

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

SYSTEM ON CHIP IMPLEMENTATION
OF
NEW INFORMATION HIDING METHOD

M.Sc. THESIS

Utku ESEN

Department of Electronics and Communication Engineering

Electronics Engineering Program

JUNE 2018

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

SYSTEM ON CHIP IMPLEMENTATION
OF
NEW INFORMATION HIDING METHOD

M.Sc. THESIS

Utku ESEN
(504131222)

Department of Electronics and Communication Engineering

Electronics Engineering Program

Thesis Advisor: Assoc. Prof. Dr. Siddika Berna Ors YALCIN

JUNE 2018

ISTANBUL TEKNIK UNIVERSITESI % FEN BILIMLERI ENSTITUSU

YENI BIR VERI GIZLEME YONTEMININ GELISTIRILMESI
VE
YONGADA SISTEM UZERINDE GERCEKLENMESI

YUKSEK LISANS TEZI

Utku ESEN
(504131222)

Elektronik ve Haberlesme Miihendisligi Anabilim Dal

Elektonik Miihendisligi Programi

Tez Damismani: Doc. Dr. Siddika Berna Ors Yalcin

HAZIRAN 2018

Utku ESEN, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology 504131222 successfully defended the thesis entitled “SYSTEM ON CHIP
IMPLEMENTATION OF NEW INFORMATION HIDING METHOD”, which he/she
prepared after fulfilling the requirements specified in the associated legislations, before
the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Siddika Berna Ors YALCIN ccocoocooee...
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Osman Kaan Erol ...
Istanbul Technical University

Asts. Prof. Dr. Faik Baskaya ...
Bogazici University

Date of Submission : 4 May 2018
Date of Defense : 4 June 2018

FOREWORD

Turkey has been among developing countries for a long time. This situation exists
because of its economy, industry and manufacturing power. If we want to increase
this status to improved or rich country level, we should consume our energy on behalf
of fields like electronics and computer science. These fields will be very popular in
the future because of information age. Therefore, we should arrange our life style and
government rules according to information age’s needs. Thus, Especially for electronic
engineers, we should improve our software and hardware development skills. In order
to apply this improvement, we should follow and implement state of the art works in
literature. I decided to apply for master education for this reason five years ago. I
thought in order to improve my country, I should improve my job skills at first. After [
started to my master education, I searched one weakness about electronic applications
in Turkey. Then, I saw that we should improve our hardware development skills
immediately. Thus, I start to work on hardware system design especially for embedded
systems.

In this thesis, firstly we aimed at creating new data hiding method then learning
hardware design methodology. This is significant because, if someone want to create
hardware system, he or she has to learn as well as software. If you want to start to learn
hardware system design, you should learn FPGA design because you can create your
hardware by software on these devices.

The other way for improving your country is passing on being global. If you are just
focus on national events and don’t follow the world issues, you can’t benefit yourself,
you just stay at the same status. Your country also stay at the same place. In order
to be global or world wide, the best way for students is to apply for student exchange
programs like Erasmus. Therefore, during the thesis period, 1 applied for Erasmus
student exchange program. Thanks to Erasmus, I met with many valuable people,
improved my foreign language skills and learned new cultures. I saw that the people
are same wherever they come from. Thus, If you have facility to go to exchange
program in your university, you should apply for it and see different cultures. I have to
say thanks to some people because of their help for this thesis. First, I feel myself lucky
because I met my advisor, Siddika Berna Ors Yal¢in. She directed me very friendly
and consciously. I have to say gratitude thanks to other advisor, Stefano Mattoccia. He
helped me like his students during my Erasmus period. I should say special thanks to
Mehmet Can Dégslii, Ugur Basaran, Erdem Ozcan and my family, because they always
supported me to write this thesis.

June 2018 Utku ESEN
(Electronics and Communication Engineer)

vii

TABLE OF CONTENTS

Page
FOREWORD «. Vil
TABLE OF CONTENTS . IX
ABBREVIATIONS v Xi
SYMBOLS ... Xiii
LIST OF TABLES v XV
LIST OF FIGURES XVii
SUMMARY .. XiX
OZET e XXi
1. INTRODUCTION wo 1
1.1 PUIpOSE Of TRESIS .eeuuvieiiiiiiiiiiiiieeiieeeiee ettt ettt 1
1.2 Information SECUrity SYSIEMScueerruieeriieriiieeniieeieeenieeeiteeeieeesieeeeeee e 2

| ISP @ 7 o] (04 21 0] 1| TSRS 3

1.2.2 Information hiding..........ccceeviiiiiiiiiniiiiiiieiee e 4
1.2.2.1 Ste@anoZraphycc..eeecuieeiiieeiieenieeeite ettt eeee et st ire e bee e 4

1.2.2.2 Watermarking...........cccueeeeeiiiieeiiiiee et 5

1.2.3 Comparison of information Security SyStemsc.cccecueevueereereeeueenneens 6

2. DIGITAL INFORMATION HIDING METHODS w 7
2.1 Steganography Methodsccueoiiiiiiiiiiiiiiniieeeeeee e 7
2.1.1 Frequency domain methods..........ccccueeriiiiriiieniiiieniieeieesieeeee e, 8
2.1.2 Spatial domain MEthOdsccccveeriieriiieeriie et 8
2.1.2.1 LSB tEChNIQUE ...c.veeiieiiieiieeiiesiie ettt 9

2.1.2.2 Neighbor mean interpolation (NMI) method............cccceevvveennennnne. 9

2.2 Image Scrambling TeChniqUES..........ccccuveeriieriiieerieeeie et 12
2.2.1 Scrambling degree theoryceeevieeiiiiiiriiiinieeeeeeeeeeee e 12
2.2.2 Rubik’s cubic algorithmcceeviiiniiiiiniiiiiiiieeeeeeeeeee e, 14
2.2.3 Arnold tranSformationcocceevierieriieenienie et 16
2.2.4 Using sudoku puzZzIe..........ccceeviimiiniiiiiiiienieeeeeceeee e 18
2.2.4.1 Sudoku pair SElECION.ccueieruiieeiieeiiieeiee ettt 19

2.2.4.2 Sudoku pair preparation............eccueeeeeeeercueeesueeenseeenueessseesnsneessseesnne 19

2.2.4.3 Sudoku image marking and mappingcccecceeeeerveriieenieeneennennn 20

2.2.4.4 Sudoku block SCramblingcceevvieriiieiiiiieiiieeieeee e 20

2.2.4.5 Sudoku sub-block scrambling.............cccccuveeriieriieenieeniie e 20

2.2.4.6 Sudoku bit scramblingccccovveeviiiiieniieniiiicee e 21

3. PROPOSED METHOD . . . 23
3.1 The Purpose Of Proposed Methodc.ceevieniiiiiiiieniiiieeieeeeeee e 23
3.2 Choosing Embedding Method...........ccceeiiiiiiiiiiniiiieeieeeceeeeeee e 26
3.3 Procedure Of New Information Hiding Method............ccccoevvvieniiiiiiiienninnne, 28

ix

3.3.1 Definition of pixel area and iMage reioNnceecveeereeeerreenieeeerreennneenn 28

3.3.2 Definition of symmetry, pixel symmetry and symmetry key 29
3.3.3 New embedding method...........cceeeriiieiiiiniiiiiieeceeee e 31

4. IMPLEMENTATION ceresssesssissnnesnsesasssssesssenanes 33
4.1 Matlab Implementationccceeereeeriiieeniieeeiiieeniee e etee e eiee s e siee e 33
4.2 System On Chip Implementationcccccceeevieerieeiriieeniie e e 34
4.2.1 Field programmable gate arrays (FPGAS)........ccocceevienieniiiiieenieeieeee, 34
4.2.2 LinuX OPerating SYSLEIMcccueerrureeriieenireesiteenieeesieeesireesneeenaseesneeesanes 35
4.2.3 Zynq architecture [38]cevouieeiiiiriieeiee et 36
4.2.3.1 Processing system (PS).......ccoooiiiiiiiiiiniiiieceeeeeeeee 36

4.2.3.2 Programmable 10giC (PL)ccccovviiiiiiiiiiiiicceeceeesieee 38

4.2.4 ZedBoard details [39]cooeeriiiiiiiiiieeee e 40
4.2.5 Advanced extensible interface (AXI) Protocol..........cccccceveeievecnniinnneennn. 42
4251 AXIA .ottt 43

4.2.5.2 AXTA-LILE ..cneeiiieiieeieeee ettt 43

4.2.5.3 AXTA-SIrEAM......cooiiiiiiiiiiiiie ettt 44

4.2.6 OV7670 camera SENSOT [A1] ...uuuuueieiiiiieiiiiieiieeeieeeeeeeeeeeeeeeeeeeeeeeeee e 44
4.2.77 YUV/YCbCr (4:2:2) and RGB color Space.......cccecvveeevviveeenciieeenieenn. 45
4.2.8 Embedded System deSIZNcocueevuieriiiiiieriienienieeieeneeere e 46
4.2.8.1 Processing PIPELINEcccveeruieeiieeiiiieniie et eiee et e siee e s 48

4.2.9 Software arChiteCtUIEccc.eeruueriiieriienieeie ettt 51

5. EXPERIMENTS AND RESULTSccoviniiniisncsnicncssnssnsssccesssecsassssssasssecsssnns 53
5.1 Matlab Experiments And Results..........cccccvveriiiriiiiniieniiecrieeeieeece e 53
5.2 System On Chip Experiments And Results...........ccoceeriiiinieiniiiinicinnicnnne. 54

6. CONCLUSIONS ...cutiitinnicsnnnsnnsssecssesssassssssssesssassssssssasssassssssssssssssssssssassssasssses 61
REFERENCES. ceeesssesssissntesnsesastsssesssenans 63
APPENDICES ...cuuuiiiiniinninnnisnncsnenssnssssnsssesssessssssssssssesssassssssssessssssssssssssssssssssssaes 67
CURRICULUM VITAE ceeesssessstssntesssesasesnsesssesanes 155

ABBREVIATIONS

FPGA
SOC
HDL
IP
HLS
CPU
GPU
GNU
ARM
ZED
VGA
HDMI
PSNR
TV
DWT
DCT
LSB
NMI
SDT
ROM
RAM
DDR
LPDDR
ECC
SRAM
OCM
NOR
NAND
i2c
SPI
UART
DMA
1I/0
IEEE
MAC
PTP
GMII
RGMII
SGMII
USB
OoTG
EHCI

: Field programable gate arrays

: System on chip

: Hardware description language

: Intellectual property

: High level synthesis

: Computer processor unit

: Graphical processor unit

: GNU is not unix

: Advanced risk machine

: Zynq evaluation development

: Video graphics array

: High-definition multimedia interface

: Peak signal to noise ratio

: Television

: Discrete wavelet transform

: Discrete cosine transform

: Least significant bit

: Neighbor mean interpolation

: Scrambling degree theory

: Read only memory

: Random access memory

: Double data rate

: Low power double data rate

: Error-correction code

: Synchronous random access memory
: On chip memory

: Not OR(operation)

: Not AND(operation)

: Inter-integrated circuit

: Serial peripheral interface

: A universal asynchronous receiver-transmitter
: Direct memory access

: Input and output

: The institute of electrical and electronics engineers
: Media access control

: The precision time protocol

: Gigabit media independent interface

: Reduced gigabit media independent interface
: Serial gigabit media independent interface
: Universal serial bus

: On-the-go

: The enhanced host controller interface

xi

CAN
UTMI+
ULPI
OSI
PHY
PS

PL
AMBA
AXI
CLB
LUT

: A controller area network

: USB 2.0 transceiver macrocell interface
: UTMI+ low pin interface

: Open systems interconnection

: Physical layer of the OSI model

: Processing system

: Programmable logic

: The ARM advanced microcontroller bus architecture
: Advanced extensible interface

: Configurable logic blocks

: Look-up table

Xii

SYMBOLS

: Desibel

: One of programming language

: One of programming language

: A set called the plaintext space

: A set called the ciphertext space
: A set called the key space

: Encryption rules

: Decryption rules

: Represent coordinate of pixel

: Scrambling degree

: Distance scrambling factor

: Gray scrambling factor

: Expected value

: Variance

: Main point in pixel symmetry

: Origin point in pixel symmetry
: Symmetry point in pixel symmetry

xiil

LIST OF TABLES

Page
Table 3.1 : Capacity Of COVEI TMAZES ..eeevvveerriieiieeriieeiee et ereee et e 27
Table 5.1 : PSNR results between stego and coOver images...........cceevveeeruveenneenn. 54

XV

LIST OF FIGURES

Page
Figure 1.1 : An example of steganography application.ccccceeveeecuernieenneennne. 2
Figure 1.2 : Classification of safety providing systems [17]......c.cccccevevivveriurennnen. 2
Figure 1.3 : Five-tuples of modern cryptoSyStems.cceevvereeerieenieneeenieeneennne. 3
Figure 1.4 : Representation of historical steganography example. 4
Figure 1.5 : Data hiding diagram.cccceeviieriiieniieniieeciee e 5
Figure 1.6 : Watermarking examples, left (Copyright protection), middle
(Broadcast monitoring) and right (Source tracking)...........c.cccecueeueene 6
Figure 2.1 : Example of DCT transform.ccccccoeviiiiiiiiiniiiiniiiieeieeeee e, 8
Figure 2.2 : Representation of LSB technique.cccccveeviiieiiieniiicieecee e, 9
Figure 2.3 : Image PiXelS.......ccociriiiiiiiiirieeiieeeeeet e 10
Figure 2.4 : Interpolation must be invisible.ccocceevriieniiiiiniiiiniiieieeeeeee, 10
Figure 2.5 : Data hiding proccess example [15]. ...ccccvieviieniiieniieeieeieeeee e, 11
Figure 2.6 : Data extracting proccess example [15]......ccccooveeiiiiiininiiniieneenne. 12
Figure 2.7 : A Rubik’s Cubic indexed with direction parameter............c...cc......... 15
Figure 2.8 : Mapping of Rubik’s Cubic and image.cccceevuerrieenienennieeneenen. 15
Figure 2.9 : Corresponding index of Rubik’s Cubic.cccceevviiiiiniiniinncieenee. 16
Figure 2.10: 175 x 175 image of a caffeine molecule...........c.cccccveeviieeniieninennen. 17
Figure 2.11: Visuals illustrating the Steps.cccevieeiiiiiienienieeeeteeeeeeee e 18
Figure 2.12: Sudoku Pair Preparation.ccccceeceeriieiiiinienicnienecniceeeeceeee 19
Figure 2.13: Block scrambling using Sudoku Pairs.ccccceeeviieniiieniieniieeen. 20
Figure 2.14: Bit scrambling matriX generation.ccceceereeeieerieenieneeesieeneennnes 21
Figure 3.1 : PSNR value for sufficient visual quality.ccccovoveeriiiiniinniiennen. 23
Figure 3.2 : PSNR value for insufficient visual quality.cccccoovviveniieeriiennnen. 24
Figure 3.3 : PSNR value for insufficient visual quality.cccccovviiiiiiiannnnn. 24
Figure 3.4 : Scan paths in literature. (a) Moore, (b) Hilbert, (c) z-scan, (d)
s-scan, (e) d-scan, (f) b-scan, (g) x-scan and (h) a-scan [29].............. 25
Figure 3.5 : Default and scrambled embbeding paths..........ccccceevveriiienieeecineennen. 25
Figure 3.6 : Results of scrambling methods after one iteration.ccccceueeneee. 26
Figure 3.7 : Embedding capacities of image according to their frequency
ChATACTETISTIC. ..euteeiiieiieeiicee ettt 27
Figure 3.8 : Bad covering in hiding process........c..ccoceeveererieneniicnensieneenieneeeenn 28
Figure 3.9 : Image regions in frame [31]. ...ccccooviiiiniiiiiiiiieee e, 29
Figure 3.10: Pixel areas in image r€ZI0N.ccueeevveerieeeiieeniieerreeeieeenreesnneennnens 29
Figure 3.11: Symmetry desCription........c..cceveevierieniinienieeieneereneeeeseeeee e 30
Figure 3.12: Calculating pixel symmetry of /(1,8) according to 1(4,6). 31
Figure 3.13: Calculating pixel symmetry of /(5,3) according to 1(6,1). 31
Figure 3.14: Example of embedding process in proposed method. 32

Xvil

Figure 3.15: Flowchart of information hiding and extracting processes. 32
Figure 4.1 : Matlab interface of information hiding application............c..ccccou..... 33
Figure 4.2 : Matlab interface of information extracting application...................... 34
Figure 4.3 : Zynq Archit@Cture.cccuiieiiiieiiie ettt e 40
Figure 4.4 : AVNET s ZedBoard.ccccceiiiiiiiiiiiiiiiieeceeeeeeee e 41
Figure 4.5 : ZedBoard hardware block diagram.cccceceeiviiiiiiieinieeniieennenn. 42
Figure 4.6 : Pinout of OV7670........ccccuiieiiiiiiieeieeeiee ettt 43
Figure 4.7 : Pin description of OV7670.ccccoceeiiinieniiieiiinienieeeeeeneeeee e 45
Figure 4.8 : Control pins of OV7670.ccccooviiiiiiiiiiieieeeeeeeeee e 45
Figure 4.9 : RGB color space vs YUV/YCbCr (4:2:2) color space. 46
Figure 4.10: Hardware componenets of our embedded system.cc.ccceceeeueennen. 47
Figure 4.11: Block diagram of hardware System.ccceeveeeriieeriieeniieenieenneenn 48
Figure 4.12: Processing pipeline.ccocoeeiiiiiiieiiinienieeieeieste e 48
Figure 4.13: Front-end in detail.ccociiiiiiiiiiiiniiiieceeeeeee e 49
Figure 4.14: Memory manager in detail...........ccccceeviiiiiniieniieiniieeieeeee e 49
Figure 4.15: Memory map of our hardware design...........ccccceveenienieinieneeniennnen. 50
Figure 4.16: Frame indexer in detail.ccccceeviiiiniiiiiiiiinicceecccc e 50
Figure 4.17: General methodology of creating new hardware application with
Lifi, O N A . 51
Figure 5.1 : COVEI IMAZES ...coveeuviruieiiniieieniieieett ettt sttt 53
Figure 5.2 : Stego IMAZES.....cccueeriuiieiiiieiiieiiee ettt ettt sbee e e sane e s 54
Figure 5.3 : Sd card files for booting Linux on ZED Board.ccceeveurrennen.. 55
Figure 5.4 : U-boot interface in terminal.ccooceiiiiiiiiiiiiiiieneeeeeeeee 55
Figure 5.5 : After boot process finished, we can type command on terminal....... 56
Figure 5.6 : Insert driver module SEP.cccevvvieeiieeriieeiieeeiie et 56
Figure 5.7 : Camera configuration With 12C.cccccoviiriiiniiiniiniiiiieeeeeeeen 56
Figure 5.8 : Take picture application results.cccceevieeriieiniiieniieeiee e 57
Figure 5.9 : SOC system setup at the beginning.cccceeeeeercieeecieencieeereeeeneenn 57
Figure 5.10: SOC system setup after information hiding application.................... 57
Figure 5.11: SOC system setup without synchronization error...............ccccceeeuuee.. 58
Figure 5.12: SOC system setup with synchronization error............cccccecveeeevveennnenn. 58
Figure 5.13: Information hiding application results..........ccccoeveerierceeneenecnnennen. 58
Figure 5.14: Resource consumption of our FPGA implementation-1. 59
Figure 5.15: Resource consumption of our FPGA implementation-2. 59
Figure 5.16: Resource consumption of our FPGA implementation-3. 59
Figure 5.17: Resource consumption of our FPGA implementation-4. 59
Figure A.1 : Minicom cONfigUIation.ccccuiriieiiieniienieeieeee et 70
Figure B.1 : Major and minor numbers of deviCes.c..ccecueeveerierierneenecniennen. 76
Figure B.2 : Informations of character deviCes.........cccevvuieriiiirnieeniieenieeeieeeneenn 77
Figure B.3 : Informations of block devices.cccceveieiiierciiiiniiieeieeeiee e 77

Xviii

SYSTEM ON CHIP IMPLEMENTATION
OF
NEW INFORMATION HIDING METHOD

SUMMARY

Information security systems are a part of daily life nowadays. For these reason,
their applications are getting more and more significant. Steganography and
Cryptography are most important fields of it. In this thesis, you can be aware
of what Steganography and Cryptograhy are, what their applications and methods
are, especially Steganography methods applied on spatial domain. Then, new data
hiding method which is improving neighbor mean interpolation method is proposed.
Thanks to proposed method, data hiding process is applied according to a key like
cryptography approach. Proposed method can be summarized like that changing scan
path of embedding process according to symmetry map which is calculated by pixel
symmetry.

In addition to explaining new method, the method is also tested on personal computer
and embedded hardware. Proposed method is firstly created with Matlab software
on desktop computer. Then, proposed method is applied on Zynq embedded system
which has hybrid processor architecture. Embedded system application is tested on
AVNET’s ZedBoard. In order to create this system, firstly development environment
of embedded Linux operating system is created on Linux operating system running on
personal computer. Then, Embedded Linux run on ZedBoard. In addition, OV7670
camera sensor is integrated with this system and image frame coming from the camera
can be writen to memory directly. this frame also can be read for VGA output by
using FPGA part of Zynq. In fact, proposed method’s data hiding proses is applied by
creating software for ARM based processor part of Zyng.

Thanks to this thesis, you can also learn installation of Xilinx development
environment, installation of cross-compiling environment for embedded Linux
systems, writing device drivers for embedded Linux systems, usage of i2¢c module
inside processor part of Zynq and applying image processing application by creating
user space application on embedded Linux operating system.

In this thesis, there are six chapters. In chapter 1, you can infer purpose of writing
this thesis and what information security systems are. Then you can examine digital
information hiding and scrambling methods in chapter 2. New data hiding method is
explained in chapter 3. The implementations about proposed method are showed in
chapter 4. Experiments and their results are inferred in chapter 5 and in last chapter
conclusions are cited.

Comparing results of previous and proposed methods, you can infer same visual
quality and similar computation number. The image which is used for covering, cover
image, and the image which is produced after data hiding process, stego image, look
similar to each other. You can understand it according to calculation PSNR value
between cover and stego images. PSNR results are always stay higher than 35 dB.
This result shows that data hiding process is imperceptible.

Xix

YENI BIR VERI GIZLEME YONTEMININ GELISTIRILMESI
VE
YONGADA SISTEM UZERINDE GERCEKLENMESI

OZET

Bilgi giivenlik sistemleri artik giindelik hayatimizin birer parcasi. Bu tez
calismasinda bilgi giivenlik sistemlerinin = siniflandirilmasindan, amacglarindan,
kullanim alanlarindan ve birbirlerine gore farkliliklarindan bahsedilmigtir. Bu
sistemler icerisinde dijital veri gizleme yontemlerinin neler oldugundan, 6zelliklede
uzamsal uzayda uygulanan yontemlerin detaylarina deginilmistir. Daha sonra komsu
ortalamali ara degerlendirme yoOntemi kullanilarak resmin icerisine veri gizleme
yontemine yapilan gelistirmeler detayli bir sekilde okuyucuya aktarilmistir. Bu
gelistirme sayesinde veri gizleme islemini, sifreleme biliminin yontemine benzer
sekilde anahtar yapisina baglh olarak yapilmasi saglanmistir. Yeni yontem; uzamsal
uzayda goriintii icerisine veri gizlerken izlenilen islem yolunun veya sirasinin,
genelde resim cergevesinin sol iist kosesinden baglayarak saga ve asagiya dogru
satir-siitun taramas1 yapilarak izlenen zig-zag yolun, sifreleme bilimine uygun
olarak sifreleme anahtar1 yapisina bagli bir bicimde karigtirllmasi ve bu sayede
tek bir iterasyonda dahi, sifreleme anahtarimi bilmeyen kisilerin gizlenen mesaja
ulagamamasini saglayan bir sistem olarak nitelendirilebilir. Yeni yontem sayesinde
kullanicilar hem steganografinin yani gizleme biliminin hem de kriptografi yani
sifreleme biliminin 6zelliklerinin i¢ ice bulundugu bir yontem ile haberlesmelerinin
giivenligini arttirabileceklerdir.

Bu tez calismasinda, gelistirilen yeni yontemin gercek bir uygulama ile test
edilmesi de saglanmistir. Onerilen yontem ilk olarak masaiistii bilgisayar iizerinde
Matlab yazilimi kullanilarak test edilmistir Bu kapsamda veri gizleme ve
gizlenmis veriyi c¢ikartma iglemlerinin yapildig1 programlar gelistirilmistir. Bu
programlar ekler bolimiinde okuyucuyla paylagilmistir. Ayrica gomiilii sistem
tizerinde ayni uygulamanin kogturulmasi saglanmisti. AVNET’in Zynq islemci
mimarisine gelistirmeler yapilmasi i¢in iirettigi ZedBoard gelistirme kart1 iizerinde
onerilen yontem uygulamaya alinmistir. Bu kapsamda Linux igletim sisteminin
ZedBoard izerinde kosturulmasi icin gerekli gelistirme ortami kurulmus, daha
sonra kart iizerinde Linux igletim sistemi kosturulmustur. Ayrica, OV7670 kamera
sensoOrii sisteme entegre edilip, kameradan goriintiiniin almip kartin iizerindeki
bellege yazilmasi, bellekteki goriintiiniin VGA protokolii ile disarida bulunan bir
VGA monitorde yansitilmasi saglanmistir. Burada belirtilen islemlerin tiimii,
Zynq mimarisisnin i¢inde bulunan programlanabilir kap1 dizileri kullanilarak
gerceklestirilmistir. Tiim bunlara ek olarak, VGA c¢ikisina gonderilecek resim
cercevesi iizerinde, Zynq mimarisi icerisinde bulunan ARM tabanh c¢ift ¢ekirdekli
A9 islemciler kosturularak, bu makalede yenilik unsuru olarak Onerilen, piksel
simetrisi kullanarak resim ¢ercevesinin igerisine veri gizleme yonteminin uygulanmasi
saglanmustir.

xXxi

Bizler bu calisma sayesinde Xilinx firmasinin iirettigi programlanabilir kap1 dizileri
ile calisabilmek i¢in gerekli olan gelistirme ortaminin kurulmasini, Linux igletim
sisteminin gomiilii sistem iizerinde kosturulmasi icin gerekli olan ¢apraz derleme
gelistirme ortaminin kurulmasini, Linux igletim sisteminde 0zel ¢evresel birimlerinin
kullanilmasi i¢in gerekli olan siiriicii yazilimlarinin Linux cekirdegi icerisinde nasil
kodlandigini, yine Linux igletim sisteminde kabuk katmaninda I2C donaniminin nasil
kullanildig1 ve goriintii isleme i¢in gerekli olan altyapinin nasil kontrol edilecegini,
daha onceden yiiksek seviyeli programlama dilleri C veya C++ kullanilarak
olusturulmug progranabilir kap1 dizileri modiillerinde bulunan problemlerin nasil
coziilmesi gerektigini 6grenmis olduk.

Bu tez alti ana baglik altinda incelenmektedir. Ilk boliimde bilgi giivenligi
sistemlerinden ve bu tezin amacindan bahsedilmigtir. Bilgi giivenligi sistemleri
giivenligi saglayan ve giivenligi sinayan sistemler olarak iki gruba ayrilmistir. Bu tezin
icinde bulundugu giivenligi saglayan sistemler icerisinde; sifreleme, gizleme ve fligran
olusturma bilim alanlarinin neler oldugundan bahsedilmistir. Bu bilim alanlarinin
birbirlerine gére amaglar1 ve farkliliklart nelerdir aciklanmustir.

Ikinci boliimde veri gizleme yontemlerinden, 6zelliklede uzamsal uzayda kullanilan
temel yontemlerden ve goriintii karistirma algoritmalarindan bahsedilmistir. Bu
algoritmalardan tez i¢in 6nem teskil eden komsu ortalamali ara degerlendirme yontemi
detayli bir sekilde anlatilmistir. Sonrasinda goriintii karistirma algoritmalarinin
degerlendirlmesinde kullanilan karistirma derecesi yontemi anlatilarak tezin yenilik
unsuru olan, piksel simetrisi kullanarak gizleme yolunun karistiritlmasi isleminin,
diger karistirma yontemleri ile karsilastirilabilmesini saglamak i¢in teorik bir alt yap1
okuyucuda olusturulmustur.

Uciincii boliimde veri gizleme icin dnerilen yeni yonteme deginilmistir. Oncelikle daha
once kullanilan ara degerlendirme yontemlerinin arasindan ni¢in komsu ortalamali ara
degerlendirme yonteminin secildigine deginilmistir. Daha sonra piksel simetrisi olarak
isimlendirilen yeni yOntemin, aslinda bircogumuzun geometriden hatirlayabilecegi
simetri kavraminin resim cergevesinin olusturulmasini saglayan temel yapitaglar: yani
pikseller tizerinde nasil kullanildig1 anlatilmigtir. Yeni yontemin uygulanmasi ile ilgili
ornekler verilmistir.

Dordiincii boliimde Onerilen yontemin bilgisayar ve gomiilii sistem {izerinde
gerceklenen uygulamalarinin nasil yapildigindan bahsedilmistir. Oncelikle Matlab
izerinde yapilan uygulamanin detaylari anlatilmistir. Daha sonra Linux igletim sistemi
ve Zynq mimarisi izerinde yapilan uygulamanin detaylarina gecilmistir. Bu noktada
Zynq mimarisinin onemli noktalar1 vurgulanmistir. FPGA’lerin kullanim alanlarindan
ve ozelliklerinden bahsedilmistir. Bilgisayar mimarisinde ¢evresel birimlerin c¢ip i¢i
haberlesmesinde siklik ile kullanilan AXI protokoliinden ve bu protokoliin degisik
amaglar i¢in olusturulan versiyonlarindan bahsedilmistir. Daha sonra, OV7670
kamera sensoriiniin Ozelliklerine ve video ¢ikisi olarak sundugu YUV/YCbCr ve
VGA protokoliinde kullanilan RGB renk uzaylarina deginilmistir. Son olarak,
Zynq mimarisinin FPGA kisminda kurulan donanim bilesenleri ve yazilim mimarisi
incelenmistir.

Besinci boliimde, dordiincii boliimde bahsedilen uygulamalarin ¢alisma esnasinda
elde edilen c¢iktilarindan bahsedilmigtir. Veri gizlemesi yapilmig resim sonuclari
okuyucuya sunulmugtur. Daha sonra gomiilii sistem iizerinde yapilan uygulamanin

Xxii

sonuglari, uygulama sirasinda kullanilan kontrol bilgisayarindaki Linux terminalinden
elde edilen ekran goriintiileri gosterilerek okuyucuya sunulmusgtur.

Son olarak altinct boliimde test sonuglardan yola ¢ikarak tezin degerlendirilmesinin
yapildig1 sonug boliimii yazilmistir. FPGA de gerceklestirilen devrelerin, FPGA i¢inde
bulunan kaynaklarin ne kadarim tiikettigi tablolar ile gosterilmistir. Uygulamalardan
elde edilen sonuglarm olumlu ve olumsuz yonlerine deginilmistir. Gelecekte
yapilabilecek gelistirmelerden bahsedilmistir.

Ekler boliimiinde, dordiincii boliimde bahsedilen gerceklemelerin nasil yapildigini
anlatan teknik detaylar verilmistir. Ek-A’da Oncelikle gelistirme ortaminin kurulumu
anlatilmistir. Xilinx gelistirme araclarinin kurulumu, Linux kaynak kodlarinin
nasil indirilecegi ve Minicom seri haberlesme programinin nasil yiiklenecegine
deginilmistir. Daha sonra Xilinx Linux isletim sisteminin ZedBoard gelistirme karti
lizerinde kosturulmas: icin gerekli teknik adimlar anlatilmigtir. Ik adim sistem
yiikleyicisinin nasil olusturulacagindan, U-Boot programinin Zynq mimarisininde
bulunan ARM islemcisi icin nasil derleneceginden, Linux cekirdeginin, kok dosya
sisteminin ve donamim siiriiciilerinin nasil derleneceginden ve son olarak ZedBoard
tizerinde ilk Xilinx Linux’un kosturulmasi i¢in gelistirme kart1 ve test bilgisayarina
yapilmasi gereken adimlardan bahsedilmistir. Ek-B boliimiinde Linux isletim
sistemi i¢in yiiklenebilir donanim siiriiciilerinin olusturulmasi anlatilmigtir. Donanim
stiriciilerinde Major ve Minor sayilarinin neleri ifade ettigine deginilmistir. Linux
isletim sistemi icerisinde kesme yapilarinin nasil olusturuldugu ve Linux kullanici
katmaninda olusturulan programlarin nasil derlenmesi gerektiginden bahsedilmisitir.
Ek-C boliimiinde Matlab programinda yeni yontemin calistiim1 gdstermek amaciyla
olusturulan programlarin kodlarina yer verilmistir. Bu amagcla once veri gizleme
uygulamasina ait kod, simetri noktalarinin hesaplanmasi i¢in olusturulan fonksiyon ve
gizlenen veriyi ¢ozme isleminin yapildig1 kod okuyucuyla paylasilmistir. Son olarak
Ek-D boliimiinde, Onerilen yontemin aym1 zamanda gomiilii sistemlerde uygulamak
icin uygun oldufunu gostermek amaciyla olusturulan, ZedBoard iizerinde Linux
isletim sistemi kullamlarak kosturulan C kodlar1 okuyucuya sunulmustur. ilk olarak
FPGA’de olusturulan 6zel donanimlarin Linux isletim sistemi ile kontroliinii saglayan
donanim siiriiciisiiniin kodu, daha sonra I12C ile kamera konfigiirasyonunu saglayan ve
resim ¢cekme islemini gergeklestiren Linux kullanict katmani programlarinin C kodlari
ve son olarak da veri gizleme isleminin yapildig1 programin C kodu okuyucular ile
paylasilmistir.

Onerilen yeni yontemin sonuglari ile bir énceki yontemin sonuglari kargilastirildiginda
benzer gorsel dzelliklerin ve hesaplama basitliginin yakalanmis oldugu gozlenmistir.
Uzerinde degisiklik yapilacak olan kaplama resmi ile icerisine veri gizlenmis sakli
resimin, stego resim, arasinda hesaplanan PSNR degerlerinin her bir 6érnek ¢alisma
icin 35dB’in lizerinde kaldig1 gozlenmistir. Bu durum veri gizleme islemi esnasinda
yapilan degisikliklerin gozle goriinemeyecek seviyede oldugunu gostermektedir.
Ayrica sifreleme anahtar1 kullanilarak yapilan gizleme sayesinde giivenlik seviyesi
bir onceki yonteme gore cok daha giiclii bir hale getirilmigtir. Sifreleme anahatari
kullanilarak karigtirilan gizleme sirasinin, oldukca karmagik ve takip edilmesi zor
bir hale geldigi, karistirma derecesi teoremi kullanilarak teorik olarak kanitlanmistir.
Bu tezin ciktis1 olarak sifreleme ve gizleme bilimlerine uygun, gercek diinyada
uygulanabilir, basit ama giiclii ve gerceklemelerle uygulanabilirligi kanitlanmig yeni
bir veri gizleme yontemi elde edilmistir.

xxiii

1. INTRODUCTION

Electronic security systems are getting more and more significant part of our daily
life. Many sample applications about these systems can be given such as; banking
and military security systems [1-3], secured communication applications on mobile
phones [4] and encrypted TV broadcasts [5]. All of these example applications
include many cryptography methods in order to provide security. On the other
hand, many systems try to break these security systems in order to obtain their
valuable information. Therefore, scientist need to find another solution to provide
security for their valuable systems. With the help of our ancestors, finding new
security methods for digital security systems is very straightforward because even if
they couldn’t utilize any electronic systems, they found very clever methods, which
are also suitable for implementation on electronic systems. As a result, digital
steganography and watermarking techniques can be mentioned. These techniques aim
at hiding communication or becoming aware of risky situations like disturb the data
and information theft. Thus, implementation of such systems are getting more and
more significant nowadays and will be in the future. Figure 1.1 shows an example of

steganography application.

1.1 Purpose of Thesis

As it is told before, digital steganography and watermarking applications are playing
key role among electronic security systems. Therefore, in this thesis, we purpose
to improve one of the existing digital steganography and watermarking methods in
order to provide more secured and invisible information hiding technique. Then,
proposed method is implemented on hybrid processor system, Xilinx Zynq, within
Linux operating system. In fact, we aim to create an embedded system infrastructure
for image processing applications, especially for information hiding techniques in
order to hide photographer information inside his/her photograph art. Thus, we

aimed to learn Zynq architecture and Zynq Evaluation Development Board (ZedBoard)

specifics, hardware design methodology with Vivado HLS software, basics of Linux

operating system and writing device driver for custom IPs (Intellectual Properties),

embedded system design with Vivado software, OV7670 camera sensor specifics and

development of new information hiding method with Matlab software.

Since everyone can read, encoding text
in neutral sentences is doubtfully effective

Since Everyone Can Read, Encoding Text
In Neutral Sentences Is Doubtfully Effective

‘Secret inside’

Figure 1.1 : An example of steganography application.

1.2 Information Security Systems

Information security systems can be divided into two main sections, which are safety

providing systems [6] and safety testing or breaking systems [7]. In this thesis, safety

providing systems are mainly focused on , especially on digital information hiding

methods.

| Security Systems |

Cryptography

I Information Hiding |

Steganography Watermarking

Linguistic Technical | Robust | | Fragile ‘
Steganography Steganography |
| I | l I Imperceptible H Visible ” Fingerprint |
‘ Digital Images H Video ‘ | Audio ‘ ‘ Text |

Figure 1.2 : Classification of safety providing systems [17].

As you can see from Figure 1.2, safety providing systems can be analyze in two

sections. These are cryptography and information hiding. Information hiding also

2

can be divided in two subsections, which are steganography and watermarking. In
order to understand more correctly to this thesis aim, differences between security
providing techniques must be showed. However, firstly these techniques and what are

their purposes must be explained.

1.2.1 Cryptography

Cryptography is that all techniques which are utilized for converting data from
comprehensible state to inexplicable state. It includes many scientific areas such as
mathematics, computer science and electrical engineering [8]. Any data or information

can be encrypted such as document [9], speech [10], image [11] or video stream [12].

Plain-textinput Cipher-text
i “The quick | iE.......... ... ' “The quick |
‘brownfox | i “AxCv:5bmEseTfid3) | brown fox
i jumps over | { fGsmWe#4”, sdgfMwi | jumps over |
i the lazy | ir3:dkJeTsY8R\s@!q3 the lazy |

dog

m |

dog" g °/o“
H ENCTVPHon ’

e Same key
“ (shared secret) ™

Figure 1.3 : Five-tuples of modern cryptosystems.

Modern cryptosystem is defined by using the following five-tuples [13], which are

showed in Figure 1.3;

1. P - aset called the plaintext space
C - a set called the ciphertext space
K - a set called the key space

ek - encryption rules

ook w D

dk - decryption rules

Plaintext is converted to ciphertext by using encryption rules and key at the message

sender side, then ciphertext is converted by using decryption rules and the same key

3

at the receiver side in modern cryptosystems. The purpose of modern cryptosystem is
that just person or system who knows key can figure out the plaintext from ciphertext
according to encryption key. Even if the person or system can obtain the ciphertext,
if they don’t know encryption key, they should not figure out the plaintext. Thus,
it is acceptable that everybody knows encryption and decryption rules, message
channel and there is a encrypted communication between sender and receiver but just
sender and receiver knows the encryption key and valuable information in modern

cryptosystems.

1.2.2 Information hiding

Information hiding means concealing any type of data like file, document, speech,
image or video within another data. Information hiding techniques are divided by two

main fields, which are steganography and watermarking.

1.2.2.1 Steganography

The word steganography combines the Greek words steganos and graphien. Steganos
means covered, concealed or protected. Graphien means writing. The history of
steganography techniques are spreading for a long time scale. It was starting with
Herodotus. Histiaeus sent a message to his vassal, Aristagoras, by shaving the head of
his most trusted servant, "marking" the message onto his scalp, then sending him on his
way once his hair had regrown, with the instruction, When thou art come to Miletus,

bid Aristagoras shave the head and look thereon [14]. It is represented in Figure 1.4.

Figure 1.4 : Representation of historical steganography example.

Digital image steganography is a method which is applied in computer science for
hiding information inside a digital image. Three basic elements are utilized in order
to hide information. These are cover image, binary message and stego image. Cover

image is an image wanted to embed or hide our binary message. Binary message can

4

be any kind of data like text, speech, image or video represented by binary domain.
Stego image is a result of steganography process, which includes both cover image
and binary message. Stego image must be very similar to cover image in order to
provide security in communication. These basic elements are showed in data hiding
diagram in Figure 1.5. In steganography systems, the most significant factor is median
of sent message must be indistinguishable. For instance, when message is embedded

on an image, it should not be figured out by others [15-17].

Confidential
Information

Cover Image Stego Image

Figure 1.5 : Data hiding diagram.

1.2.2.2 Watermarking

Watermarking is another information hiding technique, which purposes to mainly
identify ownership of the information [18]. Watermarking has often been used
in our daily life. For instance, copyright protection, source tracking (different
recipients get differently watermarked content), broadcast monitoring (Television news
often contains watermarked video from international agencies), video authentication,
software crippling on screen casting programs to encourage users to purchase the full
version to remove it and content management on social networks [18]. These are
showed in Figure 1.6. The main idea of watermarking technique is to protect owner of

information from any changes and theft.

Figure 1.6 : Watermarking examples, left (Copyright protection), middle (Broadcast
monitoring) and right (Source tracking).

1.2.3 Comparison of information security systems

Comparing purposes of cryptography, steganography and watermarking, it can be said
that cryptography wants to change information to inexplicable shape, steganography
wants to hide communication channel and watermarking wants to protect ownership
rights. Cryptography techniques apparently differ from both steganography and
watermarking techniques. However, steganography and watermarking techniques can

be similar to each other.

2. DIGITAL INFORMATION HIDING METHODS

2.1 Steganography Methods

Steganography methods can be classified in two sections with respect to which domain
used during the modification of cover image [19]. If some changes are made on
frequency domain coefficients, this kind of methods are called by frequency domain
information hiding methods. Otherwise, if modifications are applied on spatial
domain coefficients, these methods are named after spatial domain information hiding

methods.

Compering information hiding methods about their property, some parameters become

significant. These parameters are robustness, perceptibility and capacity [18].

Information hiding technique is called "fragile" if it fails to be detectable after the
slightest modification [18]. Fragile methods are commonly used for tamper detection.
Information hiding technique is called semi-fragile if it resists benign transformations,
but fails detection after malignant transformations. Semi-fragile techniques are

commonly used to detect malignant transformations.

Information hiding technique is called robust if it resists a designated class of
transformations like rotation, cropping and scaling. Robust watermarks may be used
in copy protection applications to carry copy and no access control information.
Information hiding technique is called imperceptible if the original cover signal and

the marked signal are perceptually indistinguishable.

Information hiding technique is called perceptible if its presence in the marked signal
is noticeable (e.g. Digital On-screen Graphics like a Network Logo, Content Bug,
Codes, Opaque images) [18]. Otherwise, if hiding process can not be realized, this
technique is called imperceptible. Capacity represents maximum number of bit can
be embedded inside cover image [18]. It generally depends on directly image size.

However, some methods can be effected from visual characteristics of cover image.

2.1.1 Frequency domain methods

While spatial techniques involve manipulation of pixels of the cover image, frequency
domain techniques involve manipulation of coefficients of the cover image [20].
The coefficients are obtained by transforming the cover image in time domain to a
frequency domain through a specific transformation function. Since the manipulation
of images is involved, spatial domain techniques in spite of their good fidelity
criteria exhibit poor tolerance towards a wide range of external attacks which is not
desirable. Further, since spatial techniques involve manipulation of pixels, pixel level
modification may not be suited for images which may cost severely on the content
of image which is not a comprehensible event to a very small extent. The transform
of a signal is just another form of representing the signal. It does not change the
information content present in the signal. Hence, the frequency domain transforms
is utilized and in specific the multi resolution properties of certain transforms like
discrete wavelet transform (DWT), contourlet transform and the robustness properties
of certain transforms like discrete cosine transform (DCT) as you can see in Figure

2.1.

original DCT transform

/

Figure 2.1 : Example of DCT transform.

2.1.2 Spatial domain methods

While working on spatial domain, some changes are made on pixel values [20].
Generally, these changes are expected to be invisible. Thus, there must be some pixel
value changing techniques which should keep image quality and integrity. Therefore,
humankind has found several techniques. However, two of them represent main idea
of other techniques. These two fundamental techniques are changing least significant

bit (LSB) of all pixels and modifying interpolation values of image frame [15].

2.1.2.1 LSB technique

LSB changing technique is a common and very simple method for information hiding
[21]. In this technique, LSB of all pixels in an image are changed according to binary
message. In order to apply this technique, firstly confidential message should be
converted into binary stream, then all LSB of color channels are modified according

to this binary stream through whole pixels of the cover image. LSB technique is

represented in Figure 2.2.

E

Figure 2.2 : Representation of LSB technique.

2.1.2.2 Neighbor mean interpolation (NMI) method

Image interpolation process is used for calculating unknown pixel values by utilizing
known pixel values of image. It is one of the major operations about creating or
producing digital images from camera sensor [22]. On the other hand, general process
is computed on screens of electronic devices, like rotation, enlarging and reducing
images, need to utilize these methods [23]. In fact, image interpolation can be used for

data hiding applications [15].

There are many methods in literature for image interpolation process. Giving some
examples for traditional interpolation methods, the nearest neighbor [24], linear [25],
bilinear [26] and neighbor mean interpolation methods can be mentioned [15]. The
nearest neighbor and linear interpolation methods are cited by simple interpolation
methods and they are used for re-sampling [25]. Nearest neighbor interpolation
method suffers from normally unacceptable aliasing effects with regard to enlarging
and reducing images. Bilinear interpolation method determines the grey level from
the weighted average of the four closest pixels to the specified input coordinates

and it assigns a value to the output coordinates. This method generates an image

9

that has a smoother appearance than nearest neighbor. In fact, bilinear interpolation
method requires three or four times higher computation time than the nearest neighbor
method [15]. Neighbor mean interpolation method is similar to bilinear interpolation

method. However, this method has less blurring and greater image resolution.

K(1,2)

K(1,4)

K(2,1) | K(2,2) | K(2,3) | K(2,4) | K(2,5)

K(3,2) K(3,4)

Figure 2.3 : Image pixels.

In neighbor mean interpolation method, unknown pixel values are calculated by using
mean of two or three the neighbor pixels. In example image on Figure 2.3, K(1,1),
K(1,3), K(1,5), K(3,1), K(3,3) and K(3,5) are known pixel values and shown by
green color. K(1,2), K(1,4), K(2,1), K(2,2), K(2,3), K(2,4), K(2,5), K(3,1) and
K(3,4) are inter values which are wanted to be calculated and they are shown by yellow
color. Value of K(2,1) is calculated by meaning known values of K(1,1) and K(3,1).
Value of K(1,2) is calculated by meaning known values of K(1,1) and K(1,3). Value
of K(2,2) is calculated with equation 2.1 [15].

K(1,1)+K(1,2)+K(2,1)

K(2,2) = 3

2.1

These processes can be repeated for K(1,4), K(2,3), K(2,4), K(2,5), K(3,1)
and K(3,4) by following zig-zag way. The calculated pixels are showed below
sequentially; K(1,2), K(2,1), K(2,2), K(1,4), K(2,3), K(2,4), K(2,5), K(3,2), and

K(3,4). Embedding binary message inside interpolation values in this technique is

A1 A2 Al M1 DA2 A1 M1 A2
100 130 100 0 [130 100 123 130

Al=M1=A2 Al=M1=A2 Al=M1=A2

Figure 2.4 : Interpolation must be invisible.

main concept of this thesis. In order to provide invisible hiding, interpolation value

10

must be kept between neighbor pixel values as you can see from Figure 2.4. Therefore,
it must be calculated how many bits can be embedded onto interpolation value. Answer
of this question is represented by "n" and it is calculated according to neighbor pixel
values of interpolation value with the help of equations 2.2, 2.3 and 2.4. Then, n

number of bit are read from binary message stream and add on interpolation value.

n(1,2) = [log, |K(1,2) ~ K(1,1)] 2.2)
n(2,1) = [log, K (2,1) ~ K(1,1)] 2.3)
n(2,2) = [log, |K(2,2) ~ K(1,1)] 2.4)

There is an example given in Figure 2.5 about data hiding proccess.

100 | 139 e =1,
139-100 = 39,
143-100 =43
143 | 112 Bk
112-100=12.
v
n=10,
| log, [39]] =5,
| log, |43 | =5,
| log, [12] | =3.
Secret Bits
1000110101001... ¢
100 | 156
164 | 113

Figure 2.5 : Data hiding proccess example [15].

In data extracting process, similar to hiding process, interpolation values must firstly be
calculated then it is calculated how many number of bit can be added each interpolation
values. Then, differences between interpolation values of stego image and calculated
interpolation values of each interpolation pixels are measured. Finally, binary message
is created according to number of added bit and difference of each pixels. This process
starts from left - top side of image and follows same path with data hiding process.

There is an example given in Figure 2.6 about data extracting process.

11

Secret Bits
1001101011000101 . . .
Cover Image 1001 L, = 19, Stego Image
46 | 79 | 112 | b=1010110, =22, a6 | 98 | 112
00101, =5.
128 84 101 »| 150 89 101
79-46=33,
210 | 150 | 90 | ;_J128_46=82, 210 | 150 | 90
|84—46=38.
| log, 33| =5,
n=1|log,[82||=6,
| log, [38] | =5. !
98—| (46+112)/2 =19,
b=4150-| (46+210)/2 | =22,
89— (2-46+(112+210)/2)/3 |=5.

Figure 2.6 : Data extracting proccess example [15].

2.2 Image Scrambling Techniques

Image scrambling techniques are utilized in cryptography and steganography fields.
Scrambling methods are generally applied for two ways, which are changing embeding
path and the other one is scrambling plaintext according to encryption key or table in
steganography field. These techniques are compared according to Scrambling Degree
Theory (SDT) in order to show their performans differences. Thus, firstly SDT is
mentioned. Then, Rubik’s Cubic Algorithm, Arnold Transformation and Sudoku

Puzzle scrambling methods are explained in this section.

2.2.1 Scrambling degree theory

According to the concept of the scrambling transformation, the scrambling of position
space is the original image pixel position has been moved essentially, If the pixel
has been moved farther away comparing to the original image pixels, the degree of
scrambling is higher [27]. While scrambling does not change the original image pixel
gray level, but can change the image of the visual effects. Scrambling the image

compare to the original image more "chaos ", indicating that the scrambling algorithm

12

is more effective. A more "chaos" image should be intuitive visual was "chaotic", and
the overall distribution of relatively uniform gray image. According to the analysis
above, the degree of image scrambling is not only considering the distance to move
the image pixels, but also considering the intuitive visual effect of image. Using the

formula of Ds below can objectively shows the image scrambling degree.
DS = DSF x GSF (2.5)

DSF (Distance scrambling factor) is determined by the distance of the pixel movement,

GSF (Gray scrambling factor) is calculated by quantifying the intuitive visual data.

In general, the image pixel position to move the more further away, the greater the
degree of scrambling is, so it can be used to represent the scrambling degree by moving

distance. Move away from here by pixel to calculate the mean and variance of DSF.

Definition 1: Assumes that the image Ay «n scrambled into the image A,y , a pixel
position (X, y) is mapped to scrambled images (x’, y’) position, then the move distance

of pixels is:

d(xy) = /=22 + (y —y')? 2.6)
The mean moves distance of whole image is:
1 M N
E(d)= d 2.7

Obviously, when each pixel in the image does not move, it means when the image does
not scrambling, E(d) is the minimum value E,,in(d) = 0; when the image of each pixel

move diagonal distance, E(d) is Max.

Enax(d) = \/ (M~ 12+ (N —1)2 (2.8)

The distance of pixel scrambled moved higher means that the degree of movement is

greater. Therefore, DSF can be calculated by
DSF(A,A") = E(d)/Epax(d) (2.9)

According to the previous analysis that if the image is divided into the same size and do
not re-place sub-block, then scrambling the image average gray level of each sub-block
closer to the image "chaos " the greater the degree. As a result, the following method

can be used to calculate GSF.

13

Divied Scrambling image and original image into k X k pixels in size and do not overlap
sub-block, set sub-image By, (i, j) stand for the image of the (m,n) sub-blocks, then

the sub-image B« (i, j) of gray level E(B,x,) is:

k k
E(m><n = ZZ mxn l] (2.10)

There are (Mk) x (Nk) sub-block after block of the image, such as mean and variance

of equation gray showed below by formula 2.11 and 2.12.

1 Mk N/k
EEBuen) = a7k vk 2, 2) 211
- 1 M/k N /k)
c Bn) —E(E(Byp (2.12)
= G L,k (E E(E(Byyxy)))

Described as a random variable variance relative to the mean wave, if the variance is
smaller, the wave degree is smaller, the variance is larger, and the wave degree is larger.
Therefore, the gray level sub-image can be used to describe the variance of degree of
image scrambling. If the variance is smaller, the difference between the average gray

code between is smaller, is means the degree of "chaos" is higher.

If the sub-scrambling image means gray level variance is 62

s the original image of

the sub-image intensity mean and variance is 63,g org, then the value of intuitive visual
GSF is:
o2
GSF = % (2.13)

new

According to the equation above, the more GSF larger, the image more "chaos" , which

compare to the original image, and the scrambling better.

2.2.2 Rubik’s cubic algorithm

Rubik’s cubic was invented in 1974 as a famous wisdom game. In the beginning, it is

a cubic with 6 different colors in each side (6 faces) as shown in Figure 2.7.

Rubik’s cubic possesses 6 faces and can be divided into 54(6 faces x 3 x 3) elements.
In the beginning, the hidden data (treated similar as an image) will be partitioned
into different unit block size such as pixel based, 3 x 3 pixels based, or other n x n
pixels based. Then, 54 units will be selected sequentially and transformed into 6 faces

according to the six faces of a Rubik’s cubic by designated an index number as shown

14

Figure 2.7 : A Rubik’s Cubic indexed with direction parameter.

in Figure 2.8 and Figure 2.9. Therefore, an image can be partitioned into a lot of
different 54 units of blocks and formed a lot of different Rubik’s cubic. To apply the
Rubik’s cubic for image data hiding, the basic process unit can be one pixel, small
block, or macrocell (large block) is compared to the traditional Rubik’s Cubic. For
example, an image can be partition by pixels to fit and associated with each of the
small cubic of a Rubik’s Cubic. Therefore, 54 pixels totally can be fit into the Rubik’s
Cubic and each pixel represents a small block. An image can also be partitioned based
on 3 x 3, i.e. 9 pixels, as a small block. Thus, 54 3 x 3 blocks can be fit into the
Rubik’s Cubic and each 3 x 3 block represents a small block of the Rubik’s Cubic.
Each Rubik’s cubic can be assigned a different random number for performing rotation

to scramble the sequence of original 54 units.

54 pixel 54 pixel

1
| [1 1]
|

88 480 200

—_—
80 288 868 200 288 B8

e00 280 900 080 208 e

00 880 408 200 288 S0

Figure 2.8 : Mapping of Rubik’s Cubic and image.

In the proposed data hiding, the data hiding process is performed from left to right and
then top to bottom in the cover image, i.e., horizontally, with the covert information. In
the proposed scheme, some parameters are utilized for controlling the process of data

scrambling and data embedding listed below.

15

Macrocell parameter M),: It is used to specify scrambling is either pixel or block

based.
Hiding method parameter H,, : Specify which data hiding is used.

Rotation parameter R, : Specifies number of rotation of Rubik’s cubic block and its

direction.

Rotation regulation parameter R, : Specifies all of the macrocells use the same or

different rotation parameter for performing scrambling.

Figure 2.9 : Corresponding index of Rubik’s Cubic.

Proposed data hiding approach is implemented by the following procedure:

. Define the required M, , H), , R,, and R, parameters.

. Hidden data is encrypted by the cipher system in order to strengthen the data

security.

. The encrypted data is scrambled by applying the Rubik’s Cubic rotation.

. The scrambled data is embedded into the cover image to obtain the stego-image.

The hidden data can be extracted by performing the above steps reversely.

2.2.3 Arnold transformation

Images are composed of discrete units called pixels. A pixel is the basic unit
representing some color value, which when taken together form the image. The image

is a m X n matrix, where m represents the number of rows of pixels and n the number of

16

columns of pixels, and each entry in the matrix being a numeric value that represents
a given color. For example, consider the 175 x 175 image of a caffeine molecule in

Figure 2.10.

Figure 2.10 : 175 x 175 image of a caffeine molecule.

Let X be the image matrix shown below, it is possible to examine selected entries in X.
The numeric entries represent some color value. The mapping known as Arnolds Cat
Map is named after the mathematician Vladimir I. Arnold, who first illustrated it using
a diagram of a cat. It is a simple and elegant demonstration and illustration of some of

the principles of chaos namely, underlying order to an apparently random evolution of

a system.
. . X X+y .
Arnold’s cat map is the transformation I’ — mod n Where mod is the
y x+2y
+
modulo of the Y
x+2y

For understanding the mechanism of the transformation better, it can be decomposed

into elemental pieces.

1. Shear in the x-direction by a factor of 1.

iR

2. Shear in the y-direction by a factor of 1.
x| [x
_>

X+Yy
y

f+y

3. Evaluate modulo.

X X
— mod n

y

17

r 217 217 217 217 ... 217 217 217 217
251 251 251 251 ... 251 251 251 251
251 251 251 251 ... 251 251 251 251
251 251 251 251 ... 251 251 251 251

251 251 251 251 ... 251 251 251 251
251 251 251 251 ... 251 251 251 251
251 251 251 251 ... 251 251 251 251
217 217 217 217 ... 217 217 217 217

Figure 2.11 : Visuals illustrating the steps.

Figure 2.11 shows the shearing in the x and y directions, followed by modulo operation

and then the reassembly of the image.

2.2.4 Using sudoku puzzle

In 2011, Zou, Tian, Xia, and Song introduced an image scrambling method using
Sudoku puzzle [28]. This method securely scrambles images making them appear
to contain no information. The proposed method uses pairs of Sudoku puzzles to
map original and scrambled images. The method takes a pair of Sudoku puzzles and
modifies it so there is a 1-1 relationship between the digits of the puzzles. It adds
the digits corresponding to column number in front each of the digits for the puzzle
corresponding to the original image. It does the same with row numbers to the puzzle
for the scrambled image. It then scrambles the image by taking a pixel in the original

image, locating the digit entry in the Sudoku puzzle in the same place as the pixel, and

18

moving it to the corresponding digit in the other puzzle. The proposed method takes
advantage of the Sudoku rule to create this 1-to-1 correspondence between puzzles.
The method also take benefits from the large number of Sudoku solutions to provide

security against unscrambling attempts.

The scrambling algorithm for this method is divided into four parts: Sudoku pair
selection, Sudoku pair preparation, image marking and mapping, and bit scrambling.

This discussion also specified how to unscramble the image.

2.2.4.1 Sudoku pair selection

The first step is the Sudoku puzzle pair selection. In this step, one must simply make
pairs of Sudoku puzzles. The pairs can be of any size and there can be any number
of pairs. Having many different pairs can be beneficial to improve the security of the

method.

Wik N
=W~

RINW S
WilhIN|(F
N | B_W
WA=
N A=W
RiWwN| b

Original Sudoku Puzzle 1 Original Sudoku Puzzle 2

14 | 22 | 31| 43 11 | 12 | 13 | 14
13 | 21 | 32 | 44 24 | 23 | 21 | 22
12 | 23 | 34 | 41 32 31|34 |33
11 | 24 | 33 | 42 43 | 44 | 42 | 41

Changed Sudoku Puzzle 1 Changed Sudoku Puzzle 2

Figure 2.12 : Sudoku Pair Preparation.

2.2.4.2 Sudoku pair preparation

In the second part, it need to establish 1-to-1 relations between the puzzles in each
pair. This can be done by adding a prefix to each of the digit entries in order to make
them all unique. This way there is exactly one of each entry in the first puzzle for
each entry in the second. Then modify the entries in the first puzzle with the formula
NewValue = OldValue + Column x 10P'8" Where digits is the number of digits in
the puzzle. Note that this formula simply adds a row prefix to each entry. Figure 2.12

is given for exemplifying this process.

19

2.2.4.3 Sudoku image marking and mapping

The third part uses these prepared pairs of Sudoku puzzles to establish a relation
between the original image and the scrambled one. This part is sub-divided into two

sub-parts: block scrambling and sub-block scrambling.

2.2.4.4 Sudoku block scrambling

In block scrambling, use the Sudoku pairs to scramble blocks of the same size in the
original image. In this step the first Sudoku puzzle in a pair is used to mark the pixel
positions of the original image. Then place that pixel in the equivalent entry for the
second Sudoku puzzle. The following steps and figure explain the process in more

detail:

1. For the i"* pixel in the original image block p; , take the i’ entry in the first Sudoku

puzzle a;.
2. Locate the entry in the second Sudoku puzzle such that b; = a;.
3. Set the j'* pixel in the scrambled image to be s i = Di.

4. Repeat these steps until all pixels in the block have been processed.

2.2.4.5 Sudoku sub-block scrambling

In sub-block scrambling, they take each scrambled block and break it up into smaller
sub-blocks, then repeat the same process from block scrambling with these smaller

blocks as it is shown in Figure 2.13.

1 2 I~ 4 13 9 5 1
5|67 |8 14910 | 6 | 2
9 | 101112 7 M3 (11|15
13|14 | 15| 16 4 Thg 16 | 12

Original Image Scrambled Image
14 | 22 | 3143 11 | 12 | 13 | 14
13| 21|32 44 \%:24» 23 | 21 | 22
12 | 231347 41 37431 | 34 | 33
11| 24 | 33 | 42 437Ma4 | 42 | 41

Cﬁang;;i Su&-oku--l;uzzlé 1 | Cﬁangéd Sud-::ku I;lezlé 2

Figure 2.13 : Block scrambling using Sudoku Pairs.

20

2.2.4.6 Sudoku bit scrambling

After the third part, the image is not sufficiently scrambled and still appears to show
some information in the scrambled image and in the histogram. For this reason, it need
the fourth part: bit scrambling. In this part, take the bits of the image and modify them
so it is possible to treat them like a 2-D grid. To do this first flatten the scrambled
image into a 1-D grid by connecting rows to each other. The grids length is P, where
P is the number of pixels. For each pixel in the grid, create a column containing its
binary representation, giving us a 2-D grid of size 8 x P. There are at most 8 rows
because pixel values range between 0 and 255. Then reshape the grid into a square
of size M x M, where M is the floor of square root of 8 x P. This is performed by
reshaping by going through entries row-by-row and adding them to the square grid.
Then perform the same puzzle pair scrambling process to this grid and obtain new

pixel values in the image. This process is shown in Figure 2.14.

67 | 72 | 81 | 18
10 | 51 | 84 | 93
95 |93 | 25| 36
Scrambled Image

v
56 |76 |90 |67 |72 [81 ‘13 ‘10 [51 _34]93|95_93_25

A 4

o o|»w =l Oo|lo r|lo
R Oolr rikrlokrlo
= ook = ol oloO

= O == O =0

B PR =0 =0

olo|r|lo|lr|k ol
olo|r|lo|lr|lolr|o

»rlO|lQ|lO|r|O|r| O
(=2 AN =AR=RN A= g=R}=]
= =0 = oo oOo|O

[=RR A=A =R =]
HI=lOl0/00|=|O
ool =lolo|=|O

[=AN-AN-RRC RN RN - -]

Figure 2.14 : Bit scrambling matrix generation.

21

3. PROPOSED METHOD

In this chapter, we propose a new information hiding technique which is very
similar to information hiding with neighbor mean interpolation method. With the
help of new technique, binary message can be embedded according to a key like
cryptography techniques. In order to obtain more secured information hiding system,
a new embedding method which is named by pixel symmetry is created. Thanks to
this method, algorithm which is more secured, has same image quality and similar

computation number is provided.

3.1 The Purpose Of Proposed Method

In order to provide robust information hiding method, there is an indispensable
parameter which is named by visual quality. Visual qualitiy is significant parameter
of steganography field, which is described by visual similarity between stego image
and cover mage according to human eye. In mathematics field, visual similarity

represents by PSNR value. If stego image and cover image are not visually similar,

Original Pixel Symmetry, PSNR = 40,977dB

Figure 3.1 : PSNR value of Pixel Symmetry (sufficient visual quality).

visual similarity is insufficient for hiding that there is a embedding process on the
stego image. As a result, PSNR value is lower than 35dB. Otherwise, the stego image
is sufficient about visual quality. Proposed method satisfies, if the visual quality of

stego image is higher than 35dB like previous method [15].

23

As you can see from Figure 3.1, Figure 3.2 and Figure 3.3, there are three methods
applied on original image for data hiding. These methods are LSB5, LSB6 and Pixel
Symmetry. LSB5 method modify fifth bit of pixels and LSB6 method modify sixth
bit of pixels according to plaint text message. Pixel Symmetry method is proposed in
this thesis and it is explained in detail in Subsection 3.3.2. As a result of figures, while
PSNR value is decreasing, visual quality of stego image is also decreasing. Therefore,
proposed method must provide PSNR value higher than 35dB in order to get sufficient

visual quality.

Original LSBS, PSNR =27,171dB

Figure 3.2 : PSNR value of LSBS (insufficient visual quality).

Original LSB6, PSNR =21,133dB

Figure 3.3 : PSNR value of LSB6 (insufficient visual quality).

As it is mentioned before, binary message is embedded inside each interpolation values
of cover image, starting from left-top side of image and following zig-zag path with
neighbor mean interpolation method. However, people can follow many different scan

paths as they are shown in Figure 3.4.

The first idea of the thesis is to transform embedding path to more complex one than
scan paths showed in Figure 3.4 according to a cryptographic key as it is shown in

Figure 3.5. If the key is changed, the embedding path should be changed. On the

24

other hand, the second idea is the transformation must be simple in order to keep

computation number similar.

a b c d
et H B T ——
f= ===l | W= == | =i
i i e = i o e
e . f — 9 h
i R e B ==
=595 1L -
| e | AN

Figure 3.4 : Scan paths in literature. (a) Moore, (b) Hilbert, (c) z-scan, (d) s-scan, (e)
d-scan, (f) b-scan, (g) x-scan and (h) a-scan [29].

x 1 x 4 x 7
2 3 5 6 8 9
x 10 x 13 x 16
11 12 14 15 17 18
x 19 x 22 x 25
20 21 23 24 26 27
x 28 x 290 x 30

Default embedding path

x 22 x 19 x 25 «x
17 15 14 12 11 27 «x
x 13 x 10 x 16 x
8 6 5 3 2 18 «x
x
x
x

HoR R K K XK

x 4 x 1 x 7
26 24 23 21 20 9
x 29 x 28 x 30

Scrambled embedding path according to Key_
[x 25 x 22 x 19

17 12 14 18 11 15
x 16 x 13 x 10
8 3 5 9 2 6
x 7 x 4 x 1
26 21 23 27 20 24
| x 30 x 29 x 28 x

Scrambled embedding path, Key_2=[(3,2)(2,2)(4,5)]

1=1(2,2)(2,2)(2,2)]

=R R ===

Figure 3.5 : Default and scrambled embbeding paths.

In order to change embedding path according to a key, the scrambling methods which
are explained in Chapter 2 are investigated. However, all methods scramble image
by appliying scrambling process on blocks of the image. Therefore, DS values of
all these methods are not adequate for appliying them one iteration. At the sum, we
proposed a new image scrambling method which is modified especially for data hiding

with neighbor mean interpolation method. As you can remember from Chapter 2,

25

Rubic Cube(Ds = 0.25358)

Sudoku Puzzle(Ds = 0.25135) Pixel Symmetry(Ds = 0.27274)

Figure 3.6 : Results of scrambling methods after one iteration.

DS value is going 1 when stego and cover images are same. Therefore, DS value
should be close to 1 as much as possible. Results in Figure 3.6 show that DS value
of previous methods are 0.25358 for Rubic Cube, 0.025 for Arnold Transform and
0.25135 for Sudoku Puzzle. On the other hand, DS value of the proposed method
is 0.27274. Thus, the proposed method has similar DS value according to previous
methods, which shows the proposed method can be applied for scrambelling process
like other methods. The proposed method is utilized for embedding path scrambelling
process rather than previous methods because its DS value is a little bit more higher

than other methods.

3.2 Choosing Embedding Method

There are several embedding methods in literature. four of them is mentioned in
Chapter 2. Among the four methods, two of them are DWT and DCT transforms in
frequency domain, the others are LSB and NMI techniques in spatial domain. Because
of complexity, frequency domain approaches are not implemented in this thesis. LSB

is a very simple method but its embedding capacity is less than NMI as you can infer

26

from Table 3.1 and Figure 3.7. Embedding capacity is explained by maximum number
of bit can be embedded inside cover image in Chapter 2. As you can see from Figure
3.7, NMI capacity of all images are bigger than LSB capacities weather or not their
frequency characteristic is different because NMI capacity is affected from gradients
number in the cover image. Gradients number is total number of vertical and horizantal

derivatives on an image [30].

Table 3.1 : Capacity of cover images

Image Oktay Cameraman Sezen
Size(Pixel) 256x256x3 256x256x3 256x256x3
NMI Capacity(Bit) 766299 994662 819145
LSB Capacity(Bit) 196608 196608 196608

NMI Cap: 375242, LSB Cap: 307200 Frequency transform of image
Gradients number: 635302

NMI Cap: 635647, LSB Cap: 307200 Frequency transform of image
Gradients number: 1611065

NMI Cap: 391742, LSB Cap: 307200 Frequency transform of image
Gradients number: 635395

Figure 3.7 : Embedding capacities of image according to their frequency
characteristic.

27

If there are not many gradients in the cover image, data hiding process should not
be applied on this cover image in order to keep hidden communication. Otherwise,
third person can infer that there is a hidden communication or hiding process on the
stego image as you can see from Figure 3.8. Gradients number is not checked in
LSB technique. On the other hand, gradients number is significant for embedding
process of NMI technique because if gradients number is not sufficient for hiding bits
of plaintext, embedding proccess is not applied on this cover image as it is mentioned
in next sections in Chapter 3. Therefore, NMI is selected for embedding method in this

thesis implementation.

Bad cover image Bad stego image

Figure 3.8 : Bad covering in hiding process.

3.3 Procedure Of New Information Hiding Method

Some definetions such as pixel symmetry, symmetry key, pixel areas and image regions

must be defined before explaining new embedding method.

3.3.1 Definition of pixel area and image region

Image regions represent 2x2 pixel block of image. The first image region is started
with top-left corner of image and it is shifted right two pixels in each steps. If the
region reaches at the end of the row, column number is added by 2 and the process
continues same. Example image regions can be seen in Figure 3.9 [31]. Pixel areas are
slots in image regions. There are three pixel areas in one image region. These areas
are shown in Figure 3.10. These pixel areas are used for calculating pixel symmetry in

proposed method.

28

Region 2 Region 3
I(0,0y |0, 1) 1(0,2) |1(0,3) “1(0,4) 1(0,5)

1Ly |1, 1,2 1,2 fiuey 1,5
12,00 [121) [122) |123) [124) [12,5)
13,00 131 113,2) [13,3) [13,4) [13,5)
14,0) 141 [14,2) |14,3) [14,4) |[14,5)
15,0) |151) [15,2) |15.3) [1554) |1(5,5)

Region 4

Figure 3.9 : Image regions in frame [31].

1(0.0) I(0.1) === First
I(hf) I(]ntl) pixel

area

Second Third
pixel area pixel area

Figure 3.10 : Pixel areas in image region.

3.3.2 Definition of symmetry, pixel symmetry and symmetry key

Symmetry can be found in various forms in electronic applications [32]. Such as,
symmetry by point, symmetry by line and symmetry by rotation. Pixel symmetry is
utilized similarly symmetry by point approach. In symmetry by point method; There

are at least three points, these are named by;

1. Main point(A)
2. Symmetry point(B)

3. Origin point(O)

All points are located on the same line, symmetry point and main point have same
distance from origin point but these points have different place on the line. Symmetry
point is also called reflection of main point according to origin point. All points are

shown in Figure 3.11.

29

Main point: A
Origin point: O
Symmetry point: B

Symmetry by point

-Same Strike

-A and B same distance from O
- A and B are on different place

Figure 3.11 : Symmetry description.

Let coordinates of A is (ay,ay), coordinates of B is (by,by), coordinates of O is (oy, 0y),
image widht is W, image height is H, d is distance between A and O on X coordinates
and d, is distance between O and B. Equations 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 show

measuring coordinates of B from coordinates of A and O.

dy =0y —ay 3.1

dr =d, 3.2)
by=o0x+d, (3.3)

by = (0x+ (0x—ayx)) mod H (3.4)
by=(2xo0x—a,) modH (3.5)

Similar calculations are made for measuring b, as it is shown in equation 3.6.

by=(2x0y—a,) modW (3.6)

While row and column numbers of pixels are supposed to be coordinates in a plane,
symmetry coordinate of these pixels can be calculated according to coordinate of
another pixel . This method is called pixel symmetry. Three origin pixels are utilized
for proposed method in order to calculate all symmetry of pixel areas. These three
origin coordinates represent symmetry key. As it is mentioned before, there are three
pixel areas. Symmetry point of each pixel areas is calculated by their origin point
or pixel. Overflow means that coordinates of symmetry point is less than 0 or more
than image sizes. If there is an overflow, image size is added on result coordinates in
case coordinate of symmetry point less than 0. Otherwise, image size is subtracted in
case coordinate of symmetry point is more than image size. This operation is named

modulo in mathematics. Thanks to this method, overlapping among symmetry points

30

can be prevented, which can be named by injective function in mathematics. Some

pixel symmetry calculation examples are given in Figures 3.12 and 3.13.

100) [10,1) [102) [103) [104) [105) [106) [107) [10,8)
11,0 [10,0) [10,2) [10,3) [10,9) [115) |106—6H— 101,8)
120) [121) [122) [123) [124) [125) |12l [127) [128)
130) |16,1) [162) [183) [184) 1635 |16l [1637) 18,8
14,00 [141) [142) [143) [144) [145) [146) [147) [14,8)
160 |161) [162) [163) 164 (165 [16l6) [16,7) |15,8)
16,0) |16,1) [162) [163) [164) [165) |[16l6) [16,7) [16,8)
17,00 |17,1) [17.2) [17,3) |17,4) +¥E5—F6) [17,7) |17,8)
180) [181) [182) [183) [184) [185) [18,6) [187) [1838)

Figure 3.12 : Calculating pixel symmetry of /(1,8) according to 1(4,6).

10,0) [10,1) [102) [103) [104) [105) [10,6) [10,7) [10,38)
11,00 |11,1) [10,2) [11,3) [11,4) [11,5) [116) [11,7) |101,8)
12,0) [121) [122) [123) [124) [125) [126) [127) [128)
160) [161) [162) [133) [134) [135) [136) [137) |13,8)
14,0) [141) [142) [143) [144) [145) [146) [147) |[1438)
150 [161) [1GA163) |164) |1G5) |166) [167) [158)
1691161)16,2) [163) [164) [165) [166) [167) [1668)
¥=0) |17 17,2 |173) 10,0 |175) [17,6) |107,7)<H8)
180) [181) 182 [183) [184) [185) [186) 187 |188)

Figure 3.13 : Calculating pixel symmetry of 1(5,3) according to 1(6, 1).

3.3.3 New embedding method

Similar to information hiding with neighbor mean interpolation method, interpolation
values and bit number added on interpolation values are firstly calculated as it is
explained in detail in Chapter 2. Then, pixel symmetry of that pixel is calculated
during the embedding process. Then, embedding process is applied on symmetry

point. Example calculation process can be seen in Figure 3.14 [31].

In this example, symmetry key is Y5 = (1,2), Y7 = (2,1) and Y7 = (2,1). It
means that symmetry of first pixel area is calculated by Y5, symmetry of second
pixel area is calculated by Y7 and symmetry of third pixel area is calculated by Y7.
Result of calculating pixel symmetry can be easily seen in the top-middle frame.
Then, embedding bit numbers according to neighbor pixels of interpolation values
is measured. Then, pixel symmetry of Y1 is calculated in order to embed bit stream
(binary message) inside cover image. the result of this process is Y 10. Then move Y 10
and get n10 amount of bit from starting point of bit stream. Then, convert this binary

number to decimal number and add on Y10 value. Then, move to Y2 and apply same

31

Symmetry Key: (Y5),(Y7),(Y7)

Cover Image Values (Original Values) Pixel symmetries Embedding bit number
A1l Y1 A2 | Y4 A1 | Y10 | A2 | Y7 0 n1 0 n4
Y2 | Y3 | Y5 | Y6 Y11 | Y9 | Y8 |Y12 n2 n3 n5 né
A4 | Y7 | AS | Y10 A4 | Y4 | A5 | Y1 0 n7 0 n10
Y8 | YO | Y11 |Y12 Y5 | Y3 | Y2 | Y6 n8 n9 | n11 | n12

Bit stream: 010000100110100001001110111001101

Binary to Decimal

010 00 01001 1 01 000 01 0 011101 | 110 | 01 101
Cn10:3 n11=2 |n9=5 | n7=1| n8=2| n12=3 [n4=2 | n5=1 | n3=6 | n1=3| n2=2| n6=3
2 0 9 1 1 0 1 0 29 6 1 5

Stego Image Values (New Values)
A1 Y1+6 A2 Y4+1
Y2+1 Y3+29 Y5+0 Y6+5
A4 Y7+1 A5 Y10+2
Y8&+1 Yo+9 Y1140 | Y12+0

Figure 3.14 : Example of embedding process in proposed method.

process for it. This path is continued towards this order; Y1, Y2, ¥Y3,..., Y10, Y11 and
Y'12. However, thanks to proposed method, the embedding process is following in this
order; Y10, Y11, Y9, Y7, Y8, Y12, Y4, Y5, Y3, Y1, Y2 and Y6. In fact, this order is

produced differently for each symmetry keys.

Data hiding and extracting processes are shown in Figure 3.15.

\r i
Selecting Cover [Selecting Stego

Image Image

7 . 7
\A \
N ™\ ' N
Measuring Measuring
Interpolation Interpolation

Values Values

. 7 . o

| |

N ™\ -
Measuring (Measuring

Embedding Bit Embedding Bit
Numbers of Numbers of
\Inlerpolatlon PlersJ Unterpolatlon PIXElSJ
\ \2
4 3 (" Getting Difference)
Converting Ascii Image Between

Message to Binary Stego and
Stream Interpolation
| — \ Images J
A Vi
(Embedding E!inary‘ (" Extracting Binary)
KEY Message to Cover Stream From
Image According to Difference Image
Key y \ According to Key y
T T
' N ™)
Convert Binary
Stego Image Stream to Ascii
Message
. J 4 J

Figure 3.15 : Flowchart of information hiding and extracting processes.

32

4. IMPLEMENTATION

In this section, all implementations about proposed method are mentioned. First
implementation is applied by Matlab software on personal computer in order to show
that proposed method works well. The second implementation is made on AVNET’s

ZedBoard in order to show that proposed method can be applied on embedded system.

4.1 Matlab Implementation

Matlab is suitable software for testing and applying new signal processing methods. It
1s widely used in signal processing applications. Therefore, Matlab is firstly used for
proposed method works well. All application specific functions are written by us like
measure_ symmetry_ point rather than used ready for use functions of Matlab. Ready
for use functions of matlab only used for basic process like image read, write and show

process.

Information hiding is started...

Input wvour key numberl =

3

Input vour key numberi =

3

Input your key nuwberd =

3

Input vour kevy numberd =

3

Input wvour key number5 =

3

Input vour key numberg =

3

Data Hiding process is being continusd
Messege size : E744Sfcover image capacity : S994gE2
Elapsed tims is 44£.£3€228 seconds.
Information hiding process finished

o=

Figure 4.1 : Matlab interface of information hiding application.

While Matlab program is running, symmetry key is firstly entered by user. User enters
6 numbers in this step. These numbers must be between 1 and image weight or height

as it is shown in Figure 4.1. Then, information inside "plaintext.txt" file is hidden and

33

embedded inside "cover_ image.png". If user wants to change cover image, user has to
change "cover_ image.png" file inside the application folder. If user wants to change

message, user has to change "plaintext.txt" file inside the application folder.

Information extracting process is started...
Input wyour key numberl =

3

Input wyour key numberi =

3

Input vour key number3 =

3

Input vour key numberd =

3

Input vour key number5 =

3

Input vour key numberg =

3

Data extraction process is being continuesd
Elapsed time is 22.07&£129 seconds.
Information extracting process finished

fi ==

Figure 4.2 : Matlab interface of information extracting application.

If user wants to extract stego image, user has to run extraction application with Matlab.
Similar to hiding application, it first wants to enter 6 numbers of symmetry key as it is
shown in Figure 4.2. Then, extracting process starts. At the end of extraction process,
extracted message open with Matlab editor. User can also find extracted message in
"deltaplaintext.txt" file inside the application folder. Both applications can run for
RGB and gray scale images. All Matlab codes are given in appendix A.1.1 and A.1.3.

Codes include hiding and extracting programs.

4.2 System On Chip Implementation

In order to prove that proposed method can be applied on embedded systems, AVNET’s
ZedBoard is selected because there is a Zynq processor based on it. Zynq based
processor provides to create an infrastructure for image processing system on hybrid
processor. In this section; Zynq processor architecture, ZED Board specifics, our
embedded system design, software architecture of data hiding processes and drivers

created for Linux Operating system is mentioned.

4.2.1 Field programmable gate arrays (FPGAs)

FPGAs are re-configurable devices which create hardware systems with the help of

hardware description languages (HDLs) like Verilog HDL, VHDL or System C. Xilinx

34

and Altera are two prominent companies which produce FPGA chips. Their FPGA
architectures are different but their devices can be programed by same HDL. However,
if there is a platform specific hardware in your custom IP, you should modify your
HDL design according to architecture of brand you use. On the other hand, there is
an another median to create hardware for FPGAs by using higher level languages then
HDLs like C or C++. High Level Synthesis (HLS) is used for this reason. Hardware
systems can be programmed by using HLS programs like Xilinx’s Vivado HLS, Intel
HLS or Mathworks’s Matlab.

According to FPGA Frontiers’s recent white paper, New Applications in
Reconfigurable Computing, Hybrid processor architecture, which means FPGA and
processor system with together, will be very popular among computer architectures
in the future [33]. The processors which have FPGA part can accelerate functions
or programs by using hardware based application specific custom circuit inside their
FPGA rather than running all process just on software based processor. As an existing
example of hybrid computer architecture, Xilinx’s Zynq has already been utilized in
many applications. For instance, data science [34], speech [35] and image processing
[36]. In fact, after one of the prominent processor manufacturer, Intel, shelling out
$16.7 billion in December 2015 to buy Altera, they announced that they would start
to produce Xeon computer processor units (CPUs) with FPGA accelerator within five
years or early [33]. As a result, even desktop application developers should learn to
program FPGAs as well as graphical processor units (GPUs)in order to accelerate their

applications.

4.2.2 Linux operating system

Linux or GNU/Linux is explained by Wikipedia like that it is an Unix-like computer
operating system assembled under the model of free and open-source software
development and distribution. It was first released on 17 September 1991 by Linus
Torvalds. Then it has been contributed by world wide community like GNU (GNU is
not UNIX) project. GNU project was founded by Richard Stallman. The combination
of GNU software and the Linux kernel is commonly known as Linux or less frequently
GNU/Linux [37]. Linux was originally designed for personal computers based on Intel

x86 architecture, but has since been ported to more platforms than any other operating

35

system [37].Nowadays, there are many applications which utilize Linux operating

system on various platforms, especially Advance Risk Machine (ARM) based.

4.2.3 Zynq architecture [38]

The Zyng-7000 family is based on the Xilinx All Programmable SoC architecture.

These products integrate a feature-rich dual-core or single-core ARM Cortex-A9 based

processing system (PS) and 28 nm Xilinx programmable logic (PL) in a single device.

The ARM Cortex-A9 CPUs are the heart of the PS and also include on-chip memory,

external memory interfaces, and a rich set of peripheral connectivity interfaces.

4.2.3.1 Processing system (PS)

ARM Cortex-A9 Based Application Processor Unit (APU):

2.5 DMIPS/MHz per CPU

CPU frequency: Up to 1 GHz

Coherent multiprocessor support

ARMV7-A architecture

TrustZone security

Thumb-2 instruction set

Jazelle RCT execution Environment Architecture
NEON media-processing engine

Single and double precision Vector Floating Point Unit (VFPU)
CoreSight and Program Trace Macrocell (PTM)
Timer and Interrupts

Three watchdog timers

One global timer

Two triple-timer counters Caches

32 KB Level 1 4-way set-associative instruction and data caches (independent for

each CPU)

36

e 512 KB 8-way set-associative Level 2 cache (shared between the CPUs)

e Byte-parity support

On-Chip Memory:

e On-chip boot ROM

e 256 KB on-chip RAM (OCM)

e Byte-parity support
External Memory Interfaces:

e Multiprotocol dynamic memory controller

e 16-bit or 32-bit interfaces to DDR3, DDR3L, DDR2, or LPDDR2 memories
e ECC support in 16-bit mode

e 1GB of address space using single rank of 8-, 16-, or 32-bit-wide memories
e Static memory interfaces

e 8-bit SRAM data bus with up to 64 MB support

e Parallel NOR flash support

e ONFI1.0 NAND flash support (1-bit ECC)

e 1-bit SPI, 2-bit SPI, 4-bit SPI (quad-SPI), or two quad-SPI (8-bit) serial NOR flash
8-Channel DMA Controller:

e Memory-to-memory, memory-to-peripheral, peripheral-to-memory and

scatter-gather transaction support
I/0O Peripherals and Interfaces:

e Two 10/100/1000 tri-speed Ethernet MAC peripherals with IEEE Std 802.3 and
IEEE Std 1588 revision 2.0 support

Scatter-gather DMA capability

Recognition of 1588 rev. 2 PTP frames

GMII, RGMII, and SGMII interfaces

Two USB 2.0 OTG peripherals, each supporting up to 12 Endpoints
37

e USB 2.0 compliant device IP core

e Supports on-the-go, high-speed, full-speed, and low-speed modes
e Intel EHCI compliant USB host

e 8-bit ULPI external PHY interface

e Two full CAN 2.0B compliant CAN bus interfaces

e CAN 2.0-A and CAN 2.0-B and ISO 118981-1 standard compliant
e External PHY interface

e Two SD/SDIO 2.0/MMC3.31 compliant controllers

e Two full-duplex SPI ports with three peripheral chip selects

e Two high-speed UARTS (up to 1 Mb/s)

e Two master and slave I2C interfaces

e GPIO with four 32-bit banks, of which up to 54 bits can be used with the PS 1/0
(one bank of 32b and one bank of 22b) and up to 64 bits (up to two banks of 32b)

connected to the Programmable Logic
e Up to 54 flexible multiplexed I/O (MIO) for peripheral pin assignments
Interconnect:
e High-bandwidth connectivity within PS and between PS and PL
e ARM AMBA AXI based

e QoS support on critical masters for latency and bandwidth control

4.2.3.2 Programmable logic (PL)
Configurable Logic Blocks (CLB):

e Look-up tables (LUT)
e Flip-flops

e (Cascadeable adders
Serial Transceivers:

e Up to 16 receivers and transmitters

38

e Supports up to 12.5 Gb/s data rates
JTAG Boundary-Scan:

e [EEE Std 1149.1 Compatible Test Interface
36 Kb Block RAM:

e True Dual-Port

e Up to 72 bits wide

e Configurable as dual 18 Kb block RAM
DSP Blocks:

e 18 x 25 signed multiply

e 48-bit adder/accumulator

e 25-bit pre-adder

Programmable 1/0 Blocks:

e Supports LVCMOS, LVDS, and SSTL
e 1.2V1t0 3.3V IO

e Programmable I/O delay and SerDes

PCI Express Block:

e Supports Root complex and End Point configurations

e Supports up to Gen2 speeds

e Supports up to 8 lanes

Two 12-Bit Analog-to-Digital Converters:

e On-chip voltage and temperature sensing

e Up to 17 external differential input channels

e One million samples per second maximum conversion rate

Figure 4.3 shows the architecture of Zynq processing system.

39

Zyng-7000 All Programmable SoC
o Processing System
Peripherals lication Processor Unit
el | P swoT App e Ty
uss My FPU and NEON Engine ||| FPU and NEON Engine ||
5 T1C
use | |2xUSB [] iy | ARM Cortexcag [T ARM Cortex-aa |
[age | [2xGigE System~ crPu I CRU I
GigE | | 2x 5D Level 32HKB a2k |l &2k WKB |
8D Control l-Cache D-Cache |l| I-Cache D-Cache |l
S0I0 | | oo Regs ‘ b
SO N -
<Dio l GIC ” Snoop Controller, AWDT, Timer i
|-SPIO_f |+ e DMAS 512 KB L2 Cache & Contraller
O ety UART | | Channel
= UART | ||
AN ocm | 26K
CAN Interconnect | SRAM
12e 1
12C Memaory
SPI Central
SPI Interconnect
- DDR2/3,
Memon ComSignt DORAL.
il ‘mgﬂ“g = Components LPDDR2
SRALT 1 Contraller
= o]
ONFI 10 AP ‘ *
NAND DevC Programmable Logic to
TSPl Memory Intarconnect
o vy t4
r§ 11
EMIO YAD General-Purpase DMA IRQ Config High-Performance Ports ACP
c Ports Syne AES/
12:Bit ADC SHA Programmable Logic
N SelectlO
Notes:) Resources|
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AX| 32-Bivé4-Bit, AXI 64-Bit, AXI 32-Bit, AHE 32-Bit, APE 32-Bit, Custom
3) Dashed line box indicates 2nd processor in dual-core devices

Figure 4.3 : Zynq Architecture.

4.2.4 ZedBoard details [39]

The ZedBoard enables hardware and software developers to create or evaluate
Zyng-7000 All Programmable SoC designs. The expandability features of this
evaluation and development platform make it ideal for rapid prototyping and

Xilinx XADC, FMC (FPGA

proof-of-concept development. The ZedBoard includes

Mezzanine Card), and Digilent Pmod compatible expansion headers as well as many
common features used in system design. ZedBoard enables embedded computing

capability by using DDR3 memory, Flash memory, gigabit Ethernet, general purpose

I/0, and UART technologies. ZedBoard is shown in Figure 4.4.

Processor:

e Zyng-7000 AP SoC XC7Z020-CLG484-1
Memory:

e 512 MB DDR3

e 256 Mb Quad-SPI Flash

e 4 GB SD card

Communication:

e Onboard USB-JTAG Programming
40

Figure 4.4 : AVNET’s ZedBoard.
e 10/100/1000 Ethernet

e USB OTG 2.0 and USB-UART

Expansion connectors:

e FMC-LPC connector (68 single-ended or 34 differential 1/Os)
e 5 Pmod™ compatible headers (2x6)

o Agile Mixed Signaling (AMS) header

Clocking:

e 33.33333 MHz clock source for PS

e 100 MHz oscillator for PL

Display:

e HDMI output supporting 1080p60 with 16-bit, YCbCr, 4:2:2 mode color
e VGA output (12-bit resolution color)

e 128x32 OLED display

Configuration and Debug:

e Onboard USB-JTAG interface
41

e Xilinx Platform Cable JTAG connector
General Purpose 1/0:

e 8 user LEDs

e 7 push buttons

e 8 DIP switches

The block diagram of Zedboard is shown in Figure 4.5.

- 7 32

Flash QSPI 4—— OSPI PMOD
— Pmods
. 8

Pmod <User

Select>

o
. = &2
Gbit []lprylley ENET/ = FMC FMC-LPC
Enet | o000 MDIO —
use ,I'H\"Iq-ﬁ» USBOTG ‘*O- e p——
U = = GPIO (8 LEDs
8 GPIO #BL EE 8 slide switches,
> 5 pushbuttons)
sD) @ i Bio
g’ D_-, o~ HoPin Out
ey = (] N Line Out
use 1!58" - L os/ach 4——] 125 AUd
UART [39’"‘1 USBUARTZ 8’ Codec £, [Linein
1LED. - 2 ln 1 — *]I MICIn
2 butons (DG e % - -;;l— o
ype
g HOME ransmitier B HDMI Out
— E 0
" w T ea VGA (12-
512Mbyte DR3 | «+—» DDR o o bit color)
DDR3 (x32) E o
b O oED «2p ﬂaxﬂm Display
o
1
Reset E—v‘—r PS_RST (N DONE ———4@] DONE LED
— [o)] 1
3amhz [—» PS Clk C RROSY+ ’B —{el PROG
2 GPIONPIVN +——IRBRARRAE0 XADC
@ —
4
8 ITAG +——p |USB Primary JTAG
3 Cont)
GCLK «—— [kl 100Mhz

ZYNQ XC72020-CLG484

Figure 4.5 : ZedBoard hardware block diagram.

4.2.5 Advanced extensible interface (AXI) Protocol

In computer architecture, peripherals around processor must communicate with each
other or processor according to a bus protocol. Bus is a communication system which
provide data transfer between peripherals or computers. AXI is a one of these bus
protocols which is provided by Xilinx. Xilinx has adopted the AXI protocol for IP
cores beginning with it’s Spartan-6 and Virtex-6 FPGA devices [40]. AXI is part
of ARM Advanced Microcontroller Bus Architecture (AMBA), a family of micro

42

controller buses first introduced in 1996 [40]. The first version of AXI was first
included in AMBA 3.0, released in 2003. AMBA 4.0, released in 2010, includes the
second version of AXI, AXI4. There are three types of AXI4 interfaces:

e AXI4—for high-performance memory-mapped requirements.

o AXI4-Lite—for simple, low-throughput memory-mapped communication (for

example, to and from control and status registers).

o AXI4-Stream—for high-speed streaming data.

4.2.5.1 AXI4

AXI4 is utilized for memory-mapped based IP cores. According to Xilinx document,
AXI reference guide [40], AXI4 provides separate data and address connections for
readings and writings, which allow simultaneous, bidirectional data transfer. AXI4
requires a single address and then bursts up to 256 words of data. The AXI4 protocol
describes a variety of options that allow AXI4-compliant systems to achieve very high
data throughput. Some of these features, in addition to bursting, are: data upsizing and

downsizing, multiple outstanding addresses, and out-of-order transaction processing.

Sloc SIoD
VSYNC HREF
PCLK XCLK

R

LK

D

.'i
ey
R
%
|

£

D7 D6
D5 D4 =9y
D3 D2 & Er
D1 Do R

RESET PWDHN c:sn T

Figure 4.6 : Pinout of OV7670.

4.2.5.2 AXI4-Lite

AXI4-Lite is similar to AXI4 with some exceptions, the most notable of which is that
bursting, is not supported [40]. It is suitable for controlling significant registers of IP

cores.

43

4.2.5.3 AXI4-Stream

The AXI4-Stream protocol defines a single channel for transmission of streaming
data. The AXI4-Stream channel is modeled after the Write Data channel of the AXI4.

Unlike AXI4, AXI4-Stream interfaces can burst an unlimited amount of data [40].

If you create IP core with AXI interface, you can use this IP core with all platforms
which support AXI protocol. In Zynq architecture, communication between PS and
PL is made by AXI protocols like Spartan-6 and Virtex-6 families. All kind of AXI

protocols are used in our system according to needs and purpose of the IP cores.

4.2.6 OV7670 camera sensor [41]

The OV7670 camera chip image sensor is a low voltage CMOS device that provides
the full functionality of a single-chip VGA camera and image processor in a small
footprint package. The OV7670 provides full-frame, subsampled or windowed 8-bit
images in a wide range of formats, controlled through the Serial Camera Control Bus

(SCCB) interface. Pinout of OV7670 camera sensor is shown in Figure 4.6.

This camera module has an image array capable of operating at up to 30 frames per
second (fps) in VGA with complete user control over image quality, formatting and
output data transfer. All required image processing functions, including exposure
control, gamma, white balance, color saturation, hue control and more, are also
programmable through the SCCB interface. In addition, OmniVision sensors use
proprietary sensor technology to improve image quality by reducing or eliminating
common lighting/electrical source of image contamination, such as fixed pattern noise
(FPN), smearing, blooming, etc., to produce a clean, fully stable color image. The

camera sensor has these features;

Pixel size : 3.6um x 3.6 um

Resolution : 640x480 (VGA), 320x240 (QVGA), etc

Frame rate : 30 fps

Color format : RGB, YUV (4:2:2) and YCbCr (4:2:2)

Scan mode : progressive

Output : parallel (16 bit for YCbCr)
44

e Power supply : max 3.0 V

e Programming : I2C (7 bit address 0x21)

Pin Type Description
VDD/3V3 Supply Power supply 3.3V
GND Supply Ground level
SI0C/SCL Input I2C clock
SIOD/SDA | Input/Output |I2C data
VSYNC Output Vertical synchronization
Output Horizontal synchronization
Output Pixel clock
XCLE Input System clock
Do-D7 output Video parallel output
RESET Input Reset (Rctive low)
PWDN Input Power down (Active high)

Figure 4.7 : Pin description of OV7670.

Pin description can be found in Figure 4.7. The OV7670 takes as input the XCLK
clock signal minimum 10 Mhz and maximum 48 Mhz. The output pixel clock (PCLK)
is programmable by SSCB interface (I12C). The synchronous (with PCLK) 8-bit data
output D[7..0], VSYNC and HREF signal encode the image content. All video signals

are shown in Figure 4.8. OV7670 camera sensor is used with YCbCr output format.

XCLK

.

D[7..0]

VSYNC

Figure 4.8 : Control pins of OV7670.

4.2.7 YUV/YCbCr (4:2:2) and RGB color space

YUV/YCbCr (4:2:2) and RGB are color space in computer science. These color space
are used for represent digital image on computers. YUV/YCbCr (4:2:2) enables a more
compact encoding with respect to RGB color space because one pixel is represented

with 16-bit in YUV/YCDbCr (4:2:2) color space while it is represented with 24-bit in

45

I2¢ (SDA,SCL)

VGA color space. Grayscale component is Luma (Y) in YUV/YCbCr (4:2:2) color
space. Color channels are subsampled. Resolution of CbCr and UV components are
halved (W/2xH). However, all color channels - red, green, blue, - have same size in

RGB color space. Difference between these color spaces are shown in Figure 4.9.

Original Luma ¥ Chroma Ck Chroma Cr

Figure 4.9 : RGB color space vs YUV/YCbCr (4:2:2) color space.

4.2.8 Embedded system design

In this section, our image processing infrastructure created on zynq based hybrid
processing system is mentioned. The aim of this thesis is also creating image
processing infrastructure on embedded system and using Linux OS on it because with
the help of Linux libraries, image processing applications can be applied more quickly

than bare-metal applications.

Bare-metal application, or it is also called by standalone, means creating embedded
system without operating system. At the beginning step of the creation software
system, the system which runs with operating system can be hard to implement because
installation of operating system development environment is harder than installation of
bare-metal development environment in FPGA design flow. However, after understand
installition of development environment, complex applications can be more easily
and quickly created than bare-metal approach. Creation of our hardware design is
introduced by improvement of hardware design of Computer Vision Laboratory in

Bologna University. The laboratory people created a hardware design for their FPGA

46

applications about image processing. All process are implemented inside FPGA. This
hardware design includes three main process, which are acquisition of image frame
from camera sensor to memory, applying some computer vision (CV) filters on image
frame and showing results with VGA output. This system was working with bare-metal
applications. Therefore, first improvement was porting this system to Linux operating
system. In order to run this system with Linux operating system, Linux development
environment is installed some problems about Ip cores are fixed, device drivers for all
IP cores and user space applications are coded. Before explain all of these steps, our

hardware design must be explained in details.

I2C Camera
Configuration Interface

Data and Timing
Signals of Camera

Linux
Terminal

Host Computer

g i e I VGA Qutput
ZED BOARDE
el

SD Card VGA Monitor

Figure 4.10 : Hardware componenets of our embedded system.

Our hardware has some external device like camera and monitor. This device is
controlled by peripherals of processor and custom IP cores inside PL. Hardware
components can be seen in Figure 4.10. Quality of OV7670 camera is controlled by
I2C peripheral of PS. Image frames are captured from OV7670 camera sensor with
PMOD ports of ZedBoard. Image processing results are showed with VGA output of
Zedboard. On the other hand, ZedBoard is connected to host computer via micro-USB

port of ZedBoard in order to establish terminal connection of Linux operating system.

As it is mentioned before, hardware system mainly has three significant parts, which
are acquisition of image frame, apply some computer vision filters and showing results

with VGA output. You can see block diagram of hardware system in Figure 4.11.

47

Ethernet
XCLK INT NEW FRAME | Dual
CLK Frame FRAME[7..0] |
(24 MHz) Index Core
Y ARM
FRAME IN[7..0]
D[7..0] =] Cortex
> jas}
. = A9
Processing 2
pipeline < = >
(PCLK) Memory
4 Controller
,,,,,,, 4
(25.175 MHz) (150 MHz)lr
DDR

Figure 4.11 : Block diagram of hardware system.

4.2.8.1 Processing pipeline

Processing pipeline is constructed by three parts. These parts are front-end, computer
vision algorithms and memory manager. OV7670 output protocol is converted into
AXI-Stream protocol at Front-end part. Then, computer vision algorithms are applied
on AXI-Stream data stream at computer vision algorithm part. Lastly, memory
manager part controls all process about memory management. All parts are shown

in detail in Figures 4.12, 4.13 and 4.14.

I2C

XCLK
(24 MHz) CLK
D[7..0]| _
PCLE Processing
VSYNC : :
pipeline < >
(PCLK) DDR
: >l Memory
¥
Front-end CV algorithms MeImr::ul; ‘ma;::aLg;r
PCLK PCLK :
() () Output: 100 MHz

Figure 4.12 : Processing pipeline.

48

There are three steps in front-end part. These are converting camera sensor’s signals
which are HREF, VSYNC AND PCLK to frame_ valid (FV) and line_ valid (LV) in
OV7670 interface box. Then, Data (D)[7..0] is converted to AXI-Stream in OV7670
LF_ VALID to_ AXIS box. After signal is converted AXI-Stream, grayscale image
frame is created by pitching only one out of two bytes of AXI-Stream data. Then, it is

applied on input of computer vision filter by using again AXI-Stream.

There are several convolutions based on filters in computer vision part. These filters
can find horizontal and vertical edges on an image frame according to position of
switches on ZedBoard. Nevertheless, these filters are not be used because grayscale
image is needed to apply data hiding process. Therefore, we are keeping switches
position at zero in order to write grayscale image to memory and this grayscale image

is directly written to memory.

Transcodes from Converts the LF-FV Picks only one out
HREF-VREF to format to AXIS of 2 bytes, the
LV-FV Luma (Y)

D701 D[7..0]
» ov7670
VSYNC Qov7670 — D[7..01| oOV7670 D[7.;0]

LF_VALID

interf
interface & AXTS AXTS

grayscale| .. o

Figure 4.13 : Front-end in detail.

cv Memory
algorithms lﬁanag;::: N "
== n: > emory
(PCLK))
Oue:100 Miz » Controller
(150 MHz)
AXIS AXIM
(PCLEK) (100 MHZ)

Figure 4.14 : Memory manager in detail.

Input of memory manager part is connected to upstream of computer vision pipeline.
Output of memory manager part is connected to memory controller (HPO) of the
Zynqg/PS with 64 bit AXI4 interface. These part writes data on frame buffer inside
DDR memory. Memory addresses (frame buffer) can be configured by ARM processor
via AXI4-Lite protocol.

49

The Zynq processor has a 4 GB address space. The Zed Board contains 2x256 MB
DDR3 memory devices. The overall DDR memory available (ZedBoard) is 512
MB. The design includes a frame buffer in DDR memory. The number of frame is
configurable via AXI4-Lite protocol. Maximum 256 frames can be arranged however
typically 8 frames is utilized in our application. Images are stored in consecutive
locations starting from the base of the frame buffer. A valid address for the frame
buffer is 0x10000000 as you can see from Figure 4.15. Image size is configurable.

The CPU efficiently keep the the last images stored in the frame buffer by means of an

— Ox1FFFFFFF

256 MB

-
— 0x10000000

256 MB

—* 000000000

Figure 4.15 : Memory map of our hardware design.

interrupt-driven approach. Therefore, Linux driver for memory manager must handle

interrupt. Thus, there is an another module, which is shown in Figure 4.16. The name

INT NEW FRAME

AXT to GIC
FRAME IN[7..0] GPIO FRAME[7..0] _ to ARM via
(input) T AXI LITE

Figure 4.16 : Frame indexer in detail.

of this module is frame indexer. This module contains the index of the last frame
completely written in memory. Once an image is completely written in memory, the
frame idexer is filled, by the memory writer, with the index of the frame buffer element.
This operation triggers an interrupt for the ARM processor. The interrupt handler reads

via AXI4-Lite the index and performs appropriate operations accordingly. The Frame

50

Index is mapped as peripheral in the address space and based on a standard AXI4_
GPIO module. The frame buffer is also a crucial for displaying images on a standard

monitor by means of the standard VGA interface.

4.2.9 Software architecture

Linux operating system is used for controlling hardware. Adding costum hardware on
system and configuring or utilizing it with Linux operating system, you should create
Linux device driver and user application respectively. General methodology of creating

new hardware application with Linux operating system is shown in Figure 4.17.

Kermel Space Device driver
development

Figure 4.17 : General methodology of creating new hardware application with Linux.

In order to create Linux device driver, new loadable kernel module is created because
utilizing loadable kernel module is more efficient way for embedded systems. As you
know that embedded systems have limited resources. Therefore, in order to decrease
booting time and provide more efficient memory usage, loadable kernel module can be
inserted and removed according to the needs. All code of linux device drivers which

are created by us can be reached from Appendix A.2.1.

After device driver is ready for use, Linux user space application must be created
for developing software system. Device driver can be controlled from user space
application in order to configure hardware. In fact, other device drivers provided by
Linux kernel like ethernet, usb or i2c¢ drivers can be utilized easily. All codes of user

space applications are shown in Appendix A.2.1, A.2.2, A.2.3 and A.2.4.

51

5. EXPERIMENTS AND RESULTS

5.1 Matlab Experiments And Results

Application is accomplished by four example image which are oktay, cameraman,
sezen and lena. These image sizes are defined 256x256 pixels. Subsampling is not

applied therefore stego image size become 512x512 in the end of hiding process. In

Sezen Lena

Figure 5.1 : Cover images

order to measure PSNR, cover image and stego image must be in same size. Thus,
cover images which have 256x256 pixels are enlarged to 512x512 by "imresize"
function of Matlab. Bicubic interpolation is utilized by default for this process. Then
PSNR values between stego image and cover image can be measured. PSNR results
are obtained generally higher than 35dB. Cover images are shown in Figure 5.1, stego

images are shown in Figure 5.2 and the PSNR results are given in Table 5.1.

53

Sezen Lena

Figure 5.2 : Stego images

Table 5.1 : PSNR results between stego and cover images

Image Oktay Cameraman Sezen Lena
Size (Pixel) 256x256 256x256 256x256 256x256
Capacity (Bit) 766299 994662 819145 952652
Added Bit Number (Bit) 674496 674496 674496 674496
PSNR (dB) 45.7416 40.3941 43.9661 41.4403

5.2 System On Chip Experiments And Results

The system on chip application is running on ZedBoard. Firstly, device drivers created
for custom hardwares are inserted after booting of Linux on ZedBoard. Then, camera
sensor is configured by user space application which uses 12¢c module of PS. Then, data
hiding process is run by user space application in order to hide text file inside image
was written on DDR memory. Thus, "plaintext.txt" file is read from SD card. Then,
user space application takes a photo according to last image indexer which is updated
by each interrupt of frame_ indexer. In order to get symmetry key from user, Linux
terminal is utilized. Then, all data hiding process is applied on processor part of Zynq.

After data hiding process is finished, user space application saves stego image to SD

54

card. Finally, message can be extracted from stego image in host computer by reading

from SD card. SD card files are shown in Figure 5.3.

BOOT -+ X

File Edit View Go Bookmarks Help
<> ~ <83 > .JQH;;;;
~ My Computer <> <>
| |
arm_software filter BOOT.bin data_hiding_app devicetree.dth
= 3 Q@
= (=]
driverko i2c_camera_config plaintext.txt take_picture_app
o

ulmage uramdisk.image.gz

10 items, Free space: 117,9 MB

Figure 5.3 : Sd card files for booting Linux on ZED Board.

utku@utku-Linux ~ - + X
File Edit View Search Terminal Help
Press CTRL-A Z for help on special keys

2016.07-dirty (Jan 16 2017 - 12:06:10 +01600)

: Zynq Zed Development Board
rd: Xilinx Zynq
ECC disabled 512 MiB
sdhci@e0100000: ©

SF: Detected S25FL256S 64K with page size 256 Bytes, erase size 64 KiB, total 32
MiB
*#% Warning - bad CRC, using default environment

serial@e0001000
serial@e0001000
serial@e0001000
: Zynq Zed Development Board
rd: Xilinx Zynq
ZYNQ GEM: e000b00@, phyaddr @, interface rgmii-id
: ethernet@e000booe
Hit any key to stop autoboot: 0

Figure 5.4 : U-boot interface in terminal.

Text file can be hidden inside a camera frame in this example. Our system works
properly because hidden data from stego image produced by our system on chip
architecture can be extracted on host computer program properly. Some results of
system on chip application can be viewed in Figures 5.4, 5.5, 5.6, 5.9, 5.10, 5.11 and
5.12. However, there are some errors about synchronization sometimes about image
acquisitioning system. This situation happens because of reset control of front-end part
in hardware system. This problem can be solved by fixing reset status of front-end part
in hardware system. Figures 5.14, 5.15, 5.16 and 5.17 show consumption of resource
in FPGA. As you can understand from these figures,there are many resource can be
utilized for accelerating data hiding application by hardware accelerator created inside

FPGA. Therefore, data hididng process can be applied inside FPGA in the future.

55

utku@utku-Linux ~ - + X
File Edit View Search Terminal Help

hctosys: unable to open rtc device (rtc0)
ALSA device list:
No soundcards found.
RAMDISK: gzip image found at block ©
0: new high speed SDHC card at address e624
mmcb1k®: mmc®:e624 SUOBG 7.40 GiB
mmcb1lk@: pl p2
EXT4-fs (ram®): couldn't mount as ext3 due to feature incompatibilities
EXT4-fs warning (device ram®): ext4 update_dynamic_rev:746: updating to rev 1 be
cause of new feature flag, running e2fsck is recommended
EXT4-fs (ram®): mounted filesystem without journal. Opts: (null)
VFS: Mounted root (ext4 filesystem) on device 1:0.
Starting rcS...
++ Mounting filesystem
mount: mounting /dev/mmcblk®pl on /mnt failed: No such file or directory
mount: mounting /dev/mmcblk® on /mnt failed: No such file or directory
Setting up mdev
Starting telnet daemon
Starting http daemon
Starting ftp daemon
Starting ssh daemon
random: sshd urandom read with 1 bits of entropy available
rcS Complete
zyng> [l

Figure 5.5 : After boot process finished, we can type command on terminal.

utku@utku-Linux ~ - + X
File Edit View Search Terminal Help

Please run fsck.
zyng> cd sd
zyng> insmod driver.ko
initialize system is started
pl_reset_ip enable data = 0
pl_reset ip disable data = 0
axis to ddr writer Set base address read data = 10000000
axis to ddr writer Set frame buffer dim read data = 4beeo
axis_to_ddr_writer_Set_frame_buffer_number read_data = 8
axis_to_ddr_writer_Set_frame_buffer_offset read_data = 4beoo
axis_to_ddr_writer_EnableAutoRestart read data = 84
axis_to_ddr_writer_Set_update_intr read_data = 1
i writer_Start read_data = 81
reader_Set_base_address read_data = 15000000
reader Set_ frame buffer dim read data = 4b00@
reader_Set frame_buffer number read data = 8
reader_Set frame buffer offset read data = 4booe
reader_Set update intr read data =
reader_EnableAutoRestart read data = 84
reader_Start read data = 81
: major number is = 244
use "mknod /dev/0V7670 c 244 0" for device file

Figure 5.6 : Insert driver module step.

utku@utku-Linux ~ - + X
File Edit View Search Terminal Help

ttyls watchdogl
ttyl9 xdevcfg
tty2 zero

zyng> ./i2c_camera_config

IIC device file opened

COM7, COM7_VALUE_RESET Done

CLKRC, ©x80 Done

COM7, 0x00 Done

COM3, 0x00

COM14, 0x00

SCALING_XSC, SCALING XSC_VALUE VGA

SCALING_YSC, SCALING YSC_VALUE_VGA

SCALING_DCWCTR, SCALING_DCWCTR_VALUE_VGA

SCALING_PCLK_DIV, OxF@

SCALING_PCLK_DELAY, SCALING_PCLK_DELAY_VALUE_VGA

asd TSLB, TSLB_YUYV

COM13, ©x80

EXHCH, EXHCH_VALUE_30FPS

EXHCL, EXHCL_VALUE_ 30FPS

DM _LNL, DM LNL VALUE 30FPS

DM_LNH, DM_LNH VALUE 30FPS

COM11 Ox0A

0V7670 config successfull

zyng> [l

Figure 5.7 : Camera configuration with i2c.

56

utku@utku-Linux ~ - + X

File Edit View Search Terminal Help

zynq> ./take_picture_app
ov7670_driver : reading from device

last_image_number: 4
last_image_address: 269664256
interrupt_status: 1

reset_pl_status: 0

ready for read frame_address: 269664256
/dev/mem opened

Memory mapped at address 0xb6d65600.
Memory mapped at address 8xb6aad®oe.

virt addr _dst: -1227554808, virt_addr src: -1227829248, buffer_addr: -122755480
8

buffer done
virt_addr_src done
virt_addr_dst done

vga done
zyng> I

Figure 5.8 : Take picture application results.

Figure 5.10 : SOC system setup after information hiding application.

57

Figure 5.12 : SOC system setup with synchronization error.

utku@utku-Linux ~ -+ X
File Edit View Search Terminal Help

vga done
zyng> . /data_hiding_app

Plaintext size is 857
binary_plaintext_len is 6856
Binary plaintext is done

Welcome to data hiding application
Please enter your key below

Enter your key's 1th part between 0 and 479
3
Enter your key's 2th part between 6 and 639
n

Enter your key's 3th part between 0 and 479
5
Enter your key's 4th part between 0 and 639
6

Enter your key's 5th part between 0 and 479
7

Enter your key's 6th part between 0 and 639

8
0v7670_driver : reading from device

last_image_number: 4
last_image_address: 269664256
interrupt_status: 1
reset_pl_status: 0

ready_for_read_frame_address: 269664256
/dev/men opened
Memory mapped at address b6b4f6ee
Memory mapped at address b68f7000

virt_addr_dst: b6d660e8, virt addr_src: b6b57000, buffer_addr: b6d60808, stego_im addr: b6d14
008

buffer done

vga done

zyng>
ICTRL-A Z for he 115260 8N1 | NOR om 2.7 | V1162 | Online 6:22 ttyACMO

Figure 5.13 : Information hiding application results.

58

B R Fommees B o +
| Site Type | Used | Fixed | Available | Util% |
B R Fommees B o +
| Slice LUTs* | 2819 | 0| 53200 | 7.18 |
| LUT as Logic | 3421 | Q| 53200 | 6.43 |
| LUT as Memory | 398 | Q| 17400 | 2.29

| LUT as Distributed RaM | 20 | 0| | |
| LUT as shift Register | 378 | Q| | |
| Slice Registers | =093 | Q| 106400 | 4.79

| Register as Flip Flop | 2693 | Q| 106400 | 4.79 |
| Register as Latch | 0| Q| 106400 | 0.00

| F7 Muxes | 10 | 0| 26600 | 0.04 |
| F&8 Muxes | 0| 0| 13300 | 0.00 |
B R Fommees B o +

LT LT EEEEEEE Femmem EEEEE R Fommmmm +
| Site Type | Used | Fixed | Available | Util% |
LT E TP EEEEEEE Femmem EEEEE R Fommmmm +
| Block RaM Tile | 4 | o 140 | 2.86
| RAMB36/FIFO* | 2 | 0| 140 | 1.43
| RAMEZSEL anly | 2 | | |
| RAMELS I a | o 280 | 1.43
| RAMBISEL only | a | | | |
R LT LT EEEEEEE Femmem EEEEE R Fommmmm +

Figure 5.15 : Resource consumption of our FPGA implementation-2.

o +om-e- tommmm - B T tommmm - +
| Site Type | Used | Fixed | Available | Utilss |
o +om-e- tommmm - B T tommmm - +
| DSPs | 13 | o 220 | 5.91 |
| DSP48EL only | 13 | | | |
o +om-e- tommmm - B T tommmm - +

Figure 5.16 : Resource consumption of our FPGA implementation-3.

o o R +
| FRef Name | Used | Functional Category |
R o LR +
FDRE	4514	Flop & Latch
LUT3	1184	LUT
LUTE	820	LUT
LUTS	713	LUT
LuT2	®43	LUT
LUT4	555	LUT
LUT1	381	LUT
FDCE	342	Flop & Latch
SRL1BE	330	Distributed Memory
CARRY4	321	CarryLogic
FDPE	148	Flop & Latch
BIBUF	130	I0
FDSE	29	Flop & Latch
SRLC3ZE	438	Distributed Memory
RaMD32	28	Distributed Memory
OBUF	17	I0
IBUF	16	I0

DSP4BEL	13	Block Arithmetic
MUXF7	10	MuxFx
RAMS32	= Distributed Memory	
BUFG	5	Clock
RAME1SE1l	4	Block Memory
RAME3SE1	2	Block Memory
PS7	1	Specialized Resource
MMCMEZ ADV	1	Clock
R o R +

Figure 5.17 : Resource consumption of our FPGA implementation-4.

59

6. CONCLUSIONS

In this thesis, information hiding inside a digital image process is made by neighbor
mean interpolation method, which is the better than other interpolation methods
for steganography applications. Then, in addition to this method, five tubles of
cryptography is added by designing pixel symmetry algorithm and using it in process
which is adding message’s bit on interpolation pixels. As a result of experiments,
the proposed embedding method holds the PSNR value above as 35dB similar to
main reference of this thesis [15]. Therefore, The most significant property of
steganography, a large amount of secret data can be embedded while keeping a very
high visual quality, it is achieved as well as getting same speed and computation like

previous studies.

Number of key bits are 6 x 10 = 60-bit in this application. However, this number
can be increased by using pixel symmetry process recursively. it means that another
symmetry measurement for first symmetry measurement result can be applied. On the
other hand, proposed method is implemented on embedded system. Information hiding
method worked properly but video acquisition part of hybrid system implementation
sometimes lost its synchronization. Therefore, this problem can be fixed in the future.
In addition, there are many resource which can be used for creating custom IPs in order
to accelerate some process inside FPGA part of Zynq because the implementation don’t

consume all resource of PL as you can see in Figures 5.14, 5.15, 5.16 and 5.17.

61

REFERENCES

[1] Rivest, R.L., Shamir, A. and Adleman, L.M., (1978). A Method for Obtaining
Digital Signatures And Public Key Cryptosystems, Communications of
The ACM, 21(2),pp. 120 — 126.

[2] Zhu, D., (2002). Security Control in Inter-Bank Fund Transfer, Journal of
Electronic Commerce Research, Vol. 3, No: 1, pp. 15 —22.

[3] U.S. Army Department of Defense, (2013). Electronic Security Systems, Unified
Facilities Criteria, 4-021-02.

[4] Url-1, https://play.google.com/store/apps/details?id=org.
thoughtcrime.securesms&hl=EN, visiting date: (25.04.2017).

[5] Chen, T.H, Chen, Y.C., Shih, W.K. and Wei, H.W., July (2011). An Efficient
Anonymous Authentication Protocol for Mobile Pay-TV, Journal of

Network and Computer Applications, Elsevier, Volume 34, Issue 4, pp.
1131 .. 1137.

[6] Daemen, J. and Rijmen, V., September 3, (1999). AES Proposal: Rijndael, AES
Algorithm Submission.

[7] Gilbert, H. and Peyrin, T., (2010). Super-Sbox Cryptanalysis: Improved Attacks
for AES-Like Permutations, FSE 2010, LNCS 6147, pp. 365 — 383.

[8] Url-2, https://en.wikipedia.org/wiki/Cryptography, visiting
date: (11.02.2017).

[9] Mathura, N. and Bansode, R., (2016). AES Based Text Encryption Using 12
Rounds with Dynamic Key Selection, 7th International Conference on
Communication, Computing and Virtualization.

[10] Farsana, F. J. and Gopakumar, K., September (2016). A Novel Approach
for Speech Encryption: Zaslavsky Map as Pseudo Random Number

Generator, 6th International Conference on Advances In Computing &
Communications, ICACC 2016, pp. 6 — 8, Cochin, India.

[11] Pak, C. and Huang, L., (2017). A New Color Image Encryption Using
Combination of The 1D Chaotic Map, Elsevier, Signal Processing, 138,
pp- 129 — 137.

[12] Xiao, C., Wang, L., Zhu, M. and Wang, W., (2016). A Resource-Efficient
Multimedia Encryption Scheme for Embedded Video Sensing System
Based on Unmanned Aircraft, Elsevier, Journal of Network and Computer
Applications, 59, pp. 117 — 125.

63

[13] Stinson, D.R., (2006). Cryptography Theory And Practice, Discrete Mathematics
and Its Applications, pp. 1 — 25.

[14] Url-3, https://en.wikipedia.org/wiki/Steganography, visiting
date: (12.03.2017).

[15] Ki-Hyun Jung, Kee-Young Yoo, (2009). Data Hiding Method Using Image
Interpolation, Computer Standarts & Interfaces 31, pp. 465 — 470.

[16] Mishra, M., Mishra, P. and Adhikary, M.C., (2012). Digital Image Data Hiding
Techniques: A Comparative Study, ISSN-0974-715X, ANSVESA, 7(2), pp.
105 - 115.

[17] Cheddad, A., Condell, J., Curran, K. and Kevitt, P., March (2010). Digital
Image Steganography: Survey And Analyses of Current Methods, Signal
Processing, Volume 90, Issue 3, pp. 727 —752.

[18] Url-4, https://en.wikipedia.org/wiki/Digital_watermarkin,
visiting date: (12.03.2017).

[19] Joshi, S.V., Bokil, A., Jain, N.A. and Koshti, D., September (2012).
Image Steganography Combination of Spatial and Frequency Domain,
International Journal of Computer Applications(0975-8887), Volume 53,
No.5.

[20] Manoharan, S.J., July (2013). An Efficient Reversible Data Embedding
Approach in Medical Images for Health Care Management,
http://shodhganga.inflibnet.ac.in:8080/jspui/handle/10603/101 13,
Chapter 3, pp 30 — 36.

[21] Johnson, N.F. and Jajodia, S., (1998). Exploring Steganography: Seeing The
Unseen, Computer Practices, pp. 26 — 34.

[22] Gunturk, B.K., Glotzbach, J., Altunbasak, J., Schafer, R.W. and Mersereau,
R.M., January (2005). Demosaicking: Color Filter Array Interpolation,
IEEE Signal Processing Magazine, pp. 44 — 54.

[23] Unser, M., Thévenaz, P. and Yaroslavsky, L., October (1995).
Convolution-Based Interpoaltion for Fast, High-Quality Rotation of
Images, IEEE Transactions on Image Processing, Vol. 4, NO: 10.

[24] Olivier, R. and Hangianq, C., (2012). Nearest Neighbor Value
Interpolation, International Journal of Advaned Computer Science
And Applications(IJACSA), Vol. 3, No: 4.

[25] Lehmann, T.M., Gonner, C. and Spitzer, K., (1999). Survey:Interpolation
Methods in Medical Image Processing, IEEE Transactions on Medical
Imaging, 18(11), pp. 1049 — 1075.

[26] Fahmy, S.A., (2008). Generalised Parallel Bilinear Interpolation Architecture for

Vision Systems, International Conference on Reconfugurable Computing
and FPGAs, pp. 331 — 336.

64

[27] Li, M., Liang, T. and He, Y., (2013). Arnold Transform Based Image Scrambling
Method, 3rd International Conference on Multimedia Technology(ICMT
2013), pp- 1309 — 1316.

[28] Modak, P.M. and Pawar, V., (2015). A Comprehensive Survey on Image
Scrambling Techniques, International Journal of Science and Research
(IJSR), pp. 814 — 818.

[29] Ramalingam, B., Amirtharajan, R. and Rayappan, J.B.B., (2016). Multiplexed
Stego Path on Reconfigurable Hardware: A Novel Random Approach,
Elsevier, Computers and Electrical Engineering, 55, pp. 153 — 163.

[30] Url-5, https://en.wikipedia.org/wiki/Image_gradient, visiting
date: (22.05.2018).

[31] Esen,U., Ors Yalcin, S.B., (2015). Data Hiding Method Using Image Interpolation
And Pixel Symmetry, IEEE 9th International Conference on Electrical
and Electronics Engineering (ELECO), pp. 776 — 779.

[32] Reddy, H.C., Khoo, I.H. and Rajan, P.K., Third Quarter (2003). 2-D Symmetry:
Theory And Filter Design Applications, IEEE Circuits And Systems
Magazine.

[33] FPGA Frontiers, (2017).New Applications in Reconfigurable Computing.

[34] Sklyarov, V., Skliarova, 1., Rjabov, A. and Sudnitson, A., (2015). Zyng-based
System for Extracting Sorted Subsets from Large Data Sets, Journal of
Microelectronics, Electronic Components and Materials, pp 142 — 152,
Vol. 45, No. 2.

[35] Lita, A.L, Ionescu, L.M., Mazare, A.G., Serban, G. and Lita, 1., (2016). Real
Time System for Instrumental Sound Extraction And Recognition, 39th
International Spring Seminar on Electronics Technology (ISSE).

[36] Padmanabha, M., Schott, C., Robler, M., Kriesten, D. and Heinkel, U.,
(2016). ZYNQ Flexible Platform for Object Recognition & Tracking, 13th
Workshop on Positioning, Navigation and Communications (WPNC).

[37] Url-6, https://en.wikipedia.org/wiki/Linux, visiting date:
(22.11.2016).

[38] Xilinx, September (2016). Zynq-7000 All Programmable SoC Overview.
[39] AVNET, June (2012). Getting started with Zed board.
[40] Xilinx, March 7, (2011) . AXI Reference Guide, UG761 (v13.1).

[41] OmniVision, August (2006). OV7670/0V7171 CMOS VGA (640x480)
CameraChip Sensor with OmniPixel Technology.

[42] Salzman, P.J., Burian, M. and Pomerantz, O., May 18, (2007). The Linux Kernel
Module Programming Guide.

65

APPENDICES

APPENDIX A.1
A.1.1

A.l1.1.1

A.1.1.2

A1.1.3

A.1.2

A.1.2.1

A.1.2.2

A.1.2.3

A.1.24

A.1.2.5

A.1.2.6

A.1.2.7

A.13
APPENDIX B.1
B.1.1

B.1.1.1

B.1.2

B.1.2.1

B.1.3

B.1.4
APPENDIX C.1
C.1.1

C.1.2

C.13
APPENDIX D.1
D.1.1

D.1.2

D.1.3

D.14

: Creation of Development Environment

: Installation of Xilinx Development Environment

: Installation of Xilinx Tools

: Installation of Xilinx Linux Sources

: Installation of Xilinx Minicom

: Running Xilinx Linux on ZedBoard

: Creating First Step Boot Loader(FSBL)

: Building U-Boot

: Creating BOOT.bin File

: Building The Kernel

: Building The Root File System

: Building The Linux Device Tree

: First Boot With Xilinx Linux on ZedBoard

: Matlab code of information extracting process

: Linux Loadable Kernel Module

: Creating Example Loadable Kernel Module

: Compiling kernel modules

: Device Drivers in Linux

: Major and Minor numbers

: Interrupt Handling With Linux

: Compiling User Space Application for Xilinx Linux

: Matlab Implementation of Proposed Method

: Matlab code of information hiding process

: Matlab code of calculating symmetry point of pixel function
: Matlab code of information extracting process

: Embedded System Implementation of Proposed Method
: C code of device driver of hardware system for Linux

: C code of 12C camera configuration user space application
for Linux

: C code of taking picture user space application

for Linux

: C code of information hiding user space application for Linux

67

APPENDIX A.1: Creation of Development Environment

A.1.1: Installation of Xilinx Development Environment

A.1.1.1: Installation of Xilinx tools

1. Visit and download appreciate version of Vivado Hlx : All OS Installer Single-File
from “https://www.xilinx.com/support/download.html" website. In this thesis,
2016.2 version is used

2. After file download extract the compressed file inside a folder.

3. Open terminal and change direction to extracted files folder. Then insert “sudo
Jxsetup” command.

4. After installation gui is opened, confirm all license agreements, select “/opt/Xilinx”
for installation directory, select “System Edition” for installation and don’t forget
to select “Software Development Kit” from list. Click all “Next” buttons and wait
for installation is completed.

5. Open “.bashrc” file inside terminal. Then, insert below commands at the end of file.
If your Vivado version is different than 2016.2, you must modify below commands
according to your Vivado version.

export SWT_GTK3 =0

export PATH = Jopt /Xilinx/Vivado/2016.2 /bin/
Jopt /Xilinx/SDK /2016.2/bin/ : /opt/Xilinx/Vivado_HLS/2016.2/bin/
/home /utku/Desktop /thesis_project_files/u— boot — xlnx/tools/ : SPATH

6. Change direction to “opt/Xilinx/Vivado/2016.2” in terminal. Then, type
“./settings64.sh” command. Then change direction to “opt/Xilinx/SDK/2016.2” in
terminal. Then, type the same command “./settinga64.sh”.

7. Close all terminals. Then, open a new terminal and try to type ‘“vivado”,
“vivado_hls” and “xsdk” commands separately in order to prove that your
installation is properly completed.

A.1.1.2: Installation of Xilinx Linux sources

Xilinx Linux is a official linux kernel from Xilinx. It has been created for
running on architectures which has been found on specifically Xilinx devices
such as Zynq, MicroBlaze and PowerPC. In order to run Xilinx Linux on these
architectures; "linux-xInx" kernel sources files, "u-boot-xInx" U-boot source files and
"device-tree-xInx" device tree sources files must be fetched. Thus, firstly git must be
installed. Then, these folders can be fetched by typing below commands.

1. sudo apt install git

69

2. mkdir xilinx_linux, cd xilinx_linux

3. git clone https://github.com/Xilinx/linux-xInx

4. git clone https://github.com/Xilinx/u-boot-xInx

5. git clone https://github.com/Xilinx/device-tree-xInx

A.1.1.3: Installation of Minicom

Minicom is a lightweight serial communication program which is running on Linux
terminal.

1. Open a new terminal and type “sudo apt-get install minicom” command.
2. In order to run Minicom, type “sudo minicom -s”” command.
3. Select “Serial port setup” item from first list.

4. Configure minicom as being in below

utku@utku-linux ~ - + X

File Edit Vview Search Terminal Help

Serial Device
Lockfile Location
Callin Program
Callout Program g
Bps/Par/Bits : 115200 B8N1
Hardware Flow Control : No
Software Flow Control :

Change which setting? [J

Screen and keyboard
Save setup as dfl
Save setup as..
Exit

Exit from Minicom

Figure A.1 : Minicom configuration.

5. After configurate minicom, select "Save setup as dfl" item from list.
6. Select "Exit" from list. Then serail communication will be started.

7. While opening the minicom, "sudo minicom -w" command can be typed after
configuration is made in order to connect directly.

A.1.2: Running Xilinx Linux on ZedBoard

In order to run Linux on ZedBoard, there are several files which must be created by
developer. These files are BOOT.bin, FSBL.elf, uBoot.elf, devicetree.dtb, ulmage,
uramdisk.image.gz or root file system and system.bit files. These files can be copied to
sdcard then user can boot Linux and run applications. Please follow steps of this guide
respectively.

70

A.1.2.1: Creating first step boot loader(FSBL)

FSBL is a baremetal application which is utilized for fetching U-boot files from Flash
to RAM.

1. Follow this way for creating FSBL in Xilinx SDK. File — New — Application
Project

2. Insert project name “FSBL” and click on “Next”.

3. Select “Zynq FSBL” from below list and click on “Finish”.

A.1.2.2: Building U-Boot

1. In order to boot linux on ZedBoard, there must be a boot loader bare-metal
application. U-Boot is ready for use bare-metal application for this reason. U-Boot
can be utilized on many platforms. However, it must be compiled in order to run
on zynq processor. Therefore, firstly u-boot must be cross-compiled on a host PC
for zynq, which means ARM processor. Thus, some packages must be installed by
typing below commands.

sudo apt-get install libssl-dev
sudo apt-get install gcc-arm-linux-gnueabi
sudo apt-get install g++-arm-linux-gnueabi
sudo dpkg —add-architecture 1386
sudo apt-get install libc6:1386 libncurses5:1386 libstdc++6:1386 libz-dev:i386
2. below changes must be done in "/opt/Xilinx/Vivado/2016.2/.settings64-Vivado.sh"

file. Make these lines comment by adding "#" character at the beggining of the
lines.

#if [-n "SLD_LIBRARY_PATH"]; then
export LD_LIBRARY _PATH=/opt/Xilinx/Vivado/2016.2/1ib/Inx64.0
:$LD_LIBRARY_PATH
felse
export LD_LIBRARY_PATH=/opt/Xilinx/Vivado/2016.2/1ib/Inx64.0
#fi
3. Write these commands in <Xilinx_linux folder dir>/Xilinx_linux/u-boot-xInx/
folder on terminal.
source /opt/Xilinx/Vivado/2016.2/settings64.sh
export CROSS_COMPILE=arm-xilinx-linux-gnueabi-
export ARCH=arm
make zynq_zed_config
make

4. After compiling finished, change name of generated “u-boot” file to “u-boot.elf”
from /u-boot-xInx/ folder.

71

A.1.2.3: Creating BOOT.bin file

7.
8.

. Open Xilinx SDK by writing “xsdk” command on terminal.

GUI of creating BOOT.bin file can be opened by "Tools — Create Boot Image".

. You should click on “Add” from Boot Image Partitions section. Then, you should

insert FSBL file path information to “File path” information so click on “Browse”
button and enter FSBL/Debug folder. Then, select "FSBL.elf" file.

. Click on “Add” button again and click on “Browse” button again. Then, enter

/designl_wrapper_hw_platform and select xxxxx_wrapper.bit file. Click on “OK”
button. Then, click on “OK” again.

. Click on “Add” button and click on “Browse” button. Enter
“xilinx_linux/u-boot-xInx/” folder and select "u-boot.elf" file. Then click on
“OK” button.

. Click on “Browse” button from “Output Path” and select "<project name>.sdk"

folder. Create a new file with “Boot_bin”” name. Enter “Boot_bin” folder and click
on “OK” button.

Click on “Browse” button from “Output BIF file path” and click on “OK” button.

Click on “Create Image” button.

You can find your "BOOT.bin" file in "Boot_bin" folder.

A.1.2.4: Building the kernel

1.

Install some packages by typing these commands
sudo apt-get install libncurses5-dev libncursesw5-dev

sudo apt-get install u-boot-tools

. Before compilation, if you want to change kernel configurations, you can type this

command on terminal.
make menuconfig

Thanks to this command you can configure your linux kernel with an interface.

. Write these commands in order to compile linux kernel.

Export PATH = Jopt /Xilinx/Vivado/2016.2 /bin/

Jopt /Xilinx/SDK /2016.2/bin/ : Jopt/Xilinx/Vivado_HLS/2016.2/bin/

/ < path_of_xilinx_linux_folder > /xilinx_linux/u — boot — xlnx/tools : | <
path_of_xilinx_linux_folder > /xilinx_linux/linux_xInx/ :$PATH

source /opt/Xilinx/Vivado/2016.2/settings64.sh

export CROSS_COMPILE=arm-xilinx-linux-gnueabi-
export ARCH=arm

make clean

make xilinx_zynq_defconfig

make UIMAGE_LOADADDR=0x8000 ulmage

72

After compilation finished, you can find ulmage file in ..<path of
xilinx_linux/linux_xInx/arch/arm/boot/” path.
A.1.2.5: Building the root file system

Ready-for-use file system which is provided by Xilinx will be used. Therefore, follow
below steps.

1. Enter this web site “http://www.wiki.xilinx.com/Build+and+Modify+a+Rootfs”
and download “arm_ramdisk.image.gz” file by finding it among the ‘“Prebuilt
Images”. This file is only for Zynq AP SOC(ARM) systems.

2. Change downloaded file name by “uramdisk.image.gz”.

A.1.2.6: Building the Linux device tree

"devicetree.dtb" file can be automatically created. Thus, follow below steps.

1. Source Xilinx design tools

source /opt/Xilinx/Vivado/2016.2/settings64.sh
2. Run HSM

hsm

3. Open HDF file
open_hw_design <design_name>.hdf

You can find .hdf file inside your vivado project folder’s .sdk folder.

4. Set repository path set_repo_path <path to device-tree-xInx repository>
This path must be like “.../xilinx_linux/device-tree-xInx”
5. Create software design and setup CPU You should enter processor_name

for ZyngMP psu_cortex53_0, for Zynq ps7_cortexa9_0 and for Microblaze
microblaze 0.

create_sw_design device-tree -os device_tree -proc <processor_name>

6. Generate DTS/DTSI files to folder
generate_target -dir <folder_name>
7. modify "pl.dtsi" file inside generated folder as you can see below in order to give

all costum IPs a spesific name. While Linux kernel module try to write and read
some data inside these IPs, device driver will use these names.

Exp 1: VDMA _axis_to_ddr_writer_0: axis_to_ddr_writer@43c00000 {
Exp 2: axi_gpio_pl_reset_0: axi_gpio_pl_reset@41210000 {
8. In order to create "devicetree.dtb" file, dtc program which is provided in

“.../xilinx_linux/linux-xInx/scripts/dtc” must be used. If you are in your .dts file
path, you can utilize these commands for generate "devicetree.dtb" file in terminal.

source /opt/Xilinx/Vivado/2016.2/settings64.sh

73

export CROSS_COMPILE=arm-xilinx-linux-gnueabi-
export ARCH=arm
./../Mlinux-xInx/scripts/dtc/dtc -1 dts -O dtb -o devicetree.dtb system.dts

A.1.2.7: First boot with Xilinx Linux on ZedBoard

. In order to prepare Zedboard for booting Linux, we should arrange some jumpers
position according to boot from sdcard. Therefore you should change position of
jumper 9 and 10 on Zedboard to “3V3” position.

. arrange sdcard partition according to Linux file system so we can use
“Gparted(Gnome partition editor)” program for this reason. In order to download
this program you can write this command on terminal.

sudo apt-get install gparted

. Run gparted program by typing this command.
sudo gparted /dev/mmcblk0
Note: Your sdcard location can be changed according to your system. Check it from

“df” command. Then you can find your sdcard’s file path from Filesystem column.

. Create one partition on your sdcard. The partition must be "FAT32", its size can
be all memory on sdcard and its name is "BOOT". Then you can close gparted
program.

. Copy all files we need for booting linux to sdcard. Therefore, you
should copy "BOOT.bin" from ...<your_vivado_project_path>/<your_vivado
project_name>.sdk/boot_bin folder, "devicetree.dtb" from
<your_vivado_project_path>/my_dts/ folder, "ulmage" from
<xilinx_linux_path>/xilinx_linux/linux-xInx/arch/arm/boot/ folder and

"uramdisk.image.gz" from your download folder.

74

APPENDIX B.1: Linux Loadable Kernel Module

B.1.1: Creating Example Loadable Kernel Module

This section describes how to create new loadable kernel module, how you can insert it
to Linux kernel and remove during run time. In order to insert loadable kernel module
you can use "insmod" command and to remove you can use "rmmod" command in
linux terminal. There is an example loadable kernel module in below. In order to
create loadable kernel module, you should create basically "init" and "exit" functions of
module. These example modules just print “Hello world” after the module is inserted
and print "Goodbye world" text on terminal after module is removed.

If you are trying this loadable kernel module different than Xilinx Linux kernel, you
may not see any output because of your distribution’s print permission level. You can
see this module results with typing this command on terminal.

dmesg

Example loadable kernel module code:

e

* hello.c — The simplest kernel module.

*/

#include <linux/module.h> /% Needed by all modules x/
#include <linux/kernel.h> /x Needed for KERN_INFO x*/

int init_module (void)

{
printk (KERN_INFO "Hello world.\n");

/%

* A non O return means init_module failed; module can’t be loaded.
*/

return O;

}

void remove_module(void)

{
}

printk (KERN_INFO "Goodbye world.\n");

module_init(init_module);
module_exit(remove_module) ;

B.1.1.1: Compiling kernel modules

Kernel modules need to be compiled a bit differently from regular userspace apps.
Former kernel versions require us to care much about these settings, which are usually
stored in Makefiles. Although hierarchically organized, many redundant settings
accumulated in sublevel Makefiles and made them large and rather difficult to maintain.
Fortunately, there is a new way of doing these things, called kbuild, and the build

75

process for external loadable modules is now fully integrated into the standard kernel
build mechanism. there is an example "Makefile" below.

obj-m += hello-1.0

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

From a technical point of view just the first line is really necessary, the "all" and
"clean" targets were added for pure convenience. Now you can compile the module
by issuing the command make.

B.1.2:Device Drivers in Linux [42]

One class of module is the device driver, which provides functionality for hardware
like a TV card or a serialport. On unix, each piece of hardware is represented by a file
located in /dev named a device file which provides the means to communicate with the
hardware. The device driver provides the communication on behalf of a user program.
So the es1370.0 sound card device driver might connect the /dev/sound device file
to the Ensoniq IS1370 sound card. A userspace program like mp3blaster can use
/dev/sound without ever knowing what kind of sound card is installed.

B.1.2.1:Major and minor numbers

Let’s look at some device files. Here are device files which represent the first three
partitions on the primary master IDE hard drive:

1s -1 /dev/hda[1-3]

brw-rw—---— 1 root disk 3, 1 Jul 5 2000 /dev/hdal
brw-rw—--- 1 root disk 3, 2 Jul 5 2000 /dev/hda2
brw-rw---- 1 root disk 3, 3 Jul 5 2000 /dev/hda3

Figure B.1 : Major and minor numbers of devices.

Notice the column of numbers separated by a comma? The first number is called the
device’s major number. The second number is the minor number. The major number
tells you which driver is used to access the hardware. Each driver is assigned a unique
major number; all device files with the same major number are controlled by the same
driver. All the above major numbers are 3, because they’re all controlled by the same
driver.

The minor number is used by the driver to distinguish between the various hardware
it controls. Returning to the example above, although all three devices are handled by
the same driver they have unique minor numbers because the driver sees them as being
different pieces of hardware.

Devices are divided into two types: character devices and block devices. The
difference is that block devices have a buffer for requests, so they can choose the
best order in which to respond to the requests. This is important in the case of storage

76

devices, where it’s faster to read or write sectors which are close to each other, rather
than those which are further apart. Another difference is that block devices can only
accept input and return output in blocks (whose size can vary according to the device),
whereas character devices are allowed to use as many or as few bytes as they like.
Most devices in the world are character, because they don’t need this type of buffering,
and they don’t operate with a fixed block size. You can tell whether a device file is for
a block device or a character device by looking at the first character in the output of Is
-1. If it’s "b" then it’s a block device, and if it’s "c¢" then it’s a character device. The
devices you see above are block devices. Here are some character devices (the serial
ports):

crw-rw-—-— 1 root dial 4, 64 Feb 18 23:34 /dev/ttySO
Crw-r—-—---— 1 root dial 4, 65 Nov 17 10:26 /dev/ttyS1l
crw-rw-—--— 1 root dial 4, 66 Jul 5 2000 /dev/ttyS2
crw-rw———— 1 root dial 4, 67 Jul 5 2000 /dev/ttyS3

Figure B.2 : Informations of character devices.

If you want to see which major numbers have been assigned, you can look at
/usr/src/linux/Documentation/devices.txt.

When the system was installed, all of those device files were created by the mknod
command. To create a new char device named "coffee" with major/minor number 12
and 2, simply do mknod /dev/coffee ¢ 12 2. You don’t have to put your device files into
/dev, but it’s done by convention. Linus put his device files in /dev, and so should you.
However, when creating a device file for testing purposes, it’s probably OK to place it
in your working directory where you compile the kernel module. Just be sure to put it
in the right place when you’re done writing the device driver.

I would like to make a few last points which are implicit from the above discussion, but
I’d like to make them explicit just in case. When a device file is accessed, the kernel
uses the major number of the file to determine which driver should be used to handle
the access. This means that the kernel doesn’t really need to use or even know about
the minor number. The driver itself is the only thing that cares about the minor number.
It uses the minor number to distinguish between different pieces of hardware.

By the way, when I say "hardware", I mean something a bit more abstract than a PCI
card that you can hold in your hand. Look at these two device files:
% 1ls -1 /dev/£fd0 /dev/£d0ul680

DrwxXrwxrwx 1 root floppy 2, 0 Jul 5 2000 /dev/fdO
ISy —iey———— 1 root floppy 2, 44 Jul 5 2000 /dev/£d0ul680

Figure B.3 : Informations of block devices.

By now you can look at these two device files and know instantly that they are block
devices and are handled by same driver (block major 2). You might even be aware that
these both represent your floppy drive, even if you only have one floppy drive. Why
two files? One represents the floppy drive with 1.44 MB of storage. The other is the
same floppy drive with 1.68 MB of storage, and corresponds to what some people call
a "superformatted” disk. One that holds more data than a standard formatted floppy.
So here’s a case where two device files with different minor number actually represent
the same piece of physical hardware. So just be aware that the word ‘hardware’ in our
discussion can mean something very abstract.

77

There is an example character device code below:

[*

x chardev.c: Creates a read—only char device that says how many times
* you’ve read from the dev file

x /

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/fs.h>

#include <asm/uaccess.h>

/+ for put_user x/

/ *

* Prototypes — this would normally go in a .h file
* /

int init_module(void);

void cleanup_module(void);

static int device_open

(struct inode *x, struct file x);

static int device_release

(struct inode x, struct file x);

static ssize_t device_read

(struct file %, char %, size_t, loff_t x);
static ssize_t device_write

(struct file %, const char x, size_t, loff_t x);
#define SUCCESS 0

#define DEVICE NAME "chardev"

#define BUF_LEN 80

/+ Dev name as it appears in /proc/devices

x/

/+ Max length of the message from the device x/
/ %

* Global variables are declared as static ,

x so are global within the file.

x/
static int Major;
static int Device_Open = 0;

static char msg[BUF_LEN];

static char smsg_Ptr;

/+*Major number assigned to our device driver x/
/+Is device open?

* Used to prevent multiple access to device
The msg the device will give when asked =/

static struct file_operations fops = {
.read = device_read ,

.write = device_write ,

.open = device_open,

.release = device_release

1

/%

* This function is called when the module is loaded
x/

int init_module(void)

{

Major = register_chrdev (0, DEVICE_NAME, &fops);

if (Major < 0) {

printk (KERN_ALERT

"Registering char device failed with %d\n", Major);
return Major;

}

78

printk (KERN_INFO

"l was assigned major number %d. To talk to\n", Major);
printk (KERN_INFO

"the driver, create a dev file with\n");

printk (KERN_INFO

"’mknod /dev/%s ¢ %d 0’ .\n", DEVICE_NAME, Major);
printk (KERN_INFO

"Try various minor numbers. Try to cat and echo to\n");
printk (KERN_INFO

"the device file .\n");

printk (KERN_INFO

"Remove the device file and module when done.\n");
return SUCCESS;

}
/ *

% This function is called when the module is unloaded
*/

void cleanup_module(void)

{
/ *

* Unregister the device

*/

int ret = unregister_chrdev (Major, DEVICE NAME) ;
if (ret < 0)

printk (KERN_ALERT

"Error in unregister_chrdev: %d\n", ret);

}

static int device_open

(struct inode x*xinode, struct file xfile)
{
static int counter = 0;

if (Device_Open)

return —EBUSY;

Device_Open++;

sprintf (msg,

"1 already told you %d times Hello world!\n", counter++);
msg_Ptr = msg;

try_module_get (THIS_MODULE) ;

return SUCCESS;

}
/ *

* Called when a process closes

* the device file.

*/

static int device_release

(struct inode *inode, struct file xfile)
{
Device_Open——;
module_put (THIS_MODULE) ;
return 0;

}

static ssize_t device_read
(struct file xfilp ,

char sbuffer ,

size_t length ,

loff_t x offset)

79

{

int bytes_read = O0;
if (xmsg_Ptr == 0)

return O;

/%

* Actually put the data into the buffer
x/

while (length && xmsg_Ptr) {

/%

x The buffer is in the user data segment,
not the kernel

segment so "x" assignment won’t work.

We have to use

put_user which copies data from

the kernel data segment to

* the user data segment.

*/

put_user (x(msg_Ptr++), buffer++);

length ——;

bytes_read ++;

}
/%

* Most read functions return

* the number of bytes put into the buffer
x/

return bytes_read;

}
/ *

x Called when a process writes to
* dev file: echo "hi" > /dev/hello
x/

static ssize_t

device_write

(struct file xfilp ,

const char xbuff,

size_t len, loff_t x off)

{
printk (KERN_ALERT

"Sorry, this operation is not supported.\n");
return —EINVAL;

}

* X X X X

B.1.3:Interrupt Handling With Linux

There are two types of interaction between the CPU and the rest of the computer’s
hardware. The first type is when the CPU gives orders to the hardware, the other is
when the hardware needs to tell the CPU something. The second, called interrupts,
is much harder to implement because it has to be dealt with when convenient for the
hardware, not the CPU. Hardware devices typically have a very small amount of RAM,
and if you don’t read their information when available, it is lost.

Under Linux, hardware interrupts are called IRQ’s (InterruptRequests). There are two
types of IRQ’s, short and long. A short IRQ is one which is expected to take a very
short period of time, during which the rest of the machine will be blocked and no other
interrupts will be handled. A long IRQ is one which can take longer, and during which

80

other interrupts may occur (but not interrupts from the same device). If at all possible,
it’s better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever it’s doing (unless it’s processing
a more important interrupt, in which case it will deal with this one only when the more
important one is done), saves certain parameters on the stack and calls the interrupt
handler. This means that certain things are not allowed in the interrupt handler itself,
because the system is in an unknown state. The solution to this problem is for the
interrupt handler to do what needs to be done immediately, usually read something
from the hardware or send something to the hardware, and then schedule the handling
of the new information at a later time (this is called the "bottom half") and return. The
kernel is then guaranteed to call the bottom half as soon as possible — and when it does,
everything allowed in kernel modules will be allowed.

The way to implement this is to call "request_irq()" to get your interrupt handler called
when the relevant IRQ is received. This function receives the IRQ number, the name of
the function, flags, a name for "/proc/interrupts" and a parameter to pass to the interrupt
handler. Usually there is a certain number of IRQs available. How many IRQs there are
1s hardware-dependent. The flags can include "SA_SHIRQ" to indicate you’re willing
to share the IRQ with other interrupt handlers (usually because a number of hardware
devices sit on the same IRQ) and "SA_INTERRUPT" to indicate this is a fast interrupt.
This function will only succeed if there isn’t already a handler on this IRQ, or if you’re
both willing to share.

Then, from within the interrupt handler, we communicate with the hardware and then
use "queue_work()" "mark_bh(BH_IMMEDIATE)" to schedule the bottom half.

B.1.4:Compiling User Space Application for Xilinx Linux

After you create your design file, in this case let us assume that its name is "hello.c",
you can cross-compile it with below steps.

1. Open a terminal and call Xilinx source with the help of below command.
source /opt/Xilinx/Vivado/2016.2/settings64.sh

2. Select the tool chain by typing below command.
export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

3. Select desired platform by typing below command
export ARCH=arm

4. Cross compile your design with the help of below command

arm-xilinx-linux-gnueabi-gcc hello.c -o hello_app

81

APPENDIX C.1: Matlab Implementation of Proposed Method

C.1.1: Matlab Code of Information Hiding Process

clc; clear all; close all;

tic
disp(’Information hiding is started ...’);
9% encryption block 1
original_data = imread(’input_image_3.jpg’);%imread(greens.jpg’):
% key image 1is selected from database
[w h ¢c] = size(original_data); % sizes of key image are obtained
9% adding k parameter
% Converting Plaintext ascii to binary

% Reshape binary plaintext to 1 dimension
key = zeros(6,1);

1= 1;
while 1 < 7
if mod(i,2) == % x axis
key(i) = input ([’ Input your key number’, ...
num2str(i),’ = \n’]);
if (key(i)< 1) Il (key(i) > 2xw —1)

disp(’Your key number is wrong!’);
disp ([’Key number must be between 1 and ’
num2str (2xw—1)]) ;
disp(’Please input true number’);
else
i =1+ 1;

9 o e

end
else % y axis
key(i) = input ([’ ’Input your key number’, ...
num2str(i),’ = \n’]);
if (key(i)< 1) Il (key(i) > 2«h —1)
disp(’Your key number is wrong!’);
disp ([’Key number must be between 1 and °
num?2str (2xh—1)1) ;
disp(’Please input true number’);
else
i =1+ 1;

9 oo

end
end
end
disp (’Data Hiding process is being continued’);
9% encryption block 2
cipher_image = zeros(w x 2—1, h x 2—1, ¢);
% cipher text is created from sizes of key
for k=1 :1 : ¢
for i =1 :1:w
for j =1 : 1 : h
% key pixels are including to ciphertext
cipher_image ((i—1)*2+1, (j—D=*2+1, k) =
original_data(i,j,k);
end

end

83

end
% figure ,imshow (uint8 (cipher_image));

9% ecryption block 3
% interpolation is being processed

for k=1 :1: c
for i =1 : 2 : w %x2-2
for j =1 2 @ hx2-2
% (a, b+1)
cipher_image (i, j+1, k) =
floor ((cipher_image (i, j, k) +...
cipher_image (i, j+2, k))/2);
% (a+1, b)
cipher_image (i+1, j, k) =
floor ((cipher_image (i, j, k) +...
cipher_image (i+2, j, k))/2);
9% (a+1, b+1)
cipher_image (i+1, j+1, k) =
floor (((cipher_image (i, j, k) +...
cipher_image (i, j+1, k) +...
cipher_image (i+1, j, k)) / 3));
end
end
end
interpolation_image = cipher_image;
% imwrite (uint8 (interpolation_image), ’interpolation_image.png’);
% figure ,imshow (uint8 (cipher_image));
9% encryption block 4
% measureing size of each pixel’s plaintext part

% figure ,imshow (uint8 (derivative_data));
bit_number = zeros(w x 2, h x 2, ¢);
total_bit = 0;
for k =1 :1 : ¢
for i =1 : 2 : (w=1) % 2
for j =1 :2 : (h=-1) x 2
% key pixels are including to ciphertext
% (a, b+1)
difference_1 = abs(cipher_image(i+1l, j, k) —
cipher_image (i, j, k));
for 1 =1 :1 : 8
if (27N 1>= difference_1)
bit_number(i+1, j, k) = 1;
break ;
end
end
total_bit = total_bit + 1;
% (a+1, b)
difference_1 = abs(cipher_image (i, j+1, k) —
cipher_image (i, j, k));
for 1 =1 :1 : 8
if (271>= difference_1)
bit_number (i, j+1, k) = 1;
break;
end
end
total_bit = total_bit + 1;
% (a+1, b+1)

84

difference_1 = abs(cipher_image(i+1l, j+1, k) —
cipher_image (i, j, k));
for 1 =1 : 1 : 8
if (27 1>= difference_1)
bit_number(i+1, j+1, k) = 1;

break ;
end
end
total_bit = total_bit + 1;
end
end

end
max_plaintext_size = floor(total_bit / 8);

% figure ,imshow (uint8 (bit_numberx10));
imwrite (uint8 (bit_number) ,’ bit_number.png’);

9% encryption block 5
% Converting Plaintext ascii to binary
% Reshape binary plaintext to 1 dimension

file = fopen(’plaintext.txt’,’r’);
plaintext = dec2bin(fread(file) ,8);
% [char(bin2dec(plaintext))]
fclose (file);
[plain_w , plain_h] = size(plaintext);
if plain_w % plain_h > total_bit
disp(’there is an error about selecting plaintext, ...
plaintext is very long’);
else
disp (["Message size : ’, num2str(plain_w * plain_h),...
> Cover image capacity : °, num2str(total_bit)]);
long_plaintext = ...
dec2bin ((zeros(ceil (total_bit/plain_h) ,1)),plain_h);

long_plaintext (1:plain_w ,:) = plaintext;
resized_one_dim_plaintext = char((zeros(l,(total_bit))));
1 = 1;

for i = 1 : plain_h : plain_w x plain_h
resized_one_dim_plaintext(i:i+plain_h —1) =
long_plaintext(l,:);
1 = 1+ 1;
end
for i = plain_w x plain_h+1 : plain_h : ceil(total_bit/plain_h)
resized_one_dim_plaintext(i:i+plain_h —1) =...
dec2bin (0, plain_h);

end
¥ resized_one_dim_plaintext =
% char(reshape(long_plaintext, 1, []));
Y0 asd = reshape(resized_one_dim_plaintext, [],plain_h);

save(’all_data .mat’, ...
"resized_one_dim_plaintext’, ...
"long_plaintext’);

9% encrytion block 6 && block 7
% adding certain bits of binary plaintext to interpolation values
bit_start = 1;

coordinates = zeros(3,2);
for a = 1: 2: w x 2-2
for b = 1: 2: h % 2-2
for k = 1: 1: ¢

85

if(bit_start > plain_w *x plain_h)
continue ;

end

% measuring coordinates of areas on shifting block
coordinates (1,:) = [a, b+1]; % area |1
coordinates (2,:) = [a+1, b]; % area 2
coordinates (3,:) = [a+1, b+1]; % area 3

for p = 1: 1: 3 % make this procces for 3 areas

[i,j] = measure_symmetry_point(...
coordinates (p,1), ...
coordinates (p,2), ...
key ,2xw—1,2xh—1);

if (bit_number(i,j) > 1)
bit_finish = bit_start + bit_number(i,j)—1;
if bit_finish > plain_w x plain_h
break ;
else
cipher_image (i,j . k) =
cipher_image (i,j,k) +
bin2dec (resized_one_dim_plaintext(...
bit_start:bit_finish));
bit_start = bit_finish + 1;
end
elseif (bit_number(i,j) == 1)
cipher_image(i,j,k) = cipher_image(i,j.k) ...
+ bin2dec (...
resized_one_dim_plaintext(bit_start));
bit_start = bit_start + 1;
else
continue ;

end
end
end
end
end
imwrite (uint8 (cipher_image), ’Stegolmage_1.png’);
% asd = imread(’cipher_image.png’);
%0 sum(sum(abs(uint8 (cipher_image) — asd)))

imshow (original_data); % key image is showed

figure ,imshow (uint8 (cipher_image));

figure ,imshow (uint8 (abs(cipher_image —
interpolation_image).*x100));

%sum (sum (abs (cipher_image — interpolation_image)));

end
toc
disp(’Information hiding process finished’);

86

C.1.2: Matlab Code of Calculating Symmetry Point of Pixel Function

function [new_coordinate_x , new_coordinate_y] = ...
measure_symmetry_point(input_x , input_y, key, w, h)

if (mod(input_x, 2) == 1)&&(mod(input_y ,2) == 0) % 1. area
state_input = 0;

elseif (mod(input_x, 2) == 0)&&(mod(input_y ,2) == 1) % 2. area
state_input = 1;

else % 3. areca
state_input = 2;

end

input_x = input_x —1;

input_y = input_y —1;

switch(state_input)

707.07.07.07.07.07.07.07.07.07.07. ~) 107.07.07.07.07.07.07.07. 7/ 7.07.07.07.01.01.07.07.0L.07.07.
9557977795950 CASE 0 9998589858770 AREA 1 9959875977777 e

case 0
new_coordinate_x = 2 x key(l) — (input_x);
if new_coordinate_x < 0
new_coordinate_Xx = new_coordinate_xX + (w);
if new_coordinate_x < O
new_coordinate_x = new_coordinate_x + (w);
end
end
if new_coordinate_x > w—1
new_coordinate_Xx = new_coordinate_x — (w);
if new_coordinate_x > w—1
new_coordinate_x = new_coordinate_x — (w);
end
end

new_coordinate_y = 2 x key(2) — (input_y);
if new_coordinate_y < 0O

new_coordinate_y = new_coordinate_y + (h);
if new_coordinate_y < 0
new_coordinate_y = new_coordinate_y + (h);
end
end
if new_coordinate_y > h—1
new_coordinate_y = new_coordinate_y — (h);
if new_coordinate_y > h—1
new_coordinate_y = new_coordinate_y — (h);
end
end
WEITTTTIIIITTTITITT o CASE 1 GITIIIIIITTT S0 AREA 2 TS5
case 1
new_coordinate_x = 2 x key(3) — (input_x);
if new_coordinate_x < O
new_coordinate_x = new_coordinate_x + (W);
if new_coordinate_x < 0
new_coordinate_x = new_coordinate_x + (w);
end
end
if new_coordinate_x > w—1
new_coordinate_x = new_coordinate_x — (w);
if new_coordinate_x > w—1
new_coordinate_x = new_coordinate_x — (wW);
end

87

end
new_coordinate_y = 2 x key(4) — (input_y);
if new_coordinate_y < 0

new_coordinate_y = new_coordinate_y + (h);
if new_coordinate_y < O
new_coordinate_y = new_coordinate_y + (h);
end
end
if new_coordinate_y > h—1
new_coordinate_y = new_coordinate_y — (h);
if new_coordinate_y > h—1
new_coordinate_y = new_coordinate_y — (h);
end
end
YIITTTITTISITTITTITITTIITTITTITIT0 CASE 2 G779 AREA 3 %9898
case 2
new_coordinate_x = 2 x key(5) — (input_x);
if new_coordinate_x < 0
new_coordinate_x = new_coordinate_x + (w);
if new_coordinate_x < 0O
new_coordinate_Xx = new_coordinate_x + (w);
end
end
if new_coordinate_x > w—1
new_coordinate_x = new_coordinate_x — (w);
if new_coordinate_x > w—1
new_coordinate_Xx = new_coordinate_x — (w);
end
end

new_coordinate_y = 2 x key(6) — (input_y);
if new_coordinate_y < 0

new_coordinate_y = new_coordinate_y + (h);
if new_coordinate_y < O
new_coordinate_y = new_coordinate_y + (h);
end
end
if new_coordinate_y > h—1
new_coordinate_y = new_coordinate_y — (h);
if new_coordinate_y > h—1
new_coordinate_y = new_coordinate_y — (h);
end
end
WBETTIITTTTIITTTTIITTTTIITTTTIIITTTIIIITTIIITTTTIISTT IS o
otherwise
disp(’error !’);
end
new_coordinate_x = new_coordinate_x +1;
new_coordinate_y = new_coordinate_y +1;

end

88

C.1.3: Matlab Code of Information Extracting Process

clc; clear all; close all;

disp(’stego_image extracting process is started ...’);
file = fopen(’results/stego_image.dat’,’r’);
stego_image_temp = fread(file);

fclose (file);

stego_image = reshape(stego_image_temp, [480 640]);

[wW h ¢c] = size(stego_image);

imwrite (uint8 ((stego_image)), ’stego_image.bmp’, ’bmp’);
figure , imshow(uint8 ((stego_image)));

title (’stego image’);

interpolation_image = zeros(w, h, c);
interpolation_image = stego_image;
%% first area
interpolation_image (1:2:w—2, 2:2:h—-2,:) = ...
uint8 (floor ((stego_image (1:2:w—2, 1:2:h—2,:) +...
stego_image (1:2:w—2, 3:2:h,:))/2));
9% second area
interpolation_image (2:2:w—2, 1:2:h—-2,:) = ...
uint8 (floor ((stego_image (1:2:w—2, 1:2:h—-2,:) +...
stego_image (3:2:w, 1:2:h—-2,:))/2));
%% third area
interpolation_image (2:2:w—2, 2:2:h—-2,:) = ...
uint8 (floor ((stego_image (1:2:w—2, 1:2:h—-2,:) +...
stego_image (3:2:w, 3:2:h,:))/2));
bit_number = zeros(w, h, c);
total_bit = 0;
for k =1 :1 : ¢
for i =1 :2 : w—2
for j =1 :2 : h—2
difference_1 = abs(interpolation_image (i, j+1, k) —

interpolation_image (i, j, k));

bit_number (i, j+1, k) =
measure_bit_number(difference_1);

total_bit = total_bit + bit_number(i, j+1, k);

difference_2 = abs(interpolation_image(i+1, j, k) —

interpolation_image (i, j, k));
bit_number(i+1, j, k) = .

measure_bit_number (difference_2);

total_bit = total_bit + bit_number(i+1, j, k);

difference_3 = abs(interpolation_image(i+1, j+1, k) —

interpolation_image (i, j, k));
bit_number(i+1, j+1, k) =
measure_bit_number (difference_3);
total_bit = total_bit + bit_number(i+1, j+1, k);
end
end
end
total_bit

89

%% DATA EXTRACTION

diff_image = uint8 (abs(stego_image — interpolation_image));
key = zeros(6,1);
i =1;
while 1 < 7
if mod(i,2) == % x axis

key(i) = input ([’ Input your key number’ ,num2str(i),’ = ’]);
if (key(i)< 1) Il (key(i) >w —1)
disp (’Your key number is wrong!’);
disp ([’Key number must be between 1 and ’,num2str(w—1)]);
disp(’Please input true number’);
else
i =1+ 1;
end
else % y axis
key(i) = input ([’ ’Input your key number’ ,num2str(i),’ = ’]);
if (key(i)< 1) Il (key(i) > h —1)
disp(’Your key number is wrong!’);
disp ([’Key number must be between 1 and ’,num2str(h—1)]);
disp(’Please input true number’);
else
i =1+ 1;
end
end
end

disp(’Data extraction process is being continued’);
binary_data = char((zeros(l,(total_bit))));
bit_start = double(1);

coordinates = zeros(3,2);
for k = 1: 1: ¢
for a = 1: 2: w—1

for b = 1: 2: h—1
% measuring coordinates of areas on shifting block
coordinates (1,:) = [a, b+1]; % area 1
coordinates (2,:) = [a+1, b]; % area 2
coordinates (3,:) = [a+1, b+1]; % area 3
for p = 1: 1: 3 % make this procces for 3 areas
[i,j] = measure_symmetry_point(
coordinates (p,1),
coordinates (p,2) ,
key ,w,h
)
if (bit_number(i,j) > 1)
eklenecek_deger = (bit_number(i,j))—1;
bit_finish = double(bit_start + eklenecek_deger);
if bit_finish > total_bit
break ;
else
binary_data(bit_start:bit_finish) = ...
dec2bin (diff_image (i,j,k), bit_number(i,j));
bit_start = bit_finish + 1;
end
elseif (bit_number(i,j) == 1)
binary_data(bit_start) = ...
dec2bin (diff_image(i,j,k),1);
bit_start = bit_start + 1;
else
continue ;

90

end
end
end
end
end

character_size = ceil(bit_finish / 8)

resized_two_dim_data = (zeros(character_size ,1));

char_number = 1;

for i =1 : 8 : bit_finish -7
resized_two_dim_data(char_number) = bin2dec(binary_data(i:i+7));
char_number = char_number + 1;

end

file = fopen(’delta_planintext.txt’,’w’);

fwrite (file ,((resized_two_dim_data)));

fclose (file);

open(’delta_planintext.txt’);

disp(’Data extracting process is completed’);

91

APPENDIX D.1: Embedded System Implementation of Proposed Method

D.1.1: Device Driver of Hardware System for Linux

/ *

% driver.c

*

¥ Created on: June 26, 2018

* Author: utku

*/

THEEEErrrr il Libraries /1171111 707171777
#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/fs.h> /l file operations structure.
// Which of course allows use to open/close, read/write to device
#include <linux/cdev.h> // This is a char driver;

// makes cdev available

#include <linux/semaphore.h> // Used to access semaphores;
// sychronization behaviors

#include <asm/uaccess.h> // copy_to_user; copy_from_user

#include <linux/io.h>

/' iowrite8 iowrite32 iounmap

#include <linux/interrupt.h>

/l irqreturn_t NO_IRQ request_irq free_irq
#include <linux/ioport.h> //needed for resource struct
// request_mem_region struct resource release_mem_region
#include <linux/of.h>

#include <linux/of_irq.h>

#include <linux/of_address.h>

#include <linux/delay.h>

#include <linux/slab.h>

#include <asm/io.h>

[10171711017111 1 User definitions /// /1711111000000 0000000000717
//# define DEBUG MODE

#define LED_DELAY 500000

#define DEVICE_NAME "OV7670"

/1 FRAME CONSTANTS

#define FRAME_BUFFER_DIM_WRITER 307200

#define FRAME_BUFFER_BASE_ADDR_WRITER 0x10000000
#define FRAME BUFFER NUM_WRITER 8§

#define FRAME_BUFFER_DIM_READER 307200
#define FRAME_BUFFER BASE ADDR_READER 0x10000000
#define FRAME_BUFFER NUM_READER 8§

/1 XAXIS_TO_DDR_WRITER

#define XAXIS_TO_DDR_WRITER_AXILITES ADDR_AP CTRL \
0x00

#define XAXIS_TO_DDR_WRITER_AXILITES_ADDR_GIE \

93

#define XAXIS_TO_DDR_WI(Q)IXT(‘)E?R_AXILITES_ADDR_IER \
#define XAXIS_TO_DDR_WR?;F?IE_AXILITES_ADDR_ISR \
#define XAXIS_TO_DDR_WROI’)I(“](;ICQ_AXILITES_ADDR_BASE_ADDRES S_DATA \
#define XA(;(XI;?TO_DDR_WRITER_AXILITES_BITS_BASE_ADDRESS_DATA \
#define XA3X21$_TO_DDR_WRITER_AXILITES_ADDR_FRAME_BUFFER_DIM_DATA \
#defin g X)l(iXIS_TO_DDR_WRITER_AXILITES_B ITS_FRAME_BUFFER_DIM_DATA \
#defin 2 2XAXIS_TO_DDR_VVRITER_AXILITES_ADDR_FRAME_BUFFER_OFFSET_DATA \
dgﬁg e XAXIS_TO_DDR_WRITER_AXILITES_BITS_FRAME_BUFFER_OFFSET_DATA\
#def fr? e XAXIS_TO_DDR_WRITER_AXILITES_ ADDR_FRAME_BUFFER_NUMBER_DATA\
#def ?1‘)1(z 8XAXIS_TO_DDR_WRITER_AXILITES_BITS_FRAME_BUFFER_NUMBER_DATA \
#defin S XAXIS_TO_DDR_WRITER_AXILITES_ADDR_UPDATE_INTR_DATA \
#define XA(;?Ié?TO_DDR_WRITER_AXILITES_BITS_UPDATE_INTR_DATA \

1

/1 XDDR_TO_AXIS_READER
#define XDDR_TO_AXIS READER_AXILITES_ADDR_AP CTRL \

#define XDDR_TO_AXIS_(I)%E&?)ER_AXILITES_ADDR_GIE \

#define XDDR_TO_AXIS_R(I)-EXAOSER_AXILITES_ADDR_IER \

#define XDDR_TO_AXIS_RE(X;;)ESR_AXILITES_ADDR_ISR \

#define XDDR_TO_AXIS_R](E);]g(I:ER_AXILITES_ADDR_BASE_ADDRESS_DATA \

#define XDDRO_)fFlOO_AXIS_READER_AXILITES_B ITS_BASE_ADDRESS_DATA \

#define XDD?_TO_AXIS_READER_AXHJTES_ADDR_FRAME_BUFFER_DIM_DATA\

#define X(])D)I()llf_TO_AXIS_READER_AXILITES_B ITS_FRAME_BUFFER_DIM_DATA\

#define X%?DR_TO_AXIS_READER_AXILITES_ADDR_FRAME_BUFFER_OFFSET_DATA\

#defin 2 X)2((]))DR_TO_AXIS_READER_AXILITES_BITS_FRAME_BUFFER_OFFSET_DATA \

#defin e3 2XDDR_TO_AXIS_READER_AX]LITES_ADDR_FRAME_BUFFER_NUMBER_DATA\
0x28

#define XDDR_TO_AXIS_READER_AXILITES_BITS_FRAME BUFFER_NUMBER_DATA\
8
#define XDDR_TO_AXIS_READER_AXILITES_ADDR_UPDATE_INTR_DATA \
0x30
#define XDDR_TO_AXIS_READER_AXILITES_BITS_UPDATE_INTR_DATA \
1

[111010rrrrrrrr11117 Global Variables [/ /7117117117117 000000101101711177
static struct character_device {
char last_image_number;

94

char xlast_image_address;
char interrupt_status;
char reset_pl_status;
// writer base address
u32 image_writer_base_address;
// reader base address
u32 image_reader_base_address;
// struct semaphore sem;

} ov7670_device;

static struct cdev xmcdev;
static int major_number;
static int ret;

static dev_t dev_num;
void __iomem =xreg_ptr_tmp;

void __iomem xo0v7670_reg;

static struct device_node xov7670_node;
static struct resource ov7670;

static unsigned int irq_ov7670;

void __iomem xreg_ptr_tmp;

void __iomem =xpl_reset_ip_reg;

static struct device_node xpl_reset_ip_node;
static struct resource pl_reset_ip;

static bool initialize_pl_reset_ip_bool = false;
static int pl_is_on_reset = 0;

#define RESET_ENABLED 0

#define RESET_DISABLED 1

void __iomem xaxis_to_ddr_writer_reg;
static struct device_node xaxis_to_ddr_writer_node;
static struct resource axis_to_ddr_writer;

void __iomem xddr_to_axis_reader_reg;
static struct device_node xddr_to_axis_reader_node;
static struct resource ddr_to_axis_reader;

void __iomem xframe_buffer_start_address;

[10171710717111771 User Functions //// /11171117 17717771717177
static int __init ov7670_driver_init(void);

static void __exit ov7670_driver_exit(void);

int driver_entry (void);

int initialize_platform(void);

int initialize_components (void);

void platform_release (void);

int initialize_interrupts (void);

int initialization_after_reset(void);

void wait(void) ;
u32 read_data;
// initialize ov7670 gpio ip

int initialize_ov7670(void);

95

// initialize ov7670 interrupt

int initialize_ov7670_interrupt(void);

irqreturn_t irq_default_primary_handler(int irq, void xdev_id);
// ov7670 interrupt service routine

irqreturn_t ov7670_irq_handler(int irq, void xdev_id);
//release_ov7670 during module exit

void release_ov7670(void);

int initialize_pl_reset_ip (void);

int pl_reset_ip_enable(void);

int pl_reset_ip_disable(void);

int pl_reset_ip_keep_milisecond(int msec);
int is_pl_reset_ip_on_reset(void);
//release_ov7670 during module exit

int initialize_axis_to_ddr_writer (void);
int Configure_axis_to_ddr_writer (void);

void axis_to_ddr_writer_Set_base_address

(void __iomem xint_ptr, u32 data);

void axis_to_ddr_writer_Set_frame_buffer_dim
(void __iomem xint_ptr , u32 data);

void axis_to_ddr_writer_Set_frame_buffer_number
(void __iomem xint_ptr, u32 data);

void axis_to_ddr_writer_Set_frame_buffer_offset
(void __iomem xint_ptr, u32 data);

void axis_to_ddr_writer_EnableAutoRestart
(void __iomem xint_ptr , u32 data);

void axis_to_ddr_writer_Set_update_intr

(void __iomem xint_ptr, u32 data);

void axis_to_ddr_writer_Start

(void __iomem xint_ptr , u32 data);

int initialize_ddr_to_axis_reader (void);
int Configure_ddr_to_axis_reader(void);

void ddr_to_axis_reader_Set_base_address

(void __iomem xint_ptr , u32 data);

void ddr_to_axis_reader_Set_frame_buffer_dim
(void __iomem xint_ptr, u32 data);

void ddr_to_axis_reader_Set_frame_buffer_number
(void __iomem xint_ptr, u32 data);

void ddr_to_axis_reader_Set_frame_buffer_offset
(void __iomem xint_ptr , u32 data);

void ddr_to_axis_reader_Set_update_intr

(void __iomem xint_ptr, u32 data);

void ddr_to_axis_reader_EnableAutoRestart
(void __iomem xint_ptr , u32 data);

void ddr_to_axis_reader_Start

(void __iomem xint_ptr , u32 data);

void release_pl_reset_ip(void);

int start_application(void);
void stop_application(void);

void interrupt_status_control

96

(struct character_device temp_device);
void enable_frame_buffer_interrupt(void);
void disable_frame_buffer_interrupt(void);

void reset_pl_status_control
(struct character_device temp_device);
void writer_base_addr_control
(struct character_device temp_device);
void reader_base_addr_control
(struct character_device temp_device);

/11111/1/ Loadable kernel module init function //////1//111/1]]/
static int __init ov7670_driver_init(void)
{
// response variable is used
/1 for checking wheather process finish with correct or error
int response = 0;
printk (KERN_ERR "initialize_system is started\n");
// initialize_system

response = initialize_platform ();
if (response != 0)
it
return —1;
}

#ifdef DEBUG_MODE
printk (KERN_ERR "initialize_system is done\n");
#endif

/] start_application

response = start_application();
if (response != 0)
{

return —1;
}
#ifdef DEBUG MODE

printk (KERN_ERR "start_application is done\n");
#endif

response = driver_entry ();
if (response != 0)
{
return —1;
1

printk (KERN_ERR "Device started !\n");

return 0;

}
LHEETTLPEL P rrrrr i rr i i rr i rr i ri i r

/11117771111 Loadable kernel module exit function ///////1//11/]1]]
static void __exit ov7670_driver_exit(void)
{
/!l response variable is used
/1l for checking wheather process finish with correct or error
stop_application () ;
#ifdef DEBUG MODE
printk (KERN_INFO "stop_application is done\n");
#endif

97

// all_components_release
platform_release () ;
#ifdef DEBUG MODE
printk (KERN_INFO "all_components_release is done\n");
#endif

cdev_del (mcdev) ;
unregister_chrdev_region (dev_num, 1);
printk (KERN_ALERT "ov7670_driver : unloaded module \n");

}

int initialize_platform (void)
{
/l response variable is used
// for checking wheather process finish with correct or error
int response = 0;

// initialize all used peripherals

response = initialize_components () ;
if (response != 0)
{

return —1;
}
#ifdef DEBUG_MODE

printk (KERN_ERR

"\'nlnitializations of all components are done.\n");
#endif

return 0;

}

(1000177071777 Initialize all componenets ///////11111111111111

int initialize_components (void)

{
// response variable is used
/!l for checking wheather process finish with correct or error
int response = 0;

// initializing ov7670 gpio
response = initialize_ov7670();
// checking initialize led process is done
if (response != 0)
{
return —1;
}
#ifdef DEBUG _MODE
printk (KERN_ERR "ov7670 initialization is done\n");
#endif

// initializing initialize_pl_reset_ip gpio

response = initialize_pl_reset_ip ();

// checking initialize initialize_pl_reset_ip process is done
if (response != 0)

{

return —1;

98

}

// initializing axis_to_ddr_writer gpio

response = initialize_axis_to_ddr_writer ();
/!l checking initialize axis_to_ddr_writer process is done
if (response != 0)
{
return —1;
1

#ifdef DEBUG MODE
printk (KERN_INFO "axis_to_ddr_writer initialization is done\n");
#endif

// initializing ddr_to_axis_reader gpio

response = initialize_ddr_to_axis_reader ();
/! checking initialize ddr_to_axis_reader process is done
if (response != 0)
{
return —1;
}

#ifdef DEBUG MODE
printk (KERN_INFO "ddr_to_axis_reader initialization is done\n");
#endif

return 0;

}

void platform_release (void)
{
// release_ov7670
release_ov7670 () ;
/] release_pl_reset_ip
release_pl_reset_ip ();

int initialize_axis_to_ddr_writer (void)
{
// response variable is used
// for checking wheather process finish with correct or error
int response = 0;

// finding axis_to_ddr_writer node
// according to name of axis_to_ddr_writer in devicetree.dts file
axis_to_ddr_writer_node =
(struct device_node x)of_find_node_by_name
(NULL, "axis_to_ddr_writer");

/] creating resource for
/l axis_to_ddr_writer with the help of axis_to_ddr_writer node
response = of_address_to_resource
(axis_to_ddr_writer_node , 0, &axis_to_ddr_writer);
if (response < 0)
{
printk (KERN_INFO
"error in of_address_to_resource axis_to_ddr_writer\n");
return —1;

99

}
#ifdef DEBUG_MODE

printk (KERN_INFO
"of_address_to_resource axis_to_ddr_writer is done.\n");
#endif

// checking wheather axis_to_ddr_writer
// address space is used or not
if (request_mem_region
(axis_to_ddr_writer. start ,
resource_size(&axis_to_ddr_writer),
"axis_to_ddr_writer") == NULL)
{
printk (KERN_INFO
"error in request_mem_region axis_to_ddr_writer\n");
return —1;
}
#ifdef DEBUG MODE
// 1If there is not error,
//show the request_mem_region of axis_to_ddr_writer
printk (KERN_INFO
"request_mem_region axis_to_ddr_writer DONE. \n");
#endif

// axis_to_ddr_writer address space is allocating
axis_to_ddr_writer_reg = (void __iomem x)of_iomap
(axis_to_ddr_writer_node , 0);
if (!axis_to_ddr_writer_reg)
{
printk (KERN_INFO "could not allocate iomap\n");
release_mem_region
(axis_to_ddr_writer. start ,
resource_size(&axis_to_ddr_writer));
return —1;
1
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer registers are allocated. \n");
#endif

return 0;

}

int initialize_ddr_to_axis_reader (void)
{
// response variable is used
// for checking wheather process finish with correct or error
int response = 0;

// finding ddr_to_axis_reader node
// according to name of ddr_to_axis_reader in devicetree.dts file
ddr_to_axis_reader_node =

(struct device_node x*)of_find_node_by_name

(NULL, "ddr_to_axis_reader");

/l creating resource for

// ddr_to_axis_reader with the help of ddr_to_axis_reader node
response = of_address_to_resource

100

(ddr_to_axis_reader_node , 0, &ddr_to_axis_reader);
if (response < 0)
{
printk (KERN_INFO
"error in of_address_to_resource ddr_to_axis_reader\n");
return —1;
1
#ifdef DEBUG MODE
printk (KERN_INFO
"of_address_to_resource ddr_to_axis_reader is done.\n");
#endif

// checking wheather ddr_to_axis_reader
/] address space is used or not
if (request_mem_region
(ddr_to_axis_reader. start ,
resource_size(&ddr_to_axis_reader),
"ddr_to_axis_reader") == NULL
)
{
printk (KERN_INFO
"error in request_mem_region ddr_to_axis_reader\n");
return —1;
1
#ifdef DEBUG MODE
// If there is not error,
//show the request_mem_region of ddr_to_axis_reader
printk (KERN_INFO
"request_mem_region ddr_to_axis_reader DONE. \n");
#endif

/!l ddr_to_axis_reader address space is allocating
ddr_to_axis_reader_reg =
(void __iomem x)of_iomap(ddr_to_axis_reader_node, 0);
if (!ddr_to_axis_reader_reg)
{
printk (KERN_INFO "could not allocate iomem\n");
release_mem_region
(ddr_to_axis_reader. start ,
resource_size(&ddr_to_axis_reader)
)
return —1;
}
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader registers are allocated. \n");
#endif

return 0;
}
[0 000 1001711771 WAIT FUNCTION [/ /7771171101000 0inii1i70117177
void wait(void)

{
volatile int i, Delay;

for (i = 0; i < 50; i++)

101

{
}

for (Delay = 0; Delay < LED_DELAY; Delay++);

}

[100700rrrrrrrrrrrl ovie70 Initialization ////71771771717171177171
int initialize_ov7670 (void)
{
/!l response variable is used
// for checking wheather process finish with correct or error
int response = 0;
#ifdef DEBUG MODE
printk (KERN_INFO "\n\n initialize_ov7670\n\n");
#endif
ov7670_device.interrupt_status = 0;
ov7670_device.last_image_address =
ov7670_device.last_image_number =
ov7670_device.reset_pl_status = 0;
/!l finding ov7670 node according to
// name of ov7670 in devicetree.dts file
ov7670_node =
(struct device_node #*)of_find_node_by_name
(NULL, "axi_gpio_frame_intr");

0;
0;

// creating resource for ov7670 with the help of ov7670 node
response = of_address_to_resource(ov7670_node, 0, &ov7670);
if (response < 0)
{
printk (KERN_INFO
"error in of_address_to_resource ov7670\n");
return —1;
}
#ifdef DEBUG MODE
printk (KERN_INFO
"of_address_to_resource ov7670 is done.\n");
#endif

/!l checking wheather ov7670 address space is used or not
if
request_mem_region
(ov7670. start ,
resource_size(&ov7670) ,
"ov7670") == NULL
)

printk (KERN_INFO
"error in request_mem_region ov7670\n");
return —1;
}
#ifdef DEBUG MODE
// If there is not error, show the request_mem_region of ov7670
printk (KERN_INFO "request_mem_region ov7670 DONE. \n");
#endif

// ov7670 address space is allocating
ov7670_reg = (void __iomem x)ioremap_nocache
(ov7670.start , resource_size(&ov7670));

102

if (1ov7670_reg)

{
printk (KERN_INFO "could not allocate iomem\n");
release_mem_region (ov7670.start , resource_size(&ov7670));
return —1;

}
#ifdef DEBUG MODE

printk (KERN_INFO "ov7670 registers are allocated. \n");
#endif

// ov7670 gpio ip is input
reg_ptr_tmp = (void __iomem *)(ov7670_reg + 0x0004);
iowrite8 (255 , reg_ptr_tmp);
// gpio tri—> this tell me the ov7670 are output
#ifdef DEBUG_MODE

printk (KERN_INFO "ov7670 are made outputs. \n");
#endif

return 0;

}

(1000001077 Initialize all interrupts ////77117177171711717117
int initialize_interrupts (void)

{

// response variable is used
!/l for checking wheather process finish with correct or error
int response = 0;

// initialize ov7670 interrupt

response = initialize_ov7670_interrupt();
if (response != 0)
{
return —1;
}

#ifdef DEBUG MODE
printk (KERN_INFO "Initialize ov7670 interrupt is done. \n");
#endif

return 0;

}
[IPEErrrrrrr 777 Initialize ov7670 interrupts //// 1111111 17711177717

int initialize_ov7670_interrupt(void)

{

// response variable is used
// for checking wheather process finish with correct or error
int response = 0;

#ifdef USE_LIKE_NESTED_INTERRUPT
ov7670_interrupt_happening = false;

#endif
// find ov7670 irq resource
irq_ov7670 = of_irq_to_resource (ov7670_node, 0, &ov7670);
if (irq_ov7670 == NO_IRQ)

103

printk (KERN_ERR "ov7670: of_irq_to_resource failed\n");
release_mem_region(ov7670.start , resource_size(&ov7670));
iounmap (ov7670_reg);
of_node_put(ov7670_node) ;
return —1;
}
#ifdef DEBUG MODE
printk (KERN_INFO "ov7670 interrupt resource found. \n");
#endif

// Enabling interrupt for ov7670 on the side of
// processor and general interrupt controller
// Connecting interrupt resource to interrupt handler
response =
request_threaded_irq (
irq_ov7670 ,
irq_default_primary_handler ,
ov7670_irq_handler ,
IRQF_TRIGGER_RISING ,
"ov7670_interrupt",
&ov7670
)3

if (response < 0)
{
printk (KERN_ERR
"unable to request IRQ %d : %d\n", irq_ov7670, response);

free_irq (irq_ov7670, ov7670_reg);
release_mem_region

(ov7670.start , resource_size(&ov7670));
iounmap (ov7670_reg);
of_node_put(ov7670_node) ;

return —1;

}
//irq_set_irq_type (irq_ov7670, IRQ_TYPE_EDGE_RISING) ;

enable_frame_buffer_interrupt();

return 0;

}
TP iy

[P rrrrr11771 irq_default_primary_handler /////771171711177111
irqreturn_t irq_default_primary_handler(int irq, void xdev_id)
{

return IRQ WAKE THREAD;

}

(1100l OvVi7670 interupt handler ////7 7771711711001 10007011071177
irqreturn_t ov7670_irq_handler(int irq, void xdev_id)
{

/!l writing frame buffer number

u32 frame_number, sendAble_ frame_ number;

static void __iomem xreg_ptr_tmp;

// Buttons interrupt is cleared

reg_ptr_tmp = (void __iomem x*)(ov7670_reg + 0x0120);

104

/1 GPIO IP interrupt clean register address
iowrite32(1 , reg_ptr_tmp);
// writing 1 to interrupt cleaning register

#ifdef USE_LIKE_NESTED_INTERRUPT
ov7670_interrupt_happening = true;

#endif
reg_ptr_tmp = (void __iomem *)(ov7670_reg);
// GPIO TP interrupt clean register address

frame_number = ioread32(reg_ptr_tmp);
if (frame_number == 0)
{
sendAble_frame_number = FRAME BUFFER NUM_WRITER -1;
}
else
{
sendAble_frame_number = frame_number —1;
}
ov7670_device.last_image_number = sendAble_frame_number;

ov7670_device.last_image_address =
(char %)FRAME_BUFFER_BASE_ADDR_WRITER +
(FRAME_BUFFER_DIM_WRITER #* sendAble_frame_number) ;

#ifdef DEBUG MODE
printk (KERN_INFO
"fraNum=%d, send=%d \n", frame_number, sendAble_frame_number);
#endif

#ifdef USE_LIKE NESTED_INTERRUPT
ov7670_interrupt_happening = false;

#endif

return IRQ HANDLED;

}
FHEPTTEPE i r i rr i i i rr i i rr i r i rrrrrrrrrrrrrr

[0 0HHrrrrrrrl release_ov7670 /1117711117011 0 00000 7000171777
void release_ov7670 (void)
{
release_mem_region (
ov7670. start ,
(unsigned long)resource_size(&ov7670)
)
iounmap (ov7670_reg);
of_node_put(ov7670_node);
free_irq (irq_ov7670, ov7670_reg);
}

[IPPEEEEErrrr il initialize _pl_reset_ip /171111111117 01111771
int initialize_pl_reset_ip (void)

{

/! response variable is used
// for checking wheather process finish with correct or error
int response = 0;
#ifdef DEBUG MODE
printk (KERN_INFO "\n\n initialize_pl_reset_ip\n\n");

105

#endif

// finding pl_reset_ip node

// according to name of pl_reset_ip in devicetree.dts file

pl_reset_ip_node = (struct device_node x)
of_find_node_by_name (NULL, "axi_gpio_pl_reset");

// creating resource for
/!l pl_reset_ip with the help of pl_reset_ip node
response = of_address_to_resource
(pl_reset_ip_node, 0, &pl_reset_ip);
if (response < 0)
{
printk (KERN_INFO
"error in of_address_to_resource pl_reset_ip\n");
return 1;
}
#ifdef DEBUG MODE
printk (KERN_INFO
"of_address_to_resource pl_reset_ip is done.\n");
#endif

/!l checking wheather pl_reset_ip address space is used or not
if (request_mem_region

(pl_reset_ip.start ,

resource_size(&pl_reset_ip),

"pl_reset_ip") == NULL

)
{
printk (KERN_INFO "error in request_mem_region pl_reset_ip\n");
return 1;
1

#ifdef DEBUG MODE

// 1If there 1is not error,

// show the request_mem_region of pl_reset_ip

printk (KERN_INFO "request_mem_region pl_reset_ip DONE. \n");
#endif

// pl_reset_ip address space is allocating
pl_reset_ip_reg = (void __iomem x)ioremap
(pl_reset_ip.start, resource_size(&pl_reset_ip));

if (!pl_reset_ip_reg)
{
printk (KERN_INFO "could not allocate iomem\n");
release_mem_region
(pl_reset_ip.start, resource_size(&pl_reset_ip));
return 1;
}
#ifdef DEBUG MODE
printk (KERN_INFO "pl_reset_ip registers are allocated. \n");
#endif

/!l pl_reset_ip are made outputs

reg_ptr_tmp = (void __iomem)

(pl_reset_ip_reg + 0x0004);

iowrite8(0 , reg_ptr_tmp);

// gpio tri—> this tell me the pl_reset_ip are output

106

#ifdef DEBUG MODE
printk (KERN_INFO "pl_reset_ip are made outputs. \n");
#endif

initialize_pl_reset_ip_bool = true;
return 0;

}

[IHPELErrrrrr il pl_reset_enable ////7 7771111 7171711177177
int pl_reset_ip_enable(void)
{
u32 data;
if (initialize_pl_reset_ip_bool)
{
pl_is_on_reset = 1;
reg_ptr_tmp = (void __iomem x)(pl_reset_ip_reg);
iowrite32 (RESET_ENABLED, reg_ptr_tmp);
/] gpio tri —> this tell me the pl_reset_ip are output
reg_ptr_tmp =
(void __iomem x)ioremap_nocache (
pl_reset_ip.start ,
resource_size(&pl_reset_ip)
)
if (!pl_reset_ip_reg)
{
return 1;
}
data = ioread32(pl_reset_ip_reg);
printk (KERN_INFO "pl_reset_ip_enable data = %u \n", data);
ov7670_device.reset_pl_status = 1;
return 0;
1

else return 1;

}

[IEPEEErrrri il pl_reset_disable /7771777011111 171711777177
int pl_reset_ip_disable (void)

{

if (initialize_pl_reset_ip_bool)

{
u32 data;
reg_ptr_tmp = (void __iomem x)(pl_reset_ip_reg);
iowrite32 (RESET_DISABLED, reg_ptr_tmp);
/] gpio tri —> this tell me the pl_reset_ip are output
pl_is_on_reset = 0;
data = ioread32(reg_ptr_tmp);
printk (KERN_INFO "pl_reset_ip_disable data = %u \n", data);
ov7670_device.reset_pl_status = 0;
return O;

}

else return 1;

}

[IPPEEEEErr il pl_reset_keep_for /171711711111 71711171111
int pl_reset_ip_keep_milisecond (int msec)
{

if (initialize_pl_reset_ip_bool)

107

pl_reset_ip_enable ();
msleep (msec) ;
pl_reset_ip_disable ();
return 0;

}

else return 1;

}

[I00P0PErrrrrrrrrrrl is_pl_on_reset [//71171771111100110117711
int is_pl_reset_ip_on_reset(void)

{
}

return pl_is_on_reset;

[HEHPEErrrrrrrri il release_pl_reset_ip /771171 11717117117717
void release_pl_reset_ip(void)
{
release_mem_region (
pl_reset_ip.start,
(unsigned long)resource_size(&pl_reset_ip)
)
iounmap (pl_reset_ip_reg);
of_node_put(pl_reset_ip_node);

}

int start_application (void)
{
/!l response variable is used
// for checking wheather process finish with correct or error
int response = 0;

// Reset PL
//response = pl_reset_ip_keep_milisecond (1000);
if (response != 0)
{
return —1;
}
#ifdef DEBUG MODE
printk (KERN_INFO
"pl_reset_ip_keep_milisecond is done.\n");
#endif

// Configure WRITER

response = Configure_axis_to_ddr_writer ();
if (response != 0)
{
return —1;
}

#ifdef DEBUG MODE
printk (KERN_INFO
"Configure_axis_to_ddr_writer is done.\n");
#endif

// Configure READER

response = Configure_ddr_to_axis_reader ();
if (response != 0)
{

return —1;

108

}
#ifdef DEBUG_MODE

printk (KERN_INFO
"Configure_ddr_to_axis_reader is done.\n");
#endif

// initialize all used peripherals
response = initialize_interrupts ();
if (response != 0)
{
return —1;
}
#ifdef DEBUG MODE
printk (KERN_ERR
"\'nlnitializations of all interrupts are done.\n");
#endif
return 0;

}

int Configure_axis_to_ddr_writer (void)
{
#ifdef DEBUG MODE
printk (KERN_INFO "\n\nConfigure_axis_to_ddr_writer\n\n");
#endif
axis_to_ddr_writer_Set_base_address
(axis_to_ddr_writer_reg , FRAME_BUFFER_BASE_ADDR_WRITER) ;
axis_to_ddr_writer_Set_frame_buffer_dim
(axis_to_ddr_writer_reg , FRAME_BUFFER_DIM_WRITER) ;
axis_to_ddr_writer_Set_frame_ buffer_number
(axis_to_ddr_writer_reg , FRAME BUFFER NUM_WRITER) ;
axis_to_ddr_writer_Set_frame_buffer_offset
(axis_to_ddr_writer_reg , FRAME_BUFFER_DIM_WRITER) ;
axis_to_ddr_writer_EnableAutoRestart
(axis_to_ddr_writer_reg , 0x80);
axis_to_ddr_writer_Set_update_intr
(axis_to_ddr_writer_reg , 1);
axis_to_ddr_writer_Start
(axis_to_ddr_writer_reg, 0);
return 0;
}
void axis_to_ddr_writer_Set_base_address
(void __iomem xint_ptr , u32 data)
{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XAXIS_TO_DDR_WRITER_AXILITES_ ADDR_BASE_ADDRESS_DATA) ;
iowrite32 (data , reg_ptr_tmp);
ov7670_device.image_writer_base_address = data;
/] gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer_Set_base_address %x\n'", data);
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_Set_base_address read_data = %x\n",
read_data);

}
109

void axis_to_ddr_writer_Set_frame_buffer_dim
(void __iomem xint_ptr , u32 data)
{
// axis_to_ddr_writer_Set_frame_buffer_dim
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XAXIS_TO_DDR_WRITER_AXILITES_ADDR_FRAME_BUFFER_DIM_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer_Set_frame_buffer_dim %x\n", data);
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_Set_frame_buffer_dim read_data = %x\n"
read_data);
}
void axis_to_ddr_writer_Set_frame_buffer_number
(void __iomem xint_ptr, u32 data)
{
// axis_to_ddr_writer_Set_frame_buffer_number
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XAXIS_TO_DDR_WRITER_AXILITES_ ADDR_FRAME_BUFFER_NUMBER_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri—> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer_Set_frame_buffer_number %x\n", data);
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_Set_frame_buffer_number read_data = %x\n"
read_data);
}
void axis_to_ddr_writer_Set_frame_buffer_offset
(void __iomem xint_ptr , u32 data)
{
// axis_to_ddr_writer_Set_frame_buffer_offset
reg_ptr_tmp = (void __iomem)
(int_ptr +
XAXIS_TO_DDR_WRITER_AXILITES_ ADDR_FRAME_BUFFER_OFFSET_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer_Set_frame_buffer_offset %x\n", data);
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_Set_frame_buffer_offset read_data = %x\n",
read_data);
}
void axis_to_ddr_writer EnableAutoRestart
(void __iomem xint_ptr, u32 data)
{
// axis_to_ddr_writer_EnableAutoRestart
reg_ptr_tmp = (void __iomem x)

110

(int_ptr + XAXIS_TO_DDR_WRITER_AXILITES_ADDR_AP_CTRL) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer_EnableAutoRestart %x\n", data);
#endif
read_data = ioread32 (reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_EnableAutoRestart read_data = %x\n",
read_data);
}
void axis_to_ddr_writer_Set_update_intr
(void __iomem xint_ptr, u32 data)
{
// axis_to_ddr_writer_Set_update_intr
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XAXIS_TO_DDR_WRITER_AXILITES_ADDR_UPDATE_INTR_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG_MODE
printk (KERN_INFO
"axis_to_ddr_writer_Set_update_intr %x\n"., data);
#endif
read_data = ioread32 (reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_Set_update_intr read_data = %x\n", read_data);
}
void axis_to_ddr_writer_Start
(void __iomem =xint_ptr, u32 data)
{
u32 temp;
// axis_to_ddr_writer_Start
reg_ptr_tmp = (void __iomem x)
(int_ptr + XAXIS_TO_DDR_WRITER_AXILITES_ADDR_AP_CTRL) ;
temp = ioread32(reg_ptr_tmp) & 0x80;
#ifdef DEBUG_MODE
printk (KERN_INFO
"TEMP axis_to_ddr_writer temp = %x\n", temp);
#endif
data = temp 10x01;
iowrite32 (data, reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"axis_to_ddr_writer_Start %x\n", data):
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"axis_to_ddr_writer_Start read _data = %x\n", read data);

}

int Configure_ddr_to_axis_reader (void)
{
#ifdef DEBUG MODE
printk (KERN_INFO
"\n\nConfigure_ddr_to_axis_reader\n\n");
#endif

111

ddr_to_axis_reader_Set_base_address
(ddr_to_axis_reader_reg , FRAME BUFFER_BASE ADDR_READER) ;
ddr_to_axis_reader_Set_frame_ buffer_dim
(ddr_to_axis_reader_reg , FRAME _BUFFER_DIM_READER) ;
ddr_to_axis_reader_Set_frame_buffer_number
(ddr_to_axis_reader_reg , FRAME_BUFFER NUM_READER) ;
ddr_to_axis_reader_Set_frame_buffer_offset
(ddr_to_axis_reader_reg , FRAME BUFFER_DIM_READER) ;
ddr_to_axis_reader_Set_update_intr
(ddr_to_axis_reader_reg , 0x01);
ddr_to_axis_reader_EnableAutoRestart
(ddr_to_axis_reader_reg , 0x80);
ddr_to_axis_reader_Start
(ddr_to_axis_reader_reg , 0);
return O;
1
void ddr_to_axis_reader_Set_base_address
(void __iomem xint_ptr , u32 data)
{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XDDR_TO_AXIS_READER_AXILITES_ ADDR_BASE_ADDRESS_DATA) ;
iowrite32 (data , reg_ptr_tmp);
ov7670_device.image_reader_base_address = data;
// gpio tri—> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader_Set_base_address %x\n", data):
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_Set_base_address read_data = %x\n",
read_data);
}
void ddr_to_axis_reader_Set_frame_buffer_dim
(void __iomem xint_ptr , u32 data)
{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem)
(int_ptr +
XDDR_TO_AXIS_READER_AXILITES_ADDR_FRAME_BUFFER_DIM_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader_Set_frame_buffer_dim %x\n", data);
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_Set_frame_ buffer_dim read_data = %x\n",
read_data);

}

void ddr_to_axis_reader_Set_frame_buffer_number

(void __iomem xint_ptr, u32 data)

{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem x)

112

(int_ptr +
XDDR_TO_AXIS_READER_AXILITES_ ADDR_FRAME_BUFFER_NUMBER_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader_Set_frame_buffer_number %x\n", data);
#endif
read_data = ioread32 (reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_Set_frame_buffer_number read_data = %x\n",
read_data);

}

void ddr_to_axis_reader_Set_frame_buffer_offset
(void __iomem xint_ptr , u32 data)
{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XDDR_TO_AXIS_READER_AXILITES_ ADDR_FRAME_BUFFER_OFFSET_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader_Set_frame_buffer_offset %x\n", data);
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_Set_frame_buffer_offset read_data = %x\n",
read_data);

}

void ddr_to_axis_reader_Set_update_intr
(void __iomem xint_ptr, u32 data)
{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem x)
(int_ptr +
XDDR_TO_AXIS_READER_AXILITES_ADDR_UPDATE_INTR_DATA) ;
iowrite32 (data , reg_ptr_tmp);
// gpio tri —> this tell me the ov7670 are output
#ifdef DEBUG_MODE
printk (KERN_INFO
"ddr_to_axis_reader_Set_update_intr %x\n"., data);
#endif
read_data = ioread32 (reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_Set_update_intr read_data = %x\n",
read_data);

}

void ddr_to_axis_reader_EnableAutoRestart

(void __iomem xint_ptr , u32 data)

{
// axis_to_ddr_writer_Set_base_address
reg_ptr_tmp = (void __iomem x)

(int_ptr + XDDR_TO_AXIS_READER_AXILITES_ADDR_AP_CTRL) ;
iowrite32 (data , reg_ptr_tmp);

113

// gpio tri—> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader_EnableAutoRestart %x\n", data):
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_EnableAutoRestart read_data = %x\n",
read_data);

}

void ddr_to_axis_reader_Start
(void __iomem xint_ptr, u32 data)
{
u32 temp;
// axis_to_ddr_writer_Start
reg_ptr_tmp = (void __iomem x)
(int_ptr + XDDR_TO_AXIS_READER_AXILITES_ADDR_AP_CTRL) ;
temp = ioread32 (reg_ptr_tmp) & 0x80;
#ifdef DEBUG MODE
printk (KERN_INFO
"TEMP ddr_to_axis_reader_Start temp = %x\n", temp);
#endif
data = temp 10x01;
iowrite32 (data, reg_ptr_tmp);
// gpio tri—> this tell me the ov7670 are output
#ifdef DEBUG MODE
printk (KERN_INFO
"ddr_to_axis_reader_Start %x\n", data):
#endif
read_data = ioread32(reg_ptr_tmp);
printk (KERN_INFO
"ddr_to_axis_reader_Start read_data = %x\n", read_data);

}
void stop_application(void)
{
}

static int device_open
(struct inode xinode, struct file xfilp) {

/ x

if (down_interruptible(&ov7670_device.sem) != 0) {
printk (KERN_ALERT
"ov7670_driver : could not lock device

during open \n");
return —1;
1
*/
// printk (KERN_ALERT "ov7670_driver : opened device \n");
return 0;

}
static ssize_t device_read
(struct file x*filp ,
charx bufStoreData ,
size_t bufCount ,

114

loff_tx curOffset)

printk (KERN_ALERT

"ov7670_driver : reading from device \n");
printk (KERN_ALERT

"writer_base : %x \n", ov7670_device.image_writer_base_address);
printk (KERN_ALERT

"reader_base : %x \n", ov7670_device.image_reader_base_address);
ret = copy_to_user

(bufStoreData, &ov7670_device, bufCount);
return ret;

}

static ssize_t device_write
(struct file xfilp,
const charx bufSourceData,
size_t bufCount ,
loff_tx curOffset)

{

struct character_device temp_device;

// printk (KERN_ALERT "ov7670_driver

// writing to device \n");

if (sizeof (temp_device) != bufCount) {

printk (KERN_ALERT

"ov7670_driver : writing to device failed!
Please be sure your data size is correct. \n");

}

ret = copy_from_user

(&temp_device + xcurOffset, bufSourceData, bufCount);
if(ret < 0) {
printk (KERN_ALERT

"ov7670_driver : writing to device failed!

Please be sure your data is correct.

ret = %d, bufCount = %d\n", ret, bufCount);
}

reset_pl_status_control (temp_device);
interrupt_status_control (temp_device);
writer_base_addr_control (temp_device) ;
reader_base_addr_control (temp_device) ;
//temp_device.reset_pl_status;

return ret;

}

void interrupt_status_control
(struct character_device temp_device){
if (temp_device.interrupt_status) {
enable_frame_buffer_interrupt();
1
else{
disable_frame_buffer_interrupt();

}
}

void enable_frame_buffer_interrupt(void) {
// Enable ov7670 to generate interrupts
// writing in their own register
reg_ptr_tmp = (void __iomem x)(ov7670_reg + 0x0128);
iowrite32 (255 , reg_ptr_tmp);

115

// GPIO Ip interrupt enable register.
// Maybe here that is neededx(u32 x)
reg_ptr_tmp = (void __iomem x)(ov7670_reg + 0x011C);
iowrite32 (O xffffffff , reg_ptr_tmp);
// GPIO Ip global interrupt enable register
ov7670_device.interrupt_status = 1;
}
void disable_frame_buffer_interrupt(void){
// disable ov7670 to generate interrupts
// writing in their own register
reg_ptr_tmp = (void __iomem x*)(ov7670_reg + 0x0128);
iowrite32(0 , reg_ptr_tmp);
// GPIO Ip interrupt disable register.
// Maybe here that is neededx(u32 x)
reg_ptr_tmp = (void __iomem x*)(ov7670_reg + 0x011C);
iowrite32 (0x00000000 , reg_ptr_tmp);
// GPIO Ip global interrupt disable register
ov7670_device.interrupt_status = 0;

}

void reset_pl_status_control
(struct character_device temp_device){
if (temp_device.reset_pl_status) {
if (1ov7670_device.reset_pl_status) {
pl_reset_ip_enable () ;
1
1
else {
if (ov7670_device.reset_pl_status) {
pl_reset_ip_disable ();
initialization_after_reset ()
1
}
}

void writer_base_addr_control
(struct character_device temp_device) {
axis_to_ddr_writer_Set_base_address
(axis_to_ddr_writer_reg ,
temp_device.image_writer_base_address);

}

void reader_base_addr_control
(struct character_device temp_device){
ddr_to_axis_reader_Set_base_address
(ddr_to_axis_reader_reg ,
temp_device.image_reader_base_address);

}

static int device_close
(struct inode xinode, struct file *filp) {
//up(&ov7670_device .sem) ;
// printk (KERN_ALERT "ov7670_driver
// closed device \n");
return 0;

}

static struct file_operations fops = {
.open = device_open,

116

.release = device_close ,
.write = device_write ,
.read = device_read

}s
int driver_entry (void) {

ret = alloc_chrdev_region
(&dev_num, O, 1, DEVICE_NAME) ;
if(ret < 0) {

printk (KERN_ALERT

"ov7670_driver : failed to allocate a major number \n");
return ret;
}

major_number = MAJOR(dev_num) ;
printk (KERN_ALERT
"ov7670_driver : major number is = %d \n",major_number);
printk (KERN_ALERT
"ov7670_driver : \tuse
\"mknod /dev/%s ¢ %d O\" for device file \n"
DEVICE_NAME, major_number) ;

mcdev = cdev_alloc () ;

// create our cdev structure
// initialized our cdev
mcdev—>ops =&fops;
mcdev—>owner = THIS_MODULE;

)

ret = cdev_add(mcdev, dev_num, 1);
if(ret < 0) {
printk (KERN_ALERT

"ov7670_driver : unable to add cdev to kernel \n");
return ret;

}

return 0;

}

int initialization_after_reset(void) {
// Configure WRITER
Configure_axis_to_ddr_writer () ;

// Configure READER
Configure_ddr_to_axis_reader () ;

return 0O;

}

LHEPTTEET P r i rrrrr i i r i rrrrr i r i rr i rr i rrrrrrry
MODULE_LICENSE("GPL") ;

MODULE AUTHOR (" Utku Esen");

MODULE_DESCRIPTION ("OV7670 Linux platform driver for ZedBoard");
module_init(ov7670_driver_init);

module_exit(ov7670_driver_exit);

TITTLIIT LI rriirrirrrgi

117

D.1.2: 12C Camera Configuration User Space Application for Linux

[53k sk ok sk ok sk ok ok ok ok ok ok ok sk ok sk ok sk Kk Kk KOk K koK koK kKR KOk Kk oKk oKk oKk KOk Ok Kk oKk oKk kR ok ok [
/%%

x @file 12c_test.c

This file contains the linux example for i2c.

Note : 10—bit addressing is not supported

in the current linux driver.

June 26, 2018

Repeated start also not supported in the current linux driver.
* @note None .

S5 3 oK oK KR KK KK K K K R K R KR KR KK K K K KR KR KK KK K K K R KR KO KK KK K KK K R R R sk R ok ok [
[sk skok kot skok skokoskokokokokokskokskokoskokokskokskokskokk - Include Files sokososkososkorskorskorskokok ook /
#include <fcntl.h>

#include <stdio.h>

#include <linux/i2c—dev.h>

#include <errno.h>

#include <string.h>

#include <sys/time.h>

[k skskoskok ok skokok ok okokokokkokokokokkokokok k. Constant Definitions soksosokokskskskokoks /
#define OV7670_SLAVE_ADDRESS 0x21

#define OV7670_SLAVE_ADDRESS_WRITE 0x42

#define OV7670_SLAVE_ADDRESS_READ 0x43

#define I2C_SLAVE_FORCE 0x0706

#define I2C_SLAVE_ADDRESS 0x0703 /+ Change slave address x/
#define I2C_FUNCS 0x0705 /x Get the adapter functionality x/
#define I2C_RDWR 0x0707/% Combined R/W transfer (one stop only)x/
#define COM7 0x12

* % X X ¥

#define COM7_VALUE_RESET 0x80
#define MUX _ADDR 0x74
#define EEPROM_ADDR 0x54
#define MUX_CHANNEL_KINTEX7 0x04
#define PAGESIZE 16

#define DATA_REGISTER_CHANGED 1

#define DATA_REGISTER_NOT CHANGED 0
#define INPUT_CLOCK_FREQUENCY 24//MHz
#define INTERNAL_CLOCK_FREQUENCY 24 //MHz
#define OV7670_SLAVE_ADDRESS 0x21

#define OV7670_SLAVE_ADDRESS_WRITE 0x42
#define OV7670_SLAVE_ADDRESS_READ 0x43
#define AEW 0x24

#define AEW_VALUE 0x95

#define AEB 0x25

#define AEB_VALUE 0x33

#define VPT 0x26

#define VPT_VALUE 0xE3

#define HAECC77 0xAA

#define HAECC77_VALUE_HISTOGRAM_AEC_ON 0x94
#define HAECC77_VALUE_AVERAGE_AEC_ON 0x00
#define CLKRC 0Oxl11

#define CLKRC_VALUE_VGA 0x01

#define CLKRC_VALUE NIGHTMODE _AUTO 0x80
#define COM7 0x12

#define COM7_VALUE VGA 0x01

#define COM7_VALUE_VGA_COLOR_BAR 0x03
#define COM7_VALUE_QVGA 0x00

#define COM7_VALUE _RESET 0x80

118

#define COM3 0x0C

#define COM3_VALUE VGA 0x00

#define COM3_VALUE_QVGA 0x04

#define COMI4 Ox3E

#define COMI14_VALUE_VGA 0x00

#define SCALING_XSC 0x70

#define SCALING_XSC_VALUE_VGA 0x3A
#define SCALING_YSC 0x71

#define SCALING_YSC_VALUE_VGA 0x35
#define SCALING_DCWCTR 0x72

#define SCALING_DCWCTR_VALUE_VGA 0x11
#define SCALING_PCLK_DIV 0x73

#define SCALING_PCLK_DIV_VALUE_VGA O0xFO0
#define SCALING_PCLK_DELAY 0xA2

#define SCALING_PCLK_DELAY_VALUE_VGA 0x02
#define COMI17 0x42

#define COMI17_VALUE_AEC NORMAL_NO_COLOR_BAR 0x00
#define COMI17_VALUE _AEC NORMAL_COLOR_BAR 0x08
#define DBLV 0x6B

#define DBLV_VALUE_30FPS 0x0A

#define EXHCH Ox2A

#define EXHCH_VALUE_30FPS 0x00

#define EXHCL 0x2B

#define EXHCL_VALUE_30FPS 0x00

#define DM_LNL 0x92

#define DM_LNL_VALUE_30FPS 0x00

#define DM_LNH 0x93

#define DM_LNH_VALUE_30FPS 0x00

#define COMI11 0x3B

#define COMI1_VALUE_30_FPS 0x0A

#define COMII_VALUE_NIGHTMODE AUTO OxEA //Auto frame adjust
#define TSLB O0x3A

#define TSLB_YUYV 0x05

#define TSLB_YVYU 0x05

#define TSLB_UYVY 0x0D

#define TSLB_VYUY 0x0D

#define COMI13 0x3D

#define COMI3_YUYV 0x80

#define COMI3_YVYU 0x89

#define COMI3_UYVY 0x80

#define COMI3 VYUY 0x89

#define COMI16 0x41

#define COMI6_VALUE_DENOISE_ON_EDGE_ENHANCEMENT ON 0x38
#define SATCTR 0xC9

#define SATCTR _VALUE OxcO // 0xcO
#define HSTART Ox17

#define HSTART VALUE_DEFAULT 0x11
#define HSTART _VALUE VGA 0x13 //0x14
#define HSTOP 0x18

#define HSTOP_VALUE _DEFAULT 0x61
#define HSTOP_VALUE_VGA 0x01 //0x02
#define HREF 0x32

#define HREF _VALUE_DEFAULT 0x80

#define HREF_VALUE_VGA O0xb6 //0x24
#define VSTRT 0x19

#define VSTRT_VALUE_DEFAULT 0x03
#define VSTRT _VALUE_VGA 0x02 //0x03
#define VSTOP Ox1A

#define VSTOP_VALUE_DEFAULT 0x7B

119

#define VSTOP_VALUE_VGA 0x7a //0x7B
#define VREF 0x03

#define VREF_VALUE _DEFAULT 0x03
#define VREF_VALUE_VGA 0x0A

#define ABLC1 0xB1

#define ABLCI_VALUE 0x0C

#define THL_ST 0xB3

#define THL_ST_VALUE 0x82

#define WAITING_TIME 5000

[stk ok skt okt skokoskokosk ook ook okoskokokokokkokkokok ok Type Definitions seokskskorsokskokskokskox [
typedef unsigned char Xuint8;
typedef char Xint8;
/+x< signed 8—Dbit x/

typedef unsigned short Xuintl6;
/+%< unsigned 16—bit =/

typedef short Xintl6;
/+x< signed 16—bit =*/

typedef unsigned long Xuint32;
/+%x< unsigned 32—bit x/

typedef long Xint32;
/+x< signed 32—bit x/

typedef float Xfloat32;
/+x< 32—Dbit floating point */
typedef double Xfloat64;

/+x< 64—Dbit double precision floating point x*/
typedef unsigned long Xboolean;

/*xx< boolean (XTRUE or XFALSE) x/

typedef Xuint8 AddressType;

[#xxxxx+x+x Macros (Inline Functions) Definitions skssksoksoksoksoks/
[k ok ookkokokkokokkokk FUNCtion Prototypes sk skoskokokskokokkokook ok ok ok /

static int IicConfigure(void);

int OV7670_reset_all_registers(void);

int OV7670_prescale_clock_and_PLL_control(void);

int OV7670_set_VGA_resolution_and_YUV_output(void);

int OV7670_change_order_for_YUV (void);

int OV7670_set_other_registers(void);

int OV7670_set_window_output_registers(void);
[kksksxokkrknokkkxk variable Definitions skososksksk sk skokskok sk skokok ok koskokok [

/ *

x* FD of the IIC device opened.
x/

int Fdiic;

Xuint8 BytesWritten;

Xuint8 WriteBuffer[2];

[xxkskkkkxxxkkk Function Definitions s skskskokskskskskkkokkokkxx /[

[%5k ko ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok Kk Kk ok ko kK Kk Kk Kk ok ok Kk Kk Kk Kok ok kKo /
[%%

* Entry point for integration tests on IIC.
*

* @param

*

* @return 0 if successful else —I.

120

*
* @note None.

*

ok ok ok ok ok okok ok ok okok ok sk ok ok ok ok ok ok K ok ok ok ok ok ok sk ok sk ok ok ok ok ko ok sk ok ok K sk ok ok [/
int main ()

{

int Status;

int TestLoops=1;

/! Open the device

Fdiic = open("/dev/i2c —0", O RDWR) ;

if (Fdiic < 0)

{
printf (" Cannot open the IIC device\n");
return 1;

}

printf ("IIC device file opened\n");
Status = IlicConfigure () ;
if (Status)

{
printf (" Cannot configured OV7670\n");
close (Fdiic) ;
return 1;

}

printf ("OV7670 config successfull \n");

close (Fdiic);

return 0O;

}

static int licConfigure (void)

{

/* Buffer to hold location address.x*/

int addr = OV7670_SLAVE_ADDRESS;
if (ioctl (Fdiic, I2C_SLAVE_FORCE, addr) < 0)
{
printf ("\n Unable to set the ov7670 address\n");
printf (" %s\n". strerror(errno));
return —1;
}
usleep (WAITING_TIME) ;
OV7670_reset_all_registers ()
printf ("\n Video quality must be bad \n");
printf ("\n OV7670_reset_all_registers done.
Press a button.\n");
OV7670_set_VGA_resolution_and_YUV_output () ;
printf ("\n OV7670_set_VGA_resolution_and_YUV_output done.
Press a button.\n");
OV7670_change_order_for_YUV ();
printf ("\n OV7670_change_order_for_YUV done.
Press a button.\n");
OV7670_set_other_registers () ;
printf ("\n OV7670_set_other_registers done.
Press a button.\n");
OV7670_set_window_output_registers () ;
printf ("\n OV7670_set_window_output_registers done.
Press a button to finish application.\n");
return O;

121

}

int OV7670_reset_all_registers(void)
{
/%
* Position the address pointer in EEPROM.
*/
WriteBuffer[0] COM7;
WriteBuffer[1] COM7_VALUE_RESET;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{
printf(
"Error COM7, COM7_VALUE_RESET BytesWritten = %u\n"
BytesWritten) ;

printf (" %s\n", strerror (errno));
return —1;
}
else
{
printf ("COM7, COM7_VALUE_RESET Done\n");
}

usleep (WAITING_TIME) ;

return 0;

}

int OV7670_prescale_clock_and_PLL_control (void)
{

return O;

}

int OV7670_set_VGA_resolution_and_YUV_output(void)
{
WriteBuffer [0] CLKRC;
WriteBuffer[1] 0x80;
BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)

{
printf (" Error CLKRC, 0x80\n");
printf (" %s\n", strerror(errno)):
return —1;

1

else

{
printf ("CLKRC, 0x80 Done\n");

1

usleep (WAITING_TIME) ;
WriteBuffer [0] = COM7;
WriteBuffer[1] = 0x00;
BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)

{
printf ("Error COM7, 0x00\n");
printf (" %s\n", strerror (errno));
return —1;

1

else

{

122

printf ("COM7, 0x00 Done\n");

}
usleep (WAITING_TIME) ;
WriteBuffer [0] = COM3;
WriteBuffer[1] 0x00;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)

{

printf ("Error COM3, 0x00\n");
printf (" %s\n", strerror (errno));
return —1;

}

else
{
printf ("COM3, 0x00 \n");

}
usleep (WAITING_TIME) ;
WriteBuffer[0] = COMI4;
WriteBuffer[1] 0x00;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)

{

printf (" Error COM14, 0x00\n");
printf (" %s\n", strerror(errno));
return —1;

}

else

{

}
usleep (WAITING_TIME) ;

WriteBuffer [0] = SCALING_XSC;
WriteBuffer[1] SCALING_XSC_VALUE_VGA ;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)

{

printf ("COMI14, 0x00 \n");

printf (" Error SCALING_XSC, SCALING_XSC_VALUE_VGA\n");
printf (" %s\n"., strerror(errno));
return —1;
}
else
{
printf ("SCALING_XSC, SCALING_XSC_VALUE_VGA \n");
}
usleep (WAITING_TIME) ;
WriteBuffer [0] = SCALING_YSC;
WriteBuffer[1] SCALING_YSC_VALUE_VGA;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{

printf (" Error SCALING_YSC, SCALING YSC VALUE VGA\n");
printf (" %s\n", strerror(errno));
return —1;

}

else

{
printf ("SCALING_YSC, SCALING YSC_VALUE_VGA \n");

}
usleep (WAITING_TIME) ;

123

WriteBuffer [0] SCALING_DCWCTR ;
WriteBuffer[1] SCALING_DCWCTR_VALUE VGA ;
BytesWritten = write (Fdiic , WriteBuffer, 2);

if (BytesWritten != 2)

{
printf (" Error SCALING_DCWCTR, SCALING_DCWCTR_VALUE_VGA\n") ;
printf (" %s\n", strerror(errno));
return —1;

}

else

{
printf ("SCALING_DCWCTR, SCALING DCWCTR_VALUE_VGA \n");

}

usleep (WAITING_TIME) ;

WriteBuffer [0] = SCALING_PCLK_DIV;
WriteBuffer[1] = 0xFO;

BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)

{
printf (" Error SCALING_PCLK_DIV, 0xFO0\n");
printf (" %s\n", strerror(errno));
return —1;

}

else

{
printf ("SCALING_PCLK_DIV, 0xFO \n");

}

usleep (WAITING_TIME) ;

printf ("\n Video quality must be change \n");

printf ("\n SCALING_PCLK_DIV done.Press a button.\n");
// getchar () ;

WriteBuffer[0] SCALING_PCLK_DELAY ;

WriteBuffer[1] SCALING_PCLK_DELAY_VALUE_VGA;
BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)

{
printf(
"Error SCALING_PCLK_DELAY, SCALING_PCLK_DELAY_VALUE_VGA\n
)
printf (" %s\n", strerror(errno));
return —1;
}
else
{
printf(
"SCALING_PCLK_DELAY, SCALING_PCLK_DELAY_VALUE_VGA \n"
)
}
usleep (WAITING_TIME) ;
return 0;
}
int OV7670_change_order_for_YUV (void)
{
WriteBuffer [0] = TSLB;
WriteBuffer[1] = TSLB_YUYV;

BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{

124

printf (" Error asd TSLB, TSLB_YUYV\n");
printf (" %s\n", strerror(errno));
return —1;

}

else

{

}
usleep (WAITING_TIME) ;

printf ("\n Video quality must be change \n");
printf ("\n TSLB_YUYV done.Press a button.\n");
// getchar () ;
WriteBuffer[0] COM13;
WriteBuffer[1] 0x80;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)

{

printf ("asd TSLB, TSLB_YUYV\n");

printf (" Error COM13, 0x80\n");
printf (" %s\n", strerror(errno));
return —1;

}

else

{

}
// here quality must be high

usleep (WAITING_TIME) ;
return 0;

printf ("COMI13, 0x80 \n");

}

int OV7670_set_other_registers(void)
{
WriteBuffer [0] = EXHCH;
WriteBuffer[1] = EXHCH_VALUE_30FPS;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{
printf (" Error EXHCH, EXHCH_VALUE_30FPS\n") ;
printf (" %s\n", strerror(errno));
return —1;

}

else
{
printf ("EXHCH, EXHCH_VALUE_30FPS \n");
}
usleep (WAITING_TIME) ;
WriteBuffer [0] = EXHCL;
WriteBuffer[1] = EXHCL_VALUE_30FPS;

BytesWritten write (Fdiic , WriteBuffer, 2);
if (BytesWritten != 2)
{

printf (" Error EXHCL, EXHCL_VALUE_30FPS\n");
printf (" %s\n", strerror(errno));
return —1;

}

else

{
printf ("EXHCL, EXHCL_VALUE_30FPS \n");

}
125

usleep (WAITING_TIME) ;
WriteBuffer[0] = DM_LNL;
WriteBuffer [1] = DM_LNL_VALUE_30FPS;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{
printf ("Error DM_LNL, DM_LNL_VALUE_30FPS\n") ;
printf (" %s\n", strerror(errno));
return —1;
}

else

{

}
usleep (WAITING_TIME) ;
WriteBuffer [0] = DM_LNH;
WriteBuffer[1] = DM_LNH_VALUE_30FPS;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{

printf ("DM_LNL, DM_LNL_VALUE_30FPS \n");

printf ("Error DM_LNH, DM_LNH_VALUE_30FPS\n") ;
printf (" %s\n", strerror (errno));
return —1;
}
else
{
printf ("DM_LNH, DM_LNH_VALUE_30FPS \n");
}
usleep (WAITING_TIME) ;
WriteBuffer[0] = COMI11;
WriteBuffer[1] = 0x0A;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)

{
printf ("Error COMI11 0x0A \n");
printf (" %s\n", strerror(errno));:
return —1;

}

else

{
printf ("COMI11 0xOA\n");

}

usleep (WAITING_TIME) ;
return 0;

}

int OV7670_set_window_output_registers (void)

{

WriteBuffer[0] HSTART;

WriteBuffer [1] = HSTART_VALUE_VGA;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)

{

printf (" Error HSTART HSTART VALUE VGA \n");
printf (" %s\n", strerror(errno)):
return —1;

}

else

126

{
printf ("HSTART HSTART VALUE VGA\n") ;

}

usleep (WAITING_TIME) ;

printf ("\n Video quality must be change to bad \n");
printf ("\n HSTART_VALUE VGA done.Press a button.\n");
/] getchar () ;

WriteBuffer[0] HSTOP;

WriteBuffer[1] HSTOP_VALUE_VGA ;

BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)
{
printf (" Error HSTOP HSTOP_VALUE_VGA \n");
printf (" %s\n", strerror(errno));
return —1;
}
else
{
printf ("HSTOP HSTOP_VALUE_VGA\n") ;
}

usleep (WAITING_TIME) ;

printf ("\n Video quality must be change to good \n");
printf ("\n HSTOP_VALUE_VGA done.Press a button.\n");
/] getchar () ;

WriteBuffer[0] HREF;

WriteBuffer[1] HREF_VALUE_VGA;

BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)

{
printf (" Error HREF HREF VALUE_VGA \n");
printf (" %s\n", strerror(errno));:
return —1;

}

else

{
printf ("HREF HREF_VALUE_VGA\n") ;

}

usleep (WAITING_TIME) ;

printf ("\n Video quality must be change to good \n");
printf ("\n HREF VALUE_VGA done.Press a button.\n");
// getchar () ;

WriteBuffer [0] VSTRT;

WriteBuffer[1] VSTRT_VALUE_VGA ;

BytesWritten = write (Fdiic, WriteBuffer, 2);

if (BytesWritten != 2)
{
printf (" Error VSTRT VSTRT_VALUE_VGA \n");
printf (" %s\n", strerror (errno));
return —1;
1
else
{
printf ("VSTRT VSTRT_VALUE_VGA\n") ;
1

usleep (WAITING_TIME) ;

printf ("\n Video quality must be change to good \n");
printf ("\n VSTRT_VALUE_VGA done.Press a button.\n");
// getchar () ;

WriteBuffer [0] = VSTOP;

127

WriteBuffer[1] = VSTOP_VALUE_VGA;
BytesWritten = write (Fdiic , WriteBuffer, 2);
if (BytesWritten != 2)
{
printf (" Error VSTOP VSTOP_VALUE_VGA \n");
printf (" %s\n", strerror (errno));
return —1;

}

else
{
printf ("VSTOP VSTOP_VALUE_VGA\n") ;
}
usleep (WAITING_TIME) ;
WriteBuffer[0] = VREF;
WriteBuffer[1] VREF_VALUE_VGA ;
BytesWritten = write (Fdiic, WriteBuffer, 2);
if (BytesWritten != 2)
{

printf ("Error VREF VREF VALUE VGA \n");
printf (" %s\n", strerror(errno));
return —1;
}
else
{
printf ("VREF VREF_VALUE VGA\n") ;
}
usleep (WAITING_TIME) ;
printf ("\n There must be one vibration \n");
printf ("\n VREF done.Press a button.\n");
// getchar () ;
return 0;

128

D.1.3: Taking Picture User Space Application for Linux

/ %

Name : take_picture.c

Author : UTKU ESEN

Version : June 26, 2018

Copyright : All free

Description : take_pic linux user space app.
*/

#include <stdio.h>
#include <stdlib .h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <ctype.h>
#include <sys/mman.h>
#include <stdint.h>

#define FATAL do{ \

fprintf (stderr, "Error at line %d, file %s (%d)[%s]|\n", \
__LINE__, __FILE__, errno, strerror(errno));\
exit(1l);} while (0)

#define FRAME W 640

#define FRAME H 480

#define CAMERA_DEVICE "/dev/OV7670"

#define RAM_MEMORY_DEVICE "/dev/mem"

#define FRAME_BUFFER_DIM_WRITER 307200

#define FRAME_BUFFER_BASE_ADDR_WRITER 0x10000000
#define FRAME_BUFFER_BASE_ADDR_WRITER_TEMP 0x13000000
#define FRAME_BUFFER_NUM_WRITER 8

#define FRAME_BUFFER_DIM_READER 307200

#define FRAME_BUFFER_BASE_ADDR_READER 0x16000000
#define FRAME_BUFFER_NUM_READER 8

#define CAPTURED_IMAGE_FILE NAME "results/captured_image.dat"
#define MAP_SIZE_WRITER \

FRAME_BUFFER_DIM_WRITER * (FRAME_BUFFER_NUM_WRITER)
#define MAP_SIZE_READER \

FRAME_BUFFER_DIM_READER x (FRAME_BUFFER_NUM_READER)
#define MAP_MASK WRITER (MAP_SIZE WRITER—1)

#define MAP MASK READER (MAP_SIZE READER-1)

static struct character_device {
char last_image_number;
char xlast_image_address;
char interrupt_status;
char reset_pl_status;
// writer base address
int image_writer_base_address;
// reader base address
int image_reader_base_address;
// struct semaphore sem;

} ov7670_device;

int main(void)

129

// variables are being created

int fd_camera, fd_mem;

char input_char;

unsigned int i, j;

void xmap_base_reader, smap_base_writer;
voidxvirt_addr_src , xvirt_addr_dst, xbuffer_addr;
unsigned long read_result, writeval;
off _t source, destination;

int access_type = 'w’;

int ready_for_read_frame_address;

FILE «fd_captured_image_save;

/!l Creating new frame buffer in

/!l virtual memory for copy one frame from camera

buffer_addr = malloc (FRAME_BUFFER_DIM_WRITER) ;

if (buffer_addr == 0)

{
printf ("Error: There is not enough memory in your system \n");
fflush (stdout);
FATAL;

}

// Opening camera config file
fd_camera = open(CAMERA_DEVICE, O RDWR) ;

// Reading all camera informations

read (fd_camera, &ov7670_device, sizeof(ov7670_device));

ov7670_device.image_writer_base_address =
FRAME_BUFFER_BASE_ADDR_WRITER_TEMP;

ov7670_device.image_reader_base_address =
FRAME_BUFFER_BASE_ADDR_READER ;

write (fd_camera, &ov7670_device, sizeof(ov7670_device));

// Reading last frame address from all camera informations
ready_for_read_frame_address =
(int) ov7670_device.last_image_address;
printf ("\n ready_for_read_frame_address: %p \n",
ready_for_read_frame_address);
fflush (stdout);

/!l Opening Ram file
if ((fd_mem = open(RAM_MEMORY_DEVICE, O RDWRIO_SYNC)) == —1)
{
printf ("Problem reason is RAM MEMORY cannot be opened\n");
fflush (stdout);
FATAL;
1

else

{

printf ("/dev/mem opened\n");

}

fflush (stdout);

// dst and src addresses are cited

source = FRAME_BUFFER_BASE_ADDR_WRITER;
destination = FRAME_BUFFER_BASE ADDR_READER ;

// Map Ram memory virtualy for writer

130

map_base_writer = mmap(
0,
MAP_SIZE_WRITER,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fd_mem,
source

)

if (map_base_writer == (voidx)—1)

{
FATAL;

}

else
{
printf ("map_base_writer Memory mapped at address %p\n"
map_base_writer) ;
}
fflush (stdout);

// Map Ram memory virtualy for reader
map_base_reader = mmap(

0,

MAP_SIZE_READER,

PROT_READ | PROT_WRITE,

MAP_SHARED,

fd_mem,

destination

)

if (map_base_reader == (voidx)—1)

{
FATAL;

}

else
{
printf ("map_base_reader Memory mapped at address %p\n"
map_base_reader) ;

}

fflush (stdout);

/] calculating src and dst virtual addresses

// virt_addr_dst =

/!l map_base_reader +(destination & MAP_MASK READER) ;

virt_addr_dst = buffer_addr;

virt_addr_src = map_base_writer +
ov7670_device.last_image_number*FRAME_BUFFER_NUM_WRITER;

// this address will be used
// after one frame is wrote on first buffer of vga
// first_frame_addr =
// map_base_reader +(destination & MAP _MASK READER) ;
printf ("\n virt_addr_dst: %p,

virt_addr_src: %p,

buffer_addr: %p \n",

virt_addr_dst ,

131

virt_addr_src ,
buffer_addr);
fflush (stdout);

// last frame wrote on ram 1is
// reading then writing on vga reader address
for(i = 0; i < (FRAME_BUFFER_DIM_READER) ; i++)
{
*((unsigned charx)virt_addr_dst) =
*((unsigned charx)virt_addr_src);
virt_addr_dst++;
virt_addr_src ++;
}
printf ("\n buffer done \n");
fflush (stdout);
// after first frame is copied,
// we should copy other vga buffers from first vga_buffer
// because last frame wrote on ram from camera
// can be change during the writing process

// our source is vga buffer_0
virt_addr_src = buffer_addr;
printf ("\n virt_addr_src done \n");

fflush (stdout);
// our destinations are from vga_buffer_1 to vga_buffer_7
virt_addr_dst = map_base_reader;
/!l this 1is showing vga_buffer_1
printf ("\n virt_addr_dst done \n");

fflush (stdout);

// copy all vga_buffer from vga_buffer_0
for(i = 0; i < (FRAME_BUFFER_NUM_READER) ; i++)

{
// our source is vga buffer_0O
virt_addr_src = buffer_addr;
printf ("\n dst = %x,
virt_addr_dst: %p,
virt_addr_src: %p,
buffer_addr: %p \n",
destination ,
virt_addr_dst ,
virt_addr_src ,
buffer_addr);
fflush (stdout);
for(j = 0; j < (FRAME_BUFFER DIM_READER); j++)
{
*((unsigned charx)virt_addr_dst) =
*((unsigned charx)virt_addr_src);
virt_addr_dst++;
virt_addr_src ++;
!
}

printf ("\n vga done \n");
fflush (stdout);

110011111111 write captured image to sdcard ////1111111]
/l create or open existing original image data file

fd_captured_image_save = fopen (CAPTURED_IMAGE_FILE_ NAME, "wb");

132

if (fd_captured_image_save == NULL)

{
printf (" Error opening or creating file !\n");
exit(1);

}

// our src is buffer
virt_addr_src = buffer_addr;

// write all pixel values on file
for(j = 0; j < (FRAMEW); j++)

{
for(i = 0; i < (FRAME H); i++)
{
virt_addr_src = buffer_addr + i * FRAMEW + j;
fprintf (fd_captured_image_save , "%c",
*((unsigned charx)virt_addr_src));
}
}

fclose (fd_captured_image_save);
THETLLLL L rirrr i irrrriirrrrri
/] releasing virtual memory for writer
if (munmap(map_base_writer , MAP_SIZE_WRITER) == —1)
{
FATAL;

}

// releasing virtual memory for reader
if (munmap(map_base_reader , MAP_SIZE_READER) == —1)
{

FATAL;

}

// Release buffer
free (buffer_addr);

/" Closing memory file

close (fd_mem) ;

printf ("\n continue to video stream press a key \n");
fflush (stdout);

getchar () ;

ov7670_device.image_writer_base_address =
FRAME_BUFFER_BASE_ADDR_WRITER ;

ov7670_device.image_reader_base_address
FRAME_BUFFER_BASE_ADDR_WRITER ;

write (fd_camera, &ov7670_device, sizeof(ov7670_device));

close (fd_camera);

return 0;

133

D.1.4: Information Hiding User Space Application for Linux

/ *

Name
Author
Version

Copyright
Description

data_hiding_just_arm.c
: UTKU ESEN

June 26, 2018

Your copyright notice

data hiding just arm

x/

#include
#include
#include
#include
#include
#include
#include
#include

#define
fprintf (

__LINE__,

exit

#define
#define

#define
"plainte
#define
"results
#define
"results
#define
"results
#define
"results
#define
"results

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define

#define

<stdio .h>
<stdlib .h>
<unistd .h>
<errno .h>
<fcntl .h>
<ctype.h>
<sys/mman.h>
<math.h>

FATAL do{ \

stderr , "Error at line %d,
__FILE__, errno
(1);} while (0)

file
strerror (errno)) ;\

s

CAMERA_DEVICE "/dev/OV7670"
RAM_MEMORY_DEVICE "/dev/mem"

PLAINTEXT_FILE_NAME \

xt.txt"
BINARY_PLAINTEXT_FILE_NAME \
/binary_plaintext. txt"
ORIGINAL_IMAGE_FILE_NAME \
/original_image .dat"
STEGO_IMAGE_FILE_NAME \
/stego_image . dat"
INTERPOLATION_IMAGE_FILE_NAME \
/interpolation_image .dat"
BIT_NUMBER_IMAGE_FILE_NAME \
/bit_number_image . dat"

FRAME W 640
FRAME_H 480
THRESHOLD 210

FRAME_BUFFER_DIM_WRITER 307200
FRAME_BUFFER_BASE_ADDR_WRITER 0x10000000
FRAME_BUFFER_BASE_ADDR_WRITER_TEMP 0x13000000
FRAME_BUFFER_NUM_WRITER 8§

FRAME _BUFFER_DIM_READER 307200
FRAME_BUFFER_BASE_ADDR_READER 0x16000000
FRAME _BUFFER_NUM_READER 8§

MAP_SIZE_WRITER \

FRAME BUFFER _DIM_WRITER x (FRAME BUFFER_NUM_READER)

134

9%s (%od)[%s]\n",

'

\

#define MAP_SIZE READER \
FRAME _BUFFER_DIM_READER * (FRAME BUFFER_NUM_READER)

#define MAP_MASK WRITER (MAP_SIZE WRITER-1)
#define MAP_MASK READER (MAP_SIZE_READER-1)

static struct character_device {
char last_image_number;
char xlast_image_address;
char interrupt_status;
char reset_pl_status;
// writer base address
int image_writer_base_address;
// reader base address
int image_reader_base_address;
// struct semaphore sem;

} ov7670_device;

[1111171717171177171 Global Variables /////171111171711711711117
int key[3][2]={100, 120, 300,200, 10, 470};

void xmap_base_reader, smap_base_writer;

void *virt_addr_src , svirt_addr_dst;

void sbuffer_addr;

void xinterpolation_im_addr;

void xembedding_map_addr;

void xstego_im_addr;

int xsymmetry_map_addr_rows, xsymmetry_map_addr_columns;
int fd_camera, fd_mem;

char *file_wrt_src_ptr, *process_wrt_src_ptr, *process_wrt_dst_ptr;
unsigned long read_result, writeval;

off _t source, destination;

int ready_for_read_frame_address;

int plaintext_len , binary_plaintext_len;

LI rrl i1l User Functions [/ /171111 777117771

void get_plaintext(void);

void convert_plaintext_to_binary_and_save_on_sdcard(void);
void get_key_from_user(void);

void create_buffers(void);

void read_last_image_number(void);

void initialize_RAM (void);

void init_virt_addr_write (void);

void init_virt_addr_read (void);

void copy_last_image_to_buffer(void);

void save_original_image_to_sd_card(void);

void run_data_hiding_app(void);

char measure_bit_number(char decimal_number);
void add_hide_data_on_interpolation_values (void);
void show_buffer_on_VGA (void);

void show_result_on_VGA (void);

void save_interpolation_image_to_sd_card(void);
void save_bit_number_image_to_sd_card(void);
void save_stego_image_to_sd_card(void);

void release_mems (void);

135

int main(void)

{
// variables are being created
char input_char;

// get plaintext
get_plaintext();

convert_plaintext_to_binary_and_save_on_sdcard () ;

// Create two buffer for original image and stego image
create_buffers () ;

// Read Last Image Number From Camera
read_last_image_number () ;

// initialize RAM
initialize_RAM () ;

// initialize virtual addresses of writer and reader
init_virt_addr_write () ;
init_virt_addr_read () ;

JHPEEErrrrrr il STEP v 111111 rrrrniiriirlrnrry
// Copy last image to buffer

copy_last_image_to_buffer();

show_buffer_on_VGA () ;

THPEPEEEEEL i STEP 2 [1 111111 rriiriiiiirllirg
// Saving original image on sd_card
save_original_image_to_sd_card();

/!l key input from user
get_key_from_user () ;

LHEEEEErrrrrr i rr i rr i rr i rr il STEP 3 1111711 ri i rrrrirry
// run data_hiding application
run_data_hiding_app () ;

// Saving STEGO image on sd_card
save_stego_image_to_sd_card();

J110000 000 rrrrrrrrl STEP 4 (7117711717711 0 010 0i0rririrrrrlng
// show result on VGA
show_result_on_VGA () ;

// Release buffer
free (buffer_addr);

// releasing virtual memory for writer
if (munmap(map_base_writer , MAP_SIZE_WRITER) == —1)

{
FATAL;

}

// Release memories

136

release_mems () ;

return O;

}
void get_plaintext(void)
{
FILE «fd_plaintext;
// open existing plaintext data file
fd_plaintext = fopen (PLAINTEXT_FILE_NAME, "r");
if (fd_plaintext == NULL)
{
printf ("Error opening plaintext—1 file !\n");
exit(1);
}
fseek (fd_plaintext, 0, SEEK_END);
plaintext_len = ftell (fd_plaintext);
printf ("\n Plaintext size is %d \n", plaintext_len);
fflush (stdout);
/!l Go back to the beginning of file
rewind (fd_plaintext);
fclose (fd_plaintext);
}

void convert_plaintext_to_binary_and_save_on_sdcard(void)
{
int i, j;
FILE «fd_plaintext, xfd_binary_plaintext;
// open existing plaintext data file
fd_plaintext = fopen (PLAINTEXT _FILE_NAME, "r");
if (fd_plaintext == NULL)
{
printf (" Error opening plaintext—2 file !\n");
exit(1);
}

char char_data, temp_data;

char binary_data[8];

/l create or open existing plaintext data file
fd_binary_plaintext = fopen (BINARY_PLAINTEXT_FILE_NAME, "w+");
if (fd_binary_plaintext == NULL)

{
printf (" Error opening binary plaintext file !\n");
exit(1);
}
for(i = 0; 1 < plaintext_len; i++)
{
fscanf (fd_plaintext, "%c", &char_data);
temp_data = char_data;
// printf ("\n char_data = %c %d\n", char_data, char_data);

// fflush (stdout);

for(j = 0; j < 8; j++)

{
if (temp_data >= (1<<(7 — j)))
{

137

fprintf (fd_binary_plaintext, "%d ", 1):
temp_data = temp_data — (1<<(7 — j));

// printf (" %d". 1);
// fflush (stdout);

1

else

{

fprintf (fd_binary_plaintext, "%d ", 0);

I/ printf (" %d", 0);
/1 fflush (stdout);

1

}

//printf ("\n");
// fflush (stdout) ;
I/ scanf ("%s ", &key [0][0]);
}
binary_plaintext_len = ftell (fd_binary_plaintext);
printf ("\n binary_plaintext_len is %d \n",
binary_plaintext_len);
fflush (stdout);
fclose (fd_plaintext);
fclose(fd_binary_plaintext);

printf ("\n Binary plaintext is done \n");
fflush (stdout);

}

void get_key_from_user(void)

{
printf ("\n Welcome to data hiding application");
printf ("\n Please enter your key below \n");

printf ("\n Enter your key’s 1th part between O and 479 \n");
scanf ("%d", &key[O0][0]);

printf ("\n Enter your key’s 2th part between 0 and 639 \n");
scanf ("%d", &key [O][1]);

printf ("\n Enter your key’s 3th part between 0 and 479 \n");
scanf ("%d", &key[1][0]);

printf ("\n Enter your key’s 4th part between 0O and 639 \n");
scanf ("%d", &key[1][1]);

printf ("\n Enter your key’s 5th part between 0 and 479 \n");
scanf ("%d", &key[2][0]);

printf ("\n Enter your key’s 6th part between O and 639 \n");
scanf ("%d", &key[2][1]);
fflush (stdout);

}

void create_buffers (void)
{
// Creating new frame buffer in virtual memory for
// copy one frame from camera
buffer_addr = malloc (FRAME_BUFFER_DIM_WRITER) ;
if (buffer_addr == 0)
{

138

printf(

"Error: There is not enough memory in your system \n");
fflush (stdout);
FATAL;

}

/!l Creating interpolation_im_addr in virtual memory
interpolation_im_addr = malloc (FRAME_BUFFER_DIM_WRITER) ;
if (interpolation_im_addr == 0)
{

printf (" Error: Insufficient memory \n");

fflush (stdout);

FATAL;

}

// Creating embedding_map buffer in virtual memory
embedding_map_addr = malloc (FRAME_BUFFER_DIM_WRITER) ;
if (embedding_map_addr == 0)
{

printf (" Error: Insufficient memory\n");

fflush (stdout);

FATAL;

}

// Creating result frame buffer in virtual memory
// for copy filter results

stego_im_addr = malloc (FRAME_BUFFER_DIM_WRITER) ;
if (stego_im_addr == 0)

{

printf ("Error: Insufficient memory\n");
fflush (stdout);
FATAL;

}
}

void read_last_image_number(void)
{
/!l Opening camera config file
fd_camera = open(CAMERA_DEVICE, O RDWR) ;

// Reading all camera informations

read (fd_camera, &ov7670_device, sizeof(ov7670_device));

ov7670_device.image_writer_base_address =
FRAME_BUFFER_BASE_ADDR_WRITER_TEMP;

ov7670_device.image_reader_base_address =
FRAME_BUFFER_BASE_ADDR_READER ;

write (fd_camera, &ov7670_device, sizeof(ov7670_device));

/!l showing all informations about camera to user

printf ("\n last_image_number: %d"
ov7670_device.last_image_number);

printf ("\n last_image_address: %x",
ov7670_device.last_image_address);

printf ("\n interrupt_status: %d"
ov7670_device.interrupt_status);

printf ("\n reset_pl_status: %d \n",
ov7670_device.reset_pl_status);

printf ("\n image_writer_base_address: %x \n",

139

ov7670_device.image_writer_base_address);
printf ("\n image_reader_base_address: %x \n",

ov7670_device.image_reader_base_address);
fflush (stdout);

// Reading last frame address from all camera informations
ready_for_read_frame_address =
(int) ov7670_device.last_image_number;
printf ("\n last_image_number: %d \n",
ready_for_read_frame_address);
fflush (stdout);

}

void initialize_RAM (void)
{
// Opening Ram file
if ((fd_mem = open(RAM_MEMORY_DEVICE, O_RDWRIO_SYNC)) == —1)
{

printf (" Problem reason is RAM MEMORY cannot be opened\n");
fflush (stdout);
FATAL;

}

else

{

printf ("/dev/mem opened\n");

}

fflush (stdout);
}
void init_virt_addr_write (void)
{

// dst and src addresses are cited

source = FRAME_BUFFER_BASE_ADDR_WRITER;

// Map Ram memory virtualy for writer
map_base_writer = mmap(0, MAP_SIZE_WRITER,
PROT_READ | PROT_WRITE,

MAP_SHARED,
fd_mem,
source) ;
if (map_base_writer == (voidx)—1)
{
FATAL;
}
else
{
printf ("Memory mapped at address %x.\n"., map_base_writer);

}
fflush (stdout);

}
void init_virt_addr_read (void)
{
// dst and src addresses are cited
destination = ov7670_device.image_reader_base_address;

// Map Ram memory virtualy for reader

map_base_reader = mmap(0, MAP_SIZE_READER,
PROT_READ | PROT_WRITE,

140

MAP_SHARED,

fd_mem,
destination);
if (map_base_reader == (voidx)—1)
{
FATAL;
!
else
{
printf ("Memory mapped at address %x.\n", map_base_reader);
}
fflush (stdout);
}
void copy_last_image_to_buffer(void)
{
unsigned int 1i;
unsigned char* intr_img_addr;
/l calculating src and dst virtual addresses
// virt_addr_dst = map_base_reader +(destination & MAP_MASK READER) ;
virt_addr_dst = buffer_addr;
virt_addr_src =
map_base_writer +
FRAME_BUFFER_DIM_WRITER * ready_for_read_frame_address;
intr_img_addr = interpolation_im_addr;
// this address will be used
// after one frame is wrote on first buffer of vga
// first_frame_addr =
// map_base_reader +(destination & MAP_MASK READER) ;
printf ("\n virt_addr_dst: %p,
virt_addr_src: %p,
buffer_addr: %p,
stego_im_addr: %p \n",
virt_addr_dst ,
virt_addr_src ,
buffer_addr ,
stego_im_addr);
fflush (stdout);
L0000 rrrrrrl STEP U /117117 rrrrrirrrirrrrrrrgi
// last frame wrote on ram is reading then writing on frame_buffer
for(i = 0; i < (FRAME_BUFFER_DIM_READER) ; i++)
{
*((unsigned charx)virt_addr_dst) =
*((unsigned charx)virt_addr_src);
*((unsigned charx)intr_img_addr) =
*((unsigned charx)virt_addr_src);
virt_addr_dst++;
virt_addr_src ++;
intr_img_addr++;
}
printf ("\n buffer done \n");
fflush (stdout);
1
void save_original_image_to_sd_card(void)
{

141

unsigned int i, j;
FILE xfd_original_image_save;
// create or open existing original image data file
fd_original_image_save =
fopen (ORIGINAL_IMAGE_FILE_NAME, "w+");
if (fd_original_image_save == NULL)
{
printf ("Error opening or creating file !\n");
exit(1);
}

// our src is buffer
// write all pixel values on file
for(j = 0; j < (FRAMEW); j++)

{
for(i = 0; i < (FRAME_H); i++)
{
file_wrt_src_ptr =
buffer_addr + i * FRAMEW + j;
fprintf (fd_original_image_save , "%c",
xfile_wrt_src_ptr);
}
}

// close original image file
fclose (fd_original_image_save);
}
void run_data_hiding_app(void)
{
unsigned int i, j, 1;
int status;
char interpolated_im[2][2];
char original_im[2][2];
char emb_sizes_im[2][2];
char * embedding_ptr, input;
// source is last frame_buffer and
// destination is filter result
// calculate interpolations and find embedding sizes
// for each interpolation pixels
for(i = 0; i < (FRAME_H); i+=2)

{
for(j = 0; j < (FRAMEW); j+=2)
{
// Calculating region area
status = 0;
/! Checking columns
if (j == (FRAMEW — 2))
{
status += 1;
}

/! Checking rows
if (i == (FRAME_H — 2))
{

status += 2;
}
//printf ("\n status= %d \n"., status);

// fflush (stdout);
process_wrt_dst_ptr =

interpolation_im_addr + i x* FRAMEW + j;

142

process_wrt_src_ptr =

buffer_addr + i * FRAMEW + j;
embedding_ptr =

embedding_map_addr + i * FRAMEW + j;
// Calculating interpolation values and
// embedding sizes according to pixels area
switch (status)

{
/S H >
[T rirrrrrrri A
// /] /1 1\
/! !/ !/
!/ /1] /1]
/1 AREA 0 /] AREA 1 // |
!/ /! /1
!/ /! /I W
/! /] /1
LITPIPLLT i rirrirrrrrlr I
/1 /1 /1
!/ AREA 2 // AREA 3 // |
!/ /! !/ \ /

LEELEIEERIL i rr i r i rrry v

[117171717111 AREA O /11711 7111771117177
case O:
[00H0Errrrrr il Values /71717111717
original_im [0][0] =
*process_wrt_src_ptr;
original_im [O][1] =
*(process_wrt_src_ptr+2);
original_im [1][0] =
x(process_wrt_src_ptr+FRAME Wx2) ;
original_im [1][1] =
x(process_wrt_src_ptr+FRAME Wx2 + 2);

/! known pixel is wrote
interpolated_im [0][0] =
original _im [0][O0];

// first pixel area is calculated
interpolated_im [O][1] =
(original_im[O0][0] + original_im[O][1]) >> 1;

// second pixel area is calculated
interpolated_im [1][0] =
(original_im [0][0] + original_im [1][0]) >> 1;

// third pixel area is calculated
interpolated_im [I][1] =
(original_im [0][0] + original_im [1][1]) >> 1;

[IPEErrrrri i1/ 777 Embedding sizes /1717111177
emb_sizes_im [0][0] = O;

// first pixel area is calculated
emb_sizes_im [O][1] =
measure_bit_number

(abs(interpolated_im [0][0]

143

— interpolated_im [0][1]));

/! second pixel area is calculated
emb_sizes_im[1][0] =
measure_bit_number
(abs(interpolated_im [0][0]
— interpolated_im [1][0]));

/! third pixel area is calculated
emb_sizes_im[1][1] =
measure_bit_number
(abs(interpolated_im [0][0]
— interpolated_im [1][1]));
break ;

[1111010rrl AREA N 117100l rrliry
case 1:
1111010170 Nalues /1117111717771
original_im [0][0] =
xprocess_wrt_src_ptr;
original_im [0][1] =
x(process_wrt_src_ptr+1);
original_im [1][0] =
*(process_wrt_src_ptr+FRAME W) ;
original_im [1][1] =
x(process_wrt_src_ptr+FRAME W + 1);
/! known pixel is wrote
interpolated_im [0][0] =
original_im [0][O0];

/" first pixel area is calculated
interpolated_im [0][1] =
original _im [O][1];

/! second pixel area is calculated
interpolated_im [1][0] =
original _im [1][O0];

// third pixel area is calculated
interpolated_im [1][1] =
original_im [1][1];

[1177111777177 Embedding sizes [////1/1111111]]
emb_sizes_im [0][0] = O;

// first pixel area is calculated
emb_sizes_im[0][1] = O;

// second pixel area is calculated
emb_sizes_im[1][0] = O;

/! third pixel area is calculated
emb_sizes_im[1][1] = O;
break;

LIDTTEEIErrrrrll AREA 2 /1171111110007
case 2:
[11711111 Nalues [/11111171111171
original_im [0][0] =

144

*process_wrt_src_ptr;
original_im [0][1] =
x*(process_wrt_src_ptr+1);
original_im [1][0] =
x(process_wrt_src_ptr+FRAME W) ;
original_im [1][1] =
x(process_wrt_src_ptr+FRAME W + 1);
// known pixel is wrote
interpolated_im [0][0] =
original _im [0][O0];

// first pixel area is calculated
interpolated_im [0][1] =
original_im [0][1];

// second pixel area is calculated
interpolated_im [1][0] =
original_im [1][O0];

// third pixel area is calculated
interpolated_im [1][1] =
original _im [1][1];

1111117177771 Embedding sizes /[/////11/1/11111]
emb_sizes_im [0][0] = O;

// first pixel area is calculated
emb_sizes_im [0][1] = O;

/!l second pixel area is calculated
emb_sizes_im[1][0] = O;

// third pixel area is calculated

emb_sizes_im[1][1] = O;

break ;

[110100rrrrrrll AREA 3 /77111171100y
case 3:

11110111l Values 1177171111771
original_im [0][0] =
*process_wrt_src_ptr;
original_im [O][1] =
*(process_wrt_src_ptr+1);
original_im [1][0] =
x(process_wrt_src_ptr+FRAME W) ;
original_im [1][1] =
*(process_wrt_src_ptr+FRAME W + 1);
/!l known pixel is wrote
interpolated_im [0][0] =
original_im [0][O0];

// first pixel area is calculated
interpolated_im [O][1] =
original_im [O][1];
// second pixel area is calculated
interpolated_im [1][0] =
original_im [1][O0];

// third pixel area is calculated

145

interpolated_im [1][1] =
original_im [1][1];

1111111777777 Embedding sizes [/////1/1/1/11111]
emb_sizes_im [0][0] = O;

// first pixel area is calculated
emb_sizes_im[0][1] = O;

!/l second pixel area is calculated
emb_sizes_im[1][0] = O;

/! third pixel area is calculated

emb_sizes_im[1][1] = O;

break;

[P0 LHrrrrrrrrrrir7il ERROR /7171111101 71717
default:

break ;

}

// interpolation values are wrote
xprocess_wrt_dst_ptr =
interpolated_im [0][0];
x(process_wrt_dst_ptr+1) =
interpolated_im [O][1];
x(process_wrt_dst_ptr+FRAME W) =
interpolated_im [1][0];
x(process_wrt_dst_ptr+FRAME W+1) =
interpolated_im [1][1];

// embedding mapping is wrote
xembedding_ptr = emb_sizes_im [0][0];
*(embedding_ptr+1) = emb_sizes_im [0][1];
*(embedding_ptr+FRAME W) = emb_sizes_im [1][0];
*(embedding_ptr+FRAME W+1) = emb_sizes_im [1][1];
!
}

/!l save interpolation image on sd card
save_interpolation_image_to_sd_card () ;
// save bit_number image on sd card
save_bit_number_image_to_sd_card () ;

// apply hiding on interpolation pixels
add_hide_data_on_interpolation_values () ;

}

char measure_bit_number(char decimal_number)
{

char 1=0, debug;

int threshold=0;

if (decimal_number == 0)
{
return O;
}
if (decimal_number == 1|l decimal_number == 2)
{
return 1;
}

for(l = 1; 1 < 8; 1++)

{
threshold = (1<<l)—1;

146

}

if (threshold > decimal_number)

{

return 1-—1;

}
}

return 7;

void add_hide_data_on_interpolation_values ()

{

int i, j, k, 1, z, debug;
int start_pixel_x;
int start_pixel_y;

int finish_pixel_x = FRAME H;
int finish_pixel_y = FRAME W-1;

char bin_data, decimal_value;
char * embedding_ptr;
char emb_sizes_im[3];
int symmetry_point[3][2];
int binary_read_counter;
FILE+x fd_binary_plaintext;
fd_binary_plaintext =
fopen (BINARY_PLAINTEXT_FILE_ NAME, "r");
if (fd_binary_plaintext == NULL)

{
printf (" Error opening binary plaintext file !\n");
exit(1);

}

binary_read_counter = 0;

//rewind (fd_binary_plaintext);

for(i = 0; i < (FRAME H); i+=2)
{
for(j = 0; j < (FRAMEW); j+=2)
{
/! main pixels are directly written
process_wrt_src_ptr =
interpolation_im_addr + i * FRAMEW + j;
process_wrt_dst_ptr =
stego_im_addr + i ¥+ FRAMEW + j;
xprocess_wrt_dst_ptr =
*process_wrt_src_ptr;
[ILTEDI P rrr il

/1 /1! /1

/! known pixel area // first pixel area /1l

/1 (i, j) /1 (i, j +1) /1

/1l 1/ /1

LITTLLLI T i i i rrrrr
/1 11/ /1l

/!l second pixel area // third pixel area /1l

/1 (i + 1, j) /1 (i +1, j+ 1) /1

/1 1/ /1

LHTEEEEEIE i rr i rr i rri i rrr i rrr

LEPEITEEELErrrrrr) SYMMEIRY POINTS // /1110007011011
/1l first pixel area

/! calculate symmetry point

!/l according to key[O][O] and key[O][1]

147

// HEIGHT

symmetry_point[0][0] = 2 % key[O][0] — (i);
if (symmetry_point[0][0] < 0)
{
symmetry_point[0][0] =
symmetry_point[0][0] + FRAME_H;
if (symmetry_point[0][0] < 0)
{
symmetry_point[0][0] =
symmetry_point [0][0] + FRAME_H;
}
}
if (symmetry_point[0][0] > (FRAME_H-1))
{
symmetry_point[0][0] =
symmetry_point[0][0] — FRAME_H;
if (symmetry_point[0][0] > (FRAME_H-1))
{
symmetry_point[0][0] =
symmetry_point [0][0] — FRAME_H;

// WIDTH
symmetry_point[0][1] = 2 % key[O][1] — (j + 1);
if (symmetry_point[0][1] < 0)
{
symmetry_point[0][1] =
symmetry_point[0][1] + FRAME W;
if (symmetry_point[O][1] < 0)
{
symmetry_point [0][1] =
symmetry_point[0][1] + FRAME W;
}
}
if (symmetry_point[0][1] > (FRAME W-1))
{
symmetry_point [0][1] =
symmetry_point[0][1] — FRAME W;
if (symmetry_point[O][1] > (FRAME_ W-1))
{
symmetry_point [0][1] =
symmetry_point[0][1] — FRAME W;
}
}

symmetry_point[1][0] = 2 % key[1][0] — (i + 1);
if (symmetry_point[1][0] < 0)
{

symmetry_point[1][0] =

symmetry_point[1][0] + FRAME_H;
if (symmetry_point[1][0] < 0)
{
symmetry_point[1][0] =
symmetry_point[1][0] + FRAME_H;

148

}
if (symmetry_point[1][0] > (FRAME H-1))
{
symmetry_point[1][0] =
symmetry_point[1][0] — FRAME_H;

// WIDTH
symmetry_point[1][1] = 2 * key[1][1] — (j);
if (symmetry_point[1][1] < 0)
{

symmetry_point[1][1] =

symmetry_point[1][1] + FRAME W;
if (symmetry_point[1][1] < 0)
{
symmetry_point[1][1] =
symmetry_point[1][1] + FRAME W;

1
}
if (symmetry_point[1][1] > (FRAME_W-1))
{

symmetry_point[1][1] =

symmetry_point[1][1] — FRAME W;
if (symmetry_point[1][1] > (FRAME W-1))
{
symmetry_point[1][1] =
symmetry_point[1][1] — FRAME W;

symmetry_point[2][0] = 2 *x key[2][0] — (i + 1);
if (symmetry_point[2][0] < 0)
{
symmetry_point[2][0] =
symmetry_point[2][0] + FRAME_H;
if (symmetry_point[2][0] < 0)
{
symmetry_point[2][0] =
symmetry_point[2][0] + FRAME_H;
1
1
if (symmetry_point[2][0] > (FRAME H—-1))
{
symmetry_point[2][0] =
symmetry_point[2][0] — FRAME_H;
if (symmetry_point[2][0] > (FRAME H-1))
{
symmetry_point[2][0] =
symmetry_point[2][0] — FRAME_H;
1
1

// WIDTH
symmetry_point [2][1] = 2 % key[2][1] — (j + 1);
if (symmetry_point[2][1] < 0)

{
symmetry_point[2][1] =

149

symmetry_point[2][1] + FRAME W;
if (symmetry_point[2][1] < 0)

{
symmetry_point [2][1] =
symmetry_point[2][1] + FRAME W;
}
}
if (symmetry_point[2][1] > (FRAME W-1))
{

symmetry_point[2][1] =
symmetry_point[2][1] — FRAME W;
if (symmetry_point[2][1] > (FRAME_W-1))
{
symmetry_point [2][1] =
symmetry_point[2][1] — FRAME W;
}
}

[0 00rrrrrrrrrrr7717/ 7 EMBEDDING PROCESS ////7711117111117117
// read embedding size according to symmetry point
// first area
embedding_ptr =
embedding_map_addr +
symmetry_point[0][0] x FRAME W +
symmetry_point [0][1];
emb_sizes_im[0] = xembedding_ptr;

// second area

embedding_ptr =
embedding_map_addr +
(symmetry_point[1][0]) %= FRAMEW +
symmetry_point[1][1];

emb_sizes_im[l] = xembedding_ptr;

// third area
embedding_ptr =
embedding_map_addr +
(symmetry_point[2][0]) x FRAME W +
symmetry_point[2][1];
emb_sizes_im[2] = xembedding_ptr;
// add embedding size amount of
// plaintext part to symmetry point
for(k = 0; k < 3; k++)
{
if (binary_read_counter <= binary_plaintext_len)
{
decimal_value = 0;
// calculate decimal value according to plaintext part
for(l = (emb_sizes_im[k] — 1); 1 > —1; 1——)
{
fscanf (fd_binary_plaintext, "%d ", &bin_data);
decimal_value += bin_data << 1;
}
// adding process
process_wrt_src_ptr =
interpolation_im_addr +
symmetry_point[k][0] * FRAME W +
symmetry_point[k][1];
process_wrt_dst_ptr =

150

stego_im_addr +

symmetry_point[k][0] x FRAME W +

symmetry_point[k][1];
xprocess_wrt_dst_ptr =

kprocess_wrt_src_ptr +

decimal_value;

// bin read counting
binary_read_counter += emb_sizes_im[k];

}else

{

// after all bits added from plaintext
process_wrt_src_ptr =
interpolation_im_addr +
symmetry_point[k][0] x FRAMEW +
symmetry_point[k][1];
process_wrt_dst_ptr =
stego_im_addr +
symmetry_point[k][0] * FRAME W +
symmetry_point[k][1];
xprocess_wrt_dst_ptr = xprocess_wrt_src_ptr;

}
}
}

fclose (fd_binary_plaintext);

}
void show_buffer_on_VGA (void)

{
unsigned int i, j;
/l after first frame is copied,
// we should copy other vga buffers from first vga_buffer
// because last frame wrote on ram from camera
// can be change during the writing process
// our destinations are from vga_buffer_1 to vga_buffer_7
virt_addr_dst = map_base_reader;
// this is showing vga_buffer_1

[IIPIEErr i rrrirrrl STEP 4 7111111 rriririrriiiirirgl
// copy all vga_buffer from vga_buffer_0
for(i = 0; i < (FRAME_BUFFER NUM_READER) ; i++)
{
/! our source is stego_im_ptr
virt_addr_src = buffer_addr;
//printf ("\n virt_addr_dst = %d,

// virt_addr_src = %d \n", virt _addr dst, virt _addr src);
for(j = 0; j < (FRAME_BUFFER _DIM_READER) ; j++)
{

*((unsigned charx)virt_addr_dst) =
*((unsigned charx)virt_addr_src);
virt_addr_dst++;
virt_addr_src++;
}

}
printf ("\n buffer vga done \n");

151

}

void show_result_on_VGA (void)
{
unsigned int i, j;
// after first frame is copied,
// we should copy other vga buffers from first vga_buffer
// because last frame wrote on ram from camera
// can be change during the writing process

// our destinations are from vga_buffer_1 to vga_buffer_7
virt_addr_dst = map_base_reader;
// this is showing vga_buffer_1

[IEPEEEErrrrr il STEP 4 f7 11111 rii il
// copy all vga_buffer from vga_buffer_0
for(i = 0; i < (FRAME_BUFFER NUM_READER) ; i++)
{
// our source is stego_im_ptr
virt_addr_src = stego_im_addr;
for(j = 0; j < (FRAME_BUFFER_DIM_READER) ; j++)
{
*((unsigned charx)virt_addr_dst) =
*((unsigned charx)virt_addr_src);
virt_addr_dst++;
virt_addr_src ++;
}
}

printf ("\n vga done \n");
fflush (stdout);
printf ("\n continue to video stream press a key \n");
scanf ("%d", &key [2][1]):
fflush (stdout);
ov7670_device.image_writer_base_address =
FRAME_BUFFER_BASE_ADDR_WRITER ;
ov7670_device.image_reader_base_address
FRAME_BUFFER_BASE_ADDR_WRITER ;
write (fd_camera, &ov7670_device, sizeof(ov7670_device));
// Closing camera config file
close (fd_camera);

}

void save_interpolation_image_to_sd_card(void)
{
unsigned int i, j;
FILEx fd_interpolation_image_save;
// create or open existing original image data file
fd_interpolation_image_save =
fopen (INTERPOLATION_IMAGE_FILE_NAME, "w+");
if (fd_interpolation_image_save == NULL)

{
printf ("Error opening or creating file !\n");
exit(1l);

}

// our src is buffer

file_wrt_src_ptr = interpolation_im_addr;

printf (" file_wrt_src_ptr =%p.\n"., file _wrt_src_ptr);

// write all pixel values on file

152

for(j = 0; j < (FRAMEW); j++)

{
for(i = 0; i < (FRAME H); i++)
{
file_wrt_src_ptr =
interpolation_im_addr +
i * FRAMEW + j;
fprintf (
fd_interpolation_image_save ,
ll(;/,("vv
xfile_wrt_src_ptr);
}
1

/l close interpolation image file
fclose (fd_interpolation_image_save);
printf ("interpolation_image_save done.\n");
fflush (stdout);

}

void save_bit_number_image_to_sd_card(void)
{
unsigned int i, j;
FILEx fd_bit_number_image_save;
/] create or open existing original image data file
fd_bit_number_image_save =
fopen (BIT_NUMBER_IMAGE_FILE_NAME, "w+");
if (fd_bit_number_image_save == NULL)
{
printf (" Error opening or creating file bit_number!\n");
exit(1);
}
// our src is buffer
file_wrt_src_ptr = embedding_map_addr;
printf (" file_wrt_src_ptr =%p.\n", file_wrt_src_ptr);
// write all pixel values on file
for(j = 0; j < (FRAMEW); j++)
{
for(i = 0; i < (FRAME H); i++)
{
file_wrt_src_ptr =
embedding_map_addr + i * FRAMEW + j;
fprintf (
fd_bit_number_image_save ,
"T%c ",
xfile_wrt_src_ptr);
}
}

/!l close bit_number image file
fclose (fd_bit_number_image_save);
printf ("bit_number_image_save done.\n");
fflush (stdout);
}

void save_stego_image_to_sd_card(void)
{
unsigned int i, j;
FILEx fd_stego_image_save;
/l create or open existing original image data file

153

fd_stego_image_save =
fopen (STEGO_IMAGE_FILE_NAME, "w+");
if (fd_stego_image_save == NULL)

{
printf ("Error opening or creating file !\n");
exit(1);

}

// our src is buffer

file_wrt_src_ptr = stego_im_addr;

printf (" file_wrt_src_ptr =%p.\n", file_wrt_src_ptr);

// write all pixel values on file
for(j = 0; j < (FRAMEW); j++)

{
for(i = 0; i < (FRAME H); i++)
{
file_wrt_src_ptr =
stego_im_addr + i ¥ FRAMEW + j;
fprintf (
fd_stego_image_save ,
"%c ",
xfile_wrt_src_ptr);
}
1
printf (" file_wrt_src_ptr 2 =%p.\n", file_wrt_src_ptr);

// close original image file
fclose (fd_stego_image_save);
printf ("fd_stego_image_save done.\n");
fflush (stdout);
}

void release_mems (void)
{
/! Release embedding_map
free (symmetry_map_addr_rows) ;
/!l Release embedding_map
free (symmetry_map_addr_columns) ;
// releasing virtual memory for reader
if (munmap(map_base_reader, MAP_SIZE_READER) == —1)
{
FATAL;
}
// Release result buffer
free (stego_im_addr);
/!l Release embedding_map
free (embedding_map_addr);
/!l Closing memory file
close (fd_mem) ;

154

CURRICULUM VITAE

Name Surname: Utku ESEN
Place and Date of Birth: Golciik/Kocaeli - Turkey 04.05.1991

E-Mail: esenu@itu.edu.tr

EDUCATION:

e B.Sc.: 2013, Kocaeli University, Engineering Faculty, Electronics and
Communication Engineering Department

e M.Sc.: 2018, Istanbul Technical University, Electronics and Telecommunication
Engineering Faculty, Electronics Engineering Department
PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

e Utku Esen, S. Berna Ors Yal¢in, Data Hiding Method Using Image Interpolation
And Pixel Symmetry, 9th International Conference on Electrical and Electronics
Engineering(ELECO 2015), November 27, 2015 Bursa, Turkey.

e Utku Esen, S. Berna Ors Yalcin, Stefano Mattoccia, Information Hiding Technics
For Digital Images And Example Embedded System Application, Hacktrick 2017-
National Conference On Cyber Security, April 28, 2017 Ankara, Turkey.

155

