pp. 102-109
Karp, R. M. 1972. Reducibility among combinatorial problems. In R. E. Miller &

J.W. Tatcher (Eds.), Complexity of computer computations. New York: Plenum
Press, pp. 85-103.

64


http://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/journal/Home.aspx?IssueID=3923

Kayvanfar, V. and GH.M Komaki., A. Aalaei, M. Zandieh. 2014. “Minimizing Total
Tardiness and Earliness on Unrelated Parallel Machines with Controllable Processing
Times.” Computers & Operations Research, Vol. 41, pp. 31-43.

Kerkhove, L.P. and M. Vanhoucke. 2014. “Scheduling of Unrelated Parallel
Machines with Limited Server Availability on Multiple Production Locations: A
Case Study in Knitted Fabrics.” International Journal of Production Research, Vol.

52, No. 9, pp. 2630-2653

Koulamas, C. 1997. “Decomposition and Hybrid Simulated Annealing Heuristics for
the Parallel-Machine Total Tardiness Problem.” Naval Research Logistics, Vol. 44,
pp. 109-125

Lee J.-H, J.-M. Yu and D.-H. Lee. 2013.“A Tabu Search Algorithm for Unrelated
Parallel Machine Scheduling with Sequence- and Machine-dependent Setups:
Minimizing Total Tardiness” International Journal of Advanced Manufacturing
Technology, Vol. 69, No. 9-12, pp. 2081-2089

Lin, S.-W., Z.-J. Lee, K.-C.Ying, and C.-C. Lu. 2011. “Minimization of Maximum
Lateness on Parallel Machines with Sequence-dependent Setup Times and Job

Release Dates.” Computers & Operations Research, Vol. 38, No. 5, pp. 809-815.

Lin C.-W., Y.-K. Lin and H.-T. Hsieh. 2013. “Ant Colony Optimization for
Unrelated Parallel Machine Scheduling” International Journal of Advanced

Manufacturing Technology, Vol. 67, pp. 35-45

Lin Y.-K and F.-Y. Hsieh. 2013. “Unrelated Parallel Machine Scheduling with Setup
Times and Ready Times.” International Journal of Production Research, Vol. 52, No.

4, pp. 1200-1214,

Mendes, A., and F. Muller. 2002. “Comparing Metaheuristic Approaches for Parallel
Machine Scheduling Problems with Sequence-dependent Setup Times.” Production
Planning & Control, 2002, Vol. 13, No. 2, pp. 143-154.

65


https://link.springer.com/journal/170/69/9/page/1

Ngai EEW.T., S. Peng, P. Alexander, K.K.L. Moon, 2014.“Decision Support and
Intelligent Systems in The Textile and Apparel Supply Chain: An academic Review
of Research Articles.” Expert Systems with Applications Vol. 41, pp. 81-91

Pimentel C., F. Alveos, A. Duarte and J.M.V. Carvalho. 2006. “A Scheduling Model
for a Knitted Planning Problem.” Manufacturing Fundamentals: Necessity and

Sufficiency, Ch. 16
Pinedo, M. L. 2008. “Scheduling Theory, Algorithms and Systems.” (3" ed.)

Radhakrishnan, S. and Ventura, J. 2000. “Simulated Annealing for Parallel Machine
Scheduling with Earliness-Tardiness Penalties and Sequence-dependent Set-up

Times.” International Journal of Production Research, VVol. 38, pp. 2233-2252

Tavakkoli-Moghaddam, R., F.Taheri, M. Bazzazi,M. lzadi, and F. Sassani. 2009.
“Design of a Genetic Algorithm for Bi-objective Unrelated Parallel Machines
Scheduling with Sequence-dependent Setup Times and Precedence Constraints.”
Computers & Operations Research Vol. 36 No. 12, pp. 3224-3230

The Textile Hub. 2013. “Production Planning and Scheduling Software for the
Textile Industry”. Accessed on
https://textInfo.wordpress.com/2013/01/23/production-planning-and scheduling-
software-for-the-textile-industry/ [January 23, 2015]

TTM  Machine, 2018. Online catalog for products. Accessed on

https://www.ttmmakine.com/eng/products

Sen, A. 2014.“The US fashion industry: A supply chain review.” International
Journal of Production Economics, Vol. 114, pp. 571-593

66


https://www.journals.elsevier.com/international-journal-of-production-economics
https://www.journals.elsevier.com/international-journal-of-production-economics

Vallada, E., and R. Ruiz. 2011. “A Genetic Algorithm for the Unrelated Parallel
Machine Scheduling Problem with Sequence Dependent Setup Times.” European
Journal of Operational Research Vol. 211, pp. 612622

67



APPENDICES

68



Appendix A

List of Pus and Fein Values

Pus Fein
10 12
11 15
12 16
13 18
14 20
15 22
16 28
17 36
18 44
19

20

22

26

30

32

34

38
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Appendix B

Id Definitions of Machine Types According to the Knitting Types

TYPE_ID | TYPE

SINGLE JERSEY

VANIZE SINGLE JERSEY

PIQUE

2 THREAD

TOWEL

POLAR

3 THREAD

OO |INOoO|OT|A~W|F-

RIBB

[EEN
o

TRICOT

[EEN
[EEN

INTERLOCK
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Appendix C

Machine Type Id, Pus and Fein Values

Machine Type | Pus Fein Type
1 10 16 9

2 11 16 9

3 12 16 9

4 12 28 6

5 13 16 9

6 13 28 1

7 14 16 9

8 14 28 1

9 15 16 9

10 15 16 9

11 15 28 1

12 16 15 9

13 16 18 9

14 16 28 1

15 16 18 9

16 17 15 9

17 17 16 9

18 17 28 1

19 17 16 9

20 18 18 9

21 18 18 9

22 19 18 9

23 19 16 9

24 20 18 9

25 22 18 9

26 30 22 1-4-5
27 30 28 1-4-5
28 30 18 9-11
29 30 28 1-3-4-5
30 30 28 9-11
31 30-34 18-20 9-11
32 32 28 1-4-5
33 32 28 1-3-4-5
34 32 28 1-3
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35 32 28-36 1-3
36 32 28 1

37 32 22 1-3-4-5
38 32 20 1-3-8
39 32 22 1-4-5
40 34-38 18-20 9-11
41 34 16 9

42 34 28 1-4-5
43 34-38 18-20-28 | 9-11
44 34 28 11
45 34 18 9-11
46 34 22-28 1-3
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Appendix D

Mathematical Model in OPL

int nborders=22;
range order=1..nborders;

int nbmachines=6;
range machine=1..nbmachines;

int MPozitions=22;
range position=1..MPozitions;

int w[1..nborders]=...; // Weight of order j

int R[1..nborders]=...; //Release time of job j in day

int D[1..nborders]=...; //due date of oder in day

int Q[1..nborders]=...; // quantity of order

float P[i in 1..nborders,k in machine]=...; //machine dependent processing times of
order in day

float S[1..nborders,1..nborders]=...;// Time needed to switch from job j to job i in
hour

int M=100000; // big M

int U[1..nborders,1..nbmachines]=...; // machine eligibility set

dvar float+ C[1..nborders]; //Completion time of job j in hour

dvar int+ Cday[1..nborders]; // Completion time of job j in day

dvar int+ T[1..nborders]; // Number of days job j is late

dvar int+ X[order,position,machine] in 0..1; // 1 if job j is planned on position k of
machine m, otherwise 0

minimize sum(j in order)(W[j]1*T[jD);
subject to {

forall(j in order){
cnst1:C[j]/24<=Cday[j];
}

forall(j in order){
cnst2:(sum(m in machine:U[j,m]>0)(sum(k in position)
X[j.k.m]))==1;
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forall(j in order){
cnst3:(sum(m in machine)(sum(k in position) X[j,k,m]))==1;

}

forall(k in position, m in machine ){
cnstd:sum(j in order) X[j,k,m]<=1,
¥

forall(k in position,m in machine:k>1){
cnsts:(sum(j in order) X[j,k,m])-(sum(j in order)X[j,k-
1,m])<=0;
¥

forall(j in order,i in order, k in position, m in machine:k>1){
cnst6:C[i]+M*(2-X[i,k,m]-X[j,k-
1,m])>=((P[i,m]*Q[i])/60)+S[j.i]1+C[I;
¥
forall(j in order){
cnst7:C[j]>=R[j]+(sum(m in machine)(sum(k in
position)((P,m]*Q[j1/60)*X[j.k.mI)));
}

forall(j in order){
cnst8:T[j]>=Cday[j]-(sum(k in position)(sum(m in
machine)(X[j,k,m]*D[jD)));
}
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Appendix E

Statistics of Mathematical Models in OPL
5 Machines and 12 Orders:

[#) Sorunlar Bl Komutdosya.. = Gozumler 72 Geliskiler = Gevgetmeler 7.7 Iglemci gainl... Istatistikler 52 |5 Profilleyici

B DOcplexcloud & CPLEX Sunue.. = B

Istatistik Deger |— En iyi ddgam En iyi tamsay: Tamsayih gazim
v Cplex solution (optimal) with objective 12
Constraints 8085
w Variables 756
Binary 720 60
Integer 24
Other 12
Meon-zero coefficients 34644 0
~ MIP
Objective 12
Incumbent 12
Nodes 3882 20
Remaining nodes o
Iterations 22283
w Solution pool
Count 1
Mean objective 23727273 Sare (saniye)
00:00:04:77
6 Machines and 22 Orders:
[£7 Sorunlar & Komut dosyasi gunlugt 50 Geziimler 7= Celigkiler & Gevgetmeler ! Islemci gunlugu @ Istatistikler & ° Profilleyici & DOcplexcloud & CPLEX Sunuculan =g
Istatistik Deger [—Eniyiduagam - Eniyitamsayr  Tamsayih gozim
4| Cplex solution (optimal) with objective 29 250
Constraints 61352
4 Variables 2970
Binary 2904 200
Integer 44
Other 22
Non-zero coefficients 255838 150
4 MIP
Objective 29 100
Incumbent 29 00z = =0
< AN -
Remaining nodes 0 Ozellik Deger
Iterations 10846176 Ad T
4 Solution pool Boyut 1
Count 19 2940 2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050 Topla 22
Mean objective 86,421053 Stire (saniye) < >
00:50:53:66
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6 Machines and 20 orders:

Istatistik
4 Cplex
Constraints
4 Variables
Binary
Integer
Other
Naon-zero coefficients
4 MIP
Objective
Incumbent
Nodes
Remaining nodes
Iterations
4 Solution pool
Count
Mean objective

Deger

solution (optimal) with objective 26

45934

146764
0o
2288595

24
65,25

6 Machines and 16 Orders:

Istatistik
4 Cplex
Constraints
4 Variables
Binary
Integer
Other
Non-zero coefficients
4 MIP
Objective
Incumbent
Nodes
Remaining nades
Iterations
4 Solution pool
Count
Mean objective

Deger

solution (optimal) with objective 16

23306
1584
1536

32
16
98448

16
16
2594
0
17874

19
36,789474

Istatistikler 52

Yazilir

= En iyi dugum

En iyi tamsay!

Tamsayili goztim

Istatistikler &

76

460 470 480 490 500 510 520 530 540 550 560
Sure (saniye)
Araya Ekle 10:28-264
=}
[=Eniyidogom = Eniyitamsay  Tamsayili ozom

Stre (saniye)

i W R W

4 3 Kisitlar (3

4 = jinorde
= cnst2 &
< >
EHOz. 8 — 8
L
Ozellik Deger
Ad  MPozitions
I Dogru

Lyt
»
q

< >
00:09:23:18

®

Amag
a ¥ Ksitlar
4 = jinorde
= cnstl
4 = jinorde
- nst2 o
< >

HOz. 8 ~ 8
B3 t v

Ozellik Deger

< >
00:00:15:42



Appendix F

ACO Matlab Code with Local Search Algorithm

%% ACO Main Loop

for it=1:MaxIt
%% Ant generation
for k=1:NbANT
%% Finding S1
for i=1:NbOrders

Probl=taul (i, :).%alfa.*etal (i, :) . "beta;
NonzeroProbl=find (Probl~=0) ;
EligibleProbl=Probl (NonzeroProbl) ;
EligibleProbl=EligibleProbl/sum(EligibleProbl) ;
x=RWSLocal (EligibleProbl) ;

$x=find (Probl == max (Probl (:))):;
$endd=x (end) ;
S1(k,i,it)=NonzeroProbl (x);

end
%% Finding S2
for j=1:NbMachines

Prob2=zeros (NbOrders, NbOrders) ;
DummyS1=S1 (k, :,1it);
NotAssignedOrders=find (DummyS1l~=7) ;
AssignedOrders=find (DummySl==7j) ;
sizeofarrayl=size (NotAssignedOrders, 2) ;
sizeofarray2=size (AssignedOrders, 2) ;
if isempty (AssignedOrders)

else

if sizeofarray2==1
S2(3,1,k,1it)=AssignedOrders;

else

for t=1:NbOrders

for g=l:sizeofarray2
if t==AssignedOrders (g)
Prob2 (t, :)=tau2(t,:).”alfa2.*eta2(t,:) . "beta2;
Prob2 (t, :)=Prob2(t, :)/sum(Prob2 (t,:));
Prob2 (t, t)=0;
for r=l:sizeofarrayl
index1=NotAssignedOrders (r) ;
Prob2 (t, index1)=0;
end
else
end
end
end
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[M,N]=find (Prob2==max (Prob2(:)));
S2(]rlrkrlt):M(l);
S2(]r2rkrlt):N(l);

for h=3:sizeofarray?2

indx=S2 (j,h-1,k,1it);

DummyArray=Prob2 (indx, :) ;

for z=1:NbOrders
if S2(j,z,k,it)~=0
DummyArray (S2 (j,z,k,it))=0;
end

end

seg=find (DummyArray==max (DummyArray(:)));

S2(j,h,k,it)=seqg(end);

end
end
end

end

%% TWT Calculation

for 1=1:NbMachines
if S2(1,1,k,it)==0
else

C(k,S82(1,1,k,1it),it)=RT(S2(1,1,%k,it))+((ProcessTime (S2(1,1,k,it),1)*
Quantity(S2(1,1,k,it)))/60);
cday (k,S2(1,1,k,it),it)=ceil(C(k,S2(1,1,k,it),it)/24);
Tday (k,S2(1,1,k,it),it)=d(s2(1,1,k,it))-
Cday(k,S2(1,1,%k,1it),it);
if Tday(k,S2(1,1,k,it),it)<0

Tday (k,S2(1,1,k,1it),it)=abs(Tday(k,S2(1,1,k,it),1it));
else
Tday (k,S2(1,1,k,it),it)=0;
end
for f=2:NbOrders
if S2(1,f,k,it)==0
else
if (C(k,82(1,f-1,%k,it),1it)+Setup(S2 (1, f-
1,k,1t),S82(1,f,k,1it)))<RT(S2(1,f,k,1it))

C(k,s2(1,f,%k,1it),it)=((ProcessTime (S2(1,f,k,it),1l) *Quantity(S2(1,£f,k
,1t)))/60)+RT (S2 (1, f,k,it));
else
C(k,S2(1,f,k,1it),1it)=(C(k,S2 (1, £-
1,k,it),it)+(((ProcessTime (S2(1,f,k,it),1)*Quantity(S2(1,f,k,it))))/
60)+Setup(S2(1,£f-1,%k,1t),S82 (1, f,k,it)));
end

Cday (k,S2 (1, f,k,it),it)=ceil ((C(k,S2(1, £, k,it),it)/24));
Tday (k,S2 (1, £, k,it),it)=d(S2(1, £, k,it))-
Cday(k,S2 (1, f,k,1it),it);
if Tday(k,S2(1,f,k,it),it)<0

Tday (k,S2(1,f,k,it),it)=abs(Tday(k,S2(1,f,k,it),1it))
else
Tday (k,S2(1,f,k,it),1it)=0;
end
end
end
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end
end

CostFunction(k,it)=0;

for s=1:NbOrders

CostFunction (k,it)=CostFunction (k,it)+ (Tday(k,s,it)*w(s));
end

if CostFunction (k,it)<BestSol
BestSol=CostFunction(k,it);
BestAnt=k;
BestS1=S1(k, :,it);
BestS2=S2(:,:,k,it);
BestIt=it;

end

end

%% Local Search Algortihm
for n=1:NDLANT
for ga=1l:MaxItLoc

CdayLocal=zeros (1,NbOrders) ;

CLocal=zeros (1,NbOrders) ;

TdayLocal=zeros (1,NbOrders) ;

addlist=][];

for yx=1:NbMachines

S2Dummy=S2 (yx, :,n,it) ;

NonZeroS2Dummy=find (S2Dummy~=0) ;

if size (NonZeroS2Dummy,?2)>1
addlist=[addlist yx];

else

end

end

randomno=randi ([1 size(addlist,2)1);

ha=addlist (randomno) ;

DummyS2Loc(:, :)=S2(:,:,n,it);
indxl=size (find (DummyS2Loc (ha, :)~=0),2);
RandNol=randi ([1 indx1]);
RandNo2=randi ([1 indx1]):;
dum=DummyS2Loc (ha, RandNol) ;
DummyS2Loc (ha, RandNol)=DummyS2Loc (ha, RandNo2) ;
DummyS2Loc (ha, RandNo2) =dum;
for la=1:NbMachines

if DummyS2Loc (la,l)==0
else

CLocal (DummyS2Loc (la,1))=RT (DummyS2Loc (la,1) )+ ((ProcessTime (DummyS2L
oc(la,1),la)*Quantity (DummyS2Loc (la,1)))/60);

CdayLocal (DummyS2Loc (la,1))=ceil ( (CLocal (DummyS2Loc (la,1))/24));
TdayLocal (DummyS2Loc (la, 1) )=d (DummyS2Loc (la,1)) -
CdayLocal (DummyS2Loc (la, 1)) ;
if TdayLocal (DummyS2Loc (la, 1)) <0

TdayLocal (DummyS2Loc (la, 1l))=abs (TdayLocal (DummyS2Loc (la,1)));
else

TdayLocal (DummyS2Loc (la, 1) )=0;
end

for fa=2:NbOrders
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if DummyS2Loc (la, fa)==
else

if (CLocal (DummyS2Loc (la, fa-
1)) +Setup (DummyS2Loc (la, fa-
1) ,DummyS2Loc (la, fa)) ) <RT (DummyS2Loc (la, fa))

CLocal (DummyS2Loc (la, fa))=((ProcessTime (DummyS2Loc (la, fa), la) *Quanti
ty (DummyS2Loc (la, fa)) /60) +RT (DummyS2Loc (la, fa))) ;
else

CLocal (DummyS2Loc (la, fa) )= (CLocal (DummyS2Loc (la, fa-
1))+ (((ProcessTime (DummyS2Loc (la, fa), la) *Quantity (DummyS2Loc (la, fa))
)) /60)+Setup (DummyS2Loc (la, fa-1), DummyS2Loc (la, fa)));

end

CdayLocal (DummyS2Loc (la, fa))=ceil ( (CLocal (DummyS2Loc (la, fa)) /24));

TdayLocal (DummyS2Loc (la, fa) )=d (DummyS2Loc (la, fa)) -
CdayLocal (DummyS2Loc (la, fa));
if TdayLocal (DummyS2Loc (la, fa))<0

TdayLocal (DummyS2Loc (la, fa) )=abs (TdayLocal (DummyS2Loc (la, fa)));
else
TdayLocal (DummyS2Loc (la, fa))=0;
end
end
end
end
end

for sa=1:NbOrders

CostFunctionLocal (n,ga, it)=CostFunctionLocal (n,ga,it) + (TdayLocal (sa)
*w(sa));
end

if CostFunctionLocal (n,ga,it)<CostFunction(n,it)
CostFunction (n,it)=CostFunctionlLocal (n,ga,it);
S2(:,:,n,it)=DummyS2Loc (:, :);
Tday (n, :,it)=TdayLocal;
Cday (n, :,it)=CdayLocal;
C(n,:,it)=CLocal;
if CostFunction (n,it)<BestSol
BestSol=CostFunction (n,it) ;
BestAnt=n;
BestIt=it;
BestS1=S1l(n,:,it);
BestS2=52(:,:,n,it);
else
end

end

end

end

%% Pheromone deposit
for antt=1:NbANT
for a=1:NbOrders
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for v=1:NbMachines
if S1(antt,a)==v

DeltaTaul (a,v)=0.5/CostFunction (antt,it);
taul (a,v)=taul (a,v)+DeltaTaul (a,Vv);

end

end
end

for x=1:NbMachines
for y=l:size(find(S2 (x,:,antt,it)~=0),2)-1

tau2 (S2 (x,y,antt,it),S2(x,y+1l,antt,it))=tau2(S2 (x,y,antt,it),S2(x,y+
1,antt,it))+(0.5/CostFunction (antt,it));
end

end

end
%% Pheromone Evaporation

taul=(l-eva) *taul;

tauz2=(l-eva) *tau2;
%% Best solution

BestCost (it)=BestSol;

disp(['Iteration ' num2str (it) ': Best Cost = '
num2str (BestCost (it)) ]) ;
end

%% Results

figure;

plot (BestCost, 'LineWidth', 2) ;
xlabel ('Iteration');

ylabel ('Best Cost');

grid on;
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Appendix G

Results of the ACO Algorithm

Average

Obj.  Computation
Value Time in
Minutes

Experiment

No Best Sequence of Machines

1 M1={59,35,1,48,10,11,3,39,56,12,51,4}
M2={34,33,37,36,7,9,8,41,14,6,13}
M3={2,5,15,46,45,5038,44,40,42}
M4={21,54,27,22,26,29,23,57,58,47,32} 15 1,3
M5={17,28,30,31,25,20}
M6={18,24,19,16,55,43,60,49,52,53}

2 M1={7,8,3,15,60,14,12,11,10,75,67,77,65,68,48,49}
M2={45,43,6,4,9,13,54,16,17,2,53}
M3={1,51,47,46,5,52,20,63,74,76,72,61,,66,19}
M4={62,26,37,27,28,25,41,37,57,79,78,71,59}
M5={35,29,23,39,31,39,40,38,36,34} 50 2
M6={44,33,55,21,22,48,70,73,69,64,24,50,80,56,42,58}

3 M1={20,18,6,87,8,98,91,16,84,71,22,97,59,85,74,10,80,7
0,54,23,67,69}
M2={2,14,4,7,5,64,17,24,21,12,68,61,58,63,55,53,11}
M3={9,1,3,15,19,25,13,56,62,65,60,57,95,73,83,96,77,72
75,86}
M4={76,29,29,37,51,92,82,46,50,93,81,33,49,78,99,32,4
7}

M5={28,34,36,41,43,44,48,52,35,45}
M6={42,31,40,94,39,30,79,66,90,27,89,38,100,88}

33 2.5

4 M1={1,59,11,39,56,3,51,57,49,54,47,32}
M2={7,4,9,5,3,33,34,41,42}
M3={37,46,2,36,35,10,8,38,44,6,45,29}
M4={58,48,16,14,15,12,27,50,23,43,13} 44 1.6
M5={21,26,18,19,20,22,28}
M6={55,24,17,30,31,52,25,60,53,40}

S M1={62,46,48,47,49,6,38,40,79,76,60,77,63,52,53,2,13,6
5}

M2={7,9,43,8,3,4,4551,54,41,37}
M3={1,10,80,5,14,12,59,71,68,64,11,61,42,56}
M4={73,19,17,15,20,32,7070,57,18,67,58,78,16,27,34,33 | 54 2

¥
M5={31,29,26,24,25,28,35,30}
M6={21,69,23,22,75,44,55,50,66,74,36,39,72}
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10

11

12

M1={2,5,3,13,4,91,57,66,59,97,71,88,80,51,46,74,98,53,
86}

M2={7,8,11,17,1,10,16,47,45,67,68}
M3={77,6,14,15,9,12,78,94,100,90,87,48,72,73,75,79,50,
61,58,56,69,70,62}
M4={81,76,25,23,24,22,31,37,92,18,20,19,32,21,82}
M5={40,26,28,30,3829,41,43,44,39,33,27,42}
M6={52,36,34,35,60,63,65,55,64,54,93,49,83,96,84,89,9
5,85,99}

M1={1,3,10,2,57,39,49,42}
M2={7,59,48,14,51,52,4,11,45}
M3={41,33,6,37,5,38,35,13}
M4={8,9,15,46,36,44,43,12,54}
M5={17,21,30,20,47,58,53,56}
M6={25,24,27,26,29}
M7={18,55,60,28}
M8={16,34,23,32,19,22,31,50,40}

M1={4,3,2,51,74,79,77,67,61,72}
M2={1,73,68,10,19,18,16,11,13,54}
M3={7,45,6,43,47,17,4}
M4={46,9,55,15,8,48,5,20,12,14,65,60,64,63,71,58,49}
M5={26,27,25,31,22,34,41,57,78}

M6={38,30,33,36}
M7={23,62,69,32,50,24,28,80,52,59,53}
M8={21,35,40,39,42,29,37,56,66,76,70,75}

M1={98,91,97,57,4,13,1,20,19,2}
M2={87,3,15,67,6,24,25,22,5,9,70,64,56,11,88,73,23}
M3={53,68,14,16,7,18,63}
M4={10,17,21,12,858,62,78,74,85,100,72}
M5={30,75,93,71,96,90,41,86,37,32,80,79}
M6={42,36,48,34,45,40,33,38}
M7={76,49,92,94,95,82,84,77,29,47,89,27,69}
M8={52,31,59,55,46,43,65,28,44,39,35,60,26,51,54,61,5
0,83,81,99,}

M1={59,5,43,45,31,52,11}
M2={3,9,48,54,57,47,32,42}
M3={1,4,6,7,34}
M4={36,2,35,38,8,46,30,49,10,44}
M5={15,17,14,12,27,25,13,22,23}
M6={18,24,21,16,26}
M7={29,60,55,58,39,53}
M8={41,33,37,28,20,56,19,50,40,51}

M1={73,3,11,4,44,10,76,40,49,71}
M2={2,5,8,7,69,62,37,57,41,14,38}
M3={45,43,47,54,13,12,39}
M4={1,9,6,60,75,70,80,61,78,59,68,65,58,56,55}
M5={32,20,64,15,19,28,29,30,18,16,17,72,79}
M6={23,34,31,24,36}
M7={51,26,27,48,42,52,74,67,33}
M8={21,35,22,25,77,66,46,63}

M1={50,93,87,80,46,97,2,9,58}
M2={176,68,54,59,84,98,91,17,94,49,71,73,72}
M3={4,8,16,7,1,13,12,61,55,64,47,51}
M4={14,62,77,96,82,63,6,74,69,99,10}

52

35

42

15

36

39

2.6

2.25

25

1.7

2.225
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M5={18,25,23,37,22,19,21,90,89,35,85,86,75,24,81,88}
M6={36,40,31,29,32,41}
M7={30,44,28,45,48,38,33,43,27,70,56,95}
M8={66,92,53,57,52,100,39,78,83,26,60}
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Appendix H

Structure of the Design of Experiments

Av
S$tdOr |RunO |PtT |Blo |Numberof |Number of Number of | Min Obj Corgnp
der |rder |ype |cks |Machines Product Types | Orders Func Time

2 1 1 1 6 4 80 50 1.1
8 2 1 1 8 4 80 35 2.1
6 3 1 1 6 7 100 52 1.2
4 4 1 1 6 7 60 44 1.78
7 5 1 1 8 4 60 4 1.1
10 6 1 1 8 7 60 15 1.95
7 1 1 6 4 100 33 2.43
8 1 1 6 7 80 54 2.5
11 9 1 1 8 7 80 36 2
1 10 1 1 6 4 60 15 14
12 11 1 1 8 7 100 39 2.25
9 12 1 1 8 4 100 42 2.5
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Appendix |

Structure of the Design of Experiments -Multilevel Factorial Design

Factors: 3 Replicates: 1
Base runs: 12 Total runs: 12
Base blocks: 1 Total blocks: 1

Number of levels: 2. 2. 3

Design Table (randomized)

Run Blk A B C
1 11 1 2
2 1 2 1 2
3 1 1 2 3
4 1 1 2 1
5 1 2 1 1
6 1 2 2 1
7 1 1 1 3
8 11 2 2
9 1 2 2 2

10 1 1 1 1
11 1 2 2 3
12 1 2 1 3

86



Appendix J

Results of the Design of Experiments-Minimum Objective Function

General Linear Model: Min Obj Func

Factor Type Levels Values
Number of Machines fixed 2 6. 8
Number of Product Types fixed 2 4.7
Number of Orders fixed 3 60. 80.

Analysis of Variance for Min Obj Func,

Source

Number
Number
Number
Number

of Machines

of Product Types
of Orders

of Machines*

Number of Product Types
Number of Machines*Number of Orders
Number of Product Types*
Number of Orders
Number of Machines*
Number of Product Types*
Number of Orders
Error
Total

** Denominator of F-test is zero or

DF Seq SS
1 494,08
1 310,08
2 1436,17
1 154,08
2 182,17
2 160,17
2 50,17
O *

11 2786,92

undefined.
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100

Adj SS
494,08
310,08
1436,17
154,08

182,17
160,17

50,17

using Adjusted SS for Tests

Adj MS
494,08
310,08
718,08
154,08

91,08
80,08

25,08

* %

* K

* %

* K

* K

* %

* %



Appendix K

Results of the Design of Experiments-Average Computation Time

General Linear Model: Avg Comp Time

Factor
Number
Number
Number

Type Levels
of Machines fixed 2
of Product Types fixed 2
of Orders fixed 3

Analysis of Variance for Avg Comp Time,

Source
Number
Number
Number
Number

of Machines

of Product Types
of Orders

of Machines*

Number of Product Types

Number
Number

of Machines*Number of Orders
of Product Types*

Number of Orders

Number

of Machines*

Number of Product Types*
Number of Orders

Error
Total

** Denominator of F-test is

zZero or

Values
6. 8
4. 7
60.

80. 100

using Adjusted SS for Tests

DF Seq SS Adj SS Adj MS
1 0,18501 0,18501 0,18501
1 0,09187 0,09187 0,09187
2 0,60382 0,60382 0,30191
1 0,00021 0,00021 0,00021
2 0,19532 0,19532 0,09766
2 1,25645 1,25645 0,62823
2 0,85762 0,85762 0,42881
O * * *

11 3,19029

undefined.
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* K
* %
* K

* %

* %

* K

* K



Appendix L

Results of the Regression Model- Minimum Ojective Function
Regression Analysis: Min Obj Func

The regression equation is
Min Obj Func = 17,2 - 6,42 Number of Machines + 3,39 Number of Product Types
+ 0,550 Number of Orders

Predictor Coef SE Coef T P
Constant 17,19 30,40 0,57 0,587
Number of Machines -6,417 3,251 -1,97 0,084
Number of Product Types 3,389 2,167 1,56 0,157
Number of Orders 0,5500 0,1991 2,76 0,025
S = 11,2625 R-Sg = 63,6% R-Sg(adj) = 49,9%

Analysis of Variance

Source DF SS MS F P
Regression 3 1772,2 590,7 4,66 0,036
Residual Error 8 1014,7 126,8

Total 11 2786,9

Source DF Seqg SS

Number of Machines 1 494,1

Number of Product Types 1 310,1

Number of Orders 1 968, 0
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