
A CONSOLIDATED APPROACH FOR

BUILDING A SOFTWARE DESIGN

PATTERN RECOMMENDATION SYSTEM

DİLARA BOZOKLAR

JUNE 2019

A CONSOLIDATED APPROACH FOR

BUILDING A SOFTWARE DESIGN

PATTERN RECOMMENDATION SYSTEM

a thesis submitted to

the graduate school of

natural and applied sciences of

izmir university of economics

by

DİLARA BOZOKLAR

in partial fulfillment of the requirements

for the degree of

master of science

in the graduate school of natural and applied sciences

JUNE 2019

ABSTRACT

A CONSOLIDATED APPROACH FOR BUILDING A
SOFTWARE DESIGN PATTERN RECOMMENDATION

SYSTEM

DİLARA BOZOKLAR

M.S. in Computer Engineering

Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Ufuk Çelikkan

June 2019

Software design patterns are standard solutions to common problems found

in software development and design. Among many other benefits that they of-

fer, they enable the creation of reusable, extensible and easy to maintain software

systems. However, the complexity of comprehending design patterns hinders soft-

ware designer’s ability to adapt software design patterns in software design and

development. For novice developers choosing the right pattern for a given de-

sign context and situation becomes a challenging task. For this reason, a design

pattern recommendation system can be of great help especially to the novice de-

signers and developers to instantiate the right pattern in their design problems. In

this thesis, we propose a consolidated approach by combining text based informa-

tion retrieval, case based recommendation and question based recommendation

to suggest an adequate pattern to a design problem. A tool has been imple-

mented using this methodology. It is an interactive tool which first automatically

recommends a design pattern by using text based information retrieval and case

based recommendation. It then improves the results after a question / answer

session. The recommended patterns are ranked and presented to the user as a list

of alternatives. The effectiveness of the tool was tested on several scenarios used

in a design pattern course. Our preliminary evaluation shows that in majority of

the cases, the correct design pattern is placed in the top three.

Keywords: Design Patterns, Interactive Recommendation System, Information

Retrieval, Document Similarity, Case Based Recommendation.

iii

ÖZ

YAZILIM TASARIM ŞABLONLARI TAVSİYE EDEN
BİR SİSTEMİN OLUŞTURULMASI İÇİN BİRLEŞİK BİR

YAKLAŞIM

DİLARA BOZOKLAR

Bilgisayar Mühendisliği, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Dr. Öğr. Üyesi Ufuk Çelikkan

Haziran 2019

Yazılım tasarım şablonları, yazılım geliştirme ve tasarımda sık karşılaşılan

sorunlara standart çözümler sağlarlar. Sundukları birçok fayda arasında, yeniden

kullanılabilir, genişletilebilir ve bakımı kolay yazılım sistemlerinin geliştirilmesine

olanak tanıyor olmaları vardır. Tasarım şablonlarının anlaşılmasının karmaşıklığı,

bu şablonlarının tasarımcılar tarafından yazılım tasarımı ve geliştirilmesine

uyarlanmasını zorlaştırmaktadır. Tecrübesiz geliştiriciler için, belirli bir tasarım

bağlamında doğru modeli seçmek zorlu bir görev haline gelir. Bu nedenle, tasarım

şablonları öneren sistemler, özellikle tecrübesiz tasarımcılara ve geliştiricilere,

tasarım problemlerinde doğru şablonu örnekleme konusunda yardımcı olabilir. Bu

tezde, metin tabanlı bilgi alma, vaka bazlı öneri ve soru bazlı öneri metotlarını

birleştirip, uygun bir şablon önerecek bütünleşik bir yaklaşım önerilmektedir

Bahsedilen bu yaklaşımı kullanarak bir uygulama geliştirilmiştir. Bu etkileşimli

bir uygulama olup, ilk önce metin tabanlı bilgi alımı ve vaka tabanlı öneriyi kul-

lanarak otomatik olarak bir tasarım şablonu önerir. Bunu takip eden soru/cevap

oturumu sayesinde sonuçlar iyileştirilir. Elde edilen sonuçlar sıralanır ve kul-

lanıcıya sunulur. Uygulamanın etkinliği, bir tasarım deseni dersinde kullanılan

çeşitli senaryolar kullanılarak test edilmiştir. Ön değerlendirmemiz, çoğu du-

rumda doğru tasarım şablonunun ilk üçe yerleştirildiğini göstermektedir.

Anahtar Kelimeler : Tasarım Şablonları, Etkileşimli Öneri Sistemi, Bilgi Elde

Etme, Belge Benzerliği, Vaka Tabanlı Öneri.

iv

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my advisor

Asst. Prof. Dr. Ufuk Çelikkan who gave me support while writing this thesis.

Thank you for your valuable advice, patience, encouragement and efforts to ex-

pand the scope of this research.

Also, I would like to thank my all friends who are with me in every situation,

especially Meltem Ergin who supported me throughout the entire process. Thank

you for everything.

Finally, I must express my very profound gratitude to my family; Galip Bo-

zoklar, Fatma Bozoklar, Bekir Bozoklar and Doğacan Tuğrul for providing me

with unfailing support and continuous encouragement throughout my study and

through the process of writing this thesis. Their love and help encouraged me

to do new things in my life. Their presence, whenever I need, always made me

feel strong against any challenge. I’m so lucky and blessed to have such amazing

people in my life. Thank you.

v

TABLE OF CONTENTS

Front Matter i

Abstract . iii

Öz . iv

Acknowledgement . v

Table of Contents . vi

List of Tables . vii

List of Figures . viii

1 Introduction 1

2 Literature Review 4

2.1 Text Based Recommendation . 5

2.2 Case Based Recommendation . 5

2.3 Question Based Recommendation 6

2.4 Combined Approaches . 8

2.5 Miscellaneous Approaches . 8

3 Methodology 10

3.1 Text Based Recommendation . 12

3.1.1 Data Collection and Assembly 12

3.1.2 Text Preprocessing . 14

3.1.3 Tokenization and Normalization 14

vi

TABLE OF CONTENTS vii

3.1.4 Feature Extraction, Term Weighting and Vector Space
Model . 17

3.1.5 n-gram Features . 19

3.1.6 TF-IDF . 20

3.1.7 Cosine Similarity . 21

3.2 Case Based Recommendation . 22

3.3 Question Based Recommendation 23

3.3.1 Design Pattern Methodology Example 28

4 Implementation and Results 32

5 Conclusion 45

A Design Patterns Scenarios 48

B Recommendation Tool GUI 54

LIST OF TABLES

3.1 Number of Scenarios for Each Software Design Pattern 13

3.2 Bag of Words . 18

3.3 Extracting n-grams for the Adapter Pattern 19

3.4 Questions for Determining Knowledge Level 24

3.5 Pattern Questions . 26

3.6 Text Based Recommendation Results for Scenario #24 29

3.7 Text and Case Based Recommendation Results for Scenario #24 . 29

3.8 Specifying Knowledge Level . 30

3.9 QSM Results for Scenario #24 for the Expert Designer 30

3.10 Text, Case and Question Based Recommendation Results for Sce-
nario #24 . 31

3.11 Summary of Progress in Rankings 31

4.1 The Effect of Using Wikipedia Sources on Scenairo #1 33

4.2 Text Based Recommendation Results 34

4.3 Text Based Recommendation Results Confusion Matrix 35

4.4 Text and Case Based Recommendation Results 36

4.5 Scenario #18 Results . 36

4.6 Scenario #36 Results . 38

4.7 Scenario #7 Results . 39

4.8 Scenario #20 Results . 40

4.9 Scenario #36 Final Rankings for Novice Designer 41

viii

LIST OF TABLES ix

4.10 Scenario #7 Final Rankings for Intermediate Designer 42

4.11 Scenario #20 Final Rankings for Expert Designer 43

LIST OF FIGURES

3.1 Consolidated Approach Methodology Diagram 11

3.2 Preprocessing Steps . 14

3.3 Adapter Pattern Example. 14

3.4 Adapter Pattern After Normalization and Tokenization. 15

3.5 Adapter Pattern After Stop Word Removal. 16

3.6 Adapter Pattern After Stemming. 17

3.7 Term Document Matrix for Intent of Adapter Pattern 18

3.8 Term Document Matrix for Intents of Adapter, Façade, and State
Patterns . 21

3.9 Text Based Recommendation Approach 23

3.10 Decision Diagram for Specifying the User’s Knowledge Level . . . 25

B.1 Text Base Recommendation GUI 55

B.2 Classifying Designer’s Knowledge Level 56

B.3 Pattern Question Screen . 57

B.4 Final Rankings . 58

x

Chapter 1

Introduction

Good software design has a set of commonly agreed attributes. Maintainability,

reusebality, extensibility, robustness are attributes worth mentioning from this

set. Reusability helps us to reduce the work by reusing components in multi-

ple places. But many times it can be difficult and time-consuming to achieve

reusebality. The way to achieve highest level of reusebality is generalizing the

solution. Maintenance implies changes made to the software. Software is an

evolving entity, hence, maintainability becomes very important over the lifetime

of a software product. Software design must employ principles that make it easy

to make changes to parts of the software without breaking its functionality. Ex-

tensibility is a closely related attribute to maintainability. In addition to making

changes to the already present functionality, new requirements necessitates new

extensions to be added to the existing functions. Therefore, software must be

designed and implemented with extensibility in mind. While creating a reusable,

easily maintainable, and extensible system, one should not compromise robust-

ness. The design should be resilient to changes and new extensions, and in the

case of failures, it must correct the failure, or fail gracefully leaving enough evi-

dence indicating why it failed.

1

CHAPTER 1. INTRODUCTION

Design patterns enhance software design and development process, especially

in the areas of maintenance and code reuse. They help the designer choose design

alternatives that make a system reusable and avoid alternatives that compromise

reusability, thus making the system more maintainable. Design patterns are

commonly defined as general, reusable, and time-tested solutions to recurring

design problems within a given context. Despite the fact that object oriented

paradigm is the focus of design patterns, the philosophy behind design patterns

is applicable to non object-oriented systems as well. Design patterns facilitate

the development of loosely-coupled and highly-cohesive modules, and make the

overall system easier to understand and maintain. Design patterns records the

experiences of the previous software designers. This body of knowledge benefits

the designer, making readily available a proven solution to a common problem

which is applied immediately without the need for rediscovering the solution

again. Patterns help a designer get a design “right” more quickly.

Design patterns capture the previous expertise and make it available to de-

signers. But it can be difficult even for the experienced designers to choose the

right design pattern for a particular problem. The task of finding the correct

pattern can be overwhelming for inexperienced and novice designers. A practical

tool that aids the inexperienced designer by recommending a design pattern is

very beneficial.

There is research on design pattern recommendation, and tools that imple-

ment various methods. Much of these research focused on just one recommenda-

tion method. In this thesis, our goal is to provide a combined methodology that

will improve the pattern recommendation process. For this purpose, we devel-

oped a recommendation tool that combines three different methods that already

exist in the literature. These methods are:

1. Text Based Approach

2

CHAPTER 1. INTRODUCTION

2. Case Based Approach

3. Question Based Approach

Text-based recommendation approach uses design pattern definitions from

different sources such as design pattern books and real world design problems

and creates a pattern definition collection. The design problem is then compared

against this collection. The tool starts its process by applying the text retrieval

techniques to model the document collection and the design problem using vector

space model. Once the documents are modeled as vectors, the tool then uses

the cosine similarity metric to compare the design problem against the pattern

definition collection set, and ranks the recommended design patterns according

to this metric. In the second step, existing cases for which a correct answer is

already known is used to n improve the ranking. Finally a number of pattern

questions are asked to the designer to further improve the results. The answers

are adjusted based on the expertise level of the designer, which is determined

before pattern questions are asked. The tool presents the user a final ranked list

of patterns that can be potentially applied to the problem. The tool also provides

an opportunity to add newly resolved case scenarios into its repertoire of known

cases.

The thesis is organized as follows: Chapter 1 explains the motivation behind

the work. Chapter 2 discusses other design pattern recommendation systems

that exists in the literature and the methods they use. Chapter 3 presents in

depth the methodology used in the thesis and demonstrates the methodology

with an example. Chapter 4 discusses the implementation details of the tool.

Finally, Chapter 5 gives a discussion of the results. The Appendix lists the sample

scenarios used in the thesis and screenshots of the Graphical User Interface.

3

Chapter 2

Literature Review

Design patterns became very popular with the publication of, now enormously

famous, Gang-of-Four (GoF) book [1]. It is a very mature topic right now with

numerous books and textbooks written on it [2, 3, 4]. When it comes to de-

sign patterns, a recommendation system to support inexperienced users in their

decision-making when faced with complex design problems is very beneficial. In

this section, we shall discuss some of the recommendation systems, approaches,

tools and methodologies proposed in the literature. Currently, it is almost in-

evitable that all recommendation systems use the 23 design patterns from the

GoF book. We will investigate recommendation methodologies under 5 cate-

gories.

1. Text Based Recommendation

2. Case Based Recommendation

3. Question Based Recommendation

4. Combination of the previous three

5. Miscellaneous Approaches

4

CHAPTER 2. LITERATURE REVIEW

2.1 Text Based Recommendation

Text Based Recommendation systems suggest patterns using a similarity score

between the design pattern description and design problem, using text classifica-

tion and text retrieval techniques developed for natural language processing [5, 6].

The study in [23] uses the popular weighting scheme TF-IDF and machine learn-

ing algorithms to recommend a pattern. Three design patterns books are used

for training classifiers. 26 real world case studies are used to evaluate the results.

Another study that uses text retrieval in design pattern recommendation is

[8]. This study uses the pattern definitions from the Gof book and design prob-

lems to create a document collection. After the preprocessing steps, the pattern

definitions and design problems are represented using Vector Space Model, and

rankings are calculated according to cosine similarity scores. The same authors

suggests a slightly different technique in [9]. They use a probabilistic model in

design pattern selection. The method suggested in [10] extract the most impor-

tant words from pattern definitions, and associates these words with a specific

pattern, and using them in subsequent comparisons.

2.2 Case Based Recommendation

Case Based Recommendation Systems use the previous cases, applications and

design problems with known answers, and use this information to suggest a pat-

tern to the current design problem under discussion.

The approach given in [11] is a case based design pattern recommendation

system which is built on the previously stored experiences. These experiences are

called Design Pattern Application cases and stored in a library. These cases are

indexed using method and participant mappings, as such they enable search and

5

CHAPTER 2. LITERATURE REVIEW

retrieval of an existing case that best matches to the current design problem, and

a rank is generated accordingly. This approach is implemented in a CASE tool.

[12] proposes a combination of Case Based Reasoning approach and Formal

Concept Analysis techniques. Similar to [11] it uses an indexing mechanism gen-

erated from the phrases of the intent sections of the patterns. It uses a similarity

metric to retrieve the most similar case, when given a design problem.

2.3 Question Based Recommendation

Question Based Recommendation system in general asks a carefully selected de-

sign pattern question from a repository then assigns a score based on the answers

and recommends a pattern to the designer. Selecting the right question and

obtaining accuracy with minimal number of questions is a challenge in those

systems. Another consideration in assigning a score is to take into account the

knowledge level of the user.

The work in [13] proposed a recommendation system called Design Pattern

Recommender with the Goal Question Metric approach, which consists of four

steps. The first step forms the conditions from the Intent part of pattern, and

in second step forms subconditions from the applicability part of pattern from

the GOF book. A tree representation is constructed from these conditions and

subconditions, and then questions are derived from this tree representation. In

the last step, it constructs Goal - Question - Metric (GQM) where pattern names

are goals. Each question is assigned a weight and at the end of the process,

positive and negative answers translated into a score and the system recommends

a pattern to users.

6

CHAPTER 2. LITERATURE REVIEW

The study described in [14] is a question/answer based prototype expert sys-

tem, which recognizes ten design patterns selected from the GoF book. The au-

thors created a set of questions for novice developers and recommend a pattern

based on the answers. They experimented the prototype on four students which

is rather a low number. The study does not present any quantitative results.

The study given in [15] represents design pattern knowledge using ontology

and incorporates an interactive question/answer session to reason about an ad-

equate pattern for a particular design problem. A new ontology called Design

Pattern Advisement Ontology is proposed. The pattern knowledge modeled in

this ontology is stored in a repository which guides the question/answer session

with the developer. The tool has a success rate of 58 percent in identifying the

correct design pattern.

The framework presented in [16] creates pattern related questions to help a

developer to find a suitable pattern. The framework presents a set of questions

based on the properties of the design patterns. Using the developer’s answers,

the system decides which pattern is suitable to a particular problem. To validate

the proposed approach they used a survey that consists of 13 questions, to eval-

uate the results in terms of relation between design patterns and the problem,

experience level of developer and effectiveness of design patterns.

The study in [17], retrieves and asks questions from a repository, match-

ing the intent section of patterns described in the GOF book. They use pat-

tern weighted score measures to give a score based on the answers. The scores

are further improved after asking more questions, this time using structure of the

pattern.

7

CHAPTER 2. LITERATURE REVIEW

2.4 Combined Approaches

The methodology proposed in [18] has two steps. In the first step the system

learns from previous cases, and patterns and in the second step the system inter-

acts with the developers via a questionnaire. The three different techniques - TF-

IDF, Latent Semantic Analysis and Principal Component Analysis are employed

to find similar cases from other scenarios that are stored previously. According

to their results, PCA showed the most promise.

The work presented [19] in consists of two phases. The first phase calculates a

similarity between a pattern and a problem by using method names, class names,

participants etc. as the criteria. This phase requires that the designer must draw

and formulate the design problem in such a way that a similarity matrix can be

created. In the second phase, system asks the user questions, and refines the list

of design patterns accordingly.

2.5 Miscellaneous Approaches

The study in [20] presents a rule-based design pattern recommendation approach

implemented in an interactive tool. The system gives the user some semantic

criteria and recommendation rules and expects the user to create the problem

using them, structurally. As a result of the explanation made by these rules, the

system recommends a design pattern to the user.

In the [21], the design problems of inexperienced developers are compared

with experienced developers’ solutions to previous design problems, and a cosine

similarity score is generated. Using this score a design pattern is recommended to

the user. The approach given in [22] is an UML based approach. However, unlike

other UML- based design patterns recommendation approaches, it proposes a

8

CHAPTER 2. LITERATURE REVIEW

suggestion that includes not only a UML description of design pattern, but also

the UML model and textual information that includes pattern’s responsibilities,

purposes, advantages etc.

In [?], the design pattern usage descriptions are divided into hierarchical struc-

tures, and tabulated. This hierarchical structure and one design problem example

is coded as a web application. Experiments were done with the students using

the web application. The average accuracy of the application is 74.81%.

One can find dynamic design pattern recommendation approach based on anti

- pattern detection in [24], and a design pattern recommendation tool based on

multi agent system technology in [25] with agents assigned different tasks of the

design pattern recommendation process.

Before we conclude this section we note that researchers use their own scenar-

ios in evaluation their design pattern recommendation systems that they develop.

Best to our knowledge, there does not exist a benchmark in the literature. In

majority of these studies the scenarios are not explicitly stated. This presents an

opportunity to the research community to create a benchmark to evaluate the

design pattern recommendation systems.

9

Chapter 3

Methodology

Design pattern recommendation approach used in this thesis is a consolidated

one which combines the following three existing techniques from the informa-

tion retrieval arena to accurately recommend a design pattern for a given design

problem scenario:

1. Text Based Recommendation

2. Case Based Recommendation

3. Question Based Recommendation

Several techniques are developed in the informational retrieval arena to find

material (usually documents) of an unstructured nature (usually text) that sat-

isfies an information need from a document set. The text based recommendation

approach used in the thesis attempts to find a match between the design pattern

problem scenario and a design pattern description from within large collection of

design pattern descriptions. We shall use the vector space model, n-gram model,

term weighting and cosine similarity from the information retrieval domain in

10

CHAPTER 3. METHODOLOGY

finding a matching design pattern. When text based recommendation process is

unable to recommend a pattern in a convincing manner, case based recommen-

dation phase will take over. Case based recommendation is similar to text based

recommendation in which the set of design pattern descriptions is augmented with

scenarios for which the answer is known. The problem scenario is then checked

against this new augmented set. Finally, in the question based recommendation

phase a series of pre-determined questions are asked to the designer and a pattern

is recommended based on the answer. The answer is adjusted according to the

knowledge level of the designer.

The diagram 3.1 below illustrates the flow of the consolidated approach. The

process begins with the Data Collection and Assembly step, continues with the

Text Base Recommendation phase, followed by merging of the results with the

ones obtained in the Question Base Recommendation phase.

Figure 3.1: Consolidated Approach Methodology Diagram

11

CHAPTER 3. METHODOLOGY

In the following sections, we will explain in detail the techniques and steps

used in this thesis that constitutes our methodology.

3.1 Text Based Recommendation

The text based recommendation approach involves four major steps.

1. Design pattern data collection and assembly

2. Text preprocessing

3. Feature extraction and term weighting

4. Similarity computation

3.1.1 Data Collection and Assembly

The first step of the text based recommendation process is the collection of

the documents containing the design pattern definitions. The pattern defini-

tion sources are GoF design pattern book, Wikipedia and a selection of websites

that discuss about design patterns problems and solutions [26, 27]. These will

constitute our document set used in subsequent steps.

The GoF design pattern book catalogs patterns under several sections, namely,

Intent, Motivation, Applicability, Structure, Participants, Collaborations, Conse-

quences and Implementation. The Intent, Motivation, Applicability and Partici-

pants sections alone are used when creating design pattern description collection

set. We choose these sections, because they contain discriminatory information

and keywords when comparing patterns. In addition to Gof design pattern de-

scriptions, we used the overview parts of Wikipedia and some other websites on

12

CHAPTER 3. METHODOLOGY

design patterns problems and solutions [26, 27] in building our collection set. In

our opinion, the language used in Wikipedia pattern descriptions are much closer

to the language used in problem scenarios. Consequently, similarity results im-

proved after the addition of Wikipedia text to the collection set. Finally, a list

of keywords considered stronger hints for the use of a particular pattern were

compiled, and these keywords were added as pseudo-documents to the collection.

The design problem scenarios used in validating the methodology are com-

piled from the term projects and homeworks of the design pattern course taught

at Izmir University of Economics, Software Engineering department. These sce-

narios had been given to the students over the years and they were asked to find

the most appropriate design pattern for the problem. We also compiled several

scenarios from the sources referred in [28, 29, 30, 31, 32, 33, 34, 35, 36]. These

scenarios were used in our tool to measure the effectiveness of the approach pro-

posed in the thesis.

The distribution of 120 scenarios from the scenario set and their correct pat-

tern names are listed in Table 3.1. The scenarios that we have used in our study

covered only 20 patterns. Therefore, our study is conducted for 20 patterns out

of 23 and does not include Proxy, Interpreter and Flyweight design patterns.

PATTERN

NAME

of

SCENARIOS

PATTERN

NAME

of

SCENARIOS

Observer 15 Composite 12

Abstract Factory 9 Template Method 9

Adapter 8 Visitor 8

Command 7 Singleton 7

Bridge 5 Builder 5

State 5 Strategy 5

Chain of Resp. 4 Facade 4

Iterator 4 Memento 4

Decorator 3 Factory 3

Prototype 2 Mediator 1

Table 3.1: Number of Scenarios for Each Software Design Pattern

13

CHAPTER 3. METHODOLOGY

3.1.2 Text Preprocessing

The data collection and assembly step creates a large document set to be used in

selecting the most suitable design pattern. However, this data needs to go a lin-

guistic preprocessing and be prepared for further processing. This preprocessing,

shown in Figure 3.2, is a standard technique used in information retrieval and

can be further divided into three sub steps:

1. Normalization and Tokenization

2. Stop - Word Removal

3. Stemming

Figure 3.2: Preprocessing Steps

We will demonstrate the preprocessing steps through the Adapter Pattern’s

intent section which is given in Figure 3.3.

Adapter Pattern Example - Intent
Convert the interface of a class into another interface clients expect.

Figure 3.3: Adapter Pattern Example.

3.1.3 Tokenization and Normalization

Documents consist of character sequences which are possibly encoded in some

binary representation for electronic storage and retrieval. Programming languages

14

CHAPTER 3. METHODOLOGY

have extensive built-in support to decode this binary representation and group

these sequence of characters into what is called a token. Tokenization is the

task of generating this group of characters stripped of certain characters such as

punctuation, for further syntactic or semantic processing. Despite the fact that

word and token have different meanings we shall use these terms interchangeably

in the context of the thesis.

Once the document is separated into its tokens, the normalization phase trans-

forms the text so that it can be processed in a uniform manner. For example the

documents may contain numbers and digits. While numbers and digits might help

to find some patterns among the documents, most of the times they don’t really

help to identify the documents. So these will be removed and only alphabetical

characters are kept. The normalization process includes tasks such as

• capitalization, case-folding

• removing numbers, converting numbers to their word equivalents

• removing punctuation

• removing white spaces

• expanding abbreviations, expanding contractions

• removing accents and diacritics

and so on. The tranformation of the Adapter Pattern after the application of

Tokenization and Normalization step is shown in Figure 3.4

‘convert’, ‘the’ ‘interface’, ‘of,‘a’,‘class’, ‘another’, ‘interface’, ‘client’, ‘ex-
pects’

Figure 3.4: Adapter Pattern After Normalization and Tokenization.

15

CHAPTER 3. METHODOLOGY

Stop - Word Removal

Words that are so generic would not really help to differentiate one document

from another. In this sense they are deemed unimportant because they can be

found frequently in every document. These words are called stop words, which are

discarded from the document representation. Stop words are typically function

words: determiners (a, the), prepositions (on, above), conjunctions (and, but).

The stop words that are corpus-specific such as the word “money” in finance

corpus will not be a differentiator so they can be removed. However, we make no

corpus specific distinction in this thesis. The goal behind removing stop words is

that we would like to work with a set of words that are unique to each document.

The same set of stop words is used in processing all the documents in the collection

Adapter Pattern definition after the Stop-Word removal is shown Figure 3.5.

‘convert’, ‘interface’, ‘class’, ‘another’, ‘interface’, ‘client’, ‘expects’

Figure 3.5: Adapter Pattern After Stop Word Removal.

Stemming

The words of a language is inflected with a prefix, suffix or infix to express

different grammatical categories such as tense, case, voice, aspect, person, num-

ber, gender, and mood. When words are derived from one another, we would

like to find out the root form of the word. Stemming is the process of reducing

inflection in words to their root forms. A stemmer conflates different variations

of a word by reducing them to a common root/stem which may result in words

that are not actual words. Adapter Pattern, after the stemming step is shown

Figure 3.6.

16

CHAPTER 3. METHODOLOGY

‘convert’, ‘interfac’, ‘class’, ‘anoth’, ‘interfac’, ‘client’, ‘expect’

Figure 3.6: Adapter Pattern After Stemming.

3.1.4 Feature Extraction, Term Weighting and Vector

Space Model

After the text is pre-processed, we have a new set of document set. Information

retrieval and language processing needs a computational model to do reasoning

such as similarity and relatedness on the content of documents. The current best

model to efficiently access, manipulate and reason about documents is vector

space model. Vector Space Model (VSM) is an algebraic model where the doc-

uments are modeled as vectors as such there is an axis for every word (term) in

the vocabulary. A document is transformed into a vector using the vocabulary

of the language. The dimension of the vector representing a document is equal

to the number of words in the vocabulary. This means that if the vector space is

n-dimensional, the size of the vocabulary is n.

Instead of using the the full vocabulary of the English language, in practice one

operates on a corpus of fixed number of documents. The vocabulary is established

by going over these set of documents and extracting only the unique unigram

words (aka terms) contained in those documents to create an unordered list of

words. This set of unique words is called bag-of-words because only the terms

themselves are included in the bag without any accompanying meta information.

The bag-of-words for the document set constitutes the vocabulary. Table 3.2 is

an example of bag of words created from intent sections of Adapter, Facade and

State patterns.

17

CHAPTER 3. METHODOLOGY

bag-of-words = [‘convert’, ‘interfac’, ‘class’, ‘anoth’, ‘interfac’, ‘client’, ‘ex-

pect’, ‘adapt’, ‘let’, ‘class’, ‘work’, ‘togeth’, ‘otherwis’, ‘incompat’, ‘interfac’,

‘provid’, ‘unifi’, ‘interfac’, ‘set’, ‘interfac’, ‘subsystem’, ‘allow’, ‘object’, ‘alter’,

‘behavior’, ‘intern’, ‘state’, ‘chang’, ‘object’, ‘appear’, ‘chang’, ‘class’]

Table 3.2: Bag of Words

Given the bag-of-words that are extracted from the documents, a feature

vector for a given document is created where vector elements may be a binary

indicator that tells the existence or absence of the word, or frequency counts

or some other kind of ‘weight’ indicating its importance in a document. The

number of the dimensions in the feature vector is equal to the number of unique

terms in the entire set of documents. VSM is a powerful way of expressing and

comparing documents with their weights and values. Despite the fact that the

vector representation loses information about the ordering of the words in the

document such that one cannot reconstruct the original sentence from the vector,

for many tasks the vector approximation is sufficient to capture the meaning

of the original document. Figure 3.7 shows the feature vector for the Adapter

patterns where weights are defined as frequency counts.

Figure 3.7: Term Document Matrix for Intent of Adapter Pattern

The document vectors form a term-document matrix (TDM) where rows rep-

resents documents, columns represent terms which are typically word types. TDM

18

CHAPTER 3. METHODOLOGY

is a useful way of modeling the document set. Each cell in the matrix indicates

the weight of the term in the set of documents. Typically, the value is a function

of the frequency with which the term occurs in the document or in the document

collection as a whole.

3.1.5 n-gram Features

n-gram model is a sequence of “n” tokens that are used in text mining and

natural language processing tasks (NLP). It presents the co - occurence of words

in the documents. n is the value at which the repeat is checked. n - gram is a

combination of n number words. An 1-gram is referred to as a “unigram” and

a 2-gram is referred as a “bigram” which is a a combination of two words. A

“trigram” is a combination of three words. Words in the n -gram model, do not

necessarily have to be related to each other; they can only be words that follow

each other. n - gram model is effective to obtain important statistical information

for some text retrieval datasets.

Name of

n - Gram

n - gram Example

Unigram 1 - gram [‘class’, ‘clients’, ‘convert’, ‘expect’, ‘interface’]

Bigram 2 - gram [‘class interface’, ‘clients expect’, ‘convert interface’,

‘interface class’, ‘interface clients’]

Trigram 3 - gram [‘class interface clients’, ‘convert interface class’, ‘in-

terface class interface’, ‘interface clients expect’]

Unigram

and Bi-

gram

1 - gram and

2 - gram

[‘class’, ‘class interface’, ‘clients’, ‘clients expect’,

‘convert’, ‘convert interface’, ‘expect’, ‘interface’, ‘in-

terface class’, ‘interface clients’]

Table 3.3: Extracting n-grams for the Adapter Pattern

In this study, unigram, bigram, and unigram and bigram are used together to

try to increase the chance of finding the correct pattern. Examples of unigram,

bigram, trigram and unigram and bigram are shown in Table 3.3.

19

CHAPTER 3. METHODOLOGY

3.1.6 TF-IDF

TF-IDF is a weighting mechanism that calculates the importance of each term for

each document by increasing the importance based on the term frequency while

decreasing the importance based on the document frequency. Terms that are

limited to a few documents are useful for discriminating those documents from

the rest of the collection; terms that occur frequently across the entire collection

are not as helpful.

How many times a given term appears in the document it belongs to is the

TF (Term Frequency) part of TF-IDF. It gives the frequency of the word in the

document. The higher the TF value is, the more important the term is for the

document. The raw frequency is reduced by a logarithmic factor, since a word

appearing x times in a document does not make that word x times more likely to

be relevant to the meaning of the document. However, if the given term appears

too frequent —ubiquitous, in all the documents then it is not that important in

order to identify the document. For example, if every single document contains

‘the’ ‘chain’ ‘bit’ then these terms would not be helpful to identify any given doc-

ument. The ‘IDF (Inverse Document Frequency)’ factor of the ‘TF-IDF’ captures

this observation by decreasing the importance of a given term as the number of

the documents it shows up increases. The formula used in calculating TF-IDF

values is given below [6, 37].

tf idf = term frequency * inverse document frequency

tf idf(t, d) = tf(t, d) ∗ idf(t) (3.1)

idf(t) = log[n/df(t))] + 1 (3.2)

tf idf(t, d) = tf(t, d) ∗ log[n/df(t))] + 1 (3.3)

20

CHAPTER 3. METHODOLOGY

where

n = total number of documents in the document set,

df(t) = the number of documents in the document set that contain the term t.

Each document is represented as a vector whose direction is determined on a

set of the TF-IDF values in the space. The vector space model which uses TF-

IDF is also called TF-IDF model where each dimension of the vector is weighted

using the TF-IDF [6, 37]. An example of the Term Document Matrix using TF

- IDF values for Adapter, Façade, and State patterns are given in Figure 3.8.

Figure 3.8: Term Document Matrix for Intents of Adapter, Façade, and State
Patterns

3.1.7 Cosine Similarity

After transforming and preparing the text data and giving the scores to each term

by calculating the TF-IDF, now one can decide if two documents are similar or

not using cosine similarity. It is by far the most common similarity metric which

is based the cosine measure of the angle between the vectors. The formula for

calculating Cosine Similarity is given in Equation 3.1 [6].

21

CHAPTER 3. METHODOLOGY

cos(~v, ~w) =
~v.~w

‖~v‖‖~w‖
=

∑n
i=1 viwi√∑n

i=1 (vi)2
√∑n

i=1 (wi)2
(3.4)

Computing the cosine similarities between the problem scenario vector and each

pattern definition vector in the collection, then sorting the resulting scores and

selecting the top K documents from the list is the primary idea behind the Text

Based Recommendation phase of the methodology. Design pattern recommenda-

tion based on text or information retrieval works as follows and shown in Figure

3.9.

1. Treat the problem scenario as a document

2. Calculate the similarity between the problem scenairo document and each

document in the collection

3. Rank documents by increasing similarity using cosine similarity metric

4. Return to the designer the top k-ranked documents

3.2 Case Based Recommendation

Preprocessing of the document set ensures that there are no insignificant words

in the document that may adversely affect the design pattern selection. However,

the text based recommendation still may be unable to suggest a suitable pattern

using the document set constructed from the previously-listed sources. In order

to improve the accuracy of the recommendation, Case Based Recommendation

is added to the Text Based Recommendation step. Case Based Recommenda-

tion simply enriches the document set by augmenting the document set with case

scenarios for which the answer is already known. This is because if the problem

scenario shows some high degree similarity with a previous known case scenario,

22

CHAPTER 3. METHODOLOGY

Figure 3.9: Text Based Recommendation Approach

then the problem scenario probably uses the same design pattern. When a prob-

lem scenario is marked as such that it uses a specific design pattern, then this

problem scenario is designated as a case scenario and can be added to the case

scenario set. This will strengthen the prediction capability of the tool as the tool

in some way starts “learning” from its previous findings.

3.3 Question Based Recommendation

Text Based Recommendation automatically generates result without human in-

tervention. There are specific expressions in the scenarios which are best inter-

preted by humans. Human involvement in the form of a question / answer session

is therefore very beneficial for predicting the correct pattern. This is the approach

taken in the Question Based Recommendation phase.

23

CHAPTER 3. METHODOLOGY

The process is as follows: calculate another score for the Question Based

Recommendation phase and adjust the Text Based Recommendation’s scores

using these new scores. This gives a new and improved ranking which indirectly

includes the designer’s involvement. Our studies show that the most accurate

pattern estimation is within the first 7 results of Text Based Recommendation.

In the Question Based Recommendation phase, we focus on these 7 patterns and

present questions on these patterns first. However, we present the designer the

full set of questions giving the designer the option of answering the remaining

questions.

There are two aspects of question/answer session: to determine the knowledge

level of the designer, and to gather responses given to pattern questions. Three

categories are used to assign a knowledge level to a designer: Novice, Intermediate,

and Expert. Determination of the knowledge level of the designer is done by again

presenting a series of question given in Table 3.4. An alternative to this could

have been to ask the designer to assign a level him/herself. However, this would

not have been an objective assessment and the results would have been biased.

We have used a subset of the questions given in [38] and added some more.

Questions Answer Options

Q1: Do you write and publish your de-

sign patterns?

a) No

b) Yes

Q2: How many design patterns do you

know?

a) None (1 pt)

b) Less than 23 GoF patterns (2 pts)

c) All of the 23 GoF patterns and others (3 pts)

Q3: How many design patterns did you

use in the your projects?

a) None (1 pt)

b) Less than 23 GoF patterns (2 pts)

c) All of the 23 GoF patterns and others (3 pts)

Table 3.4: Questions for Determining Knowledge Level

After having determined the designer’s knowledge level, the design pattern

questions are presented to the designer. One question is asked for each design

24

CHAPTER 3. METHODOLOGY

Figure 3.10: Decision Diagram for Specifying the User’s Knowledge Level

pattern which makes a total of 20 questions. The patterns selected from the GoF

design patterns book are Abstract Factory, Adapter, Bridge, Builder, Chain,

Responsibility, Command, Composer, Façade, Factory, Iterator, Mediator, Me-

mento, Observer, Prototype, Singleton, State, Strategy, Template Method and

Visitor patterns. Questions were prepared to reflect the characteristic of the

pattern and point out the most important feature of the design pattern. The

reason that a single question is asked for each pattern instead of several ones

is to improve the score without confusing the designer with multiple questions.

The questions were prepared by synthesizing and interpreting the information

obtained from various sources, especially GoF. We only show a sample of design

pattern evaluation questions in Table 3.5 to provide an example. The designer

is asked pattern questions corresponding to the first 7 patterns. However, the

designer is given the option of answering the remaining questions in the case that

the designer believes the rankings are inadequate.

25

CHAPTER 3. METHODOLOGY

Pattern Question 1=totally disagree

5=totally agree

Factory You need to create an object to represent external data

or process an external event where another object is re-

sponsible for creating and determining the type of this

object.

1 2 3 4 5

Singleton You need to create an instance from a class and provide

only one access point to it so all other instances or objects

of other classes can access it through the same solely entry

point.

1 2 3 4 5

Composite You need to create an object or objects that inherit an

interface and composed from other objects that inherit

the same interface.

1 2 3 4 5

Facade You have a subsystem (could be a package) composed

of set of classes or objects and you need to provide a

single way to communicate with them through a simpler

interface.

1 2 3 4 5

Decorator You need to create an object that needs different function-

alities and responsibilities to be added to and withdrawn

from it dynamically at run time.

1 2 3 4 5

Iterator You have an array or a list or any type of such aggregation

structure that you need to access it sequentially.

1 2 3 4 5

Observer You have objects that need to monitor or observe the

changes in the state of each other and need to be noticed

whenever the state of any of them has been changed.

1 2 3 4 5

Visitor You have a complex structure (a hierarchy class struc-

ture or an array or list) that contains different elements

and need to apply the same different functions, methods,

behaviors on these elements.

1 2 3 4 5

Strategy You have a family of different related classes or algorithms

that perform almost the same task into different manners

and you need to use them interchangeably.

1 2 3 4 5

Command You have the situation where there is an action(s) needed

to be issued or performed several times, so it is needed to

be stored and recalled when needed later on.

1 2 3 4 5

Prototype You need to create a prototypical instance that is inde-

pendent of how its products are created, composed, and

represented and you need to create new objects by copy-

ing this prototype.

1 2 3 4 5

Table 3.5: Pattern Questions

26

CHAPTER 3. METHODOLOGY

The answers to pattern questions are rated using a five-point numbered Likert

scale ranging from 1 to 5 points, where 1 means totally disagree, 2 means disagree,

3 means neutral, 4 means agree and 5 means totally agree. The knowledge level

of the designer determined before, is factored in to the answers given to pattern

questions, and a final weight is calculated. In this way, designers from different

levels of knowledge were prevented from affecting the calculation at the same

rate. The knowledge level ranges from 3 to 1, based on the answers given to

placement questions as follows: Novice = 3, Intermediate = 2 and Expert =

1. The knowledge level points and points obtained from pattern questions are

combined to adjust the scores of the Text Based Recommendation phase. The

scores obtained from pattern questions are reduced proportional to the experience

level. For example a 5 score from the pattern question will be divided into 3 (i.e.

5/3 = 1.3)for a novice designer.

The Text Based Recommendation phase scores are now ready to be “de-

noised” using the scores obtained from the Question Based Recommendation

phase. We have named this “de-noising” operation as “Question Scoring Method

(QSM)”. Similar to the approaches used in image processing, we will “de-noise”

the results of Text Based Recommendation (i.e. cosine similarity) using the

results of Question Based Recommendation. We developed the following formula

inspired by [39], to compute a weight that will be applied to the cosine similarity

score of the corresponding pattern. This will change the ranking of the patterns

because the information obtained from the designer (Expert, Intermediate or

Novice), has an impact on the recommendation of the correct pattern. The

formula is given below:

w(s) = csmax ∗
es

e5
(3.5)

27

CHAPTER 3. METHODOLOGY

where csmax refers the maximum value of the pattern similarity scores ob-

tained in the Text Based Recommendation phase, and s refers to the value

PatternQuestionPoints
UserKnowledgeLevels

. This value can be between 1
3

and 5. A novice developer

can give minimum 1 point to any question and this means the developer totally

disagrees with the statement. Since a novice developer’s knowledge level point

is 3, the minimum value of 1
3

is obtained. An expert developer can give a maxi-

mum 5 points to any question meaning that the developer totally agrees with the

statement. The knowledge level point is 1 for an expert developer, therefore, the

maximum value of 5 is obtained. The weight calculated from QSM is now added

to the cosine similarity scores. After the “de-nosing”, a new rank is created. This

concludes the Question Based Recommendation and also terminates the whole

recommendation process.

3.3.1 Design Pattern Methodology Example

In this section we shall show how our methodology is applied to a particular design

problem. Our pattern collection set is constructed using the GoF design pattern

book, Wikipedia and some websites that discusses design patterns problems and

solutions [26]. We shall use the following scenario as an example design problem

in our demonstration of the methodology.

Scenario #24: “Once every five years the library goes through the Sci-

ence books and records its usage. For the Technology books (Class T) it

calculates relevance factor (the average and median age of the books and

the ratio of the books that have been published in the past 5 years to the

total number of books.)”

The correct answer for this scenario is Visitor Pattern. We shall apply our

methodology and demonstrate how it reaches to the correct answer. Table 3.6

28

CHAPTER 3. METHODOLOGY

shows the results after the Text Based Recommendation phase.

Rank Pattern Name Similarity Scores

1 Strategy 0.0203

2 Template Method 0.0159

3 Abstract Factory 0.01473

4 Observer 0.0087

5 Singleton 0.00858

6 Adapter 0.00774

7 Decorator 0.00759

8 Visitor 0.00711

. . .

. . .

. . .
Table 3.6: Text Based Recommendation Results for Scenario #24

As it can be seen from Table 3.6 Visitor pattern is listed 8th in the list. Now we

enter into Case Based Recommendation phase and add those scenarios as cases

to the collection set for which the Text Based Recommendation phase ranks the

correct answer as first. The new rankings are shown in Table 3.7.

Rank Pattern Name Similarity Scores

1 Facade 0.04359

2 Observer 0.03216

3 Template Method 0.02074

4 Strategy 0.01864

5 Abstract Factory 0.01375

6 Visitor 0.01325

7 Singleton 0.01146

. . .

. . .

. . .
Table 3.7: Text and Case Based Recommendation Results for Scenario #24

The Visitor Pattern is now ranked 6th which indicates an improvement. The

rankings of other patterns have also changed. The next step is the Question Based

29

CHAPTER 3. METHODOLOGY

Recommendation phase. First the designer’s knowledge level is determined using

the answers to the placement questions listed in Table 3.8. Accordingly the level

of expertise for this designer is determined as Expert.

Question Answer Point

Q1 No 0

Q2 All 23 GoF and more 3

Q3 All 23 GoF and more 3

Table 3.8: Specifying Knowledge Level

Next the designer is asked to answer pattern questions for the 20 patterns.

The designer is required to give an answer for questions corresponding to the top

7 patterns listed in the latest ranking. The remaining questions are optional.

Knowledge level and scores from these answers are used to calculate a weight

using QSM. The calculated weights are shown in Table 3.9.

Question Answer Weight

Facade 1 0.0008

Observer 3 0.0059

Template M. 2 0.00217

Strategy 2 0.00217

Abstract F. 1 0.0008

Visitor 5 0.04359

Singleton 3 0.0059

. . .

. . .

. . .
Table 3.9: QSM Results for Scenario #24 for the Expert Designer

These weights are used to obtain the adjusted scores of Text and Case Based

Recommendation Phases as shown in Table 3.7. The final rankings are determined

which are shown in Table 3.10.

30

CHAPTER 3. METHODOLOGY

Rank Pattern Name FinalRankings

1 Visitor 0.05684

2 Facade 0.04439

3 Observer 0.03806

. . .

. . .

. . .
Table 3.10: Text, Case and Question Based Recommendation Results for Scenario
#24

The progress of the ranking improvements are summarized in Table 3.11.

Phase Rank

Text Based Eighth order

Text and Case Based Sixth order

Text, Case and Question Based First Order

Table 3.11: Summary of Progress in Rankings

31

Chapter 4

Implementation and Results

Design pattern recommendation tool is implemented using Python programming

language. The main reason we choose Python for implementation is that it has

a robust library support that we need in our processes for natural language pro-

cessing. We used PyCharm as programming editor for building the user interface

for our tool. PyCharm is a free, non-commercial and effective cross - platform

IDE, suited well for Python development.

The pattern definition collection set is formed using the GoF book [1],

Wikipedia, a website that discusses about design patterns problems and solu-

tions [26] together with the pseudo documents we created from keywords. The

use of Wikipedia and other sources in addition to Gof book improved results, be-

cause these sources use a language that is much closer to the everyday language

used in problem scenarios.

The following scenario demonstrates our justification why we included

Wikipedia in the preparation of the collection. Scenario #1 given below is the

design problem to which a recommendation is sought after.

32

CHAPTER 4. IMPLEMENTATION AND RESULTS

Scenario #1: “A menu consists of a set of choices and a mechanism for

a user to specify which choice they want. There are a variety of styles of

menus. One menu style is to print a number in front of each string (e.g., 1,

2, and so on) and let the user enter a number to make a choice. In general,

all of the menus must provide a way to add entries to the menu, delete

entries, display the menu, and obtain the user’s choice.”

Table 4.1 shows the comparative results when only Gof Book is used versus

when Gof and Wikipedia sources are used together.

Rank GoF GoF and Wikipedia

1 Decorator 0.02418 Strategy 0.02623

2 Prototype 0.02184 Factory 0.01867

3 Bridge 0.01855 Mediator 0.01431

4 Observer 0.01447 Prototype 0.01397

5 Factory 0.01342 Facade 0.01275

6 Abstract Factory 0.01122 Composite 0.01207

7 Visitor 0.0106 AbstractFactory 0.01174

8 Facade 0.01018 Bridge 0.01159

9 Strategy 0.01 Visitor 0.01128

Table 4.1: The Effect of Using Wikipedia Sources on Scenairo #1

Strategy pattern ranked ninth when the document set uses only GoF, whereas

it is ranked first place when the document set contains GoF and Wikipedia to-

gether. The use of Wikipedia provided improvements for other problem scenarios

not listed here as well. As a result, Wikipedia is included as a source in building

the pattern definition collection set.

For text preprocessing step Scikit learn library [37] is used. Scikit learn library

is one of the most widely used library for data mining and data analysis. In this

implementation, we used this library for text processing, n - gram extraction, tf

- idf weighting. For the stemming process, Porter’s Algorithm is used. Porter’s

Algorithm is the most popular algorithm for stemming, which has been around

since 1979 and its effectiveness has been proven in many other studies.

33

CHAPTER 4. IMPLEMENTATION AND RESULTS

Unigram and bigram model is used together for n-gram extraction. The tri-

gram experiments did not give any satisfactory results and produced almost 0

value for cosine similarity. For some patterns, it was enough to group them as

unigram for a correct recommendation. Some other patterns did not have enough

unigram, so grouping them as bigram gave better results. Therefore, it was ob-

served that using unigram and bigram together offers the best combination. For

example, when we grouped the document set as unigram, the words “only” and

“one” were too frequent to have enough effect for the Singleton pattern; when we

grouped these two together as unigram and bigram, the comparison was made

with “only”, “one” and “only one” word groups, and as a result, the system was

able to recommend the Singleton pattern as correct.

The effectiveness of the methodology was measured using 120 scenarios. Table

4.2 displays the success ratio of the Text Based Recommendation. The correct

answer is in the first place for 56 out of 120 scenarios, in second place for 16

scenarios, and third place for 8. This means that 65% of the times the correct

answer was listed in the top three, 76% of the times the correct answer was within

the top five, and 86% of the times the answer was placed in top 7.

Rank of Correct Pattern # of Scenarios %

1st 56 scenarios % 46,66

2nd 16 scenarios % 13,33

3rd 8 scenarios % 6,66

4th 7 scenarios % 5,83

5th 5 scenarios % 4,16

6th 6 scenarios % 5

7th 5 scenarios % 4,16

8th to last 13 scenarios % 10,83

No recommendation 4 scenarios % 3,33

Table 4.2: Text Based Recommendation Results

Table 4.3 shows the table representation of confusion matrix of the text-based

34

CHAPTER 4. IMPLEMENTATION AND RESULTS

recommendation results. In this table, numbers from 1 to 20 refer to the design

patterns that we used in our study and number 21 refers to scenarios that do not

have similarity scores. This matrix shows how many of the patterns we know to

be, for example Abstract Factory as the answer are recommended as Abstract

Factory, and how many of them are recommended as Adapter, Bridge, Builder

etc. When this table is examined, it provides information about how to improve

the document sets for future studies.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 (Abstract F.) 4 0 0 0 0 1 0 0 0 1 0 0 1 0 2 0 0 0 0 0 0

2 (Adapter) 2 2 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0

3 (Bridge) 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 (Builder) 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 (Chain of Res.) 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

6 (Command) 0 0 0 0 1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0

7 (Composite) 3 0 0 2 0 1 1 0 1 0 0 0 0 0 1 2 0 0 0 0 1

8 (Decorator) 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

9 (Facade) 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0

10 (Factory) 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

11 (Iterator) 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

12 (Mediator) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

13 (Memento) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0

14 (Observer) 0 0 0 0 0 0 0 0 0 1 0 0 0 11 0 0 0 2 0 1 0

15 (Prototype) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

16 (Singleton) 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1

17 (State) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0

18 (Strategy) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

19 (Template M.) 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 4 1 0

20 (Visitor) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 1 3 0

Table 4.3: Text Based Recommendation Results Confusion Matrix

After the text-based recommendation phase, 56 patterns with the correct

answer in the first rank were added to the document set and the text-base recom-

mendation step was repeated. The results of the Case Based Recommendation

phase are shown in the table 4.4. As a result of this phase, 4 of the 13 scenarios

whose answers were in the 8th to 20th has moved to within the first 7. Two of

these scenarios have reached the 5th rank and two have reached the 6th rank.

35

CHAPTER 4. IMPLEMENTATION AND RESULTS

Rank of Correct Pattern # of Scenarios %

1st 56 scenarios % 46,66

2nd 16 scenarios % 13,33

3rd 8 scenarios % 6,66

4th 7 scenarios % 5,83

5th 7 scenarios % 5,83

6th 8 scenarios % 6,66

7th 5 scenarios % 4,16

8th to last 9 scenarios % 7,5

No recommendation 4 scenarios % 3,33

Table 4.4: Text and Case Based Recommendation Results

Table 4.5 shows the rankings for scenario #18 as an example of accurate

recommendation. The correct answer for scenario #18 is Observer pattern and

the tool listed Observer pattern as the first pattern in the recommended list at

the end of Text Based Recommendation phase with a similarity score of 0.04521.

Scenario #18: “Applications use devices of the operating system. Devices

generate interrupts for the applications. When the interrupt is handled,

the registered applications will be notified and they will take action. For

instance, if a character arrives to the network port, the applications waiting

for data will be notified and one of them will consume this data.”

Rank Recommended Pattern Similarity Scores

1 Observer 0.04521

2 Singleton 0.03922

3 Strategy 0.03301

4 Visitor 0.02419

5 Prototype 0.02208

6 Chain Of Resp 0.01539

7 Command 0.0137

Table 4.5: Scenario #18 Results

14 percent of the cases the correct pattern was not listed in top 7. For those

scenarios in the bottom 14%, when we applied the Case Based Recommendation,

36

CHAPTER 4. IMPLEMENTATION AND RESULTS

results are improved slightly. The correctly identified scenarios from Text Base

Recommendation phase are added to the case set. When this new document

collection with the added cases are used, 4 of the scenarios previously in the

bottom 14% of the list moves to top 7. For the remaining scenarios the designer

can perform Question Based Recommendation phase to improve the scores. The

designer is required to answer the first 7 pattern questions, For the remaining

ones only the questions with an answer are used.

Three such example scenarios given below, - scenario #36, #7 and #20- fall

in the bottom 14% percentile. The rankings for these scenarios are shown in

Tables 4.6, 4.7 and 4.8.

37

CHAPTER 4. IMPLEMENTATION AND RESULTS

Scenario #36: “You decided to design a Document Management Sys-

tem. A document management system is used to track and store electronic

documents. These documents usually belong to a workorder. A worko-

rder is created by the users of the system. A workorder can contain sub

workorders. Every document belongs to some workorder. For instance

a Purchase work order has two sub workorders: Shipment and Payment.

Shipment may have two documents in it: a bill of lading and packaging

slip, while Payment may have an invoice document. When time comes you

must perform a check that all the documents in the workorder have been

signed.”

Rank Recommended Pattern Similarity Scores

1 Singleton 0.0146

2 AbstractFactory 0.01128

3 Factory 0.01107

4 Prototype 0.01095

5 Command 0.00983

6 Adapter 0.00967

7 Strategy 0.0093

8 Iterator 0.00869

9 Decorator 0.00859

10 Builder 0.00785

11 Visitor 0.0072

12 Composite 0.0072

Table 4.6: Scenario #36 Results

38

CHAPTER 4. IMPLEMENTATION AND RESULTS

Scenario #7: “A company manufactures several products which are listed

in a Product Catalog. A product may consist of other products. Each

product has an item number. Customers give orders for these products.

An order may have multiple items of different kind or multiple items of

same kind. In other words, Orders are composed of Line Items. So you

need to keep quantity in each Line Item. An Order could be canceled or

committed. An item can be cancelled until it is committed. Based on the

contents of the order, the customer will be charged accordingly.”

Rank Recommended Pattern Similarity Scores

1 AbstractFactory 0.05629

2 Builder 0.0514

3 Factory 0.03276

4 Prototype 0.02398

5 Facade 0.00801

6 Observer 0.00735

7 Bridge 0.00629

8 Memento 0.00609

9 Iterator 0.00508

10 Strategy 0.00382

11 Decorator 0.00372

12 Composite 0.00337

Table 4.7: Scenario #7 Results

39

CHAPTER 4. IMPLEMENTATION AND RESULTS

Scenario #20: “In a library the books are organized using Library of

Congress Classification Outline. That is Class Q is for Science class QA

is for Mathematics and Class QA75.5-76.95 is for Computer Science (i.e.

SCIENCE->MATHEMATICS->COMPUTER SCIENCE). You can even

further classify Computer Science as Database or AI.”

Rank Recommended Pattern Similarity Scores

1 Singleton 0.02709

2 Adapter 0.02217

3 Strategy 0.02003

4 Visitor 0.01882

5 Decorator 0.01867

6 Factory 0.01826

7 Bridge 0.01798

8 AbstractFactory 0.01725

9 Prototype 0.01636

10 Mediator 0.0145

11 State 0.01256

12 TemplateMethod 0.0112

13 Facade 0.01011

14 Builder 0.00741

15 Composite 0.00716

Table 4.8: Scenario #20 Results

The correct answer for these three design problems, scenarios #36, #7 and

#20, is Composite Pattern. When we examine the above scenarios and their

results, scenarios #36 and #7 are listed at the 12th place among the 20 patterns

and scenario #20 is listed at the 15th place. These three scenarios are in the

bottom 14% percentile which is indication that text based recommendation did

not produce any satisfactory result. Text Based Recommendation automatically

generates results without any human intervention. But as it is seen from these

three scenarios #36, #7 and #20, there are specific expressions in them which are

best interpreted by humans. Human involvement in the form of a question/answer

session is very beneficial for predicting the correct pattern. For this reason,

40

CHAPTER 4. IMPLEMENTATION AND RESULTS

Question Based Recommendation phase is performed to improve the results.

Tables 4.9, 4.10 and 4.11 show the results of QSM and the rankings before

and after the application of the QSM.

SCENARIO#36 - NOVICE (=3)

Rank Pattern Name Text

Based

Results

Pattern

Question

Response

Norm.

Score

QSM Re-

sults after

de-noise

New

Ranking

New List

1 Singleton 0.0146 3 1,00 0.00027 0.01487 Singleton

2 Abstract F. 0.01128 1 0,33 0.00014 0.01142 AbstractF.

3 Factory 0.01107 1 0,33 0.00014 0.01121 Factory

4 Prototype 0.01095 1 0,33 0.00014 0.01109 Prototype

5 Command 0.00983 1 0,33 0.00014 0.00997 Command

6 Adapter 0.00967 1 0,33 0.00014 0.00981 Adapter

7 Strategy 0.0093 1 0,33 0.00014 0.00944 Strategy

8 Iterator 0.00869 1 0,33 0.00014 0.00883 Iterator

9 Decorator 0.00859 2 0,67 0.00019 0.00878 Decorator

10 Builder 0.00785 1 0,33 0.00014 0.00799 Builder

11 Visitor 0.0072 2 0,67 0.00019 0.00772 Composite

12 Composite 0.0072 5 1,67 0.00052 0.00739 Visitor

13 Facade 0.00598 1 0,33 0.00014 0.00612 Facade

14 Bridge 0.00532 1 0,33 0.00014 0.00546 Bridge

15 Template 0.00474 1 0,33 0.00014 0.00488 Template

16 State 0.00454 1 0,33 0.00014 0.00468 State

17 Memento 0.00368 1 0,33 0.00014 0.00382 Memento

18 Observer 0.00315 3 1,00 0.00027 0.00342 Observer

19 ChainOfR. 0.00288 1 0,33 0.00014 0.00302 ChainOfR.

20 Mediator 0.00198 1 0,33 0.00014 0.00212 Mediator

Table 4.9: Scenario #36 Final Rankings for Novice Designer

41

CHAPTER 4. IMPLEMENTATION AND RESULTS

SCENARIO #7 - INTERMEDIATE (=2)

Rank Pattern Name Text

Based

Results

Pattern

Question

Response

Norm.

Score

QSM Re-

sults after

de-noise

New

Ranking

New List

1 AbstractF. 0.05629 2 1,00 0.00103 0.05732 AbstractF.

2 Builder 0.0514 2 1,00 0.00103 0.05243 Builder

3 Factory 0.03276 3 1,50 0.0017 0.03446 Factory

4 Prototype 0.02398 1 0,50 0.00063 0.02461 Prototype

5 Facade 0.00801 1 0,50 0.00063 0.00864 Facade

6 Observer 0.00735 1 0,50 0.00063 0.00799 Composite

7 Bridge 0.00629 1 0,50 0.00063 0.00798 Observer

8 Memento 0.00609 1 0,50 0.00063 0.00692 Bridge

9 Iterator 0.00508 1 0,50 0.00063 0.00672 Memento

10 Strategy 0.00382 1 0,50 0.00063 0.00571 Iterator

11 Decorator 0.00372 2 1,00 0.00103 0.00445 Strategy

12 Composite 0.00337 5 2,50 0.00462 0.00475 Decorator

13 Command 0.00323 1 0,50 0.00063 0.00386 Command

14 Visitor 0.00319 1 0,50 0.00063 0.00382 Visitor

15 Template 0.00308 1 0,50 0.00063 0.00371 Template

16 ChainOfR. 0.00294 1 0,50 0.00063 0.00357 ChainOfR.

17 State 0.0021 1 0,50 0.00063 0.00303 Singleton

18 Adapter 0.00162 1 0,50 0.00063 0.00273 State

19 Singleton 0.00133 3 1,50 0.0017 0.00225 Adapter

20 Mediator 0.0009 1 0,50 0.00063 0.00153 Mediator

Table 4.10: Scenario #7 Final Rankings for Intermediate Designer

42

CHAPTER 4. IMPLEMENTATION AND RESULTS

SCENARIO #20 - EXPERT (=1)

Rank Pattern Name Text

Based

Results

Pattern

Question

Response

Norm.

Score

QSM Re-

sults after

de-noise

New

Ranking

New List

1 Singleton 0.02709 3 3,00 0.00367 0.03425 Composite

2 Adapter 0.02217 1 1,00 0.0005 0.03076 Singleton

3 Strategy 0.02003 1 1,00 0.0005 0.02267 Adapter

4 Visitor 0.01882 1 1,00 0.0005 0.02053 Strategy

5 Decorator 0.01867 2 2,00 0.00135 0.02002 Decorator

6 Factory 0.01826 1 1,00 0.0005 0.01932 Visitor

7 Bridge 0.01798 1 1,00 0.0005 0.01876 Factory

8 AbstractF. 0.01725 1 1,00 0.0005 0.01848 Bridge

9 Prototype 0.01636 1 1,00 0.0005 0.01775 AbstractF.

10 Mediator 0.0145 1 1,00 0.0005 0.01686 Prototype

11 State 0.01256 1 1,00 0.0005 0.015 Mediator

12 Template 0.0112 1 1,00 0.0005 0.01306 State

13 Facade 0.01011 1 1,00 0.0005 0.0117 Template

14 Builder 0.00741 1 1,00 0.0005 0.01061 Facade

15 Composite 0.00716 5 5,00 0.02709 0.00791 Builder

16 Command 0.00467 1 1,00 0.0005 0.005167 Command

17 ChainOfR. 0.00466 1 1,00 0.0005 0.00516 ChainOfR.

18 Observer 0.00398 1 1,00 0.0005 0.00448 Observer

19 Iterator 0.00134 2 2,00 0.00135 0.00269 Iterator

20 Memento 0.00124 1 1,00 0.0005 0.00174 Memento

Table 4.11: Scenario #20 Final Rankings for Expert Designer

The inclusion of Question Based Recommendation in the methodology has

improved the rankings, but less for novice knowledge level when compared to

intermediate and experienced knowledge levels. This is expected because novice

developers’ answers are less reliable than those of experienced designers. The

highest improvement is obtained in the experienced level. This is also expected

and also desired, as the degree of the knowledge of the designer compensates the

shortcoming of the Text Based Recommendation for particular patterns.

When a scenario is “solved” and assigned a designed pattern to it, the problem

scenario becomes a known case and added to the document set as described in

43

CHAPTER 4. IMPLEMENTATION AND RESULTS

the Case Based Recommendation Phase. However, this process is not automatic

and left to be done by the designer. In particular the results obtained from novice

and intermediate developers are not taken into account while adding a case to

the document set. The tool ‘offers’ the problem scenario for inclusion as a case

only for the experienced users. And it is just an ‘offer’. It is worthwhile to note

that the users of the tool has the full control over what to add or not. The

user after receiving a recommendation may further assess the appropriateness of

the recommendation and decide to classify it as a case or not. This will help to

improve the accuracy of the tool for subsequent recommendations.

44

Chapter 5

Conclusion

In this study, we developed a design pattern recommendation system which com-

bines three different approaches: Text Based Recommendation, Case Based Rec-

ommendation and Question Based Recommendation. The goal of the system is

to help inexperienced developers to select the most appropriate design pattern for

a design problem. This consolidated approach produces better results than using

each approach alone. Text Based Recommendation uses a well known technique

from Natural Language Processing domain to compare documents. A design

problem written in natural language (i.e. English) and stored in a document is

compared against a pattern definition collection set using cosine similarity met-

ric. Pattern definition collection set is formed using Gof design pattern book,

Wikipedia and web sites that discuss design pattern problems and solutions. 20

GoF design patterns are used. Case Based Recommendation augments the de-

sign pattern definition collection with known cases. The design problem is then

compared against this augmented set. Finally in the Question Based Recommen-

dation phase, a series of questions asked to the designer to adjust the scores ob-

tained in the previous phases. We developed a Question Scoring Method (QSM)

to adjust and improve the rankings obtained in the previous two phases.

45

CHAPTER 5. CONCLUSION

The recommendation tool is implemented using Python programming lan-

guage with a graphical user interface. Natural Language processing libraries of

Scikit Learn [37] is used for text preprocessing, and Python is used for the

Text Based Recommendation Phase. The effectiveness of the methodology was

measured using 120 scenarios. The scenarios are collected from various sources

including a design pattern course where these scenarios were actually asked to

students in homeworks and projects. At the end of Text and Case Based Rec-

ommendation phases, the correct answer is in the first place for 56 out of 120

scenarios, in second place for 16 scenarios, and third place for 8. This means that

65% of the scenarios the correct answer was listed in the top three, in 76% the

correct answer was within the top five, and in 86% the answer was placed in top

7. The Question Based Recommendation phase was conducted by software devel-

opers with different degrees of experience working for a software company. The

answers of the experienced developers has significantly improved the rankings of

the incorrectly selected patterns, and in certain cases, the pattern is correctly

identified in the first rank. At the end of the Question Based Recommendation

phase, for all 9 scenarios, the correct answer was listed in the top 3, with the

points given by expert designers. The correct answer was listed in the top 8, with

the answers points by intermediate designers. The experimental results showed

that a consolidated approach produces better results.

There are a couple areas that the tool needs improvement. Firstly, even

though cosine similarity is a well accepted a similarity metric, other similarity

measures and weight computations or a combination of them thereof need to be

tried. Corpus specific stop word removal can be incorporated to improve results.

Secondly, there are keywords that are not present in the design pattern definitions

but are good indicators of a particular design patterns. One such example is the

words ‘every’ and ‘each’ which are good hints for Iterator pattern. New set of

words need to be investigated and added. Thirdly, our Question Scoring Method

46

CHAPTER 5. CONCLUSION

can be improved for better de-noising. Lastly the sample problem set needs to

grow to include more scenarios to further improve the results.

47

Appendix A

Design Patterns Scenarios

Scenario #1: “A menu consists of a set of choices and a mechanism for

a user to specify which choice they want. There are a variety of styles of

menus. One menu style is to print a number in front of each string (e.g., 1,

2, and so on) and let the user enter a number to make a choice. In general,

all of the menus must provide a way to add entries to the menu, delete

entries, display the menu, and obtain the user’s choice.”

Scenario #2: “The Company class is the central class that encapsulates

several important features related to the system as a whole. It is required

to make sure that only one instance of this important class can exist.”

48

APPENDIX A. DESIGN PATTERNS SCENARIOS

Scenario #3: “The system has an interface named “MediaPlayer”. This

interface is implemented by a concrete class AudioPlayer. AudioPlayer

has methods that play mp3 format audio files. There is another inter-

face AdvancedMediaPlayer which is implemented by a concrete class Ad-

vancedAudioPlayer to play vlc amd mp4 format files. It is required to have

AudioPlayer class to use AdvancedaudioPlayer class to be able to play other

formats.”

Scenario #4: “The designer of an adventure game wants a player to be

able to take and drop various items found in the rooms of the game. Two

of the items found in the game are bags and boxes. Both bags and boxes

can contain individual items as well as other bags and boxes. Bags and

boxes can be opened and closed and items can be added to or taken from

a bag or box.”

Scenario #5: “The system approves purchasing requests. There are four

approval authority. The selection of the approval authority depends on the

purchase amount. If the amount of the purchase is higher than 1 million

dollar, the owner who approves. If it ranges from 500k to less than 1

million the CEO who approves, if it ranges from 25k to less than 500k the

head of department approves, if less than 25k the vice who approves. The

approval authority for a given dollar amount could change at any time and

the system should be flexible enough to handle this situation.”

Scenario #6: “The system should have only one printer spooler although

the system can identify many printers.”

49

APPENDIX A. DESIGN PATTERNS SCENARIOS

Scenario #7: “A company manufactures several products which are listed

in a Product Catalog. A product may consist of other products. Each

product has an item number. Customers give orders for these products.

An order may have multiple items of different kind or multiple items of

same kind. In other words, Orders are composed of Line Items. So you

need to keep quantity in each Line Item. An Order could be canceled or

committed. An item can be cancelled until it is committed. Based on the

contents of the order, the customer will be charged accordingly.”

Scenario #8: “The order application system is grouped into three sub-

systems: Product subsystem, Order subsystem, Customer subsystem. The

Customer subsystem keeps information about the customer. The classes

in one subsystem may have the information about the classes in another

subsystem. For instance, Line Item Class in the Order Subsystem must

know about Product class in the Product subsystem.”

Scenario #9: “We have D1, D2 and D3 devices. Each device’s reset

behavior is different. Whenever we reset a device we must log a generic de-

viceReset event which does not change from device to device. In addition to

having different reset behaviors, our devices have different reset interfaces.

For example, for device D1 a reset means shutdown followed by a reboot,

for device D3 reset means suspend followed by reboot and for device D3 it

means reboot. We would like to uniformly reset these devices.”

Scenario #10: “The operating system has D1, D2 and D3 devices. These

devices are organized into subsystems. Subsystems may also contain other

subsystems. We want to reset the whole system by pushing a reset button.”

50

APPENDIX A. DESIGN PATTERNS SCENARIOS

Scenario #11: “Company X has a generic assembly plant which can build

car for different brands when given parts of a car. Together with the parts,

an assembly manual that gives detail steps of the assembly process is also

provided to the assembly plant. This assembly plant is careful enough not

mix the parts of one brand with another.”

Scenario #12: “In the same city, there two manufacturing plants which

make engine, chassis, steering and transmission for two different models of

the same company. These parts then shipped to the assembly plant for the

final assembly. These parts are composed of sub parts and each part has

an associated cost with it. When the assembly process is completed the

price of the car is stuck to the windshield for potential buyers.”

Scenario #13: “Engine is assembled by the engine team; chassis is assem-

bled by the chassis team and so forth. Chassis is assembled first followed

by engine and followed by transmission. Finally steering is put in place.

This order must be preserved. After the assembly plant gets the parts and

manual, it waits until the headquarters give the order to build the car.”

Scenario #14: “A farmer owns a farm open to public for picking your

own vegetables for a fee. The farm is organized as a collection of rows

where each row has a different vegetable planted. For example, row one has

cucumbers, row two has green beans and row three has green pepper. Upon

entry to the farm each customer is given a basket that has compartments

for each vegetable to ease sorting of the vegetables. In our example the

basket would have three compartments.”

51

APPENDIX A. DESIGN PATTERNS SCENARIOS

Scenario #15: “At each end of the row there is a sensor and a camera

that monitors the rows (catching people eating the vegetables). Whenever

a person enters or exits a row the sensor activates the camera and the image

gets transferred to a central monitoring room.”

Scenario #16: “The farmer plants winter vegetables for winter which

have different picking process than summer vegetables (i.e. using hand

versus a tool).”

Scenario #17: “The Operating System has a single files syetm in which

files are organized in a hierarchical manner. Folders contains other folders

and files. Some folders are encrypted some are not. One cannot create an

unencrypted file in an encrypted directory.”

Scenario #18: “Applications use devices of the operating system. Devices

generate interrupts for the applications. When the interrupt is handled,

the registered applications will be notified and they will take action. For

instance, if a character arrives to the network port, the applications waiting

for data will be notified and one of them will consume this data.”

52

APPENDIX A. DESIGN PATTERNS SCENARIOS

Scenario #19: “The OS will be using CPU, hard disk, and I/O devices.

Before shutting down the OS each device must be properly “reset”. Each

device’s reset behavior is different. Whenever we reset a device we must log

a generic deviceReset event which does not change from device to device.

In addition to having different reset behaviors, our devices have different

reset interfaces. For example, for hard disk device a reset means first write

whatever data in the buffer then close the files. For CPU it means terminate

all processes. We would like to uniformly reset these devices. We want to

reset the OS by issuing a shutdown command. Note that a system has

fixed number of CPU’s, hard disks and other devices.”

Scenario #20: “In a library the books are organized using Library of

Congress Classification Outline. That is Class Q is for Science class QA

is for Mathematics and Class QA75.5-76.95 is for Computer Science (i.e.

SCIENCE->MATHEMATICS->COMPUTER SCIENCE). You can even

further classify Computer Science as Database or AI.”

53

Appendix B

Recommendation Tool GUI

The graphical user interface is created using the PyQt Designer. The user in-

terface design is then converted to a structure that can be understood by the

PyCharm Python editor. In the following the screen shots of the tool are pre-

sented. The designer, after invoking the design pattern recommendation tool, is

shown the screen depicted in Figure B.1. The designer enters the problem sce-

nario, a score is calculated using the Text Based Recommendation approach. A

list of recommended design patterns are displayed.

54

APPENDIX B. RECOMMENDATION TOOL GUI

Figure B.1: Text Base Recommendation GUI

The following screen shown in Figure B.2 is used to ask the placements ques-

tions in order to determine the knowledge level of the designer. One of the levels;

Novice, Intermediate or Expert is assigned to the designer based on the answers.

The calculation method has been explained in Figure 3.10.

55

APPENDIX B. RECOMMENDATION TOOL GUI

Figure B.2: Classifying Designer’s Knowledge Level

56

APPENDIX B. RECOMMENDATION TOOL GUI

Figure B.3: Pattern Question Screen

57

APPENDIX B. RECOMMENDATION TOOL GUI

Using the screen shown in Figure B.3, the designer gives a score ranging from

1 to 5 to the questions corresponding to the first 7 recommended pattern. The

problem scenario and the knowledge level of the designer is also shown on the

same screen. A new rank is calculated and presented using the QSM method.

Figure B.4 shows the new rank.

Figure B.4: Final Rankings

The designer now has the option of accepting this new rank or may choose

to continue with the remaining pattern questions. The same process is repeated

until the designer calls it over.

58

BIBLIOGRAPHY

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). “Design

Patterns: Elements of reusable object-oriented software”. Massachusetts:

Addison-Wesley Publishing Company.

[2] Freeman, E., Robson, E., Bates, B. and Sierra, K., (2004). “Head first design

patterns”. ” O’Reilly Media, Inc.”.

[3] Lang, J.E., Bogovich, B.R., Barry, S.C., Durkin, B.G., Katchmar, M.R.,

Kelly, J.H., McCollum, J.M. and Potts, M., (2001). “Object-oriented pro-

gramming and design patterns”. ACM SIGCSE Bulletin, 33(4), pp.68-70.

[4] Shalloway, A., and Trott, J. R. (2005). “Design patterns explained: A new

perspective on object-oriented design, 2/E”. Pearson Education India.

[5] Manning, C., Raghavan, P. and Schütze, H., (2010). “Introduction to infor-

mation retrieval”. Natural Language Engineering, 16(1), pp.100-103.

[6] Jurafsky, D. and Martin D.H (2009). “Speech & language processing”. 2nd

ed. Prentice Hall, 2009.

[7] Sanyawong, N. and Nantajeewarawat, E., 2015. “Design pattern recommen-

dation: A text classification approach”. 6th Int. Conf. Inf. and Comm. Tech.

for Embedded Systems, IC-ICTES 2015.

59

BIBLIOGRAPHY

[8] Hamdy, A. and Elsayed, M., (2018). “Automatic Recommendation of Soft-

ware Design Patterns: Text Retrieval Approach”. JSW, 13(4), pp.260-268.

[9] Hamdy, A. and Elsayed, M., (2018). “Towards More Accurate Automatic

Recommendation Of Software Design Patterns”. Journal of Theoretical &

Applied Information Technology, 96(15).

[10] Guéhéneuc, Y.G. and Mustapha, R. (2007). “A simple recommender sys-

tem for design patterns”. Proceedings of the 1st EuroPLoP Focus Group on

Pattern Repositories.

[11] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J.L. and

Bento, C., (2002). “Using CBR for automation of software design patterns”.

In European Conference on Case-Based Reasoning. pp. 534-548. Springer,

Berlin, Heidelberg.

[12] Muangon, W. and Intakosum, S., (2013). “Case-Based reasoning for design

patterns searching system”. International Journal of Computer Applications,

70(26), pp.16-24.

[13] Palma, F., Farzin, H., Guéhéneuc, Y. G., and Moha, N. (2012). “Recom-

mendation system for design patterns in software development: An dpr

overview”. In 2012 Third International Workshop on Recommendation Sys-

tems for Software Engineering (RSSE). pp. 1-5. IEEE.

[14] AlSheikSalem, O. and Qattous, H., (2017). “An expert system for design pat-

terns recognition”. International Journal of Computer Science and Network

Security (IJCSNS), 17(1), pp. 93-101.

[15] Pavlič, L., Podgorelec, V., and Heričko, M. (2014). “A question-based design

pattern advisement approach”. Computer Science and Information Systems,

11(2), pp.645-664.

60

BIBLIOGRAPHY

[16] Qureshi, M.R.J. and Al-Geshari, W., (2017). “Proposed Automated Frame-

work to Select Suitable Design Pattern”. International Journal of Modern

Education and Computer Science, 9(5), pp.43-49.

[17] Suresh, S., Naidu, M., Kiran, S. A., and Tathawade, P. (2011). “Design pat-

tern recommendation system: a methodology, data model and algorithms”.

ICCTAI’2011.

[18] Bouassida, N., Jamoussi, S., Msaed, A., and Ben-Abdallah, H. (2015). “An

interactive design pattern selection method”. J. UCS, 21(13), pp.1746-1766.

[19] Issaoui, I., Bouassida, N., and Ben-Abdallah, H. (2015). “A new approach

for interactive design pattern recommendation”. Lecture Notes on Software

Engineering, 3(3), pp.173-178.

[20] Bouassida, N., Kouas, A., and Ben-Abdallah, H. (2011). “A design pattern

recommendation approach”. In 2011 IEEE 2nd International Conference on

Software Engineering and Service Science. pp. 590-593. IEEE.

[21] Birukou, A., Blanzieri, E., and Giorgini, P. (2006). “Choosing the right

design pattern: an implicit culture approach”. University of Trento.

[22] Petri, D. and Csertán, G. (2003). “Design pattern matching”. Periodica Poly-

technica Electrical Engineering, 47(3-4), pp.205-212.

[23] Sanyawong, N. and Nantajeewarawat, E. (2014). “Design pattern recommen-

dation based-on a pattern usage hierarchy”. In 2014 International Computer

Science and Engineering Conference (ICSEC). pp. 134-139 . IEEE.

[24] Smith, S. and Plante, D. (2012). “Dynamically recommending design pat-

terns”. In SEKE. pp. 499-504.

61

BIBLIOGRAPHY

[25] Salah, E. M., Zabata, M. T., and Sallabi, O. M. (2013). “Dps: Overview of

design pattern selection based on mas technology”. In Distributed Comput-

ing and Artificial Intelligence. pp. 243-250. Springer, Cham.

[26] Sourcemaking Design Patterns Website. URL:

https://sourcemaking.com/design-patterns, [24 May 2019].

[27] Refactoring.guru Design Patterns Website. URL:

https://refactoring.guru/design-patterns,[24 May 2019].

[28] Bartsch, M. and Harrison, R.(2007). “Design patterns with aspects: A case

study”. In EuroPLoP (pp. 797-810).

[29] Design Pattern Scenario Examples. URL:

https://dzone.com/refcardz/design-patternschapter=1,[24 May 2019].

[30] Facade Pattern Scenario Example. URL: http://techytuts.in/facade-

designpattern-with-real-world-example-booking-system/,[24 May 2019].

[31] Abstract Factory Pattern Scenario Example. URL:

https://airbrake.io/blog/design-patterns/abstract-factory,[24 May 2019].

[32] Design Pattern Scenario Examples. URL:

https://www.javagists.com/introduction-design-patterns,[24 May 2019].

[33] Design Pattern Scenario Examples. URL:

https://exceptionnotfound.net/tag/creational-patterns,[24 May 2019].

[34] Design Pattern Scenario Examples. URL:

https://www.binpress.com/factory-design-pattern/,[24 May 2019].

[35] Design Pattern Scenario Examples. URL:

https://stackify.com/designpatterns-explained-adapter-pattern-with-code-

examples/,[24 May 2019].

62

BIBLIOGRAPHY

[36] Factory Design Pattern Scenario Examples. URL:

https://howtodoinjava.com/design-patterns, [24 May 2019].

[37] Scikit - Learn Machine Learning in Python. URL:

https://scikitlearn.org/stable/, [24 May 2019].

[38] Sahly, E. M. and Sallabi, O. M. (2012). “Design pattern selection: A solution

strategy method”. In 2012 International Conference on Computer Systems

and Industrial Informatics (pp. 1-6). IEEE.

[39] Turkan, M. (2011). “Novel texture synthesis methods and their application

to image prediction and image inpainting”. PhD thesis, Université Rennes

1, 2011.

63

	Front Matter
	Abstract
	Öz
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures

	Introduction
	Literature Review
	Text Based Recommendation
	Case Based Recommendation
	Question Based Recommendation
	Combined Approaches
	Miscellaneous Approaches

	Methodology
	Text Based Recommendation
	Data Collection and Assembly
	Text Preprocessing
	Tokenization and Normalization
	Feature Extraction, Term Weighting and Vector Space Model
	n-gram Features
	TF-IDF
	Cosine Similarity

	Case Based Recommendation
	Question Based Recommendation
	Design Pattern Methodology Example

	Implementation and Results
	Conclusion
	Design Patterns Scenarios
	Recommendation Tool GUI

