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Fatıma Feyza SAKİL, a M.Sc. student of ITU Graduate School of Science Engineer-
ing and Technology 501161614 successfully defended the thesis entitled “GEOID
MODELING BY THE LEAST SQUARES MODIFIED HOTINE FORMULA US-
ING VORONOI CELL STRUCTURES ”, which she prepared after fulfilling the re-
quirements specified in the associated legislations, before the jury whose signatures
are below.

Thesis Advisor : Assoc. Prof. Dr. Serdar EROL ..............................
Istanbul Technical University

Jury Members : Prof. Dr. Ergin TARI ..............................
Istanbul Technical University

Assoc. Prof. Dr. Ramazan Alpay ABBAK ..............................
Selcuk University

..............................

Date of Submission : 4 May 2018
Date of Defense : 11 June 2018

v



vi



FOREWORD

First and foremost, I would like to thank my supervisor Dr. Serdar Erol for
his support and patience. He provided a suitable working environment, the
powerful hardware needed for computations and most importantly shared his
experience and time for my learning progress. He cheered me on focusing on
each detail and encouraged me to take my initial steps through the academic
world.

Secondly, I am highly grateful to my unofficial supervisors Dr. Artu Ellmann
and Dr. Bihter Erol. Dr. Ellmann accepted me as an exchange student at
Tallinn University of Technology, Estonia; provided all necessary information
and documents during the acceptance process. He guided me to clarify
the topic of my thesis, introduced me to the Least Squares Modification of
Hotine Integral for regional geoid determination and encouraged me to test
empirical methods. He also provided a software to calculate the least squares
modification parameters of for both Stokes and Hotine procedures.

Dr. Bihter Erol shared her experience on gravimetric geoid modeling,
discussed the results of each step of the study and revised all the content and
papers submitted to the related academic events. Not to mention her remote
support and care while I was in Estonia, dealing with dark weather and trying
to motivate myself.

Thirdly, I am grateful to Dr. Ramazan Alpay Abbak for sharing his LSMSSOFT
software package which was beneficial while I was trying to find the
problematic parts on my algorithm and applied readjustments.

I also would like to thank my dearest friends and colleagues Mustafa Serkan
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GEOID MODELING BY THE LEAST SQUARES
MODIFIED HOTINE FORMULA USING VORONOI CELL STRUCTURES

SUMMARY

Increasing use of satellite based positioning techniques in combination with
geoid based vertical datum definition for height determination motivates
studies on precise geoid modeling. This is supported by the developments
in spatial data acquisition techniques and progress in computational
methodologies that facilitate computations of accurate and high resolution
geoid models. Even though several recent dedicated gravimetric satellite
missions (such as GRACE and GOCE) have enhanced accuracy and spatial
resolution global geopotential models (GGMs), however, the spatial resolution
of GGMs remains still insufficient for many applications. The benefits of these
improvements at the long and middle wavelengths of the gravity field signal
to the regional geoid mapping become more accurate.

This study provides the methodological characteristics of the gravity field
modeling and shows a mathematical comparison among the frequently
applied methodologies. In spherical approximation, geoid undulation
can be determined by using a modified Stokes formula, which combines
local terrestrial gravity anomalies and the GGM-derived long wavelength
component in a truncated Stokes’s integral (LSMSA). As an alternative, this
study proposes the Least Squares Modified Hotine Formula with Additive
Corrections (LSMHA) for geoid modeling. Once the approximate geoid
with the Least Squares Modified Hotine Function is computed, the additive
corrections should be implemented to the model. The present study tests
the method by conducting an experimental geoid modeling in Auvergne area
of France (43N and 49N latitudes, -1E and 7E longitudes). The GOCO05c
geopotential model, digital terrain model data (grid form with 0.005◦ spacing),
homogeneously distributed dense point gravity data and GNSS/leveling data
are employed in the computations.

The Hotine function requires the use of gravity disturbances instead of
anomalies. Gravity disturbance is a function of GNSS-derived ellipsoidal
heights. Therefore the Hotine approach can be considered as a more practical
approach in comparison with Stokes.

Usually, uniform grid of gravity quantities is needed as an input for
Stokesian/Hotine’s integration. However, since unsuitable gridding methods
may produce false or spurious data that might lead to an inaccurate geoid,
this study attempts to avoid conventionally gridded gravity data as an input
to geoid modeling. Instead, the gravity data of the target area is partitioned
into convex and adjacent polygons; each holds the original values of the
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gravity disturbances. Within the integration area, the polygonal figures in
Voronoi cell structures are used since the algorithm enables to preserve the
actual characteristics of the observed gravity signal content. The resulting
geoid models are assessed by the GNSS/leveling data and also compared to
traditional geoid modeling approaches. Numerical results are provided in the
conclusions of the study.
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VORONOİ HÜCRE YAPILARI ARACILIĞIYLA HOTİNE İNTEGRALİNİN
EN KÜÇÜK KARELER MODİFİKASYONU İLE GEOİT BELİRLEME

ÖZET

Günümüzde yüksek doğruluklu üç boyutlu konum bilgisine duyulan ihtiyaç
oldukça artmış ve gelecekte de artmaya devam edeceği öngürülmektedir.
Yüksek doğruluklu enlem ve boylam bilgisi Küresel Uydu Navigasyon
Sistemleri (GNSS) kullanılarak hesaplanabilirken, uydu bazlı konumlama
tekniklerinden elde edilen yükseklik bilgisi elipsoid referanslı bir yüzeyi ifade
etmektedir. Jeodezik altyapıya referans teşkil eden ortometrik yükseklikler
(ortalama deniz yüzeyi referanslı) ise nivelman yöntemi ile belirlenebilmekte
ancak bu yöntem hem zaman hem de finansal açıdan istenilen verimi
sunamamaktadır. Aynı zamanda nivelman yönteminde ölçme hatalarının
kümülatif olarak takip eden ölçmeyi etkilemesinden dolayı istenilen doğruluk
elde edilememektedir. Klasik geometrik ve trigonometrik nivelmanın aksine
prezisyonlu geometrik nivelman ölçme doğruluğu açısından daha doğru
sonuçlar verse de uygulaması daha zor ve zaman alan bir yöntemdir.

Yer yuvarının kütlesinden kaynaklı çekim potansiyeli ve sahip olduğu açısal
hızdan kaynaklı merkezkaç potansiyelinin bileşkesi gravite potansiyeli olarak
ifade edilir. Gravite potansiyeli eşit olan noktaların oluşturduğu yüzeyler
eşpotansiyel, diğer bir ifade ile nivo yüzeyleri olarak adlandırılır. Geoit fiziksel
anlamda ortalama deniz yüzeyine yakınsayan ve karaların altından devam
ettiği varsayılan özel bir eşpotansiyel yüzeydir. Bu bağlamda geoit belirleme
problemi, bir gravite alanı modellemesi işlemi olarak ifade edilebilir. Gravite
alanı modellemesi matematiksel olarak belli sınır koşuluna bağlı olarak ilgili
parametrelerin diferansiyel denklem sisteminde çözümünü, yani literatürde
belirtildiği üzere jeodezik bir sınır değer problemini ifade etmektedir.

GNSS yöntemiyle bulunan elipsoidal yükseklik ile geoit yükseklikleri kul-
lanılarak pratik uygulamalarda ihtiyaç duyulan ortometrik yükseklik bilgisi
elde edilebilmektedir. Geoit yüksekliğinin hesaplanması ise yaygın olarak
gravimetrik yöntemlerle gerçekleştirilmektedir. Bu bağlamda uydu bazlı
konumlama tekniklerinin de gelişmesiyle yükseklik sistemi belirleme amaçlı
geoit referanslı düşey datum tanımlamaları günümüzde önem kazanmıştır.

Yersel gravite verilerinin doğruluğunun artması ve hesap yöntemlerindeki
modifikasyonlarla yüksek doğruluklu ve yüksek çözünürlüklü gravimetrik
geoit modellerinin hesaplanması kolaylaşmıştır. Uydu gravite misyonların-
daki gelişmeler (GRACE, GOCE), global jeopotansiyel modellerdeki (GGM)
doğruluk ve mekansal çözünürlüğü arttırmış olsa da elde edilen sonuçlar
günümüz ihtiyaçlarını tam anlamıyla karşılayamamaktadır. Bu amaçla yeni
metodolojiler test edilmekte ve uygulamaya konulmaktadır. Yer yuvarı
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üzerinde geoit yüksekliği hesaplanacak olan bölgedeki topografik yapı,
gravite gözlemlerinin dağılımı ve doğruluğu, global jeopotansiyel modelin
o bölgedeki performansı geoidin sonuç doğruluğunu etkileyeceğinden bu
faktörler göz önüne alınarak uygun geoit modelleme yöntemi irdelenmelidir.
Günümüzde En Küçük Kareler Kolokasyonu, Stokes/Hotine İntegral Yak-
laşımı, Remove-Compute-Restore Tekniği ve Stokes-Helmert Metodu gibi
yöntemler geoit belirleme amaçlı kullanılmaktadır.

Bu çalışma bölgesel geoit belirleme amacıyla sıklıkla kullanılan yöntemleri
özetle incelemekte ve Hotine İntegralinin En Küçük Kareler Modifikasyonu
ile bölgesel geoit belirleme tekniğinin teorisini ortaya koymaktadır. Hem
Stokes hem de Hotine integralleri yardımıyla geoit belirlenirken; hesap
yüzeyi bir küredir ve küre üzerinde homejen dağılımlı yersel gravite
gözlemleri vardır kabul edilir. Ancak pratikte böyle bir imkan olmadığı
için geoit yüksekliği belirlenecek bölgede bir sınırlandırma yapılır ki
bu durum kesme hatasını beraberinde getirmektedir. Kesme hatasını
elimine etmek adına Stokes/Hotine integralleri en küçük kareler yöntemi
ile modifiye edilmektedir. En küçük kareler modifikasyonu temelde
yersel gravite verisi ve GGM’lerden elde edilen parametrelerle hesaplanan
gravite anomali veya bozukluklarının integrasyona hangi oranda katılacağını
ifade eden modifikasyon parametrelerini sağlamaktadır. Yersel gravite
verisi kullanılarak geoit modelinin kısa ve orta dalga boylu bileşenleri
hesaplanırken, GGMlerden hesaplanan gravite ürünleriyle uzun dalga boylu
geoit bileşeni bulunabilir. Yersel gravite verisi kullanılarak hesaplanan
geoit bileşeni "yakın alan bileşeni" olarak isimlendirilirken, GGM yardımıyla
hesaplanan ikinci bileşen "uzak alan bileşeni" olarak isimlendirilmektedir.
Geoidin yakın ve uzak alan bileşenleri kullanılarak "yaklaşık geoit" elde
edilebilmektedir. Hesap yüzeyinin integrasyonun başlangıcında küre olarak
kabul edilmesi ve bu varsayıma ek olarak üzerinde topografik bir kütlenin
olmadığının düşünülerek işlem yapılmasından kaynaklı, yaklaşık geoit hesabı,
ek düzeltmeler ile iyileştirilmelidir. Bu bağlamda topografik, aşağıya uzanım,
atmosferik ve elipsoidal düzeltmeler uygulanarak final geoidine ulaşılmalıdır.

Hotine Fonksiyonunun En Küçük Kareler Modifikasyonu (LSMHA), Stokes
Fonksiyonunun En Küçük Kareler Modifikasyonundan (LSMSA) farklı
olarak gravite anomalisi yerine gravite bozukluğu değerini kullanmaktadır.
Günümüzde integral yöntemiyle geoit belirleme çalışmalarında yaygın olarak
gravite anomalisi ile LSMSA yöntemi kullanılmaktadır. Ancak gravite bozuk-
luğunun GNSS türevli elipsoidal yükseklikler kullanılarak direkt bir şekilde
hesaplanabilmesiyle bu eğilimin değişebileceği düşünülmektedir. Nitekim
bu amaçla LSMHA ve LSMSA metodlarının uygulanması ve kıyaslanması
bu çalışma dahilinde yapılmıştır. Çalışma, Fransa’nın Auvergne bölgesinde
(43N ve 49N enlemleri, -1E ve 7E boylamları arasında) gerçekleştirilen bir
deneysel geoit modeli ile desteklenmektedir. Hesaplamalarda GOCO05C
global geopotential modeli (360 ◦lik açılım), sayısal arazi modeli verileri
(0.005◦ aralıklı grid formunda), homojen olarak dağılmış yoğun nokta gravite
verileri ve validasyon amaçlı GNSS/nivelman verileri kullanılmıştır.

Genellikle Stokes / Hotine integrali için eş boyutlu homojen grid veri
kullanılmaktadır. Bununla birlikte, uygun olmayan gridleme yöntemleri
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yanlış bir geoit modeline sebebiyet verebilecek veriler üretebileceği için,
bu çalışma, geoit modelleme işleminde geleneksel grid gravite verilerinin
kullanımının önüne geçmeye çalışmaktadır. Grid veri ve nokta veri
kullanımının farklarını yansıtmak adına Auvergne bölgesinde iki yöntemle de
geoit modeli hesaplanmış, yöntemler arasındaki farklar irdelenmiş ve sonuçlar
ifade edilmiştir. Noktasal veri ile hesap yapabilmek adına her bir yersel gravite
noktası, noktayı temsil edecek Voronoi alanları ile çevrelenmiştir. Her bir veri
noktasını çevreleyen Voronoi alanları o noktayı çevreleyen diğer veri noktaları
arasındaki uzaklığın yarısına tekabül eden dönüm noktalarının birleştirilmesi
ile elde edilmektedir. Bu çalışmada Voronoi alanları, harici bir yazılım
aracılığıyla oluşturulmuş, veri sınırlarında ortaya çıkan artık değerler manuel
olarak elimine edilmiştir. Voronoi alanları kullanılarak hesap yapılan alandaki
gravite anomalisi veya gravite bozukluğu değerleri gridleme işlemindeki
interpolasyondan kaynaklı hataları içermemekte, gravite sinyalini olduğu gibi
yansıtmaktadır. Bu değerler ile yapılan hesaplamaların sonucunda veride
öncelikli bir filtreleme işleminin yapılması gerektiği sonucuna varıldıysa da
bu husus çalışmanın odağı dışında yer almaktadır.

Bu tez kapsamında, LSMHA ve LSMSA yöntemleri için hem grid veri hem
de noktasal veri ile ortak olarak çalışabilecek bir geoit modelleme algoritması
oluşturulmuştur. Hesaplanan geoit modelleri Auvergne veri seti ile birlikte
sunulan 75 adet noktadan oluşan GNSS/nivelman gözlemleri yardımıyla
valide edilmiş ve sonuçlar kıyaslanmıştır. 4 parametreli Helmert benzerlik
dönüşümü kullanılarak yapılan dengeleme işlemi ile modellenen gravimetrik
geoit ile GNSS/nivelmandan elde edilen geoit yüzeyleri arasındaki sistematik
farklar giderilmiştir. Dengeleme öncesi ve sonrası model doğrulukları
istatistiksel olarak ifade edilmiştir.

Geoit belirleme üzerine bahsi geçen yöntemlerin uygulanması esnasında
karşılaşılan yazılımsal ve donanımsal güçlüklerin giderilmesi adına kullanılan
donanımda değişikliğe gidilmiş ve algoritmada performans geliştirme ihtiyacı
doğmuştur. Bu bağlamda yazılan kodlar aynı anda paralel işlemcilerde
koşturulabilecek şekilde optimize edilmiştir.

Yapılan analizlerin sonucunda, grid veri ile yapılan LSMSA ve LSMHA
uygulamalarında yüksek doğruluk elde edilirken, nokta veri ile nispeden daha
düşük bir doğruluğa ulaşılmıştır. Uygulamalara yönelik sayısal analizler,
tartışma ve gelecek araştırmalara yönelik fikir ve öneriler sonuç bölümünde
sunulmuştur.
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1. INTRODUCTION

1.1 Background

Geoid is a special level surface consists of points having the same gravity

potential and approximates to mean sea level. Due to the irregularities of the

masses and the rotation of the Earth, geoid has a non-uniform shape. The

shape is expressed as the geoid height (undulation) which is defined with

respect to a reference ellipsoid and notated as N. Despite being a physical

surface, geoid has a practical usage in geodetic infrastructure, as the reference

surface of topographical heights and also used in geophysics and geodynamics

to study the quantities related to deep Earth. As shown in Figure 1.1, when

GNSS-derived ellipsoidal heights h and a reliable geoid model are available,

one can determine the sea level referred (orthometric) height H by:

H = h− N (1.1)

Figure 1.1 : Height reference surfaces

In terms of geodetic prospect, due to relatively higher time and money

consumption and the cumulative error propagation of leveling procedure,

geoid modeling is considered as a more efficient approach on vertical datum

definition. In consideration of the recent studies, the accuracy of geoid highly

depends on the data density and the data accuracy. Ågren and Sjöberg (2014)

presents the gravity data requirements for 5 mm quasigeoid model in Swedish
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and Nordic regions (under the context of this thesis only geoid model is

examined however, the mentioned requirements can be considered valid for

both quasigeoid and geoid models). It is also suggested to investigate Farahani

et al. (2017) for a similar study conducted in Netherlands where the standard

deviation of 1.5 mGal for the surface gravity anomaly and a data spacing of

about 3.5 to 6.5 km are considered as sufficient for 5 mm quasigeoid model.

Along with the data condition, the final accuracy of the geoid model is also

dependent on the method used.

Methods used in gravity field modeling include Remove Compute Restore

(RCR), Stokesian/Hotine Integration, Stokes/Helmert Method, and Least

Squares Collocation (LSC) techniques. Each technique evaluates terrestrial

gravity measurements, mostly gravity anomaly; derived from the observa-

tions. While LSC approach uses point-wise evaluation, the rest of the methods

often use gridded gravity quantities. On the other hand, as it is previously

investigated in Dos Santos and Escobar (2004), the gravity anomalies can be

discretely used in Stokes Integral. The similar procedure can be applied for

Hotine Integral using point-wise evaluation which constitutes the main focus

of this thesis. As distinct from Stokesian integration, Hotine approach requires

gravity disturbance values as the input.

The short wavelength/high frequency component of the geoid signal repre-

sents a rapidly changing surface while the long wavelength/low frequency

component represents a relatively smoother surface. Global geopotential

models (GGMs) obtained from space geodetic missions such as GRACE

(Gravity Recovery and Climate Experiment) and GOCE (Gravity field and

steady-state Ocean Circulation Explorer) offer global scale gravity quantities.

Spherical harmonic expansion of GGM derived quantities are used to get

a reference field for the local approximation of the geoid which represents

the long wavelength part (Li, 2000). Geoid information of short/medium

wavelengths is determined using terrestrial gravity observations were located

in a cap of integration. While determination of the radius of the integration

cap is highly dependent on the quality of the terrestrial data, the upper

modification limit of the integration is related to the accuracy and the spatial
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resolution of the GGM (Işık, 2016) and the compatibility of the model with the

specific area to be modeled (see Section 4.1).

1.2 Purpose of the Study

The overall objective of this study is to compute a high resolution geoid model

for Auvergne area, France. For this purpose, both Least Squares Modification

of Stokes’ (LSMS) and Least Squares Modification of Hotine’s (LSHS) formulas

are applied, and the results are given for different solutions by using biased,

unbiased, and optimum type of modification parameters presented in Ellmann

(2004) and Märdla et al. (2018).

The emphasis of the study is to compare the geoid modeling methods by

Stokes/Hotine integral approach using point-wise and grid-wise gravity data.

It is also aimed to introduce an applicable solution for singularity problem for

discrete (point-wise) evaluation which will be investigated in Section 2.7.

1.3 Outline

The thesis constituted in six chapters. Chapter 1 indicates the statement of the

problem in sense of the gravity field and the geoid. It gives a brief explanation

of geoid accuracy and geoid components in accordance with the main objective

of the study. Chapter 2 is meant as an overall investigation of the gravity

related quantities, definitions of Earth’s gravity field, and the fundamentals of

physical geodesy. The theories behind the geoid modeling methods implied

in this study are shown and the differences between those techniques are

demonstrated. In Chapter 3, the data available in the study area is introduced.

Chapter 4 comprises the numerical results of the methods those previously

introduced in Chapter 2. Computational difficulties confronted during the

study are explained in Chapter 5. Chapter 6 summarises the findings of

the study and recommendations for future studies based on the results are

presented in this section.
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2. METHODOLOGY

2.1 Gravity Potential and Geoid

Gravity potential is the product of the gravitational potential and the

centrifugal potential (Freeden et al., 2015). Gravitational potential of the Earth

depends on the attraction of masses while the centrifugal potential is related

to the rotation of the celestial body, the Earth in particular. Based on this

definition a leveling surface can be described as a set of points consisting the

same value of gravity potential. Among all leveling surfaces, Geoid as a special

surface is introduced by Listing (1873).

As it introduced in Chapter 1, geoid is an equipotential surface shaped by

the points with the same gravity potential values and it approximates the

mean sea level. As a matter of fact, geoid is a physically defined surface

with practical implementation that stands for the height N with respect to

a global reference ellipsoid. Geoid determination is based on the Second

Boundary Value Problem (Neumann’s problem) or Third Boundary Value

Problem (Robin’s problem) that determines the disturbing potential on a

surface, on which values functionally related to this disturbing potential exist

(Bayoud and Sideris, 2003).

There are different methods to model the geoid. LSC method stated in

Chapter 1, is a type of interpolation and/or prediction of stochastic variables,

either within one type of observable or from the observations of one type to

another (Sjöberg and Bagherbandi, 2017). RCR technique; as an alternative,

even though is considered as a commonly used method, remains incapable

since the assumptions in RCR technique (such as usage of Helmert’s second

method of condensation while elimination of topographic effect, ignoring the

atmospheric correction, etc.) do not reflect the reality. In this context, KTH

(Royal Institute of Technology) Method, first introduced by Sjöberg (1984),

investigated in detail. The theory also called the Least Squares Modification of
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Stokes Integral with Additive Corrections (LSMSA), applied to modify Stokes

kernel to minimize the global mean square error of the resulting geoid model

(see e.g. Ellmann (2001) and Ågren (2004)). The theory makes use of surface

gravity anomaly instead of classical gravity anomaly on the geoid (see Section

2.3) to determine the approximate geoid and the additional corrections applied

for the final geoid model. KTH method is applied in different regions having

different characteristics of topography and showed convenient results (e.g.

(Ellmann, 2004; Kiamehr, 2006; Ågren et al., 2009; Yildiz et al., 2012)).

For historical reasons, mostly gravity anomalies are evaluated for geoid

modeling. Nowadays; however, since the ellipsoidal heights are directly

available from GNSS, the gravity disturbance can be calculated accurately (see

Section 2.4). Thus, one may expect that gravity disturbance will become more

important than gravity anomaly in future (Hofmann-Wellenhof and Moritz,

2006).

Hotine integral for geoid determination, mentioned in Chapter 1, requires

the integration of gravity disturbances (Hotine, 1969). For previous studies

performed using Hotine integral, reader is referred to Zelin and Yecai (1991),

Vanicek et al. (1992), Bayoud and Sideris (2003) etc. This thesis focuses on

the Hotine adaptation of KTH method, so-called Least Squares Modification

of Hotine’s Integral with Additive Corrections (LSMHA) first presented by

Märdla et al. (2018). The novelty of this study is based on discrete data

evaluation instead of using regular gravity grids as distinct from the former

study.

2.2 Normal Gravity

The normal figure of the Earth is considered as a level ellipsoid due to the

simplicity on computations. In theory, the gravity value on the level ellipsoid

is regarded as the normal gravity (Hofmann-Wellenhof and Moritz, 2006).
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The normal gravity γQ0 on a point Q0 located at the ellipsoidal surface as

shown in Figure 2.1 is given by the well-known formula of Somigliana:

γQ0 =
aγa cos2(ϕ) + bγb sin2(ϕ)√

a2 cos2(ϕ) + b2 sin2(ϕ)
(2.1)

where a and b are respectively the semi-major and semi-minor axes of the

ellipsoid, γa and γb are the normal gravity at the equator and the poles, and ϕ

is the latitude of the point corresponds to Q0 on ellipsoid.

Figure 2.1 : Illustration of the relevant surfaces (Hofmann-Wellenhof and
Moritz, 2006)

2.3 Gravity Anomaly

Gravity anomaly vector is the difference between the actual gravity vector on

the geoid ~gP0 and the normal gravity vector on the reference ellipsoid ~γQ0 as

shown in Figure 2.1. The difference in magnitude is defined as the classical

gravity anomaly ∆g0 (Hofmann-Wellenhof and Moritz, 2006):

∆g0 = gP0 − γQ0 (2.2)

Analogously the modern gravity anomaly ∆g according to Molodensky’s

theory (also called surface gravity anomaly) is defined as (Molodensky, 1962;

Hofmann-Wellenhof and Moritz, 2006):

∆g = gP − γQ (2.3)

as it can be seen in the Figure 2.1, P is the point at the Earth’s surface and γQ

is the normal gravity at the same ellipsoidal longitude and latitude reduced
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to telluroid (a spheropotential surface where U = WP = const, see Figure 3.13)

(Hofmann-Wellenhof and Moritz, 2006).

For many purposes such as interpolating the surface gravity values, a

functional of the gravitational potential which does not contain the effect of the

topographic masses above the geoid is needed (Barthelmes, 2009). The former

leads to the simple Bouguer gravity anomaly ∆gSBA calculated as (Heiskanen

and Moritz, 1967):

∆gSBA = gP − (
∂gP

∂H
)BH − γQ0 (2.4)

where H is the orthometric height of the point located at the Earth’s surface

and

(
∂gP

∂H
)B = −0.1967 mGal/m (2.5)

is the Bouguer gradient assuming the crustal density ρ equals to 2.67 g/cm3

(Vanicek and Krakiwsky, 2015).

Due to the rapid change on the topography, the reduced anomaly quantities

may not be convenient hence a smoother gravity field might be required

for gridding procedure. In this case terrain corrected Bouger anomalies also

known as complete Bouguer anomalies must be evaluated from the following

formula (Märdla et al., 2017):

∆gCBA = ∆gSBA + δgTC (2.6)

where δgTC is the terrain correction (Heiskanen and Moritz, 1967).

2.4 Gravity Disturbance

Gravity disturbance δg as another quantity of the gravity field can be obtained

by using GNSS derived heights. δg on a point P located at the Earth’s surface

is expressed as (Heiskanen and Moritz, 1967):

δgP = gP − γP (2.7)

where γP is the normal gravity on topography and calculated as:

γP = γQ0 − 0.3086h (2.8)
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where the second part from the right side of the equation is the terrain

correction while h is the height above the ellipsoid.

2.5 Geoid Modeling with KTH Method

The difference between the actual gravity potential on geoid and the

normal gravity potential on ellipsoid is denoted as disturbing potential; T

(Hofmann-Wellenhof and Moritz, 2006). According to Stokes (1849), T can be

computed as:

T =
R

4π

∫∫
σ

S(ψ)∆gdσ (2.9)

The relationship between the geoid height and the disturbing potential is given

by the well-known formula of physical geodesy by Bruns (1878) as:

N =
T
γ

(2.10)

Accordingly, the geoid height can be expressed using Stokes equation as:

N =
R

4πγ

∫∫
σ

S(ψ)∆gdσ (2.11)

Geoid determination with original Stokes formula as expressed in Eq.

2.11 requires global coverage of gravity anomalies. However, since a

homogeneous, dense gravity data cannot be obtained in global scale, the

integration is limited in a circle of radius ψ0. Due to the truncation

error, original Stokes function should be modified by sets of stochastic or

deterministic modification parameters; presented as sn and bn (Ellmann, 2005).

KTH ( Royal Institute of Technology) method summarized by Sjöberg (2003b)

states for the Least Squares Modification of Stokes’s Formula with Additive

Corrections (LSMSA). In order to perform the KTH method, the surface gravity

anomalies within a predefined integration cap are directly used to calculate

the short and medium wavelength components of the geoid (near zone geoid).

Long wavelength component (far zone geoid) stems from the evaluation of

the spherical harmonic function of the gravity anomaly calculated in a proper

degree of modification. The geoid estimator N̂ is acquired by applying the

9



additive corrections and represented as:

N̂ = Ñ + δNCOMB + δNDWC + δNATM + δNELL (2.12)

Ñ stands for the approximate geoid, δNCOMB represents the combined

topographic effect (Sjöberg, 1995, 2000), while δNDWC is the combined

downward continuation effect (Sjöberg, 2003c). δNATM stands for the

combined atmospheric effect introduced in Sjöberg (1999) and Sjöberg (2001).

Lastly, δNELL presents the combined ellipsoidal effect (Sjöberg, 2003a, 2004).

Approximate geoid Ñ composes of two parts:

Ñ = Nnear + N f ar (2.13)

In order to calculate Ñ in a truncated cap σ0, Eq. 2.13 is expanded as (Sjöberg,

2003b):

Ñ =
R

4πγ

∫∫
σ0

SL(ψ)∆gdσ +
R
2γ

M

∑
n=2

bn∆gn (2.14)

where R is the mean Earth radius

γ is normal gravity at the ellipsoid

SL(ψ) is modified Stokes function

∆g are surface gravity anomalies

dσ are surface elements

bn are the modification parameters

∆gn are the spherical harmonic representation of the gravity anomaly

L is the selected maximum degree of modification and M is the spherical

harmonic degree up to which GGM is used.

Since the main emphasis of this study is to implement LSMHA (Hotine)

procedure and both Stokes/Hotine functions show resemblance (Heiskanen

and Moritz, 1967), the detailed explanations of components mentioned above
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will be represented for Least Squares Modification of Hotine’s Function with

Additive Corrections in Section 2.6 and 2.6.1. The summary of the comparison

between Stokes and Hotine procedures is given in Table 2.1, Table 2.2, and

Table 2.3.

2.6 Least Squares Modification of Hotine’s Function

At the present time, the vertical component of position can be obtained by

GNSS with less than 1 cm accuracy. As it is stated in previous sections, one

can determine gravity disturbance accurately with ellipsoidal heights. Gravity

field of the Earth can be modeled by using gravity disturbance via Hotine

integral. The general form of geoid undulation using Hotine integral is given

as (Hotine, 1969):

N =
R

4πγ

∫∫
σ

H(ψ)δgdσ (2.15)

R is the mean Earth radius. γ equals to the normal gravity on the reference

ellipsoid, σ is the unit sphere, H(ψ) is the Hotine function, δg is the gravity

disturbance, and dσ is the elemental area of each observation point.

The original form of Hotine function is given as (Hotine, 1969):

H(ψ) =
1

sin(ψ/2)
− log(1 +

1
sin(ψ/2)

) (2.16)

As already expressed in Section 2.5, due to the lack of global coverage of

gravity data, the integration should be limited in a truncated cap using a set of

modification parameters. In order to do so, Eq. 2.15 is rewritten as below while

near zone and the far zone contributions are taken into account separately

(Märdla et al., 2018):

Ñ =
R

4πγ

∫∫
σ0

HL(ψ)δgdσ +
R
2γ

M

∑
n=0

bnδgn (2.17)

where HL(ψ) is the modified Hotine function, δg is the surface gravity

disturbance, bn are the modification parameters calculated for LSMHA, δgn

are the Laplace harmonics of gravity disturbance and the rest of the terms are

identical with the terms explained in Section 2.5. Note that n in the second part

of the formula starts from 0 instead of 2 compared to Stokes counterpart.
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The modified Hotine function HL(ψ) can be computed as (Märdla et al., 2018):

HL(ψ) = H(ψ)−
L

∑
n=0

2n + 1
2

snPn(cos(ψ)) (2.18)

Pn(cos(ψ)) are the un-normalized Legendre polynomials of cos(ψ) where ψ are

the spherical distances calculated from computation point to each integration

point.

The spherical harmonic representation of the gravity disturbance is given as

(Heiskanen and Moritz, 1967, Eq. 2-153):

δgn =
GM
a2 (

a
r
)n+2(n + 1)

n

∑
m=0
{∆Cnm cosmλ + Snm sinmλ}Pnm(sinφ) (2.19)

where Pnm are fully normalized Legendre polynomials, r, λ, and φ are

geocentric radius, longitude, and geocentric latitude of computation point

respectively. Cnm and Snm are fully normalized spherical harmonic coefficients

and ∆Cnm is calculated as (Ellmann, 2001):

∆Cnm = CW
nm − CU

nm (2.20)

where CW
nm is the related degree and order Cnm coefficients obtained by the

GGM and CU
nm represents the fully normalized even zonal harmonics of normal

potential.

The modification parameters bn are calculated for biased, unbiased, and

optimum solutions as (Ellmann, 2005):

biased : bn = sn

unbiased : bn = sn + QL
n

optimum : bn =
(sn + QL

n)c2
n

(c2
n + dc2

n)

(2.21)

where sn are the modification parameters, QL
n are the modified truncation

coefficients, c2
n are the gravity signal degree variances, and dc2

n are the GGM

error degree variances.

The modified truncation coefficients QL
n(ψ0) for the spherical distance of ψ0 are

computed as (Märdla et al., 2018):

QL
n(ψ0) = Qn(ψ0)−

L

∑
k=0

2k + 1
2

Rnksk (2.22)

12



Qn(ψ0) are the truncation coefficients by Jekeli (1979). Rnk are calculated

according to Paul (1973). sk are the modification parameters (same as sn in

Eq. 2.18)

Apart from KTH procedure, the spectral factor used in the computation of

sn parameters in Stokes modification; 1/(n − 1) is replaced by 1/(n + 1) for

Hotine approach. Another difference is that the truncation coefficient Qn(ψ0)

from Paul (1973) is used for Stokesian integration.

In this thesis, modification parameters sn and bn are calculated using a software

provided by Prof. Dr. Artu Ellmann for both Stokes and Hotine procedures.

2.6.1 Additive corrections

There are a number of assumptions while implementing Stokes/Hotine

integrals for geoid modeling:

• The integration area is a sphere

• There is homogeneous data along the whole sphere of integration

• There are no topographic masses outside of the sphere of integration

The second assumption indicated above carried out by implementing

modification parameters to the integral (see Section 2.5 and 2.6). Yet, a number

of corrections should be performed due to the first and the third presumptions.

After the integration, indirect effects are applied to the potential for restoration

of masses as well as for corrections to the potential on the reference ellipsoid

(Sjöberg and Bagherbandi, 2017).

Additive corrections for least squares modification of Hotine function shows

resemblance with the corrections in the least squares modification of Stokes

function. Sequent section presents the corrections needed to be implemented

on LSMH and shows the comparisons between LSMH and LSMS approaches.

2.6.1.1 Combined topographic correction

In traditional methods, the potential of gravity anomaly or disturbance are

located on the geoid while implementing Stokes/Hotine integral. Since
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there should be no topographic masses outside of the integration sphere,

the topographic signal on gravity must be removed (by any method) and

should be restored once the integration is implemented; however, due to the

incomplete downward continuation, this technique leads to an error (Sjöberg,

2018). Finally, after the adoption of surface gravity anomaly or disturbances,

the combined topographic correction can be carried out by (Sjöberg, 2018):

δNCOMB = −2πGρ

γ

(
H̃2 +

2H̃3

3R

)
(2.23)

where G is the Newton’s gravitational constant, ρ is the topographic density,

and H̃v is the vth power of the Laplace surface harmonics of the topographic

height with first and second-degree terms excluded (see Eq. 3.5). However, in

this study; since the orthometric height of each integration point is provided

by the Auvergne dataset (see Section 3.1), the observed values are directly used

instead of the Laplace surface harmonics of the topographic heights.

2.6.1.2 Combined downward continuation correction

Combined downward continuation correction can be calculated as:

δNDWC = δN(1)
DWC(P) + δNL(1), f ar

DWC (P) + δNL(2)
DWC(P) (2.24)

δN(1)
DWC(P) is the first component of downward continuation effect (Märdla

et al., 2018):

δN(1)
DWC(P) =

δg(P)
γ

HP +
ζ0

P
rP

HP −
1

2γ

∂δg
∂r

∣∣∣
P

H2
P (2.25)

where ζ0
P is the approximate value of height anomaly and as suggested in

Ågren (2004):

ζ0
P ≈ Ñ (2.26)

∂δg
∂r

∣∣∣
P

is the vertical gradient of gravity disturbance as in Heiskanen and Moritz

(1967). It should be noted that the second term of the equation should be

multiplied with 3 in LSMSA compared to Hotine counterpart.
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δNL(1), f ar
DWC (P) is the term for far component of downward continuation

correction and expressed as follow (Märdla et al., 2018):

δNL(1), f ar
DWC (P) =

R
2γ

M

∑
n=0

(sn + QL
n)

[(
R
rP

)n+2

− 1

]
δgn(P) (2.27)

where δgn(P) are the gravity disturbance of computation point from spherical

harmonics calculated as in Eq. 2.19.

Finally, the terrain downward continuation effect (Märdla et al., 2018):

δNL(2)
DWC(P) =

R
4πγ

∫∫
σ0

HL(ψ)

(
∂δg
∂r

∣∣∣
Q
(HP − HQ)

)
dσQ (2.28)

Notice that the gravity quantities used in the calculations above are the

disturbance values instead of anomalies compared to the Stokes counterpart.

2.6.1.3 Combined atmospheric correction

Considering the third assumption introduced in section 2.6.1, the effect of the

atmospheric masses should be taking into account as (Märdla et al., 2018):

δNATM(P) = −2πRGρA

γ

M

∑
n=0

(
2

n + 1
− sn −QL

n

)
Hn(P)

− 2πRGρA

γ

∞

∑
n=M+1

(
2

n + 1
− n + 2

2n + 1
QL

n

)
Hn(P)

(2.29)

where G is the Newton’s gravitational constant, ρA is the atmospheric density

at sea level, and Hn are the Laplace surface harmonics of the topographic

height (Eq. 3.5).

2.6.1.4 Combined ellipsoidal correction

As introduced in section 2.6.1, Stokes/Hotine integrals are implemented using

spherical coordinates. Therefore, the combined ellipsoidal correction should

be calculated as (Märdla et al., 2018):

δNELL(P) =
R
2γ

∞

∑
n=0

(
2

n + 1
− sn −QL

n

)(
a− R

R
δgn(P) +

a
R

δge
n

)
(2.30)

where δgn(P) are the gravity disturbance of computation point from spherical

harmonics calculated as in Eq. 2.19 and δge
n are the Laplace harmonics of
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the ellipsoidal correction to the gravity disturbance and presented as (Märdla

et al., 2018):

δge
n =

e2GM
2a2

n

∑
m=−n

{[3− (n + 4)Fnm]Cnm − (5− n)GnmCn+2,m

− (3n + 7)EnmCn−2,m}Ynm(P)
(2.31)

Ynm are the fully normalized spherical harmonics, Cnm are the harmonic

coefficients of the disturbing potential and Enm, Fnm, and Gnm are the related

coefficients for the ellipsoidal correction.

2.7 Singularity Problem

Hotine function (as well as Stokes function) introduced in Eq. 2.16 is equal to

∞ while ψ = 0. As shown in Figure 2.2 this effect has also an impact on the

integration points which are located close to the computation point (see the

sudden decrease where the spherical distances are close to zero) and called as

singularity problem.

Figure 2.2 : Unmodified Hotine function for the spherical distances calculated
in the truncation cap

In order to diminish the singularity effect, the near zone component of the

geoid presented as the first part in Eq. 2.14 can be divided into two parts:

Nnear = Nouther + Ninner (2.32)
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Nouther expresses the term where the infinity outcome is eliminated and Ninner

is for the gravity anomaly/disturbance of the computation point taken into

account separately.

In order to overcome the undesired effects of the singularity problem, different

considerations on Eq. 2.32 can be followed (Section 2.7.1-2.7.2)

2.7.1 The elimination of singularity for grid-wise evaluation

According to Ellmann (2001), singularity eliminated near zone component of

geoid for LSMSA (Stokes) is expressed as:

Nnear =
R

4πγ

∫∫
σ0

SL(ψ)(∆gQ − ∆gP)dσ +
R
2γ

∆gPQM0 (2.33)

where ∆gQ is the gravity anomaly of the integration point located inside the

truncation cap, ∆gP is the gravity anomaly of the computation point, and QM0

is the zero order term of the modified truncation coefficient and calculated as

(Ellmann, 2001):

QM0 = Q0 −
M

∑
k=0

2k + 1
2

skRk0 (2.34)

where sk are the modification parameters, Rk0 are from Paul (1973), and Q0

represents the zero degree term of Paul (1973) coefficient introduced in Section

2.5 and computed as follow:

Q0 = −4t + 5t2 + 6t3 − 7t4 + (6t2 − 6t4) log t(1 + t) (2.35)

where t = sin(ψ0
2 ) and ψ0 is the radius of the integration cap.

In order to compute the singularity eliminated near zone geoid for LSMHA

(Hotine) approach; modified Stokes function SL(ψ), gravity anomaly ∆g,

truncation coefficient Q0 from Paul (1973) should be replaced by modified

Hotine function HL(ψ), gravity disturbance δg, and truncation coefficient Q0

from Jekeli (1979) respectively.

As an alternative, the undesired effects of singularity can be eliminated using

(Vajda and Vaníček, 1998):

Nnear =
R

4πγ

∫∫
σ0

SL(ψ)∆gQ cos(ϕQ)(∆ϕ)2 +
R
γ

√
cos(ϕP)

π
∆gP∆ϕ (2.36)
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ϕP and ϕQ represent the geocentric latitude of the computation and the

running points respectively. ∆ϕ is the size of the integration grid. As a matter

of course, the last term of the first part of the equation; (∆ϕ)2 denotes the

elemental area, uniform for each grid. The rest of the terms are the same where

explained in the previous sections. For LSMHA (Hotine) approach; HL(ψ) and

δg are used similarly.

In this thesis, the latter approach expressed in Eq. 2.36 gave better results and

so was used instead.

2.7.2 The elimination of singularity for point-wise evaluation

While conducting the point-wise evaluation, running points and computation

points may not be overlapped. However as it is stated in Section 2.7,

singularity is an effect not only related to the overlapped point, but also

affected by the running points located closely to the computation point. In

this study, in order to eliminate this effect for point-wise evaluation, Eq. 2.33

is modified as:

Nnear =
R

4πγ

∫∫
σ0

SL(ψ)(∆gQ − ∆gP∗)dσ +
R
2γ

∆gP∗QM0 (2.37)

As it can be seen, ∆gP is replaced by ∆gP∗ for point-wise evaluation. In the

present case ∆gP∗ stands for the gravity anomaly of the running point which

is closest to the computation point. The rest of the terms can be calculated as

explained in the previous section.

Analogously, Eq. 2.36 for point-wise evaluation is replaced by:

Nnear =
R

4πγ

∫∫
σ0

SL(ψ)∆gQ cos(ϕQ)dσ +
R
γ

√
cos(ϕP∗)

π
∆gP∗

√
dσ (2.38)

where ϕP
∗ and ∆gP∗ are the geocentric latitude and gravity anomaly of the

integration point which is the closest to the computation point. Apart from

grid-wise evaluation explained in Section 2.7.1, (∆ϕ)2 is replaced by dσ which

is the elemental area of each Voronoi polygon surrounds point P∗ (see Section

3.1.2 for Voronoi polygons). For LSMHA (Hotine) approach; HL(ψ) and δg are

used similarly.
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3. DATA PREPARATION

Auvergne data set is provided by Institut Géographique National (IGN),

France for testing the geoid modeling methods (Valty et al., 2012). So far

different geoid computation methods are conducted in the area for scientific

purposes such as Yildiz et al. (2012), Abbak and Ustun (2015), and Janák

et al. (2017). The dataset includes a terrestrial gravity network, GNSS/leveling

benchmarks, and a digital elevation model which will be explained in detail in

Section 3.1, 3.2, and 3.3 respectively.

Figure 3.1 : Auvergne area

The outer frame in green shown in Figure 3.1 represents the area of digital

terrain model while the inner box shown in blue includes terrestrial gravity

observations. Red points in the innermost box represent the GNSS/leveling

network. Target geoid location is shown as the grey box in the same figure.
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3.1 Terrestrial Gravity Dataset

Terrestrial gravity dataset includes 244009 points of gravity measurements

located in between 43 − 49N;−1 − (+7)E where shown in Figure 3.2.

However, it is revealed that 83 of points are duplicated and supposed to be

eliminated before the numerical evaluation. The mean density is 0.59 points

per square kilometer while the standard deviation of the gravity anomaly is

20.70 mGal; mean, minimum, maximum values are 3.6 mGal, −127.47 mGal,

and 177.82 mGal respectively according to Valty et al. (2012). The accuracy

of the gravity data is stated as 1 ∼ 2 mGal in the same study. Additionally;

normal, orthometric, and ellipsoidal heights of each observation point are

provided within the dataset.

Figure 3.2 : Auvergne terrestrial gravity network

As it is introduced in Section 2.1, discrete data is directly used for

geoid computations for point-wise evaluation as similarly has already been

conducted by Dos Santos and Escobar (2004). In general, the technique used

in this study to calculate the elemental area is to surround each data point with

the most representative polygons by use of Voronoi diagrams will be explained

in Section 3.1.2.
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3.1.1 Input gravity quantities

Gravity disturbance used in point-wise integration of LSMHA (see Figure 3.3)

is directly calculated from the dataset as (also shown in Section 2.4):

δg = gP − γP (3.1)

Figure 3.3 : Auvergne gravity disturbances

In order to determine a geoid model using LSMSA, surface gravity anomalies

of each data point are calculated where shown in Figure 3.4 using Eq. 2.3.
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Figure 3.4 : Auvergne gravity anomalies

As it is mentioned in Section 2.3, it is essential that the high frequency

information should be removed by reduction methods before gridding the

data (Märdla et al., 2018). To do so simple Bouguer anomalies are calculated

from the scattered data using Eq. 2.4. Figure 3.5 shows the simple Bouguer

anomalies of data points while Figure 3.6 shows the gridded simple Bouguer

anomaly values. Kriging method is used for the gridding procedure.

Once the simple Bouguer anomalies are gridded, the surface gravity anomalies

are reproduced using digital elevation model given with the dataset (see

Figure 3.7).
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Figure 3.5 : Simple Bouguer gravity anomalies

Figure 3.6 : Gridded simple Bouguer gravity anomalies
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In order to calculate the gravity disturbance from simple Bouguer anomaly, the

geoid height needed for calculations is computed using spherical harmonic

function of geoid undulation with the maximum expansion of EIGEN-6C4

(Förste et al., 2014) geopotential model. Figure 3.8 shows the gridded surface

gravity disturbance values.

As it can be seen in Figure 3.7 and Figure 3.8, gravity anomaly and gravity

disturbance values follow a similar trend. The reason for the change in

minimum and maximum values between discrete data and the gridded data is

due to the relatively high topographic change in locations where the grids are

produced.

Figure 3.7 : Gridded values of Auvergne surface gravity anomalies
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Figure 3.8 : Gridded values of Auvergne surface gravity disturbance

3.1.2 Voronoi diagrams

In general, the gravity quantities used in the integration are the gridded values.

As an alternative, discrete data is directly used in the integration partitioned

with Voronoi diagrams were first introduced in Dos Santos and Escobar

(2004) for geoid modeling. A Voronoi diagram is the most representative

polygon surrounds the relevant computation point based on the geometrical

distance between outlying points. Errors arise from gridding procedure can

be eliminated using Voronoi polygons since the actual values of the gravity

quantities can be directly calculated without remove-compute-restore process

explained in the previous subsection. The elemental area dσ first mentioned

in Section 2.5, Eq. 2.14, corresponds to the area of each Voronoi polygon. In

this study, Voronoi polygons are created using ArcGIS Pro software. Figure
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3.9 shows the discrete observation points while Figure 3.10 represents the

partitioned network of gravity data set using Voronoi polygons.

Figure 3.9 : Gravity observations in discrete form

Figure 3.10 : Gravity observations partitioned according to Voronoi cell
structures

It should be noted that the software or algorithm used for the creation

of Voronoi polygons might result in residual areas around the boundaries

of the data which cause irregularities. Hence, the polygons should be

30



revised manually or automatically by a proper filtering algorithm in detail

to overcome such situation (see Figure 3.11, and 3.12). Additionally, data

gaps might be filled beforehand using gravity quantities computed from a

high resolution GGM or another data set that fits the area. In this study,

gravity anomaly/disturbance grids revised manually and the integration

points that produce major differences (blunders) are replaced by the values

calculated from GGMs. However, no such procedure is followed for

point-wise evaluation since the proper distribution and values of the actual

surface gravity anomaly/disturbances cannot be determined and needs to be

investigated in detail for further studies.

Figure 3.11 : Data borders which residual Voronoi polygons are selected

Figure 3.12 : Data borders which residual Voronoi polygons are removed
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3.2 GNSS/Leveling Benchmarks

GNSS/leveling dataset includes ellipsoidal and normal heights of 75 points.

The standard deviation of the ellipsoidal heights is evaluated around 2 to 3 cm

as indicated in Valty et al. (2012). Distribution of GNSS/leveling benchmarks

are shown as the red triangles in Figure 3.1.

Since the main emphasis of this thesis is to calculate a geoid model instead

of a quasigeoid, normal height in GNSS/leveling dataset is converted to

orthometric height using the relationship below:

ζ − N = H − HN (3.2)

Figure 3.13 : Illustration of the height systems

where ζ, N, HN, and H are height anomaly, geoid height, normal height, and

orthometric height respectively as shown in Figure 3.13. ζ − N is calculated

iteratively as (Hofmann-Wellenhof and Moritz, 2006):

ζ − N ≈ 0.1119[m/mGal]
9.8[m/s2]

H2 = 10−7[m−1]H2 (3.3)

ζ − N[m] ≈ 0.1H2[km] (3.4)
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3.3 Digital Elevation Model

The dataset provides a digital terrain model including orthometric heights

for over 3 million points in grid form shown in Figure 3.14. However,

since the orthometric heights of the integration points are provided by the

gravity dataset, digital elevation model is not used during the calculations

of combined topographic correction and combined downward continuation

correction (see Section 2.6.1.1 and Section 2.6.1.2). However, it is used

during the restoration of heights after gridding the simple Bouguer anomalies

explained in Section 3.1.1.

Minimum, maximum, mean, and standard deviation of topographic heights in

geoid computation area are 80 m, 1630 m, 460 m, and 270 m respectively.

Figure 3.14 : Auvergne topography
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In order to calculate the combined atmospheric correction explained in Section

2.6.1.3, it is required to compute the Laplace surface harmonics of the

topographic height as (Bucha and Janák, 2017):

Hn(ϕ,λ) =
nmax

∑
n=0

n

∑
m=0
{HCnm cosmλ + HSnm sinmλ}Pnm(sin ϕ) (3.5)

where ϕ and λ are latitude and longitude and HCnm and HSnm are the

spherical harmonic model coefficients for Earth’s elevation. In this study,

Coeff_Height_and_Depth_to2190_DTM2006.0 model, available from the US

National Geospatial-Intelligence Agency’s (NGA) official EGM2008 website,

is used up to 720 degrees.

3.4 Global Geopotential Model

Long wavelength component of geoid model is computed using spherical

harmonic coefficients provided by GGMs. The performance of the final geoid

model is highly dependent on the choice of the optimum geopotential model

and the best degree of expansion. Thus, it is important to investigate the

performance of GGMs beforehand. In this study, satellite only and combined

models are tested. The list of the models are given below:

Table 3.1 : List of tested GGMs

Model Maximum Degree of the GGM Reference
ITG-Grace2010s 180 Mayer-Gürr et al. (2010)

GOCO05C 720 Fecher et al. (2017)

34



4. NUMERICAL RESULTS

4.1 Determination of Modification Parameters

In order to model an accurate geoid, the determination of the least squares

modification parameters should be examined according to some sets of

factors such as the GGM used, expansion degree (upper limit) of the GGM

derived spherical harmonics (see M in Section 2.5), selected maximum degree

of Stokes/Hotine modification (see L in Section 2.5), and the radius of

the integration cap ψ0. In this study, M is taken equal to L and the

performance of the least squares modification parameters calculated by using

ITG-Grace2010 and GOCO05C global geopotential models with different

expansion degrees and integration radii are investigated. Each geoid model is

validated using geoid heights derived at each 75 GNSS/leveling benchmark.

The standard deviation of the difference between gravimetric geoid heights

and corresponding geoid heights from control data for grid-wise LSMHA

procedure for biased solution is shown as "before fit" in Table 4.1. The detailed

statistics of alternative geoid modeling methods which are the subjects of this

study are presented in Section 4.3 according to the decisions made in this

section.

As a result of the findings shown in Table 4.1 and the variance of the terrestrial

data given by Valty et al. (2012), the least squares modification parameters are

calculated based on the variables shown in Table 4.2.

The computation of the least squares modification parameters are conducted

by a software provided by Prof. Dr. Artu Ellmann (adopted for gravity

disturbance and Hotine function for LSMHA) similar to Ellmann (2005).
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Table 4.1 : Statistical results of geoid models calculated by different
parameters

GGM M=L(◦) ψ◦0 before fit (cm)
GOCO05C 120 2 6.6
GOCO05C 200 2 3.9

ITG-Grace2010 120 2 5.5
ITG-Grace2010 120 1 5.8

GOCO05C 120 1 5.1
GOCO05C 200 1 4.0
GOCO05C 200 0.5 4.7
GOCO05C 300 0.5 3.5
GOCO05C 360 0.5 3.4
GOCO05C 200 0.3 9.2
GOCO05C 300 0.3 4.6
GOCO05C 360 0.3 4.2

Table 4.2 : Selected parameters

Parameter Choice
radius of the integration cap: ψ0 0.5◦

the variance of the terrestrial data: σn 4 mGal2

Global Geopotential Model GOCO05C
Expansion degree of the GGM: M 360◦

Decomposition method singular value decomposition

4.2 LSMHA Geoid with Components

Each component of the geoid model calculated by LSMHA evaluated by

gridded gravity data are shown in this section. While the figures demonstrate

the geoid model calculated using unbiased type of least squares modification

parameters, the components show resemblance to the geoid models calculated

by point-wise LSMHA, grid-wise LSMSA, and point-wise LSMSA.

The near zone component of the geoid model calculated as the first term of

Eq. 2.17 exhibits a rapidly changing surface as shown in Figure 4.1 since it

represents the main deviation of geoid from leveling ellipsoid as well as the

topographical effect.
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Figure 4.1 : Near zone geoid contribution computed by using grid-wise
evaluation of LSMHA

It is expected to have a smooth signal on far zone geoid since N f ar is calculated

using GGM derived spherical harmonics of gravity disturbance (second part

of Eq. 2.17). As it can be seen in Figure 4.2, N f ar constitutes the highest ratio

on geoid model and represents the long wavelength component of the geoid.

Figure 4.2 : Far zone geoid contribution computed by using grid-wise
evaluation of LSMHA
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Atmospheric and topographic masses cause pressure on geoid surface. The

combined atmospheric correction computed using Eq. 2.29 is expected to

reflect topography and shown in Figure 4.3. Additionally, the combined

topographic effect is calculated using Eq. 2.23 and shown in Figure 4.4.

Figure 4.3 : Combined atmospheric correction on geoid model computed by
using grid-wise evaluation of LSMHA

Figure 4.4 : Combined topographic correction on geoid model computed by
using grid-wise evaluation of LSMHA
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The first component of the downward continuation effect δN(1)
DWC(P) is

calculated using Eq. 2.25 and shown in Figure 4.5.

Figure 4.5 : δN(1)
DWC(P) effect on geoid model computed by using grid-wise

evaluation of LSMHA

δNL(1), f ar
DWC (P) is calculated using Eq. 2.27 and shown in Figure 4.6.

Figure 4.6 : δNL(1), f ar
DWC (P) effect on geoid model computed by using grid-wise

evaluation of LSMHA
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The terrain effect on combined downward continuation δNL(2)
DWC(P) is

calculated using Eq. 2.28 and shown in Figure 4.7.

Figure 4.7 : δNL(2)
DWC(P) effect on geoid model computed by using grid-wise

evaluation of LSMHA

Due to the spherical approach on integration, the combined ellipsoidal

correction is calculated as it represented in Eq. 2.30 and shown in Figure 4.8.

Figure 4.8 : Combined Ellipsoidal effect on geoid model computed by using
grid-wise evaluation of LSMHA
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4.3 Validation and Comparison of Resulting Geoid Models

Final geoid models are validated using GNSS/leveling derived geoid heights

explained in Section 3.2. Before fit values in Table 4.3 indicate the initial

statistics of the difference between gravimetric geoid model and the geoid

model derived from GNSS/leveling data. In practice, corrector surface fitting

procedure (Eq. 4.1) is implemented for statistical comparison in order to

eliminate the factors such as systematic errors and datum inconsistencies

between compared surfaces (Fotopoulos, 2003). In order to do so, 4 parameter

Helmert similarity transformation is applied and the results are shown as

"after fit" values in Table 4.4. BLS, ULS, and OLS stand for the solutions by

biased, unbiased, and optimum types of least squares modification parameters

respectively. STD and RMSE stand for the standard deviation and root mean

square error.

∆N = NGPS − NGrav = aTx + ε (4.1)

where aT is the transpose of the design matrix, x is the matrix of unknowns,

and ε represents the random noise.

4 parameters Helmert similarity transformation model is given as:

ai = [1 cos ϕi cosλi cosφi sinλi sin ϕi] (4.2)

Figure 4.9, 4.10, 4.11, and 4.12 show unbiased type of geoid models computed

using grid-wise and point-wise evaluation of LSMHA and LSMSA methods.

However, it should be noted that the visible difference between minimum,

maximum, mean, and standard deviation values stem from the systematic

errors and datum inconsistencies.
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Table 4.3 : Statistical results of the final geoid models: before fit (unit: m)

Method Solution Min Max Mean STD RMSE
LSMSA grid-wise BLS -1.119 -0.920 -1.025 0.045 1.026

ULS -1.123 -0.908 -1.025 0.046 1.026
OLS -1.123 -0.906 -1.025 0.046 1.026

LSMHA grid-wise BLS -0.961 -0.791 -0.890 0.034 0.890
ULS -0.963 -0.783 -0.890 0.035 0.890
OLS -0.963 -0.779 -0.890 0.035 0.890

LSMSA point-wise BLS -1.088 -0.818 -0.988 0.062 0.990
ULS -1.093 -0.818 -0.993 0.061 0.995
OLS -1.094 -0.818 -0.995 0.060 0.997

LSMHA point-wise BLS -0.935 -0.705 -0.848 0.053 0.849
ULS -0.940 -0.705 -0.854 0.052 0.856
OLS -0.942 -0.705 -0.856 0.052 0.858

Table 4.4 : Statistical results of the final geoid models: after fit (unit: m)

Method Solution Min Max Mean STD RMSE
LSMSA grid-wise BLS -0.056 0.105 0.000 0.028 0.028

ULS -0.056 0.114 0.000 0.028 0.028
OLS -0.057 0.117 0.000 0.029 0.029

LSMHA grid-wise BLS -0.062 0.106 0.000 0.028 0.028
ULS -0.063 0.115 0.000 0.028 0.028
OLS -0.063 0.118 0.000 0.029 0.029

LSMSA point-wise BLS -0.107 0.104 0.000 0.043 0.043
ULS -0.104 0.112 0.000 0.043 0.043
OLS -0.104 0.114 0.000 0.044 0.044

LSMHA point-wise BLS -0.116 0.107 0.000 0.043 0.043
ULS -0.112 0.117 0.000 0.045 0.045
OLS -0.110 0.120 0.000 0.045 0.045
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Figure 4.9 : Final geoid from grid-wise evaluation of LSMHA

Figure 4.10 : Final geoid from grid-wise evaluation of LSMSA
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Figure 4.11 : Final geoid from point-wise evaluation of LSMHA

Figure 4.12 : Final geoid from point-wise evaluation of LSMSA
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5. COMPUTATIONAL DIFFICULTIES

It is well known, a considerable amount of changes on the scripts/software

are applied to achieve the optimum high resolution geoid model. In order to

enhance the running speed of the scripts, several approaches are followed:

• Increasing the grid size of the geoid model to be computed

• Profiling

• Pre-alignment

• Vectorization

• Limiting the integration area

• 3D matrix solutions

• Parallel processing

In this study, local geoid models with 1 minute resolution are calculated.

However, during the tests, the spacing is increased to 3 minutes to obtain

quicker results. Apart from this, an initial geoid model can be computed for

tests only in the locations of the GNSS/leveling network to enhance the speed.

This approach can also be considered as a more factual treatment since the

errors caused by interpolation from geoid model to the GNSS/leveling points

are eliminated for the validation procedure at the first place.

Secondly, profiling technique can be used which is not a tool that improves

the performance of the code; but, enables to determine the time-consuming

section of the functions. In addition to that, it is necessary to determine the size

of a variable beforehand which is called pre-alignment. While optimizing the

algorithm, it is advised to use vector arrays and vector operations to increase

the performance.
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Calculation of the Stokes/Hotine function requires spherical distances

between computation point and the running points located within the

integration cap. While conducting an integration using gridded data, one

can calculate the spherical distances and use the same values by shifting the

integration area. However, point-wise evaluation requires variant spherical

distances for each running point. To reduce the running time, a preliminary

limitation on integration area should be implemented. Red square represents

the initial limit where shown in Figure 5.1.

Figure 5.1 : Limitation on the integration area

Some procedures require series expansions of variables such as gravity

disturbance/anomaly in far zone contribution of geoid or harmonic heights

used in atmospheric correction (see Eq. 2.19 and Eq. 3.5). Hence the

computation of those variables each time of operation is time-consuming,

those variables can be stored in 3 dimensional matrices and imported as

an input for the following executions. Matrices can be designed to store
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latitude, longitude, and the related variable up to preferred degree for each

computation point as shown in Figure 5.2.

Figure 5.2 : 3D matrix

Apart from all the techniques mentioned above, the algorithm used in this

study is modified to be suitable for parallel processing. By doing so, the

running time of the whole geoid modeling procedure is improved 3.7 times

faster when connecting 4 workers (speed is dependent on the number of

connected workers). It is critical to send independent processes to each

worker instead of conducting an iterative solution. As a prior check, it is

strongly advised to control the results from regular code and parallel code

since an unnecessary connection may cause irregularities in results. Finally, the

execution time for point-wise evaluation of 1 minute resolution geoid model

in Auvergne area where the total number of computation points is 28800; is

recorded as 2h30’. The hardware used in the computations has 4-cored i7

processor with the base speed of 2.40 GHz.
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6. CONCLUSIONS

In this study, regional geoid modeling methods are investigated in sense of

grid-wise and point-wise evaluation. The geoid models in Auvergne area are

created using grid-wise LSMSA, grid-wise LSMHA, point-wise LSMSA, and

point-wise LSMHA methods. In order to validate the models, GNSS/leveling

derived geoid heights including 75 points representing the area provided by

the dataset are used as control points. The standard deviation of the differences

from control network to gravimetric geoid models are calculated (before fit).

Consequently, LSMHA method showed superior results to LSMSA approach

for both grid-wise and point-wise approaches. For grid-wise evaluation

LSMHA and LSMSA methods displayed performance of 3.4 cm and 4.5 cm

accuracy respectively for biased solution (almost identical for unbiased and

optimum type of solutions). As for the point-wise integration, the standard

deviation of the error of geoid model calculated using LSMSA is 6.2 cm

where the corresponding value is 5.3 cm for LSMHA counterpart (see Table

4.3). For that matter, it is deduced that the Hotine approach is more reliable

than Stokes in an area where the change in topographic heights is noticeable.

However, after corrector surface fitting using 4 parameters Helmert similarity

transformation is performed, it is revealed that the final accuracy of those

two methods is indicated almost identical results as shown in Table 4.4. The

difference on the accuracies between the initial statistical evaluation (before

fit) and after corrector surface fitting (after fit) is considered as due to the

systematic errors and datum inconsistencies.

After the gridding procedure, the minimum and the maximum values of

gravity quantities change noticeably (see Section 3.1.1). This might be due

to the absence of gravity observations in the grid locations where produced

synthetically using digital elevation model. On the contrary, the original signal

of gravity data is preserved during point-wise integration since the calculation
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of the gravity quantities is directly performed at the observed location. In

addition to that, it is known that the gridding method can also be considered

as a source of error by nature. In this context, this study aimed to perform a

more accurate geoid modeling method using point-wise integration. However,

statistics showed that, grid-wise evaluation of both LSMSA and LSMHA

methods are considered more accurate compared to point-wise approach.

After fit statistics showed that the point-wise geoid is 4.3 cm accurate while

the grid-wise is 2.8 cm (Table 4.4).

In order to determine the inadequacy of point-wise integration, the issue

should be investigated in sense of the gravity data and the method used. As

for the data, it is associated with a prior filtering on discretely distributed

gravity data or filling the data gaps with gravity quantities matching the

area might be needed before the integration. In regard to the method used,

primarily the elimination method of singularity must be investigated in detail

where the method introduced in this thesis constitutes the novelty of this

study. Singularity problem causes from the integration of gravity data which

is located at the computation point or nearby. For the grid-wise evaluation,

singularity elimination methods are employed which are conducted in

previous studies as explained in Section 2.7.1. Analogously, as an alternative

implementation for point-wise evaluation; the integration point which is

the closest to the computation point is taken into account as the source of

singularity in this study. Apart from the singularity problem, in order to

improve the point-wise approach; it is advised to examine the calculation

method of the particular area for each surface element dσ (see Eq. 2.14) since a

rough approximation is followed during the computations in this thesis.

In order to test a gravimetric geoid model, a need for higher accuracy

on validation data is still needed to conduct a more realistic comparison.

Additionally, the accuracy and the density of the gravity observations are

highly related to the final accuracy of the model which should be improved.

The major computational obstacle and time-consuming part confronted in this

study can be represented as the calculation of the modified Stokes/Hotine

kernel. In order to compute the modified Stokes/Hotine function, the
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spherical distances between the computation point and the integration points

are calculated and un-normalized Legendre polynomials are computed for

each. Using gravity grids may overcome the time-consuming part of this

procedure since the spherical distance of the computation and integration

points will remain the same for sequent grids. However, discrete evaluation

requires calculation of integration distances separately for each data point

since there is no a uniform distribution exist. To improve the efficiency and

the computation time of the algorithm, the codes are modified to be suitable

for parallel processing. For future studies, it is also advised to modify the

algorithm using object-oriented structure where such optimization on coding

experience can result in a better performance.
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Işık, M. S. (2016). An Investigation On The Contribution Of GOCE Satellite
Mission To Regional Geoid Modelling in Turkey. MSc thesis,
Istanbul Technical University, Gaduate School of Science,
Engineering and Technology.

Janák, J., Vańiček, P., Foroughi, I., Kingdon, R., Sheng, M. B., and Santos,
M. C. (2017). Computation of precise geoid model of Auvergne
using current UNB Stokes-Helmert’s approach. Contributions to
Geophysics and Geodesy, 47(3):201–229.

Jekeli, C. (1979). Global accuracy estimates of point and mean undulation
differences obtained from gravity disturbances, gravity anoma-
lies and potential coefficients. Report 288. The Ohio State
University.

Kiamehr, R. (2006). Precise Gravimetric Geoid Model for Iran Based on GRACE and
SRTM Data and the Least-Squares Modification of Stokes’ Formula:
with Some Geodynamic Interpretations. PhD thesis, KTH.

Li, Y. (2000). Airborne gravimetry for geoid determination. PhD thesis.

54



Listing, J. (1873). Ueber unsere jetzige kenntniss der gestalt und groesse der
erde.

Märdla, S., Ågren, J., Strykowski, G., Oja, T., Ellmann, A., Forsberg,
R., Bilker-Koivula, M., Omang, O., Paršeliūnas, E., Liepinš,
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