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ABSTRACT

POPULATION DYNAMICS WITH ALLEE AND
REFUGE EFFECTS

BURÇİN KÜLAHÇIOĞLU

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Ünal Ufuktepe

January 2019

The Allee and the refuge effects are observable mechanisms in the nature.

Incorporating these effects into the population models allows more biological pro-

cesses to be taken into account and makes the model represent the nature better.

The main purpose of this thesis is to formulate more realistic population models

and to gather information about the future behavior of the populations by ana-

lyzing these models. In this thesis, we construct discrete-time population models

by incorporating the refuge and Allee effects to previously used host-parasitoid

and prey-predator models. We show the existence of positive fixed points and

study the stability properties. We analyze the global behavior for some of the

models. The numerical simulations and bifurcation diagrams verify the impact

of refuge and the Allee mechanism on the system.

Keywords: population models, discrete dynamical systems, allee effect, refuge

effect, stability analysis.
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ÖZ

ALLEE VE SIĞINMA ETKİLERİ ALTINDA
POPÜLASYON DİNAMİĞİ

BURÇİN KÜLAHÇIOĞLU

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. Ünal Ufuktepe

Ocak 2019

Allee ve sığınak etkileri doğada gözlemlenebilen mekanizmalardır. Bu etki-

lerin popülasyon modellerine dahil edilmesi, daha fazla biyolojik sürecin hesaba

katılmasına imkân verir ve modelin doğayı daha iyi temsil etmesini sağlar. Bu

tezin temel amacı daha gerçekçi popülasyon modelleri oluşturmak ve bu mod-

elleri analiz ederek popülasyonların gelecekteki davranışları hakkında bilgi edin-

mektir. Bu tezde, daha önceden çalışılmış konakçı-parazitoid ve av-avcı model-

lerine sığınak etkisi ve Allee etkisi eklenerek kesikli-zaman popülasyon modelleri

oluşturulmuştur. Pozitif sabit noktaların varlığı gösterilmiş ve kararlılık analiz-

leri yapılmıştır. Modellerin bazıları için global davranış incelenmiştir. Nümerik

simülasyonlar ve dallanma diyagramları, sığınak ve Allee mekanizmalarının sis-

tem üzerindeki etkisini doğrulamaktadır.

Anahtar Kelimeler : popülasyon modelleri, kesikli dinamik sistemler, allee etkisi,

sığınak etkisi, kararlılık analizi.
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encouragement. I also wish to thank Prof. Dr. Olcay Akman for his helpful

contributions. I would also like to extend my gratitude to Assoc. Prof. Dr.

Fatma Serap Topal for her helpful suggestions and comments.

I’m deeply indebted to our dean Prof. Dr. İsmihan Bayramoğlu for providing
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Chapter 1

Introduction

Discrete-time models are both more amenable to computerization and mathemat-

ically simpler. As a result, many researchers prefer to use discrete-time models in

their study areas. In this thesis, we use discrete-time population models in order

to gather information about the future behavior of the populations.

If there is co-evolution between two species, then two-dimensional models are

used to describe the population dynamics and the interaction. The most well-

known examples of two dimensional population models are prey-predator and

host-parasitoid interactions.

Predator-prey interactions are an important study areas for ecologists and

mathematicians. The dynamic interaction between these species is a dominant

theme because of its universal applicability and importance. Traditionally, most

common studies in this arena focus on the dynamics of the populations under

varying effects and parameters [1, 6, 20, 24, 26, 27, 37, 47]. Allee effects and

hiding behavior of prey represent an important portion of these studies. Numer-

ous researchers, including Hassell and May ([12, 15]), have studied the hiding

behavior of prey.
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CHAPTER 1. INTRODUCTION 2

Host-parasitoid interactions is another important area attracting researchers’

attention [5, 18, 22, 23, 34, 50]. Insect parasitoids are natural enemies of insects,

and used as biological control agents. They effect some insect groups including

Diptera (two-winged flies) and the Hymenoptera (bees, wasps, sawflies and ants)

[13]. Some pests that are resistant to chemicals can be destroyed by parasitoids.

This underlines the importance of studying host-parasitoid interaction, develop-

ing existing models, and investigating dynamic behaviors.

The first and the main aim of this thesis is to formulate “better” population

models. Here, “better” refers to “more realistic”. Technically, we add the Allee

and the refuge effects; biologically, we add the concepts “cooperation”, “cost of

rarity”, and “heterogeneity of the environment” to the existing models in order

to achieve this aim. In all chapters, we develop models under various Allee and

refuge settings. We refer to studies [6, 7, 37, 41] in order to incorporate these

effects in the systems we study.

The second aim is to find an answer to the question “How will the populations

behave in the long run?” . In order to achieve this goal, we analyze the dynam-

ical properties of the formulated systems. For all the models we construct, we

give the proof of existence of the positive fixed point under some conditions. We

study the stability of the system for both hyperbolic and non-hyperbolic cases.

We write some codes with Mathematica for the calculation of non-negative fixed

points under some conditions of parameters, for simulations of phase diagrams,

time series, and bifurcation diagrams in Numerical Simulations sections. We give

numerical simulations for verification and illustration of the result. In addition,

we study the global behavior of some of the models.

Finally, we aim to compare the models mathematically , and to highlight the

biological relevance of the results.
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We organize this thesis as follows:

In the next chapter, we give a short introduction to discrete dynamical systems

and stability analysis. In addition, we mention about the Allee and the refuge

effects, with reference to the literature.

In Chapter 3, we formulate and study a host-parasitoid model. In [22], the

following model is given and analyzed:

Ht+1 =
λHt

1 + kHte−bPt
e−bPt ,

Pt+1 = βHt(1− e−bPt),
(1.1)

where Ht and Pt are the population sizes of host and parasitoid, respectively at

time t. All parameters are positive. First we add a constant proportion refuge

effect to the model, and study the resulting model. We then add both refuge

effect and a mate limitation Allee effect on the host population, and compare the

models.

In Chapter 4, we add predator saturation on prey and mate limitation on predator

into the system given by [37]:

Nt+1 = Nt + rNt(1−Nt)− (1− d)aNtPt,

Pt+1 = Pt + aPt((1− d)Nt − Pt),
(1.2)

where the parameters are positive. In this model, Nt and Pt are the population

sizes of prey and predator, respectively at time t. We study the resulting model.

In Chapter 5, we construct and study discrete-time Holling Type 2 models with

the refuge and Allee effects, respectively. The prey-predator model given by [1]

is as follows:

xn+1 = axn(1− xn)− bxnyn
1 + εxn

,

yn+1 =
dxnyn

1 + εxn
,

(1.3)
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where xt and yt are the population sizes of prey and predator, respectively at

time t. All parameters are positive. We add a constant number of refuge, and

mate limitation Allee effects.

In Chapter 6, we draw conclusion.



Chapter 2

Preliminaries

Discrete time models investigate the dynamic behavior of the system by doing

iterations. When the current situation of the system is known, one-step iterated

value gives the value of the following period. These models consist of difference

equations generated by the maps. The problem is that difference equations are

unsolvable except linear case and some special cases. Thus, in order to discover

the long-run behavior of the system, instead of solving it, some different ap-

proaches may be used, such as finding fixed points and making stability analysis

of them.

In this chapter, firstly, we give some concepts, definitions and theorems which

are essential in the analysis of discrete time systems. We refer to the book [10] for

this part. Then we present some population models, and explain the derivation

of models with Allee and the refuge effects. We refer various studies for this part

most of which are based on the studies [2, 3, 7, 15].

5
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2.1 One Dimensional Models

Let f : R→ R be a map where R is the set of real numbers. If we take an initial

point x0∈ R, and iterate this point with respect to the map f , then the set of

values found by iterations give the orbit O(x0) of the point x0. That is

O(x0) = {x0, f(x0), f 2(x0), f 3(x0), ...},

where fn = fofofo...f︸ ︷︷ ︸
n times

. If we let xn=fn(x0), then we obtain the first-order

difference equation

xn+1 = f(xn). (2.1)

Definition (Fixed Point). Consider the first order difference equation (2.1). A

point x∗ is said to be a fixed point of the map f if f(x∗) = x∗.

2.1.1 One Dimensional Stability Analysis

Definition. [10] Let f : I→ I be a map and x∗ be a fixed point of f , where I is

an interval in the set of real numbers R. Then x∗ is said to be

• stable if for any ε > 0, there exists δ > 0 such that for all x0 ε I with

|x0-x∗| < δ we have |fn(x0)-x∗| < ε for all n ε Z+.

• attracting if there exists η > 0, such that |x0 − x∗| < η implies

limn→∞ f
n(x0) = x∗; globally attracting if η =∞.

• asymptotically stable if it is both stable and attracting, it is globally asymp-

totically stable if it is both stable and globally attracting.

Theorem 2.1 [10] Let f be a map which is continuously differentiable at x∗. And

let x∗ be a hyperbolic fixed point of the map f that is |f ′(x∗)| 6=1. Then

(i) If |f ′(x∗)| < 1, then x∗ is asymptotically stable.
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(ii) If |f ′(x∗)| > 1, then x∗ is unstable.

Theorem 2.2 [10] Let x∗ be a fixed point of the map f such that f ′(x), f ′′(x),

and f ′′′(x) are continuous at x∗. There are two types of non-hyperbolic fixed

points:

(I) f ′(x∗) = 1

(i) If f ′′(x∗) 6= 0 then x∗ is unstable (semistable).

(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.

(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

(II) f ′(x∗) = −1

(i) If Sf(x∗) < 0, then x∗ is asymptotically stable,

(ii) If Sf(x∗) > 0, then x∗ is unstable, where Sf(x) is Schwarzian derivative of

f such that:

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

.

2.1.2 One Dimensional Bifurcation

Parameters are used in modelling to represent growth rate, capacity constraint,

interaction strength etc. Bifurcation refers to the change of dynamic structure of

the system as the parameter changes. This requires finding values of parameters

at which the behavior is changing, and also the interval of parameters for which

the system exhibits the same behavior.

Remark. [10]: Let Hµ(x) = H(µ, x) is a C2 one-parameter family of one-

dimensional maps (i.e both ∂2H
∂x2

and ∂2H
∂µ2

exist and are continuous), and x∗ is

a fixed point of Hµ∗ , with H ′µ∗(x∗) = 1.
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• Transcritical bifurcation appears if

∂H

∂x
(µ∗, x∗) = 1,

∂H

∂µ
(µ∗, x∗) = 0, and

∂2H

∂x2
(µ∗, x∗) 6= 0.

• Pitchfork bifurcation appears if

∂H

∂x
(µ∗, x∗) = 1,

∂H

∂µ
(µ∗, x∗) = 0, and

∂2H

∂x2
(µ∗, x∗) = 0.

Theorem 2.3 [Period-doubling Bifurcation] : Suppose that

1. Hµ(x∗) = x for all µ in an interval around µ∗

2. H ′µ(x∗) = −1

3. ∂2H
∂µ∂x

(µ∗, x∗) 6= 0

Then there is an interval I about x∗ and a function p : I → R such that Hp(x)(x) 6=
x but H2

p(x)(x) = x.

2.2 Two Dimensional Models

Two dimensional discrete time linear systems have the form

Xn+1 = AXn, (2.2)

where A=

(
a1 a2

a3 a4

)
and Xn =

(
xn

yn

)
.

The only fixed point of (2.2) is X∗ =

(
0

0

)
.
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2.2.1 Two Dimensional Stability Analysis

Theorem 2.4 (The Trace-Determinant Plane)[10]: Let A = (aij) be a 2 × 2

matrix. The spectral radius ρ(A) < 1 if and only if

|trA| − 1 < detA < 1

Corollary 2.5 : The origin in (2.2) is asymptotically stable if and only if

|trA| − 1 < detA < 1

Linear models are generally unrealistic for real world applications, as inter-

actions do not allow the system to be linear. Ignoring these relations makes the

model simpler, but less reliable. Hence, for a dynamical system, being linear with

no interactions is a strong condition, and generally does not hold.

For the stability analysis of non-linear models, linearization methods should

be used. It is common to use the eigenvalues of the Jacobian matrix evaluated

at the fixed point to determine the nature of that fixed point. Here, Jacobian

matrix can be thought as coefficient matrix in linear case. This linearization can

be done for the neighborhood of a point.

Theorem 2.6 (Stability via Linearization)[10]: Let f : G ⊂ R2 → R2 be a C1

map, where G is an open subset of R2, X∗ is a fixed point of f, and A is the

Jacobian matrix such that A = Df(X∗). Then the following statements hold

true:

(i) If ρ(A) < 1, then X∗ is asymptotically stable.

(ii) If ρ(A) > 1, then X∗ is unstable.

(iii) If ρ(A) = 1, then X∗ may or may not be stable.

By using Theorem 2.6 and Corollary 2.5, we can determine if X∗ is stable

or unstable. In addition, the stability type of it can be analyzed according to
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eigenvalues after linearization. Let A be the Jacobian matrix such that A =

Df(X∗), and λ1 and λ2 are corresponding eigenvalues. The followings hold true

for X∗:

X∗ is



saddle, if 0 < λ1 < 1 < λ2

oscillatory saddle, if − 1 < λ1 < 0, λ2 < −1

sink, if 0 < λ2 < λ1 < 1

oscillatory sink, if 0 < λ1 < 1, −1 < λ2 < 0

source, if λ2 > λ1 > 1

oscillatory source, if λ1 > 1, λ2 < −1

spiral sink, if λ = a± ib, |λ| < 1, b 6= 0

spiral source, if λ = a± ib, |λ| > 1, b 6= 0

center, if λ = a± ib, |λ| = 1, b 6= 0.

2.2.2 Center Manifolds

Stability of the fixed points of a map can be analyzed according to eigenvalues

after linearization. In some cases, the orbits around the fixed point can be re-

strained by neither the attraction of the stable manifold nor the repulsion of the

unstable manifold. These kinds of orbits refer to the center manifold of a fixed

point.

The following theorem has analogues for stable and unstable manifolds, but

we focus on the center manifold.

Theorem 2.7 [25, 29, 33] Consider a map F : Rk → Rk such that F ∈ C2 and

F (0) = 0. Let DF0 be the linear part of the map, and the center subspace Ec

is the space spanned by the eigenvectors of DF0 corresponding to the eigenvalues

satisfying |λ|=1. Then there exist center manifold Mc tangent to Ec and it is

invariant.
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The theorem is applicable for more dimensions, but we only consider it for

the two-dimensional case. If |λi| 6= 1 i = 1, 2, then it is simple. But the non-

hyperbolic case with |λ1| = 1 and |λ2| < 1 is a more complicated case, because it

can be either stable or unstable. If a non-hyperbolic map is defined on R2, then

the dynamics may be analyzed by studying the dynamics on an associated one-

dimensional center manifold Mc.. We focus on the extinction fixed point (0, 0)

to use the theorem. Then the two-dimensional discrete system can be written as

follows:
xn+1 = Axn + f(xn, yn)

yn+1 = Byn + g(xn, yn),
(2.3)

or
x −→ Ax+ f(x, y)

y −→ By + g(x, y),
(2.4)

where A lies on the unit circle, B lies in the unit circle, and the functions f and

g satisfies the following conditions:

f(0, 0) = 0, g(0, 0) = 0

Df(0, 0) = 0, Dg(0, 0) = 0.
(2.5)

Theorem 2.8 [10] There is a Cr center manifold for the system (2.4) that can

be represented locally as

Mc = {(x, y) ∈ R × R : y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0, for sufficiently

small δ}.
Furthermore, the dynamics restricted to Mc are given locally by the map

x −→ Ax+ f(x, h(x)), x ∈ R. (2.6)

Theorem 2.9 [10] If the fixed point 0 of the equation (2.6) is stable, asymp-

totically stable, or unstable then the fixed point (0, 0) of the system (2.4) is also

stable, asymptotically stable, or unstable, respectively.

By substituting yn = h(xn) into the second equation of the system (2.3), we
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obtain

yn+1 = h(xn+1) = h(Axn + f(xn, h(xn)) = Bh(xn) + g(xn, h(xn))

Finally, we obtain the following functional equation:

h[Ax+ f(x, h(x))]−Bh(x)− g(x, h(x)) = 0

Center Manifold Theorem is applicable for only the fixed point (0, 0). Hence the

other fixed points must be transformed (0, 0) to use this theorem.

2.2.3 Two Dimensional Bifurcation

If the Jacobian matrix of a two-dimensional system has an eigenvalue 1 or −1 at

the point (0, 0), Center Manifold Theorem may be used to find one dimensional

map fµ(u) defined on the center manifold Mc. Bifurcation types can be deter-

mined just as in one-dimensional case. If the system has Jacobian matrix has

eigenvalues λ1,2 with |λ| = 1 , then we have Neimark-Sacker bifurcation, which

can not be observed in one-dimensional case.

2.3 Some Population Models

For discrete time one dimensional population modelling, there are two types: lin-

ear and non-linear. First is linear model in which growth rate can be about birth,

death, immigration, emigration rate, and is independent from density. These

models are in the form: xn+1=rxn, where r is growth rate and it is constant. The

second is non-linear model, in which growth depends on density. A population

model is said to be density-dependent if the per-capita growth rate of the popu-

lation changes according to the density. The general form is xn+1=f(xn)xn. The

classical approach suggests that f , namely fitness function (per-capita growth

rate), should be chosen as a decreasing function because of intraspecific compe-

tition and capacity constraint [28].
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Two-dimensional models represent the interaction between two species. De-

pending on the model chosen, the interaction can be mutualistic, commensalistic,

prey-predator, competitive, etc. An absolute isolation is almost impossible for

any organism, and interactions are essential for survival. In nature, every sin-

gle organism may be affected by others in some way. However, if the interaction

between two species has a great importance for both population, then two dimen-

sional systems may be used to model the population dynamics. Other factors,

which affect the growth of the population, are covered by the growth parameter

in these models.

Almost all organisms in nature live as preys, predators, parasites or para-

sitoids in some way. Generally, host-parasitoid models are thought as a special

case of prey-predator interaction. However, unlike the parasites and parasitoids,

predators are generally bigger than their prey. Parasites harm to their hosts but

generally do not kill unlike parasitoids. So, technically the biologists use these

three words in specific ways.

The co-evolution of prey-predator and host-parasite are similar with one im-

portant difference- the host should not be killed. Similar to prey-predator in-

teraction, the host is eventually killed by parasitoid. However, the evolutionary

strategy of the parasitoid is different from that of a parasite or predator. The

parasitized host can no longer be considered as a member of the host species, but

must be viewed as a container for the parasitoid [48].

2.3.1 Derivation of Models with Allee Effect

The Allee Effect is a biological concept characterized by positive causal rela-

tionship between the number of individuals in a population and their overall

individual fitness [3]. Here just a simple idea works: “The more the merrier”
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[7]. The classical approach focuses on the intra specific competition. Because of

limited capacity and resources, if the population is small, then each individual

can access a greater amount of resources. However, the classical idea lacks the

terms “cooperation” and “the cost of rarity”.

If the population is too small, then foraging, hunting, finding mates for repro-

duction, or protection becomes more difficult for individuals. These difficulties

are caused by lack of cooperation, and can be thought as the cost of rarity [40].

As a result, when the population is small, a positive relationship between the

population size and the growth should be expected. On the other hand, at high

densities, competition is more dominant than cooperation, so the Allee effect

begins to lose its impact. As a result, the relationship reverses itself at high

densities. Considering the Allee effect is important in understanding why some

populations get smaller and even face extinction.

Allee Effect was identified by Warder Clyde Allee, who is best known for his

research on animal behavior and proto-cooperation. As a zoologist he generally

gave examples of Allee effect on animals, not on plants. In the early studies, Allee

effect could be observed in experiments, but no mechanism could be proposed.

For example, during efforts to combat with the tsetse flies, it was observed that

below a minimum density, they disappeared suddenly and spontaneously. A lab-

oratory experiment showed that higher densities of fertilized urchin and frog eggs

led to these species accelerated development. Group rotifers were observed to be

more resistant to chemical toxins than individuals [7].

The Allee effect can be categorized in two main types: strong and weak. If

there exist a critical size or density below which the population becomes extinct,

then the population has a strong Allee effect; If there is no critical density, but

the population growth rate rises with increasing densities, then it has a weak

Allee effect [30, 43].

In [31] the following mathematical definition is given and used:
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Definition (Strong Allee Effect). Model xn+1=g(xn)xn is said to have a strong

Allee effect if the following conditions hold true.

(i) g′(x) > 0 for x ∈ (0, ε) for some ε > 0

(ii) g(0) < 1

(iii) There exists a unique k > 0 such that g(k) = 1 and g′(k) < 0

Allee Effect changes the fitness function of the model. If f(x) is the fit-

ness function of the model without Allee effect, then the new fitness is g(x) =

A(x)f(x), where A(x) is the Allee effect function representing the positive density

factor. If there is no Allee effect, then A(x) = 1 and the fitness will be equal to

the negative density factor f(x).

Although there are many mechanisms of the Allee effect, they can be cate-

gorised into two main types:

(i) mechanisms related to survival

(ii) mechanisms related to reproduction

Allee effect caused by predator saturation is a mechanism related to survival

whereas Allee effect caused by mate limitation is a mechanism related to repro-

duction. Many authors focused on these two mechanisms [8, 37, 41].

Predator saturation causes an increase in individual prey vulnerability, as

prey population gets sparser. This mechanism is observed in many species,

including colonial seabirds, synchronously emerging insects, island fox, and

American toad [7]. For the Allee effect due to predator saturation, generally

A(x) = exp(−m/(1 + sx)), where m represents predation intensity and s is the

proportional to the handling time, is used [41]. Here, handling time can be con-

sidered as a function of the time spent in pursuing, hunting, eating, and digesting



CHAPTER 2. PRELIMINARIES 16

prey. On the other hand, the predation intensity β depends on the distance be-

tween species, their speeds, and the proportion of successful attacks [14].

Mate limitation is probably the most observable mechanism of the Allee effect.

Cod, gypsy moth, alpine marmot, Glanville fritillary butterfly are some species

facing mate limitation effect [7]. The formula A(x) = x/(m + x) is used for the

probability of finding a mate, where 1/m is an individual’s searching efficiency.

In [45], more information about the model derivation can be found.

“Allee principle” was introduced in the 1950s, but there were few studies

about this effect until 90s. Between these years, the field of ecology was heavily

focused on the role of competition (the classical approach). However, when the

bio-diversity crisis emerged, it became important to focus on the causes. As a

result, the Allee effect became a popular area. Depending on the models used,

the Allee effect may have a stabilizing [40] or destabilizing influence [49] on the

models.

2.3.2 Derivation of Models with Refuge Effect

Although Refuge Effect is not used as frequently as Allee Effect in recent stud-

ies, it is important for developing the models. There is no complex mechanism

for it, it simply assumes that some prey may be completely free from predation

within a temporal or spatial refuge. Refuge effect depends on the heterogeneity

of the environment. Researchers recognize that the physical setting is never per-

fectly uniform, so part of the host population may be less exposed, and thus less

vulnerable to attack. It has become common to refer to patchy environments,

which are spatially as well as temporally heterogeneous. Part of the argument is

that refuges serve as sites for maintaining vulnerable species that might otherwise

become extinct. Such sites also indirectly benefit the exploiting species, since a
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constant spillover of victims into the unprotected areas guarantees a constant

food source [9].

The prey refuge effect is a mechanism caused by heterogeneity in the environ-

ment. It refers to the fact that some of the prey can be sheltered from danger

or can be inaccessible to predators. The refuge effect has been studied widely by

Jana [21], McNair [35]. This effect contributes positive feedback to the growth of

prey while having a negative impact on predators. The studies indicate that the

effect of refuge used by prey has a substantial effect on the coexistence of prey

and predator, in that it increases the equilibrium density of prey population, and

stabilizes the positive fixed point of the system.

Some studies on the prey refuge effect show that this effect either decreases

with increasing prey density, or increases with both predator and prey density,

and the addition of prey refuge substantially reduces the risk of prey extinction

[32, 44]. However, it also plays a destabilizing role under a very restricted set of

conditions [32].

The refuge effect is commonly considered to act on a fixed proportion or fixed

number of the prey population [16, 20, 24, 35, 39, 42].



Chapter 3

A Host-Parasitoid Model

In this chapter, firstly, we give the model construction. Then we develop new

models by incorporating the refuge effect and the Allee effect. We investigate the

resulting models.

3.1 Model Construction

The general framework for discrete-type host-parasitoid model is as follows:

Ht+1 = rHtf(Ht, Pt),

Pt+1 = βHt (1− f(Ht, Pt)) ,
(3.1)

where Ht and Pt are population sizes of host and parasitoids, respectively in the

generation t. In the host population, r is reproduction rate of hosts, and the

function f(Ht, Pt) is the fraction of host escaping parasitism. In the parasitoid

equation, β is the average number of eggs (larvae) released by parasitoid on a

single host. Model (3.1) remains the basis for most recent studies.

Nicholson-Bailey Model is one of classical models, used in many texts. This

18
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model adds further assumptions to the general model. The total number of en-

counters with hosts by parasitoids is in direct proportion to host density and

the encounter number is distributed randomly among the available hosts. Using

Poisson distribution, the following system is found:

Ht+1 = rHte
−aPt

Pt+1 = βHt

(
1− e−aPt

) (3.2)

where e−aPt stands for probability of not to be infested by parasitoid and 1−e−aPt

is the probability of being infested by parasitoid at time t. Equation (3.2) is

known as Nicholsan-Bailey host-parasitoid model which is commonly used in

ecology. The first studies depend on this model [36]. The other host-parasitoid

models are thought to be developed versions of Nicholsan-Bailey, which although

not realistic itself enough, is a good base for the developments.

If the reproduction of host is constant, then the model is unrealistic due to the

fact that, in the absence of the parasitoid, the host grows exponentially with no

limit. In order to make the model realistic, a density dependent model may be

used. Unlike the predator in the general prey-predator models, the parasitoid in

the host-parasitoid models has a production rate closely defined by interactions

between host and parasitoid. Hence, generally it is sufficient to use a density

dependent population model for the host, which is also thought to stabilize the

system [4].

In 1980, Wang [50] asked a key question: ’Does the ordering of parasitism and

density dependence in the host life cycle have a significant effect on the dynamics

of the model?’ May et al. addressed this question by giving some different models

in [34]. They proposed 3 different model types [34]:

• Model 1: In the following type of models, parasitism acts first, and then

the density dependence takes place at a level determined by the density of
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parasitized and unparasitized hosts (i.e. g(Ht)):

Ht+1 = λHtg(Ht)f(Pt),

Pt+1 = Ht (1− f(Pt)) .
(3.3)

• Model 2: Density dependence acts first followed by parasitism in the fol-

lowing type:

Ht+1 = λHtg(Ht)f(Pt),

Pt+1 = Htg(Ht) (1− f(Pt)) .
(3.4)

• Model 3: Parasitism acts first and then the density dependence takes places

but now only on the survivors from parasitism (i.e. Htf(Pt)) and the model

type is:

Ht+1 = Htg(Ht, f(Pt))f(Pt),

Pt+1 = Ht (1− f(Pt)) .
(3.5)

In [34], it is concluded that the sequence of host parasitoid interaction and den-

sity dependence has a marked effect on the population dynamics by examining

three different host-parasitoid models. Of the three models discussed, the most

frequent choice will be between Models 2 and 3.

After three frameworks for host-parasitoid interaction was proposed in [34], some

different models have been created accordingly. In model (3.5), if we substi-

tute f(Pt) = exp(−bPt) and g(Ht, f(Pt)) = λ/(1 + kHtexp(−bPt)), and add β

multiplier to the second equation, the resulting model is as follows:

Ht+1 =
λHt

1 + kHte−bPt
e−bPt ,

Pt+1 = βHt(1− e−bPt).
(3.6)

In [22], the model (3.6) was formulated and studied. In (3.6), the host pop-

ulation in the absence of the parasitoid is modeled by Beverton-Holt equation

λH/(1 + kH), which is obtained if a decreasing rational function is used as fit-

ness (density function). The parameter β denotes average number of egg (larvae)
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released by parasitoid on a single host. All parameters are positive. In [28], the

Allee and the refuge effects are added to the model (3.6), separately.

The system of equations (3.6) has four parameters, namely, λ, b, k and β. Due

to the abundance of the parameters, the results seem to be complicated. Model

(3.6) can be simplified by substituting Nt = βHt and yt = bPt.

Nt+1 =
λNt

1 + k
β
Nte−yt

e−yt ,

yt+1 = bNt (1− e−yt) .

(3.7)

Let xt = bNt and c = k/(βb), then the model (3.7) can be written as follows:

xt+1 =
λxte

−yt

1 + cxte−yt
,

yt+1 = xt (1− e−yt) ,
(3.8)

where xt and yt denotes the population sizes of host and parasitoid, respectively

at time t.

3.2 The Model with the Refuge Effect on Host

We incorporate a constant proportion refuge effect to the model (3.8), and obtain

xt+1 =
(1−Ψ)λxt

1 + cxt
+

Ψλxte
−yt

1 + cxte−yt
,

yt+1 = Ψxt (1− e−yt) ,
(3.9)

where Ψ is the proportion of host available to parasitoid, (1 − Ψ) is proportion

of protective refuge, and 0 < Ψ ≤ 1. If Ψ = 1, we obtain the model (3.8). In this

section, we present the existence and the stability of the positive fixed points of

the model (3.9), respectively.

To determine the fixed points, we need to solve the non-linear system given
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by:

x =
(1−Ψ)λx

1 + cx
+

Ψλxe−y

1 + cxe−y
,

y = Ψx (1− e−y) .
(3.10)

By computation of above system

(i) The extinction fixed point E0 = (0, 0) exists for all values of parameters.

(ii) The axial fixed point is E1 = (λ−1
c
, 0) when the absence of the parasitoid

for λ > 1.

(iii) The positive fixed point is E2 = (x∗, y∗), where x∗ = y∗

Ψ(1−e−y∗ )
by the second

equation of (3.10). In order to show the existence of the positive fixed point, we

substitute x = y/(Ψ(1− e−y)) into the first equation of (3.10), and obtain

1

λ
=

(1−Ψ)Ψ(ey − 1)

ey(Ψ + cy)−Ψ
+

Ψ2e−y(ey − 1)

Ψ(ey − 1) + cy
. (3.11)

If (3.11) is hold, then the positive fixed point exists. Let

F =
(1−Ψ)Ψ(ey − 1)

ey(Ψ + cy)−Ψ
and G =

Ψ2e−y(ey − 1)

Ψ(ey − 1) + cy
.

We investigate the properties of these functions.

F ′(y) = −cΨ(1−Ψ)ey(ey − y − 1)

(Ψ− ey(Ψ + cy))2
< 0, (3.12)

and

G′(y) = −Ψ2ey (Ψ(ey − 1)2 + c(ey − y − 1))

(Ψ(ey − 1) + cy)2
< 0, (3.13)

which implies that F and G are both decreasing functions of y.
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In addition, we have

lim
y→0

F (y) =
(1−Ψ)Ψ

c+ Ψ
and lim

y→0
G(y) =

Ψ2

c+ Ψ
. (3.14)

As a result, if H(y) = F (y) +G(y), then H(y) is decreasing function with

lim
y→0

H(y) =
(1−Ψ)Ψ

c+ Ψ
+

Ψ2

c+ Ψ
=

Ψ

c+ Ψ
. (3.15)

The positive fixed point exists if λ = 1/H(y), H(y) 6= 0. 1/H(y) is increasing

function, and

lim
y→0

1

H(y)
= 1 +

c

Ψ
. (3.16)

Consequently, the positive fixed points exists if λ > 1 + (c/Ψ). Since a constant

function (1/λ) and a decreasing function H(y) can intersect at most once, the

positive fixed point is unique (See Figure 3.1).

3.2.1 Local Asymptotic Stability of the Fixed Points of

the Model (3.9)

The Jacobian matrix of system (3.9) is


λ

(
1

(1 + cx)2
− Ψ

(1 + cx)2
+

Ψey

(ey + cx)2

)
− λΨeyx

(ey + cx)2

Ψ (1− e−y) Ψe−yx


(i)By substituting E0 into the Jacobian matrix, we obtain

J(E0) =

(
λ 0

0 0

)
.
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(a) The case λ < 1 + c
Ψ for λ = 2, c = 1 and Ψ = 0.5
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(b) The case λ > 1+ c
Ψ for λ = 4, c = 1 and Ψ = 0.5

Figure 3.1: The positive fixed point of the model (3.9) exists if the two functions
intersect. (a) If λ < 1 + c

Ψ
, there is no intersection (no positive fixed point). (b)

If λ > 1 + c
Ψ

, they intersect once (unique positive fixed point).

E0 is stable if λ < 1 and saddle if λ > 1.

(ii) The Jacobian matrix for E1 is

J(E1) =


1

λ

Ψ(1− λ)

λc

0
Ψ(λ− 1)

c

 .

The eigenvalues of J(E1) are λ1 = 1
λ

and λ2 = Ψ(λ−1)
c

. Then E1 is stable if

1 < λ < 1 + c
Ψ

.

If λ = 1 or λ = 1 + c
Ψ

, then E1 is non-hyperbolic. The system goes through
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transcritical bifurcations for these values of λ. The fixed points are semistable in

both cases by Center Manifold Theorem.

Under the condition λ = 1, the fixed points are E0 = E1 = (0, 0). The cor-

responding Jacobian matrix is as follows:

Jλ=1(0, 0) =

(
1 0

0 0

)
.

The eigenvalues are λ1 = 1 and λ2 = 0. This is the non-hyperbolic case. Then

we use the Center Manifold Theorem. Now we write the system as follows:

xn+1 = Axn + f(xn, yn)

yn+1 = Byn + g(xn, yn),
(3.17)

where,

A = 1,

B = 0,

f(x, y) =
(1−Ψ)

1 + cx
+

Ψλxe−y

1 + cxe−y
− x, and

g(x, y) = Ψx
(
1− e−y

)
.

By taking the derivatives we obtain

fx =
1−Ψ

cx+ 1
− cx(1−Ψ)

(cx+ 1)2
+

Ψe−y

cxe−y + 1
− cxΨe−2y

(cxe−y + 1)2 − 1,

fy =
cx2Ψe−2y

(cxe−y + 1)2 −
xΨe−y

cxe−y + 1
,

and

gx = Ψ
(
1− e−y

)
,

gy = Ψxe−y.
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As a result f(0, 0) = 0, g(0, 0) = 0, Df(0, 0) = 0, and Dg(0, 0) = 0.

Since the eigenvectors are unit vectors, h function can be in the form

h(x) = c1x
2 + c2x

3 +O(x4).

The following functional equation must be solved in order to find c1 and c2:

h(Ax+ f(x, h(x)))−Bh(x)− g(x, h(x)) = 0

We use the power series expansion for the exponential function around x = 0 to

solve this functional equation. We get

f(x, y) ≈ (1−Ψ)λx

1 + cx
+

Ψλx(1− y + y2

2
)

1 + cx(1− y + y2

2
)
− x,

g(x, y) ≈ Ψx
(

1− (1− y + y2

2
)
)
.

.

The solution of the functional equation is c1 = 0 and c2 = 0. By using the first

equation of (3.17), now we are interested in the new one-dimensional equation :

P (x) = x− cx2 + c2x3 − c3x4 +O(x5)

P ′(0) = 1 and P ′′(0) = −2c 6= 0. Hence by Theorem 2.2, we can say that E0 is

semistable in case λ = 1.

(iii) The positive fixed point E2 cannot be found explicitly. However, if we

assign z = e−y
∗
, E2 = (x∗, y∗) = (

A+
√
A2+4c2z(−1+λ−λΨ+λΨz)

2c2z
,− log z) where

A = λcz − cz − c. By substituting these values into J we obtain matrix

J∗ = J(x∗, y∗). If |trJ∗| − 1 < det J∗ < 1, then E2 is stable. We try to an-

alyze the stability of E2 deeper in the Numerical Simulations section.
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3.3 The Model with Host-Refuge and Allee Ef-

fect

If we add the mate limitation Allee effect to the model (3.9), we obtain

xt+1 =
(1−Ψ)λxt

1 + cxt

xt
s+ xt

+
Ψλxte

−yt

1 + cxte−yt
xt

s+ xt
,

yt+1 = Ψxt (1− e−yt) ,

(3.18)

where s > 0 is the Allee effect constant.

The solutions of the following system of equations are the fixed points.

x =
(1−Ψ)λx

1 + cx

x

s+ x
+

Ψλxe−y

1 + cxe−y
x

s+ x
,

y = Ψx (1− e−y) .

(3.19)

(i) F0 = (0, 0) is extinction fixed point for all values of parameters.

(ii) F1 = (A+
√
A2−4cs
2c

, 0) and F2 = (A−
√
A2−4cs
2c

, 0) are axial fixed points where

A = λ− cs− 1 for (1 +
√
cs)

2 ≤ λ.

(iii) F3 = (x∗, y∗) is the positive fixed point, where x∗ = y∗

Ψ(1−e−y∗ )
by the second

equation of (3.19). First we show the existence of the positive fixed point. If we

substitute x = y/(Ψ(1− e−y)) in the first equation of (3.19), we obtain

1

λ
= f(y) + g(y), (3.20)

where

f(y) =
(1−Ψ)Ψey (ey − 1) y

(Ψ (ey − 1) s+ eyy) (ey(Ψ + cy)−Ψ)
, (3.21)

and

g(y) =
Ψ2 (ey − 1) y

(Ψ (ey − 1) + cy) (Ψ (ey − 1) s+ eyy)
. (3.22)
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Since

g′(y) = − Ψ2eyy (ey − y − 1)

(Ψ (ey − 1) + cy) (Ψ (ey − 1) s+ eyy)2−

Ψ3 (ey − 1) (1 + ey(y − 1))

(Ψ (ey − 1) + cy)2 (Ψ (ey − 1) s+ eyy)
< 0, (3.23)

the function g(y) is a decreasing function of y.

And we have

lim
y→0

g(y) =
Ψ2

(c+ Ψ)(1 + Ψs)
(3.24)

Now, we continue with the graphical properties of f(y).

f ′(y) =
(1−Ψ)Ψey (ey − y − 1)

(
Ψ2 (ey − 1)2 s− ce2yy2

)
(Ψ (ey − 1) s+ eyy)2 (Ψ− ey(Ψ + cy))2 . (3.25)

If s < c
Ψ2 , then f ′(y) < 0, which means f(y) is decreasing function. And also

lim
y→0

f(y) =
(1−Ψ)Ψ

(c+ Ψ)(1 + Ψs)
. (3.26)

Let h(y) = f(y) + g(y), h(y) is a decreasing function of y if s < c
Ψ2 . And

lim
y→0

h(y) =
(1−Ψ)Ψ

(c+ Ψ)(1 + Ψs)
+

Ψ2

(c+ Ψ)(1 + Ψs)
=

Ψ

(c+ Ψ)(1 + Ψs)
(3.27)

The positive fixed point exists if λ = 1
h(y)

where h(y) 6= 0. 1
h(y)

is an increasing

function of y and

lim
y→0

1

h(y)
=

(c+ Ψ)(1 + Ψs)

Ψ
. (3.28)

As a result the positive fixed point exists and it is unique if s < c
Ψ2 and λ >

(c+Ψ)(1+Ψs)
Ψ

(See Figure 3.2).

Otherwise, neither the existence nor the uniqueness is guaranteed (See Figure

3.3).
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Figure 3.2: The positive fixed point of the model (3.18) exists if the two functions

intersect. If s < c
Ψ2 and λ > (c+Ψ)(1+Ψs)

Ψ
, they intersect once (unique positive fixed

point). The figure depicts this case for λ = 10, c = 1, s = 3, and Ψ = 0.5.

3.3.1 Local Asymptotic Stability of the Fixed Points of

the Model (3.18)

The corresponding Jacobian matrix is as follows:

JA=


λx((ey+cx)2(x+s(2+cx))−Ψ(−1+ey)(ey(2s+x+csx)+cx(s−cx2)))

(s+x)2(1+cx)2(ey+cx)2
− λΨeyx2

(s+x)(ey+cx)2

Ψ (1− e−y) Ψe−yx

.

(i) JA(F0) is 0 matrix, so F0 is stable for all parameter values by Trace-

determinant Theorem.

(ii) The Jacobian matrix evaluated at F1 is

JA(F1) =


1−

√
A2−4cs
λ

Ψ(1−λ−cs−
√
A2−4cs)

2λc

0
Ψ(A+

√
A2−4cs)

2c

.

We have λ1 = 1 −
√
A2−4cs
λ

and λ2 =
Ψ(A+

√
A2−4cs)

2c
. Hence, |λ1,2| < 1 if

s < c
Ψ2 and (1 +

√
cs)

2
< λ < (c+Ψ)(1+Ψs)

Ψ
.

(iii) The Jacobian matrix at F2 is
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(a) The case s > c
Ψ2 for λ = 3.8, c = 0.01, s = 5,

and Ψ = 0.5
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(b) The case λ < (c+Ψ)(1+Ψs)
Ψ for λ = 2, c = 1, s = 3,

and Ψ = 0.5

Figure 3.3: The positive fixed point of the model (3.18) exists if the two func-
tions intersect. (a)Multiple intersections, multiple positive fixed points (b)No
intersection, no positive fixed point

JA(F2) =


1 +

√
A2−4cs
λ

Ψ(1−λ−cs+
√
A2−4cs)

2λc

0
Ψ(A−

√
A2−4cs)

2c

.

We have λ1 = 1 +
√
A2−4cs
λ

and λ2 =
Ψ(A−

√
A2−4cs)

2c
. Since λ1 > 1, F2 is

unstable.

3.4 Global Behaviors

Theorem 3.1 For the model (3.9)
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(i) E0 = (0, 0) is globally asymptotically stable if λ < 1

(ii) E1 =
(
λ−1
c
, 0
)

is globally asymptotically stable if 1 < λ < 1 + c
Ψ

.

Proof.

(i) We have

xt+1 =
(1−Ψ)λxt

1 + cxt
+

Ψλxte
−yt

1 + cxte−yt
=

(1−Ψ)λxt
1 + cxt

+
Ψλxt

eyt + cxt

≤ (1−Ψ)λxt
1 + cxt

+
Ψλxt

1 + cxt
=

λxt
1 + cxt

< λxt.

Hence, if λ < 1,

lim
t→∞

xt = 0.

Since yt+1 = Ψxt (1− e−yt) ,

lim
t→∞

yt = 0,

which means that (0, 0) is globally attracting. Thus, E0 is globally asymptotically

stable if λ < 1.

(ii) Let u = x− (λ− 1)/c and v = y. By rewriting the model (3.9)

ut+1 =
(1−Ψ)λ

(
ut +

(
λ−1
c

))
1 + c

(
ut +

(
λ−1
c

)) +
Ψλ
(
ut +

(
λ−1
c

))
evt + c

(
ut +

(
λ−1
c

)) − (λ− 1

c

)

vt+1 = Ψxt (1− e−vt) .

(3.29)

Now, system (3.29) has fixed point (0, 0) which corresponds to point E1 of the

model (3.9). By some simplifications we obtain

ut+1 ≤
λ
(
ut +

(
λ−1
c

))
1 + c

(
ut −

(
λ−1
c

)) − (λ− 1

c

)
=

ut
cut + λ

<
ut
λ
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If λ > 1,

lim
t→∞

ut = 0,

which implies that

lim
t→∞

xt =
λ− 1

c
.

And also,

vt+1 = Ψxt
(
1− e−vt

)
= Ψ

(
ut +

(
λ− 1

c

))(
1− e−vt

)
≤ Ψ

(
ut +

(
λ− 1

c

))
vt

Since limt→∞ ut = 0,

lim
t→∞

yt = lim
t→∞

vt = 0

if λ < 1 + c
Ψ

.

Theorem 3.2 For the model (3.18), (0, 0) is globally asymptotically stable if

λ < 1.

Proof. We have

xt+1 =
(1−Ψ)λxt

1 + cxt

xt
s+ xt

+
Ψλxt

eyt + cxt

xt
s+ xt

By comparison we obtain

xt+1 ≤
λxt

1 + cxt

xt
s+ xt

<
λxt

1 + cxt
< λxt < xt

if λ < 1. Then

lim
t→∞

xt = 0,

which also implies

lim
t→∞

yt = 0.

Hence, the fixed point (0, 0) is globally attracting if λ < 1, and it is locally

asymptotically stable for all values of parameters.

For the model (3.18), the global behavior of the other fixed points is omitted,



CHAPTER 3. A HOST-PARASITOID MODEL 33

since local stability of (0, 0) does not allow any other fixed points to behave sta-

ble, globally. Since F0 is locally asymptotically stable for all values of parameters,

at least with a very small initial value, the system goes to extinction even with

a large growth parameter λ. As a result, the other points cannot be globally

attractive.

The global behavior of the coexistence case is also omitted for model (3.9) in

this part. On the other hand, in the next part, we give some numerical simula-

tions to show that the systems may begin to exhibit chaotic behavior as growth

parameter λ increases.

3.5 Numerical Simulations

In this section, we give some numerical simulations of the models (3.9) and (3.18),

respectively.

3.5.1 Numerical simulations of the model (3.9)

We analyze the model without the refuge effect (Ψ = 1), under intermediate value

of refuge (Ψ = 0.5), and a high proportion refuge (Ψ = 0.1). Without loss of

generality, we fix the parameter c = 1. We consider the following cases satisfying

λ > 1 + c
Ψ

:

(i) Let Ψ = 1

If we assign λ = 4, then the positive fixed point is E2 = (1.52154, 0.907636)

and the eigenvalues of J(E2) are 0.616761± 0.749917i. Hence, E2 is a spiral sink

(Figure 3.4).
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Figure 3.4: Phase portrait for the model (3.9) for Ψ = 1, c = 1, and λ = 4

If λ is increased, the fixed point is unstable, and the system has a Neimark-

Sacker bifurcation. Let λ = 4.4, then E2 = (1.60132, 1.02915) and the eigenvalues

of J(E2) are 0.604116 ± 0.808446i. Hence, E2 = (1.60132, 1.02915) is not stable

(Figure 3.5).
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Figure 3.5: Phase portrait for the model (3.9) for Ψ = 1, c = 1, and λ = 4.4

(ii) Let Ψ = 0.5

If we assign λ = 4, then the fixed point is E2 = (2.64166, 0.584952) and the

eigenvalues of J(E2) are 0.534534± 0.257186i. E2 is spiral sink.
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If λ = 4.4, E2 = (2.88453, 0.783299) and the eigenvalues of J(E2) are 0.495923±
0.346354i. E2 is spiral sink (Figure 3.6).
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Figure 3.6: Phase portrait for the model (3.9) for Ψ = 0.5, c = 1, and λ = 4.4

Even with an extremely large growth parameter λ, the positive fixed point is

stable. For example if λ = 50, the fixed point E2 = (24.0038, 12.0018), and the

corresponding eigenvalues are 0.0201073± 0.0379244i.

(ii) Let Ψ = 0.1

The positive fixed point does not exist if λ < 11. Let λ = 12, then E2 =

(10.9794, 0.189877) with corresponding eigenvalues (0.905805, 0.087284). As a

result the positive fixed point is a sink (Figure 3.7).

The bifurcation diagrams are given in Figure 3.8.

We observe that, the refuge effect increases the interval of parameter λ, which

makes the positive fixed point stable. As Ψ decreases, if the growth rate is not

sufficiently large, the positive point does not exist as we expected.
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Figure 3.7: Phase portrait for the model (3.9) for Ψ = 0.1, c = 1, and λ = 12

Figure 3.8: The bifurcation diagrams of the model (3.9) for Ψ = 1 and Ψ = 0.5,
respectively.
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3.5.2 Numerical simulations of the model (3.18)

We fix c = 1, Ψ = 0.5, and s = 0.5 in order to investigate how the interval of

λ changes when an Allee effect is added to the model. We consider cases, which

satisfies the conditions s < c
Ψ2 and λ > (c+Ψ)(1+Ψs)

Ψ
.

First, we assume that λ = 4. Then the positive fixed point is F3 =

(2.16476, 0.160471) with corresponding eigenvalues (0.834265, 0.608611). As a

result, F3 is a sink. We give phase portrait in Figure 3.9, times series diagrams

in Figures 3.10 and 3.11.
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Figure 3.9: Phase portrait for the model (3.18) for Ψ = 0.5, c = 1, s = 0.5 and
λ = 4

If we assign a large growth rate λ = 10, then the fixed point F3 =

(5.31214, 2.41985) and eigenvalues are 0.312199± 0.669214i. F3 is a spiral sink.

We observe that the positive fixed point remains stable for a large interval of

growth parameter λ. In Figure 3.12, we give the bifurcation diagram.

Finally, we give the basin of attraction for the models (3.18) and (3.9) in

Figure 3.13. In the analytical results, we show that the fixed point F0 = (0, 0) is

stable for all values of parameters. In the numerical simulations, we show that the

positive fixed point F3 is stable for Ψ = 0.5, c = 1, s = 0.5 and λ = 4. We present

the basin of attraction to show the set of points which are eventually iterated to



CHAPTER 3. A HOST-PARASITOID MODEL 38

50 100 150 200

2.05

2.10

2.15

2.20

2.25

Figure 3.10: Time series of x for the model (3.18) for Ψ = 0.5, c = 1, s = 0.5 and
λ = 4
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Figure 3.11: Time series of y for the model (3.18) for Ψ = 0.5, c = 1, s = 0.5 and
λ = 4

either F0 or F3 under this set of parameters. For the basin of attraction of the

model (3.9), let s = 0 (no Allee effect) and keep the other parameters the same,

then only the positive fixed point is stable. For the basin of attraction code, we

refer to [46].

3.6 Results

In [22], the model (3.6) was formulated, and the local and global stability of the

fixed points are studied. They concluded that both populations become extinct if
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Figure 3.12: The bifurcation diagram of the model (3.18) for s = 0.5

λ < 1, the host survives but the parasitoid becomes extinct if λ > 1 and βbN̄ < 1,

and the coexistence is possible if λ > 1 and βbN̄ > 1, where N̄ = (λ − 1)/k. In

this chapter, we first reduce the number of parameters by substitution. Then

we incorporate the refuge effect. Although the existence conditions of the fixed

points are similar with the results of [22], the bifurcations diagrams depict that

the refuge effect can have a stabilizing effect. Specifically, we observe that the

interval of λ, which makes the positive fixed point stable, expands when the refuge

effect is incorporated. Moreover, we investigate the non-hyperbolic case λ = 1

and show that the extinction fixed point is semistable under this condition. Next,

we study the behavior of the model with both Allee and the refuge effects. We

give the global asymptotic stability conditions of the extinction and exclusion

fixed points analytically. We conclude that for the model without Allee effect,

the extinction and exclusion fixed points are globally asymptotically stable under

certain conditions. On the other hand, when Allee effect is added to the model,

both populations become extinct if initial values are sufficiently small. This

biologically means that if the density of the population is under the threshold

level, then this population becomes extinct eventually, even if growth parameter

is large. This may be observed as a direct consequence of the strong Allee effect.
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(a) for the model (3.18) for s = 0.5
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Figure 3.13: The basin of the attraction for the models (3.18) and (3.9), respec-
tively, for Ψ = 0.5, c = 1, and λ = 4 (a)with Allee effect for s = 0.5, (b)without
Allee effect



Chapter 4

A Predator-Prey Model

In this chapter, we consider the prey refuge and Allee effects on predator-prey

interaction by using both analytic and numerical approaches. We construct a

model that contains a predator saturation term. The refuge effect is commonly

considered to act on a fixed proportion or fixed number of the prey population;

our approach provides an extended model to study the dynamics of the predator-

prey interaction under various different refuge settings.

4.1 The Model

The model previously considered in [6] and [47], which includes neither the Allee

effect nor the prey refuge effect, is given by:

Nt+1 = Nt + rNt(1−Nt)− aNtPt

Pt+1 = Pt + aPt(Nt − Pt),
(4.1)

where Nt and Pt are the densities of the prey and predator population at time

t respectively. The growth parameter r and the predation parameter a are both

41
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positive. Adding prey refuge to (4.1) results in the following model [37]:

Nt+1 = Nt + rNt(1−Nt)− (1− d)aNtPt

Pt+1 = Pt + aPt((1− d)Nt − Pt),
(4.2)

where d ∈ [0, 1) is the proportion of prey that is not available to the predator

because of the refuge effect. It is important to note that system (4.2) allows for

prey reproduction while in refuge. For certain types of animals, this may not be

the case.

In this study, we add the predator saturation to the model as follows. We con-

sider the probability of escaping from the predator with a saturating functional

response: A(N) = exp(−β/(1 + sN)), where β is predation intensity and s is

proportional to the handling time.

The formula Q(N) = N/(m + N) is used for the probability of finding a mate,

where 1/m is an individual’s searching efficiency. We add this effect to the preda-

tor, so we use Q(P ) = P/(m + P ). We now extend the model given in (4.2) by

adding a new predator saturation term to the prey population, as well as mate

limitation of the predator. This results in the following system:

Nt+1 = Nt + rNt(1−Nt)e
− β

1+sNt − (1− d)aNtPt

Pt+1 = Pt + aPt((1− d)Nt − Pt)( Pt
m+Pt

),
(4.3)

where all parameters are positive.

4.2 The Existence and Stability of Fixed Points

The fixed points of the model (4.3) are E0 = (0, 0), E1 = (1, 0), and the positive

fixed point E2 = (N∗, (1− d)N∗), for 0 ≤ d < 1 and 0 < N∗ < 1.
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Theorem 4.1 The coexistence fixed point, (N∗, P ∗), exists and is unique if s <

1/β for the model (4.3). Otherwise, there are either one or at most two positive

fixed points.

Proof. The solution of the following system gives the positive fixed point:

0 = r(1−N∗)e−
β

1+sN∗ − a(1− d)P ∗

0 = aP ∗((1− d)N∗ − P ∗)( P ∗

m+P ∗ ).
(4.4)

The second equation of the system is solvable if (1− d)N∗ = P ∗. Substitute this

value into the first equation;

0 = r(1−N∗)e−
β

1+sN∗ − a(1− d)2N∗. (4.5)

Let f(N) = r(1 − N)e−
β

1+sN and g(N) = a(1− d)2N on N ∈ [0, 1]. By the

Extreme Value Theorem, f(N) must attain its maximum and minimum val-

ues on [0, 1]. Now, there are two roots that make f ′(N) = 0, which are

Ṅ1 =
−2s− βs−

√
βs
√

4 + β + 4s

2s2
and Ṅ2 =

−2s− βs+
√
βs
√

4 + β + 4s

2s2
. It

is obvious that Ṅ1 < 0 for all β > 0 and s > 0, so Ṅ1 is not in the domain [0, 1] .

For Ṅ2, we have


Ṅ2 = 0 s = 1

β

Ṅ2 < 0 s < 1
β

0 < Ṅ2 < 1 s > 1
β
.

Hence, for s ≤ 1/β, there is no interior critical point. The boundary values are

f(0) = e−βr and f(1) = 0. If s ≤ 1/β, then f ′(N) < 0, f ′′(N) < 0. Thus, f

is a decreasing concave down function that takes its maximum value at 0 and

minimum value at 1. Furthermore, because g(0) = 0 < f(0), f cannot be below

the linear function g, which implies that they should intersect. The function g(N)

is linear with positive slope a(1− d)2. Then f(N) and g(N) intersect exactly once

if s < 1/β. If s > 1/β, then Ṅ2 is a critical point. We have f ′′(Ṅ2) < 0, so f

attains its max value at Ṅ .

Under the condition s > 1/β, the following hold:
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f ′(N) > 0 if 0 < N < Ṅ2

f ′(N) = 0 if N = Ṅ2

f ′(N) < 0 if Ṅ2 < N < 1.

As a result f(N) can intersect with the linear function more than once.

The numerical simulations for this theorem are given in Figure 4.1 and 4.2.

Figure 4.1: The positive fixed point of the model (4.3) for the case s < 1
β

if
β = 0.1, a = 1, r = 1, s = 5, and d = 0.1.

The Jacobian matrix of the system (4.3) is

J=

(
Q(N,P ) a(−1 + d)N

−a(−1+d)P 2

m+P
Φ(N,P )

)
,

where

Q(N,P ) = 1− a(1− d)P + e−
β

1+Ns (1−N)r − e−
β

1+NsNr +
e−

β
1+Ns (1−N)Nrsβ

(1 +Ns)2
,

and
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(a) Two positive fixed points exist.

(b) Only one positive fixed point exists.

Figure 4.2: For the case s > 1
β

(a) for β = 10, a = 2, r = 1, s = 4, and d = 0.9.

(b) for β = 1, a = 2, r = 1, s = 8, and d = 0.6

Φ(N,P ) = 1− a((1− d)N − P )P 2

(m+ P )2
+

2a((1− d)N − P )P

m+ P
− aP 2

m+ P
.

Hence, we obtain

J(E0)=

(
1 + re−β 0

0 1

)
,

with the eigenvalues λ1 = 1 + re−β > 1 and λ2 = 1. Thus (0,0) is unstable fixed

point.

The Jacobian matrix at E1 = (1, 0) is
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J(E1) =

(
1− re−

β
1+s −a(1− d)

0 1

)
.

Since the eigenvalues are λ1 = 1 − re−
β

1+s and λ2 = 1, then the point (1, 0) is a

non-hyperbolic fixed point;

(i) If β/(1 + s) < ln(r/2), then |λ1| > 1, and (1, 0) is not stable.

(ii) If β/(1 + s) = ln(r/2), then |λ1| = |λ2| = 1, and the stability can not be

analyzed via current methods.

(iii) If β/(1 + s) > ln(r/2), then |λ1| < 1, and the Center Manifold Theorem

can be used.

If a non-hyperbolic map is defined on R2, then its dynamics may be analyzed

by studying the dynamics on an associated one-dimensional center manifold Mc

[10]. This theorem is applicable only for the fixed point (0,0). Hence, we get the

following new system by setting xt = Nt − 1 and yt = Pt:

xt+1 = xt − e−
β

1+s(1+xt) rxt(1 + xt)− a(1− d)(1 + xt)yt

yt+1 = yt +
a((1− d)(1 + xt)− yt)y2

t

m+ yt
.

(4.6)

Let J∗ be the Jacobian matrix of the system (4.6). Then

J∗(0, 0)=

(
1− re−

β
1+s −a(1− d)

0 1

)
.

Rewriting the system (4.6), we obtain

xt+1 = (1− re−
β

1+s )xt − ayt(1− d) + f̃(xt, yt)

yt+1 = yt + g̃(xt, yt),
(4.7)

where

f̃(x, y) = x(re−
β

1+s − re−
β

1+s+sx (1 + x) + a(−1 + d)y),
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and

g̃(x, y) =
a((1− d)(1 + x)− y)y2

m+ y
.

By using the Taylor series expansion of e−
β

1+s+sx at the point x = 0, we approxi-

mate

e−
β

1+s+sx ≈ e−
β

1+s +
ae−

β
1+s sx

(1 + s)2
+
βe−

β
1+s (−2 + β − 2s)s2x2

2(1 + s)4
+O(x3)

For simplification, let k = e−
β

1+s . Then

f̃(x, y) ≈ x

(
kr −

(
k +

βksx

(1 + s)2
+
βk(−2 + β − 2s)s2x2

2(1 + s)4

)
r(1 + x) + a(−1 + d)y

)
.

Since the invariant manifold is tangent to the corresponding eigenspace by the

Theorem 2.7, assume that the map h takes the form

h(y) =
a(d− 1)

rk
y + c1y

2 + c2y
3 +O(y4).

To compute c1 and c2, the following functional equation should be solved:

h(y + g̃(h(y), y)) ≈ (1− re−
β

1+s )h(y)− a(1− d)y + f̃(h(y), y).

We have

c1 ≈ −
a2(−1 + d)2 (−1− 2s− s2 +msβ)

k2mr2(1 + s)2
,

and

c2 ≈
a2(−1 + d)

2k3m2r3(1 + s)4
(2k(1−d+m)r(1+s)4 +a(−1+d)2(4(1+s)4 +2ms(1+s)

(−4 + (−4 +m)s)β + 3m2s2β2)).
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This leads to the equation

P (y) ≈ y − a(−1 + d)y2

m
− a (a(−1 + d)2m+ k(1− d+m)r) y3

km2r

+

a

(
1− d+m+ a(−1+d)2m

kr
− a2(−1+d)3m((1+s)2−msβ)

k2r2(1+s)2

)
y4

m3
.

We have P ′(0) = 1, and P ′′(0) = 2a(1−d)/m > 0 for a > 0, m > 0, and d ∈ [0, 1).

Hence by Theorem 2.2, E1 is semistable fixed point if β/(1 + s) > ln(r/2).

-0.6 -0.4 -0.2 0.2 0.4 0.6
y

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

P

Figure 4.3: The map P on x = h(y) for β = 4, a = 2, r = 5, s = 1, m = 2, and
d = 0.4.

In order to find the stability conditions of the coexistence fixed point E2, we

substitute (1− d)N∗ = P ∗, and obtain

J(E2)=

(
G(N∗) −abN∗
ab3N∗2

m+bN∗ 1− ab2N∗2

m+bN∗

)
,

where F (N∗) = e−
β

1+N∗s , b = 1− d, and

G(N∗) =
F (N∗) (F (N∗)(1 +N∗s)2 − (2N∗ − 1)r(1 +N∗s)2 − (N∗ − 1)N∗rsβ)

(1 +N∗s)2

− ab2N∗
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We will use the Trace-Determinant Plane Theorem to examine the stability.

E2 is stable if the Jacobian matrix at E2 satisfies the following condition:

|trJ | − 1 < det J < 1

We find det(J(E2)) =
a2b4N∗3 +G(N∗)(m+ bN∗(1− abN∗))

m+ bN∗
,

and tr(J(E2)) = 1 +G(N∗)− ab2N∗2

m+ bN∗
.

i) det J < 1 if G(N∗)(m+ bN∗(1− abN∗)) < m+ bN∗ − a2b4N∗3

ii) trJ < 1 + det J if G(N∗) < 1 + ab2N∗

iii) −1−det < trJ if G(N∗)(2m+ bN∗(2−abN∗)) > −2(m+ bN∗) +ab2N∗2−
a2b4N∗3

Hence E2 is stable if the conditions i, ii, and iii are satisfied.

4.3 Numerical Simulations

In this section, we present the dynamic behavior of the system (4.3) about

the positive fixed point under different parameter values. To compare the re-

sulting models, we give phase-plane diagrams, time series diagrams, and bi-

furcation diagrams. Although there is no explicit solution of the equation

0 = r(1−N∗)exp(−β/(1 + sN∗))− a(1− d)2N∗, by assigning numerical values

to the parameters, the fixed point can be found approximately. By substituting

this positive fixed point into the Jacobian matrix, the corresponding eigenvalues

can also be found to decide the stability type of the model. The following tables
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represent these approximate values.

In Table 4.1, we assume that d = 0, which means that no prey can escape from

its predators without encountering them first. For different values of predator’s

mate limitation coefficient m, the behavior of the system is presented under the

assumption d = 0, a = 1, β = 1, s = 0.5, and r = 5. For these values we

have s < 1/β, so there is unique positive fixed point, which is approximately

(0.705, 0.705). The values of a, β, s, d and r are sufficient to find the coexistence

fixed point approximately. However, in the Jacobian, there is also an Allee effect

coefficient m, which does not affect the value of the point, but may affect the

stability. If there is no mate limitation Allee effect (m = 0) or m is small enough,

then the system exhibits spiral sink behavior. As m increases, the system be-

gins to oscillate, but remains stable. Figures 4.4, 4.5 and 4.6 consist of phase

diagrams and time series graphs associated with Table 4.1. Additionally, in the

tables below, we provide eigenvalues as reference, for which certain stability types

are observed. For instance, as given in Table 4.1, when |λ2| < 1 and λ1 < −1, we

observe oscillatory saddle behavior.

m Positive Fixed
Point

Eigenvalues Stability Type

0 (0.705, 0.705) λ1,2 = −0.125 ± 0.565i
with |λ| = 0.578662

spiral sink

0.4 (0.705, 0.705) λ1,2 = −0.002 ± 0.127i
with |λ| = 0.127016

spiral sink

0.5 (0.705, 0.705) λ1 = 0.197, λ2 = −0.155 oscillatory stable
1 (0.705, 0.705) λ1 = 0.304, λ2 = −0.231 oscillatory stable
5 (0.705, 0.705) λ1 = 0.515, λ2 = −0.353 oscillatory stable

Table 4.1: Effects of m for the model (4.3) with a = 1, β = 1, s = 0.5, r = 5, and
d = 0
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Figure 4.4: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0 and m = 0
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Figure 4.5: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0 and m = 0.5
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Figure 4.6: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0 and m = 5

Table 4.2 and Figures 4.7, 4.8 and 4.9 show how the change of m affects the

dynamic behavior of the system, while the parameters a = 1, β = 1, s = 0.5,

r = 5 and d = 0.5 are kept fixed. The positive fixed point is an oscillatory

saddle. The systems have a two-periodic stable cycle for all values of m, but the
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amplitude of the cycle of the predator decreases as m increases. The initial values

are taken as N = 0.2 and P = 0.2.

m Positive
Fixed Point

Eigenvalues Stability
Type

2 Periodic Cycles

0 (0.91, 0.455) λ1 = −1.178
λ2 = −0.485

oscillatory
saddle

{(0.72,0.46),(1.04,0.41)}

0.5 (0.91, 0.455) λ1 = −1.214
λ2 = −0.759

oscillatory
saddle

{(0.7,0.44),(1.05,0.42)}

1 (0.91, 0.455) λ1 = −1.223
λ2 = 0.842

oscillatory
saddle

{(0.7,0.44),(1.05,0.43)}

5 (0.91, 0.455) λ1 = −1.234
λ2 = 0.95

oscillatory
saddle

{(0.7,0.43),(1.05,0.43)}

Table 4.2: Effects of m for the model (4.3) with a = 1, β = 1, s = 0.5, r = 5, and
d = 0.5.
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Figure 4.7: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0.5 and m = 0
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Figure 4.8: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0.5 and m = 0.5
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Figure 4.9: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0.5 and m = 5

Table 4.3 and Figures 4.10, 4.11 and 4.12 show the effects of m when there

is a high amount of refuge (d = 0.8). The other parameters are set to the same

values as those in the previous tables.

m Positive
Fixed Point

Eigenvalues Stability
Type

4 Periodic Cycle

0 (0.985, 0.197) λ1 = −1.507
λ2 = 0.8

oscillatory
saddle

{(1.177,0.175),(0.58,0.186),
(1.112,0.173),(0.728,0.181)}

0.5 (0.985, 0.197) λ1 = −1.509
λ2 = −0.943

oscillatory
saddle

{(1.177,0.179),(0.579,0.181),
(1.112,0.178),(0.728,0.18)}

5 (0.985, 0.197) λ1 = −1.51
λ2 = −0.99

oscillatory
saddle

{(1.177,0.182),(0.579,0.183),
(1.119,0.182),(0.728,0.183)}

Table 4.3: Effects of m for the model (4.3) with a = 1 β = 1, s = 0.5, r = 5, and
d = 0.8.
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Figure 4.10: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0.8 and m = 0
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Figure 4.11: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0.8 and m = 0.5
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Figure 4.12: Phase Diagrams and Time Series Diagrams for the model (4.3) for
d = 0.8 and m = 5

Tables and diagrams given in this section show that when the value of d

changes, the dynamic behavior changes, and the system doubles the periods of

cycles. If d = 0, then the positive fixed point is stable. With a moderate d value,

there is a two-periodic cycle, while with a great value of d the period of the cycle

is four. If the system has a cycle, then the positive fixed point loses its stability.

The predator population oscillates, but the amplitude is so small that P ∗ seems

stable. On the other hand, the magnitude of the oscillation is greater for prey,

hence N∗ is unstable. As a result, the fixed point (N∗, P ∗) is a saddle fixed point.

As m increases, the oscillation amplitude of the predator decreases. The system

goes through a period doubling bifurcation with respect to d. The bifurcation

plots are given in Figure 4.13 at the values a = 1, β = 1, s = 0.5, and r = 5.
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Figure 4.13: The bifurcation diagrams of the model (4.3) for m = 0, m = 0.5,
and m = 5, respectively.

4.4 Results

In [37], the model (4.2) was formulated. They also extended the model (4.2)

by incorporating Allee effect in prey, Allee effect in predator, and Allee effect

in both populations. By analyzing these four models, they concluded that if
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the refuge effect is not sufficiently dominant, then the Allee effect can stabilize

the system. In the paper [37], they incorporated Allee effects which are caused

by mate limitation. In this chapter, we formulated a new model in which the

predator saturation mechanism is taken into consideration. We extend the model

(4.2) by incorporating predator saturation of prey as well as the mate limitation

of predator. The fixed points and the existence conditions are similar with the

results of [37], but we have one more parameter due to the predator saturation

term. Moreover, our findings indicate an interesting fact that the equilibria, even

the predator value in the equilibria of our model, depend on the dynamics of prey

and the interaction between predator and prey. Biologically this corresponds to

the case where the predator population is closely defined by the prey. As a result,

the effects added to prey dominantly impact the model.



Chapter 5

The Holling Type II

Prey-Predator Model

In this chapter, we formulate discrete-time Holling type II prey-predator models

with Allee and the refuge effects. The study of the dynamical properties of re-

sulting models allows us to have information about the future behavior of prey

predator populations.

The following prey-predator model with the Holling type II functional response

[19] has been studied by many authors [1, 17, 26].

x′ = ax(1− x)− α mxy

1 + εx
,

y′ = (
mx

1 + εx
− β)y,

(5.1)

where all the parameters are positive, and

• α is conversion,

• β is predator’s death rates,

• a is prey intrinsic growth parameter,

57
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• m is half saturation parameter,

• ε is limitation of the growth velocity of the predator population with in-

crease in the number of prey.

We refer to the works in [11, 26, 38]. Equilibrium points of this model are stable

or limit cycles.

The discrete prey-predator model with Holling type II given by [1] is as follows:

xn+1 = axn(1− xn)− bxnyn
1 + εxn

,

yn+1 =
dxnyn

1 + εxn
,

(5.2)

where all parameters are nonnegative. This map is non-invertible map.

We first study this model with a fixed number of prey in refuge, then with an

Allee effect.

5.1 Holling type II model with a refuge effect

We study the following model obtained by adding a refuge effect R to prey in the

model given by [1]:

xn+1 = axn(1− xn)− b(xn −R)yn
1 + e(xn −R)

,

yn+1 =
d(xn −R)yn

1 + e(xn −R)
,

(5.3)

where the parameters are positive.
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5.1.1 Fixed points of the model (5.3) and their stability

In this section, we investigate the fixed points of the map (5.3) and their stability

conditions. The solution of the following system of equations gives us three non-

negative fixed points:

x = ax(1− x)− b (x−R)y

1 + e(x−R)
,

y =
d(x−R)y

1 + e(x−R)
.

(5.4)

The fixed points are :

a. for any values of parameters, there exists extinction fixed point E0 = (0, 0).

b. there exists one exclusion fixed point E1 = (a−1
a
, 0) for a > 1.

c. there exists one positive fixed point E2 = ( Φ
Q
,−dΦ(Q+aΦ−aQ)

bQ2 ) for

• Q < Φ < 0 and a > Q
Q−Φ

, or

• 0 < Φ < Q and a > Q
Q−Φ

,

where Q = d− e and Φ = 1 +RQ.

The Jacobian matrix of the map (5.3) is as follows:

J(x, y) =


−2xa+ a− by

(e(x−R)+1)2
b(x−R)

e(R−x)−1

dy
(e(x−R)+1)2

d(x−R)
e(x−R)+1

 .

For the fixed point E0 ;

J(E0) =

(
a bR

1−eR

0 dR
eR−1

)
.
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The eigenvalues are λ1 = a and λ2 = dR
eR−1

. Then E0 is

a. a stable fixed point (sink) if a < 1, d < eR−1
R

, and R > 1
e
,

b. oscillatory stable if a < 1, d < 1−eR
R

, and e < 1
R

,

c. non-hyerbolic if one of the following conditions is hold:

• a = 1

• d = eR−1
R

• d = 1−eR
R

We consider only the case a = 1 . We need to write the system in the following

form to use the Center Manifold Theorem:

xn+1 = Axn + f(xn, yn),

yn+1 = Byn + g(xn, yn).
(5.5)

Furthermore f(0, 0) = 0, g(0, 0) = 0, Df(0, 0) = 0, Dg(0, 0) = 0. If we substitute

the parameters a = 1, b = 0.2, d = 3.5, e = 0.9, and R = 1/9, then we obtain the

following Jacobian matrix at E0:

J(0,0)=

(
1 0.0246914

0 −0.432099

)
.

Hence, the fixed point E0 = (0, 0) is non-hyperbolic. Now, we can rewrite the

system (5.3) as follows:

xn+1 = xn + 0.0246914yn + f (xn, yn)

yn+1 = −0.432099yn + g (xn, yn) ,
(5.6)

where

f(x, y) = −x2 − 0.0246914y −
0.2y

(
x− 1

9

)
1 + 0.9

(
x− 1

9

) , (5.7)
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and

g(x, y) = 0.432099y +
3.5y

(
x− 1

9

)
1 + 0.9

(
x− 1

9

) . (5.8)

Let

h(x) = c1x
2 + c2x

3 +O(x4), (5.9)

for c1, c2 ∈ R. In order to compute the constants c1 and c2, the following func-

tional equation should be solved:

h (xn + 0.0246914h(xn) + f (xn, h(xn))) = −0.432099h(xn) + g (xn, h(xn)) .

(5.10)

By solving the equation (5.10), we find c1 = c2 = 0. Now, on the center manifold

y = h(x), we obtain the following one dimensional map:

xn+1 = xn − x2
n +O(x4

n). (5.11)

Let f(x) = x− x2 + O(x4). Since f ′(0) = 1 and f ′′(0) = −2 < 0, hence by The-

orem 2.2, the origin is semistable from right under the given set of parameters.

(Similarly, we get the same result for d = eR−1
R

and d = 1−eR
R

.)

For the fixed point E1 ;

J(E1) =


2− a b(−Ra+a−1)

e+a(e(R−1)−1)

0 d(a(R−1)+1)
e+a(e(R−1)−1)

 .

The eigenvalues are λ1 = 2− a and λ2 = d(a(R−1)+1)
e+a(e(R−1)−1)

. Then E1 is a stable fixed

point (sink) if 1 < a < 3 and |λ2| < 1. Otherwise, it is unstable. If a = 3 or

d = 1+a(R−2)
1+a(R−1)

, then similarly, the Center Manifold theorem must be used as above.
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For the fixed point E2;

J(E2) =


a− 2ap

Q
+ dp(a(p−Q)+Q)

(Q+e(p−QR))2
− b
d

− d2p(a(p−Q)+Q)
b(Q+e(p−QR))2

1

 .

The positive fixed point is stable if the eigenvalues of the Jacobian matrix are

|λ1,2| < 1. This case will be investigated in the numerical simulations section.

5.1.2 Numerical simulations for (5.3)

We first study the model when we vary only the parameter R (refuge effect) and

fix the others with respect to the above analytical results. Second, we study the

model (5.3) for varying values of the parameter e. E1 and E2 are not in the pos-

itive region if 0 < a < 1. There is no biological meaning when the trajectory of

the map is oscillating on the positive and negative regions for 0 < a < 1. Then,

we will give the numerical simulation only when a > 1 and d > e.

Without loss of the generality, we fix the parameters a = 4, b = 0.2, d = 3.5, e =

0.1 and assume R varies. Under this set of parameter values, E2 is a spiral

sink if 0.09 < R < 0.24, and it is an oscillatory saddle if 0.24 < R < 0.46.

For example, if R = 1/9, the fixed points are E0 = (0, 0), E1 = (0.75, 0)

and E2 = (0.405229, 9.77979) with the eigenvalues λE0 = {4.,−0.393258},
λE1 = {−2., 2.10183}, and λE2 = {−0.0438074 ± 0.869627i}, respectively. In

this case E0 is an oscillatory saddle, E1 is an oscillatory source, and E2 is a stable

focus (spiral sink).

Next, we fix the parameters a = 4, b = 0.2, d = 3.5, R = 1/9 and assume e

varies. The positive fixed point E2 is a spiral sink if 0 < e < 0.92, it is an

oscillatory sink if 0.92 < e < 1.45, otherwise it is unstable. For example, the

fixed points are E0 = (0, 0), E1 = (0.75, 0) and E2 = (0.495726, 8.82351) when

e = 0.9. The eigenvalues are λE0 = {4.,−0.432099}, λE1 = {−2., 1.41975}, and
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λE2 = {0.0301804± 0.18242i}, respectively. In this case E0 is an oscillatory sad-

dle, E1 is an oscillatory source, and E2 is a spiral sink.

Similarly, if e = 1.2, the fixed points are E0 = (0, 0), E1 = (0.75, 0) and

E2 = (0.545894, 7.79942) with the eigenvalues λE0 = {4.,−0.448718}, λE1 =

{−2., 1.26572}, and λE2 = {−0.626654, 0.585889}, respectively. As a result, E0

is an oscillatory saddle, E1 is an oscillatory source, and E2 is an oscillatory sink.

We give some phase portraits for different values of e (Figure 5.1, and Figure

5.2).

Figure 5.1: Phase portrait for the model (5.3) for e = 0.1

Figure 5.2: Phase portrait for the model (5.3) for e = 1.2
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5.2 Holling type II model with an Allee effect

Let I(x) = x
x+K

be the probability of finding a mate where 1/K > 0 is an

individual’s searching efficiency. We study the following model which is given by

[1] by adding the mate limitation Allee effect to the prey:

xn+1 =

(
axn(1− xn)− bxnyn

1 + exn

)
xn

K + xn
,

yn+1 =
dxnyn

1 + exn
,

(5.12)

where the parameters are positive.

5.2.1 Fixed points of the model (5.12) and their stability

In this section, we investigate the fixed points of the map (5.12) and their stability

conditions. The solution of the following system of equations gives us four non-

negative fixed points:

x =

(
ax(1− x)− b xy

1 + ex

)
x

K + x
,

y =
dxy

1 + ex
,

(5.13)

The fixed points are

a. for any values of parameters, there exists extinction fixed point A0 = (0, 0),

b. there exist two exclusion fixed points A1,2 = (a−1±M
2a

, 0) if a > 1 and K <
(a−1)2

4a
,

c. there exists one positive fixed point A3 =
(

1
Q
, d(a(Q−1)−Q(1+QK))

bQ2

)
for Q > 1

and a > Q(1+KQ)
Q−1

, where M =
√

(a− 1)2 − 4aK and Q = d− e.

The Jacobian matrix of the system (5.12) is given by
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J(x, y) =

 −
x(a(x(2x−1)+K(3x−2))(ex+1)2+b(x+K(ex+2))y)

(K+x)2(ex+1)2
− bx2

(K+x)(ex+1)

dy
(ex+1)2

dx
ex+1

 .

For the fixed point A0;

J(A0) =

(
0 0

0 0

)
.

A0 is stable.

For the fixed point A1 = (a−1−M
2a

, 0);

J(A1) =


M+a(−a+6K+M+4)−1

2a(K+1)
− b(−a+M+1)2

(−a(2K+1)+M+1)(Me+e−a(e+2))

0 d(−a+M+1)
Me+e−a(e+2)

 .

If |M+a(−a+6K+M+4)−1
2a(K+1)

| < 1 and | d(−a+M+1)
Me+e−a(e+2)

| < 1, then A1 is stable.

For the fixed point A2 = (a−1+M
2a

, 0);

J(A2) =


−M+a(a−6K+M−4)+1

2a(K+1)
− b(a+M−1)2

(2Ka+a+M−1)(a(e+2)+e(M−1))

0 d(a+M−1)
a(e+2)+e(M−1)

 .

If | − M+a(a−6K+M−4)+1
2a(K+1)

| < 1 and | d(a+M−1)
a(e+2)+e(M−1)

| < 1, then A2 is stable.

For the fixed point A3;

J(A3) =


(2dK−eK+1)Q2+a(d(e−1)−e(e+1))

dQ(KQ+1)
− b
QKd+d

−KQ2−Q+a(Q−1)
b

1

 .
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The stability of A3 will be investigated in the numerical simulations section.

5.2.2 Global behavior of model (5.12)

The extinction fixed point A0 of model (5.12) is stable for any values of parame-

ters. By comparison we have

xn+1 =

(
axn(1− xn)− bxnyn

1 + exn

)
xn

K + xn
< axn(1− xn)− bxnyn

1 + exn
,

and

axn(1− xn)− bxnyn
1 + exn

< axn(1− xn) < axn.

Hence, if a < 1,

lim
n→∞

xn = 0.

Since yn+1 = dxnyn
1+exn

,

lim
n→∞

yn = 0,

which means A0 is globally attracting and globally asymptotically stable if a < 1.

Consequently, if the growth parameter is small (a < 1), both populations become

extinct even with large initial values. On the other hand, the other fixed points

A1, A2 and A3 cannot be globally stable because of the local stability of A0.

5.2.3 Numerical simulations for (5.12)

We first study the model (5.12) when we change only the parameter e and fix the

others with respect to the above analytical results. We compare our results with

the results of [1]. We fix the parameters a = 4.1, b = 3, d = 3.5, K = 0.2, and

assume that e varies as in [1]. When the control parameter e varies in (0, 0.85),

(0.85, 1.53) and [1.53, 2.03] the stability/unstability of positive fixed point changes
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through various types of bifurcations, but A0 is always stable, and A1,2 are always

saddle in the positive region. A3 is unstable (spiral source) if 0 < e < 0.85. It is

stable (spiral sink) if 0.85 < e < 1.53, and it is stable (sink) if 1.53 ≤ e ≤ 2.03.

If e > 2.03, it is not a positive fixed point anymore.

We consider the following cases :

Let e = 1.9 then A0 = (0, 0), A1 = (0.0712257, 0), A2 = (0.684872, 0) and A3 =

(0.625, 0.158594) are the fixed points. Eigenvalues are λA1 = {1.66071, 0.219575}
, λA2 = {1.04163,−0.947291} and λA3 = {0.951751,−0.561167} , respectively.

Since |λA3| < 1, the positive fixed point is asymptotically stable (sink). A1, and

A2 are saddles (Figure 5.3).

Let e = 0.86, then the positive fixed point is A3 = (0.378788, 0.450302) (the oth-

ers as same as in case e = 1.90). Eigenvalues are λA3 = {0.746513 ± 0.662383i}.
Since |λA3| = 0.998015 < 1, then the positive fixed point is stable (spiral sink)

(Figure 5.4).

Now, let e = 0.85, then the positive fixed point is A3 = (0.377358, 0.450303)

(the others as same as in case e = 1.90). We observe that the behavior of the

model becomes very complicated including the Neimark-Sacker bifurcation. The

fixed point A3 loses its stability through a Neimark-Sacker bifurcation and an

invariant closed curve is created around the fixed point when e = 0.85 (Figure

5.5).

When we compare these results with results of [1], we can see that Allee effect

has a strong effect on the stability of system and changes the parameter intervals

for stability. When e is decreased, the behavior of the system changes to a chaotic

one. We give the time series diagram of x in Figure 5.6. The time series of y is

also similar but only the domain is different.
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Figure 5.3: Phase portrait for the model (5.12) for e = 1.9

Figure 5.4: Phase portrait for the model (5.12) for e = 0.86

5.3 Results

A discrete-time prey-predator model with Holling type II was given in [1]. They

analyzed the model (5.2) and concluded that compared to the continuous case,

the discrete-time Holling type model has richer features and more complicated

dynamics. In this chapter, we extend the model by incorporating the Allee and

the refuge effects. We see that both the mating limitation Allee effect and refuge

effect have strong impacts on the stability of the system.
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Figure 5.5: Phase portrait for the model (5.12) when a Neimark-Sacker bifurca-
tion exists for e = 0.85

Figure 5.6: Time series of x for the model (5.12) for e = 0.9
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Conclusion and Further Studies

In this thesis, we have constructed new models for host-parasitoid and prey-

predator interactions by incorporating the Allee and refuge effects. We have

studied the models analytically, and performed numerical simulations to study

their stability and bifurcation behaviors. We have presented rigorous proofs re-

lated to the general behavior of the dynamical equations depending on the con-

ditions on the parameter space. Specifically, we have obtained the existence and

uniqueness of positive fixed points. We have also examined the effects of the sta-

bility of the fixed points on the dynamics of the models. For some of the models,

we presented the global behavior. We have shown that the populations incor-

porating Allee effects are more likely to become extinct as a direct consequence

of Allee effect. In Chapters 3 and 4, the positive fixed points cannot be found

explicitly. However, by assigning numerical values to the parameters, they can be

found approximately. By substituting the positive fixed point into the Jacobian

matrix, the corresponding eigenvalues can also be found to decide the stability

type of the model. In the numerical simulations, we provided eigenvalues as ref-

erence, for which certain stability types are observed. In Chapter 5, the positive

fixed point is explicitly found. However, due to the abundance of parameters,

we also investigated it numerically. The numerical simulations have shown that

our systems are capable of generating complex temporal dynamics. We have also

compared the models and discussed the biological relevance. The analytical and

70
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numerical results indicate that the impacts of refuge and Allee effects for pattern

formulation is substantial. We believe this understanding will enrich the dynam-

ics of the effects on the predator-prey and host-parasitoid systems.

In this thesis, all the models we constructed are deterministic models. Study-

ing the population dynamics in a stochastic environment needs further study. In

the models, there are many parameters, which are about growth rate, capacity

constraint, Allee and the refuge effects, interaction strength, etc. By making some

of the parameters random, the stochasticity can be incorporated into the models.

The next studies will be about stochastic population models to incorporate the

randomness into the systems.
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