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GEOID MODELING BY THE LEAST SQUARES
MODIFIED HOTINE FORMULA USING VORONOI CELL STRUCTURES

SUMMARY

Increasing use of satellite based positioning techniques in combination with
geoid based vertical datum definition for height determination motivates
studies on precise geoid modeling. This is supported by the developments
in spatial data acquisition techniques and progress in computational
methodologies that facilitate computations of accurate and high resolution
geoid models. Even though several recent dedicated gravimetric satellite
missions (such as GRACE and GOCE) have enhanced accuracy and spatial
resolution global geopotential models (GGMs), however, the spatial resolution
of GGMs remains still insufficient for many applications. The benefits of these
improvements at the long and middle wavelengths of the gravity field signal
to the regional geoid mapping become more accurate.

This study provides the methodological characteristics of the gravity field
modeling and shows a mathematical comparison among the frequently
applied methodologies. In spherical approximation, geoid undulation
can be determined by using a modified Stokes formula, which combines
local terrestrial gravity anomalies and the GGM-derived long wavelength
component in a truncated Stokes’s integral (LSMSA). As an alternative, this
study proposes the Least Squares Modified Hotine Formula with Additive
Corrections (LSMHA) for geoid modeling. Once the approximate geoid
with the Least Squares Modified Hotine Function is computed, the additive
corrections should be implemented to the model. The present study tests
the method by conducting an experimental geoid modeling in Auvergne area
of France (43N and 49N latitudes, -1E and 7E longitudes). The GOCOO05c
geopotential model, digital terrain model data (grid form with 0.005° spacing),
homogeneously distributed dense point gravity data and GNSS/leveling data
are employed in the computations.

The Hotine function requires the use of gravity disturbances instead of
anomalies. Gravity disturbance is a function of GNSS-derived ellipsoidal
heights. Therefore the Hotine approach can be considered as a more practical
approach in comparison with Stokes.

Usually, uniform grid of gravity quantities is needed as an input for
Stokesian/Hotine’s integration. However, since unsuitable gridding methods
may produce false or spurious data that might lead to an inaccurate geoid,
this study attempts to avoid conventionally gridded gravity data as an input
to geoid modeling. Instead, the gravity data of the target area is partitioned
into convex and adjacent polygons; each holds the original values of the

XiX



gravity disturbances. Within the integration area, the polygonal figures in
Voronoi cell structures are used since the algorithm enables to preserve the
actual characteristics of the observed gravity signal content. The resulting
geoid models are assessed by the GNSS/leveling data and also compared to
traditional geoid modeling approaches. Numerical results are provided in the
conclusions of the study.
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VORONOI HUCRE YAPILARI ARACILIGIYLA HOTINE INTEGRALININ
EN KUCUK KARELER MODIFiKASYONU iLE GEOIT BELIRLEME

OZET

Gilintimiizde yiiksek dogruluklu ti¢ boyutlu konum bilgisine duyulan ihtiyag
oldukca artmis ve gelecekte de artmaya devam edecegi ongiiriilmektedir.
Yiiksek dogruluklu enlem ve boylam bilgisi Kiiresel Uydu Navigasyon
Sistemleri (GNSS) kullanilarak hesaplanabilirken, uydu bazli konumlama
tekniklerinden elde edilen yiikseklik bilgisi elipsoid referansh bir yiizeyi ifade
etmektedir. Jeodezik altyapiya referans teskil eden ortometrik yiikseklikler
(ortalama deniz yiizeyi referansli) ise nivelman yontemi ile belirlenebilmekte
ancak bu yontem hem zaman hem de finansal agidan istenilen verimi
sunamamaktadir. Ayni zamanda nivelman yonteminde 6lgme hatalarinin
kiimtilatif olarak takip eden 6l¢gmeyi etkilemesinden dolay1 istenilen dogruluk
elde edilememektedir. Klasik geometrik ve trigonometrik nivelmanin aksine
prezisyonlu geometrik nivelman ol¢gme dogrulugu agisindan daha dogru
sonugclar verse de uygulamasi daha zor ve zaman alan bir yontemdir.

Yer yuvarinn kiitlesinden kaynakli cekim potansiyeli ve sahip oldugu acisal
hizdan kaynakli merkezkag potansiyelinin bileskesi gravite potansiyeli olarak
ifade edilir. Gravite potansiyeli esit olan noktalarin olusturdugu yiizeyler
espotansiyel, diger bir ifade ile nivo ytizeyleri olarak adlandirilir. Geoit fiziksel
anlamda ortalama deniz yiizeyine yakinsayan ve karalarin altindan devam
ettigi varsayilan 6zel bir espotansiyel yiizeydir. Bu baglamda geoit belirleme
problemi, bir gravite alan1 modellemesi islemi olarak ifade edilebilir. Gravite
alan1 modellemesi matematiksel olarak belli smir kosuluna bagl olarak ilgili
parametrelerin diferansiyel denklem sisteminde ¢o6ziimiinti, yani literatiirde
belirtildigi tizere jeodezik bir sinir deger problemini ifade etmektedir.

GNSS yontemiyle bulunan elipsoidal yiikseklik ile geoit yiikseklikleri kul-
lanilarak pratik uygulamalarda ihtiya¢ duyulan ortometrik yiikseklik bilgisi
elde edilebilmektedir. Geoit yiiksekliginin hesaplanmasi ise yaygin olarak
gravimetrik yontemlerle gerceklestirilmektedir. Bu baglamda uydu bazh
konumlama tekniklerinin de gelismesiyle yiikseklik sistemi belirleme amach
geoit referanslh diisey datum tanimlamalar: giiniimiizde 6nem kazanmustir.

Yersel gravite verilerinin dogrulugunun artmasi ve hesap yontemlerindeki
modifikasyonlarla yiiksek dogruluklu ve yiiksek ¢oziintirliiklii gravimetrik
geoit modellerinin hesaplanmasi kolaylagsmistir. Uydu gravite misyonlarin-
daki gelismeler (GRACE, GOCE), global jeopotansiyel modellerdeki (GGM)
dogruluk ve mekansal ¢oziintirltigti arttirmis olsa da elde edilen sonuglar
giliniimiiz ihtiyaglarmi tam anlamiyla karsilayamamaktadir. Bu amagla yeni
metodolojiler test edilmekte ve uygulamaya konulmaktadir. Yer yuvan
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tizerinde geoit yiiksekligi hesaplanacak olan bolgedeki topografik yapsi,
gravite gozlemlerinin dagilimi ve dogrulugu, global jeopotansiyel modelin
o bolgedeki performansi geoidin sonu¢ dogrulugunu etkileyeceginden bu
faktorler goz oniine alarak uygun geoit modelleme yontemi irdelenmelidir.
Giiniimiizde En Kiiciik Kareler Kolokasyonu, Stokes/Hotine Integral Yak-
lasimi, Remove-Compute-Restore Teknigi ve Stokes-Helmert Metodu gibi
yontemler geoit belirleme amach kullanilmaktadar.

Bu galisma bolgesel geoit belirleme amaciyla siklikla kullanilan ydntemleri
ozetle incelemekte ve Hotine Integralinin En Kiiciik Kareler Modifikasyonu
ile bolgesel geoit belirleme tekniginin teorisini ortaya koymaktadir. Hem
Stokes hem de Hotine integralleri yardimiyla geoit belirlenirken; hesap
ylizeyi bir kiiredir ve kiire {izerinde homejen dagilimli yersel gravite
gozlemleri vardir kabul edilir. Ancak pratikte boyle bir imkan olmadig:
icin geoit yiiksekligi belirlenecek bolgede bir smirlandirma yapilir ki
bu durum kesme hatasim1 beraberinde getirmektedir.  Kesme hatasmi
elimine etmek admna Stokes/Hotine integralleri en kiiciik kareler yontemi
ile modifiye edilmektedir. = En kiiciik kareler modifikasyonu temelde
yersel gravite verisi ve GGM'lerden elde edilen parametrelerle hesaplanan
gravite anomali veya bozukluklarinin integrasyona hangi oranda katilacagini
ifade eden modifikasyon parametrelerini saglamaktadir.  Yersel gravite
verisi kullanilarak geoit modelinin kisa ve orta dalga boylu bilesenleri
hesaplanirken, GGMlerden hesaplanan gravite {irtinleriyle uzun dalga boylu
geoit bileseni bulunabilir. ~ Yersel gravite verisi kullanilarak hesaplanan
geoit bileseni "yakin alan bileseni" olarak isimlendirilirken, GGM yardimiyla
hesaplanan ikinci bilesen "uzak alan bileseni" olarak isimlendirilmektedir.
Geoidin yakin ve uzak alan bilesenleri kullanilarak "yaklasik geoit" elde
edilebilmektedir. Hesap yiizeyinin integrasyonun baslangicinda kiire olarak
kabul edilmesi ve bu varsayima ek olarak iizerinde topografik bir kiitlenin
olmadiginin diisiiniilerek islem yapilmasindan kaynakli, yaklasik geoit hesabi,
ek diizeltmeler ile iyilestirilmelidir. Bu baglamda topografik, asagiya uzamm,
atmosferik ve elipsoidal diizeltmeler uygulanarak final geoidine ulagilmalidir.

Hotine Fonksiyonunun En Kiiciik Kareler Modifikasyonu (LSMHA), Stokes
Fonksiyonunun En Kiiciik Kareler Modifikasyonundan (LSMSA) farkh
olarak gravite anomalisi yerine gravite bozuklugu degerini kullanmaktadir.
Giiniimiizde integral yontemiyle geoit belirleme calismalarinda yaygin olarak
gravite anomalisi ile LSMSA yontemi kullanilmaktadir. Ancak gravite bozuk-
lugunun GNSS tiirevli elipsoidal yiikseklikler kullanilarak direkt bir sekilde
hesaplanabilmesiyle bu egilimin degisebilecegi diisiintilmektedir. Nitekim
bu amacla LSMHA ve LSMSA metodlarinin uygulanmas: ve kiyaslanmasi
bu calisma dahilinde yapilmistir. Calisma, Fransa’nin Auvergne bolgesinde
(43N ve 49N enlemleri, -1E ve 7E boylamlar1 arasinda) gerceklestirilen bir
deneysel geoit modeli ile desteklenmektedir. Hesaplamalarda GOCOO05C
global geopotential modeli (360 °lik acilim), sayisal arazi modeli verileri
(0.005° aralikh grid formunda), homojen olarak dagilmis yogun nokta gravite
verileri ve validasyon amacli GNSS/nivelman verileri kullanilmistr.

Genellikle Stokes / Hotine integrali icin es boyutlu homojen grid veri
kullanilmaktadir. Bununla birlikte, uygun olmayan gridleme yontemleri
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yanlis bir geoit modeline sebebiyet verebilecek veriler tiretebilecegi igin,
bu calisma, geoit modelleme isleminde geleneksel grid gravite verilerinin
kullanimimin o6ntine ge¢meye calismaktadir.  Grid veri ve nokta veri
kullaniminin farklarini yansitmak adina Auvergne bolgesinde iki yontemle de
geoit modeli hesaplanmis, yontemler arasindaki farklar irdelenmis ve sonuglar
ifade edilmistir. Noktasal veri ile hesap yapabilmek adina her bir yersel gravite
noktasi, noktay1 temsil edecek Voronoi alanlari ile ¢evrelenmistir. Her bir veri
noktasini ¢cevreleyen Voronoi alanlar1 o noktay1 ¢evreleyen diger veri noktalar:
arasindaki uzakligimn yarisina tekabiil eden doniim noktalarimin birlestirilmesi
ile elde edilmektedir. Bu g¢alismada Voronoi alanlari, harici bir yazilim
araciligiyla olusturulmus, veri sinirlarinda ortaya ¢ikan artik degerler manuel
olarak elimine edilmistir. Voronoi alanlari kullanilarak hesap yapilan alandaki
gravite anomalisi veya gravite bozuklugu degerleri gridleme islemindeki
interpolasyondan kaynakli hatalar1 icermemekte, gravite sinyalini oldugu gibi
yansitmaktadir. Bu degerler ile yapilan hesaplamalarin sonucunda veride
oncelikli bir filtreleme isleminin yapilmas: gerektigi sonucuna varildiysa da
bu husus ¢alismanin odag: disinda yer almaktadar.

Bu tez kapsaminda, LSMHA ve LSMSA yontemleri i¢in hem grid veri hem
de noktasal veri ile ortak olarak galisabilecek bir geoit modelleme algoritmas:
olusturulmustur. Hesaplanan geoit modelleri Auvergne veri seti ile birlikte
sunulan 75 adet noktadan olusan GNSS/nivelman gozlemleri yardimiyla
valide edilmis ve sonuglar kiyaslanmistir. 4 parametreli Helmert benzerlik
dontistimii kullanilarak yapilan dengeleme iglemi ile modellenen gravimetrik
geoit ile GNSS/nivelmandan elde edilen geoit yiizeyleri arasindaki sistematik
farklar giderilmistir. Dengeleme ©ncesi ve sonras1 model dogruluklar
istatistiksel olarak ifade edilmistir.

Geoit belirleme {tizerine bahsi gecen yontemlerin uygulanmasi esnasinda
karsilasilan yazilimsal ve donanimsal giicliiklerin giderilmesi adina kullanilan
donanimda degisiklige gidilmis ve algoritmada performans gelistirme ihtiyaci
dogmustur. Bu baglamda yazilan kodlar ayni anda paralel islemcilerde
kosturulabilecek sekilde optimize edilmistir.

Yapilan analizlerin sonucunda, grid veri ile yapilan LSMSA ve LSMHA
uygulamalarinda yiiksek dogruluk elde edilirken, nokta veri ile nispeden daha
diistik bir dogruluga ulasilmistir. Uygulamalara yonelik sayisal analizler,
tartisma ve gelecek arastirmalara yonelik fikir ve oneriler sonug boliimiinde
sunulmustur.
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1. INTRODUCTION

1.1 Background

Geoid is a special level surface consists of points having the same gravity
potential and approximates to mean sea level. Due to the irregularities of the
masses and the rotation of the Earth, geoid has a non-uniform shape. The
shape is expressed as the geoid height (undulation) which is defined with
respect to a reference ellipsoid and notated as N. Despite being a physical
surface, geoid has a practical usage in geodetic infrastructure, as the reference
surface of topographical heights and also used in geophysics and geodynamics
to study the quantities related to deep Earth. As shown in Figure 1.1, when
GNSS-derived ellipsoidal heights 1 and a reliable geoid model are available,

one can determine the sea level referred (orthometric) height H by:

H=h-N (1.1)

Earth'’s surface

/ﬁv\ geoid

- ellipsoid

Figure 1.1 : Height reference surfaces

In terms of geodetic prospect, due to relatively higher time and money
consumption and the cumulative error propagation of leveling procedure,
geoid modeling is considered as a more efficient approach on vertical datum
definition. In consideration of the recent studies, the accuracy of geoid highly
depends on the data density and the data accuracy. Agren and Sjoberg (2014)

presents the gravity data requirements for 5 mm quasigeoid model in Swedish

1



and Nordic regions (under the context of this thesis only geoid model is
examined however, the mentioned requirements can be considered valid for
both quasigeoid and geoid models). It is also suggested to investigate Farahani
et al. (2017) for a similar study conducted in Netherlands where the standard
deviation of 1.5 mGal for the surface gravity anomaly and a data spacing of
about 3.5 to 6.5 km are considered as sufficient for 5 mm quasigeoid model.
Along with the data condition, the final accuracy of the geoid model is also

dependent on the method used.

Methods used in gravity field modeling include Remove Compute Restore
(RCR), Stokesian/Hotine Integration, Stokes/Helmert Method, and Least
Squares Collocation (LSC) techniques. Each technique evaluates terrestrial
gravity measurements, mostly gravity anomaly; derived from the observa-
tions. While LSC approach uses point-wise evaluation, the rest of the methods
often use gridded gravity quantities. On the other hand, as it is previously
investigated in Dos Santos and Escobar (2004), the gravity anomalies can be
discretely used in Stokes Integral. The similar procedure can be applied for
Hotine Integral using point-wise evaluation which constitutes the main focus
of this thesis. As distinct from Stokesian integration, Hotine approach requires

gravity disturbance values as the input.

The short wavelength/high frequency component of the geoid signal repre-
sents a rapidly changing surface while the long wavelength/low frequency
component represents a relatively smoother surface. Global geopotential
models (GGMs) obtained from space geodetic missions such as GRACE
(Gravity Recovery and Climate Experiment) and GOCE (Gravity field and
steady-state Ocean Circulation Explorer) offer global scale gravity quantities.
Spherical harmonic expansion of GGM derived quantities are used to get
a reference field for the local approximation of the geoid which represents
the long wavelength part (Li, 2000). Geoid information of short/medium
wavelengths is determined using terrestrial gravity observations were located
in a cap of integration. While determination of the radius of the integration
cap is highly dependent on the quality of the terrestrial data, the upper

modification limit of the integration is related to the accuracy and the spatial



resolution of the GGM (Isik, 2016) and the compatibility of the model with the

specific area to be modeled (see Section 4.1).

1.2 Purpose of the Study

The overall objective of this study is to compute a high resolution geoid model
for Auvergne area, France. For this purpose, both Least Squares Modification
of Stokes” (LSMS) and Least Squares Modification of Hotine’s (LSHS) formulas
are applied, and the results are given for different solutions by using biased,
unbiased, and optimum type of modification parameters presented in Ellmann

(2004) and Mardla et al. (2018).

The emphasis of the study is to compare the geoid modeling methods by

Stokes/Hotine integral approach using point-wise and grid-wise gravity data.

It is also aimed to introduce an applicable solution for singularity problem for

discrete (point-wise) evaluation which will be investigated in Section 2.7.

1.3 Outline

The thesis constituted in six chapters. Chapter 1 indicates the statement of the
problem in sense of the gravity field and the geoid. It gives a brief explanation
of geoid accuracy and geoid components in accordance with the main objective
of the study. Chapter 2 is meant as an overall investigation of the gravity
related quantities, definitions of Earth’s gravity field, and the fundamentals of
physical geodesy. The theories behind the geoid modeling methods implied
in this study are shown and the differences between those techniques are
demonstrated. In Chapter 3, the data available in the study area is introduced.
Chapter 4 comprises the numerical results of the methods those previously
introduced in Chapter 2. Computational difficulties confronted during the
study are explained in Chapter 5. Chapter 6 summarises the findings of
the study and recommendations for future studies based on the results are

presented in this section.






2. METHODOLOGY

2.1 Gravity Potential and Geoid

Gravity potential is the product of the gravitational potential and the
centrifugal potential (Freeden et al., 2015). Gravitational potential of the Earth
depends on the attraction of masses while the centrifugal potential is related
to the rotation of the celestial body, the Earth in particular. Based on this
definition a leveling surface can be described as a set of points consisting the
same value of gravity potential. Among all leveling surfaces, Geoid as a special

surface is introduced by Listing (1873).

As it introduced in Chapter 1, geoid is an equipotential surface shaped by
the points with the same gravity potential values and it approximates the
mean sea level. As a matter of fact, geoid is a physically defined surface
with practical implementation that stands for the height N with respect to
a global reference ellipsoid. Geoid determination is based on the Second
Boundary Value Problem (Neumann’s problem) or Third Boundary Value
Problem (Robin’s problem) that determines the disturbing potential on a
surface, on which values functionally related to this disturbing potential exist

(Bayoud and Sideris, 2003).

There are different methods to model the geoid. LSC method stated in
Chapter 1, is a type of interpolation and/or prediction of stochastic variables,
either within one type of observable or from the observations of one type to
another (Sjoberg and Bagherbandi, 2017). RCR technique; as an alternative,
even though is considered as a commonly used method, remains incapable
since the assumptions in RCR technique (such as usage of Helmert’s second
method of condensation while elimination of topographic effect, ignoring the
atmospheric correction, etc.) do not reflect the reality. In this context, KTH
(Royal Institute of Technology) Method, first introduced by Sjoberg (1984),
investigated in detail. The theory also called the Least Squares Modification of



Stokes Integral with Additive Corrections (LSMSA), applied to modify Stokes
kernel to minimize the global mean square error of the resulting geoid model
(see e.g. Ellmann (2001) and Agren (2004)). The theory makes use of surface
gravity anomaly instead of classical gravity anomaly on the geoid (see Section
2.3) to determine the approximate geoid and the additional corrections applied
for the final geoid model. KTH method is applied in different regions having
different characteristics of topography and showed convenient results (e.g.

(Ellmann, 2004; Kiamehr, 2006; Agren et al., 2009; Yildiz et al., 2012)).

For historical reasons, mostly gravity anomalies are evaluated for geoid
modeling. Nowadays; however, since the ellipsoidal heights are directly
available from GNSS, the gravity disturbance can be calculated accurately (see
Section 2.4). Thus, one may expect that gravity disturbance will become more
important than gravity anomaly in future (Hofmann-Wellenhof and Moritz,

2006).

Hotine integral for geoid determination, mentioned in Chapter 1, requires
the integration of gravity disturbances (Hotine, 1969). For previous studies
performed using Hotine integral, reader is referred to Zelin and Yecai (1991),
Vanicek et al. (1992), Bayoud and Sideris (2003) etc. This thesis focuses on
the Hotine adaptation of KTH method, so-called Least Squares Modification
of Hotine’s Integral with Additive Corrections (LSMHA) first presented by
Mairdla et al. (2018). The novelty of this study is based on discrete data
evaluation instead of using regular gravity grids as distinct from the former

study.

2.2 Normal Gravity

The normal figure of the Earth is considered as a level ellipsoid due to the
simplicity on computations. In theory, the gravity value on the level ellipsoid

is regarded as the normal gravity (Hofmann-Wellenhof and Moritz, 2006).



The normal gravity g, on a point Qg located at the ellipsoidal surface as
shown in Figure 2.1 is given by the well-known formula of Somigliana:
a7,c08?(@) + by sin?
o, = (@) + bypsin”(¢) 2.1)
\/a-’- cos? (@) + b2sin?(¢)

where a and b are respectively the semi-major and semi-minor axes of the

ellipsoid, v, and 1y, are the normal gravity at the equator and the poles, and ¢

is the latitude of the point corresponds to Qg on ellipsoid.

P
/ ? Earth's surface
Q H\ telluroid
Po) |
“N geoid
Q() ellipsoid

Figure 2.1 : [llustration of the relevant surfaces (Hofmann-Wellenhof and
Moritz, 2006)

2.3 Gravity Anomaly

Gravity anomaly vector is the difference between the actual gravity vector on
the geoid gp, and the normal gravity vector on the reference ellipsoid 7, as
shown in Figure 2.1. The difference in magnitude is defined as the classical

gravity anomaly Agp (Hofmann-Wellenhof and Moritz, 2006):
Ao = 8&ry — 7Qq 2.2)

Analogously the modern gravity anomaly Ag according to Molodensky’s
theory (also called surface gravity anomaly) is defined as (Molodensky, 1962;
Hofmann-Wellenhof and Moritz, 2006):

Ag=g¢p—"70 (2.3)

as it can be seen in the Figure 2.1, P is the point at the Earth’s surface and g

is the normal gravity at the same ellipsoidal longitude and latitude reduced

7



to telluroid (a spheropotential surface where U = Wp = const, see Figure 3.13)

(Hofmann-Wellenhof and Moritz, 2006).

For many purposes such as interpolating the surface gravity values, a
functional of the gravitational potential which does not contain the effect of the

topographic masses above the geoid is needed (Barthelmes, 2009). The former

leads to the simple Bouguer gravity anomaly Ag584 calculated as (Heiskanen
and Moritz, 1967):
agp
Ag%H4 = gp— (S30)PH — 1, (24)

where H is the orthometric height of the point located at the Earth’s surface

and

(%)B = —0.1967 mGal /m (2.5)

is the Bouguer gradient assuming the crustal density p equals to 2.67 g/cm?®

(Vanicek and Krakiwsky, 2015).

Due to the rapid change on the topography, the reduced anomaly quantities
may not be convenient hence a smoother gravity field might be required
for gridding procedure. In this case terrain corrected Bouger anomalies also
known as complete Bouguer anomalies must be evaluated from the following

formula (Mérdla et al., 2017):
AgCBA _ AgSBA 4 5gTC (2.6)

where ¢ gTC is the terrain correction (Heiskanen and Moritz, 1967).

2.4 Gravity Disturbance

Gravity disturbance ¢ as another quantity of the gravity field can be obtained
by using GNSS derived heights. §¢ on a point P located at the Earth’s surface

is expressed as (Heiskanen and Moritz, 1967):
ogp=8p — P (2.7)

where yp is the normal gravity on topography and calculated as:

TP = 70, — 0.3086h (2.8)
8



where the second part from the right side of the equation is the terrain

correction while / is the height above the ellipsoid.

2.5 Geoid Modeling with KTH Method

The difference between the actual gravity potential on geoid and the
normal gravity potential on ellipsoid is denoted as disturbing potential; T
(Hofmann-Wellenhof and Moritz, 2006). According to Stokes (1849), T can be

computed as:
T—ﬁ//S( )Agdo (2.9)

The relationship between the geoid height and the disturbing potential is given
by the well-known formula of physical geodesy by Bruns (1878) as:

T
N=- (2.10)
i

Accordingly, the geoid height can be expressed using Stokes equation as:
N—i//S( )Agdo 2.11)

Geoid determination with original Stokes formula as expressed in Eq.
2.11 requires global coverage of gravity anomalies. ~However, since a
homogeneous, dense gravity data cannot be obtained in global scale, the
integration is limited in a circle of radius . Due to the truncation
error, original Stokes function should be modified by sets of stochastic or

deterministic modification parameters; presented as s, and b;, (Ellmann, 2005).

KTH ( Royal Institute of Technology) method summarized by Sjoberg (2003b)
states for the Least Squares Modification of Stokes’s Formula with Additive
Corrections (LSMSA). In order to perform the KTH method, the surface gravity
anomalies within a predefined integration cap are directly used to calculate
the short and medium wavelength components of the geoid (near zone geoid).
Long wavelength component (far zone geoid) stems from the evaluation of
the spherical harmonic function of the gravity anomaly calculated in a proper

degree of modification. The geoid estimator N is acquired by applying the

9



additive corrections and represented as:

N = N + Ncoms + ONpwe + 6Narm + ONELL (2.12)

N stands for the approximate geoid, dNcopp represents the combined
topographic effect (Sjoberg, 1995, 2000), while dINpwc is the combined
downward continuation effect (Sjoberg, 2003c). Nty stands for the
combined atmospheric effect introduced in Sjoberg (1999) and Sjoberg (2001).
Lastly, N1 presents the combined ellipsoidal effect (Sjoberg, 2003a, 2004).

Approximate geoid N composes of two parts:

N = Nyear + Nfar (2.13)

In order to calculate N in a truncated cap op, Eq. 2.13 is expanded as (Sjoberg,

2003b):

N= i// SL(p)Agdo + = ﬁb Ag (2.14)
47ty JJ oy 2y = .-

where R is the mean Earth radius

7 is normal gravity at the ellipsoid

SL(y) is modified Stokes function

Ag are surface gravity anomalies

do are surface elements

b, are the modification parameters

Agn are the spherical harmonic representation of the gravity anomaly

L is the selected maximum degree of modification and M is the spherical

harmonic degree up to which GGM is used.

Since the main emphasis of this study is to implement LSMHA (Hotine)
procedure and both Stokes/Hotine functions show resemblance (Heiskanen

and Moritz, 1967), the detailed explanations of components mentioned above

10



will be represented for Least Squares Modification of Hotine’s Function with
Additive Corrections in Section 2.6 and 2.6.1. The summary of the comparison
between Stokes and Hotine procedures is given in Table 2.1, Table 2.2, and
Table 2.3.

2.6 Least Squares Modification of Hotine’s Function

At the present time, the vertical component of position can be obtained by
GNSS with less than 1 cm accuracy. As it is stated in previous sections, one
can determine gravity disturbance accurately with ellipsoidal heights. Gravity
field of the Earth can be modeled by using gravity disturbance via Hotine
integral. The general form of geoid undulation using Hotine integral is given

as (Hotine, 1969):
R
N=go / /a H(y)sgdo (2.15)

R is the mean Earth radius. 7y equals to the normal gravity on the reference
ellipsoid, ¢ is the unit sphere, H(¢) is the Hotine function, g is the gravity

disturbance, and do is the elemental area of each observation point.

The original form of Hotine function is given as (Hotine, 1969):

1 1
HY) = Gnrn) 1080+ ) (2.16)

As already expressed in Section 2.5, due to the lack of global coverage of
gravity data, the integration should be limited in a truncated cap using a set of
modification parameters. In order to do so, Eq. 2.15 is rewritten as below while
near zone and the far zone contributions are taken into account separately

(Mérdla et al., 2018):

~ R

M
N / HE(p)6gdo + % Y budgn (2.17)
n=0

- 47T’)’ 0o

where HL(y) is the modified Hotine function, ¢ is the surface gravity
disturbance, b, are the modification parameters calculated for LSMHA, dg,
are the Laplace harmonics of gravity disturbance and the rest of the terms are
identical with the terms explained in Section 2.5. Note that 7 in the second part

of the formula starts from 0 instead of 2 compared to Stokes counterpart.

11



The modified Hotine function H%(y) can be computed as (Mardla et al., 2018):

L
HL () Z2n—|—1

$nPn(cos(¢)) (2.18)
P, (cos(1)) are the un-normalized Legendre polynomials of cos(i) where ¢ are
the spherical distances calculated from computation point to each integration

point.

The spherical harmonic representation of the gravity disturbance is given as
(Heiskanen and Moritz, 1967, Eq. 2-153):
Sgy = Ga—zzw(g)“z(n +1) i {AC iy cosmA + Sy sinmA} Py (sing) (2.19)
m=0
where P,,, are fully normalized Legendre polynomials, r, A, and ¢ are
geocentric radius, longitude, and geocentric latitude of computation point
respectively. C,m and S, are tully normalized spherical harmonic coefficients

and AC,,;, is calculated as (Ellmann, 2001):

ACuu=Ch —Co (2.20)

where szm is the related degree and order C,m coefficients obtained by the
GGM and C n represents the fully normalized even zonal harmonics of normal

potential.

The modification parameters b, are calculated for biased, unbiased, and
optimum solutions as (Ellmann, 2005):
biased: b, =s,

unbiased : by, = s, + QL (2.21)

(sn + Q%)C%

ti thy = 5
optimum : by, (@ T dc2)

where s, are the modification parameters, Q,% are the modified truncation
coefficients, c2 are the gravity signal degree variances, and dc2 are the GGM

error degree variances.

The modified truncation coefficients QL (1) for the spherical distance of i are

computed as (Mérdla et al., 2018):

2k +1
Z

Qi (Y0) = Qu(Yo) — Y- =5 Ruksi (2.22)

12



Qn (1) are the truncation coefficients by Jekeli (1979). R, are calculated
according to Paul (1973). si are the modification parameters (same as s, in

Eq. 2.18)

Apart from KTH procedure, the spectral factor used in the computation of
sy parameters in Stokes modification; 1/(n — 1) is replaced by 1/(n + 1) for
Hotine approach. Another difference is that the truncation coefficient Q, ()

from Paul (1973) is used for Stokesian integration.

In this thesis, modification parameters s, and b, are calculated using a software

provided by Prof. Dr. Artu Ellmann for both Stokes and Hotine procedures.

2.6.1 Additive corrections

There are a number of assumptions while implementing Stokes/Hotine

integrals for geoid modeling;:

e The integration area is a sphere
e There is homogeneous data along the whole sphere of integration

e There are no topographic masses outside of the sphere of integration

The second assumption indicated above carried out by implementing
modification parameters to the integral (see Section 2.5 and 2.6). Yet, a number
of corrections should be performed due to the first and the third presumptions.
After the integration, indirect effects are applied to the potential for restoration
of masses as well as for corrections to the potential on the reference ellipsoid

(Sjoberg and Bagherbandi, 2017).

Additive corrections for least squares modification of Hotine function shows
resemblance with the corrections in the least squares modification of Stokes
function. Sequent section presents the corrections needed to be implemented

on LSMH and shows the comparisons between LSMH and LSMS approaches.

2.6.1.1 Combined topographic correction

In traditional methods, the potential of gravity anomaly or disturbance are

located on the geoid while implementing Stokes/Hotine integral. Since

13



there should be no topographic masses outside of the integration sphere,
the topographic signal on gravity must be removed (by any method) and
should be restored once the integration is implemented; however, due to the
incomplete downward continuation, this technique leads to an error (Sjoberg,
2018). Finally, after the adoption of surface gravity anomaly or disturbances,
the combined topographic correction can be carried out by (Sjoberg, 2018):

27Gp [~ 2H?
ON, =——T" | H24+ — 2.23
COMB Y ( + 3R > (2.23)

where G is the Newton’s gravitational constant, p is the topographic density,
and HP is the vth power of the Laplace surface harmonics of the topographic
height with first and second-degree terms excluded (see Eq. 3.5). However, in
this study; since the orthometric height of each integration point is provided
by the Auvergne dataset (see Section 3.1), the observed values are directly used

instead of the Laplace surface harmonics of the topographic heights.

2.6.1.2 Combined downward continuation correction

Combined downward continuation correction can be calculated as:

SNpwe = NSy (P) + SNHVZ™ (P) + 6N (P) (224)

(5N1(31V)VC(P) is the first component of downward continuation effect (Méardla

et al., 2018):

1 9o 2

(1) 998
SN T Hp (2.25)

_ 6g(P) z%
ch(P) - THP + EHP -

where {3 is the approximate value of height anomaly and as suggested in

Agren (2004):
O ~N (2.26)

ag—f b is the vertical gradient of gravity disturbance as in Heiskanen and Moritz

(1967). It should be noted that the second term of the equation should be

multiplied with 3 in LSMSA compared to Hotine counterpart.
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5ND§N)Cf “(P) is the term for far component of downward continuation

correction and expressed as follow (Mérdla et al., 2018):

n=0

SNpwd " (P) = 2 Y (su+Qy) (E) —1|0gn(P) (2.27)
where 0g,,(P) are the gravity disturbance of computation point from spherical

harmonics calculated as in Eq. 2.19.

Finally, the terrain downward continuation effect (Mardla et al., 2018):
26 g
Hp — H 2.2

Notice that the gravity quantities used in the calculations above are the

disturbance values instead of anomalies compared to the Stokes counterpart.

2.6.1.3 Combined atmospheric correction

Considering the third assumption introduced in section 2.6.1, the effect of the

atmospheric masses should be taking into account as (Mardla et al., 2018):

ZnRGpAM<2 )
—_— —sn — Qy | Hu(P
p ,;onﬂ su —Q (P)

_ 21RGpy i 2 n+2
n+1 2n+1

OSNarm(P) = —
(2.29)

i n=M+1
where G is the Newton’s gravitational constant, p4 is the atmospheric density

at sea level, and H, are the Laplace surface harmonics of the topographic

height (Eq. 3.5).

2.6.1.4 Combined ellipsoidal correction

As introduced in section 2.6.1, Stokes /Hotine integrals are implemented using
spherical coordinates. Therefore, the combined ellipsoidal correction should
be calculated as (Mardla et al., 2018):

R & 2 a
SNg 1 (P) = — — s, — QL
erL(P) 2’Vn_0(n+1 Sn Qn>(

(P) + %5@) (2.30)

where 0g,,(P) are the gravity disturbance of computation point from spherical

harmonics calculated as in Eq. 2.19 and ég, are the Laplace harmonics of
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the ellipsoidal correction to the gravity disturbance and presented as (Mardla

et al., 2018):
ZGM n
Z {[3 11 + 4 an]cnm - (5 - n)Gnan—l—Z,m
el (2.31)

— (371 + 7)Enm n—2,m}Ynm(P)

6’

Y, are the fully normalized spherical harmonics, C;; are the harmonic
coefficients of the disturbing potential and E;;;, Fun, and Gy, are the related

coefficients for the ellipsoidal correction.

2.7 Singularity Problem

Hotine function (as well as Stokes function) introduced in Eq. 2.16 is equal to
oo while ¢ = 0. As shown in Figure 2.2 this effect has also an impact on the
integration points which are located close to the computation point (see the
sudden decrease where the spherical distances are close to zero) and called as

singularity problem.

12000 T T T T T T T T

10000 p n

8000 .

6000 1 .

Hotine kernel H()

4000 A

2000 y

1 1 I
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
spherical distance (¢°)

Figure 2.2 : Unmodified Hotine function for the spherical distances calculated
in the truncation cap

In order to diminish the singularity effect, the near zone component of the
geoid presented as the first part in Eq. 2.14 can be divided into two parts:
Nyear = Nouther + Ninner (2.32)
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Nouther €xpresses the term where the infinity outcome is eliminated and Nj;;,,,
is for the gravity anomaly/disturbance of the computation point taken into

account separately.

In order to overcome the undesired effects of the singularity problem, different

considerations on Eq. 2.32 can be followed (Section 2.7.1-2.7.2)

2.7.1 The elimination of singularity for grid-wise evaluation

According to Ellmann (2001), singularity eliminated near zone component of

geoid for LSMSA (Stokes) is expressed as:
N, —i// SL($) (Ago — Agp)de + S AgpO (2.33)
near = e o ¥)(Ago gp 2y grUmo .

where Agg is the gravity anomaly of the integration point located inside the
truncation cap, Agp is the gravity anomaly of the computation point, and Qo
is the zero order term of the modified truncation coefficient and calculated as

(Ellmann, 2001):

M
2k +1
Qmo=Qo— ), > 5kRio (2.34)
k=0

where s; are the modification parameters, Ry are from Paul (1973), and Qp
represents the zero degree term of Paul (1973) coefficient introduced in Section

2.5 and computed as follow:

Qo = —4t + 5t + 61> — 7t* 4 (61> — 6t*) logt(1 + t) (2.35)

where t = sin(%) and 1y is the radius of the integration cap.

In order to compute the singularity eliminated near zone geoid for LSMHA
(Hotine) approach; modified Stokes function S'(¢), gravity anomaly Ag,
truncation coefficient Qp from Paul (1973) should be replaced by modified
Hotine function HE (), gravity disturbance 8¢, and truncation coefficient Q

from Jekeli (1979) respectively.

As an alternative, the undesired effects of singularity can be eliminated using

(Vajda and Vanicek, 1998):

R R
Npear = m//ffo SL(IP)AgQCOS(q)Q)(A(P)Z + ; %A&?A@ (2.36)
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¢p and @o represent the geocentric latitude of the computation and the
running points respectively. A is the size of the integration grid. As a matter
of course, the last term of the first part of the equation; (A@)? denotes the
elemental area, uniform for each grid. The rest of the terms are the same where
explained in the previous sections. For LSMHA (Hotine) approach; H: () and

0g are used similarly.

In this thesis, the latter approach expressed in Eq. 2.36 gave better results and

s0 was used instead.

2.7.2 The elimination of singularity for point-wise evaluation

While conducting the point-wise evaluation, running points and computation
points may not be overlapped. However as it is stated in Section 2.7,
singularity is an effect not only related to the overlapped point, but also
affected by the running points located closely to the computation point. In
this study, in order to eliminate this effect for point-wise evaluation, Eq. 2.33

is modified as:

R R
0

As it can be seen, Agp is replaced by Agp« for point-wise evaluation. In the
present case Agp+ stands for the gravity anomaly of the running point which
is closest to the computation point. The rest of the terms can be calculated as

explained in the previous section.

Analogously, Eq. 2.36 for point-wise evaluation is replaced by:
R R [cos(@p* I
Nyear = m//(fo SL(¢)AgQCOS(¢Q)d0+ ; %Ag?‘ do (2‘38)

where @p* and Agp- are the geocentric latitude and gravity anomaly of the
integration point which is the closest to the computation point. Apart from
grid-wise evaluation explained in Section 2.7.1, (Ag)? is replaced by do which
is the elemental area of each Voronoi polygon surrounds point P* (see Section
3.1.2 for Voronoi polygons). For LSMHA (Hotine) approach; H! (1) and dg are

used similarly.
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3. DATA PREPARATION

Auvergne data set is provided by Institut Géographique National (IGN),
France for testing the geoid modeling methods (Valty et al., 2012). So far
different geoid computation methods are conducted in the area for scientific
purposes such as Yildiz et al. (2012), Abbak and Ustun (2015), and Janak
etal. (2017). The dataset includes a terrestrial gravity network, GNSS/leveling
benchmarks, and a digital elevation model which will be explained in detail in

Section 3.1, 3.2, and 3.3 respectively.

Figure 3.1: Auvergne area

The outer frame in green shown in Figure 3.1 represents the area of digital
terrain model while the inner box shown in blue includes terrestrial gravity
observations. Red points in the innermost box represent the GNSS/leveling

network. Target geoid location is shown as the grey box in the same figure.
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3.1 Terrestrial Gravity Dataset

Terrestrial gravity dataset includes 244009 points of gravity measurements
located in between 43 — 49N;—1 — (4+7)E where shown in Figure 3.2.
However, it is revealed that 83 of points are duplicated and supposed to be
eliminated before the numerical evaluation. The mean density is 0.59 points
per square kilometer while the standard deviation of the gravity anomaly is
20.70 mGal; mean, minimum, maximum values are 3.6 mGal, —127.47 mGal,
and 177.82 mGal respectively according to Valty et al. (2012). The accuracy
of the gravity data is stated as 1 ~ 2 mGal in the same study. Additionally;
normal, orthometric, and ellipsoidal heights of each observation point are

provided within the dataset.

Figure 3.2 : Auvergne terrestrial gravity network

As it is introduced in Section 2.1, discrete data is directly used for
geoid computations for point-wise evaluation as similarly has already been
conducted by Dos Santos and Escobar (2004). In general, the technique used
in this study to calculate the elemental area is to surround each data point with
the most representative polygons by use of Voronoi diagrams will be explained

in Section 3.1.2.

24



3.1.1 Input gravity quantities

Gravity disturbance used in point-wise integration of LSMHA (see Figure 3.3)

is directly calculated from the dataset as (also shown in Section 2.4):

dg=g8p— P (3.1)

200
180
160
140
120
100

-1 0’ 1 2 3 4 5° 6" 7
min, max, mean, std: -112.38, 193.80, 17.16, 20.92 (mGal)

Figure 3.3 : Auvergne gravity disturbances

In order to determine a geoid model using LSMSA, surface gravity anomalies

of each data point are calculated where shown in Figure 3.4 using Eq. 2.3.
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e ———— m— —
min, max, mean, std: -127.40, 178.16, 3.09, 20.72 (mGal)

Figure 3.4 : Auvergne gravity anomalies

As it is mentioned in Section 2.3, it is essential that the high frequency
information should be removed by reduction methods before gridding the
data (Mardla et al., 2018). To do so simple Bouguer anomalies are calculated
from the scattered data using Eq. 2.4. Figure 3.5 shows the simple Bouguer
anomalies of data points while Figure 3.6 shows the gridded simple Bouguer

anomaly values. Kriging method is used for the gridding procedure.

Once the simple Bouguer anomalies are gridded, the surface gravity anomalies
are reproduced using digital elevation model given with the dataset (see

Figure 3.7).
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-160

-180
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-1 0 1 2 3 4" 5 6 7
min, max, mean, std: -205.59, 56.69, -29.16, 20.81 (mGal)
Figure 3.5 : Simple Bouguer gravity anomalies

-160

-180

-200

-1" 0 1" 2" 3 4’ 5 6" 7
min, max, mean, std: -204.05, 57.24, -33.33, 31.68 (mGal)
Figure 3.6 : Gridded simple Bouguer gravity anomalies
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In order to calculate the gravity disturbance from simple Bouguer anomaly, the
geoid height needed for calculations is computed using spherical harmonic
function of geoid undulation with the maximum expansion of EIGEN-6C4
(Forste et al., 2014) geopotential model. Figure 3.8 shows the gridded surface

gravity disturbance values.

As it can be seen in Figure 3.7 and Figure 3.8, gravity anomaly and gravity
disturbance values follow a similar trend. The reason for the change in
minimum and maximum values between discrete data and the gridded data is
due to the relatively high topographic change in locations where the grids are

produced.

300
250
200
150

100

50

min, max, mean, std: —111.36, 292.33, 8.82, 29.03 (mGal)

Figure 3.7 : Gridded values of Auvergne surface gravity anomalies
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min, max, mean, std: -102.28, 331.60, 24.33, 29.37 (mGal)

Figure 3.8 : Gridded values of Auvergne surface gravity disturbance

3.1.2 Voronoi diagrams

In general, the gravity quantities used in the integration are the gridded values.
As an alternative, discrete data is directly used in the integration partitioned
with Voronoi diagrams were first introduced in Dos Santos and Escobar
(2004) for geoid modeling. A Voronoi diagram is the most representative
polygon surrounds the relevant computation point based on the geometrical
distance between outlying points. Errors arise from gridding procedure can
be eliminated using Voronoi polygons since the actual values of the gravity
quantities can be directly calculated without remove-compute-restore process
explained in the previous subsection. The elemental area do first mentioned
in Section 2.5, Eq. 2.14, corresponds to the area of each Voronoi polygon. In

this study, Voronoi polygons are created using ArcGIS Pro software. Figure
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3.9 shows the discrete observation points while Figure 3.10 represents the

partitioned network of gravity data set using Voronoi polygons.
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Figure 3.10 : Gravity observations partitioned according to Voronoi cell
structures

It should be noted that the software or algorithm used for the creation
of Voronoi polygons might result in residual areas around the boundaries

of the data which cause irregularities. Hence, the polygons should be
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revised manually or automatically by a proper filtering algorithm in detail
to overcome such situation (see Figure 3.11, and 3.12). Additionally, data
gaps might be filled beforehand using gravity quantities computed from a
high resolution GGM or another data set that fits the area. In this study,
gravity anomaly/disturbance grids revised manually and the integration
points that produce major differences (blunders) are replaced by the values
calculated from GGMs. However, no such procedure is followed for
point-wise evaluation since the proper distribution and values of the actual
surface gravity anomaly/disturbances cannot be determined and needs to be

investigated in detail for further studies.

Figure 3.11 : Data borders which residual Voronoi polygons are selected

Figure 3.12 : Data borders which residual Voronoi polygons are removed
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3.2 GNSS/Leveling Benchmarks

GNSS/leveling dataset includes ellipsoidal and normal heights of 75 points.
The standard deviation of the ellipsoidal heights is evaluated around 2 to 3 cm
as indicated in Valty et al. (2012). Distribution of GNSS/leveling benchmarks

are shown as the red triangles in Figure 3.1.

Since the main emphasis of this thesis is to calculate a geoid model instead
of a quasigeoid, normal height in GNSS/leveling dataset is converted to

orthometric height using the relationship below:

{—N=H-HY (3.2)

. e Earth's surface

~_— telluroid
=H
HN_
h — | geoid
N quasigeoid
q
e e ellipsoid

Figure 3.13 : llustration of the height systems

where {, N, H N and H are height anomaly, geoid height, normal height, and
orthometric height respectively as shown in Figure 3.13. { — N is calculated

iteratively as (Hofmann-Wellenhof and Moritz, 2006):

N 01119(m/mGal) 5 g 00
T =107 [m |H (3.3)

7 — N[m] ~ 0.1H[km] (3.4)
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3.3 Digital Elevation Model

The dataset provides a digital terrain model including orthometric heights
for over 3 million points in grid form shown in Figure 3.14. However,
since the orthometric heights of the integration points are provided by the
gravity dataset, digital elevation model is not used during the calculations
of combined topographic correction and combined downward continuation
correction (see Section 2.6.1.1 and Section 2.6.1.2). However, it is used
during the restoration of heights after gridding the simple Bouguer anomalies

explained in Section 3.1.1.

Minimum, maximum, mean, and standard deviation of topographic heights in

geoid computation area are 80 m, 1630 m, 460 m, and 270 m respectively.

4000
3500

3000

2500

- 2000

- 1500

- 1000

500

Figure 3.14 : Auvergne topography
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In order to calculate the combined atmospheric correction explained in Section
2.6.1.3, it is required to compute the Laplace surface harmonics of the
topographic height as (Bucha and Janak, 2017):

Nmax - o
H,(p,A) = Z Z {HCpmcosmA + HSpy sSinA} Py (sin @) (3.5)

n=0m=0
where ¢ and A are latitude and longitude and HC,,, and HS,,, are the
spherical harmonic model coefficients for Earth’s elevation. In this study,
Coeff_Height_and_Depth_t02190_DTM2006.0 model, available from the US
National Geospatial-Intelligence Agency’s (NGA) official EGM2008 website,
is used up to 720 degrees.

3.4 Global Geopotential Model

Long wavelength component of geoid model is computed using spherical
harmonic coefficients provided by GGMs. The performance of the final geoid
model is highly dependent on the choice of the optimum geopotential model
and the best degree of expansion. Thus, it is important to investigate the
performance of GGMs beforehand. In this study, satellite only and combined

models are tested. The list of the models are given below:

Table 3.1 : List of tested GGMs

Model Maximum Degree of the GGM Reference
ITG-Grace2010s 180 Mayer-Giirr et al. (2010)
GOCO05C 720 Fecher et al. (2017)

34



4. NUMERICAL RESULTS

4.1 Determination of Modification Parameters

In order to model an accurate geoid, the determination of the least squares
modification parameters should be examined according to some sets of
factors such as the GGM used, expansion degree (upper limit) of the GGM
derived spherical harmonics (see M in Section 2.5), selected maximum degree
of Stokes/Hotine modification (see L in Section 2.5), and the radius of
the integration cap tp. In this study, M is taken equal to L and the
performance of the least squares modification parameters calculated by using
ITG-Grace2010 and GOCOO05C global geopotential models with different
expansion degrees and integration radii are investigated. Each geoid model is
validated using geoid heights derived at each 75 GNSS/leveling benchmark.
The standard deviation of the difference between gravimetric geoid heights
and corresponding geoid heights from control data for grid-wise LSMHA
procedure for biased solution is shown as "before fit" in Table 4.1. The detailed
statistics of alternative geoid modeling methods which are the subjects of this
study are presented in Section 4.3 according to the decisions made in this

section.

As a result of the findings shown in Table 4.1 and the variance of the terrestrial
data given by Valty et al. (2012), the least squares modification parameters are

calculated based on the variables shown in Table 4.2.

The computation of the least squares modification parameters are conducted
by a software provided by Prof. Dr. Artu Ellmann (adopted for gravity
disturbance and Hotine function for LSMHA) similar to Ellmann (2005).
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Table 4.1 : Statistical results of geoid models calculated by different

parameters
GGM M=L(°) | g | before fit (cm)
GOCO05C 120 2 6.6
GOCO05C 200 2 3.9
ITG-Grace2010 120 2 55
ITG-Grace2010 120 1 5.8
GOCO05C 120 1 5.1
GOCO05C 200 1 4.0
GOCO05C 200 0.5 47
GOCO05C 300 0.5 3.5
GOCO05C 360 0.5 3.4
GOCO05C 200 0.3 9.2
GOCO05C 300 0.3 4.6
GOCO05C 360 0.3 4.2

Table 4.2 : Selected parameters

Parameter Choice
radius of the integration cap: g 0.5°
the variance of the terrestrial data: o}, 4 mGal?
Global Geopotential Model GOCO05C
Expansion degree of the GGM: M 360°

Decomposition method

singular value decomposition

4.2 LSMHA Geoid with Components

Each component of the geoid model calculated by LSMHA evaluated by

gridded gravity data are shown in this section. While the figures demonstrate

the geoid model calculated using unbiased type of least squares modification

parameters, the components show resemblance to the geoid models calculated

by point-wise LSMHA, grid-wise LSMSA, and point-wise LSMSA.

The near zone component of the geoid model calculated as the first term of

Eq. 2.17 exhibits a rapidly changing surface as shown in Figure 4.1 since it

represents the main deviation of geoid from leveling ellipsoid as well as the

topographical effect.
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46°45'

46°30'

46715

46°00'

45°45"

45°30'

4515

min, max, mean, std: -0.1484, 1.6977, 0.6566, 0.3663 (m)

Figure 4.1 : Near zone geoid contribution computed by using grid-wise
evaluation of LSMHA

It is expected to have a smooth signal on far zone geoid since N, is calculated
using GGM derived spherical harmonics of gravity disturbance (second part
of Eq. 2.17). As it can be seen in Figure 4.2, N¢,, constitutes the highest ratio

on geoid model and represents the long wavelength component of the geoid.

1°30' 2°00 2°30' 3°00' 3°30' 4°00' 4°30'

m

515

46'45
51.0

46°30'
50.5

46°15'
- 50.0
46°00' 495
45'45 - 49.0
45'30" 48.5
4515 48.0
475

min, max, mean, std: 47.4543, 52.0152, 49.6417, 1.1329 (m)

Figure 4.2 : Far zone geoid contribution computed by using grid-wise
evaluation of LSMHA
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Atmospheric and topographic masses cause pressure on geoid surface. The
combined atmospheric correction computed using Eq. 2.29 is expected to
reflect topography and shown in Figure 4.3. Additionally, the combined
topographic effect is calculated using Eq. 2.23 and shown in Figure 4.4.

1°30° 2°00' 230" 3°00 3°30' 4°00' 4°30°

46°45'

46730

46°15'

46700

45745’

45°30'

45°15'

min, max, mean, std: -3.09, -0.15, -0.88, 0.52 (mm)

Figure 4.3 : Combined atmospheric correction on geoid model computed by
using grid-wise evaluation of LSMHA

1°30' 2°00' 2°30° 3'00' 3'30' 4°00" 4°30 m

0.00

46°45'
-0.05

46°30"
- -0.10

46'15'
46°00" - -0.15

45°45'
-0.20

45'30'
-0.25

45'15'
-0.30

min, max, mean, std: -0.3034, -0.0007, 0.0330, 0.0392 (m)

Figure 4.4 : Combined topographic correction on geoid model computed by
using grid-wise evaluation of LSMHA
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The first component of the downward continuation effect (SNSIZVC(P) is

calculated using Eq. 2.25 and shown in Figure 4.5.

1°30' 200 2°30 3700 3730’ 4°00' 4730

46°45'

46°30'

46°15'

46°00°

45°45'

45°30'

45'15'

min, max, mean, std: -0.0048, 0.2274, 0.0221, 0.0286 (m)

Figure 4.5: 6N ggvc (P) effect on geoid model computed by using grid-wise

evaluation of LSMHA
SNEWST (pY is caleulated using Eq. 2.27 and shown in Figure 4.6
DWe s calculated using Eq. 2.27 a g 6.
1°30" 2°00' 2°30' 3°00' 3°30" 4°00' 4°30' m
' 0.00
46745 ~0.01
46°30 -0.02
. - —-0.03
4615
- —0.04
46°00
- —0.05
45°45' L _0.08
45°30' -0.07
. -0.08
4515
-0.09

min, max, mean, std: -0.0976, -0.0018, -0.0212, 0.0184 (m)

Figure 4.6 : 6N [L)(Wl)éf “"(P) effect on geoid model computed by using grid-wise
evaluation of LSMHA
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The terrain effect on combined downward continuation (5NIL)(V%/)C(P) is

calculated using Eq. 2.28 and shown in Figure 4.7.

4645

46°30"

46715’

46°00

45°45'

45730

4515

1°30' 2°00 2°30 300 3'30° 4°00' 4°30'

m
0.035
0.030

- 0.025

- 0.020

- 0.015

0.010

0.005

0.000

min, max, mean, std: -0.0018, 0.0343, 0.0050, 0.0055 (m)

Figure 4.7 : 6N g(‘i,)c(l’) effect on geoid model computed by using grid-wise

evaluation of LSMHA

Due to the spherical approach on integration, the combined ellipsoidal

correction is calculated as it represented in Eq. 2.30 and shown in Figure 4.8.

46°45'

46°30'

46715’

46700

45°45'

45°30'

45°15'

1°30' 2°00 2°30° 3°00 3°30' 4°00' 4°30°

mm

min, max, mean, std: -1.24, 0.89, -0.37, 0.27 (mm)

Figure 4.8 : Combined Ellipsoidal effect on geoid model computed by using

grid-wise evaluation of LSMHA
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4.3 Validation and Comparison of Resulting Geoid Models

Final geoid models are validated using GNSS/leveling derived geoid heights
explained in Section 3.2. Before fit values in Table 4.3 indicate the initial
statistics of the difference between gravimetric geoid model and the geoid
model derived from GNSS/leveling data. In practice, corrector surface fitting
procedure (Eq. 4.1) is implemented for statistical comparison in order to
eliminate the factors such as systematic errors and datum inconsistencies
between compared surfaces (Fotopoulos, 2003). In order to do so, 4 parameter
Helmert similarity transformation is applied and the results are shown as
"after fit" values in Table 4.4. BLS, ULS, and OLS stand for the solutions by
biased, unbiased, and optimum types of least squares modification parameters
respectively. STD and RMSE stand for the standard deviation and root mean

square error.
AN = Ngps — Ngraw = a x4+ € (4.1)

where a' is the transpose of the design matrix, x is the matrix of unknowns,

and e represents the random noise.

4 parameters Helmert similarity transformation model is given as:

a;=1[1 cosp;cosA; cos¢;sinA; sing;] (4.2)

Figure 4.9, 4.10, 4.11, and 4.12 show unbiased type of geoid models computed
using grid-wise and point-wise evaluation of LSMHA and LSMSA methods.
However, it should be noted that the visible difference between minimum,
maximum, mean, and standard deviation values stem from the systematic

errors and datum inconsistencies.
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Table 4.3 : Statistical results of the final geoid models: before fit (unit: m)

Method Solution | Min | Max | Mean | STD | RMSE

LSMSA grid-wise BLS -1.119 | -0.920 | -1.025 | 0.045 | 1.026
ULS -1.123 | -0.908 | -1.025 | 0.046 | 1.026
OLS -1.123 | -0.906 | -1.025 | 0.046 | 1.026

LSMHA grid-wise BLS -0.961 | -0.791 | -0.890 | 0.034 | 0.890
ULS -0.963 | -0.783 | -0.890 | 0.035 | 0.890
OLS -0.963 | -0.779 | -0.890 | 0.035 | 0.890

LSMSA point-wise BLS -1.088 | -0.818 | -0.988 | 0.062 | 0.990
ULS -1.093 | -0.818 | -0.993 | 0.061 | 0.995
OLS -1.094 | -0.818 | -0.995 | 0.060 | 0.997

LSMHA point-wise BLS -0.935 | -0.705 | -0.848 | 0.053 | 0.849
ULS -0.940 | -0.705 | -0.854 | 0.052 | 0.856
OLS -0.942 | -0.705 | -0.856 | 0.052 | 0.858

Table 4.4 : Statistical results of the final geoid models: after fit (unit: m)

Method Solution | Min | Max | Mean | STD | RMSE

LSMSA grid-wise BLS -0.056 | 0.105 | 0.000 | 0.028 | 0.028
ULS -0.056 | 0.114 | 0.000 | 0.028 | 0.028
OLS -0.057 | 0.117 | 0.000 | 0.029 | 0.029

LSMHA grid-wise BLS -0.062 | 0.106 | 0.000 | 0.028 | 0.028
ULS -0.063 | 0.115 | 0.000 | 0.028 | 0.028
OLS -0.063 | 0.118 | 0.000 | 0.029 | 0.029

LSMSA point-wise BLS -0.107 | 0.104 | 0.000 | 0.043 | 0.043
ULS -0.104 | 0.112 | 0.000 | 0.043 | 0.043
OLS -0.104 | 0.114 | 0.000 | 0.044 | 0.044

LSMHA point-wise BLS -0.116 | 0.107 | 0.000 | 0.043 | 0.043
ULS -0.112 | 0.117 | 0.000 | 0.045 | 0.045
OLS -0.110 | 0.120 | 0.000 | 0.045 | 0.045
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Figure 4.9 : Final geoid from grid-wise evaluation of LSMHA
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Figure 4.10 : Final geoid from grid-wise evaluation of LSMSA



m

1°30 2°00' 2°30 3°00" 3°30' 400 4°30'

53.0

46°45'
52.5
46°30" 52.0
- 515

46°15"
L 51.0
46°00" - 50.5
- 50.0

45°45
495
45'30 49.0
48.5

4515
48.0
475

min, max, mean, std: 47.4967, 53.2358, 50.0742, 1.3951 (m)
Figure 4.11 : Final geoid from point-wise evaluation of LSMHA
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5. COMPUTATIONAL DIFFICULTIES

It is well known, a considerable amount of changes on the scripts/software
are applied to achieve the optimum high resolution geoid model. In order to

enhance the running speed of the scripts, several approaches are followed:

Increasing the grid size of the geoid model to be computed

Profiling

Pre-alignment

Vectorization

Limiting the integration area

3D matrix solutions

Parallel processing

In this study, local geoid models with 1 minute resolution are calculated.
However, during the tests, the spacing is increased to 3 minutes to obtain
quicker results. Apart from this, an initial geoid model can be computed for
tests only in the locations of the GNSS/leveling network to enhance the speed.
This approach can also be considered as a more factual treatment since the
errors caused by interpolation from geoid model to the GNSS/leveling points

are eliminated for the validation procedure at the first place.

Secondly, profiling technique can be used which is not a tool that improves
the performance of the code; but, enables to determine the time-consuming
section of the functions. In addition to that, it is necessary to determine the size
of a variable beforehand which is called pre-alignment. While optimizing the
algorithm, it is advised to use vector arrays and vector operations to increase

the performance.
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Calculation of the Stokes/Hotine function requires spherical distances
between computation point and the running points located within the
integration cap. While conducting an integration using gridded data, one
can calculate the spherical distances and use the same values by shifting the
integration area. However, point-wise evaluation requires variant spherical
distances for each running point. To reduce the running time, a preliminary
limitation on integration area should be implemented. Red square represents

the initial limit where shown in Figure 5.1.
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465
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440

Figure 5.1 : Limitation on the integration area

Some procedures require series expansions of variables such as gravity
disturbance/anomaly in far zone contribution of geoid or harmonic heights
used in atmospheric correction (see Eq. 2.19 and Eq. 3.5). Hence the
computation of those variables each time of operation is time-consuming,
those variables can be stored in 3 dimensional matrices and imported as

an input for the following executions. Matrices can be designed to store
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latitude, longitude, and the related variable up to preferred degree for each

computation point as shown in Figure 5.2.
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Figure 5.2 : 3D matrix

Apart from all the techniques mentioned above, the algorithm used in this
study is modified to be suitable for parallel processing. By doing so, the
running time of the whole geoid modeling procedure is improved 3.7 times
faster when connecting 4 workers (speed is dependent on the number of
connected workers). It is critical to send independent processes to each
worker instead of conducting an iterative solution. As a prior check, it is
strongly advised to control the results from regular code and parallel code
since an unnecessary connection may cause irregularities in results. Finally, the
execution time for point-wise evaluation of 1 minute resolution geoid model
in Auvergne area where the total number of computation points is 28800; is
recorded as 2h30’. The hardware used in the computations has 4-cored i7

processor with the base speed of 2.40 GHz.
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6. CONCLUSIONS

In this study, regional geoid modeling methods are investigated in sense of
grid-wise and point-wise evaluation. The geoid models in Auvergne area are
created using grid-wise LSMSA, grid-wise LSMHA, point-wise LSMSA, and
point-wise LSMHA methods. In order to validate the models, GNSS/leveling
derived geoid heights including 75 points representing the area provided by
the dataset are used as control points. The standard deviation of the differences
from control network to gravimetric geoid models are calculated (before fit).
Consequently, LSMHA method showed superior results to LSMSA approach
for both grid-wise and point-wise approaches. For grid-wise evaluation
LSMHA and LSMSA methods displayed performance of 3.4 cm and 4.5 cm
accuracy respectively for biased solution (almost identical for unbiased and
optimum type of solutions). As for the point-wise integration, the standard
deviation of the error of geoid model calculated using LSMSA is 6.2 cm
where the corresponding value is 5.3 cm for LSMHA counterpart (see Table
4.3). For that matter, it is deduced that the Hotine approach is more reliable
than Stokes in an area where the change in topographic heights is noticeable.
However, after corrector surface fitting using 4 parameters Helmert similarity
transformation is performed, it is revealed that the final accuracy of those
two methods is indicated almost identical results as shown in Table 4.4. The
difference on the accuracies between the initial statistical evaluation (before
fit) and after corrector surface fitting (after fit) is considered as due to the

systematic errors and datum inconsistencies.

After the gridding procedure, the minimum and the maximum values of
gravity quantities change noticeably (see Section 3.1.1). This might be due
to the absence of gravity observations in the grid locations where produced
synthetically using digital elevation model. On the contrary, the original signal

of gravity data is preserved during point-wise integration since the calculation
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of the gravity quantities is directly performed at the observed location. In
addition to that, it is known that the gridding method can also be considered
as a source of error by nature. In this context, this study aimed to perform a
more accurate geoid modeling method using point-wise integration. However,
statistics showed that, grid-wise evaluation of both LSMSA and LSMHA
methods are considered more accurate compared to point-wise approach.
After fit statistics showed that the point-wise geoid is 4.3 cm accurate while

the grid-wise is 2.8 cm (Table 4.4).

In order to determine the inadequacy of point-wise integration, the issue
should be investigated in sense of the gravity data and the method used. As
for the data, it is associated with a prior filtering on discretely distributed
gravity data or filling the data gaps with gravity quantities matching the
area might be needed before the integration. In regard to the method used,
primarily the elimination method of singularity must be investigated in detail
where the method introduced in this thesis constitutes the novelty of this
study. Singularity problem causes from the integration of gravity data which
is located at the computation point or nearby. For the grid-wise evaluation,
singularity elimination methods are employed which are conducted in
previous studies as explained in Section 2.7.1. Analogously, as an alternative
implementation for point-wise evaluation; the integration point which is
the closest to the computation point is taken into account as the source of
singularity in this study. Apart from the singularity problem, in order to
improve the point-wise approach; it is advised to examine the calculation
method of the particular area for each surface element do (see Eq. 2.14) since a

rough approximation is followed during the computations in this thesis.

In order to test a gravimetric geoid model, a need for higher accuracy
on validation data is still needed to conduct a more realistic comparison.
Additionally, the accuracy and the density of the gravity observations are

highly related to the final accuracy of the model which should be improved.

The major computational obstacle and time-consuming part confronted in this
study can be represented as the calculation of the modified Stokes/Hotine

kernel. In order to compute the modified Stokes/Hotine function, the
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spherical distances between the computation point and the integration points
are calculated and un-normalized Legendre polynomials are computed for
each. Using gravity grids may overcome the time-consuming part of this
procedure since the spherical distance of the computation and integration
points will remain the same for sequent grids. However, discrete evaluation
requires calculation of integration distances separately for each data point
since there is no a uniform distribution exist. To improve the efficiency and
the computation time of the algorithm, the codes are modified to be suitable
for parallel processing. For future studies, it is also advised to modify the
algorithm using object-oriented structure where such optimization on coding

experience can result in a better performance.
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