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DEMAND FULFILMENT WITH TIME AND BUDGET LIMITS

SUMMARY

Globalization and sustained growth of international trade have increased competition
in most of the markets. Today, virtually all major firms have a significant and growing
presence in business outside their country of origin. Transfers between subsidiaries of
the same company account for most of the trade between industrialized countries.
Many companies recognize the opportunities for selling their products in several new
markets through a number of sales channels. The main focus for an enterprise is to
stabilize the demand, price, cost and risk fluctuations for their certain business areas
and to feed constantly their sales channels and to take the right position in changing
market conditions. Better logistics, removal of trade barriers, opportunities in the
emerging markets, improved communications in businesses and among consumers are
the main factors behind scenes of this new world approach.

Due to increasing competition, companies are working with very low-profit margins.
To increase profits, sustain their operations and compete, companies are aiming to
reduce operational costs such as production, transportation, setup and inventory
holding costs. For brand owners and manufacturers, solving the response management
need in their demand management and fulfillment operations represents the largest
opportunity to increase customer satisfaction, enhance margins and attain more
predictable revenue in the entire value chain.

The main objective of this study is to develop a decision support system for supply
chain network that will reduce operational costs, increase customer service levels, and
increase the sensitivity of the planning department to rapidly changing conditions
where profit margins are low. A planning system consisting of integrated models such
as integrated and daily capacity planning and it is solved by a mixture of optimization
methods and heuristic methods. The planning system is implemented in the ICRON
Supply Chain Optimization System. With this study enhanced customer service level,
improved responsiveness, improved due dates are observed.
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ZAMAN VE BUTCE LIMITLERI DAHILINDE TALEP KARSILAMA

OZET

Son yillarda artan kiiresellesme, beraberinde sirketler i¢in oldukga rekabet¢i bir ortam
yaratmaktadir. Sirketlerin tirettikleri tirtinler rakiplerinin iirtinleri ile tamamen ikame
edilebilir hale gelmistir. Ozellikle biiyiik sirketler mense iilkeleri disindaki
isletmelerde 6nemli ve artan bir varliga sahiptir. Bu durum beraberinde ayni sirketin
isletmeleri arasindaki ticareti arttirarak, piyasadaki giiciinii per¢inlemektedir.

Sirketler bir dizi satis kanali vasitasiyla miisteri taleplerini karsilamaya ¢alismaktadir.
Sirketlerin temel amaci, satis kanallarini siirekli besleyerek geg¢ teslimatlardan otiirii
satiglarin1 rakiplere kaptirmayi 6nlemek ve degisen pazar kosullarinda dogru pozisyon
almaktir.

Firmalar, miisteri memnuniyetini, onlarin temel gereksinimleri ve asgari miistereklerin
otesindeki begenilerini karsilamak tizere iirin ve hizmet saglamak anlayisi iginde
degerlendirmektedir. Bu baglamda satis Oncesi iriin veya hizmet tasarimindan
baslayan ve satis sonrasi hizmetlere kadar devam eden siire¢cte miikemmellesmeye
calisiilmaktadir.

Bu siirecte, miisterinin pazarda tirlinii almak istedigi anda, kendisine en yakin bir yerde
ve istedigi miktarda bulabilmesi, miisteri memnuniyeti igin kilit rol oynamaktadir.
Ciinki Uirtin ya da hizmet, satin alinmak istenen anda mevcut ya da yeterli degilse,
iriin ya da hizmet miisterinin isteklerine en iyi bicimde cevap verse de ya da satis
sonrast hizmetler miikkemmel olsa da iriin ya satilamamakta ya da miisteri
memnuniyetsizligi yasatmaktadir. Dolayisiyla sunulan iriin veya hizmetin gerektigi
anda yeterli miktarda bulunmasi miisteri memnuniyetini dogrudan ve en yiiksek
derecede etkileyecektir.

Diger yandan tiim talepleri zamaninda ve yeterli miktarda karsilayacak kadar yiiksek
miisteri hizmet diizeyine sahip olmak i¢in stoklarin o derece yiiksek olmas1 gerekir.
Boylece biiyiik stoklar sayesinde siparislere her zaman yanit verilebilir. Ancak stok
tutmanin bir maliyeti olduguna gore, miisteri memnuniyetini yiikseltmek i¢in stok
maliyetlerinin artmas1 gerekmektedir.

Artan rekabet nedeniyle sirketler hem migsteri memnuniyeti saglayarak hem de
maliyetleri kontrol ederek g¢ok diisiik kar marjlari ile firmanin yasamina devam
etmesine ¢alismaktadirlar. Karlarini artirabilmek, faaliyetlerini devam ettirebilmek ve
rekabet edebilmek icin sirketler liretim, nakliye, setup ve stok tutma maliyetleri gibi
operasyonel maliyetleri diisirmeyi hedeflemektedir.

Literatiir taramasi talep kargilama ve iiretim planlama problemlerine yonelik kullanilan
degisik modelleri anlatmaktadir. Dogrusal programlama, karma tam sayili dogrusal
programlama, dogrusal olmayan programlama en c¢ok kullanilan modelleme
yontemleridir.

Karma tamsayili modeller genel olarak sezgisel ve algoritmik yontemleri ile
coziilmektedir. Sezgisel yontemler sonucun dogrulugunun kanitlanabilir olup
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olmadigimi 6nemsenmez. Cesitli alternatif hareketlerden etkili olanlara karar vererek
iyiye yakin ¢oziim yollar1 elde etmeyi amaglar. Makul bir siire icerisinde bir ¢oziim
elde edeceklerini garanti ederler. Genellikle en iyiye yakin olan ¢6ziim yoluna hizli ve
kolay bir sekilde ulasirlar.

Algoritmik yontemler ise genel olarak iki farkli teknik kullanirlar. Dal-sinir yontemi
ile kesme diizlemi yontemi. Dal-sinir yontemi sistematik bir sekilde olurlu ¢éztimlerin
sayilarak en i1yi tamsayili ¢6zliimiin bulunmasi i¢in kullanilir. Belirli sayida olurlu
¢oziimil inceleterek (kiiglik bir kisminin incelenecegi iimidi ile) en iyi ¢dziimii garantili
bir sekilde bulur. Kesme diizlemi yonetiminde ise amag kisitlar ekleyerek tamsayili
degerler barindiran en iyi olurlu ¢6ziime ulagsmaktir. Eklenecek 6zel kisitlara kesme adi
verilir. Eklenecek kesmelerin ilgili model i¢in belirli kriterleri saglamasi1 gerekmektedir.
Karar degiskeni sayisi arttik¢a, ¢ozlime ulagsmak igin tekrarlanmasi gereken yineleme
sayis1 artmaktadir. GUROBI ve CPLEX gibi ¢oziiciilerde, dal sinir algoritmasi ve kesme
diizlemi algoritmalarinin birlikte kullanildig1 dal-kesme algoritmalar1 kullanilir.

Bu ¢alismada aylik bazda biitiinlesik {iretim planlama modeli ile iirlin gruplar1 bazinda
¢Oziim saglanirken, ¢ikan sonuglara uygun olarak iiriin grubu i¢indeki iiriinlerin plani
giinliik bazda bir model ile ele alinmaktadir. Bunlar1 yaparken Karma tam sayili
dogrusal programlama yonetimi kullanilistir.

Ilk model olan biitiinlesik iiretim planlama, talep gecikmelerini enazlayacak sekilde
iiriin gruplarimin siralamasinin ve iiretim proseslerine atamasinin yapilmasini garanti
eder. Bunu yaparken kaynak kapasiteleri, tiretim maliyetleri ve {iretim siire¢lerindeki
oncelik tercihleri dikkate alinmaktadir. Modelde zaman dilimi olarak ay
kullanilmaktadir.

Ikinci model ise biitiinlesik modelde belirlenen iiretilecek iiriin gruplarmin iginde
tiretilmesi gereken triinlerin optimum seviyede, hazirlik siireleri enazlanacak sekilde
siralanmasini garanti eder. Bunu yaparken kaynak kapasiteleri, {irlinlerin 6ncelik
tercihleri, iretim maliyetleri, ge¢ karsilama, erken karsilama maliyetleri de dikkate
alinmaktadir. Model 1 giinliik zaman dilimi iizerinden ¢aligmaktdir.

Modellerde kullanilan kisitlar, {iretimin dogasi geregi olan kaynak kapasitesi, hazirlik
siresi gibi ve iiretimi dogrudan etkileyen tiim faktorlerdir. Bunun disinda miisteri
servis seviyeleri ile iligkilendirilen taleplerin erken ve ge¢ karsilanmasi gibi kisitlar da
modelde ayrica dikkate alinmaktadir. Ozellikle ¢dziimiin istenilen kalitede olmas1 igin
makina ve isyeri oncelik se¢imleri ile ayn1 donemde hazirlik ve gecis siiresi en az olan
irlin-lirtin gruplarinin tercih edilmesi biiylik 6nem tasimaktadir.

Bu calismanin temel hedefi, operasyonel maliyetleri diisiirecek, miisteri hizmet
diizeyini arttiracak ve planlama boliimiiniin hizli degisen kosullara daha iyi adapte
olmasini saglamak i¢in goriiniirliiligii arttiracak bir tedarik zinciri karar destek sistemi
gelistirmektir. Biitlinlesik ve giinliik kapasite planlama gibi entegre modellerden
olusan planlama sistemi, optimizasyon yontemleri ve sezgisel yontemlerin bir karigimi
ile ¢oziilir. Planlama sistemi, ICRON Tedarik Zinciri Optimizasyon Sisteminde
uygulanmistir. ICRON sisteminde gelistirilen modeller uygulamanin hizli bir sekilde
gelistirilmesine de imkan saglamistir.

Olusturulan modeller ve entegre bir tedarik zinciri sistemi sayesinde planlama daha
goriiniir ve yonetilebilir hale getirilmistir. Bu sayede departmanlar arasi iletisim
giiclenmekte, her bir departman plani ve plandaki degisimlerin talep yonetimine olan
olas etkilerini daha net bir sekilde gorebilmektedir.
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Ust yonetim tarafindan siirekli analiz ve talip edilen, ge¢ karsilanan talep oranlarinda
azalma ve talepleri mevcut stoklardan karsilama oranlarinda bir artmanin en kisa
siirede gozlenebilecegi ongoriilmektedir.
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1. INTRODUCTION

Demand fulfillment is an important concept that provides a competitive advantage in
today’s business environment with an inflating worldwide competition consequently,
it has become increasingly popular in both the service and the manufacturing sector. It
builds customer loyalty and recognition, therefore has a large impact on profitability.
Accordingly, Davis et al. [56] state that “customer satisfaction is not the end objective,
but rather an intermediate way station”. Customer satisfaction, which may be achieved
via various factors such as low price, high quality, short delivery times, leads to
customer loyalty, which in turn results in customer retention, and consequently
increasing sales and finally providing higher profits. According to the study of
Reicheld et al. [57], covering a wide array of industries, “a 5 percentage shift in
customer retention results in 25-100% profit”. Since most of the manufacturers and
companies are aware of this significant impact of customer retention on profitability,

they focus more on increasing customer satisfaction.

Meeting the customer demand within short and assured delivery times is crucial for
achieving customer satisfaction. Besides, in a competing business environment, short
delivery times are quite an effective tool for the companies to differentiate themselves
from their rivals. Therefore, this triggers the manufacturers to shorten their response
times with effective capacity planning and improve their production processes in order
to be able to assign shorter due dates, which will extend sales and reduce costs. Since
capacity improvement can be done to a certain extent, the improvements in the

production capacity can be supported with an effective due-date management.

For an effective due-date management, the manufacturers have to deal with the
tradeoff between quoting small due-dates in order to increase customer satisfaction
and achieving them with a constrainted production capacity. If the due-dates are set
long, companies may lose customers because of the customers’ limited delivery time
flexibility, which may vary according to the industry and product. On the other hand,
if the due-dates are unrealistically short to achieve with the available production

capacity, the customers again may have to wait a considerable amount of time for the



delivery, and additionally, the due-date reliability of the company may deteriorate.
Therefore an effective due-date quotation policy is an essential tool used in practice
for production control which has a significant impact on enhancing lead times and

customer satisfaction as addressed in Patil et al. [58].

In order to extend customer satisfaction, many firms may prefer to produce customized
products for their customers, which in turn increase the production costs and delivery
times as well. In such a business environment with changing customer needs and
expectations, companies producing customized products can remain competitive by
utilizing suitable due-date management policies in order to condense their lead times
and increase their due-date reliabilities. However, the effect of increasing demand for
customized products does not only shorten lead time but also propagates new concepts
such as “delivery time differentiation”. Especially companies having customers from
diverse segments may encounter different delivery time sensitivities. Therefore, we
can say that due-date quotation is an effective tool which may serve different purposes

from capacity planning to product differentiation.

In this study, multi-level mixed integer model is developed to minimize total cost and

tardiness while increasing on-time delivery performance and demand satisfaction.

The thesis is organized as follows: In Chapter 2, we present an overview of the related
literature about the research, where problems in this thesis are considered. In Chapter
3, the basics of optimization methodology are explained and the selected optimization
techniques are expressed. In Chapter 4, contains the descriptions of three models in
detail. In Chapter 5, the details of implementation of three models are given.
Parameters of the study and how they are integrated into the problem are expressed.

Finally, in Chapter 6 a summary of the implementation results are mentioned.



2. LITERATURE REVIEW

The problems that we consider in this study (capacity allocation, demand optimization,
distributed demand handling ) has received a significant amount of interest in the
literature. We refer [1] for a complete treatment of Supply Chain planning using
mathematical programming methods. Mula et al. [2] provide a review of literature in
production and transportation planning, where an extensive variety of mathematical
programming methods, such as linear programming, mixed integer programming, non-

linear programming, stochastic programming etc., are used in tactical decision levels.

In literature, there exist various approaches to different extensions of aggregate
production planning problem. Alain [3] and Akartunali et al. [4] work on solving
Mixed Integer Programming (MIP) formulations of production planning problem,
where fixed or setup costs are considered. Alain [3] proposes a primal-dual approach
to deal with capacitated production planning problem where fixed production costs are
involved. Since fixed costs are considered in the model, production planning problem
is formulated as a MIP, where obtaining optimal solutions are only possible for very
small instances. Akartunali et al. [4] cope with a heuristic approach to multilevel
production planning where setups are considered in MIP model formulated for
permitted production planning problem. In the proposed heuristic approach, they

combine Linear Programming (LP)-and-fix and relax-and-fix heuristics.

Fumero [5] and Jolayemi et al. [6] consider production planning problem on a network

of production plants. Both studies formulate the problem as a MIP model.

Fumero [5] uses Lagrangian relaxation methods to solve production planning problem
where the manufacturing organization is divided among a number of plants and size,

production plant and resource of production lots sizes should be determined.

Jolayemi et al. [6] specify the production requirements in all plants, whereas they also

evaluate subcontracting needs in case of capacity shortages.

Kim and Kim [7] integrate classical LP model with simulation to find a capacity
feasible production plan. The main concern of the study is that the production lead

times are not necessarily in accordance with the time buckets of the LP model. To



modify the use of capacity they propose new parameters called effective loading ratio
and effective utilization factor to the capacity constraint of LP model. Those
parameters are determined by the simulation, where the production plan generated by
LP is used.

Another study where lead times are considered in modeling approach is [8]. Here, the
released production order at any time period can only be satisfied after a certain
amount of periods. Fulfillment of dependent demands and capacity usage constraints

are modeled concerning that fact.

Leung et al. [9] formulate a goal programming model for aggregate production
planning problem in a multi-plant production environment with constrainted storage
and resource capacities, where goals are profit maximization, minimizing defect and
repair costs and maximizing resource utilization. Fuzzy multi-objective linear
programming approach for aggregate production planning problem is developed in
[10]. Same authors work on the development of possibilistic linear programming

model for aggregate production planning problem in [11].

Another extension to production planning problem is implemented by [12], where
there exists flexibility in demand satisfaction. That is, from a number of demands for
a time period, the model may choose to fulfill only some quantity of demands. The
objective is to maximize profit where setup costs and inventory holding costs are taken
into account. Authors obtain some results for the optimal solution of the problem such
as in the optimal solution, no demand is partially fulfilled and demands are not partially
delivered.

In literature, there is some hybrid flow shop scheduling problems where optimization
techniques are used. Mendez et al. [13] review the use of optimization techniques for
solving scheduling problems. Ruiz et al. [14] focus on studies on hybrid flow shop
scheduling problem. In [15], a wide-ranging study on scheduling problems with setup
times is supplied.

In [16], MIP models and heuristic approaches are offered to model realistic scheduling
problems in hybrid flow shops, where sequence-dependent setup times, machine
qualifications and priority constraints are taken into account. Another MIP formulation

is recommended in [17] for a real life problem experienced in a manufacturing firm in



electronic and semiconductor industry. A case study in electrical appliance
manufacturer is given in [18], where MIP models are used.

A MIP formulation is suggested in [19], where the objective is to maximize resource
usage and also to minimize tardiness and earliness penalties of orders. Sawik [20]
recommends a MIP model for flexible flow shops where standard buffer spaces are
limited. Harjunkoski and Grossmann [21] merge MIP and constraint programming
models to solve multi-stage scheduling problems. Using MIP, they first commit
production batches to resources. Sequencing of batches is performed using constraint
programming method. Prasad and Maravelias [22] expand a mixed integer
programming model for manufacturers with batch processing. The model is composed
of three decision phases: deciding production batches, assigning batches to units and

sequencing batches assigned to each unit.

The problem reviewed in [23] is multi-product multi-stage scheduling problem in the
pharmaceutical industry. Authors come up with two alternative MIP formulations and
a solution approach for real life problems, where they dissolve solution procedure into
two steps, i.e. constructive and improvement steps. In constructive step, they schedule
orders one by one using MIP model until each order is scheduled and a feasible
solution is obtained. In improvement step, they re-order batches until no improvement
is obtained. Mendez et al. [24] cope with multi-stage flow shop scheduling problem in

batch facilities, where they suggest a mixed integer linear programming formulation.

Several studies have concentrated on designing combined methods for solving
production planning and scheduling problems (e.g., [25, 26, 27]). Bhatnagar et al. [28]
specify the problem of integrating aggregate production planning and short-term
detailed scheduling decisions, where various decisions are taken in different planning

levels.

They integrate those decisions by suggesting a planning scheme with feedback
mechanisms among different levels. Xue et al. [29] merge aggregate production
planning and sequencing problems in a hierarchical planning system where sequence-
dependent family setups exist. Production planning and scheduling problems in a
hybrid flow shop are combined in a decision support system in [30]. Authors first solve

a linear programming model, where production quantities for each period are



determined. The production quantities and lot sizes are given to scheduling module,
where scheduling is implemented based on a simulated annealing approach.

Jung et al. [31] suggest safety stock levels avoid demand uncertainty in cost effective
supply chain management. Their study determines to use the safety stock level to meet

the desired level of customer satisfaction.

Zhang et al. [32] define an integrated solution framework which merges scatter
evolutionary algorithm, fuzzy programming and stochastic chance-constrained
programming model for production planning problem considering the trade-offs
between inventories, production costs, and customer service level. The study
demonstrates that an integrated solution framework is effective to generate robust

production plans under price and demand uncertainties in the market.

Fildes et al. [33] simulate how to demand uncertainty and forecast error effect on

supply chain management both production planning and service level side.

Croston [34] creates a method to overcome the fluctuations of stock levels where
intermittent demands occur. His study also shows that safety stock levels for
intermittent demands must be calculated carefully not only balance unused stocks but

also show prompt reactions for demand fluctuations.

Galasso et al. [35] investigate the internal constraints of production process like cycle
times, frozen periods etc. to satisfy the customer demand using mixed-integer linear

programming where demand is flexible.

Mirzapour et al. [36] focus on aggregate production planning problem under an
uncertain environment in a multi-site, multi- period, multi-product system. Their
model minimizes total costs as well as customer requirement tardiness in all planning

periods using LP-metrics method.

Gupta et al. [37] aim to search out the trade-off between inventory reduction and
process cost under demand uncertainty and create a framework of a midterm, multi-

facility supply chain planning with a chance constraint programming approach.

Leung et al. [38] formulate a robust optimization model for aggregate production
planning problem in a multi-facility production environment, where goals are profit
maximization, minimizing production, labor, inventory and workforce changing costs

and maximizing resource utilization under diverse economic development scenarios.



Chen et al. [39] formulate a hierarchical decomposition model for a multilevel
distribution network in order to minimize lead time, maximize service level and

maximize forecast accuracy under demand uncertainty.

Jiang et al. [40] try to figure out the effects of the correlation of iterant components on
forecasting and stock control. They use Syntetos-Boylan Approximation method for
forecasting.

Altay et al. [41] aim to search out the effects of three different types of correlation on

forecasting and stock control of intermittent demand items.

Kazemi et al. [42] formulate robust optimization model in order to determine the
tradeoff between the backorder/inventory cost and the customer service level under
demand uncertainty. They obtain significant outcomes compared with stochastic

programming.

Silvaetal. [43] and Faria et al. [44] use a new supply chain management methodology,
distributed optimization model, which allows cooperation between all elements in the

chain. They use ant colony optimization to solve scheduling and routing problems.

Gupta et al. [45] provide an overview of our previously published works on
incorporating demand uncertainty in the midterm planning of multisite supply chains.
They propose an effective tool for evaluating and actively managing the exposure of

an enterprises assets to market uncertainties.

Chen et al. [46] proposed a model to deal with multiple incommensurable goals for a
multi-echelon supply chain network with uncertain market demands and product
prices.

Tratar et al. [47] use HoltWinter's method to increase efficiency while improving

customer service level as well as reduce total cost.

Lasschuit et al. [48] formulate the mixed-integer non-linear model in order to minimize
transport costs, fixed costs, stock-holding costs where planning and scheduling are
resource-intensive, complex, rolling processes. They obtain significant improvement

in strategic decision taking process.

Nikolopoulou et al. [49] propose a hybrid approach combining mathematical
programming and simulation model to solve supply chain management. They obtain

an efficient solution to the operational/tactical level of the supply chain management.



Arcelus et al. [50] formulate Bicriteria optimization model in order to determine the

ordering and pricing decisions under demand uncertainty.

Petropoulos et al. [51] propose a combination of Croston’s method and Syntetos-
Boylan Approximation model in order to explore the efficiency of forecast
combinations in the intermittent demand. They obtain improved forecasting

performance.

Rajopadhye et al. [52] use the Holt-Winters method in order to forecast the uncertain
demand for rooms at a hotel for each arrival day and maximize revenue by making

decisions regarding when to make rooms available for customers and at what price.

Sousa et al. [53] formulate an enterprise optimization model in order to optimize the
production and distribution plan where an allocation of too many products/customers
to the same resource and idle periods in the planning of the bottleneck resources,

preventing the whole system from operating at its maximum capacity.

Kourentzes [54] uses Croston’s method model in order to maximize the accuracy of

demands.



3. METHODOLOGY

In this study, a mixed integer programming model will be created that will maximize
on time delivery and minimize the cost of production. Mixed integer programming
(MIP) is a programming model in which some of the decision variables are integers
and some are rational numbers. An example of the general structure of mixed integer

models can be given as follows [59]

Max Z = 3x, + 2X,

X, + X, <6 (3.1)
X, X, = 0, X, integer

Mixed integer linear models are solved with integer modeling methods. These methods
are divided into two as heuristic methods and optimization methods.

Heuristic methods are methods that have developed for specialized problem types but
do not give the most favorable result but approach the probable result. These methods
are preferred when the amount of time and energy required to find the optimal solution
is too great.

There are different algorithm approaches for solutions of exact numbered models.
Mixed integer models are solved by solution approaches of integer models. These

approaches can be grouped as follows [59]:

e Branch-and-bound method
e Cutting plane algorithm

In the branch-and-bound algorithm, which is the most frequently used method for
solving the integer models, the model is considered first by ignoring the necessity of
the integer number. The solution obtained in this way is called relaxation of linear
programming [60]. For the maximization problems; the result obtained by linear
programming relaxation is greater than or equal to the value obtained by integer

programming (if the linear model has the best result-giving decision variables of an



integer number). For minimization problems, the result will be smaller (or equal) as a

result of the exact number modeling.

The solution is to select one of the desired variables to be an integer. New constraints

related to the value of this decision variable are added. That is if the system gets the

best value when X, = 3.5, the constraints X, < 3.5 and X, =4 are added to the model.

When X; reaches the integer value than integer values are started to be searched for
the other variables. The algorithm ends when all integer variables get the best value
related with the objective function. The example that is given at [59] is shown in Figure

3.1.

%=375,% =125 %, =2375

hsl — T

LowerBound (Optimal)
X =3.%=2,% =23 X =4,% =083,x =2333
X, <0 X, =21
X=45,%=0,%=225 No Feasible Solution
x <4 25
Lower bound _ _
X, =4,% =0,x, =20 No Feasible Solution

Figure 3.1 : Branch-and-Bound Algorithm Example.

The cutting plane algorithm starts by finding a linear solution like branch-and-bound
algorithm [59]. In the subsequent steps of the algorithm, constraints are added to
narrow the resulting solution space. Added cuts should not handle possible integer
solutions [59]. In Figure 3.2, the general structure of the cutting plane algorithm is

visualized. The cuts create new constraints for the model.

The branch-and-bound algorithm is not suitable for solving large-scale problems. As
the number of decision variables increases, the number of iterations that must be
repeated to achieve the solution increases. Branch and cut algorithms, such as
GUROBI and CPLEX, are used as a mixture of branch-and-bound and cutting plane
algorithms [61].
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Constraint2 Constraint2 Constraint2

Constraint1 Constraint1

Constraint1

Cutting Plane 1

CuttingPlane 1 Integer

Integer

Figure 3.2 : Cutting Plane Algorithm Example.

Given an integer programming problem, the idea of a Branch-and-Cut method is
recursively partition the solution set into subsets and solve the problem over each
subset. This procedure generates an enumeration tree where offsprings of a node
corresponding to the partition of the set associated with the parent node. In each node
of the tree, a linear relaxation of the problem is considered by dropping integrality
requirements and adding valid inequalities which cut off the fractional solution. To
reduce the number of nodes of the tree, it is important to have good lower and upper
bounds, good rules to partition the feasible set, good strategies to search for the tree
and a good strengthening of the linear relaxation.

The general structure of the branch-and-cut algorithm is given in Figure 3.3.

MIP models are frequently used in areas such as budget planning, network planning,

capacity planning where the final decision is made.

The methods, which are used in the literature, are listed in Table 3.1.

11



Solve LP Relaxation
problem

Have all the
integer decision
variables solved

Add cut

Run heuristic

y

Pick an integer
decision variable and
create two sub models

Pick one of the sub

models

Yes

Update related
values

Stop the algorithm

Figure 3.3 : Branch-and-Cut Algorithm Example.
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Table 3.1 : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
2 Mula et al. 2010 provide readers with a a wide range of  To study the analyzed works, a
starting point for mathematical classification based on the
mathematical modeling programming analysis of eight aspects has
problems in the supply chain methods, like LP,  been proposed: supply chain
production and transport MIP, NLP, structure, decision level, supply
planning aimed at production stochastic chain modeling approach,
management researchers programming purpose, shared information,
model limitations, the novelty
contributed and the practical
application
3 Alain, G 1999 capacity-constrained production MIP obtaining optimal solutions are
planning problems with variable only possible for very small
and fixed costs instances
4 Akartunali et al. 2009 heuristic approach to multilevel minimize LP-and-Fix & proposed framework for finding
production planning where the total cost in multi-level Relax-and-Fix good solutions to lot-sizing
setups are considered lot-sizing problem problems is comparably efficient
5 Fumero, F 1997 The problem of optimally allocating production Lagrangean effective productions in each
coordinating and integrating volumes among the different techniques plant

manufacturing facilities,
assigning production
guantities to alternatives
within each plant,
determining the production
lots for each product on each
type of machine in each
period

complex decisions at the tactical
production planning level
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
6 Jolayemi et al. 2004 planning production and maximizes total profit over a Linear determine the production
transportation quantities in finite planning horizon programming requirements in all plants,
multi-plant and multi- whereas they also evaluate
warehouse environment with subcontracting needs in case of
extensible capacities capacity shortages
7 Kim et al. 2001 find a capacity feasible cost minimization classical LP the proposed approach
production plan model with generates the plans with less
simulation total costs in fewer numbers of
iterations for the cases with and
without backlogging.
8 Spitter et al. 2005 constrainted multi-period minimize the total cost of Linear feasible and reliable production
capacity usage with planned inventory and backorders Programming plans
lead times
9 Leung et al. 2009 planning problem in a multi- profit maximization, A goal flexible and robust model
facility production environment minimizing defect and repair programming
with limited storage and costs and maximizing model
resource capacities resource utilization
10 Wang et al. 2004 multi-product aggregate minimize total production Fuzzy multi- feasible solution with all levels

production planning decision
problem in a fuzzy environment

costs, carrying and
backordering costs and rates
of changes in labor levels
considering inventory level,
labor levels, capacity,
warehouse space and the
time value of money

objective linear

programming

of satisfaction
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
11 Wang et al. 2005 the multi- product aggregate minimize total costs with possibilistic efficient solution and overall
production planning problem reference to inventory and linear degree of decision maker
with imprecise forecast labor levels, overtime, programming satisfaction with determined
demand, related operating subcontracting and model goal values
costs, and capacity backordering levels, and
resource capacity.
12 Merzifonluoglu et al. 2006 determine optimal levels of to maximize profit where Linear optimal solution of the problem
demand, production, and setup costs and inventory Programming where no demand is partially
inventory for every planning holding costs are taken into satisfied and demands are not
period when flexibility exists in consideration partially delivered.
selecting demands and their
delivery timing
13 Mendez et al. 2006  the great diversity involved in MILP
short- term batch scheduling
14 Ruiz et al. 2010  The scheduling of flow shops Scheduling optimal schedules
with multiple parallel machines
per stage is a complex
combinatorial problem
15 Allahverdi et al. 2008 provide an extensive review Scheduling optimal schedules
of the scheduling literature
on models with setup (costs)
16 Ruiz et al. 2008 gap between the theory and the minimizing sequence- Mixed integer optimal schedules

practice

dependent setup times,
maximizing machine
eligibility

modelization and

Heuristics
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
17 Omar et al. 2010 hybrid flow shop scheduling minimizing sequence- MIP
problem dependent setup times,
maximizing machine eligibility
in the electronic sector
18 Georgiadis et al. 2005 efficient use of resources, tasks minimization of total MIP optimal schedules with a full
and time operating costs and customer satisfaction at
maximizing customer minimum costs
satisfaction
19 Chen et al. 2007 meet customer due dates with  maximize machine utilization MIP optimal schedules
capacity constraint and lead while minimizing tardiness
times and earliness penalties of
orders
20 Sawik, T. 2000 scheduling of a determine a production MIP optimal blocking schedules
flexible flow line with blocking ~ schedule for all products so
as to complete the products
in a minimum time.
21 Harjunkoski et al. 2002 multi-stage scheduling due date and cost MILP and optimal solution with efficient
minimization Constraint schedules
Programming
22 Prasad et al. 2008 determining production minimization of earliness, MILP balanced production schedule

batches, assigning batches to
units and sequencing batches
assigned to each unit

lateness and production cost,
while maximization of profit

16



Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
23 Kopanos et al. 2010 scheduling problems in minimizing order due dates, MIP feasible and good solutions in
multiproduct multistage batch  processing times, sequence- relatively
plants dependent changeover times, short time
unit-dependent setup times
and operating cost
24 Mendez et al. 2001 multi-stage flow shop minimization of the total MIP The optimal schedule
scheduling problem in order earliness, i.e. the
batch facilities elapsed time between the
order completion time and
the due date for any order
25 Lasserre, J. B 1992 aplanning problem with a fixed integrated job-shop planning Scheduling feasible production plans and
sequence of products on the and scheduling schedules
machines, and a job-shop
scheduling problem for a fixed
choice of the production plan
26 Li et al. 2010 production planning and minimizing inventory cost, Augmented effective in solving the large
scheduling integration problem backorder cost, and Lagrangian integration problem and
production cost method generating a feasible solution.
27 Maravelias et al. 2009 integration of medium-term fulfill customer demand at MIP and effective in solving the large
production planning and short- minimum total (i.e. Scheduling integration problem and
term scheduling production + inventory) cost. generating a feasible solution.
28 Bhatnagar et al. 2011 coordinating aggregate cost minimization MIP and cost improvements over a wide
planning decisions and short- Scheduling range of operating scenarios

term scheduling decisions

17



Table 3.1 (continued) : Literature review.
No Optimization
Reference Year Problem Objective Method Outcome
29 Xue et al. 2011 aggregate production planning  minimize the total relevant Aggregate reason- able and feasible
with sequence-dependent costs along with minimizing Production production plans with lower
family setup times production sequence of Planning (APP) costs
product families and Hierarchical
Production
Planning (HPP)
30 Riane et al. 2001 production planning and find a good schedule which Linear feasible and optimal schedule
scheduling integration problem generates a lower inventory Programming after determining quantities in
level, a high plant efficiency  and scheduling each period
31 Jung et al. 2004 Demand uncertainty in the Determining the safety stock Simulation-based Safety stock level
supply chain usually increases level to use to meet the optimization
the variance of profits or costs desired level of customer approach
to the company.To hedge satisfaction
against demand uncertainty,
safety stock levels are
commonly introduced.
32 Zhang et al. 2011 The complexity the production  Biild an integrated solution Scatter
planning issue by considering

the bill of materials and the
trade-offs between inventories,
production costs and customer
service level.

The model is effective in
framework

developing robust production
plans under various market
conditions.

Evolutionary
Algorithm, Fuzzy
Programming,
and Stochastic
chance-
constrained
programming
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
33 Fildes et al. 2011 develops a framework for the best lot sizing rules for the
examining the effect of deterministic situation are the
demand uncertainty and worst whenever there is
forecast error on unit costs uncertainty in demand. Unit
and customer service levels costs for a given service level
in the supply chain increase exponentially as the
uncertainty in the demand data
increases.
34 Croston, J. D. 1972 intermittent demands almost  Forecasting and Stock Control
always produce inappropriate for Intermittent Demands
stock levels. Demand for
constant quantities at fixed
intervals may generate stock
levels of up to double the
guantity really needed.
35 Galasso et al. 2008 to satisfy the customer mixed-integer
demand while respecting the linear
internal constraints of the programming
production unit and those of model
its supply chain partners
36 Mirzapour Al-E- 2011 multiple suppliers, to minimize production, Robust multi- a promising approach to
Hashem et al. manufacturers, and customers, hiring, firing and training, raw objective fulfilling an efficient production

addressing a multi-site, multi-
period, multi-product aggregate
production planning (APP)
problem under uncertainty

material and end product
inventory holding,
transportation and shortage
cost

optimization;

planning in a supply chain

19



Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
37 Gupta et al. 2000 the framework of mid-term, the trade-off between constraint significant improvement in
multisite supply chain planning customer demand programming  guaranteed service levels can be
under demand uncertainty to satisfaction (CDS) and approach in obtained for a small increase in
safeguard against inventory production costs conjunction with the total cost.
depletion at the production a two-stage
sites and excessive shortage at stochastic
the customer programming
methodology
38 Leung et al. 2007 the multi-site production solve multi-site production Robust the proposed model is more
planning problem subject to planning problem with optimization; practical for dealing with
production import/export uncertainty data, in which Stochastic uncertain economic scenarios
guotas imposed by regulatory the total costs consisting of programming
requirements, the use of production cost, labor cost,
manufacturing factories with inventory cost, and
regard to customers' workforce changing cost are
preferences, as well as minimized
production capacity, workforce
level, storage space
39 Chen et al. 2014 the inventory of a multilevel reduce both inventory and hierarchical The forecasting accuracy can be

distribution network with
intermittent lead time extension
resulting from disruptive
transportation infrastructure
damage because of regional
weather and non-stationary
demands.

stock out scenarios

decomposition
methodology

improved; The service level can
be guaranteed
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
40 Jiang et al. 2016 the effects of the correlation of Syntetos-Boylan autocorrelation of demand,
intermittent materials on Approximation demand interval, and cross-
forecasting and stock control correlation between demand
and demand interval have
significant effects on forecasting
accuracy and inventory level
41 Altay et al. 2012 the effects of three different Correlation; correlation in intermittent
types of correlation on Forecasting demand does play a role in
forecasting and stock control forecast quality and stock
of intermittent demand items control performance
42 KazemiZanjanietal. 2010 Robust production planningina Robust the significance of using robust
manufacturing environment optimization;  optimization in generating more
with random yield Stochastic robust production plans in the
programming uncertain environments
compared with stochastic
programming
43 Silva et al. 2009 Successful supply chain introduces a new supply Ant colony ant colony optimization allows
management requires a chain management optimization; the exchange of information
cooperative integration technique Distributed between different optimization
between all the partners in the optimization problems by means of a
network. pheromone matrix and it is

more efficient than a simple
decentralized methodology for
different instances of a supply
chain
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
44 Gupta et al. 2003 Overview past studies incorporating demand Stochastic The proposed model provides
uncertainty in the midterm optimization an effective tool for evaluating
planning of multisite supply and actively managing the
chains exposure of an enterprises
assets to market uncertainties
45 Chen et al. 2004 uncertain multi-echelon supply  to simultaneously maximize Fuzzy maximum satisfaction of
chain network participants’ expected profit, optimization; demands in each period
average safe inventory levels,  Mixed-integer
average customer service nonlinear
programming
46  Tratar, Liljana Ferbar 2010 increasing efficiency and reduce the total cost HoltWinter's the average costs can always be
improving customer service method; reduced by joint optimization
level Optimization
47 Faria et al. 2006 The timely production and The management Ant Colony the proposed coordination

distribution of rapidly perishable

goods is a complex
combinatorial optimization
problem. The problem involves
several tightly interrelated
scheduling and routing

problems that have to be solved
considering a trade-off between

production and delivery costs.

methodology consists of
allowing each system to
exchange information
concerning intermediate
optimization results through
pheromone matrices

optimization;

Hybrid methods;

Perishabl;
Combinatorial
optimization;
Parallel
algorithms;
Constrained
optimization

mechanism improves the supply
chain performance when

compared to another

management approach, where

both problems are optimized

using hybrid methods combining
meta-heuristics with
constructive heuristics
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
48 Lasschuit et al. 2004 Supporting supply chain To minimize transport costs, Mixed-integer improvement in strategic
planning and scheduling fixed costs, stock-holding non-linear decision taking the process
decisions in a competitive area costs programming;
where planning and scheduling
are resource-intensive, complex,
rolling processes
49 Nikolopoulou etal. 2012 ascertain the daily production  To minimize production cost, hybrid efficient solution to the
target profiles for each transportation cost, simulation operational/tactical level of the
production facility and, product inventory holding and optimization supply chain management
shipment profiles from shortage costs, subject to (MILP;
production facilities to markets capacity and inventory simulation-based
balance constraints optimization)
50 Arcelus et al. 2012 the conflicting goals of To maximize the probability Bicriteria the ordering and pricing
maximizing the expected profit of achieving the expected optimization decisions under demand
and the probability of exceeding profit uncertainty are impacted by the
it demand
51 Petropoulos et al. 2015 Intermittent demand is explores the efficiency of Croston’s appropriate combinations lead
characterized by infrequent forecast combinations in the method and to improved forecasting

demand arrivals, where many
periods have zero demand,
coupled with varied demand
sizes. The dual source of
variation renders forecasting for
intermittent demand a very
challenging task.

intermittent demand context

Syntetos-Boylan
Approximation

performance over single
methods, as well as simplifying
the forecasting process by
limiting the need for manual
selection of methods or hyper-
parameters of good performing
benchmarks.
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Table 3.1 (continued) : Literature review.

No Optimization
Reference Year Problem Objective Method Outcome
52 Rajopadhye et al. 2001 forecast the uncertain demand maximize revenue by making the Holt-Winters = management expertise has to
for rooms at a hotel for each decisions regarding when to method implement into to forecast
arrival day make rooms available for algorithms
customers and at what price
53 Sousa et al. 2008 allocation of too many optimize the production and Enterprise An analytical methodology
products/customers to the same distribution plan considering optimisation should be developed to use the
resource and idle periods in the a time horizon of 1 year, information gathered in the
planning of the bottleneck providing a decision support second step to improve the
resources, preventing the whole tool for long-term supply chain design and plan by
system from operating at its investments and strategies; enforcing a more distributed
maximum capacity test the accuracy of the allocation of
derived design and plan products/customers to the
available resources in each time
period
54  Kourentzes, Nikolaos 2014 Intermittent demand time series maximizing the accuracy of Croston’s The proposed metrics are found
involve items that are requested demands method to not only perform best but

infrequently, resulting in
sporadic demand. But a
consistent and valid
optimization methodology is
lacking

also provide consistent
parameters with the literature,
in contrast to conventional
metrics. This work validates that
employing different parameters
for smoothing the non-zero
demand and the inter-demand
intervals of Croston’s method
and its variants is beneficial
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4. MATHEMATICAL MODEL

The primary goals of this model are as follows:

e To increase on-time delivery adherence to promised date setting and to
minimize postponements
e To manage customer and order priority

e To minimize stock levels while improving service level of Central European
Warehouse

4.1 Aggregate Planning Model

This model aims to find the optimal allocation of remaining capacities to product
groups. A product group is defined as the products which have same specifications
like size, material etc. and could be produced together.

At this level of planning a high-level overview over the capacities based on product
groups are considered and the main goal is to meet the forecasted requirements while
considering both capacity availabilities and at the same time production
costs/preferences.

In the Aggregate Planning Model, the preferred time bucket is a month and forecasts
are generated on a monthly basis. The primary purpose is to allocate monthly
production process capacities to forecasts for each product group and try to avoid
allocating capacities to those that do not have open forecasted quantities. Open
forecasted quantity is described as the forecast for that month minus all the open orders

under that product group.
4.1.1 Decision variables and parameters

Indices
m : Product groups, m € M, M:{1,2,...,mmax}
t : Periods, t€ 7, T:{1,2,...,tmax} . In this model time bucket is a month.

p : Production process, p € P, P:{1,2,...,pm%*}
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Parameters

D, : Open forecasted quantity for product group m in period t.

C,. : Total available production capacity of process p in period t. The capacity
Is expressed in time (seconds).

Sm.p - Unit operation time for product group m in process p.

K., : The set of material codes with product group m.

Sk,p - The unit operation time of item k in production process p

Smp = max{sk'p;k € Km}

W, ,: Penalty cost for assigning product group m to production process p. It is used to

ensure that prioritized process is being selected.

h,., : Monthly stock keeping cost for product group m.

b, : Backorder penalty cost for not satisfying product group m’s forecast on its month

but one month later.

4.1.1.1 Decision variables

Xm,p,t : Amount of product group m assigned to process p in period t.
I« : Inventory built up for product group m at the end of period t.

B... : Backorder level for product group m at the end of period t.

4.1.2 Constraints

Capacity constraint is to indicate that total production in process p during period t

cannot exceed the total available production capacity of process p in period t.

Forall pandt;

Zsm,pxm,p,t = Cp.t (4.1)
m

Inventory balance constraint is used to calculate total inventory and backorder levels

for each product group at the end of each period.
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For all m and t;

Im,t+1 _ Im,t + Bm,t + Dm,t _Z Xm,p,t =0 (4.2)
p

4.1.3 Objective function

Our goal is to minimize the total cost associated with the Aggregate Plan.
Production and penalty cost for process priority is;

Zklzp:wm, pzt: Xon, .1 4.3)

Monthly stock keeping cost is;

hod Lo 4.4)
t

Backorder cost is;
bmz Bm, t (45)
|

Total cost is;

MinZ=>> Wno> Xosithad Tni+bnd Bn (4.6)
k p t t i

4.2 Daily Capacity Plan Model

Daily capacity plan model is a Mixed Integer Programming (MIP) aims to find
production lot sizes for the pioneering level codes considering setup preferences,
minimum lot sizes and scrap rates at the pioneering production lines. The pioneering
productions lines are the bottleneck and the main constrainted resources in the

production sequence.

This model uses the outputs of Aggregate Planning Model for product groups in
monthly periods in order to find the optimum production lot sizes for the products in

each group.
4.2.1 Decision variables and parameters

Indices

k : Pioneering process outcomes., K € K; K:{1,2,...,kmax}
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m : Product groups, m€ M, M:{1,2,...,mmax}

p : Production process, p € P, P:{1,2,...,pmax}

t : Periods, t€ T, T:{1,2,...,tmax}

o: List of all open customer orders, o€ O, 0:{1,2,...,0mex}
O, < O: List of all open orders for item k.

Parameters

B Minimum lot size for item k.

Cp.t : Total available capacity of process p in period t expressed in time units
(seconds).

0, : Total open quantity of order o.

do, p = S : Total duration (in terms of a number of days) for order o in
k.p

process p, where order o is for item k.

Sk p : Unit operation time (seconds) of material k in process p.
I', : The requested period of order o.

W, p : Unit cost (penalty) of producing item k in process p.
V((,l) : Penalty cost for tardiness for order o.

Véz) : Penalty cost for earliness for order o.

V,E?’) : Penalty cost for quantity produced to stock for item k.

4.2.1.1 Decision variables

UO, ot = {0,1} -itis 1 if order o in period t, is started to be processed in process p and

it is O otherwise

Xopt = {0,1}: It is 1 if order o in period t is assigned to process p, and it is 0

otherwise

fo : Planned finish period for order o
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Yoypyt >0; Quantity of order o, allocated to resource p in period t. This decision

variable is needed especially for large orders with an open quantity greater than the

total daily capacity of its process.

Qk,p,t > 0: Make-to-stock quantity of item k from process p in period t.
0, 20 Tardiness of order 0. Thatis if f, > I, then 8, = f, -1, else 6, =0

8, : Earliness of order 0. Thatis if f, <I, then & =1, —f  else 3 =0

4.2.2 Constraints

Order planning constraint is to ensure that all orders are placed on the capacity plan,

and there is exactly one process and one starting period planned for each order.

Forall o, pandt;
2.2 Uop =1 @“.7)
p t

Production flow constraint is used to ensure that once the production for an order is
started to be produced in period t it will continue during the calculated duration of the

order.

Forall o, pand t;

Xoyp!t ZUolp!t (48)
Production quantity constraint is used to ensure that if an order is not planned to be
processed by process p in period t, then the corresponding production quantity is zero.

Forall o, pand t;

0

Y Pt < qoxo,p,t (4.9

Capacity constraint is used to ensure that all production for a process p in period t obey

the capacity limitation of that process in the period.

For all pand t;

;Sk,p Z Yo,p,t + Zk:Sk,ka,p,t < Coi (4.10)

OeOk
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Order satisfaction constraint is used to ensure that total production quantity for an

order satisfies its open quantity.

For all o;

D2 Yot 20, (4.11)

p t

It is assumed that the minimum lot size can never be greater than the production

capacity per period (day) for each item to be produced in pioneering processes.

Forall i, pand t;

DYoot Qi =B D, Xo i 20 (4.12)

00, 00y

Tardiness / Earliness constraint is used to ensure that if the planned finish time of order

o is later than its promised date (order is tardy) then, the tardiness of the order is

190 = fo —I' and the earliness of the order is zero.

Forall k, p, and t;

1:Uo,p,t + do,p _00 +‘90 < I (4.13)

4.2.3 Objective function

Our goal is to minimize total production costs and to minimize the difference between

job finalizing date and requested dates.

Production cost is;

DD Wy (4.14)

k p

Penalty cost is;
1 2 3
2V6 06+ 2 V69 + 2 M 2.2 Qe (4.15)
o] o] k p t

Capacity allocation cost is;

PIDRAS (4.16)

0eQ, t
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Minimize

L= Zzwk.p Z ZYo,p,t +ZV<§1)‘90 +ZV£2)‘90 +ZVIE3)ZZQk,p,t (4.17)
k p 0 0 k p t

OeOk t

4.3 Central European Warehouse Order Planning Model

Central European Warehouse is operating according to make-to-stock strategy with
some target response times (service levels) towards its customers. The main supply
sources are the production facilities in Germany and Turkey. For the parts that are to
be requested from Turkey, in order to provide reliable future estimates to Turkish plant
capacity allocations, the replenishment orders of Central European Warehouse is

estimated by the Model. The model run for each material separately.
4.3.1 Decision variables and parameters

Indices

t : Periods, te 7, T:{1,2,...,tmex} . The minimum time bucket for the Central European

Warehouse is a month.

Parameters

L : Replenishment lead-time.

Q(t) : Total quantity, among the currently open orders, scheduled for receipt at the

start of period t.

17(0) : Current on-hand inventory at the warehouse.
I~ (0) : Total quantity of customer orders currently waiting to be satisfied.

D(t) : Demand forecast for period t.

ss : Safety stock level.

h, : Penalty cost for holding finished goods inventory.

M™ : A very big number.
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4.3.1.1 Decision variables

Q (t) = The quantity of the order to be released at the start of period t.

I (t) =Planned net inventory level at the start of period t.

S (t) = Net inventory level below the safety stock at the start of period t.
(

S*(t) =Net inventory level over the safety stock at the start of period t.

4.3.2 Demand balancing constraints

Beginning period inventory balance constraint is defined as;
(1)~ 17(0)-Q(0)+ 1 (0)+ D(0) =0

Inventory balance constraint in period t is defined as;

I(t+1)—1(t)—Q(t)+ D(t) =0

Replenishment constraint in period t is defined as;

I(t+1)—1(t)—Q(t—L)—Q(t)+D(t)=0

Safety stock constraint in period t is defined as;
STt)-S ()—I1(t)+ss=0

4.3.3 Objective function

(4.18)

(4.19)

(4.20)

(4.21)

The main goal is to keep as less finished goods stock as possible and at the same time

satisfy all orders and demand forecasts while adhering to safety stock and lead time

limitations. The model will be as follows.

Minimize Z =h, Y 1" () + M > S (t)
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5. IMPLEMENTATION

The reservation performance data before the implementation is used to determine lateness,

earliness and demand fulfillment from stock and three notions are defined:

e Anorder is late if Last Reservation Date > Last Promised Date + 7

e Anorder is early if Last Promised Data > Last Reservation Date + 14

e An order is satisfied by stock if Order Date + 3 > Last Reservation Date

e The promised time of an order is the time between its creation date and its first
promised date.

e The reserve time of an order is the time between its creation date and its

reservation date.

The customers are categorized into three segments by their customer priorities:

According to data, the results are defined in the following table.

Table 5.1 : Performance Data Results Before Implementation.

Avg
Avg Weighted
Total Weighted Reserve Late Early Satisfied
Customer Production Promise Time Orders Orders From

Priority (m?) Time (days) (days) (%) (%) Stock (%)

X 5.8 Million 36 -52 36-51 23-32  13-18 28

Y 22 Million 90 - 106 78 - 89 19-21 33-38 12

z 3.6 Million  57-66 53-60 23-26 23-24 12

Mathematical models are developed and implemented in ICRON [55] modeling
environment. ICRON [55], which is an object-oriented modeling environment, has an
integrated visual algorithm component that makes model development progress easier

for every kind of practices. By its cutting-edge, proprietary graphical modeling
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framework so called GSAMS, nodes are connected to each other as in flow charts to
construct algorithms for any kind of decision-making problem. A node represents a
specialized function, which returns a predefined output and designed to make life easy

for modelers who have limited computer science background.

ICRON [55] has a modular structure is leveraged by XML and C++. The environment
enables development of hybrid and sophisticated decision support systems by
connecting distributed computing, mathematical programming, heuristic approach,
high integration capability with ERP databases such as SAP, Oracle, AXAPTA and
MS Office components and web service support.

Set Decision Variabl ® -
Continuous: “x"

Set Degision iariabl ® =
Integer: “y"
--- . N i v

Zero - One: "z°

Figure 5.1 : Defining Decision Variables

Set Decision Variable node sets a field of an object as a decision variable according to
the user parameters of the node. The node receives a MP2_MODEL object and a list
of objects. For each object in List input link point, the field specified in "Decision
Variable" user parameter is identified as a decision variable of the MP2_MODEL
object. Specifically, an MP2_DecisionVariable object is created for each object in the
list, and is added to MP2_MODEL's DecisionVariables list.

When you double click on the node during design time, the form that is shown in
Figure 5.2 appears.
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Set as decision variable
pecsion
Variable -
Object Label

'@' Continuous
DV Type = (integer

':::' Zero - One
Lower Bound

Upper Bound

Register DV in
Field

T ok | e |

Figure 5.2 : Setting Decision Variables

Decision Variable : The field of each object in List to be designated as a decision

variable. The selected field must be an assignable field, whose return type is Number.

Object Label : The label for the decision variable, which will be used in optimization
log files and screen output. The entered expression must evaluate to a String. The
automatically generated index of the corresponding MP2_DecisionVariable will be

appended to the label by ICRON so that each decision variable has a unique label.
Decision Variable Type : Type of decision variable. Possible options are;
Continuous: represents a continuous decision variable

Integer: represents an integer decision variable, whose value must be integral

Zero - one: represents a binary decision variable, whose value must be either 0 or 1

Lower Bound : If an expression is entered, the lower bound of the created decision
variable is set as the evaluated numerical value of the expression. Otherwise, the lower

bound is set to 0 by default.

Upper Bound : If an expression is entered, the upper bound of the created decision
variable is set as the evaluated numerical value of the expression. Otherwise, the upper
bound is set to MP2_MODEL. Infinity if DV Type is chosen as Real or Integer, and to

1 if Decision Variable Type is chosen as Zero-one.
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Register Decision Variable in Field : If an expression is entered, each created
MP2_DecisionVariable will be registered to the relation defined by the expression.

MIM: "x"+"y"+"2"
-

Automatically relaxinfeasibility

Figure 5.3 : Objective Function and Solution

The minimization or maximization selection is defined with the objective function
node. Objective node sets the objective function of the optimization problem
represented by the MP2_MODEL object received via the fixed input link point. When
you double click on the node during design time, the following form appears:

Objective
Type -

o

Figure 5.4 : Setting Objective

With the "Solve” command, the resulting pattern is transferred to the CPLEX decoder.
During this transfer, relationships created over objects are transformed into equations.
If an authentic solution is obtained, the decision variables determined by the "Apply
solution™ command are associated with the objects. Apply Solution assigns the current
values of all MP2_DecisionVariable objects in MP2_MODEL to the corresponding
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fields of their related objects. The node does not contain any user parameters, and it
assumes that a feasible solution of the optimization model is readily available.

Run Advanced Optimization Function has various options listed as user parameters for
executing advanced functionality of ICRON's optimization engine and the underlying
solver. When you double click on the node during design time, the following form
appears:

Run advanced optimization function

(®) Use initial solution

':::'Autnmatically relax infeasibility
Run function = () Analyze infeasibility

'i::' Fix integers and re-solve

':::' Abort ongoing optimization

T TR

Figure 5.5 : Setting Advanced Optimization Function
The advanced optimization function to be executed. Possible options are:

Use initial solution: Instructs ICRON to extract initial values for integer or zero-one
decision variables from the current values of the corresponding objects and fields, and
pass these values to the selected solver for a possible initial solution. If the current
value of an integer or zero-one decision variable is fractional, then ICRON skips the

variable while passing initial values to the solver.

Automatically relax infeasibility: If the current MP2_MODEL is found to be
infeasible by a previous call to Solve, this option automatically relaxes some variable

bounds and constraint right-hand-side values to regain feasibility.

Analyze infeasibility: If the current MP2_MODEL is found to be infeasible by a
previous call to Solve, this option automatically analyzes the infeasibility to calculate

a minimal infeasible subsystem of the existing constraints and decision variables.

Fix integers and re-solve: If the current MP2_MODEL contains some integer or zero-
one decision variables and its solution was terminated before optimality was proven,
this option fixes the integer and zero-one variables at their current values and re-solves

the remaining linear programming problem in order to improve solution quality.
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Abort ongoing optimization: This option instructs ICRON and the selected solver to
stop the solution process of MP2_MODEL.

5.1 Model Outputs

After model implementation, it is expected a decrease in early and late orders
percentage with an increase in satisfaction from stocks percentage as soon as possible.
The most important contribution of this study is that the production plan is even more

visible for the planners.

While the model was being developed, real life problems, as well as studies in the
literature, were leading. For this reason, it is expected that the benefits of the model

will be seen in a short time also in the operation of the implementation.

It is aimed that this work will be a guide for demand-driven producers. It is considered
that a solution to the daily planning problem will be useful for dissemination in demand

and customer oriented other companies.

At the same time, it will be possible to prevent wrong planning with the whole system
being visible (stock, order, capacity etc.). This subject can be exemplified by solution
methods in real life. For example, in the ceramic tile sector, when machinery is not
planned properly with the right production sequence and quantity, idle inventories
increase, customer demands are further delayed, and eventually, orders are canceled.
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6. CONCLUSIONS

In this study, an integrated planning system was established at one of the largest
ceramic tile manufacturing company in Turkey. The company performs in a multi-
facility production environment. As the nature of the tile industry, the environment is
highly competitive and, hence, highly dynamic. The Supply Chain department’s main
concern is propagating the best production plan in the long and short term to be able

to compete in this dynamic environment.

We divided the planning problem of the company into two phases: aggregate capacity
planning and daily capacity planning. In aggregate capacity planning, the purpose is
to figure out monthly production and capacity allocation requirements given the
monthly forecasts created by the sales department. In the daily capacity planning
phase, the daily detailed production plan is developed. That is, the quantity, beginning
and end times of production batches for finished and semi-finished products are
generated as a result of the daily capacity planning phase.

In aggregate capacity planning, the problem is designed as a linear programming (LP)
model, which is very much alike to classical aggregate production planning problem.
Daily capacity planning model is determined in two steps. In the first step, a mixed
integer programming (MIP) model, i.e. batch sizing model, runs which is very much
alike to capacity planning model. Here, the model has smaller time buckets and shorter
planning horizon. After the production batches are decided in MIP model, they are

scheduled using a heuristic procedure.

All two modules are implemented using the development environment provided by
ICRON Supply Chain Optimization System [55]. The developed planning system
operates combined with other systems of the company such as SAP etc. Data flows
connected with planning activities are realized among those systems via ICRON. The
planning system also supports interactions of planning department with other

departments such as sales department and shop floor management.

A number of advantages of using the planning system such as enhanced customer

service level, improved responsiveness, improved due dates etc. is detected.
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Optimization of inventory flow effected in an enhanced product mix, consequently,
customer service levels are dramatically increased. The irrelevant inventory based on
an imperfect estimation of production requirements are minimized. Before the
planning system is implemented, average lateness was 27%, earliness was 25% and
demand fulfillment from stock was 15%. After implementation, improvements in

lateness, earliness and customer satisfaction are expected as soon as possible.

With the planning system, planners can also see the bottlenecks in the capacity. So,
they can control productions such that they do not face any loss of sales. They can also

lead the sales department by revising forecasts.

The operating environment of the company is highly competitive. It is not unusual to
face a very extreme marketing progress by one of the competitors. Usage of the
planning system enhanced the awareness of the company to take a correct position
against such confusions on the estimated state of the market conditions. The main
intention is that the planning system driven the daily operations of planners.
Integration of planning system with SAP allows planners to have an analysis of shop

floor so that they can discover errors and modify them quickly.
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