
AN ACTOR MODEL BASED PLATFORM
FOR DEVELOPING CONTEXT-AWARE

APPLICATIONS

ORKUT KARAÇALIK

DECEMBER 2018

AN ACTOR MODEL BASED PLATFORM
FOR DEVELOPING CONTEXT-AWARE

APPLICATIONS

a thesis submitted to

the graduate school of

natural and applied sciences of

izmir university of economics

by

ORKUT KARAÇALIK

in partial fulfillment of the requirements

for the degree of

master of science

in the graduate school of natural and applied sciences

DECEMBER 2018

ABSTRACT

AN ACTOR MODEL BASED PLATFORM FOR
DEVELOPING CONTEXT-AWARE APPLICATIONS

ORKUT KARAÇALIK

M.S. in Computer Engineering

Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Ufuk Çelikkan

Co-Supervisor: Asst. Prof. Dr. Kaan Kurtel

December 2018

Applications using Information and Communication Technologies are collect-

ing and processing a diverse range of data using networks of machines connected

to each other through communication networks. This phenomenon is captured in

the term Internet of Things. In an open, dynamic and continuously changing envi-

ronment, generated data must be interpreted by the applications on a contextual

basis. A piece of information is considered context data only if it is interpreted;

otherwise, it is simply information belonging to an environment. The goal of this

thesis is to present the design and implementation of an infrastructure platform to

facilitate application developers’ rapid and easy development of context-aware ap-

plications for various domains. The platform is inspired from an operating system

and modeled using a layered architecture. The platform relieves the application

developers from doing tasks such as data collection, storage and management. Ac-

tor Model is chosen as the computational model to implement platform services,

and a viable alternative to meet the needs of demanding modern systems. It de-

fines how the system’s components should behave and interact with each other.

The platform offers its functions as services implemented using Actors. The core

services are Security and Privacy, Rule, Data Management and, Alarm and Noti-

fication. The platform provides two interfaces to applications, and data providers

to communicate with the platform. Applications can use either a RESTful inter-

face or an application programming library when interacting with the platform.

Authentication is provided via JSON Web Tokens and for authorization, a simple

Role based access control is used. The platform is furnished with a web interface

for administration tasks such as registering users, applications and data providers.

Keywords: context-aware computing, software platform, middleware, actor model,

REST interface.

iii

ÖZ

DURUM FARKINDA UYGULAMALAR GELİŞTİRMEK
İÇİN AKTÖR MODEL TABANLI YAZILIM

PLATFORMU GERÇEKLEŞTİRİLMESİ

ORKUT KARAÇALIK

Bilgisayar Mühendisliği, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Dr. Öğr. Üyesi Ufuk Çelikkan

İkinci Tez Danışmanı: Dr. Öğr. Üyesi Kaan Kurtel

Aralık 2018

Bilgi ve iletişim teknolojilerini kullanan uygulamalar, haberleşme ağları ile

birbirlerine bağlı makineler yardımıyla farklı türden verileri toplayıp bunları

işlemektedir. Bu olgu, Nesnelerin İnterneti olarak da adlandırılmaktadır. Üretilen

veriler, sürekli değisen ve açık çevresel şartlar içerisinde durumsal temeldeki uygu-

lamalar tarafından işlenmektedir. Bir bilgi parçası, eğer yorumlanırsa durumsal

veri olarak kabul edilir, aksi takdirde sadece çevre hakkında bir veridir. Bu tezin

amacı uygulama geliştiricilerin hızlı ve kolay bir şekilde durum farkında uygula-

malar yapmaları için bir altyapı platformunun tasarımını ve gerçekleştirilmesini

sağlamaktır. Platform, işletim sisteminden esinlenilerek katmanlı mimari olarak

tasarlanmıştır. Platform uygulama geliştiricilere veri toplanması, saklanması ve

yönetimi gibi hizmetler sunarak kolaylık sağlamaktadır. Platformun servislerini

gerçekleştirmek üzere Aktör modeli işlemsel model olarak seçilmiştir. Aktör

modeli, sistem bileşenlerinin nasıl davranmaları ve birbirleri arasında etkileşime

girmeleri gerektiğini net bir şekilde tanımlamakta, ve modern bir sistemin

ihtiyaçlarını karşılayabilecek düzeyde imkanlar sunmaktadır. Platform, işlevlerini

aktör olarak tanımlanan servisleri sayesinde sağlar. Temel olarak, Güvenlik ve

Gizlilik, Kural, Veri Yönetimi, Uyarı ve Bildirim servislerinden oluşur. Platform,

uygulamalara ve veri sağlayıcalara platform ile iletişime geçebilmeleri için iki adet

arayüz sağlar. Uygulamalar platform ile etkileşime girmek için RESTful arayüzü

veya hazır kütüphaneyi kullanabilir. Kimlik denetimi JSON Web Tokens aracılığı

ile sağlanır ve yetkilendirme rol tabanlı erişim kontrolü prensipleriyle sağlanır.

Platform, kullanıcı, veri sağlayıcı ve uygulamaların kaydı gibi yönetimsel işler için

kullanılacak web arayüzü ile birlikte sunulmaktadır.

iv

Anahtar Kelimeler : durum farkında bilişim, yazılım platformu, aktör modeli, ara

katman yazılımı, REST arayüzü.

v

ACKNOWLEDGEMENT

I wish to acknowledge the help provided by Asst. Prof. Dr. Ufuk Çelikkan. He

provided me with valuable advice, and support while writing this thesis. He guided

me about how to approach problems, and finding ways to resolve them.

I also wish to acknowledge Asst. Prof. Dr. Kaan Kurtel who shared his expe-

rience and support.

This work is supported by Scientific and Technological Research Council of

Turkey (TÜBİTAK) Grant No: 114E938. Therefore, I would like to thank

TÜBİTAK.

Lastly, I am thankful to my family who always supported me. Their love and

help encouraged me to do new things in my life. Their presence, whenever I need,

always made me feel strong against any challenge. They helped me to become the

person who I am. Thus, I am always grateful to them.

vi

TABLE OF CONTENTS

Front Matter i

Abstract . iii

Öz . iv

Acknowledgement . vi

Table of Contents . vii

List of Tables . ix

List of Figures . x

List of Abbreviations . xii

1 Introduction 1

2 Related Work 4

2.1 Context Acquisition . 4

2.2 Context Management . 5

2.3 Existing Systems . 8

3 Actor Model and AKKA 14

3.1 Actor . 15

3.2 Actor Model Properties . 17

3.3 Actor Model Implementations . 19

3.4 AKKA . 20

4 Architecture and Design of the Platform 23

4.1 PCAD . 23

4.1.1 Services . 25

4.1.2 Real-Time Support . 30

vii

4.1.3 Sensor-Platform Interface 32

4.1.4 Application-Platform Interface 33

4.2 Implementation Decisions . 33

5 System Implementation 35

5.1 Server-Side of Platform . 36

5.1.1 Services . 36

5.1.2 Sensor and Application Bindings 60

5.2 Client-Side of Platform . 65

5.2.1 Application Programming Interface Bindings 65

5.2.2 User Interface . 69

6 Tests 71

6.1 Test Design . 72

6.1.1 API and Integration Tests 72

6.1.2 GUI Tests . 74

6.1.3 Performance Tests . 76

6.2 Test Analysis and Results . 76

7 Conclusion and Future Work 78

7.1 Future Work . 79

A Application Programming Interface Manual 81

B User Interface 96

C Installation 100

Bibliography 103

viii

LIST OF TABLES

4.1 PCAD Services . 26

4.2 Implementation Decisions . 34

5.1 Rule BNF Notation . 43

5.2 Rule API . 45

5.3 Database Table Descriptions . 47

5.4 Users Table . 48

5.5 Applications Table . 48

5.6 Sensors Table . 48

5.7 Roles Table . 49

5.8 User Sensor Accesses Table . 49

5.9 Application Sensor Accesses Table 49

5.10 Sensor Data Table . 49

5.11 Interaction Mechanism Usage . 52

5.12 Interaction Mechanism Descriptions 53

5.13 Interaction Mechanism Service Usage Mapping 57

5.14 RESTful API . 62

5.15 Payloads . 63

5.16 Application Programming Interface 67

6.1 Example Test Case . 73

6.2 API Tests and Services . 75

6.3 Performance Test Results . 76

6.4 Beta Test Results . 77

6.5 Acceptance Test Results . 77

ix

LIST OF FIGURES

2.1 Conceptual Context-Aware Architecture Layers 6

3.1 Actor Structure and Message Passing 16

3.2 Actor Messaging . 18

4.1 Operating System Layers . 24

4.2 PCAD Architecture Overview . 25

4.3 Database Abstraction . 27

4.4 Interoperability and Communication Service Adapters 30

4.5 Real-Time Support . 32

4.6 Application Bindings . 34

4.7 Sensor Bindings . 34

5.1 User and Application User Access to Platform 40

5.2 Example JSON Web Token . 41

5.3 Example Rule . 44

5.4 MySQL Schema . 50

5.5 Connection-Oriented Interaction Mechanism Activities 54

5.6 Query Payload Format . 55

5.7 ANS Mechanism . 56

5.8 Task-Subscriber-Publisher Interaction. 58

5.9 Multiple Source Using One Publisher. 59

5.10 Application Platform Binding Protocols 66

5.11 Example Real-Time Application Program 70

B.1 Main Page. 96

B.2 User Registration Page. 96

x

B.3 Sign-in Page. 97

B.4 Sign-out Action. 97

B.5 Sensor Registration. 97

B.6 Sensor Update for admin. 97

B.7 Application Registration. 97

B.8 Application Update. 97

B.9 Application List for users. 98

B.10 Application List for admin. 98

B.11 Requesting Permission for Application. 98

B.12 Updating Permissions for Application. 98

B.13 Requesting Permission. 98

B.14 Updating Permissions. 98

B.15 Role Related Actions for admin. 99

B.16 User Permission Actions for admin. 99

B.17 Application Permission Actions for admin. 99

B.18 Listing Permitted Sensors for users. 99

xi

List of Abbreviations

AJAX Asynchronous JavaScript and XML

ANS Alarm and Notification Service

API Application Programming Interface

BNF Backus-Naur Form

CPU Central Processing Unit

DMS Data Management Service

FIFO First in First out

GPS Global Positioning System

GUI Graphical User Interface

HTML Hyper-Text Markup Language

HTTP Hypertext Transfer Protocol

ICS Interoperability and Communication Service

JSON JavaScript Object Notation

JVM Java Virtual Machine

JWT JSON Web Token

MVC Model View Controller

OS Operationg System

PCAD Platform for Context-Aware Application Development

POSIX Portable Operating System Interface for Unix

RBAC Role Based Access Control

REST Representational State Transfer

RFID Radio Frequency Identification

RPS Reporting Service

RS Rule Service

SOAP Simple Object Access Protocol

SPS Security and Privacy Service

SQL Structured Query Language

xii

STM Software Transactional Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Universal Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

xiii

Chapter 1

Introduction

The 21st century is named as Knowledge, Information or Digital age. The most

important enabler of digital age is the proliferation of computing devices and their

applications. Applications using information and communication technologies col-

lect and process a diverse range of data using machines connected through com-

munication networks. This phenomenon is captured in the term the Internet of

Things. The Internet of Things is a complex interconnection of heterogeneous de-

vices that include sensors, cameras, micro chips and RFID based products, which

generate large amount of data obtained from various domains. Internet of Things

brings a new era in computation, which has a potential to transform many fields,

such as agriculture, shopping, industry, transportation etc. According to a survey

in [1], the total number of devices in the world exceeded world population in year

2011, and is expected to reach 24 billion by 2020. Sensors play an important role

among those devices, since they sense our environment and supply data about it

such as temperature, humidity, pollution, and congestion. A great number of ap-

plications such as the one that makes a self-driving car possible are developed to

make use of the sensor data. In the future, the impact of Internet of Things-related

applications will be greater in certain areas than others. According to [2] 41% of

the applications will be in health care services, and manufacturing will take 33%

share of all applications by 2025.

Platforms and architectures must be designed in anticipation of an increase

in the number of devices, and must accommodate varying demands of users and

1

CHAPTER 1. INTRODUCTION

applications in different contexts. In order for a platform to be successful, it is im-

perative that it recognizes the context in which users and applications operate, and

enable service customization for a particular user. The creation of smart applica-

tions and environments then becomes possible through context-aware computing,

which encompasses acquisition, analysis, and interpretation of relevant context in-

formation, and responds to contextual changes. Examples of context information

are temperature, humidity, traffic congestion, road conditions, sea pollution, and

river level. Such context information can be used alone or in combination within

context-aware applications to provide custom services in various domains, such as

transportation, health and medical systems, tracking and control of environment,

energy, agriculture, industry, sport events, and tourism. The effective use of this

context information requires its efficient and effective acquisition, storage, process-

ing and reasoning. In this way, productivity, economic output and quality of life

can be increased.

The primary goal of this thesis is to present a novel, service-based application

development platform called PCAD (Platform for Context Aware Development)

based on the notion of context-awareness. In an open, dynamic and continuously

changing environment, context data must be acquired, managed and eventually

offered to applications which interpret data according to the situation. The PCAD

platform described in this thesis simplifies the development of context-aware ap-

plications by relieving applications from complex data management issues by sep-

arating context acquisition from application code and handling many context data

management issues on behalf of the applications. The ease of context acquisi-

tion and context use by the applications creates a positive usability experience.

The platform basically follows a middleware approach, which draws on techniques

taken from the operating system design. Scalability and reliability are indispens-

able features of system. The system is likely to operate under high load, since

numerous data providers and applications are expected to work with the platform.

The platform must be responsive and stable, no matter how many data providers

and applications use the platform. The fundamental design force behind the imple-

mentation is that it is agile, robust, and capable of reacting to new requirements

without a need for fundamental and substantial changes. An easy-to-configure,

simple to understand, scalable and reliable system is the primary goal.

The thesis is logically organized in two parts. The first part which consists

2

CHAPTER 1. INTRODUCTION

of Chapters 1 through 4 explains motivation, design and architectural aspects of

the platform. The second part of the thesis which consists of Chapters 5, 6 and

7 explains implementation details, testing of the PCAD platform, and conclusion.

Chapter 2 discusses context aware computing, and surveys other context-aware

infrastructure platforms. Chapter 3 gives a brief introduction of Actor model

principles, and its implementation AKKA system. Actor model and AKKA lays

the theoretical foundation of the platform. Chapter 4 presents the architecture

used in the design and building of the platform. Core features of the platform is

also discussed here. The platform decouples context data generation and storage

from its consumption. It is based on a service oriented paradigm.

Implementation details of the PCAD platform is explained in Chapter 5. The

implementation includes a core to manage services, request/response mechanisms

to interact with the platform, database operations and provides a rule language

and a simple rule engine to ease data management for application developers. It

includes API libraries for applications to use when they bind to the platform. Test

and performance results are discussed in Chapter 6. The thesis ends in Chapter

7 with the conclusion and future work. The Appendix gives programming and

user interfaces, several sample programs demonstrating how to use the system and

installation instructions.

A significant portion of our TÜBİTAK project is embodied in this thesis. The

thesis lays down the theoretical foundations of the platform, and discusses architec-

tural and implementation decisions to make the platform a reality. The resulting

implementation has met the requirements set forth in the project proposal.

3

Chapter 2

Related Work

Context-aware systems are adaptive systems that can react to changes in their

environment without user interventions. In its broadest sense, the term context

refers to any information used to characterize the situation of a person, data, or

object relevant to the interaction between a user and an application [3]. Vari-

ous architectures are suggested in the literature to use in the implementation of

context-aware systems. According to a study given in [4], context-aware system

architectures are classified using one of the following two criteria:

1. how context is acquired, and

2. how context and components are managed

2.1 Context Acquisition

Context acquisition is one of the most important aspects of Context-aware archi-

tectures. There are two main approaches used in context acquisition:

1. Direct sensor access,

2. Middleware infrastructure.

In architectures that employ direct sensor access, applications and sensors are

tightly coupled to each other. Since applications communicate directly with the

4

CHAPTER 2. RELATED WORK

sensor in such architectures, they need to know how to interact with the sensor,

thus sensor-specific software becomes part of the application. Despite being rel-

atively easy and fast to implement, such architectures are rather inflexible and

difficult to maintain, therefore leading to higher development costs in the long

run. They are also unsuitable for distributed systems, as the coordination of con-

current sensor access is difficult due to a lack of a component responsible for the

coordination.

Middleware infrastructures separate context acquisition from context use. Ap-

plications and data providers are only loosely coupled with each other. Such de-

coupling is achieved by hiding lower layer transaction details from the upper layers

using an in-between layer. Therefore, context acquisition, storage, management

and user business logic processes are separated from each other. Middleware based

architectures exhibit well-known advantages of layered architectures. By hiding the

lower layer context acquisition functionality from applications, middleware archi-

tectures promote reusability and extensibility. Context acquisition functions can

be reused by multiple applications, and a change in context acquisition software

does not affect the applications (Baldauf et al., 2007) [4]. Extending a middleware

architecture by incorporating a context server allows distributed operations as the

context server coordinates simultaneous sensor access by the applications.

A layered infrastructure for contex-aware computing typically consists of 5

layers, as it was conceptually proposed by Ailisto [5] and illustrated in Figure 2.1.

These 5 layers are physical, data acquisition, inference, storage/management and

application. The use of a layered architecture makes it easier to extend the system

and reuse modules. For those familiar with Model-view-Controller paradigm, it

is not difficult to easily map these 5 layers to the MVC layers. An MVC-based

Context-aware architecture has been proposed in [6].

2.2 Context Management

The other criterion used in classifying context-aware architectures is based on

context and component management. There exists three major approaches in

managing context [7]:

5

CHAPTER 2. RELATED WORK

Figure 2.1: Conceptual Context-Aware Architecture Layers

1. Widgets

2. Networked Services

3. Blackboard

Widgets: Widgets are software components that communicate with each other

by sending messages. Widgets encapsulate details about the component, therefore,

applications use the data sent by the widgets without knowing the details. Due to

encapsulation capability, widgets allow substitution of one widget with another as

long as it handles the same kind of sensor data. A widget manager is responsible

for managing the widgets. A slight variation of this approach is used in networked

services architectures. Widgets are prone to failures and not robust since they are

tightly coupled; however they boost efficiency.

Networked Services: The Networked services architecture suggests that

components are on the network and providing services. There is no global widget

manager-like scheme; instead, a form of global discovery mechanism is used to

locate the components on the network. The Widgets model is more efficient than

networked services, but it is not as configurable as networked services.

6

CHAPTER 2. RELATED WORK

Blackboard: The blackboard architecture is built on a publish-subscribe sys-

tem where subscription works based on events. When a registered event happens,

interested subscribers are alerted. Components send sensor data to registered com-

ponents via a filtering mechanism after the receiving components register them-

selves with the sensor data that they are interested in.

It is difficult to make a direct comparison between these architectures. Each

architecture exhibits certain advantages and disadvantages in regard to four points:

efficiency, configurability, robustness and simplicity. The Efficiency refers to the

speed and space usage; the configurability refers to the ease of adding new devices

on the system; the robustness refers to proper handling of the errors and peaceful

termination; and the simplicity refers to how easy the system is to understand.

The Networked services model is easy to configure and offers robustness as

there is no single point of failure. However, it is inefficient when compared to

the widgets architectures, as there are a number of network components. The

Blackboard architecture makes it much easier to add new context data providers

to the system, hence it has a high degree of configurability. However, since the

subscription and filtering processes add an extra step, the data transfer time is

increased, which degrades the efficiency. It is also very easy to understand the

blackboard model [4].

Based on the architecture discussion above, the implementation of the platform

discussed in this thesis uses a combination of the blackboard and middleware mod-

els for context management and context acquisition respectively. The middleware

approach decouples context acquisition from context use and allow reusability,

therefore allows more freedom in developing individual components. The Black-

board model provides flexibility, and provides a plug-and-play behavior in order to

incorporate more features for further improvements. Context providers and con-

text consumers can be easily added or removed from the system. The blackboard

model also uses an event-based notification. Both middleware and blackboard

models are advantageous in terms of configurability, robustness and simplicity.

Both models lend themselves to loosely coupled structures, so it is easier to un-

derstand and modify them, since internal components are weakly attached to each

other.

7

CHAPTER 2. RELATED WORK

Since middleware model is very flexible, we can take advantage of cloud comput-

ing in the implementation of it. Cloud provides a virtual computation environment

for different purposes, and its main advantage is its universality and accessibility

[2]. Cloud computing provides a reliable, consistent, scalable, cost effective and

collaborative environment using a massive pool of computers. A middleware plat-

form running on cloud allows clients to communicate with the platform to receive

data from different contexts or send data with lower cost and higher mobility.

Various applications have been developed based on the architectures described

above. Applications include home, smart classroom [8], hospital [9], tourism [10],

decision support systems, communication systems [11], laundry [12, 13, 14, 15]. A

comprehensive survey of practices and architectures in this area is given in [11].

The following section gives a review of several middleware platforms for context-

aware computing.

2.3 Existing Systems

This section takes a look at several systems similar to the PCAD platform but take

different perspectives to issues. Each one takes a different approach to accomplish

its goals, but they are all considered context-aware computing applications. Sys-

tems are briefly summarized for a general overview of their functionality. In total,

19 different projects and 2 industrial implementation are mentioned in this section.

Context Toolkit [3] provides facility to develop context-aware applications. It

has a centralized architecture to fetch data from context sources, then present

them to applications. Any type of context sources can be utilized to generate raw

data. It uses interpreters to process raw data. It permits data access through

security and privacy transactions. Also, it stores data in its history feature, and

data is made available to applications via services. It does not use the middleware

approach.

CARISMA [16] is a context-aware middleware that focuses on handling policy

based context changes in the presence of conflicting policies. The system targets

mobile applications and resolves conflicts at execution time. Unlike other systems

mentioned in this section, context acquisition, storage and modeling are not the

8

CHAPTER 2. RELATED WORK

primary concerns in CARISMA.

Gaia [17] is basically an operating system inspired middleware system for

context-aware applications, so that it is referred as Gaia Operating System. Via

its context manager, it can work with various physical sensors to gather context re-

lated data. Sensors connect to Gaia and provide data based on their configuration

with Gaia OS. Gaia OS gets input, processes and stores data within the system,

and 3rd party applications communicate with Gaia OS to receive context related

information. It has functions commonly found in an OS, such as program exe-

cution, input-output operations, file-system manipulation, communications, error

detection and resource allocation. Gaia provides a set of basic services used by the

applications. Event Manager Service provides reliable event-based message trans-

fer via channels between decoupled information suppliers and consumers. Context

File System stores context related configurations and rules for providing mean-

ingful information to applications. Presence Service keeps track of existence of

entities; for example, when a sensor stops working, it informs the related applica-

tion that a sensor stopped. Context Service allows applications to query current

context, and it also consists of a rule based mechanism to provide information.

CASS [18] is a middleware platform that binds context sources to applications.

It is an event-based and extensible platform which supports a wide range of con-

text sources, context history records, context interpretation, context-awareness

rules and behaviors separation. The middleware consists of four major compo-

nents. Sensor Listener receives data from context sources. Rule Engine processes

rules and manages behaviors. Context Retriever fetches context based data from

storage. Interpreter abstracts away low level data into high level, for instance by

converting a raw value to Celsius or Fahrenheit. It has an SQL database to store

context data and a knowledge base containing rules which are used by its inference

engine to solve problems. For example, if the goal is to decide whether to perform

indoor activities or not, the rule in the knowledge base would use context data for

brightness, temperature and rain to reach the goal. Basically, the rule takes con-

ditions or parameters, and finds a match in the knowledge base. The knowledge

base is established by users of the platform, and can be changed based on user

needs.

SOCAM [19] is a distributed middleware that works as a client-server model.

9

CHAPTER 2. RELATED WORK

The context provider collects data, and context interpreter takes and converts it

into high level information. Data is stored in context databases, and context in-

formation is provided to context-aware mobile services and service-locating-service

for third party applications to use.

Another distributed middleware is COSMOS [20] which consists of three lay-

ers responsible for context collecting, processing and adaptation. The context

collector acquires sensor data, the context processor refines raw data, and the

context adapter provides access to the previously processed context data. In this

distributed architecture, the context information nodes are organized as a hierar-

chical structure that operate as individual modules within the system. The system

supports fetching data from various context sources.

Context Broker Architecture (CoBrA) [21] is a centralized middleware archi-

tecture that can work with many context brokers to get context data. CoBrA

processes and extracts raw data and provides them to consumers. It has a policy

management module that controls data access.

CASP is a context gathering framework for context aware mobile solutions

[22]. It consists of several components that perform context sensing, modeling,

association, storage and retrieval tasks. It provides client-side and server-side

sensory API libraries so that sensor and application software developers amortize

their development efforts.

Octopus [23] is also a middleware that focuses on home/office domain based

context-aware computing. It aims developers to create sensor or application soft-

ware with minimal knowledge. It has an extensible architecture to add new mod-

ules.

Hydrogen [24] is a layered architecture with three layers: adaptation, man-

agement and application. The adaptation layer is assigned the task of collecting

sensor data, and the application layer conveys the data to applications. The middle

layer, management, is equipped with a context server for the purpose of binding

the adaptation and application layers to one another.

Hydra [25] is another middleware based system that focuses on IoT, wireless

sensors, and devices. It provides a context aware framework that consists of data

10

CHAPTER 2. RELATED WORK

acquisition and context manager components. In addition to its low level data ac-

quisition and storage services, it has a rule engine that performs context reasoning

and access control mechanisms.

Ubiware [26] is a decentralized system that works with heterogeneous sources.

One of its goals is to provide scalability and reliable communication among context

agents. It also features context discovery and sophisticated configurations.

TinyRest [27] is used in homes and offices and uses IoT infrastructure. It

utilizes wireless sensor networks to access various actuators and sensors in available

domains.

Context-Aware Control Platform [28] is a middleware based cloud integrated

IoT framework that integrates context-aware computing and cloud technologies.

It is a three-tier architecture that consists of context sensing module, context

information management, and context aware services management and user inter-

face tiers. The Context Sensing module is assigned to handle sensor related tasks

such as networking, and interacting with environment. The Context Information

Management manages tasks such as context mapping, reasoning and storing. The

Context-aware Services Management provides services to users via a user inter-

face. Since the platform is a cloud integrated IoT framework, access mechanisms

are introduced to map the components of the middleware into different cloud levels

of abstraction appropriate for the type of service they perform. The Cloud Access

Model consists of four layers, namely, sensor, infrastructure, platform and user,

and each layer has different tasks. The sensor layer introduces an interface for

accessing hardware through the sensor network access interface, and it works as

software as a service(SaaS). The Infrastructure layer offers cloud facilities such as

storage, deployment, and it works as infrastructure as a service(IaaS). The plat-

form layer is where context-aware middleware software components are placed to

provide library tools for application deployment. It works as platform as a ser-

vice(PaaS). The user layer contains the management software for the platform

and applications and also interfaces for the humans, and it works software as a

service(SaaS).

There exists other platforms developed to address the needs of different domains

such as health and navigation. CUPUS is a middleware platform for sensors that

focuses on Cloud-based publish-subscribe pattern. One of its components -‘Mobile

11

CHAPTER 2. RELATED WORK

Broker’- runs on a mobile device and acts as a gateway between the cloud and the

sensing device. It acquires, filters and transmits data to subscribers. CUPUS offers

other functionalities such as location management of sensors, exploring sensors,

sensor data management and quality of services management [29].

The system described in [30] is a web based platform intended for people with

less technical skills to configure their mobile applications based on context-data.

The context data is made of location, time and date information. Platform has

a rule engine to match context data in the rule against the one configured in the

platform and sends the specified data to the mobile application if a match occurs.

The platform lets users to receive data if their location can be determined via

GPS; therefore, its applicability to indoors is very limited.

Freeband [31] project uses web services to rapidly develop mobile applications.

It uses smart-phone location and speech inputs as context data. The context data

is matched to the related context services and then the data is provided for mobile

applications. The platform is modeled for navigation purposes, for example, it

presents sightseeing information to users based on location. The Freeband study

does not allow using other types of sensor data, it only uses location data like the

previous web based platform and exhibits similar problems.

ERMHAN ’s goal is to provide a system for health-care services using patient

data [32]. Patients have their own sensors for measuring health-related parameters

such as temperature and heart rate. Those context-data are sent to a centralized

service, then it is presented to health-care workers via a graphical user interface

(GUI). There are two context managers defined in ERMHAN, the patient context

manager and the central context manager. The first one handles data acquisition

and data sending tasks, the second one works as a middleware and distributes

data to related services. Moreover, the platform is capable of notifying of certain

conditions and it also has a web interface for health-care workers, thus patients

can be remotely monitored. For an example scenario, a patient is monitored

continuously via wearable sensors, and the doctors or other health-care workers

can see the patient’s status using the platform’s front-end interface. This platform

offers an effective solution for special problems but it is not general enough.

The majority of the systems discussed so far are experimental and academic

in nature. There exists industrial products in order to bring IoT to public use.

12

CHAPTER 2. RELATED WORK

We are going to briefly review two of them, Weeronline1 and Waylay2. Scala

[33] programming language and AKKA model is used in developing and managing

these two platforms. For this reason, these platforms exhibit similarities to PCAD.

Weeronline weather forecast platform collects data from multiple providers all over

the world. It presents weather related information such as temperature and wind

speed, and it has a points system(1-10) for outside activities, e.g “To what extent

the weather is good for playing football?” would be answered using a point scale,

in which ten means very good. Both Weeronline and Waylay use multiple client

and server technologies to bring services to life. Between the two Waylay, is a more

general purpose platform that targets IoT applications in various fields. Waylay is

a platform as a service (PaaS) that binds hardware level applications and end-user

applications. The platform consists of sensor and application level interfaces for

communication. Collected data from sensors is processed and tailored for the use of

high-end applications. It works as a middleware between sensors and applications.

1https://www.weeronline.nl/
2https://www.waylay.io/

13

https://www.weeronline.nl/
https://www.waylay.io/

Chapter 3

Actor Model and AKKA

Parallel programs consist of a collection of interacting computational processes

which execute simultaneously, affecting each-other’s work by exchanging informa-

tion. Several libraries exist to provide the necessary abstractions in addition to

operating system resources to simplify concurrent programming. The two funda-

mental attributes of such a library are first, that it provides a computation unit

that could be executed in parallel (concurrency primitives) and second, a means of

communication between these computation units. Traditional implementations of

these libraries use threads as the smallest execution unit and shared memory, mes-

sage passing or signals are used for communication. A common criticism of using

threads is that they are heavyweight, not scalable and lead to client code being

error prone. The Actor model was introduced by Carl Hewitt, Peter Bishop, and

Richard Steiger in 1973 [34] in response to these concerns and at the same time to

meet the needs of concurrent computation in distributed systems. It defines some

general rules for how the system components should behave and interact with each

other, avoiding the issues caused by threads and locks found in concurrent compu-

tation. In the actor model, the smallest executable unit is an actor - a concurrency

primitive- that does not share any resources with other actors. Communication

among actors is implemented sending each other messages.

14

CHAPTER 3. ACTOR MODEL AND AKKA

3.1 Actor

An actor is a computational entity that encapsulates a state and a thread of

control that manipulates this state independent of other actors. Actors do not

share state. Therefore, the only way that an actor can have an impact on another

actor is by sending a message. Actors have unique addresses and communicate

with other actors by sending a message to the address of another actor in the

system. Each actor has a mailbox (ordered message queue) that buffers messages

before it processes. Sent messages are not necessarily received in the order they

are sent, and multiple messages cannot be handled at the same time. Messages

are processed when received and preserved until they are processed. Message

delivery is not guaranteed, and messages are delivered at most once. In other

words, when actor sends a message to another actor, the message may not arrive

to target, and it arrives only once. However, various implementations of Actor

model extended message delivery property by offering other features such as at-

least-once delivery instead of at-most-once. This is because a message must be

delivered at least once since lost messages in real-world industrial applications

may cause incorrect operations, as messages can carry critical content. Therefore,

some Actor implementations provided useful additions to the theoretical model.

The Actor Model is a pure Asynchronous Message Passing model. When an

actor receives a message from another actor, it performs one of the following ac-

tions:

� alter its current state, possibly changing its future behavior,

� send messages to other actors asynchronously,

� create a new actor with a specified behavior,

� migrate to another computing host.

Actors can be distributed among other hosts. This makes actor based computa-

tion a very good fit for distributed programming. Since inter-actor communication

is based on message passing rather than shared memory, actor based systems are

highly configurable. Figure 3.1 shows the structure of an Actor and message pass-

ing among actors. Actors can be used to model functional, procedural, or object

15

CHAPTER 3. ACTOR MODEL AND AKKA

Figure 3.1: Actor Structure and Message Passing

oriented systems. In an Object-Oriented paradigm objects are base elements for

computation where method calls are synchronous and calls on an instance triggers

a computation which results in a state change of the instance. This is in contrast

to the Actor model where actors are base elements and computation by actors

are triggered by asynchronous message processing. Each actor is a unit that is

assigned for a specific computation.

In order to explain the basics of the Actor model, we illustrate its principles

on a calculator example. This example portrays essential features of the model,

and tries to paint the whole picture with concrete actions. A calculator is modeled

through a CalculatorActor actor which performs one of the four basic arithmetic

operations when it receives a message. When the CalculatorActor receives an add

message, it creates an AdderActor to calculate the sum of the given numbers and

when it receives a divide message, it creates an DividerActor to divide the given

numbers. This means a new actor is created by another actor and the newly

created actor is assigned to perform a certain computation such as addition and

multiplication. Creating actors this way forms a hierarchical actor structure in

which each single actor is responsible for completing a simple task [35].

In Figure 3.2, multiple Users sends messages to CalculatorActor, which creates

a child actor for each calculation request, and assigns the task to the related child

actor to perform four basic arithmetic operations. CalculatorActor is the parent,

16

CHAPTER 3. ACTOR MODEL AND AKKA

and SubtractorActor, AdderActor, MultiplierActor, DividerActor are the child ac-

tors. The Actor model restricts the number of child actors, allowing creation of

a fixed number of them based on configuration. Parent actors have supervision

over child actors that are present in a hierarchy. Advantage of having an actor

hierarchy is that tasks are broken up into little parts and assigned to child actors.

New tasks can be added easily this way. If we want to add logical or bit wise oper-

ations, it is sufficient to add a new type of child actor to extend main actor’s - i.e.

CalculatorActor - functions. Therefore, the system can be extended elegantly. On

top of the Actor hierarchy sits the Actor system itself as the root. The receiver of

a message can send a brand new message or forward the received message to other

actors. In our example, CalculatorActor forwards the messages to child actors,

then gets the results back, and lastly, it transmits the final result to User. One

point to note is that it is not certain which result will be conveyed first to the user

in the presence of multiple messages Since message passing is not a synchronous

process, this is an expected behavior. Actors can have a state that they are able to

modify. Returning to our example, CalculatorActor can have a state which may

hold an intermediate result. It performs operations using the intermediate result,

and when the AllClear message is received, it sends the result to the user, and

resets it to zero.

3.2 Actor Model Properties

There are four key semantic properties of the Actor model [36].

� Encapsulation: Encapsulation suggests that multiple actors do not share

state. Therefore, the race condition, in which two or more entities, such as

threads, try to change the same state is impossible in Actor model. Messages

are processed in an atomic manner, and the queued messages are handled

sequentially. When there is an attempt to mutate the state, firstly the current

message is taken into account.

� Atomicity: Atomicity ensures that a method is executed atomically, in

response to a message.

� Fairness: Fairness means each actor is alive if any computation needs to be

17

CHAPTER 3. ACTOR MODEL AND AKKA

Figure 3.2: Actor Messaging

completed and each sent message will arrive at the receiver actor. This means

that messages will be handled, but it is indeterminate when it finishes i.e.

the message could be processed at any time. At most once delivery feature

that is mentioned before is related to this model property.

One exception occurs when the target actor is terminated for good, or taken

out of the system, in which case the message never arrives at its destination.

� Location Transparency: location transparency implies that the location

of an actor does not cause any issues in execution. Actor have an address

which specify the location of the actor, therefore it can run on a single

machine as well as on different machines. Mobility is provided using those

addresses which allow components to move across machines. This brings

physical scalability to the system.

The three primary concurrency problems, divergence, deadlock and mutual

exclusion are conveniently addressed in the Actor model. Let us briefly explain

these problems. Divergence occurs when a program runs in an infinite loop, and

cannot be reached because it does not accept any interventions due to an infinitely

running process. The solution to divergence is the Actor itself. When an Actor is

18

CHAPTER 3. ACTOR MODEL AND AKKA

involved in an infinite process, and receives a stop message, the infinitely running

process would be eventually terminated, because the stop message will be eventu-

ally processed. Infinite processes are always available for interactions. Deadlock is

a resource-sharing problem that commonly occurs in distributed systems. When

two threads attempt to access to a shared resource that is held by the other one,

both are blocked, therefore leading to a deadlock situation. The Dining professors

[37] problem is a classical example of deadlock. Actors are independent entities

that communicate with each other through message passing. Detecting a dead-

lock is possible by the actors themselves because actors can query the state of

other actors by sending messages. The Mutual exclusion problem happens when a

shared resource is accessed simultaneously by multiple processes. The solution to

the mutual exclusion problem is the Actor messaging principle itself. All messages

are collected in a mailbox, and they are processed one at a time, so this is impos-

sible. The actor simply buffers messages requesting a resource until the resource

becomes free, thus ensuring mutual exclusion [38].

3.3 Actor Model Implementations

There are several implementations of the Actor model. To name few, Erlang,

Scala, Java, and .Net languages have support for the Actor model. The Actor

model is inherent in Erlang and is built into the language. Everything in Erlang

[39] is a process, and behaves exactly like actors, and processes interact with each

other through message passing. Scala [33] has an actors library but has been

deprecated to promote the Akka toolkit which is created using Scala. Akka is a

special library which implements the Actor model and has extra features that help

to design concurrent and distributed systems. It has been ported to Java. It has

limited availability on .Net platform [40]. Java has also Kilim [41], a library for

implementing the Actor model.

Akka has been chosen as the underlying model for the platform’s implementa-

tion as it works on JVM platform and has features such as streaming, clustering,

sharding, and event-sourcing

19

CHAPTER 3. ACTOR MODEL AND AKKA

3.4 AKKA

Akka is an implementation of the Actor model as described in 3.1 [34]. It is a

toolkit for building concurrent, and distributed applications on the JVM using the

Actor model. It has some deviations from the pure actor model of Hewitt to make

it practical and usable. It provides a developer with a well-defined API to develop

large concurrent systems and allows for easy scaling out of a single machine [42].

When using Akka, the developer must have the mindset that everything is

an actor, similar to the mindset that everything is an object in Object Oriented

Programming. This mindset makes a system easier to understand. Every created

actor belongs to an actor system in the Akka model. Messages can be passed to

reference the created actor.

Actors are designed to be small coherent computation units that are specialized

to perform a single task. When a task becomes too big for an actor to handle, it

is broken down into smaller pieces which are assigned to sub-actors, leading to an

actor hierarchy. The depth of the hierarchy is determined by the complexity of

the problem. The parent actor supervises and manages the life cycle of the child

actor. If the child actor is unable to handle the message, it asks the supervisor

actor to handle it. The message propagates all the way to the root supervisor

if not handled on its way by an actor. Every actor in Akka has one and only

one supervisor. This actor hierarchy forms the basis of the Akka’s “Let It Crash”

fault-tolerance model

Akka does not have to run on a single machine. It has a remoting layer which

supports preconfigured parts of the system to work on remote hosts. For exam-

ple, an Actor running on host A and a second Actor running on host B can work

seamlessly because, built-in remoting support provides ready-to-use interface. Ba-

sically, actor references are used to send messages to one another, remoting only

requires remote machine configuration. Thus, multiple devices located in differ-

ent machines enable scaling out an application. Remote actors can be reached by

specifying a protocol and location by which the corresponding actor is reachable,

following the path in actor hierarchy. There exists a supervision link between a

child and a parent down towards to the root of the Actor system. The following

example uses TCP protocol to reach a remote actor.

20

CHAPTER 3. ACTOR MODEL AND AKKA

akka.tcp://my-sys@host.example.com:5678/user/service-b

For UDP akka.udp protocol will be used. For local actors only akka keyword is

needed.

akka://my-sys/user/service-a/worker1

Every actor uses the reference of a recipient actor to send a message. Handling

of messages by the receiver Actor is done in a FIFO fashion. Furthermore, Akka

implements a publish-subscribe mechanism through the Event Bus. This allows

peer-to-many communication where one Actor publishes an event and all the other

Actors subscribed to that event are notified. This mode is in contrast to peer-

to-peer communication, in which an actor directly sends a message to another

Actor’s message box. Actors in Akka sit idle unless there is a message in the

mailbox. When the mailbox becomes nonempty, a thread picks up the Actor with

a message and performs some computation in response to the message. Actors

perform tasks completely in parallel and messages can be reordered, which makes

the system entirely concurrent. Concurrency is the core feature of Akka that

provides great advantages in high traffic systems. Performance is a big concern in

scalable systems. According to Akka documentation, an actor instance consumes

nearly 300 bytes of memory, so one can have 3 millions actors per gigabyte [43].

The low memory requirement of Akka actors is an important factor in developing

scalable applications. This allows a great number of parallel threads on a large

number of CPUs in the same system.

The Akka framework provides the following features:

� Concurrency: Akka Actor Model abstracts concurrency handling and al-

lows programmer to focus on business logic.

� Scalability: Akka Actor Model’s asynchronous message passing allows ap-

plications to scale up on multi-core servers.

� Fault tolerance: Akka borrows the concepts and techniques from Erlang

to build a “Let It Crash” fault-tolerance model using supervisor hierarchies

to allow applications to fail fast and recover from the failure as soon as

possible.

� Event-driven architecture: Asynchronous messaging makes Akka a per-

fect platform for building event-driven architectures.

21

CHAPTER 3. ACTOR MODEL AND AKKA

� Transaction support: Akka implements transactors that combine actors

and software transactional memory (STM) into transactional actors. This

allows composition of atomic message flows with automatic retry and roll-

back.

� Location transparency: Akka treats remote and local process actors the

same, providing a unified programming model for multi core and distributed

computing needs.

� Scala/Java APIs: Akka supports both Java and Scala APIs for building

applications.

22

Chapter 4

Architecture and Design of the

Platform

The platform implemented in the thesis is based on a proposal given in “A Plat-

form for Context-Aware Application Development: PCAD”, which characterizes

the platform as “a novel software platform based on the notion of context-awareness

which allows rapid and easy development of context aware applications.” [44]. The

design of PCAD was inspired by operating systems with the purpose of responding

to context-aware computation needs. Data sources which are responsible for col-

lecting context-data from environment, such as city traffic, can easily be integrated

to PCAD due to the platform’s plug-and-play feature analogous to connecting a

USB device to a computer with an OS running. Similarly, applications can use

the services of PCAD by binding themselves to the platform using an API library.

This resembles the user level application programs running on a UNIX operat-

ing system and linked to POSIX application interface libraries. In the following

sections, features and design principles behind the platform are explained.

4.1 PCAD

PCAD architecture and design was inspired by operating system design. An oper-

ating system provides an environment and services to programs and users. These

operating system services allow programs, programmers and users to perform tasks

23

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

Figure 4.1: Operating System Layers

easily and conveniently. Programs and users get access to the OS services through

a public interface. Some examples of these services are I/O operations, file system,

protection and security, memory management, intra- and inter computer commu-

nication. A majority of the modern operating systems implement these services in

terms of loadable modules [37]. Such a design provides for extendibility and dy-

namic behavior. Another important design approach used in the implementation

of the modern operating systems is the layering of the functions. The layers found

in a typical operating system are shown in Figure 4.1. Layered architectures help

eliminate the tight coupling of the functions, thus paving the way for reusability

and maintainability. It also simplifies the implementation and debugging of the

operating system code. Even though an operating system has multiple layers, it

can be conceptually viewed as comprised of two levels: user level and kernel level.

Obviously, each level contains several sub-layers in them.

PCAD uses a middleware based layered architecture augmented with the Black-

board model to connect the context providers to the context consumers. An

overview of PCAD is shown in Figure 4.2.

Using the OS analogy, one can view the platform as a layer providing kernel-like

services and the applications providing user level services. Physical sensors and

their software act like devices and device drivers respectively, providing data to ap-

plications. PCAD functionality is made available to applications through services.

Each service is responsible for exercising a particular function, and when needed

24

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

Figure 4.2: PCAD Architecture Overview

multiple services interact with each other to complete an application request. For

instance data management and security and privacy services work together to

ensure data is made available only to those allowed to access.

AKKA and the Actor model is chosen as the programming model for the im-

plementation of the platform for the reason that the Actor model is a viable alter-

native when implementing concurrent and distributed systems. Actors are used to

model services. This allows the platform to scale and let the services to execute

on another computer, hence distributing the load. Our implementation has not

used this feature; however, extending the system to distribute work across other

computers can easily be done after minor modifications to the system, since the

underlying computation model is the Actor model.

4.1.1 Services

PCAD offers its functions as services to applications. When requesting a function

from PCAD, based on the nature of the request, the platform determines which

service or services will participate in fulfilling the corresponding request. Each ser-

vice is implemented as an actor. The concept of service based computing coupled

25

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

with the Actor model provides the advantage of distributing the load across other

machines over the network. Service orientation enables loose coupling between

transacting entities, making the system flexible and extensible.

PCAD consists of six services listed in Table 4.1, and explained in Sections

4.1.1.1 through 4.1.1.6.

Table 4.1: PCAD Services

Service Task

Rule Service (RS) Processes context based on rules.

Data Management Service

(DMS)

Collects context-data and gives them whenever a new re-

quest received via its interface. It is transparent within

storage mechanism.

Alarm and Notification Service

(ANS)

Informs related clients using context-data and filters

them if necessary.

Reporting Service (RPS) Creates reports on context-data generators with details

such as data and status of related device.

Security and Privacy Service

(SPS)

Protects context-data using access control mechanism

and only authorized clients can reach data.

Interoperability and

Communication Service

(ICS)

Receives and delivers data among context-aware plat-

forms using standard communication protocols and mes-

sage formats.

4.1.1.1 Rule Service

The Rule Service, in essence, is responsible for “context processing”, according to

the user-supplied rules. It responds to application requests that require special

processing, such as aggregation of data acquired from different sensors. The Rule

Service performs this task according to the rules specified in a separate rule file

sent by the application, or according to the rules embedded in the JSON request

sent by users.

An application can request complex actions using this service. Details of the

syntax and semantics of the rules are given in Section 5.1.1.2. The rules are

simple if-then structures interpreted by the rule service. More advanced rules are

created by using “and” or “or” logical connectives. For example, "if (windSpeed

> 10 and humidity > 50) then notifyRain" rule specifies that the application

is going to be notified when the wind and humidity sensors report values greater

than 10 and 50 respectively.

26

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

4.1.1.2 Data Management Service

The Data Management Service is assigned the task of storing context related data

received from a variety of sources. Besides sensor data, other types of data, such as

user profiles, privacy settings, and sensor meta data are also stored and managed

by this service.

Figure 4.3: Database Abstraction

Data is stored in a database. The two alternatives for the database are re-

lational (SQL) and document (noSQL). Relational databases keep data in tables

organized as rows and columns. Creating a new field in the relational database in-

volves adding a new column to a table. Manipulation of the database is done using

the SQL database language. NoSQL databases such as MongoDB, store data in

the form of key-value pairs providing faster query, update, addition, and deletion

compared to relational databases. Since there is no concept of tables, rows and

columns, a new field is created simply by adding a key-value pair directly. The

Data Management Service is architected to support both types of database and

incorporate various types SQL database options such as PostgreSQL. However,

the implementation described in the thesis is done only for the relational database

and supports only MySQL. Figure 4.3 shows the planned future design to support

both databases. The design provides a unified interface for database operations

such as insert, update and filter and uses the Adapter design pattern principle to

27

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

adapt the unified interface to the underlying database specific operations.

4.1.1.3 Alarm and Notification Service

The Alarm and Notification Service (ANS) follows the Observer design pattern

paradigm [45]. Applications attach themselves to a sensor of interest to obtain

sensor data and status information. When the data becomes available from a sen-

sor, applications are notified. Two modes of operation can be employed to acquire

the sensor data: Asynchronous and Synchronous. In the asynchronous mode, ANS

(i.e. platform) periodically queries the sensor data, while in the synchronous mode,

sensor software sends an interrupt to ANS causing the platform to initiate a sensor

data read. In the asynchronous mode, the platform initiates data retrieval from

the sensor and stores it in the database. This data then becomes available for

interested applications and is served to pending data requests. The asynchronous

mode requires sensor software support to keep the sensor software listening and

ready to respond to requests from ANS. The asynchronous mode is not the usual

way for clients to interact with a sensor, since asynchronous mode is usually not

supported by sensor software. Therefore, the synchronous mode of operation is

used in the interaction between a sensor and the platform. ANS transfers the

sensor data to applications using push method. In the push model, ANS sends

sensor data when constraints are satisfied using a filtering mechanism. The filter-

ing mechanism allows a client to control how and when data is sent, i.e. instant

versus delay tolerant data delivery. Further details on filtering will be explained

in the next chapter.

4.1.1.4 Reporting Service

The Reporting Service is intended to generate reports about sensor information

using various visualization tools such as graphs, tables, charts. Among the infor-

mation reported are sensor meta data, status and actual sensor data. Open source

reporting tools can be integrated into this service making it more familiar and

beneficial for platform users. This service is included conceptually in this version

and no implementation has been provided mainly because it is much less relevant

to the general functions of the platform. Several off-the-shelf third party software

28

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

tools exist to help visualize data and create reports. Once the platform stores

data in its database, these tools can produce sophisticated reports by accessing

the database directly. Moreover, user requirements may radically differ on the

type of the report and data visualization tool. Therefore, it was decided to leave

the reporting service as a future add-on, currently using the services of the third

party tools independent of the platform.

4.1.1.5 Security and Privacy Service

From an application perspective, the platform is the owner and the applications

are the users of the data. Therefore, it is the platform’s responsibility to ensure

the security and privacy of data. The Security and Privacy Service is responsible

for protecting the security and privacy of sensor data and deciding which appli-

cations are authorized to access data. A very basic and simplified Role Based

Access Control (RBAC) [46] mechanism is used to determine which sensor data is

accessible by which application, with the help of a set of roles. Our use of RBAC

resembles the Mandatory Access Control [47] mechanism, in which the sensor data

privacy level is checked against the clearance level of the application. The roles

are defined by the platform and based on a policy configuration. For example, a

weather application does not need access to the transportation data; on the other

hand, a transport application is allowed to access the weather information.

RBAC model involves three components: subject, object and access right.

Regarding the platform, the subjects are applications, the objects are sensors.

The subjects are assigned roles to determine the access rights on objects. When

an application requests data, the request is granted if the application has the right

role assigned to it.

4.1.1.6 Interoperability and Communication Service

This service’s intention is to provide a capability to communicate with PCAD-

like platforms. Inter-platform data transfer allows data provisioning from third

party data providers. Other platforms can ask data from the PCAD platform as

if they are ordinary platform users. PCAD has provided an Application-Platform

29

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

Figure 4.4: Interoperability and Communication Service Adapters

Interface for general use. This interface is built using the HTTP Request/Response

mechanism, therefore it provides a standardized way to communicate with the

platform. Other platforms can thus use HTTP request/response to send and

receive portable JSON formatted data. Third party platforms can additionally

use a language specific API library similar to an application linking to a library.

In order for PCAD to receive data from other platforms, the interface of the

corresponding platform must be known. A plug-and-play system that uses the

adapter design pattern [45] is still under consideration to allow transparent access

to other platform’s functionality transparently. The design of this structure is

shown in Figure 4.4 However, this function is not included in the current version

of the platform; the design alone is presented in the thesis.

4.1.2 Real-Time Support

Some applications are sensitive to prompt data delivery, and hence impose con-

straints on the data delivery time. For instance, an application that is using two

different sensors to analyze driving behavior has two different data delivery re-

quirements. One sensor provides the GPS coordinates of the car and another

30

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

sensor - a motion sensor (i.e. G-sensor or gravity sensor) - provides data such

as linear acceleration. Using the motion sensor one can analyze various driving

behavior patterns such as sudden acceleration, sudden brakes and sudden turns.

Location data should be made available to the application immediately, since the

application would dynamically instruct the driver to turn either left or right. On

the other hand, the data collected by the motion sensor is delay tolerant, as this

data can be processed and interpreted later on, in conjunction with other data

(e.g. weather). Therefore, this kind of data impose more lenient constraints on

data delivery.

As per the discussion in Section 2.1, the two main approaches in acquiring

context are the direct sensor access and the middleware infrastructure. The ap-

plications and sensors are tightly coupled to each other in the direct sensor access

architectures. Therefore, the applications acquire context directly from the sen-

sor without any intervening components, thus direct sensor access is better suited

to fulfilling hard real time requirements. On the other hand, the middleware ar-

chitectures decouple the components, thus offering many advantages in software

development, but at the same incurring time penalty as data moves between the

layers. For this reason, the middleware architectures are more suited for delay tol-

erant data delivery requirements. Systems that are more tolerant to time latency

continue to operate even when some of the time constraints are violated.

PCAD as a middleware based architecture, supports immediate data delivery

requirement by creating a direct communication pipe between a sensor and an

application, and assigning an actor to it. When the data becomes available from

the sensor, it is delivered to the application through this pipe, while the same

data goes through its usual processing within the platform simultaneously. This

is illustrated in Figure 4.5. When received from a sensor, the data is provided to

the application through a pipe managed by Thread 1. The same data is simulta-

neously given to Thread 2, which takes the data through the services for its usual

processing, which is eventually written to a database.

31

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

Figure 4.5: Real-Time Support

4.1.3 Sensor-Platform Interface

Sensors are designed to generate data. Physical sensors are data sources for PCAD,

which generate data by interacting with the physical environment and virtual

sensors provide data to PCAD using software applications or services such as e-

mail, weather service, mouse movement etc. The data generated by physical and

virtual sensors needs to be sent to PCAD in a certain format. For this purpose,

PCAD has a specific layer to provide the needed interface for physical and virtual

sensors to send data. This layer is basically a communication library, therefore

sensor software primarily focuses on measuring and collecting environmental data,

delegating other tasks, such as sending data and storing it to PCAD. It has a

simple, intuitive and easy-to-use work mechanism. The sensor-platform interface

simplifies the task of delivering data from sensor to PCAD. Data providers use only

the library functions to send data to the platform, while the library communicates

with the platform using the REST technology. RESTful based communication is

gaining momentum in standard web technologies for the primary reason that it is

an HTTP based protocol, and is much simpler to use than SOAP based methods.

32

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

HTTP is the de-facto internet standard, and it is universally supported by the

operating systems and programming languages. Note that since the platform is

ready to respond to the REST requests, data providers may opt to use RESTful

API directly bypassing the provided library.

4.1.4 Application-Platform Interface

Applications are consumers of the platform which use sensor generated data. Ap-

plications need to access to the data and sensors seamlessly and simultaneously.

A binding layer between the application and the platform is instituted to address

these needs. An interface is created to exchange data between the application

and the platform. It is very similar to the sensor-platform binding layer described

above but specifically designed for applications. It works using the same principle

as explained in the sensor-platform interface. The interface consists of a set of

functions which send requests to carry out the desired actions to the platform ser-

vices. In response, the platform processes the request and sends the result back to

the application. Applications can use library functions or RESTful API. WebSock-

ets are used to implement real-time communication [48] with PCAD. WebSocket is

a well-known, easy to understand and widely used protocol for the data exchange.

The WebSocket protocol remains open until the connection is closed and unlike the

HTTP protocol, does not end. The provided interface allows applications to make

rule-based requests. Rules enable the construction of more complex requests, and

it paves the way for more sophisticated applications. Interface layers are shown in

Figures 4.6 and 4.7 .

4.2 Implementation Decisions

As per the discussion given in this chapter, the implementation decisions made are

presented in the following table:

33

CHAPTER 4. ARCHITECTURE AND DESIGN OF THE PLATFORM

Figure 4.6: Application Bindings

Figure 4.7: Sensor Bindings

Table 4.2: Implementation Decisions

Framework : AKKA, Play
Computation Model : Actor Model
Language : Scala, Python, Javascript, HTML
Operating System : Linux
Database : Relational-MySQL
Platform Interfaces : RESTful API, Python, WebSocket

34

Chapter 5

System Implementation

This chapter explains the implementation of the platform. The important im-

plementation decisions are choosing a framework, a language and a computation

model to address scalability, fault tolerance and performance needs of the platform.

The platform must respond well to an increase in the number of applications using

the platform and to an increase in the amount of data generated by the sensors.

It has to peacefully recover from faults and continue to work, be responsive under

high load and traffic without causing excessive latency. The Akka toolkit and the

Actor model is chosen as the computational model since the Actor model [34] is

tailored for developing scalable, responsive and resilient systems.

Several Actor model implementations exist in different languages. Akka [42]

is the renown implementation of the Actor model which has been created first

using the Scala language then is ported to Java. There exists a port for the

.NET platform, but it does not contain all the features of Akka. Scala supports

the functional programming paradigm besides the object oriented programming

model and has more features than Java. It has immutability support, type infer-

ence, extensive type system, and is also statically typed. It runs on a Java Virtual

Machine platform, therefore, one can use Java and Scala within the same pro-

gram. JVM is a proven and longstanding technology created mainly for executing

Java programs after they are translated into Java byte-code. It is designed with

write-once-run-everywhere philosophy in mind to run applications on different host

systems. The JVM provides a common platform for applications and permits the

execution of other programming languages once they are compiled to byte-code.

35

CHAPTER 5. SYSTEM IMPLEMENTATION

For instance Scala and Kotlin languages work on JVM. AKKA is considered a

toolkit as it has extra features besides a mere implementation of the Actor model.

Akka toolkit, Scala and JVM are viable development tools in creating enterprise

solutions. Therefore, they are chosen to implement the PCAD platform.

PCAD consists of two main components: a back-end, which is the server-side

and a front-end which is the client-side. In the remaining sections, the server and

client sides of the platform will be discussed in detail.

5.1 Server-Side of Platform

The server-side is the back-end component of PCAD. It is the indispensable and

a core component of the platform that contains services and business logic. This

section explains how the platform services work and interact with each other and

how the platform communicates with the applications and sensors. The server-side

of the platform will be presented in two sections. First, the services will be dis-

cussed and then the communication layers of PCAD which provide the application-

platform and sensor-platform communications will be presented.

5.1.1 Services

Services are the backbone of PCAD and responsible for accomplishing the core

tasks of the platform. Each service operates as an actor in PCAD and each service

instance runs in a separate thread because an actor is executed within its own

thread in Akka. The interaction among services are accomplished via message

exchanges between actors, therefore, the messages must be defined carefully to

distinguish one task from another in the system. Every message arriving at a

service is first identified and then mapped to an action to be triggered. The

identification of a message is done by using Scala’s comprehensive pattern matching

features based on regular expressions.

Each service has a predefined task assigned to it within PCAD. For example,

the Security and Privacy Service manages the security related actions such as

generating and decoding tokens and does not handle the database related actions

36

CHAPTER 5. SYSTEM IMPLEMENTATION

such as query, insert, update which are performed by Data Management Service.

When a request arrives at PCAD, multiple services may be involved in fulfilling

the request, causing several message exchanges among services. For instance, the

“list sensors” request is handled by executing Security and Privacy Service for

authentication and Data Management Service for querying the sensor list. In this

example, first, a message is sent to Security and Privacy Service, to initiate a

security transactions, and then a second message is sent to Data Management

Service to perform database transactions. In summary the system is composed of

a series of service processes as a whole.

5.1.1.1 Security and Privacy Service (SPS)

SPS mainly performs two tasks, authentication and authorization, for the purpose

of restricting and controlling data access in PCAD. Additionally, it performs the

token generation and decoding tasks. Tokens are being used extensively to re-

solve who can access data while performing tasks. The clients need a token when

accessing the data, and they get a token after they register with the platform.

The clients request data access using this token and when their request is granted,

they gain access. The application owners assign access rights to their applica-

tions, thus user created applications get their own set of rights to access the data.

When a new user signs up or a new application is registered with the platform, a

private access token is generated for them. Access tokens are implemented using

Encrypted JSON Web Token [49]. JSON Web Token (JWT) is widely used in

many integrated web applications in establishing a secure HTTP communication

[50]. A User or an application makes requests using a previously issued access

token(i.e Web token). The user registration, sign-in or sign-out requests do not

need a token. However, all other requests will be rejected without an access token.

The access token will be used for authenticating identities by SPS and the token

is forwarded to Data Management Service along with a message to retrieve data

after the authentication is successful.

Access mechanism to sensor data by applications and users is designed based

on a very basic and simplified version of Role Based Access Control (RBAC) [46].

Role Based Access Control (RBAC) regulates access to sensor data based on the

roles of individual users and applications by placing restrictions on the authority

37

CHAPTER 5. SYSTEM IMPLEMENTATION

and types of access to the source. RBAC model is closely related to the Mandatory

Access Control mechanism [47]. A privacy level is assigned to sensor data and an

access level is assigned to applications which specifies what kind of information is

available to the applications. When the access level is higher the than privacy level,

access is granted. In contrast to conventional methods of access control which grant

or revoke user access on a set of rigid access right assignments between objects and

subjects, in RBAC, roles can be easily created, changed, or discontinued according

to the platform policies without having to individually update the privileges for

users and applications. Roles are defined according to platform-based policies.

Sensors which generate data for the platform also needs to register and au-

thenticate similar to client registration and authentication. PCAD does not allow

rogue senders to send data. When a sensor registers to the platform, the sensor is

assigned a token which gets embedded into every subsequent data send request.

The main difference between a sensor and an application access is that access

right of a sensor is not based on levels. Sensors only have one level of access. They

are either allowed to send data or not. On the other hand, applications have three

levels of access rights. Applications can access sensor meta data (i.e. location,

manufacturer), sensor data values (i.e. temperature, humidity reading), or sensor

status data such as sensor being on or off.

Access rights are assigned by the user. These rights can be combined into roles

to simplify the assignment of rights. Therefore, instead of setting access rights

individually, one can group rights into a role and assign the role to the application

as a whole.

Access Permission Assignment: In order to gain access to the platform, sev-

eral steps must be completed. The very first of these steps is registration, a process

monitored by the administrators [51]. Users then can send request for permission

to access to a sensor via web application or RESTful API which in turn creates a

notification for the PCAD administrator to act on it. Permissions are granted to

users if the administrator approves the request. Applications are assigned rights

following a slightly different process. Application owners specify a set of sensor

access permissions on behalf of their applications and ask the administrator to

approve these rights. The administrator makes a decision based on a predefined

38

CHAPTER 5. SYSTEM IMPLEMENTATION

platform policy, and application gains access to sensors if the administrative deci-

sion is positive. Permissions are categorized into three depending on the type of

information being accessed: information, data, status.

Request Validation Process: There are a lot of clients which will request data

access from the platform. In order to ensure the security of the platform, we have

implemented validation levels for the requests, and every level must be passed to

access the resources.

1. If the request requires an authentication token, the token must be sent along

with the request. Each client (i.e. user, application, sensor) has a token gen-

erated for it by the platform, and this token is used while handling requests.

Clients have to provide an authentication token for every request requiring

a token. Only sign-up, sign-in and sign-out requests do not need a token.

2. When a token is present in a request, SPS attempts to decrypt it. If the

decryption is successful, the token is valid and the request progresses to next

the step. Otherwise, the request is denied.

3. The clients are classified as being user, application or sensor. Each class is

capable of doing certain actions and has restricted access to the platform.

The requests made by the clients must be compatible with their class. For

example, the sensors cannot ask for data, but only provide data to the plat-

form. In contrast, the applications can not send platform sensor data but

are permitted to retrieve sensor data. The users cannot request sensor data,

only the applications can. On the other hand, the users can access the meta

data about sensors such as the type or the location of the sensor.

4. The requester must have the appropriate permission to access the data. In

order to access context-data, the requester must possess a specific permission

for the information sought after. For example if the requester wants to find

out if a sensor is on or off, it must have the ‘status ’ permission. This is

validated by looking up the access tables.

There are two methods that the users can use while accessing the platform as

illustrated in Figure 5.1:

39

CHAPTER 5. SYSTEM IMPLEMENTATION

1. The user connects directly to the platform via a web browser, and sends the

request to the current URL address using the REST-API, and accesses the

sensor meta data (User).

2. The application users access the platform indirectly through an application

(Application User).

Figure 5.1: User and Application User Access to Platform

The application users are limited only to those rights authorized by the appli-

cation for the users. This effectively reduces the permission rights of the user to

the rights of the application. As the application users access the system through

an application, the rights granted to the application will be used and these rights

maybe further restricted by the application developer if needed. The applications

restrict access for a particular user by creating their own databases and creat-

ing user profiles, thereby preventing the application users from having undesirable

rights.

The applications and the sensors communicate with the platform differently

than the user class. The users are able to identify and register themselves to the

system by providing a username and a password. However, this authentication

process is not practical for sensors and applications because sensors and applica-

tions are not capable of providing a username and password on their own. To

40

CHAPTER 5. SYSTEM IMPLEMENTATION

Example JSON Web Token

1 """

2 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0FEIiwi

3 dWlkIjoxNSwiZ3JvdXAiOiJzZW5zb3IifQ.8ifEzEbLGwMWvs__IvGXK

4 X9Eh056HWZYXHkrcytcoPY

5 """

6

7 header = '{"alg":"HS256","typ":"JWT"}'

8 claim = '{"iss":"PCAD","group":"sensor","uid":"1"}'

Figure 5.2: Example JSON Web Token

initiate communication with the platform application and sensors have to first val-

idate themselves with access tokens. If this process is successful, they get a session

token, which is valid for a fixed period, and used during data exchange. This will

complete the authentication process.

Connection between the platform and sensor also requires access and session

tokens. Sensors connect to the platform and send data in a similar way. Sensors

and sensor software first receive an access token during the platform registration

and then subsequently acquire a session token. The sensor software also sends

this session token along with data to the platform. Once the sensor has been

authenticated, the sensor is allowed to send data. The most important difference

between a user accessing the platform and the sensor accessing the platform is

that the level of access for the sensor is single level. The sensor either has a right

to access the platform or not. However, the access right for user is multi level.

Tokens are defined in JSON Web Token (JWT) format. An example JSON

Web Token is given in Figure 5.2. Line 2-4 is the actual JWT as it is sent to the

platform along with the request. JSON Web token is divided into three sections:

header, claim and signature. In Figure 5.2, lines 7 and 8 show decrypted contents

of the header and claim. This token was signed using HS-256 (HMAC-SHA256).

Users can view their access tokens.

Each user or application is assigned a role which they use when accessing

a sensor. A role is a collection of three authorizations, named as information,

data and status. The union of these three authorizations determines the access

capability of a role. The definition of these authorizations is given below.

41

CHAPTER 5. SYSTEM IMPLEMENTATION

� Information: The right to query sensor meta-data (i.e. location, type,

manufacturer and other properties).

� Data: The right to receive data from the sensor (i.e. sensor measurement

data).

� Status: The right to the query sensor status information (i.e. whether active

or inactive).

For example, an application must be assigned a role containing information,

data, and status rights in order to learn sensor location, query sensor state, and

receive sensor data. Such a role is described as

RoleA = (I, D, S)

where

I, D and S stand for Information, Data and Status rights respectively. If a role

does not possess a particular authorization, it is shown with a ‘-’. Other roles can

be defined similarly.

RoleB = (-, D, -)

RoleC = (-, -, S)

5.1.1.2 Rule Service (RS)

The Rule Service is responsible for processing the raw data acquired from the

sensors according to the rules specified in a rule file. For example, the end-users

want notifications for certain events because notification information maybe more

meaningful than the raw data itself for them. The rules are contained in special

purpose files that are used while processing data. The applications sends those files

along with a request, which is then taken out from request, parsed and executed

properly by the Rule Service. In order to execute a rule file, a rule engine was

designed and implemented as a part of PCAD. Rule engine mainly performs two

jobs: parsing and interpreting a rule file. For this purpose, a small rule language

was also designed.

42

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.1: Rule BNF Notation

〈Rule〉 ::= 〈RuleConf 〉〈RuleAttr〉〈RuleBody〉
〈RuleConf 〉 ::= ‘name’ = 〈ident〉
〈RuleAttr〉 ::= 〈VariableDef 〉

| 〈VariableDef 〉〈whitespace〉〈RuleAttr〉
〈RuleBody〉 ::= ‘when {’ 〈Condition〉 ‘} then {’ 〈Action〉 ‘}’
〈CompositePredicate〉 ::= 〈Condition〉 | 〈Predicates〉
〈Predicates〉 ::= 〈Predicate〉

| 〈Predicate〉 〈LogicalOperator〉 〈Predicate〉
〈Predicate〉 ::= ‘(’ 〈CompositePredicate〉 ‘)’ | 〈Condition〉
〈Condition〉 ::= 〈Expression〉

| 〈Expression〉 〈Comparator〉 〈Expression〉
〈Action〉 ::= 〈Function〉

| 〈Function〉 〈whitespace〉 〈Action〉
〈Expression〉 ::= 〈Variable〉 | number

〈Comparator〉 ::= == | != | < | > | ≤ | ≥
〈Function〉 ::= 〈ident〉‘(’〈Parameters〉‘)’

〈Parameters〉 ::= 〈Parameter〉
| 〈Parameter〉 〈whitespace〉 〈Parameters〉

〈Parameter〉 ::= 〈VariableDef 〉 | 〈Variable〉
〈Variable〉 ::= 〈ident〉
〈VariableDef 〉 ::= 〈ident〉 ‘=’ 〈Definition〉
〈Definition〉 ::= 〈Function〉 | 〈ident〉 | number

〈LogicalOperator〉 ::= ‘and’ | ‘or’

〈ident〉 ::= string

〈whitespace〉 ::= ‘ ’

The BNF notation [52] describing the rule language is given in Table 5.1, and

an example rule written in this language is shown in Figure 5.3. As seen in the

example, a rule consists of two main parts: the preamble and the body. The vari-

able definitions, value and function assignments are done in the preamble part. In

43

CHAPTER 5. SYSTEM IMPLEMENTATION

Example Rule

1 ## +------------------------------+

2 ## | Preamble |

3 ## +------------------------------+

4

5 ## Part 1 - Rule Name

6 name = "notification"

7

8 ## Part 2 - Variable Assignments

9 min_value = 10.5

10 current_value = get_value()

11 db_value = get_db_value(sensor=21)

12

13 ## +------------------------------+

14 ## | Body |

15 ## +------------------------------+

16

17 ## Part 3 - Logical Expressions

18 when {

19 (current_value < min_value) and (current_value > db_value)

20 }

21

22 ## Part 4 -- Actions

23 then {

24 Notify(message="Unacceptable Temperature Value")

25 }

Figure 5.3: Example Rule

the preamble part, one retrieves data by invoking functions, and define constant

values. The following part - body - contains a when block which houses logical

expressions. Depending on the result of the logical expression, the rule engine trig-

gers execution of the statements in the then block. Compound logical expressions

are formed using ‘and’, ‘or’ connectives. System defined functions can be called in

the then block. The example in Figure 5.3 defines a rule named “notification”,

and a constant variable named min value. The rule asks for a value from a sensor

whose id is specified in the method call that sent the example rule file. Addition-

ally, the rule asks for a value from the database for a second sensor with an id of

21. Then, it uses these two values in a logical expression to finalize the execution.

If the expression yields a true result, it notifies the clients with a message specified

in the Notify function call.

44

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.2: Rule API

Name Parameter Description Sample call

get value - It retrieves value from default

sensor. Default sensor is de-

termined during the method

call that establishes the con-

nection.

data = get value()

get time - It retrieves hour value from

default sensor.

time = get time()

get rt value sensor id It retrieves measured real-

time value from defined sen-

sor.

data =

get rt value(sensor=1)

get rt time sensor id It retrieves measured real-

time hour value of time from

defined sensor.

time =

get rt time(sensor=1)

get db value sensor id It retrieves measured

database value from de-

fined sensor.

data =

get db value(sensor=1)

get db time sensor id It retrieves measured

database hour value of

time from defined sensor.

time =

get db time(sensor=1)

Applications retrieve data from the platform using the application-platform

binding library provided by the platform. The library functions are shown in

Table 5.2. The applications may ask for a one time instant data, or they can get

data in periodical intervals. The applications can optionally provide a rule file to

specify how to obtain data from the platform. When the applications use a rule

file, they make use of a set of built-in functions to retrieve context data in more

elaborate ways. For example, they can retrieve data from multiple sensors or from

a database. Without a rule file only one sensor is permitted to send data and

no control flow exists for given data. The following cases explain various ways of

retrieving data from the platform:

� “Real-Time-No-Rule”: Whenever a sensor pushes data to the platform, data

is instantly delivered to the requester. The requester is blocked if there is no

data available.

� “Periodical-No-Rule”: The platform delivers data in fixed intervals to a re-

quester. The data is obtained from the database, therefore requester is never

blocked. However, the requester may get stale data in the case where sensor

has not provided any fresh data to the database within the fixed interval.

45

CHAPTER 5. SYSTEM IMPLEMENTATION

� “Real-Time-With-Rule”: This is similar to the first case with the addition

of a rule file. Data delivery depends on constraints specified in the rule file.

When a rule file is used, data from multiple sensors can be retrieved.

� “Periodical-With-Rule”: This is similar to the second case with the addition

of a rule file. Data is obtained from the database in fixed intervals as specified

by the application. Data delivery frequency is specified in the rule file.

The cases mentioned above require a WebSocket connection between the ap-

plication and platform. If an application needs a one-time data delivery from the

database, a simple HTTP request/response mechanism would be sufficient.

The rule file uses the StandardTokenParser library written in Scala for syn-

tax processing. This library utilizes Scala language pattern matching features to

facilitate parsing. The rule file is parsed first to verify that it is in a valid form,

then it is transformed into a rule object for execution. The rule object consists of

a rule file and its associated metadata (i.e. metadata is related to the application

that sent the rule). Finally, the interpreter executes step-by-step the rule file by

interpreting its contents. Commands in a rule file are divided into four parts as

shown in Figure 5.3 example : rule name, variable assignments, logical expressions

and actions. Each component is run one after another. In the first step, the rule

name is taken and the acknowledgment process is carried out (Line 6). In the

second step, assignments of variables are completed (Lines 9-11) In the third step,

the result of the logical expression is obtained (Lines 18-20), and according to the

result, the operations in the last part are performed (Lines 23-25). The execution

of the third and fourth steps is performed by the rule handler.

5.1.1.3 Data Management Service (DMS)

The Data Management Service is responsible for performing database related tasks.

The database stores user, sensor, and application related information. Every action

performed by PCAD is based on the stored data. Relational and non-relational

type of databases were investigated for data storage. Relational databases have

been widely used and are an accepted technology in information technology ap-

plications for years. They categorize data very well, are good when the data

46

CHAPTER 5. SYSTEM IMPLEMENTATION

is modeled structurally. Various commercial and open source implementations do

exist. The open source database MySQL[53] is one such implementation. The well-

known language SQL [54] lets one access and manipulate relational databases. We

have chosen the relational database as the database model and MySQL[53] as the

open source relational database management system since in the long run a large

amount of data can be stored in a more compact way in the form of tables. More

importantly relational database establishes relationships among tables so that by

using join operations one can get more insightful results about the data. Even

though non-relational databases such as NoSQL are gaining popularity in web de-

velopment in the recent years, extra effort has to be spent creating relationships

in a NoSQL database like MongoDB [55].

The Data Management Service performs database actions such as create, read,

update, delete. The platform uses Slick [56], a functional relational mapping li-

brary to accomplish database actions easily. Another advantage of Slick is that it

supports multiple SQL database types such as PostgreSQL, Oracle and MySQL.

It is written in Scala, and integrated seamlessly into the platform. It supports

asynchronous query execution. Figure 5.4 presents MySQL schema and table def-

initions, and Tables 5.3 to 5.10 describe table attributes.

Table 5.3: Database Table Descriptions

Table Name Description

users The users table contains the user information and the

access token used for authentication. There are two

types of users of the platform: administrators and de-

velopers. The developers create sensor and application

software. The administrators manage the platform (i.e.

granting permission, blocking users.)

applications This table contains information about applications using

the platform. the access token needed for application

authentication is also kept here. The access token is

acquired when applications register to platform.

sensors This table stores sensor meta data. Every data genera-

tor, whether it is physical or virtual, is saved in here.

roles Applications and users need permissions to access sen-

sor data. Roles specify those permissions rights, which

are basically a combination of data, status, information

authorizations. The role information is kept in this ta-

ble.

user sensor accesses Permissions of users on sensors are kept in this table.

Each access determines users’ access rights on sensors

by using roles.

Continued on next page

47

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.3 – Continued from previous page

application sensor accesses Permissions of applications on sensors are stored in this

table. Once again, roles are utilized to specify access

rights on sensors.

sensor data Generated sensor data is stored in this table. All data

is saved with a timestamp. Applications obtains the

sensor data from this table.

Table 5.4: Users Table

Field Name Description

id Primary key that defines record.

username A unique name that defines member of the platform.

first name First name of the user.

last name Last name of the user.

email User e-mail address.

company Institution that user has affiliated with.

password Encrypted user password used for authentication.

access token A unique and encrypted value used for authorization.

registration time Time when user has registered to the platform.

valid Approval status of the user.

Table 5.5: Applications Table

Field Name Description

id Primary key that defines record.

name Unique name for application.

user Defines owner of application which exists in users table.

access token A unique and encrypted value used for authorization.

registration time Time when application has registered to the platform.

valid Approval status of application.

Table 5.6: Sensors Table

Field Name Description

id Primary key that defines record.

type Type of sensor (i.e. temperature).

unit Type of measure for sensor.

company Institution that owns sensor.

latitude Latitude value of sensor location.

longitude Longitude value of sensor location.

access token A unique and encrypted value used for authorization.

registration time Time when sensor has registered to the platform.

valid Approval status of sensor.

48

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.7: Roles Table

Field Name Description

id Primary key that defines record.

name Name of the role.

info Specifies whether access permitted for sensor meta data.

status Specifies whether access permitted for status information.

data Specifies whether access permitted for data.

Table 5.8: User Sensor Accesses Table

Field Name Description

id Primary key that defines record.

user Value which refers to a row in users table.

sensor Value which refers to a row in sensors table.

role Value which refers to a row in roles table.

valid Approval status of access.

Table 5.9: Application Sensor Accesses Table

Field Name Description

id Primary key that defines record.

application Value which refers to a row in applications table.

sensor Value which refers to a row in sensors table.

role Value which refers to a row in roles table.

valid Approval status of access.

Table 5.10: Sensor Data Table

Field Name Description

id Primary key that defines record.

sensor Value which refers to a row in sensors table.

time Time of sensor measurement.

valid Measured value sent by sensor.

5.1.1.4 Alarm and Notification Service (ANS)

The Alarm and Notification Service is responsible for responding to data requests

and notifying an application in accordance with the conditions set by the users

and the applications. There are multiple ways that applications may request data,

and PCAD offers two communication methods for the applications to interact with

the platform: connection-oriented or connectionless methods.

49

CHAPTER 5. SYSTEM IMPLEMENTATION

Figure 5.4: MySQL Schema

Connection-oriented Method In this method once a connection is established

between an application and the platform, it remains active until it is terminated.

50

CHAPTER 5. SYSTEM IMPLEMENTATION

Connection-oriented communication is provided by opening a WebSocket connec-

tion with the platform. The main purpose of using connection-oriented communi-

cation is to provide continuous data transmission since there exists an up connec-

tion between the platform and the application.

This method can be operated in two different ways. In the first way as soon as

sensor data is received by the platform, the raw data is delivered to client instantly,

and in the meantime data is processed in parallel by the platform services, and

eventually written to the database. The requesting client is blocked and waits

until data is received from the sensor. This method of communication basically

provides immediate data acquisition and is intended for applications which would

like to receive data instantly as soon as a sensor sends data to the platform. In the

second way, the data is read from the database instead of directly reading from a

sensor, and the data is sent to the client at fixed intervals. In this way, the client

is guaranteed to receive data at the end of a specified time interval. The client

always receives the last data written to the database. If the queried sensor has

not provided any new data to the platform within the given interval, the platform

sends previously written, out-of-date data. It is the duty of the client to check

whether data is up-to-date or not by looking at the timestamp of the data. Reading

data from the database at periodic intervals is more suited for delay tolerant data

delivery based systems.

Connectionless Method The connectionless communication method offers a

simple data exchange. The data source is the database. It is a sessionless com-

munication mechanism. The application sends a one-off request using the HTTP

request/response mechanism and waits for a response. Once requested data is

delivered to the client from the database, data exchange completes and the HTTP

session is terminated. If one wants to receive one-time data directly from the sen-

sor, the connection-oriented method should be used by establishing a connection

and immediately closing the connection after data arrives.

The Alarm and Notification Service uses a rule file if one is specified. An

application specifies the communication mechanism and a filtering criteria which

is converted into a rule file by the application and sent to the platform. The ANS

runs the rule file in cooperation with the Rule Service which is responsible for

51

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.11: Interaction Mechanism Usage
Connection-oriented Connectionless Filter Real-time Periodic

A1 + +
A2 + + +
A3 + +
A4 + +
B1 +
B2 + +

running the rules. The applications may also request that data be sent without

subjecting to any filtering, i.e. without specifying any rules.

An application exchanges data with PCAD using one of the six different inter-

action mechanisms:

A. Connection-oriented continuous data exchange between application and

PCAD. This data exchange is carried out in four different ways.

A1. Request data directly from the sensor without specifying any filter (real-

time).

A2. Request data directly from the sensor specifying a filter (real time).

A3. Request data from the database without specifying any filter (periodic).

A4. Request data from database specifying a filter (periodic).

B. Connectionless one-time data exchange between application and PCAD.

B1. Request a one-time data from database without specifying any filter.

B2. Request a one-time data from database by specifying a filter.

Table 5.11 lists a brief summary of which methods that each interaction mech-

anism utilizes when accessing the platform.

Table 5.12 shows entities and activities participate in connection-oriented in-

teraction mechanisms A1 to A4. The shaded numbers indicate the entities that

plays a role in the interaction and unshaded numbers indicate the activities.

52

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.12: Interaction Mechanism Descriptions

Description

1 Application: Applications that ask for sensor data.

2 Rule file: This is the rule file created by the application.

3 Parser: The rule file is parsed by the parser and transformed into functional

elements according to syntactic and semantic rules.

4 Rule object: The result of a parsed file is a rule object.

5 Interpreter: The interpreter runs its own rule file and sends it to the rule

handler.

6 Rule handler: The rule handler executes the rules by importing the rule file

and the sensor data.

7 Scheduler: The scheduler forms the work piece according to a time schedule

when there are periodic data requests.

8 Database: holds data from sensors.

9 Websocket: allows the application to send requests to the PCAD platform,

and PCAD sends the requested data back to the application via the Alarm and

Notification Service. A WebSocket is opened with a request to PCAD and it

continues to feed data as long as connection is alive. Application decides when

to stop, the transmission could end by a new API call.

1 The application is making a request from PCAD via a WebSocket using the

interface functions in the application program.

2 The application creates the rule file.

3 The PCAD platform sends the data from the sensors to the rule handler.

4 The PCAD platform sends the data from the sensors through the rule handler.

5 The scheduler receives a rule sent by the rule handler.

6 The scheduler sends the data received from the database to the application via

WebSocket, with or without considering the rule.

7 The Alarm and Notification Service sends the data to the application.

Figure 5.5 shows the activities of the first 4 interaction mechanisms that take

place within the platform.

Interaction Mechanism A1 In interaction mechanism A1, an application re-

quests data to be delivered directly from the sensor without specifying any filter.

This mechanism is the simplest transfer method for sending unfiltered data. This

method represents immediate data transfer. The data source is the sensor and the

sensor data is sent directly to the application via WebSocket (Figure 5.5). The

Rule Handler is idle in this mechanism. It follows the sequence 1 , 1 , 9 ,

6 , 3 , 4 , 9 , 7 , 1 .

53

CHAPTER 5. SYSTEM IMPLEMENTATION

Figure 5.5: Connection-Oriented Interaction Mechanism Activities

Interaction Mechanism A2 When Interaction Mechanism A2 is used, an ap-

plication requests data to be directly delivered from the sensor by specifying a rule

file. The sensor data is filtered using the rule. To do this, the application sends a

rule file along with the request. This rule file is first validated in the parser and

transformed into a rule object. The rule object is run by the rule handler using

the sensor data and then data is sent to the applications. It follows the sequence

1 , 2 , 2 , 1 , 9 , 3 , 4 , 5 , 3 , 6 , 4 , 9 , 7 , 1 .

Interaction Mechanism A3 An application requests data to be delivered from

the database at periodic intervals without specifying any rule file. The interval is

determined by the application and sent to the Scheduler. Periodic sending process

is done by the time scheduler. For instance, if an application requests to receive

data every 5 minute, a task is created by the time plan implementer to request

a database query from Data Management Service. The data is then sent to the

requesters. This method represents delay tolerant data trasfer. It follows the

sequence 1 , 1 , 9 , 7 , 8 , 6 , 9 , 7 , 1 .

54

CHAPTER 5. SYSTEM IMPLEMENTATION

Query Payload

1 {

2 "value": {

3 "min": Float,

4 "max": Float

5 },

6 "time": {

7 "min": Timestamp,

8 "max": Timestamp

9 }

10 }

Figure 5.6: Query Payload Format

Interaction Mechanism A4 Interaction mechanism A4 is similar to A3, as

they are both used to retrieve data from the database at certain intervals, however,

mechanism A4 uses a rule file. After running this rule, the scheduler implements

and executes the timely delivery of data. It follows the sequence 1 , 2 , 2

, 1 , 9 , 3 , 4 , 5 , 6 , 5 , 7 , 8 , 6 , 9 , 7 , 1 .

Interaction Mechanisms B1 and B2 The previous 4 mechanisms, A1-A4, re-

quire a connection, and they maintain the connection until it is terminated by the

client. The last two interaction mechanisms B1 and B2 do not use a continuous

connection. A simple HTTP request/response mechanism is sufficient to imple-

ment the two mechanisms since they do not require uninterrupted communication.

Therefore, there is no need to use WebSockets in B1 and B2. Database is the data

source for both mechanisms. B1 does not specify any filter, whereas B2 uses a

filtering mechanism albeit a very limited one. The filters are simple constraints

enforced on the data. Filtering request is sent to the platform in the HTTP re-

quest payload. Query payload must be in JSON format given in Figure 5.6 so that

filtering can be done adequately. The data that satisfies the filter conditions will

be sent back in the response. When the filter is sent as part of the JSON query,

data can be filtered based on two criteria: sensor data value and the time that

data is obtained from the sensor. Each field has min and max boundary attributes

which are optional. For example, if min of value is given as 10, the response data

would contain sensor data which is greater than 10.

55

CHAPTER 5. SYSTEM IMPLEMENTATION

Figure 5.7: ANS Mechanism

Interaction Mechanism-Service Assignment When the clients interacts

with the platform using one of the six mechanisms, the request is processed by the

services of the platform after passing the security checks. Therefore, all requests

coming to the platform use the Privacy and Security and Alarm and Notification

services at a minimum. Mechanisms A1 and A2 take information directly from a

sensor. Mechanism A1 does not filter data, while A2 uses a rule file to perform the

filtering. Therefore, mechanism A2 uses functions provided by the Rule Service.

Mechanisms A3 and A4 use database as the data source and send data to the user

at fixed intervals using a Scheduler. They all use services of the Data Management

Service which is responsible for retrieving the data from the database. Similar to

mechanism A2, A4 uses rule service when data filtering is requested. Since mecha-

nisms B1 and B2 use the HTTP request/response mechanism, there is no need for

a connection establishment. In the last two mechanisms, data filtering is provided

in a very simple and limited way, which does not require a rule file. For this reason,

the Rule Service is not used. The basic filtering information is sent in the load

section of the HTTP request. Figure 5.7 shows which services are used in the 6

interaction mechanisms described above. Table 5.13 gives mechanism to service

usage mapping.

56

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.13: Interaction Mechanism Service Usage Mapping

Interaction

Mechanism

Rule

Service

Data

Management

Service

Alarm and

Notification

Service

Security and

Privacy

Service

A1 X X

A2 X X X

A3 X X X

A4 X X X X

B1 X X X

B2 X X X

The Alarm and Notification Service of the platform uses subscriber and pub-

lisher paradigm [57] when transferring data between the data source and applica-

tion. The Publisher-Subscriber paradigm creates a data stream between the data

source and applications. In this paradigm the application has the role of subscriber

and publisher acts like a front end for the real data source. Data source could be

a sensor, database or some other third party repository. The data source sends

data to its assigned publisher, and the publisher forwards it to its subscribers.

The Publisher could pass sensor data to Subscribers as it is or after processing it

based on rule execution. The application connects to PCAD and registers itself

as a Subscriber. The application sends a message that includes the data source

it wants to connect, the mode of operation and optionally a rule file. Using this

information ANS creates and configures a Publisher associated with a Subscriber.

There are two modes for passing data: real and periodic. If the mode of

operation specifies that data to be retrieved from the database at periodic intervals,

a Task actor needs to be created. The Task actor executes in the background and

remains alive as long as client connection is active. It fetches and sends data

periodically. In such a case a Task-Publisher mapping is created with Task being

the data source. The Task actor behaves like a facade acting as a data source on

behalf of the database. From that point on, data sources, either Task or Sensor

sends data to ANS via their assigned Publisher. Publisher uses the Rule Service

and its rule engine if data filtering is needed. ANS conveys the final result to the

Subscriber which is eventually delivered to the application. Since all messages are

conveyed via ANS and the state of ANS keeps the subscriber-publisher mappings,

the destination subscriber is correctly determined.

The Akka system scheduler is used for executing Tasks which are created for

57

CHAPTER 5. SYSTEM IMPLEMENTATION

Figure 5.8: Task-Subscriber-Publisher Interaction.

the purpose of sending data at periodic intervals. The scheduler maintains an

event queue and runs when necessary. Each event is created with the interval

and actor reference information. Handling an event means sending a message at

certain intervals to the Task Actor assigned to do work. For example, when an

event’s interval is set to 3 minutes, the result of handling this event is to send a

message to the Task instance reference associated with the event every 3 minute.

Upon receiving the message, the Task instance runs a query and pushes the result

to ANS which delivers it to the Publisher. The publisher returns the result to

the application via its Subscriber. The Task-Publisher-Subscriber relationship is

shown in Figure 5.8 The sensors or the database feed Task with data which relays

it to its assigned Publisher every so often triggered by an event generated by the

Scheduler. The Publisher, via its assigned Subscriber forwards data to the correct

application.

ANS maintains a state to hold the subscriber-publisher mapping. It is the

only actor that has a state. Other actors do not have states because, services

they implement do not require maintaining a state. ANS state is shared, mutable

58

CHAPTER 5. SYSTEM IMPLEMENTATION

and updated dynamically. Therefore, ANS actor is implemented as a Singleton.

Since its state is shared and multiple actors may attempt to change the state,

the state changes must be protected against concurrent modifications. Actors can

change their state in response to messages arriving at their mailboxes. Due to

the nature of the mailbox (i.e. queue), messages are serialized upon entry to the

queue. Messages are processed in the order they are placed in the queue and

processing of a message can not be started before the previous one is completed.

When a request asking for data from a data store is received by the platform, a

pair of subscriber-publisher actor is created and the state of the ANS is updated

to include this mapping.

Data through a Publisher does not have to come from just one source. When

necessary, publisher processes data from multiple sources and send them to sub-

scribers i.e. applications. Since multiple data sources can send data to the same

application, another mapping is needed to map the real data source to a publisher

as shown in Figure 5.9

Figure 5.9: Multiple Source Using One Publisher.

Filtering operations Filtering has two forms: advanced filtering and simple

filtering. Advanced filtering is done through the rule file described in the Rule

Service section. The rule file can only be specified if the programming APIs pro-

vided in the Python library are used. Simple filtering is provided in the JSON

load when using REST-API. In the real-time case, the data sent by the platform

sensors are processed instantly, whereas in the periodic case, the data is processed

using the interval specified by the applications and the database is used as the

data source.

59

CHAPTER 5. SYSTEM IMPLEMENTATION

5.1.2 Sensor and Application Bindings

Several alternatives are researched to choose a communication protocol to use in

the binding layer when transferring data to and from the platform. Communication

protocols considered are listed below:

MQTT[58]: MQTT protocol is simply a publisher-subscriber model for mes-

saging. It offers a lightweight solution for delivering messages. It is ideal for

working with limited resources.

XMPP[59]: It is a real-time messaging protocol and mostly used in chat appli-

cations. It uses XML for exchanging messages and publisher-subscriber messaging

model.

CoAP[60]: It is a lightweight RESTful interface for devices with limited re-

sources. It uses the HTTP protocol but it works using UDP rather than TCP.

Besides, it consumes low amount of resources comparing to the standard RESTful

protocol.

AMQP[61]: It is similar to MQTT protocol, and has publisher-subscriber

architecture. Besides, it has a queuing feature which is based on “topics”. It offers

security and reliability.

REST[62]: REST stands for REepresentational State Transfer and uses the

HTTP protocol. It is a widely used and well-known model in building modern web

applications. Both XML and JSON data format can be used for data transfer.

WebSocket[63]: It enables a full-duplex communication over sockets and

makes server to send messages to clients, unlike HTTP protocol. For real-time

communication, WebSocket is a good option. RESTful HTTP and WebSocket

are chosen for this project. They are well-known, easy to understand and widely

used mechanisms to exchange data. Other protocols are also acceptable candi-

dates, however, they would not be as easy to implement when compared to the

two protocols mentioned before. Websockets are used to implement real-time com-

munication [48] in PCAD.

60

CHAPTER 5. SYSTEM IMPLEMENTATION

RESTful based communication is gaining momentum in standard web tech-

nologies for the primary reason that it is based on the HTTP protocol and pro-

vides a much simpler use than the SOAP based methods. HTTP is the de-facto

internet standard and is universally supported by the operating systems and pro-

gramming languages. RESTful APIs are indispensable components for single-page-

applications. Single-page-application is a web application that the business logic

take place on the client-side, and it interacts with the server-side only when data

is needed. This is the perfect mechanism that fits for PCAD, and when we provide

RESTful API, the platform will be suitable for up-to-date application development

trends.

Akka’s design goal is to provide a concurrent computation environment to

develop scalable applications. It does not provide an extensive and robust func-

tionality to support HTTP [50] and WebSocket [63] protocols. To remedy the

absence of HTTP and WebSocket support, Play Framework [64] is used as it has

support for both RESTful architecture and WebSockets and integrates these web

protocols with Akka. Play Framework offers ready to use off-the-shelf features

for Akka such as comprehensive testing libraries, encryption for security, and ac-

tor pooling for scaling platform. It is based on the Model-View-Controller [65]

architectural pattern. The platform functions are represented as resources and

accessed via service endpoints which are references to Uniform Resource Identi-

fiers. Play uses URL which is a specific type of URI to send web requests using

the underlying HTTP protocol. Each request contains a URL, a method (i.e.

PUT,GET,POST,DELETE), list of headers and payload. Every URL is mapped

to a controller action in Play and this mapping is called a route. The router is the

component in charge of translating each incoming HTTP request to an action.

When a request is received, the controller first preprocesses it, then passes it to

Akka actor system and finally returns the response received from the Actor system

back to the client. Controllers in Play framework provide access to Actor system

by converting web requests to messages so that actors could understand. Thus,

controllers compose messages and pass them to actors. After a request arrives to

an actor, it performs a task or a service as explained in Chapter 5. To summarize,

the main component to bind HTTP requests to Akka is the route endpoints which

defines a URL, an HTTP method, and a controller which handles requests. Each

route endpoints forms a universal PCAD RESTful API. A sample RESTful API

61

CHAPTER 5. SYSTEM IMPLEMENTATION

is shown below where secure access is achieved through the use of access token:

http://pcad.com/users?access token=eykls12930KIM.9023JKDF...

Except for the signup and signout requests shown in Table 5.14, all other

requests must use a token and send it as a query parameter via the URL. The

four interaction mechanisms - A1 to A4 - mentioned in the Alert and Notification

Service are handled using WebSocket protocol. There is only one URL for the

WebSocket protocol. It is used to initialize WebSocket connection and keep it

active until the connection is closed. This is in contrast to the HTTP protocol

where no state information is kept from one request to the other. An example

URL for a WebSocket connection is given below in which a session token is sent

along with the URL when establishing a connection.

ws://pcad.com/sensors/stream?access token=eykls12930KIM.9023JKDF...

Table 5.14: RESTful API

URL Method Payload Description
/auth/signup POST NewUser Registers new user.

/auth/signin POST Credentials
User, Application,

and Sensor sign in.
/auth/signout GET - User signs out.
/users GET - Returns users.

/users/:id
GET - Returns a user.
PUT User Updates a user.
DELETE - Deletes a user.

/sensors
GET - Returns sensors.
POST NewSensor Creates new sensor.

/sensors/:id
GET - Returns a sensor.
PUT Sensor Updates a sensor.
DELETE - Deletes a sensor.

/applications
GET - Returns applications.

POST NewApplication
Creates new applica-

tion.

/applications/:id
GET - Returns a application.
PUT Application Updates a application.
DELETE - Deletes a application.

/roles
GET - Returns roles.
POST NewRole Creates new role.

/roles/:id
GET - Returns a role.
PUT Role Updates a role.
DELETE - Deletes a role.

/permissions/users
GET -

Returns user permis-

sions.

POST NewUserPermission
Creates new user per-

mission.

/permissions/users/:id
GET -

Returns a user per-

mission.
Continued on next page

62

/auth/signup
/auth/signin
/auth/signout
/users
/users/:id
/sensors
/sensors/:id
/applications
/applications/:id
/roles
/roles/:id
/permissions/users
/permissions/users/:id

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.14 – Continued from previous page
URL Method Payload Description

PUT UserPermission
Updates a user per-

mission.

DELETE -
Deletes a user permis-

sion.

/permissions/applications
GET -

Returns application

permissions.

POST NewAppPermission
Creates new applica-

tion permission.

/permissions/applications/:id
GET -

Returns a application

permission.

PUT AppPermission
Updates a application

permission.

DELETE -
Deletes a application

permission.

/sensor/:id/data
GET - Returns sensor datas.

POST SensorData
Creates new sensor

data.
/sensors/:id/data/filter POST Filter Returns sensor data.
/sensors/:id/info GET - Returns sensor info.
/sensors/:id/status GET - Returns sensor status.

A complete list of URLs is shown in Table 5.14. For instance, the first row in

the table presents an API for signup where /auth/signup is the URL, POST is the

method to use, and NewUser is the payload information. The payload information

is given in Table 5.15. The programming examples that demonstrate RESTful API

use can be found in Appendix A.

Table 5.15: Payloads

NewUser

1 {

2 "first_name": String,

3 "last_name": String,

4 "email": String,

5 "company": String,

6 "username": String,

7 "password": String

8 }

User

1 {

2 "id": Number,

3 "first_name": String,

4 "last_name": String,

5 "email": String,

6 "company": String,

7 "username": String,

8 "access_token": String,

9 "registration_time": Date,

10 "valid": Boolean

11 }

Continued on next page

63

/permissions/applications
/permissions/applications/:id
/sensor/:id/data
/sensors/:id/data/filter
/sensors/:id/info
/sensors/:id/status

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.15 – Continued from previous page

NewSensor

1 {

2 "type": String,

3 "company": String,

4 "unit": String,

5 "latitude": String,

6 "longitude": String

7 }

Sensor

1 {

2 "id": Number,

3 "type": String,

4 "company": String,

5 "unit": String,

6 "latitude": String,

7 "longitude": String,

8 "access_token": String,

9 "valid": Boolean

10 }

NewApplication

1 {

2 "user": Number,

3 "name": String

4 }

Application

1 {

2 "id": Number,

3 "user": Number,

4 "name": String,

5 "registration_time": Date,

6 "access_token": String,

7 "valid": Boolean

8 }

NewRole

1 {

2 "name": String,

3 "status": Boolean,

4 "info": Boolean,

5 "data": Boolean

6 }

Role

1 {

2 "id": Number

3 "name": String,

4 "status": Boolean,

5 "info": Boolean,

6 "data": Boolean

7 }

NewUserPermission

1 {

2 "user": Number,

3 "sensor": Number,

4 "role": Boolean

5 }

UserPermission

1 {

2 "id": Number,

3 "user": Number,

4 "sensor": Number,

5 "role": Boolean,

6 "valid": Boolean

7 }

Continued on next page

64

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.15 – Continued from previous page

NewApplicationPermission

1 {

2 "application": Number,

3 "sensor": Number,

4 "role": Boolean

5 }

ApplicationPermission

1 {

2 "id": Number,

3 "application": Number,

4 "sensor": Number,

5 "role": Boolean,

6 "valid": Boolean

7 }

SensorData

1 {

2 "sensor": Number,

3 "time": Date,

4 "value": Number

5 }

Filter

1 {

2 "sensor": Number,

3 "value": {

4 "min": Number,

5 "max": Number

6 },

7 "time": {

8 "min": Date,

9 "max": Date

10 }

11 }

5.2 Client-Side of Platform

Client-side is the front-end of PCAD and made up of two main components: pro-

gramming language bindings (i.e. Application Programming Interface) and user

interface bindings (Graphical User Interface). The programming interfaces are

used for developing sensor and application software. User interface is the web

panels for user and application management, and it has certain features to ease

platform management. Application Programming and Graphical User Interfaces

are explained in the following sections.

5.2.1 Application Programming Interface Bindings

PCAD provides a library for applications and sensors to use the services of PCAD.

Applications can retrieve data or sensors provide data to platform using one of the

following two methods:

65

CHAPTER 5. SYSTEM IMPLEMENTATION

� Using a set of library functions written in Scala/Python

� RESTful API (HTTP Request/Response)

RESTful API is used to perform various actions on the server using HTTP

requests. All capabilities of PCAD are available through the API. Each HTTP

REST request has a method type, URL and a payload. Required elements of a

request has to be defined properly, otherwise, requested action will not be com-

pleted successfully. Alternatively, the application programming interface can be

used to access the platform services. Programming interface is used for authenti-

cation, querying data and getting real time data. Programming language bindings

provide a better development interface than RESTful API. By using programming

bindings, developers are less prone to errors when communicating with PCAD.

Similar to applications, sensors can send data to the platform using both the

programming language bindings or RESTful API. Sensor software only needs au-

thentication and data posting features, therefore the number of available library

functions are less than the ones available for applications. In Figure 5.10, we can

see how clients, sensors and applications, access the platform.

Figure 5.10: Application Platform Binding Protocols

The biggest rationale in using a library when communicating with the PCAD

platform is provisioning of a data channel to the sensors and applications to enable

66

CHAPTER 5. SYSTEM IMPLEMENTATION

instant data delivery to and from the platform. When applications and sensors

need to communicate with the platform for instant data delivery, application pro-

gramming interface must be used. This type of communication is supported via

WebSocket protocol [63]. It establishes a continuous connection between clients

and server, where PCAD is the server and sensors and applications are the clients.

PCAD plays the conveyor role among sensors and applications. When using Web-

Socket for communication, clients connect to the platform first. Every connection

instance runs in its own thread. The applications can get data from multiple

sources simultaneously, if they are configured so. To receive data, the applica-

tions initialize a context to store session parameters between the application and

the platform after a successful authorization. This connection context is used in

subsequent communications. When the connection is established, the application

specifies the payload to specify communication parameters by using a connection

instance. The same connection instance could be used in receiving data from dif-

ferent resources. All an application has to do is, to specify different payloads for

different resources. Callback function mechanism is used to send data to the appli-

cation. Platform calls the callback function specified by the application whenever

data is ready. Callback function handles data and performs the operations that

it is assigned to, such as for example drawing real-time graph. A summary of the

API is given in Table 5.16. The full programmer’s guide is given in Appendix A.

Table 5.16: Application Programming Interface

Name Parameter Description

pcad init context config file path Library function to initialize commu-

nication between the platform and the

clients (i.e sensors and applications).

config file path parameter is used to

deliver the configuration data needed to

start a communication. The file contains

access token information which is unique

for each client.

pcad get credentials context Function to obtain session token after au-

thentication using the access token. Ses-

sion token is special one that has expira-

tion time. When the session token expires,

it must be re-acquired again by using this

library method.

pcad free context path Function for cleaning session token footprint

on the disk.

Continued on next page

67

CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.16 – Continued from previous page

pcad post data sensor data Function that sends sensor data to the plat-

form. It accepts data in JSON format.

pcad init connection secure context It starts the communication between an ap-

plication and the platform for notification

purposes. Communication is based on Web-

Socket protocol and remains alive until ter-

minated.

pcad attach sensor payload,

rule path

Function to subscribe to a data source (i.e.

sensor). Optionally, a rule can be passed to

filter sensor data. Payload parameter spec-

ifies the mode of notification. If mode is pe-

riodical, an interval must be given as well.

The other mode is real.

pcad on message connection,

callback

Function to receive notification messages.

By using this method, an application en-

ables listening of incoming messages. Re-

ceived messages are passed to a callback

function which is specified as a parameter.

pcad terminate

connection

connection Function to terminate a communication.

pcad send query secure context,

sensor, filter

Function to query the sensor data and time.

Both data and time may have maximum and

minimum values to limit query. Response

returned is in JSON format. This function

performs a one time query which does not

require a continuous connection.

An example program in Python language that illustrates the use of the API

to establish communication between application and the platform is shown below.

Other example programs can be found in Appendix A.

The following sequence of events takes place in the program shown in Figure

5.11

1. Authentication to the platform is done using pcad init context, and

pcad get credentials function calls.

INSTANCE = Connection()

CONTEXT = INSTANCE.pcad_init_context("application_config.json")

SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

As a result a secure context is established between the application and the

platform.

68

CHAPTER 5. SYSTEM IMPLEMENTATION

2. pcad init connection call establishes a new communication channel.

Once the channel is established, data flow from the platform to the ap-

plication takes place.

CONNECTION = INSTANCE.pcad_init_connection(SECURE_CONTEXT)

3. Data request is made by calling pcad attach sensor method. The sensor

to be attached to and other information are provided in the payload as argu-

ments to the method. The method takes the connection instance as the first

parameter which is initialized as a result of a prior pcad init connection

call used to establish data exchange channel. The second parameter is of

dictionary data type which stores mode, sensor key-value pairs, and option-

ally an interval. Interval is only required when the mode is ‘periodic’. The

third parameter is the path of a rule file, which is by default null when not

provided.

INSTANCE.pcad_attach_sensor(CONNECTION, {"mode":"real", "sensor": 19})

4. The pcad on message method allows the processing of incoming messages

via the active connection. For example, a function that outputs incoming

messages to the screen is given as a parameter to this method and the mes-

sages is printed on the screen.

INSTANCE.pcad_on_message(CONNECTION, print_message)

5. pcad terminate connection is used to end an active connection.

INSTANCE.pcad_terminate_connection(CONNECTION)

5.2.2 User Interface

This section describes the web interface for the platform users. The web interface

is implemented as a separate package. It also communicates with the platform

using RESTful API. It is primarily intended for performing administration tasks

such as registration of users, applications, and sensors, password management, au-

thorization, listing sensor information and update. There are two kinds of users

defined on the system: user and admin. The web panel has an adaptive interface

which alters its presentation based on user type. The web panel is implemented

69

CHAPTER 5. SYSTEM IMPLEMENTATION

Real-Time Application Program

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 def print_message(message):

5 print(message)

6

7 if __name__ == "__main__":

8 try:

9 INSTANCE = Connection()

10 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

11 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

12 CONNECTION = INSTANCE.pcad_init_connection(SECURE_CONTEXT)

13 INSTANCE.pcad_attach_sensor(CONNECTION, {"mode": "real", "sensor":

19})↪→

14 INSTANCE.pcad_on_message(CONNECTION, print_message)

15 except (Exception, KeyboardInterrupt, SystemExit) as e:

16 INSTANCE.pcad_terminate_connection(CONNECTION)

Figure 5.11: Example Real-Time Application Program

using AngularJS [66]. It is a JavaScript framework to develop web applications,

in particular front-end development. Single-page-application is used for compris-

ing application which share same principles and features. It has a simple working

principle. Basically, one page is presented by server side and all of other function-

alities are provided by client-side business logic. Only data requests is made to

the server and the page dynamically alters its behavior based on response data.

Therefore, the single-page-application concept perfectly fits for the RESTful in-

terface because, there is no need for rewriting or refactoring server-side logic to

create such a user interface. The web panel user interface screen shots are give in

Appendix B. Each interface was created by using Javascript and HTML [67], it

has no extra burden on server-side.

70

Chapter 6

Tests

This section describes the test methodology utilized in testing PCAD platform

based on the IEEE Std 829-2008 standard [68]. The IEEE standard specifies the

testing process in four phases: Test Planning, Test Design, Test Execution and

Analysis of Results. The platform is tested to determine whether it is performing

its expected functions and to reveal bugs present in it. The tests are grouped into

four categories:

� API tests

� GUI tests

� Integration tests

� Performance tests

The API tests are intended to test the RESTful interface which is the mech-

anism to connect to the platform. The GUI tests are executed to test the web

interfaces of the platform. The Integration tests ensure that the system performs

correctly as a whole and the platform services provide the required functionality

working individually or as an aggregate. The overall performance of the platform

is verified via performance tests. In order to carry out the tests presented above,

first inputs, operations and outputs related to the test cases were specified and

developed during the design stage. Following the design phase, the test cases are

71

CHAPTER 6. TESTS

executed, necessary corrections and changes were made based on the bugs discov-

ered and results are documented. The testing process concluded when 95 percent

success rate has been reached without any severe defect left unresolved. Thus, the

testing process is completed.

6.1 Test Design

Test were written for the four categories given above. API and Integration tests

are common. The user interaction in the GUI tests are done automatically by the

help of a test library to test functional correctness of the user interface. However,

style related verification is done visually. Performance tests are done by simulating

the data source.

6.1.1 API and Integration Tests

This section describes the conversion of the application programming interfaces

presented within the RESTful interfaces of the PCAD platform into concrete test

conditions and test cases. These test cases also serve as the API and integration

tests. Since the programming interface of the platform is based on REST, HTTP

protocol is used when making a request. Each test case consists of 8 fields: test

case ID, purpose, method used (e.g. POST, GET), HTTP request URL, query

parameters, payload, response code and content. A total of 87 API and Integration

test cases are developed.

Table 6.1, presents a sample test case with actual contents used in testing.

While, purpose, method, and URL fields may contain identical information span-

ning multiple test cases, input/output parts will vary from one test to another.

The query parameter refers to the entries given in the URL and are indicated by

‘-’ if they are not needed. Payload shows the input sent in the payload part of the

request. Code and content are the results returned in the HTPP response. The

code and content values returned must be exactly same as the ones specified in

the test cases. Otherwise, the test case causes a failure.

72

CHAPTER 6. TESTS

Table 6.1: Example Test Case
ID Test Case 35.1
Purpose To post sensor data
Method POST
URL /api/v1/sensors/:id/data
Input : Query id:1, access token=VALID SESSION TOKEN
Input : Payload {sensor:1, time: "2016-02-15 13:10:12",

value: 23.4}
Output : Code 200
Output : Content 1 (Randomly generated sensor data id.)

The goal of integration testing is to ensure that all four platform services inter-

act with each other, with applications and sensors as designed, and the platform

functions correctly as a whole. Even though integration tests are given as a sepa-

rate category, no separate test cases are written for the integration testing. API

tests are used for integration testing as well. As stated in previous chapters, four

services have been implemented in the platform: DMS, ANS, SPS, RS. The aim of

integration testing is to exercise these services. However, not every service within

the platform communicates with every other service. HTTP requests sent to the

platform exercises a subset of these services. Table 6.2 presents the REST-API

endpoints used by these services and the services that are exercised during pro-

cessing a request. Each service indicated with a check box in the table must work

correctly, and participate in handling the request otherwise, it would cause the re-

quest fail. For example, writing sensor data on the database depends on SPS and

DMS, failure of this of request means either SPS or DMS has failed individually

or these two services are not working correctly together.

The database should be populated with sample data prior to the tests by run-

ning init test db.sh script. This script populates user, user permissions,

application permissions, sensors, applications, and roles tables. Tests

that require authentication, there must exist a VALID SESSION TOKEN which

is sent along with the URL to complete the authentication process.

VALID SESSION TOKEN is obtained by making a POST request on /auth/signin

endpoint. Test cases also require an INVALID SESSION TOKEN to test error cases.

A random string value is sufficient to make a token invalid.

73

CHAPTER 6. TESTS

6.1.2 GUI Tests

This section provides the test cases to test whether web interfaces of the platform

function correctly or not and, whether they perform the functions expected from

them.

GUI tests are automated with the help of a sophisticated user interface testing

library. It is a full package for testing browser based applications, This library pro-

vides a utility that simulates browser actions programatically. Due to this library,

GUI test are automated without any user intervention. For instance, filling form

inputs, clicking buttons, submitting forms and executing background tasks such as

listening HTTP responses, AJAX requests are done by the browser automatically.

However, it requires to precisely specify each and every event sequence generated

by the user. For each GUI test we have listed every action that must be done such

as opening a page, clicking a button, filling a form then submitting it. Each test

required at most 4 steps. In total 69 test cases are developed.

GUI test cases do not include testing of style-related properties, such as po-

sitioning of widgets, web page color, sizes etc. Such style related properties are

verified visually during the tests by the tester performing the tests. For this pur-

pose, the screenshots of the web interfaces of the platform were taken and the

test cases were exercised visually. Appendix B lists the screen shots of the web

interface. If the interface looked peculiar or exhibited incorrect visual behavior

such as inconsistent font size, the issue is fixed immediately. The test case is not

marked as a failure however, as the function worked correctly.

74

CHAPTER 6. TESTS

Table 6.2: API Tests and Services
Inputs Services

URL Method Query Payload SPS DMS RS ANS

/auth/signup POST - + + + - -

/auth/signin POST - - + + - -

/auth/signin POST + - + + - -

/auth/signout GET + - + - - -

/users GET + - + + - -

/users POST + + + + - -

/users/:id GET + - + + - -

/users/:id PUT + + + + - -

/users/:id DELETE + - + + - -

/sensors GET + - + + - -

/sensors POST + + + + - -

/sensors/:id GET + - + + - -

/sensors/:id PUT + + + + - -

/sensors/:id DELETE + - + + - -

/sensors/stream GET + - + + + +

/applications GET + - + + - -

/applications POST + + + + - -

/applications/:id GET + - + + - -

/applications/:id PUT + + + + - -

/applications/:id DELETE + - + + - -

/permissions/users GET + - + + - -

/permissions/users POST + + + + - -

/permissions/users/:id GET + - + + - -

/permissions/users/:id PUT + + + + - -

/permissions/users/:id DELETE + - + + - -

/permissions/applications GET + - + + - -

/permissions/applications POST + + + + - -

/permissions/applications/:id GET + - + + - -

/permissions/applications/:id PUT + + + + - -

/permissions/applications/:id DELETE + - + + - -

/sensors/:id/status GET + - + + - -

/sensors/:id/info GET + - + + - -

/sensors/:id/data GET + - + + - -

/sensors/:id/data POST + + + + - -

75

CHAPTER 6. TESTS

6.1.3 Performance Tests

This section presents the results of tests related to performance. The goal is to

determine data transfer rate and any computing bottleneck present in the services.

We have measured the response time as the amount of time that have elapsed from

the time a data provider sends data to the system till the time data is written to the

database. In order to load the system, a number of sensors are simulated, sending

concurrent requests over a period of time to verify the expected write times to the

database. Table 6.3, shows performance results. Latency between submission of

data by the provider and storing it to database is given in Elapsed Time column.

This value is calculated by taking the average of elapsed times for each individual

data write. Sensor column specifies the number of simulated sensors to generate

the required data. Data Quantity column specifies total number of data write

requests sent to the platform. For performance tests, a program was created to

simulate sensor behavior by randomly generating values as sensor data. The data

is sent using the Application Programming Interface given in Appendix A. Using

a program to simulate sensors allows us to better control loading of the system,

despite the fact that values used are not real, but random.

Table 6.3: Performance Test Results
Sensor Data Quantity Elapsed Time(ms)

1 30 3
10 300 56
50 1500 52
100 3000 51
250 7500 60
375 11250 66
500 15000 87

6.2 Test Analysis and Results

87 test cases for API Testing and 69 test cases for GUI, with a total of 156 test

cases were developed. The testing libraries provided in the Play Framework (Web

application framework) for Java and Scala are used to run tests. API and GUI

test were done programatically. API tests simulates HTTP actions, GUI tests

simulates browser actions which is explained in GUI tests section.

76

CHAPTER 6. TESTS

Upon completion of the platform development, test cases have been executed

which the results are shown in Table 6.4. Some errors from the test runs were not

due to platform specific bugs but rather caused by the incorrect interpretation of

the results by test cases. For instance an HTTP request that has an incorrectly

formatted JSON payload causes HTTP error with a code of 500. On the other

hand, test cases were programmed expecting a response code of HTTP 400. This

mismatch caused many failures despite the fact that platform functioned correctly

(i.e. correctly detected the invalid JSON payload). Faults in GUI tests are due

to form inputs. Form input values were not using the related JSON variable cor-

rectly, for example, JSON must have property called ‘sensor’, but it was written as

‘sensorId’. Similar kind of errors caused failures, and they were fixed immediately.

After the correction of errors, the test cases were executed again and the obtained

results are presented in Table 6.5. The PCAD platform has successfully passed

the acceptance tests.

Table 6.4: Beta Test Results
Tests Planned Executed Successful Failure
API 87 87 73 14
GUI 69 69 59 10

Table 6.5: Acceptance Test Results
Tests Planned Executed Successful Failure
API 87 87 87 0
GUI 69 69 69 0

As a result, many implementation errors were revealed by the tests and nec-

essary corrections were made. After the revisions, test cases were run again and

the system was found to be working without error with respect to the designed

test cases. The performance tests were recorded as benchmark for further develop-

ment of the platform, therefore when a new version of the platform is completed,

the current performance could be compared against the benchmark to determine

how new features would affect the system. In fact, this approach has been used

during development. New features of the platform were added step by step, and

performance tests were repeated after every improvement in order to monitor the

performance. Only trivial performance differences were observed in each new fea-

ture addition.

77

Chapter 7

Conclusion and Future Work

This thesis presents the design and implementation of a context-aware applica-

tion development platform - PCAD. Its primary goal is to relieve context aware

applications from acquisition and storage of data, thus allowing rapid application

development with minimal effort. The platform also provides data providers with

a simple-to-use interface to store their data on the platform. The platform acts as

a middleware between data providers and data users and was inspired by operating

system design. It adapts a service based approach. The platform functions are

designed as services, with each service assigned to perform a specific task. The

service based approach enables loose coupling between transacting entities within

the platform thus making the system flexible and extensible. New features can be

easily added as a service.

Services in PCAD are modeled using the Actor model. In addition to many

other advantages, the Actor model provides load distribution to other machines

thus making the system scalable. Actors use a small footprint and due its asyn-

chronous message passing capability, an Actor does not exhibit some potential

problems one may see in parallel computation. PCAD is implemented using the

Akka toolkit, Scala language and Java Virtual Machine Platform. The Akka toolkit

is the reference implementation for the Actor Model. Several other supporting

technologies played a part in PCAD implementation; Play framework supports

HTTP, WebSocket and RESTful architecture. Slick library and MySQL supports

relational database storage.

78

CHAPTER 7. CONCLUSION AND FUTURE WORK

The platform has implemented four services: Security and Privacy, Data Man-

agement, Rule, Alarm and Notification. The Security and Privacy service uses a

simple Role Based Access Control scheme together with JSON web token to en-

force authentication and authorization. The Data Management Service provides

relational data storage functionality. A simple rule language and a rule engine

is designed to filter data based on application specified criteria. The Rule, and

Alarm and Notification services work together to send data to applications based

on the criteria provided by the applications. The Alarm and Notification Service

uses subscriber-publisher paradigm to connect data providers to data consumers.

The remaining two services -Interoperability and Reporting- were architected and

designed but not implemented for the reason that these services are considered

lower priority in comparison to core platform features. They are planned to be

integrated and implemented in the next release of the platform.

The platform has the following main benefits: it supports a diverse range of

context sources, allows applications to access context sources synchronously or

asynchronously using filters, decouples application code form context acquisition,

and provides a simple rule engine for context processing. The platform supports

instant data delivery requirements by opening a direct WebSocket channel between

the context source and applications. The applications that are delay tolerant can

use the RESTful API over HTTP Request/Response protocol to fulfill their data

needs. Due to its architecture, the platform is flexible, scalable and extensible.

The graphical and application programming interfaces provided by the platform

facilitates rapid application development and delivers a easy-to-use user experi-

ence.

As a result, this thesis has achieved the objective of implementing a novel

service based application development platform based on the notion of context-

awareness.

7.1 Future Work

1. Akka toolkit is the reference implementation of the Actor model and is still

being actively developed. Rather than using third party library support for

HTTP as an add-on to Akka toolkit, using the version of Akka that has

79

CHAPTER 7. CONCLUSION AND FUTURE WORK

built-in support for HTTP will reduce the overall footprint of the platform

and make the implementation more compact and lightweight.

2. The rule language and rule engine will be enhanced to support more com-

plicated filtering.

3. Context modeling and context reasoning functions are intentionally left out

in current version since the focus of this work was to lay out the critical

components of the platform. Currently, these functions are delegated to

applications. In the future version of the platform it is planned to include

some context modeling and reasoning activity in the platform.

4. Pluggable database support as described in Chapter 4 will be added. As a

result NoSQL, cloud and other databases will be supported without the need

for any changes to the core platform.

5. The current system is designed to work on a single machine. We consider

adding support so the services can work on remote machines. This work will

be based on remote actor feature of Akka that enables sharing tasks across

multiple machines, thus enhancing scalability.

6. To improve scalability, demand based system tuning will be added by adding

a configurable actor pool mechanism so that system performance will be

enhanced and resource usage will be balanced.

80

Appendix A

Application Programming

Interface Manual

Name:

pcad init context: Creates a context object which is used when calling

library APIs.

Synopsis:

context = pcad init context(context path)

Description:

It accepts a configuration file as a parameter and initializes the sensor con-

nection interface. The configuration file which is in JSON format contains

information about sensor which includes access token for authentication.

Parameters:

context path: The location of the configuration file.

Return Value:

It returns a context for to be used in subsequent API calls.

Example:

1 context_path = "/opt/pcad/config/app_config.json"

2 context = pcad_init_context(context_path)

81

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad free context: It frees the specified context.

Synopsis:

void pcad free context(context)

Description:

It deletes context object.

Parameters:

context: The context acquired as a result of pcad init context call.

Return Value:

It returns void, it only logs.

Example:

1 context_path = "/opt/pcad/config/example.cfg"

2 context = pcad_init_context(context_path)

3 pcad_free_context(context);

Name:

pcad get credentials: Retrieves session credentials.

Synopsis:

pcad get credentials(context)

Description:

It takes context object as an argument to retrieve session credentials from

PCAD. It returns the modified context object augmented with the session

credentials. Unlike access token, session credential has duration. When it

expires new credentials must be acquired.

Parameters:

context: The context acquired as a result of pcad init context call. At

the end of the call context will be modified with the session credentials.

Return Value:

It returns a secure context that contains session credentials.

Example:

1 context_path = "/opt/pcad/config/app_config.json"

2 context = pcad_init_context(context_path)

3 secure_context = pcad_get_credentials(context)

82

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad init connection: It opens a connection between PCAD and applica-

tion which will be used for continuous data transfer.

Synopsis:

connection = pcad init connection(secure context)

Description:

It opens a connection with PCAD.

Parameters:

The secure context acquired as a result of pcad get credentials call.

Return Value:

It returns connection instance which ia used for data exchange.

Example:

1 context_path = "/opt/pcad/config/app_config.json"

2 context = pcad_init_context(context_path)

3 secure_context = pcad_get_credentials(context)

4 connection = pcad_init_connection(secure_context)

83

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad on message: It receives incoming messages from PCAD.

Synopsis:

pcad on message(connection, callback)

Description:

It listens incoming messages coming through connection instance. It cannot

be used without a connection instance. Therefore, firstly, a connection must

be established.

Parameters:

connection: It is the connection handle that the applications receive

messages and data. The connection handle is initialized by using

pcad init connection method.

callback(connection, message): callback function is taken as parame-

ter. This function is written by the application developer. It will be registered

to connection instance for listening messages. Method will take two parameters

and the first one is connection handle, and other one is message received. The

function uses message parameter to access to the data.

Return Value:

-1: for error

non-negative: Success

Example:

1 .

2 .

3 source = {"mode": "periodic", "sensor": 51 ,"interval": 5}

4 connection = pcad_init_connection(secure_context)

5 pcad_attach_sensor(connection,source,null)

6 def foo(conn, message):

7 print(message)

8 pcad_on_message(connection, foo)

84

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad attach sensor: Binds the application to particular sensor for data

retrieval.

Synopsis:

pcad attach sensor(connection, source, rule file=None)

Description:

It binds the application to a particular sensor for data retrieval. The applica-

tions use this call to get data and notifications for a particular sensor.

Parameters:

connection: It is the connection handle that the applications receive

messages and data. The connection handle is initialized by using

pcad init connection method.

source: The source of data. It is a JSON formatted object which specifies

the data source. It has three fields: mode of transfer, sensor id and interval.

A valid JSON source object is given in the following code snippet.

source = {

"mode": 'real' | 'periodic',

"sensor_id": Number,

"interval": Number # minute value and only required for periodic

}

The mode field indicates if the data is to be sent directly from the sensor

or not. If this field is set to ‘real’, platform sends data as soon as it becomes

available (i.e. delivered by the sensor) . When this field is set to ‘periodic’,

data will be delivered at predefined intervals from the database.

rule file: It is a rule file to be interpreted by PCAD. If no rule file is

given then this field must be specified as null.

Return Value:

void

Example:

1 .

2 .

3 source = {"mode": "real" , "sensor_id": 23}

4 connection = pcad_init_connection (secure_context)

5 pcad_attach_sensor(connection,source,null)

85

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad terminate connection: Terminate connection.

Synopsis:

pcad terminate connection(connection)

Description:

Connection instance will be destroyed and communication will be ended.

Parameters:

connection: It is handle of the connection to be destroyed.

Return Value:

-1: for error

non-negative: Success

Example:

1 .

2 .

3 secure_context = pcad_get_credentials(context)

4 connection = pcad_init_connection(secure_context)

5 result = pcad_terminate_connection(connection)

86

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad send query - It runs query on PCAD’s sensor data.

Synopsis:

pcad send query(secure context, sensor id, query)

Description:

It is used for one time data requests. Querying pastime data is one of the use

case for this function.

Parameters:

secure context: The secure context acquired as a result of

pcad get credentials call.

sensor id: Sensor id.

query: It is a JSON object that filter data in database. It must be

composed as following.

Return Value:

It returns JSON response which consists of related sensor data. It may return

empty JSON object, if no data to be found.

Example:

1 .

2 .

3 filter = {

4 "value": null,

5 "time": {

6 "min": "2016-12-02T23:39:30.0+03:00",

7 "max": "2016-12-07T23:39:30.0+03:00"

8 }

9 }

10 response = pcad_send_query(secure_context, 1, filter)

87

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Name:

pcad post data: Posts data to the platform.

Synopsis:

pcad post data(context, data)

Description:

Data sources use this API to post data to the platform. It accepts a context

and data in JSON format and sends the data to the platform.

Parameters:

context: Configuration parameters which will be utilized for authentication.

data: It consists of sensor measurement and complementary information.

It is a JSON formatted object as shown below.

Return Value:

-1: for error

non-negative: Success

Example:

1 context_path = "/opt/pcad/config/sensor_config.json"

2 context = pcad_init_context(context_path)

3 secure_context = pcad_get_credentials(context)

4 data = {"sensor_id": 1 , "time":"2016-09-20", "value": 23.2}

5 response = pcad_post_data(secure_context, data)

6 pcad_free_context(context)

88

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Full Program Examples

RESTful Real-Time Application Program

1 # -*- coding: utf-8 -*-

2 import requests

3 import websocket

4

5 AUTH_URL = "http://localhost:9000/api/v1/auth/signin"

6 QUERY_STRING =

{"access_token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0\↪→

7 FEIiwidWlkIjoxLCJncm91cCI6ImFwcGxpY2F0aW9uIn0.\

8 _DjfVW2emwWuXeZvCSipZKReWb06b9zq3_JM5CRkbEE"}

9 HEADERS = {'content-type': 'application/json'}

10 RESPONSE = requests.request("POST", AUTH_URL, data="{}",

headers=HEADERS, params=QUERY_STRING)↪→

11

12 DATA_URL = "ws://localhost:9000/api/v1/sensors/stream"

13 WEBSOCKET = websocket.WebSocket()

14 PAYLOAD = "{\"mode\":\"real\",\"sensor\":19}"

15 WEBSOCKET.connect(DATA_URL+"?access_token="+RESPONSE.content.replace("\"",

""))↪→

16 WEBSOCKET.send(PAYLOAD)

17 RESPONSE = WEBSOCKET.recv()

18 print(RESPONSE)

19 WEBSOCKET.close()

89

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

RESTful Real-Time Application Program using Rule

1 # -*- coding: utf-8 -*-

2 import requests

3 import websocket

4

5 AUTH_URL = "http://localhost:9000/api/v1/auth/signin"

6 QUERY_STRING = {"access_token":"eyJhbGciOiJIUzI1NiIs-

InR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0\↪→

7 FEIiwidWlkIjoxLCJncm91cCI6ImFwcGxpY2F0aW9uIn0.\

8 _DjfVW2emwWuXeZvCSipZKReWb06b9zq3_JM5CRkbEE"}

9 HEADERS = {’content-type’: ’application/json’}

10 RESPONSE = requests.request("POST", AUTH_URL, data="{}",

headers=HEADERS, params=QUERY_STRING)↪→

11

12 DATA_URL = "ws://localhost:9000/api/v1/sensors/stream"

13 RULE = "name = notification\nmin_value = 10.5\ncurrent_value =

pcad_get_time()\ndb_value = pcad_get_db_time(sensor=17) \nwhen

{\n(current_value < min_value) and (db_value < min_value)}\nthen\n{

Notify()}"

↪→

↪→

↪→

14 WEBSOCKET = websocket.WebSocket()

15 PAYLOAD = "{\"mode\":\"real\",\"sensor\":19, \"rule\":"+RULE+"}"

16 WEBSOCKET.connect(DATA_URL+"?access_token="+RESPONSE.content.re-

place("\"",

""))

↪→

↪→

17 WEBSOCKET.send(PAYLOAD)

18 RESPONSE = WEBSOCKET.recv()

19 print(RESPONSE)

20 WEBSOCKET.close()

90

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

RESTful Non-Real-Time Application Program

1 # -*- coding: utf-8 -*-

2 import requests

3 import websocket

4

5 AUTH_URL = "http://localhost:9000/api/v1/auth/signin"

6 QUERY_STRING = {"access_token":"eyJhbGciOiJIUzI1NiIs-

InR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0\↪→

7 FEIiwidWlkIjoxLCJncm91cCI6ImFwcGxpY2F0aW9uIn0.\

8 _DjfVW2emwWuXeZvCSipZKReWb06b9zq3_JM5CRkbEE"}

9 HEADERS = {’content-type’: ’application/json’}

10 RESPONSE = requests.request("POST", AUTH_URL, data="{}",

headers=HEADERS, params=QUERY_STRING)↪→

11

12 DATA_URL = "ws://localhost:9000/api/v1/sensors/stream"

13 WEBSOCKET = websocket.WebSocket()

14 PAYLOAD = "{\"mode\":\"periodic\",\"sensor\":1, \"interval\":5}"

15 WEBSOCKET.connect(DATA_URL+"?access_token="+RESPONSE.content.re-

place("\"",

""))

↪→

↪→

16 WEBSOCKET.send(PAYLOAD)

17 RESPONSE = WEBSOCKET.recv()

18 print(RESPONSE)

19 WEBSOCKET.close()

91

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

RESTful Non-Real-Time Application Program using Rule

1 # -*- coding: utf-8 -*-

2 import requests

3 import websocket

4

5 AUTH_URL = "http://localhost:9000/api/v1/auth/signin"

6 QUERY_STRING = {"access_token":"eyJhbGciOiJIUzI1NiIs-

InR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0\↪→

7 FEIiwidWlkIjoxLCJncm91cCI6ImFwcGxpY2F0aW9uIn0.\

8 _DjfVW2emwWuXeZvCSipZKReWb06b9zq3_JM5CRkbEE"}

9 HEADERS = {’content-type’: ’application/json’}

10 RESPONSE = requests.request("POST", AUTH_URL, data="{}",

headers=HEADERS, params=QUERY_STRING)↪→

11

12 DATA_URL = "ws://localhost:9000/api/v1/sensors/stream"

13 RULE = "name = notification\nmin_value = 10.5\ncurrent_value =

get_value()\ndb_value = get_db_value(sensor=17) \nwhen

{\n(current_value < min_value) or (db_value < min_value)}\nthen\n{

Notify()}"

↪→

↪→

↪→

14 WEBSOCKET = websocket.WebSocket()

15 PAYLOAD = "{\"mode\":\"periodic\",\"sensor\":19,

\"interval\":5,\"rule\":"+RULE+"}"↪→

16 WEBSOCKET.connect(DATA_URL+"?access_token="+RESPONSE.content.re-

place("\"",

""))

↪→

↪→

17 WEBSOCKET.send(PAYLOAD)

18 RESPONSE = WEBSOCKET.recv()

19 print(RESPONSE)

20 WEBSOCKET.close()

RESTful Single-Time Data Retrieval Application Program

1 # -*- coding: utf-8 -*-

2 import requests

3

4 AUTH_URL = "http://localhost:9000/api/v1/auth/signin"

5 QUERY_STRING = {"access_token":"eyJhbGciOiJIUzI1NiIs-

InR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0\↪→

6 FEIiwidWlkIjoxLCJncm91cCI6ImFwcGxpY2F0aW9uIn0.\

7 _DjfVW2emwWuXeZvCSipZKReWb06b9zq3_JM5CRkbEE"}

8 HEADERS = {’content-type’: ’application/json’}

9 RESPONSE = requests.request("POST", AUTH_URL, data="{}",

headers=HEADERS, params=QUERY_STRING)↪→

10

11 DATA_URL = "http://localhost:9000/api/v1/sensors/1/data"

12 QUERY_STRING = {"access_token":RESPONSE.content.replace("\"", "")}

13 RESPONSE = requests.request("GET", DATA_URL, headers=HEADERS,

params=QUERY_STRING)↪→

14 print(RESPONSE.text)

92

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

RESTful Single-Time Data Retrieval Application Program using

Filter

1 # -*- coding: utf-8 -*-

2 import requests

3

4 AUTH_URL = "http://localhost:9000/api/v1/auth/signin"

5 QUERY_STRING = {"access_token":"eyJhbGciOiJIUzI1NiIs-

InR5cCI6IkpXVCJ9.eyJpc3MiOiJQQ0\↪→

6 FEIiwidWlkIjoxLCJncm91cCI6ImFwcGxpY2F0aW9uIn0.\

7 _DjfVW2emwWuXeZvCSipZKReWb06b9zq3_JM5CRkbEE"}

8 HEADERS = {’content-type’: ’application/json’}

9 RESPONSE = requests.request("POST", AUTH_URL, data="{}",

headers=HEADERS, params=QUERY_STRING)↪→

10

11 DATA_URL = "http://localhost:9000/api/v1/sensors/1/data/filter"

12 PAYLOAD = "{\"value\": null, \"time\": {\"min\":

\"2016-12-02T23:39:30.0+03:00\", \"max\":

\"2016-12-07T23:39:30.0+03:00\"}}"

↪→

↪→

13 QUERY_STRING = {"access_token":RESPONSE.content.replace("\"", "")}

14 RESPONSE = requests.request("POST", DATA_URL, data=PAYLOAD,

headers=HEADERS, params=QUERY_STRING)↪→

15 print(RESPONSE.text)

Real-Time Application Program

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 def print_message(message):

5 print(message)

6

7 if __name__ == "__main__":

8 try:

9 INSTANCE = Connection()

10 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

11 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

12 CONNECTION = INSTANCE.pcad_init_connection(SECURE_CONTEXT)

13 INSTANCE.pcad_attach_sensor(CONNECTION, {"mode": "real", "sensor":

19})↪→

14 INSTANCE.pcad_on_message(CONNECTION, print_message)

15 except (Exception, KeyboardInterrupt, SystemExit) as e:

16 INSTANCE.pcad_terminate_connection(CONNECTION)

93

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Real-Time Application Program using Rule

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 def print_message(message):

5 print(message)

6

7 if __name__ == "__main__":

8 try:

9 INSTANCE = Connection()

10 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

11 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

12 CONNECTION = INSTANCE.pcad_init_connection(SECURE_CONTEXT)

13 INSTANCE.pcad_attach_sensor({"mode":"real", "sensor": 19},

"example.rl")↪→

14 INSTANCE.pcad_on_message(CONNECTION, print_message)

15 except (Exception, KeyboardInterrupt, SystemExit) as e:

16 INSTANCE.pcad_terminate_connection(CONNECTION)

Non-Real-Time Application Program

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 def print_message(message):

5 print(message)

6

7 if __name__ == "__main__":

8 try:

9 INSTANCE = Connection()

10 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

11 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

12 CONNECTION = INSTANCE.pcad_init_connection(SECURE_CONTEXT)

13 INSTANCE.pcad_attach_sensor({"mode":"periodic", "sensor": 1,

"interval": 10})↪→

14 INSTANCE.pcad_on_message(CONNECTION, print_message)

15 except (Exception, KeyboardInterrupt, SystemExit) as e:

16 INSTANCE.pcad_terminate_connection(CONNECTION)

94

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Non-Real-Time Application Program using Rule

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 def print_message(message):

5 print message

6

7 if __name__ == "__main__":

8 CONNECTION = None

9 try:

10 INSTANCE = Connection()

11 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

12 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

13 CONNECTION = INSTANCE.pcad_init_connection(SECURE_CONTEXT)

14 INSTANCE.pcad_attach_sensor({"mode":"periodic", "sensor": 1,

"interval": 10}, "example.rl")↪→

15 INSTANCE.pcad_on_message(CONNECTION, print_message)

16 except (Exception, KeyboardInterrupt, SystemExit) as e:

17 INSTANCE.pcad_terminate_connection(CONNECTION)

Single-Time Data Retrieval Application Program

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 if __name__ == "__main__":

5 try:

6 INSTANCE = Connection()

7 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

8 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

9 result = INSTANCE.pcad_send_query(SECURE_CONTEXT, 1)

10 print(result)

11 except (Exception, KeyboardInterrupt, SystemExit) as e:

12 print "connection killed " + str(e)

13

95

APPENDIX A. APPLICATION PROGRAMMING INTERFACE MANUAL

Single-Time Data Retrieval Application Program using Filter

1 # -*- coding: utf-8 -*-

2 from connection import Connection

3

4 if __name__ == "__main__":

5 try:

6 INSTANCE = Connection()

7 CONTEXT = INSTANCE.pcad_init_context("application_config.json")

8 SECURE_CONTEXT = INSTANCE.pcad_get_credentials(CONTEXT)

9 FILTER = {"value": None, "time": {"min":

"2016-12-02T23:39:30.0+03:00", "max":

"2016-12-07T23:39:30.0+03:00"}}

↪→

↪→

10 RESULT = INSTANCE.pcad_send_query(SECURE_CONTEXT, 1, FILTER)

11 print(RESULT)

12 except (Exception, KeyboardInterrupt, SystemExit) as e:

13 print "connection killed " + str(e)

96

Appendix B

User Interface

Figure B.1: Main Page. Figure B.2: User Registration Page.

97

APPENDIX B. USER INTERFACE

Figure B.3: Sign-in Page. Figure B.4: Sign-out Action.

Figure B.5: Sensor Registration. Figure B.6: Sensor Update for admin.

Figure B.7: Application Registration. Figure B.8: Application Update.

98

APPENDIX B. USER INTERFACE

Figure B.9: Application List for users. Figure B.10: Application List for admin.

Figure B.11: Requesting Permission for
Application.

Figure B.12: Updating Permissions for
Application.

Figure B.13: Requesting Permission. Figure B.14: Updating Permissions.

99

APPENDIX B. USER INTERFACE

Figure B.15: Role Related Actions for
admin.

Figure B.16: User Permission Actions for
admin.

Figure B.17: Application Permission Ac-
tions for admin.

Figure B.18: Listing Permitted Sensors
for users.

100

Appendix C

Installation

The platform has two methods of installation tailored towards two different audi-

ence. The first method of installation is intended for platform end users including

application developers. The other is intended for those who would like to work

on the platform itself by extending and contributing to the platform functionality.

This section describes installation instructions to deploy the system for end users

only. This type of installation requires minimal effort. The platform customiza-

tion can be made by modifying application.conf file such as changing the port

number on which PCAD runs.

Pre-requisite software:

• Linux Ubuntu 14.04

• Java 8: http://www.oracle.com/technetwork/java/javase/downloads/

index.html

• MySQL: https://dev.mysql.com/downloads/

The installation of the required software, should be verified with the following

commands. ‘x’ indicates minor version, and may vary.

$ java -version

java version "1.8.x"

$ mysql version

mysql 5.7.x

101

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://dev.mysql.com/downloads/

APPENDIX C. INSTALLATION

The platform currently runs on the Linux operating system. The software is

packaged in pcad-play-1.0.zip file. This file, when extracted, lays out the following

directory structure on the file system:

pcad-play-1.0/

bin

logs (It keeps logs about application.)

pcad-play.sh (It starts application as an executable file.)

conf

application.conf (It keeps configuration variables.)

logback.xml (Configuration for logging.)

routes (It keeps existing HTTP URLs for applications.)

lib (It involves library packages that application requires.)

samples (Sample programs that works with PCAD.)

api 01 app real time.py

api 02 app real time rule.py

api 03 app non real time.py

api 04 app non real time rule.py

api 05 app one time.py

api 06 app one time filter.py

api sensor.py

application config.json

application rest.py

connection.py

example.rl

rest 01 real time.py

rest 02 real time rule.py

rest 03 non real time.py

rest 04 non real time rule.py

rest 05 one time.py

rest 06 one time filter.py

rest sensor.py

sensor config.json

init.sh (Script that must be executed before starting application.)

README.md (Simple notes about application.)

102

APPENDIX C. INSTALLATION

The init.sh file in the zip file should be run first. This creates the database

schema. However, before doing this, application.conf file must be edited to add

a database name and password.

$ chmod +x init.sh

$./init.sh

This is followed by the execution of the pcad-play command found in the bin

directory, as shown below. The argument given to the command corresponds to

the string variable used for encryption.

$ pcad-1.0/bin/pcad-play -Dplay.crypto.secret=ABCD

After completion of the command, PCAD starts working fully. nginx must be

installed in order for the system to communicate with the external world. nginx

provides the web server functionality that PCAD needs. Using the domain name

it also redirects the HTTP requests sent to the standard port (i.e. 80) to the

port where the PCAD configured to run. nginx installation can be done using

the following link: http://nginx.org/en/download.html. What should be done

for Linux is to open the file /etc/nginx/sites-available/default and change it as

follows:

1. replace domain.com with the actual domain name registered for PCAD.

2. localhost:9000 indicates the machine and port number of the PCAD sys-

tem. If the default URI and the port number that PCAD uses is altered one

needs to replace them in this file as well.

]

server {

listen 80;

server_name domain.com;

location / {

proxy_pass http://localhost:9000;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection "upgrade";

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

}

}

103

 http://nginx.org/en/download.html

Bibliography

[1] Gubbi, J. et al. (2013). “Internet of Things (IoT): A vision, architectural

elements, and future directions”. In: Future Generation Computer Systems

29.7, pp. 1645–1660. url: http://scholar.google.de/scholar.bib?q=

info:h5t3ZYhcvvcJ:scholar.google.com/&output=citation&hl=de&

ct=citation&cd=0.

[2] Al-Fuqaha, A. I. et al. (2015). “Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications.” In: IEEE Communications Sur-

veys and Tutorials 17.4, pp. 2347–2376. url: http://dblp.uni-trier.

de/db/journals/comsur/comsur17.html#Al-FuqahaGMAA15;%20http:

//dx.doi.org/10.1109/COMST.2015.2444095.

[3] Dey, A. K., Abowd, G. D., et al. (2000). “The context toolkit: Aiding the

development of context-aware applications”. In: Workshop on Software En-

gineering for wearable and pervasive computing, pp. 431–441.

[4] Baldauf, M., Dustdar, S., and Rosenberg, F. (2008). “A survey on context-

aware systems.” In: IJAHUC 2.4, pp. 263–277. url: http://dblp.uni-

trier.de/db/journals/ijahuc/ijahuc2.html#BaldaufDR07;%20http:

//dx.doi.org/10.1504/IJAHUC.2007.014070.

[5] Ailisto, H. et al. (2002). “Structuring context aware applications: Five-layer

model and example case”. In: Proceedings of the Workshop on Concepts and

Models for Ubiquitous Computing, pp. 1–5.

[6] Rehman, K., Stajano, F., and Coulouris, G. (2007). “An architecture for

interactive context-aware applications”. In: IEEE Pervasive Computing 6.1.

[7] Winograd, T. (2001). “Architectures for Context.” In: Human-Computer In-

teraction 16.2-4, pp. 401–419. url: http://dblp.uni- trier.de/db/

journals/hhci/hhci16.html#Winograd01;%20http://dx.doi.org/10.

1207/S15327051HCI16234_18.

104

http://scholar.google.de/scholar.bib?q=info:h5t3ZYhcvvcJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:h5t3ZYhcvvcJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:h5t3ZYhcvvcJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://dblp.uni-trier.de/db/journals/comsur/comsur17.html#Al-FuqahaGMAA15;%20http://dx.doi.org/10.1109/COMST.2015.2444095
http://dblp.uni-trier.de/db/journals/comsur/comsur17.html#Al-FuqahaGMAA15;%20http://dx.doi.org/10.1109/COMST.2015.2444095
http://dblp.uni-trier.de/db/journals/comsur/comsur17.html#Al-FuqahaGMAA15;%20http://dx.doi.org/10.1109/COMST.2015.2444095
http://dblp.uni-trier.de/db/journals/ijahuc/ijahuc2.html#BaldaufDR07;%20http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dblp.uni-trier.de/db/journals/ijahuc/ijahuc2.html#BaldaufDR07;%20http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dblp.uni-trier.de/db/journals/ijahuc/ijahuc2.html#BaldaufDR07;%20http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dblp.uni-trier.de/db/journals/hhci/hhci16.html#Winograd01;%20http://dx.doi.org/10.1207/S15327051HCI16234_18
http://dblp.uni-trier.de/db/journals/hhci/hhci16.html#Winograd01;%20http://dx.doi.org/10.1207/S15327051HCI16234_18
http://dblp.uni-trier.de/db/journals/hhci/hhci16.html#Winograd01;%20http://dx.doi.org/10.1207/S15327051HCI16234_18

BIBLIOGRAPHY

[8] Kwon, J. H. and Kim, S. R. (2004). “Context-Aware Recommendation Using

Pattern Discovery in Ubiquitous Computing”. In: On the Convergence of

Bio-, Information-, Enrivonmental-, Energy-, Space- and Nano-Technolgies.

Vol. 277. Key Engineering Materials. Trans Tech Publications, pp. 278–286.

[9] Munoz, M. A. et al. (2003). “Supporting context-aware collaboration in a

hospital: An ethnographic informed design”. In: International Conference

on Collaboration and Technology. Springer, pp. 330–344.

[10] Abowd, G. D. et al. (1997). “Cyberguide: A mobile context-aware tour

guide”. In: Wireless networks 3.5, pp. 421–433.

[11] Hong, J.-y., Suh, E.-h., and Kim, S.-J. (2009). “Context-aware systems: A

literature review and classification”. In: Expert Systems with applications

36.4, pp. 8509–8522.

[12] Lu, Y. and Yu, H. (2010). “A Flexible Architecture for RFID Based Laun-

dry Management Systems”. In: Wireless Communications Networking and

Mobile Computing (WiCOM), 2010 6th International Conference on. IEEE,

pp. 1–4.

[13] Tajima, N., Tsukada, K., and Siio, I. (2011). “AwareHanger: Context-aware

hanger for detecting the status of laundry”. In: Pervasive 2011.

[14] Van, N. T. et al. (2012). “An implementation of Laundry Management Sys-

tem based on RFID hanger and wireless sensor network”. In: Ubiquitous and

Future Networks (ICUFN), 2012 Fourth International Conference on. IEEE,

pp. 490–493.

[15] Noor, M. et al. (2012). “Design and development of ‘smart basket’system

for resource optimization”. In: Control and System Graduate Research Col-

loquium (ICSGRC), 2012 IEEE. IEEE, pp. 338–342.

[16] Capra, L., Emmerich, W., and Mascolo, C. (2003). “Carisma: Context-aware

reflective middleware system for mobile applications”. In: IEEE Transactions

on software engineering 29.10, pp. 929–945.

[17] Roman, M. et al. (2002). “Gaia: A Middleware Infrastructure to Enable

Active Spaces”. In: IEEE Pervasive Computing, pp. 74–83.

[18] Fahy, P. and Clarke, S. (2004). “CASS-middleware for mobile context-

aware applications”. In: Proceedings of the Workshop on Context Aware-

ness,(WCA’04), CiteSeerX, pp. 1–6.

105

BIBLIOGRAPHY

[19] Gu, T., Pung, H. K., and Zhang, D. Q. (2005). “A service-oriented mid-

dleware for building context-aware services”. In: Journal of Network and

computer applications 28.1, pp. 1–18.

[20] Conan, D., Rouvoy, R., and Seinturier, L. (2007). “Scalable processing of

context information with COSMOS”. In: IFIP International Conference on

Distributed Applications and Interoperable Systems. Springer, pp. 210–224.

[21] Chen, H. et al. (2004). “Intelligent agents meet the semantic web in smart

spaces”. In: IEEE Internet computing 8.6, pp. 69–79.

[22] Devaraju, A., Hoh, S., and Hartley, M. (2007). “A context gathering frame-

work for context-aware mobile solutions”. In: Proceedings of the 4th inter-

national conference on mobile technology, applications, and systems and the

1st international symposium on Computer human interaction in mobile tech-

nology. ACM, pp. 39–46.

[23] Firner, B. et al. (2011). “Poster: Smart buildings, sensor networks, and the

internet of things”. In: Proceedings of the 9th ACM Conference on Embedded

Networked Sensor Systems. ACM, pp. 337–338.

[24] Hofer, T. et al. (2003). “Context-awareness on mobile devices-the hydrogen

approach”. In: System Sciences, 2003. Proceedings of the 36th Annual Hawaii

International Conference on. IEEE, 10–pp.

[25] Badii, A., Crouch, M., and Lallah, C. (2010). “A context-awareness frame-

work for intelligent networked embedded systems”. In: 2010 Third Interna-

tional Conference on Advances in Human-Oriented and Personalized Mech-

anisms, Technologies and Services. IEEE, pp. 105–110.

[26] Katasonov, A. et al. (2008). “Smart Semantic Middleware for the Internet

of Things.” In: Icinco-Icso 8, pp. 169–178.

[27] Luckenbach, T. et al. (2005). “TinyREST-a protocol for integrating sensor

networks into the internet”. In: Proc. of REALWSN, pp. 101–105.

[28] Merezeanu, D., Vasilescu, G., and Dobrescu, R. (2016). “Context-aware con-

trol platform for sensor network integration in IoT and Cloud”. In: Studies

in Informatics and Control 25.4, pp. 489–498.

[29] Antonic, A. et al. (2014). “A Mobile Crowdsensing Ecosystem Enabled by a

Cloud-Based Publish/Subscribe Middleware.” In: FiCloud. IEEE, pp. 107–

114. url: http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.

html#AntonicRMPZ14;%20http://dx.doi.org/10.1109/FiCloud.2014.

27.

106

http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.html#AntonicRMPZ14;%20http://dx.doi.org/10.1109/FiCloud.2014.27
http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.html#AntonicRMPZ14;%20http://dx.doi.org/10.1109/FiCloud.2014.27
http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.html#AntonicRMPZ14;%20http://dx.doi.org/10.1109/FiCloud.2014.27

BIBLIOGRAPHY

[30] Martin, D. et al. (2014). “Empowering End-Users to Develop Context-

Aware Mobile Applications Using a Web Platform.” In: FiCloud. Ed. by

M. Younas, I. Awan, and A. Pescape. IEEE Computer Society, pp. 139–145.

url: http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.html#

MartinLAT14.

[31] Pokraev, S. et al. (2005). “Service Platform for Rapid Development and De-

ployment of Context-Aware, Mobile Applications.” In: ICWS. IEEE Com-

puter Society, pp. 639–646. url: http : / / dblp . uni - trier . de / db /

conf / icws / icws2005 . html # PokraevKSBCWES05 ; %20http : / / doi .

ieeecomputersociety.org/10.1109/ICWS.2005.106.

[32] Paganelli, F. et al. (2007). “ERMHAN: A multi-channel context-aware plat-

form to support mobile caregivers in continuous care networks.” In: ICPS.

IEEE Computer Society, pp. 355–360. url: http://dblp.uni-trier.de/

db/conf/icps/icps2007.html#PaganelliSMBB07;%20http://eudl.eu/

doi/10.1109/PERSER.2007.4283939.

[33] Scala Documentation. url: http://docs.scala-lang.org. [21 September

2018]

[34] Hewitt, C., Bishop, P., and Steiger, R. (1973). “A Universal Modular AC-

TOR Formalism for Artificial Intelligence”. In: url: http://citeseerx.

ist.psu.edu/viewdoc/summary.

[35] Hewitt, C. (2012). Actor Model of Computation: Scalable Robust Information

Systems. Tech. rep. v24. url: http://arxiv.org/abs/1008.1459v24.

[36] Karmani, R. K. and Agha, G. (2011). “Actors.” In: Encyclopedia of Parallel

Computing. Ed. by D. A. Padua. Springer, pp. 1–11. url: http://dblp.uni-

trier.de/db/reference/parallel/parallel2011.html#KarmaniA11;

%20http://dx.doi.org/10.1007/978-0-387-09766-4_125.

[37] Silberschatz, A., Galvin, P. B., and Gagne, G. (2008). Operating System

Concepts. 8th. Wiley Publishing.

[38] Agha, G. (1986). ACTORS: A Model of Concurrent Computation in Dis-

tributed Systems. Cambridge, MA, USA: MIT Press. url: http://portal.

acm.org/citation.cfm?id=7929&dl.

[39] Erlang Reference Manual User’s Guide. url: http://erlang.org/doc/

reference_manual/users_guide.html. [21 September 2018]

[40] What is Akka.NET? url: https://getakka.net/articles/intro/what-

is-akka.html. [21 September 2018]

107

http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.html#MartinLAT14
http://dblp.uni-trier.de/db/conf/ficloud/ficloud2014.html#MartinLAT14
http://dblp.uni-trier.de/db/conf/icws/icws2005.html#PokraevKSBCWES05;%20http://doi.ieeecomputersociety.org/10.1109/ICWS.2005.106
http://dblp.uni-trier.de/db/conf/icws/icws2005.html#PokraevKSBCWES05;%20http://doi.ieeecomputersociety.org/10.1109/ICWS.2005.106
http://dblp.uni-trier.de/db/conf/icws/icws2005.html#PokraevKSBCWES05;%20http://doi.ieeecomputersociety.org/10.1109/ICWS.2005.106
http://dblp.uni-trier.de/db/conf/icps/icps2007.html#PaganelliSMBB07;%20http://eudl.eu/doi/10.1109/PERSER.2007.4283939
http://dblp.uni-trier.de/db/conf/icps/icps2007.html#PaganelliSMBB07;%20http://eudl.eu/doi/10.1109/PERSER.2007.4283939
http://dblp.uni-trier.de/db/conf/icps/icps2007.html#PaganelliSMBB07;%20http://eudl.eu/doi/10.1109/PERSER.2007.4283939
http://docs.scala-lang.org
http://citeseerx.ist.psu.edu/viewdoc/summary
http://citeseerx.ist.psu.edu/viewdoc/summary
http://arxiv.org/abs/1008.1459v24
http://dblp.uni-trier.de/db/reference/parallel/parallel2011.html#KarmaniA11;%20http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dblp.uni-trier.de/db/reference/parallel/parallel2011.html#KarmaniA11;%20http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dblp.uni-trier.de/db/reference/parallel/parallel2011.html#KarmaniA11;%20http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://portal.acm.org/citation.cfm?id=7929&dl
http://portal.acm.org/citation.cfm?id=7929&dl
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/reference_manual/users_guide.html
https://getakka.net/articles/intro/what-is-akka.html
https://getakka.net/articles/intro/what-is-akka.html

BIBLIOGRAPHY

[41] What is Kilim? url: http : / / www . malhar . net / sriram / kilim/. [21

September 2018]

[42] Akka. url: http://doc.akka.io/docs/akka/2.5.3/scala. [21 September

2018]

[43] What you should not concern yourself with. url: https://doc.akka.io/

docs/akka/current/general/actor- systems.html%5C#what- you-

should-not-concern-yourself-with. [21 September 2018]

[44] Celikkan, U. and Kurtel, K. (2015). “A Platform for Context-Aware Appli-

cation Development: PCAD.” In: FedCSIS. Ed. by M. Ganzha, L. A. Maci-

aszek, and M. Paprzycki. IEEE, pp. 1481–1488. url: http://dblp.uni-

trier.de/db/conf/fedcsis/fedcsis2015.html#CelikkanK15;%20http:

//dx.doi.org/10.15439/2015F49.

[45] Gamma, E. et al. (1994). Design Patterns: Elements of Reusable Object-

Oriented Software. Reading, Mass.: Addison-Wesley. url: http://www.

worldcat.org/search?qt=worldcat_org_all&q=0201633612.

[46] Ferraiolo, D. F., Kuhn, D. R., and Chandramouli, R. (2003). Role-Based

Access Control. Norwood, Massachusetts: Artech House.

[47] Bishop, M. (2003). Computer security: art and science. Addison-Wesley Pro-

fessional.

[48] Pimentel, V. and Nickerson, B. G. (2012). “Communicating and Display-

ing Real-Time Data with WebSocket.” In: IEEE Internet Computing 16.4,

pp. 45–53. url: http://dblp.uni-trier.de/db/journals/internet/

internet16.html#PimentelN12;%20http://doi.ieeecomputersociety.

org/10.1109/MIC.2012.64.

[49] Jones, M., Bradley, J., and Sakimura, N. (2015). Json web token (jwt). Tech.

rep.

[50] Fielding, R. et al. (1999). Hypertext Transfer Protocol – HTTP/1.1. Tech.

rep. url: http://www.ietf.org/rfc/rfc2616.txt.

[51] Park, J. S., Sandhu, R. S., and Ahn, G.-J. (2003). “Role-based access control

on the web.” In: ACM Trans. Inf. Syst. Secur. 4.1, pp. 37–71. url: http:

//dblp.uni-trier.de/db/journals/tissec/tissec4.html#ParkSA01;

%20http://doi.acm.org/10.1145/383775.383777.

[52] Backus, J. W. et al. (1960). “Report on the algorithmic language ALGOL

60”. In: Numerische Mathematik 2.1, pp. 106–136.

[53] MySQL. url: https://dev.mysql.com/doc/. [21 September 2018]

108

http://www.malhar.net/sriram/kilim/
http://doc.akka.io/docs/akka/2.5.3/scala
https://doc.akka.io/docs/akka/current/general/actor-systems.html%5C#what-you-should-not-concern-yourself-with
https://doc.akka.io/docs/akka/current/general/actor-systems.html%5C#what-you-should-not-concern-yourself-with
https://doc.akka.io/docs/akka/current/general/actor-systems.html%5C#what-you-should-not-concern-yourself-with
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2015.html#CelikkanK15;%20http://dx.doi.org/10.15439/2015F49
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2015.html#CelikkanK15;%20http://dx.doi.org/10.15439/2015F49
http://dblp.uni-trier.de/db/conf/fedcsis/fedcsis2015.html#CelikkanK15;%20http://dx.doi.org/10.15439/2015F49
http://www.worldcat.org/search?qt=worldcat_org_all&q=0201633612
http://www.worldcat.org/search?qt=worldcat_org_all&q=0201633612
http://dblp.uni-trier.de/db/journals/internet/internet16.html#PimentelN12;%20http://doi.ieeecomputersociety.org/10.1109/MIC.2012.64
http://dblp.uni-trier.de/db/journals/internet/internet16.html#PimentelN12;%20http://doi.ieeecomputersociety.org/10.1109/MIC.2012.64
http://dblp.uni-trier.de/db/journals/internet/internet16.html#PimentelN12;%20http://doi.ieeecomputersociety.org/10.1109/MIC.2012.64
http://www.ietf.org/rfc/rfc2616.txt
http://dblp.uni-trier.de/db/journals/tissec/tissec4.html#ParkSA01;%20http://doi.acm.org/10.1145/383775.383777
http://dblp.uni-trier.de/db/journals/tissec/tissec4.html#ParkSA01;%20http://doi.acm.org/10.1145/383775.383777
http://dblp.uni-trier.de/db/journals/tissec/tissec4.html#ParkSA01;%20http://doi.acm.org/10.1145/383775.383777
https://dev.mysql.com/doc/

BIBLIOGRAPHY

[54] Date, C. J. and Darwen, H. (1987). A Guide to the SQL Standard. Vol. 3.

Addison-Wesley.

[55] MongoDB. url: https://docs.mongodb.com/. [21 September 2018]

[56] Slick. url: http://slick.lightbend.com/docs. [21 September 2018]

[57] Rajkumar, R., Gagliardi, M., and Sha, L. (1995). “The real-time publish-

er/subscriber inter-process communication model for distributed real-time

systems: design and implementation.” In: IEEE Real Time Technology and

Applications Symposium. IEEE Computer Society, pp. 66–75. url: http:

//dblp.uni-trier.de/db/conf/rtas/rtas1995.html#RajkumarGS95;

%20http : / / doi . ieeecomputersociety . org / 10 . 1109 / RTTAS . 1995 .

516203.

[58] Locke, D. (2010). “Mq telemetry transport (mqtt) v3. 1 protocol specifica-

tion”. In: IBM developerWorks Technical Library.

[59] Saint-Andre, P. (2004). Extensible Messaging and Presence Protocol

(XMPP): Core. RFC 3920 (Proposed Standard). Internet Engineering Task

Force. url: http://www.ietf.org/rfc/rfc3920.txt.

[60] Shelby, Z., Hartke, K., and Bormann, C. (2014). “The constrained applica-

tion protocol (CoAP)”. In:

[61] Godfrey, R., Ingham, D., and Schloming, R. (2012). OASIS Advanced Mes-

sage Queuing Protocol (AMQP) Version 1.0; OASIS Standard.

[62] Masse, M. (2011). REST API Design Rulebook: Designing Consistent REST-

ful Web Service Interfaces. O’Reilly Media.

[63] Fette, I. and Melnikov, A. (2011). The WebSocket Protocol. RFC 6455. RFC

Editor. url: http://www.rfc-editor.org/rfc/rfc6455.txt.

[64] Play 2.5.x Documentation. url: https : / / www . playframework . com /

documentation/2.5.x/Home. [21 September 2018]

[65] Hilton, P., Bakker, E., and Canedo, F. (2014). Play for Scala. Manning.

[66] AngularJS. url: https://angularjs.org. [21 September 2018]

[67] Berners-Lee, T. and Connolly, D. (1995). Hypertext markup language-2.0.

Tech. rep.

[68] Software & Systems Engineering Committee (2008). “IEEE standard for soft-

ware and system test documentation”. In: Fredericksburg, VA, USA: IEEE

Computer Society.

109

https://docs.mongodb.com/
http://slick.lightbend.com/docs
http://dblp.uni-trier.de/db/conf/rtas/rtas1995.html#RajkumarGS95;%20http://doi.ieeecomputersociety.org/10.1109/RTTAS.1995.516203
http://dblp.uni-trier.de/db/conf/rtas/rtas1995.html#RajkumarGS95;%20http://doi.ieeecomputersociety.org/10.1109/RTTAS.1995.516203
http://dblp.uni-trier.de/db/conf/rtas/rtas1995.html#RajkumarGS95;%20http://doi.ieeecomputersociety.org/10.1109/RTTAS.1995.516203
http://dblp.uni-trier.de/db/conf/rtas/rtas1995.html#RajkumarGS95;%20http://doi.ieeecomputersociety.org/10.1109/RTTAS.1995.516203
http://www.ietf.org/rfc/rfc3920.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://www.playframework.com/documentation/2.5.x/Home
https://www.playframework.com/documentation/2.5.x/Home
https://angularjs.org

	Front Matter
	Abstract
	Öz
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations

	Introduction
	Related Work
	Context Acquisition
	Context Management
	Existing Systems

	Actor Model and AKKA
	Actor
	Actor Model Properties
	Actor Model Implementations
	AKKA

	Architecture and Design of the Platform
	PCAD
	Services
	Rule Service
	Data Management Service
	Alarm and Notification Service
	Reporting Service
	Security and Privacy Service
	Interoperability and Communication Service

	Real-Time Support
	Sensor-Platform Interface
	Application-Platform Interface

	Implementation Decisions

	System Implementation
	Server-Side of Platform
	Services
	Security and Privacy Service (SPS)
	Rule Service (RS)
	Data Management Service (DMS)
	Alarm and Notification Service (ANS)

	Sensor and Application Bindings

	Client-Side of Platform
	Application Programming Interface Bindings
	User Interface

	Tests
	Test Design
	API and Integration Tests
	GUI Tests
	Performance Tests

	Test Analysis and Results

	Conclusion and Future Work
	Future Work

	Application Programming Interface Manual
	User Interface
	Installation
	Bibliography

