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VERTICAL VIBRATION OF SUSPENSION BRIDGES DUE TO TRAFFIC 

AND VERTICAL GROUND EXCIATATIONS 

SUMMARY 

Bridges are among the important civil infrastructures and are normally designed to 

have long life spans. Suspension bridges has a larger span in comparison to any other 

form of bridges. As it get larger span it become more flexible structure. As a structure 

get flexible its behaviour under dynamic load become more complicated. Suspension 

bridges are infrastructures in which the load-bearing portion is hung under the 

suspension cables upon the vertical hangers. Due to their aesthetic, architectural beauty 

and capability of utilization in long spans suspension bridges, have gained much 

popularity in recent decades. Throughout the history of suspension bridges, their 

tendency to vibrate under different dynamic loadings such as wind, earthquake, and 

traffic loads has been a matter of concern for engineers and researchers. Along with 

the rapid development of modern transportation networks, suspension bridges are 

often adopted to wide span rivers or deep valleys. Increasing the construction of 

suspension bridges and the challenge of modelling their behaviour has attracted the 

interest of researchers. Many difficulties related to design arises due to its long central 

span. There are many suspension bridges around the world and dynamic behaviour has 

been found to be the primary concern for those bridges. Several investigations have 

been taken place in recent years to determine the behaviour of suspension bridges and 

dynamical characteristics of it when they are vibrating. However, the complexity of 

the structure of a suspension bridge makes difficulties on determining dynamical 

behaviour and dynamical features of suspension bridge. 

Various studies on dynamic response of moving loads have been conducted on 

ordinary bridges. However because of complex structures of suspension bridge which 

consist of various components with different properties, they cannot be directly applied 

to cable supported bridges. Consequently, more research is required on cable 

supported bridges to consider the complex structural response and realistically predict 

their response under moving loads. Various methods of analysis have been applied to 

the study of the behavior of suspension bridges. One of analytical methods for 

determining behavior of a suspension bridge is deflection theory. A historical review 

of the approximate methods that lead to the deflection theory can be found elsewhere. 

The well-established deflection theory tries to solve the differential equilibrium 

equation and allows the use of analytical expressions for the solutions. However, 

explicit analytical solutions are not always possible, and numerical techniques must be 

used. With the advent of high-speed computer and through the use of numerical 

methods, major advances in studying the dynamic characteristics of suspension 

bridges have been achieved. Many efforts have been given to develop a simplified 

model that can predict the consistency of the responses with detailed model. In recent 

years, several commercially available finite element software packages have been used 

by practicing engineers as well as researchers to evaluate the response of suspension 
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bridges for operational traffic, wind and earthquake loads by considering both property 

and geometry non-linear behavior. 

Vibration of the suspension bridges are important topic in design of them and it must 

taken into account in areas where seismic activity is high or in places where a typhoon 

and a strong wind blowing occurs. For this purpose, displacement response of the 

suspension bridge when it was subjected to the moving load and ground motions 

simultaneously investigated in this study.  In previous studies  static deflection of the 

suspension bridge, cable tension and also increment in cable tension are investigated. 

Some of researchers focused on the vibration of the suspension bridge due to the 

moving load and oscillator, but in most of the studies, the hangers extensibility have 

neglected. In this research in addition to computing cable tension due to live loads, 

deflection, velocity and acceleration response of the suspension bridge computed.  

In this order, at first equation of motion for the deck and the suspension cable of the 

suspension bridge is derived. Since extensibility of the hangers is considered in this 

study, a coupled PDE equation must be solved to determine deflection, velocity and 

acceleration response of the suspension bridge. After derivation of the equation of 

motion for the cable and the deck, separating variables performed in order to simplify 

PDE equation to two separate ODE equations which are dependent on time and 

ordinate of the suspension bridge.  To determine deflection of the suspension bridge, 

behavior of the suspension bridge divided into two parts, first part was static analysis 

and second part was dynamic analysis. Numerical method has been used to solve static 

part since it has integral term in equation. Finite difference method as numerical 

method implemented for static analysis while in dynamic part exact solutions 

achieved.   

To verify the written code in MATLAB, obtained result in static analysis from 

MATLAB compared with achieved result by Choi’s article which was published in 

2013. Difference of the results were in acceptable range and it indicates that decreasing 

intervals in FDM method reduces the difference. 

To this purpose, a suspension bridge which is subjected to moving load and ground 

motions simultaneously assumed. Three different load cases considered for analyzing. 

All of load cases were identical in all aspects and the only difference between them 

was velocity of the moving load. For this purpose written code prepared in MATLAB 

to determine deflection, velocity and acceleration response of the suspension bridge 

with use of improved deflection theory. Outcomes indicate that increasing velocity of 

the moving load would results in increasing deflection of the suspension bridge. 

Number of modes that considered in determining deflection, velocity and acceleration 

of the suspension bridge was 50 modes. Obtained result from improved deflection 

theory compared with results that achieved by deflection theory. Comparison of these 

results shows that deflection theory is reliable method for determining deflection of 

the suspension bridge. Hence, in order to determine elongation, axial forces and 

stresses in hangers, use of improved deflection theory advised.  

Natural frequency of a suspension bridge mainly dependent on the span and other 

structural dimensions related to the stiffness. According to the outcomes, the first two 

vibration modes of the suspension bridge are symmetric and the first anti symmetric 

mode of the suspension bridge was appeared on third mode.  

Three different vertical ground motion records were considered in this study in order 

to determine behavior of the suspension bridge when it was subjected to the moving 

load and ground motion simultaneously. To prove the validity of the result, FEM 
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commercial software, ABAQUS were used to simulate behavior of the suspension 

bridge. and when it is subjected to the moving load and after that obtained result from 

MATLAB was compared with the result that obtained from ABAQUS software. 

Results shows that achieved outcomes from both of the softwares are in good 

agreement which proves the reliability of the written code in MATLAB. 
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ASMA KÖPRÜLERİN TRAFİK VE DÜŞEY DEPREM YER HAREKETİ 

ALTINDA TİTREŞİMİ 

ÖZET 

Köprüler önemli sivil altyapılar arasındadır ve normal olarak uzun ömürlü olacak 

şekilde tasarlanırlar. Asma köprüler diğer köprülerle karşılaştırıldığında daha uzun bir 

açıklığa sahiptir. Daha uzun açıklığa sahip olduğu için de daha esnek bir yapı haline 

gelir. Bir yapı esnekleştikçe dinamik yük altındaki davranışları daha karmaşık hale 

gelir. 

Asma köprüler, yük taşıyıcı kısmı olan tabliyesi düşey veya eğik askılar ile yine 

taşıyıcı olan kabloya asılmış yapılardır. Estetik, mimari güzellikleri ve uzun erimli 

asma köprülerdeki kullanım yetenekleri nedeniyle son yıllarda büyük bir ilgi 

görmüştür. Asma köprüler, ekonomik ömürleri süresince rüzgâr, deprem ve trafik 

yükleri gibi farklı dinamik yükler altında titreşme eğilimleri nedeniyle mühendisler ve 

araştırmacılar için endişe kaynağı olmuştur. Modern ulaşım ağlarının hızlı gelişimi ile 

birlikte, asma köprüler genellikle geniş açıklıklı nehirleri ve derin vadileri geçmek için 

inşa edilirler. Asma köprülerin sayısının artması ve davranışlarını modelleme zorluğu 

araştırmacıların ilgisini çekmiştir. Tasarımla ilgili birçok zorluk, uzun merkezi açıklığı 

nedeniyle ortaya çıkar. Dünyada birçok asma köprü vardır ve bu köprüler için dinamik 

davranışın birincil sorun olduğu anlaşılmıştır. Son yıllarda, asma köprülerinin 

davranışlarını ve titreştikleri zaman dinamik özelliklerini belirlemek için çeşitli 

araştırmalar yapılmıştır. Bununla birlikte, bir asma köprünün yapısının karmaşıklığı, 

asma köprünün dinamik davranışını anlamada ve dinamik özelliklerini belirlemede 

önemli zorluklar çıkarır. 

Sıradan köprülerde hareketli yüklerin dinamik etkisi üzerine çeşitli çalışmalar 

yapılmıştır. Ancak, farklı özelliklere sahip çeşitli bileşenlerden oluşan karmaşık asma 

köprü yapıları nedeniyle, kablo destekli köprülere doğrudan uygulanamazlar. Sonuç 

olarak, karmaşık yapısal yanıtı dikkate almak ve hareketli yükler altında tepkilerini 

gerçekçi bir şekilde tahmin etmek için kablo destekli köprüler üzerinde daha fazla 

araştırma yapılması gerekmektedir. Asma köprülerinin davranışının incelenmesi için 

çeşitli çözüm yöntemleri uygulanmıştır. Bir asma köprünün davranışını belirlemek 

için kullanılan analitik yöntemlerden biri Yerdeğiştirme (Deflection) Teorisi’ ne 

dayanır. Yerdeğiştirme Teorisi’ ne giden yaklaşık yöntemlerin tarihsel bir incelemesi 

başka bir yerde bulunabilir. İyi ortaya konulmuş yerdeğiştirme teorisi, diferansiyel 

denge denklemini çözmeye çalışır ve çözümler için analitik ifadelerin kullanılmasına 

izin verir. Bununla birlikte kapalı açık analitik çözümler her zaman mümkün değildir 

ve bir çok durumda sayısal hesap yöntemleri kullanılmalıdır. Yüksek hızlı 

bilgisayarların ortaya çıkması ve sayısal yöntemlerin kullanılmasıyla asma köprülerin 

dinamik özelliklerinin incelenmesinde büyük ilerlemeler sağlanmıştır. Ayrıntılı 

modelerle elde edilen yaklaşık çözümlerin tutarlılığını tahmin edebilecek 

basitleştirilmiş modeller geliştirmek için birçok çaba gösterilmiştir. Son yıllarda, hem 
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malzeme ve hem de geometri değişimi bakımından doğrusal olmayan köprü 

davranışını göz önünde bulundurarak işletme trafiği, rüzgar ve deprem yükleri etkisi 

altındaki asma köprülerin tepkisini değerlendirmek için araştırmacıların yanı sıra 

araştırmacıların da uyguladığı birçok ticari sonlu eleman yazılım paketi geliştirilmiştir. 

Asma köprülerinin titreşimi tasarımda göz önünde tutulması gerekli önemli bir 

konudur ve depremsel aktivitenin yüksek olduğu yerlerde ve tayfunun ve kuvvetli 

rüzgarların meydana geldiği yerlerde dikkate alınmalıdır. Bu amaçla bu çalışmada, 

asma köprünün yer değiştirme yanıtı hareketli yük ile düşey depremin köprüye aynı 

anda etki etmesi durumda incelenmiştir. Önceki çalışmalarda, asma köprünün düşey 

yerdeğiştirmeleri, kablo gerilmesi ve ayrıca kablo gerilmesindeki değişim 

incelenmiştir. Bazı araştırmacılar hareketli yük nedeniyle asma köprülerin titreşimine 

odaklanmıştı, ancak çalışmaların çoğunda askıların uzayabilirliği ihmal edilmiştir. Bu 

çalışmada hareketli yüklere bağlı olarak kablo kuvvetinin hesaplanmasına ek olarak, 

asma köprünün yerdeğiştirme hız ve ivme yanıtı hesaplanmıştır. 

Bu sırada, ilk olarak asma köprünün tabliyesi ile kablosunun hareket denklemi 

türetilmiştir. Hareket denklemleri türetirken, bu çalışmanın metninde kapsamlı bir 

şekilde ele alınan bazı varsayımlar yapılmıştır. Bu çalışmada askıların uzayabilirliği 

göz önüne alındığından, asma köprünün düşey yerdeğiştirme, hız ve ivme yanıtını 

belirlemek için hareket denklemi olan bir kısmi türevli diferansiyel denklem sistemi 

çözülmektedir. Kablo ve tabliye için hareket denkleminin türetilmesinden sonra, kısmi 

türevli diferansiyel denklem sistemi, değişkenlerin ayrılması yöntemi uygulanarak 

sadece zamana ve sadece uzay koordinatlarına bağlı olan iki ayrı adi türevli 

diferansiyel denkleme dönüştürülmüştür. Asma köprünün düşey yerdeğiştirmelerini 

belirlemek için, asma köprünün davranışı iki kısma ayrılmıştır, ilk kısım statik analiz 

ve ikinci kısım dinamik analizdir. Psüdo-statik parçanın çözümü için, denklemde 

integral bir terim olduğundan sonlu farklar yöntemi kullanılmıştır. Dinamik parçanın 

çözümü ise herhangi bir sayısal çözüm yöntemine başvurulmadan kapalı olarak elde 

edilmiştir. 

Sayısal çözümlemeyi gerçekleştirmek için bir MATLAB programı hazırlanmış, bu 

programın doğruluğunu belirlemek için de 2013 yılında yayınlanmış olan Choi 

makalesinde çözülen uygulama kullanılmıştır. Sonuçlar arasındaki fark kabul 

edilebilir mertebededir ve sonlu fark yönteminde kullanılan aralık uzunluğu 

küçültüldükçe çözüm yakınsamaktadır. 

Bu amaçla, asma köprü eş zamanlı olarak hareketli trafik yüküne ve düşey yer 

hareketlerine maruz bırakılmıştır. Analiz için üç farklı yük durumu dikkate alınmıştır. 

Tüm trafik yükü durumları trafik yükünün köprü üzerinde ilerleme hızı dışında aynı 

biçimdedir. Bu amaçla, MATLAB' da, iyileştirilmiş yerdeğiştirme yöntemi 

kullanılarak asma köprünün düşey yerdeğiştirme, hız ve ivme yanıtları belirlenmiştir. 

Sonuç olarak, hareketli yükün köprü üzerinde ilerleme hızının artmasının, asma 

köprünün düşey yerdeğiştirmesinin de artmasına neden olacağını göstermektedir. 

Asma köprünün düşey yerdeğiştirme, hız ve ivmelerinin belirlenmesinde 50 mod 

dikkate alınmıştır. İyileştirilmiş yerdeğiştirme teorisi ile elde edilen sonuçlar 

yerdeğiştirme teorisi ile elde edilen sonuçlarla karşılaştırılmış, yerdeğiştirme teorisi ile 

elde edilen asma köprü düşey yerdeğiştirme sonuçların güvenilir olduğu görülmüştür. 

Askı kablolarında uzama, eksenel kuvvetler ve gerilmeleri belirlemek için, 

iyileştirilmiş yerdeğiştirme teorisinin kullanılması önerilmektedir. 

Asma köprülerin doğal frekansları, köprünün eğilme rijitliğin etki eden açıklık 

uzunluğu ile diğer yapısal boyutlara bağlıdır. Sonuçlara göre, asma köprünün ilk iki 
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titreşim modu simetriktir ve üçüncü modu ise asma köprünün ilk antimetrik modu 

olarak ortaya çıkmıştır. 

Asma köprünün trafik yükü ile eşzamanlı olarak etki eden düşey deprem yer hareketine 

vereceği yanıtı belirlemek için üç farklı düşey deprem yer hareketi kaydı dikkate 

alınmıştır. Yazılan MATLAB programının doğruluğunu saptamak için de sonlu 

elemanlar yöntemi kullanılarak ABAQUS ortamında hazırlanan bir bilgisayar modeli 

kuruldu. Her iki program çalıştırılarak elde edile sonuçlar karşılaştırıldığında 

sonuçların oldukça yakın olduğu ve uyum içinde olduğu görüldü. 
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1.  INTRODUCTION 

One of the most important civil infrastructures are bridges and they are normally 

designed to have long life spans. In suspension bridges which are flexible 

infrastructures the load-bearing portion is hung below suspension cables on vertical 

suspenders. Because of their aesthetic, architectural beauty and capability of utilization 

in long spans suspension bridges and cable-stayed, have gained much popularity and 

attention in recent decades. Vibration of the suspension bridges due to different 

dynamic loadings such as earthquake, wind, and moving loads has been a matter of 

concern throughout the history. Multiple support motions is a dynamic problem for 

structural engineers when they are trying to analyze long-span structures. Along with 

the rapid development of modern transportation networks, suspension bridges are 

mostly used to span deep valleys or wide rivers. Lot of studies have been performed  

in recent years to find out the vibrational properties of suspension bridges. Despite 

these researches and studies, the complexity of a suspension bridge structure makes 

difficult to determine vibrational characteristics. 

Various studies have been performed for dynamic response of ordinary bridges when 

they are subjected to moving loads. However, for cable supported bridges, they cannot 

be directly applied since cable supported bridges are more complicate structures 

consisting of various components with different properties. Consequently, more 

research is required on cable supported bridges to consider the complex structural 

response and realistically predict their response due to moving vehicles. To determine 

and study the behavior of suspension bridges various methods of analysis have been 

applied. A historical review of the approximate methods that lead to the deflection 

theory can be found elsewhere. The well-established deflection theory tries to solve 

the differential equilibrium equation and allows the use of analytical expressions for 

the solutions. However, explicit analytical solutions are not always possible, and 

numerical techniques must be used. With the advancement in computer technology 

and emergence of high-speed computers, major progresses in studying the dynamic 

characteristics of suspension bridges have been achieved through the use of numerical 
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methods. In addition, effort has also been given for developing simplified models that 

can predict response consistent with detailed model. In recent years, several 

commercially available finite element software packages have been used by engineers 

and researchers in order to predict and analyze the response of a suspension bridge 

from operational traffic, wind and earthquake loads taking into account both material 

and geometric non-linear behavior. 

1.1 Classification of Bridges 

Bridges are structures constructed to connect places to overcome physical obstacles as 

well as provide passage for the road, railway, pedestrians, a canal or a pipeline. The 

obstacles to be spanned could be either developed by natural or man made causes and 

may belong to a river, a road, railway or a valley. Purpose and function of the bridge 

are important parameters in designing of bridges, the type of the terrain where the 

bridge is constructed and anchored, the required material for developing it, and the 

existing funds to construct it. There are several methods to categorize and classify 

bridge, the four usual and typical ways to classify bridges are: 

1. Classification based on superstructure 

 Beam bridges 

 Truss bridges 

 Arch bridges 

 Cantilever bridges 

 Cable-stayed bridges 

 Suspension bridges 

2. Classification based on material used 

 Timber bridge 

 R.C.C bridge (Reinforced Cement Concrete) 

 Concrete bridge 

 P.C.C bridge (Plain Cement Concrete) 

 Aluminum bridge 
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 Composite bridge 

 Stone  bridge 

 Steel bridge 

3. Classification based on purpose  

 Double-decked bridges 

 Car Traffic 

 Pedestrian bridges 

 Viaducts 

 Train bridges 

 Commercial bridges 

 Pipelines 

4. Classification based on inter span relation 

 Simple bridge 

 Continuous bridge 

 Cantilever bridge 

1.1.1 Classification based on superstructure 

We are going to comprehensively describe classification based on superstructure in 

this section. 

1.1.1.1 Beam Bridge 

The most simple and oldest bridge type is Beam bridge or girder bridge. It generally 

made of one or more spans which are rested on pier or an abutment at each end. 

First beam bridges that built by humans was an imitation of nature – seeing tree that 

had fallen across a stream inspired prehistoric humans to use the same technique where 

presence of bridge is necessary and crucial and also building of it was convenient for 

them. Herodotus, Greek historian, was the first person to leave the written document 

about the bridge in 484 BC. Bridge he wrote and mentioned about had been 

constructed across the Euphrates River in 8th century BC and was made from stone and 
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wood. Ancient Romans are famous for their arch bridges made of concrete and stone 

but they began to build bridges with simpler bridge types. The oldest known ancient 

Roman beam bridge was constructed across the Tiber River in 7th century BC which 

was in rome and also known as “Pons Sublicius” which literally means “bridge made 

of wooden beams.” Romans were also the first to use cofferdams to build columns. 

They would drive a circular construction, made of wood and lined with clay, into the 

riverbed and pumped out water. That would leave the place to pour the concrete in and 

would also serve as a mold. When French engineer Hubert Gautier wrote the first book 

about building bridges in 18th century, bridge building became more of an exact 

science. Next book, “A Work on Bridge Building” written by American Squire 

Whipple improved this further by being the first text on analytical methods for 

calculating the stresses and strains in a bridge. 

For building a simple bridge over a creek all you need is a wood plank or a stone slab. 

To carry road traffic and railroad modern beam bridges are built of steel or reinforced 

concrete which can also be post-tensioned or prestressed. 

Placing of cofferdams which are constructed around each column location in the 

riverbed is first and crucial step in constructing of a beam bridge. Water is pumped 

from inside of them and shafts are drilled into the riverbed until they reach bedrock 

(which can be more than twenty five meters in depth.) To construct a foundation 

cylindrical cage of reinforcing steel is lowered into the shaft and then concrete is 

poured. Columns can be cast onto the foundation or precast and then placed there. The 

bridge end will rest on abutments and abutments are built on the riverbank where 

bridge ends by pouring concrete between the top of the bank and the riverbed. It will 

hold the deck of the bridge and prevent dirt from getting into the river. Prestressed 

concrete or steel girders are placed with crane onto columns and then bolted to the 

column caps. To complete bridge superstructure, precast concrete slabs or steel plates 

are placed across the girders which forms a solid platform. After last step, hot-applied 

polymer-modified asphalt is placed on the platform. Purpose of it is to be a moisture 

barrier. Above of the asphalt is placed a grid of reinforcing steel bars and then encased 

in a concrete slab. This grid contains two layers. As a final layer of the deck a concrete 

pavement is poured in a layer between twenty and thirty centimeters. Concrete can be 

poured into stay-in-place forms if they are used. If not, concrete pours a paving 

machine that spreads, consolidates, and smooth the concrete – all at once. Before 
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concrete stiffens, a skid-resistant texture is placed on it by manually or mechanically 

scoring the surface. Concrete also gets joints to prevent cracking every five meters 

before it is poured or after. These joints are the sealed with flexible sealant. 

When a bridge is consist of beams spanning between only two supports, it is called a 

simply supported beam bridge. If more than two beams are connected rigidly together 

above the supports, bridge is called a continuous bridge. Schematic view of the beam 

bridge is displayed in Figure 1.1. 

 

Figure 1.1 : Beam Bridge schematic view. 

1.1.1.2 Arch Bridge 

One of the most popular types of bridges is arch bridge, which has been used for three 

millenniums and it was in height of popularity till industrial revolution when there 

were invention of advanced materials which can bear more stress allowed architect to 

create other modern bridge designs. However, even today arch bridges are still in use, 

and with the advent of modern materials which could bear more force and load, longer 

and larger arches can be build. 

The basic principle of arch bridge is its curved design, instead of transferring load 

forces straight down they are conveyed along the curve of the arch to the supports on 

each end. These supports which called abutments withstand the load of entire bridge 

and are responsible for holding the arch in the precise position. Conveying of forces 

across the arch is done via central keystone on the top of the arch. Weight of the arch 

bridge pushes the surrounding rocks down and outward which results in very rigid and 

strong structure. 

Because of this design, stone and wood arch bridges become very popular during the 

Roman Empire, whose architects managed to construct over one thousand stone arch 

bridges in Europe, North Africa and Asia. Even though many years passed a lot of 

Tension 
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those bridges remain standing today, giving us the chance to personally see the 

wonders of the ancient architecture. There were usually semicircular arches in Roman 

designs, although several segmented arch bridges were made during their reign. These 

segmental arch bridges had one crucial design advantage which separated them from 

ordinary semicircular bridges – they allowed bridge builders to build arch of the bridge 

much higher and reduce the mass of the entire structure. These changes extended life 

span of bridges and also protected them from stresses of floods and strong rivers. 

During the life of Roman Empire, they built many wondrous and amazing bridges, 

lengthy aqueducts with multiple arches, bridges with flood openings on the piers, and 

many others. 

As centuries passed on, medieval architects improved the designs of Romans, creating 

arch bridges with thinner arch barrels, narrower piers, pointed arches, lower span-rise 

rations, and increased spans of arches (increasing to over 70 meters, most famously on 

the bridge at Trezzo sull'Adda who was in use from 17th to the end of 18th century). In 

Renaissance era architects attracted into arch bridges which not only sound 

engineering, but also fashion of their time, creating some of the most beautiful and 

famous bridges of the modern human civilization (such as Rialto Bridge in Venice). 

In the last 150 years, concrete, iron and steel helped engineers to create much more 

ambitious arch bridges which can now be seen in every country in the world. Arch 

bridge Schematic view is illustrated in Figure 1.2. 

 

Figure 1.2 : Arch Bridge schematic view. 

1.1.1.3 Cantilever Bridge 

Main elements in cantilever bridge are cantilevers (cantilevers are horizontal beams, 

which are supported at only one end). Beams can be used in these bridges for smaller 

Compression 
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(pedestrian) bridges or trusses which is made of box girders of prestressed concrete, 

or structural steel for larger bridges that bear road or rail traffic. 

First cantilever bridges emerged in 19th century when a need for longer bridges showed 

itself. To overcome the problem of length, engineers of that time found out that 

presence of many supports would distribute the loads among them and help to achieve 

longer length. Predecessors of cantilever bridges were bridges which had hinge points 

at their mid-span. Heinrich Gerber  was the one to be the first to invent and patent a 

cantilever bridge which did it in 1866. The first cantilever bridge that he designed was 

the Hassfurt Bridge over the Main River in Germany. It wasn't too impressive by 

today's standards - it had 38 meters in length but is considered the first modern 

cantilever bridge. Other early cantilever bridges were the High Bridge of Kentucky, 

designed by C. Shaler Smith in 1877, the Niagara Cantilever Bridge designed by 

Charles Conrad Schneider in 1883, and the Poughkeepsie Bridge designed by John 

Francis O'Rourke and Pomeroy P. Dickinson in 1889. The Forth Bridge, which is 

located in the east of Scotland was built over the Firth of Forth and it is one of the most 

famous early cantilever bridges. Full length of this railway bridge is 2,528.7 meters 

while its longest span has length of 520 m and construction of the bridge began in 1882 

and it was completed on 1890. It remained the bridge with the longest span in the world 

until Quebec Bridge wasn't built in 1919 with its span of 549 meters. 

In simple cantilever bridge we can see two cantilever arms extending from opposite 

sides of an obstacle that has to be spanned and they meet at the center. One of great 

advantages of cantilever bridges is that they can be built without false-works below 

nor temporary supporting towers and cables above. These tyoe of bridges are very stiff 

and they can carry large amount of loads without being threat to construction. 

Schematic view of the Cantilever bridge is indicated in Figure 1.3. 

 

 Figure 1.3 : Cantilever Bridge schematic view.  

Compression 
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1.1.1.4 Truss Bridge 

In Truss bridge main element is a truss which also is the main feature for these type of 

bridges. Truss is a system, which for being stable needs to be triangulated and usually 

made up straight interconnected structural elements. Since truss is is a very rigid 

structure and it conveys the load from a single point to a much larger area it is used as 

bridge. Appearance of truss bridges return to very early time in the history of modern 

bridges and since they use materials efficiently are economic to construct. 

Until industrial revolution in 19th century, nearly all bridges in use were made of stone. 

But iron and wood can withstand compression and tension force better comparing to 

stone and United States was rich in wood so they made many wooden bridges in those 

times and structure system for most of them were truss bridges. Town's lattice truss, a 

very simple variant of truss, was patented in 1820. In first half of 19th century very few 

truss bridges which made of iron were built although the first patent for an iron truss 

bridge was issued to Squire Whipple in 1841. But metal eventually started to replace 

wood, and wrought iron bridges started appearing in the United States in the 1870s 

only to be replaced by steel in 1880s and 1890s. In time in some states (like 

Pennsylvania) continued building of truss bridges for long spans continued till 1930s, 

while other (like Michigan) started building standard plan concrete girder and beam 

bridges. 

Since the built of the first truss bridge, engineers made different shapes of truss bridge 

to overcome their particular problem and find better shape. This is the reason for 

appearance various forms of truss bridges. In truss bridge deck (roadbed) can be placed 

on top (deck truss), in the middle (through truss), or at the bottom of the truss. In case 

that the sides of the truss extend above the roadbed but are not connected, it is called 

a half-through truss or pony truss. Schematic view of the Truss Bridge displayed in 

Figure 1.4. 
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Figure 1.4 : Truss Bridge schematic view. 

1.1.1.5 Cable-stayed Bridge 

Cable-stayed bridge like suspended bridge has towers and cables which hold the deck, 

but instead of  holding by suspender cables, deck is held by connecting cables directly 

to the towers. These type of bridges are usually designed to carry pedestrians, bicycles, 

automobiles, trucks and light rail. Usage of this kind of bridge is usually at places 

where cantilever bridges are short to cover the spanned length. First person who 

designed cable stayed bridges was Venetian inventor Fausto Veranzio (It is worth to 

note that he was the first person who designed modern suspended bridge). He 

published his works in 1595 in his book “Machinae Novae”. Appearance of first built 

cable-stayed bridges was around the 19th  century and many early versions of 

suspension bridges were cable-stayed like footbridge Dryburgh Abbey Bridge (built 

in 1818), James Dredge's Victoria Bridge, in Bath, England (Built in 1836), Albert 

Bridge (built in 1872) and Brooklyn Bridge (1883). Other early cable-stayed bridges 

in the United States were Barton Creek Bridge between Huckabay, Texas and Gordon, 

Texas (built in 1889), bridge over Bluff Dale, Texas, (built in 1890a and it still largely 

stands). suspension bridge is not practical there economically. 

Until the 20th century construction of this type of bridge continued when where built 

“Cassagnes bridge” (designed by A. Gisclard and built in 1909), le Coq's bridge at 

Lézardrieux in Brittany, France (designed by G. Leinekugel and built in 1924), and 

aqueduct at Tempul in 1926. Concrete-decked cable-stayed bridge over the Donzère-

Mondragon canal at Pierrelatte was designed by Albert Caquot in 1952 and was one 

of the first the modern cable-stayed bridges but no other that came after, looked up to 
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it. Strömsund Bridge designed by Franz Dischinger completed in 1955 had more 

influence on the design of the later bridges and is more often mentioned as the first 

modern. Riccardo Morandi, Fabrizio de Miranda and Fritz Leonhardt are the design 

pioneers of the modern cable-stayed bridge and their designs had very few stay cables 

which was modern but resulted in higher erection costs. Later designs consists of much 

more cables which is more economic in the terms of building. 

There are different variations for building a cable-stayed bridge:  

“A side-spar cable-stayed bridge” consist of one tower and it has only one support 

which is at the one side of the bridge. One bridge constructed based on this principle 

is bridge in Winnipeg, Manitoba, Canada and is made to only bear the loads that caused 

by pedestrians.  

 “Cantilever-spar cable-stayed bridge” has a single cantilever spar on one side of the 

span. The purpose of the spar is to withstand the bending caused by the cables because 

cable forces of this bridge are not balanced by opposing cables and bridge applies large 

overturning force on its foundation. Some example of this bridge type are Puente de la 

Mujer (2001), Sundial Bridge (2004) and Chords Bridge (2008), which all of them are 

located in spain.  

When number of spans in a cable-stayed bridge exceeds three, bridge is called 

“Multiple-span cable-stayed bridge”. This kind of bridge is more complex since the 

loads from the main spans are not anchored back near the end abutments. In this case 

structure become less stiff so additional design solutions (like “cross-bracing” stays 

and stiff multi-legged frame towers) have to be applied.  

In “Extradosed bridge” cables are connected to the deck further from the towers which 

are also lower than those of standard cable-stayed bridges, while it has stiffer and 

stronger deck. 

In “Cable-stayed cradle-system Bridge” which is one of the latest forms, It has “cradle 

system” which carries the strands within the stays from bridge deck to bridge deck. 

These cables are continuous which means that there are not anchorages in the towers 

and its cables can be inspected, removed and replaced individually. Schematic view of 

the Cable-Stay bridge is illustrated in Figure 1.5. 
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Figure 1.5 : Cable-stayed Bridge schematic view. 

1.1.1.6 Suspension Bridge 

Suspension cable in suspension bridge is an important feature of suspension bridge. 

Suspension cable is between pylons and the deck are hanged from them vertical 

hangers. Almost all of the load is carried by Suspension cables which are anchored at 

each end of the bridge.  

Current Suspension bridges and examples of them which were built in the early 1800s, 

actually evolved from the simple suspension bridges. These bridges are one of the 

oldest versions of bridge which made by man. They have cables for load-bearing but 

don't have towers. Thangtong Gyalpo King of the Empty Plain,Tibetan saint and 

bridge-builder from the 15th century was the one who built Earliest versions of 

suspension bridges. He built over 58 iron chain suspension bridges around Tibet and 

Bhutan and it is worth to note that one of his bridges  survived until 2004 when it was 

destroyed by a flood. Majority of his bridges had chains which acts as suspension 

cables while in earlier bridges that designed by him, he used ropes from twisted 

willows or yak skins. 

The first design of a suspension bridge that is similar to today's modern designs 

appeared in book “Machinae Novae” from 1959 which was written by Venetian 

polymath Fausto Veranzio. He also has designs in his book for a timber and rope 

suspension bridge, and a cable-stayed bridge and hybrid suspension using iron chains. 

Suspension bridge at Jacob's Creek in Westmoreland County, Pennsylvania is the first 

iron chain suspension bridge built in United States. This bridge was the first to have 

all the necessary components of a modern suspension bridge and was designed by 

James Finley who patented a system for suspending a rigid deck from a bridge's cables 

in 1808. This years is considered as a Beginning of an era of the modern suspension 
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bridges. After that, two bridges were built in England: Dryburgh Abbey Bridge which 

is built in 1817 and Union Bridge which is built in 1820. The first large bridge that 

implemented the technique invented by Finley was bridge over the Menai Straits in 

Wales built by Thomas Telford and finished in 1826. For the first time Cables 

consisting of many strands of wire for suspension were used instead of chains in 1930 

by French engineers. Instead of transporting cables prefabricated John Roebling, 

American inventor, found a way to spin them at the place of building. He also comes 

up with rigid deck platform idea which is stiffened by trusses. 

From that time suspension bridges gain more attention because they allowed to span 

spaces that could not be spanned with conventional methods. Its advantages are that it 

could have longer spans comparing to other types; Since it uses less material it is 

cheaper bridge type (even with longer spans); during construction it does not require 

access from below so bridge elevation would not affect construction procedure; it can 

resist earthquake more than other types; and it can be changed and modified easily to 

accommodate wider vehicles or to add additional lanes. Like everything it also has its 

disadvantages: In order to avoid vibration it must be made very stiff or aerodynamic 

so winds with high speed would not cause any vibrations; due to relatively lower 

stiffness of a board it is very difficult to carry heavy rail traffic compared to other 

bridge types. Length of the suspension bridges main span (longest span in bridge) are 

often used for comparing suspension bridges. Akashi Kaikyō Bridge is the suspension 

bridge which is built in 1998. Main span length is 1,991 meters and it connects Awaji 

Island and Kobe in Japan. Xihoumen Bridge on the Zhoushan Archipelago is another 

example of long suspension bridge, which located in the largest offshore island group 

in China with length of 1,650 meters. Schematic view of the Suspension Bridge is 

displayed in Figure 1.6. 

 

Figure 1.6 : Suspension Bridge schematic view. 
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1.2 Cable Bridges Structural System 

In cable bridges, cables play an important role in integrity and stability of the bridge. 

For instance in cable stayed bridge deck is connected directly to towers which 

existence of the cables are necessary for stability of the bridge and this is same for 

suspension bridge in which hangers hold the deck at position which are connected to 

the suspender cable or main cable. In the following subsection structural system of 

both bridges are discussed. 

1.2.1 Cable-stayed bridge structural system 

Cable-stayed systems are categorized based on the different longitudinal and 

transverse cable arrangements. Cable layout is fundamental issue that concerns cable-

stayed bridges. It not only affects the structural performance of the bridge, but also the 

method of erection and the economics. 

The arrangement of the cables involves a number of considerations. It depends on the 

bridge requirements, site conditions and aesthetics appearance. The longitudinal 

arrangements are classified as follows: 

Harp or parallel system: 

In harp or parallel system cables are parallel to each other and they are connected to 

the tower at different heights. Beauty of this configuration is very pleasant. However, 

the compression in the girder is higher than the others patterns, and the tower is 

subjected to bending moments. 

Fan System: 

Fan system is result of modification of the harp system; the cables are connected at the 

same distance from the top of the tower. The fan system is attractive for a bridge where 

the longitudinal layout is a single-plane, because the cable slope is steeper, it needs 

and consequently the axial force in the girder is smaller.  

Radial System: 

With the radial configuration, all the cables connect to the top of the tower. This is a 

convenient cable configuration because all the cables have their maximum inclination; 

therefore the amount of material required in the girder is reduced. However, this 

configuration may cause congestion problems and the detailing may be complex.  

In Figure 1.7 cable arrangement of the cable-stay bridge is displayed. 
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Figure 1.7 : Cable stayed bridge cable arrangement. 

1.2.2 Suspension bridge structural system 

Even though that a modern suspension bridge looks like a cable-stayed bridge, but 

truth is that they are actually different in construction, concept and principle. The 

suspension bridge has vertically suspended cables from a main cable to support the 

deck. The main cable is fastened at both ends of the bridge and runs between towers. 

The latter, on the other hand, has one or more towers from which taut cables connected 

directly to tower to support the deck, and these normally creating a series of parallel 

lines with a fan-like pattern. 

For medium distances cable-stayed bridges are best option (since the length is longer 

than a cantilever bridge and shorter than a suspension bridge). From the 16th century 

cable-stayed bridges have been used and in the 19th century they became popular, and 

early designs combined features from both the suspension bridges and cable-stayed 

bridges. Famous Brooklyn Bridge is a great example of this. But in the 20th century, 

cable-stayed designs lost their popularity because larger distances used suspension 

bridges, while shorter gaps could be cover using reinforced concrete. At the end of the 

20th century, cable-stayed became more popular again because there were larger 

construction machinery, a combination of new materials, and an increase in the need 

to replace renewing older bridges. Most of cable-styled bridges are located in the China 

and the United States.  
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1.2.3 Famous suspension bridges 

In this section the most famous suspension bridges are presented. Furthermore the 

history of the longest bridges around the world and the prominent bridges that are 

located in Turkey are briefly discussed. 

The most longest suspension bridges and their location is presented in Table 1.1. 

Table 1.1 : Longest suspension bridges 

Name Year opened Main span (m) Location 

Akashi Kaikyō Bridge 1998 1991 Japan 

Xihoumen Bridge 2009 1650 China 

Great Belt Bridge 1998 1624 Denmark 

Osman Gazi Bridge 2016 1550 Turkey 

Yi Sun-sin Bridge 2012 1545 South Korea 

Runyang Bridge 2005 1490 China 

Dongting Lake Bridge 

Hangrui 
2018 1480 China 

Nanjing Fourth Yangtze 

Bridge 
2012 1418 China 

Humber Bridge 1981 1410 United Kingdom 

Yavuz Sultan Selim Bridge 2016 1408 Turkey 

 Akashi Kaikyō Bridge 

Akashi Kaikyō Bridge is longest suspension bridge in world which construction of it 

ended at 1998. The main span of this bridge is 1991 meters long while side spans 

length are 960 meters and total length of this bridge is 3911 meters. It is worth to note 

that at the beginning of the construction main span was 1990 meters which due to the 

major earthquake which occurred in January of 1995 added extra 1 meter to the space 

between towers. Height of towers are 282.8 meters and diameter of cable are 112 

centimeters. Akashi Kaikyō Bridge is shown in Figure 1.8. 
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Figure 1.8 : Akashi Kaikyō Bridge 

 Xihoumen Bridge 

Xihoumen Bridge is opened to traffic at 2009. Main span of this bridge is 1650 meters 

while total length of the bridge is 2588 meters. Pylons height are 211.286 meters. The 

side view of the Xihoumen Bridge is depicted in Figure 1.9. 

 

Figure 1.9 : Xihoumen Bridge 
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 Great Belt Bridge 

This bridge is located at Denmark and it opened to rail traffic in 1997 and road traffic 

in 1998. It has total length of 6790 meters and the main span of it is 1624 meters long. 

Width of the bridge is 25 meters and height of the towers is 254 meters. The captured 

photograph of the Great Belt Bridge is displayed in Figure 1.10. 

 

Figure 1.10 : Great Belt Bridge 

 Osman Gazi Bridge 

Construction of this bridge is started at 2013 and it opened to traffic in 2016. Total 

length of the suspension bridge is 2682 meters and main span is 1550 meters long. 

Girder depth is 4.75 meters and is made from steel. Pylons are also made from steel 

while their height is 236.4 meters. The view of the Osman Gazi bridge is depicted in 

Figure 1.11. 

 

Figure 1.11 : Osman Gazi Bridge 
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 Yavuz Sultan Selim Bridge 

Construction of this bridge is started at 2013 and construction ended at 2016. Total 

length of this bridge is 1875 meters and main span is 1408 meters. The width of the 

bridge is 59 meters, girder depth is 5.5 meters and Pylons are 330 meters tall. Deck of 

bridge is made from steel and pylons are made from reinforced concrete. The captured 

photograph of the Yavuz Sultan Selim bridge is presented in Figure 1.12.  

 

Figure 1.12 : Yavuz Sultan Selim Bridge 

1.2.4 Advantages and disadvantages of suspension bridges 

The Advantages of Suspension Bridges 

1. Low Construction Costs 

Since suspension bridges requires less materials for construction they cost less 

comparing to other type of the bridge. With three basic necessities such as anchorages, 

roadways and cables, suspension bridges are possible to construct. Having said, this, 

suspension bridges are great solutions to provide communities with functioning and 

useful bridges without much need for funding. These are beneficial in areas that lack 

infrastructure funds. And in the case of allotting budget for projects, the inexpensive 

costs in building these types of bridges can allow for other projects to be financed. 

2. Long Span 

Possibility to construct them at different lengths, from 600 to 4000 meters is another 

advantage of suspension bridges and they are longer comparing to other types of the 

bridges. This feature allows engineers to build suspension bridges to connect and join 

very long distance locations. Depending on the demand and possibility given, these 
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bridges can be underspanned like the Pont des Bergues and the Micklewood Bridge. 

On the other hand, three long suspension bridges are in Denmark, Japan and China. 

3. Ease of Maintenance 

Apart from inexpensive construction costs, suspension bridges are known for their 

minimal maintenance requirements. Once construction is completed, there are no 

immediate needs for additional materials like cables. What is called for is simply 

regular maintenance. Moreover, it is known for durability and longevity, making major 

repairs not needed as often. Consequently, maintenance costs are also not that high. 

4. Versatility 

Suspension bridges do not only cost less to build, they can also be built practically 

anywhere so long as there are places for building support towers and anchorages. This 

is also because of the design which is suspended in the air, no inflow restrictors are 

needed to be placed underneath. They can also bear the beatings of earthquakes. 

5. Attractive 

Tourists, local and foreign in America love to cross the Brooklyn Bridge and visit the 

Golden Gate Bridge in San Francisco. Suspension bridges are more aesthetic and 

pleasing compared to truss and beam bridges because of the different shapes of these 

bridges. The linear and curved features of these bridges make them structurally 

beautiful. This is on top of the cables giving support to these bridges, making them 

versatile bridges. 

The disadvantages of Suspension Bridges 

1. Loss of Income 

Despite the low costs of constructing suspension bridges and the job opportunities they 

offer, the length of time needed to finish building these bridges are long. What happens 

is that the businesses that are within the vicinity will be affected since business 

operations will be hampered. Consequently, there will be loss of sales and profit. This 

can have a negative impact on the economy of the city or town. Also, bridges built to 

connect locations between bodies of water can affect the course of ships carrying 

supplies since they need to divert their routes. This can also result to loss of money 

since deliveries of goods can take longer.  

2. Weak in Winds 

Despite flexibility and strength to withstand earthquakes, these bridges are not too 

strong when it comes to powerful winds caused by hurricanes. Too much strong winds 

can result to damages to suspension bridges. Collapse of the Tacoma Narrows Bridge 



  

20 

on November 7, 1940 in winds of at only 40 miles per hour is classic example for 

weakness of suspension bridges when they are subjected to strong wind loads. 

Although the disaster was blamed on design and construction, what happened that time 

presented risks associated with suspension bridges. 

3. Load Limitations 

Another disadvantage of suspension bridges is the material used which are the cables. 

These cables have limitations when it comes to bearing the weight of loads. Although 

it can allow a minimal weight with regard to vehicles passing through, too much 

weight can lead to the breaking of cables. 

4. Limited Applications 

Suspension bridges, despite their cost-effectiveness in construction and flexibility 

when it comes to site location, have limitations when it comes to its use. This is 

because they are vulnerable to be damaged and destroyed by strong winds and not 

durable enough to hold limitless weight, careful consideration should be taken before 

construction. That said, they can only be used by general traffic. 

Suspension bridges have retained popularity around the world and this is evident with 

the number of these bridges that built all around the world. However, along with 

advantages also come the disadvantages. This is why engineers building these bridges 

should study the design and ensure requirements in building these bridges are met with 

accuracy and compliance. 

1.3 Structural Components of Suspension Bridge 

Like most of the structures suspension bridges are made of substructure and 

superstructure. Substructure part is related to foundation, anchorage and piers. 

Meanwhile superstructure is referred to tower, deck, suspension cable and hangers. In 

brief, in the following section important parts of the suspension bridge will be 

discussed. Structural components of the suspension bridge are depicted in Figure 1.13. 
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Figure 1.13 : Structural components of the suspension bridge 

1.3.1 Tower 

Purpose of tower or pylon is to hold the suspended cable. End points of the cable is 

attached to the tower to provide cable sag at a sufficient height. Other function of the 

tower is to carry the stiffening girder and side span. Vertical loads due to suspended 

cables are static loads applied to the tower, and loads due to wind and traffic are 

dynamic loads applied to the tower. For building towers usually three materials are 

used which are reinforced concrete, steel and timber. For building towers of long span 

cable-stayed and suspension bridge, reinforced concrete and steel can be used whereas 

the timber is only used for building towers of pedestrian bridge.  

1.3.1.1 Towers classification in longitudinal and transverse direction 

Towers are classified into rigid, flexible, or locking types which are illustrated in 

Figure 1.14. Flexible towers are commonly used in long-span suspension bridges, 

rigid towers of multi-span suspension bridges to provide enough stiffness to the bridge, 

and locking towers occasionally for relatively short-span suspension bridges. 

In Figure 1.15 Towers classification in transverse direction are displayed. Towers in 

transverse direction are classified into portal or diagonally-braced types. Moreover, 

the tower shafts can either be vertical or inclined. Typically, the center axis of inclined 

shafts coincide with the center line of the cable at the top of the tower. Careful 

examination of the tower configuration is significant, in that towers dominate the 

bridge aesthetics [1]. 
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Figure 1.14 : Towers classification in Longitudinal Direction 

 

Figure 1.15 : Towers classification in Transverse Direction 

1.3.2 Deck 

The duty of the deck is to withstand the load caused by the train and the vehicles. The 

deck is connected to the main cable by the vertical hangers. The self weight of the deck 

should be as low as possible, and this is due to the fact that the deck is kept by the 

hangers. Existence of stiffening girders in suspension bridges is necessary since they 

withstand wind loads and important example of their crucial role in stability of 

suspension bridge is Tacoma Narrows Bridge which absence of stiffening girder 

reduced structure stiffness which bridge colla 
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d due to moderate wind load. stiffening girder could be in shape of I-girder, truss and 

box girder. In Figure 1.16 different types of the girders displayed. 

 

Figure 1.16 : Girder types (a) Truss girder (b) Box girder and (c) I-girder 

Stiffening girder could be hinged or continuous in former there is not any moments 

at the tower and deck intersection while in later moment exist at the intersection. 

Figure 1.17 depicts both types of stiffening girder. 

 

Figure 1.17 : Stiffening girder (a) Hinged stiffening girder and (b) Continuous stiffening girder 
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1.3.3 Hangers 

The purpose of the hangers is to connect the deck and stiffening girders to the main 

cable and also to transfer the loads from vehicles and trains to the main cable. Hangers 

are spaced with equal distances along the span and they could be vertical or diagonal. 

In Figure 1.18 different types of hanger and their arrangement illustrated. 

 

Figure 1.18 : Hangers type (a) Vertical hangers, (b) Diagonal hangers and (c) Combined suspension 

and cable-stayed system 

Tsing Ma bridge and Akashi Kaikyō Bridge which are located in China and Japan are 

famous examples of suspension with vertical hangers. Bosphorus bridge in Turkey and 

humber bridge in England are examples of the suspension bridge with diagonal 

hangers. The one of the most famous types of combined suspension and cable-stayed 

system is Yavuz Sultan Selim Bridge which is the third bridge constructed over the 

bosphorous and opened to the traffic recently.   
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1.3.4 Suspension cable 

Suspension cables hold the deck which carries the traffic loading and also they transfer 

these load to the towers. Suspension cables usually are designed for tension forces and 

most of the time they can not withstand any compressive forces. Suspension cables are 

longer than span of the bridge since at their end points they are connected to top of the 

towers while there is sag at middle point of them which means that these cables are 

not taut. In most of the suspension bridges sag to span ratio is between 1:8 and 1:12. 

1.3.5 Anchorages 

The main function of anchorage is to support the ends of the main cable and to prevents 

any movements in the main cable by transferring the force from the main cable to the 

ground. Since the anchorage has to resist a large force the design of anchorages is very 

tough unless the ground on which the anchorage is to be positioned is good and also if 

sound rock is available in the ground.   

1.3.5.1 Types of cable anchoring 

Suspension bridge could be either self anchored or externally anchored. External 

anchorage is most common while in some of bridges self anchored system 

implemented. In externally anchored, suspension bridges transmit their tensile forces 

form the main suspension cables to an external anchorage and the possibility of an 

external anchorage depends on the soil conditions. In Self-anchored main cables are 

secured to the stiffening girders instead of the anchorage and the axial compression is 

carried into the girders. The Konohana Bridge in Japan and The Chelsea Bridge in 

England are examples of the self anchored bridge. Both of these anchorage types are 

illustrated in Figure 1.19. 

 

Figure 1.19 : Anchorage type (a) Self anchored type and (b) Externally anchored type 

https://en.wikipedia.org/wiki/Konohana_Bridge
https://en.wikipedia.org/wiki/Japan
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1.4 Literature Review 

Lots of studies have been carried out on suspension bridges, in which some of them 

focused on extensible hangers. In most of these studies researchers considered hangers 

as inextensible elements during vibration which do not show any axial deformation. 

Steinmen in 1959 computed natural frequencies of suspension bridge. In his study he 

assumed sine-curve for span and also parabolic shape for the cable. By using energy 

method he found stiffness equation and proposed two equations for each symmetric 

and anti-symmetric modes. In anti-symmetric equation only I(moment of inertia) and 

H (Horizontal cable tension) is effective while in symmetric equation he introduces 

new parameter called  ΔH (increment in Horizontal cable tension) This equation is 

applicable to symmetric modes while for ease and to increase the speed of calculation 

former suggested for symmetric modes [2]. 

Xu et al in 1997 done research about vibration of the Tsing Ma suspension bridge. This 

bridge connects new infrastructures such as airport and ports located on Lantau island 

to Hong Kong. In this study they computed dynamic characteristics of the bridge which 

is built in a typhoon region. They measured dynamic characteristics for lateral, vertical 

and torsional vibration with finite element method and compared it with the results 

obtained from numerical method. The first vertical mode of the bridge they compute 

was almost anti-symmetric while the second and third modes they computed were 

almost symmetric. The interesting thing in this study was appearance of the first anti-

symmetric mode before the symmetric mode [3]. This fact has also been observed in 

the study of Abdel-Ghaffar and Scanlan in 1985 [4]. 

Wollmann in his study in 2001 derived fundamental equations of suspension bridge 

analysis based on the deflection theory and computed cable tension due to the live 

loads that act on the bridge. This method covers tower flexural rigidity which is 

different from Steinman’s research and Timoshenko and Young research. Since 

differential equilibrium equation consists of one variable and one unknowns they 

needed an extra equation to find unknown parameter. Thus, they used compatibility 

equation in which there is connection between increment in horizontal tension of the 

cable, tower displacement and cable elongation. After solving this equation which 

must be solved in iterative manner until the error is considerably small, they introduce 

increment in tension to the differential equation. It is worth to note they use a numerical 

example which shows how to find deflection function of the suspension bridge [5]. 
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Compatibility equation and the derivation of it is completely described in second 

chapter. 

Cobo del Arco and Aparicio in 2001 done research for static analysis of the suspension 

bridge to determine vertical displacement of the bridge. In their research they try to 

investigate famous suspension bridges in the world. In their study they defined 

dimensionless parameters which helped them for comparing various suspension 

bridges. They define dimensionless parameters λ and α which are dependent on 

geometric properties and live load which acts on the bridge. They showed that 

deflection theory is still efficient to determine displacement and deflection even in 

presence of the computer softwares which implement FEM method to solve problems. 

Another result that they obtained indicated that the stiffening girder has small influence 

in the control of the deflections and also λ2 has negligible effect in the determination 

of bending moments [6] 

Yau in 2009 done research in regard of the suspension bridge dynamic response due 

to the moving oscillator and ground excitation. In this study some assumptions has 

been made such as stiffening girder is elastic and behaves linear, bridge towers are 

rigid and they do not show any deflection and the cable sag is adjustable between the 

suspension cable and bridge deck. He defined equation of motion for the suspension 

bridge while he assumed that vertical hangers are inextensible. Since equation of 

motion is partial integro-differential equation they decompose the equation to pseudo 

static and dynamic part which leads he to solve ODE and IDE. To solve IDE he 

considered that increment in horizontal component of cable tension is negligible and 

it is equal to horizontal component of cable tension. To solve time dependent ODE he 

uses Newmark method. At last part he tries numerical example in which he investigates 

multiple support motion with uniform support motion and also speed of moving load 

in which resonant of the bridge occurs [7]. 

Liu et al. in 2011 in their research they proposed differential equations for both cable 

and deck. Likewise to yau’s research they decomposed differential equation to pseudo-

static and dynamic part. In their research they assumed that deck and cable deflection 

are same during vibration, thus assumption causes that stiffness term related in 

differential equation to drop. They used newmark method to solve their differential 

equation which is an iterative method to solve differential equation.  At last step they 

investigated numerical example and for this purpose they investigated Messina Bridge 

[8]. 
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A research study performed by Choi et al. on 2013 computed multi span suspension 

bridge deflection with deflection theory method for different load cases and then 

compared the results with FEM method. In this research the effect of towers 

displacement on deflection of the bridge considered [9]. 

Choi and Gwon performed a research in 2015 to computed vertical deflection of the 

suspension bridge and compared the result for deflection theory, improved deflection 

theory and FEM method. In their research they investigated different parameters such 

as continuity of the deck, span length and magnitude of the load. Result indicated that 

there are not much difference in vertical deflection of the suspension bridge between 

these three methods but for finding moment in span improved deflection theory and 

FEM methods are in good agreement while result differ considerably with deflection 

theory [10]. 

Gwon and Choi in 2017 investigated free vibration of the suspension bridge. In their 

research, an improved continuum model for free vibration analysis of three-span 

suspension bridges with either a hinged  girder or a continuous girder was assessed to 

investigate the effects of hanger extensibility on free vertical vibrations. Their research 

indicated that hanger extensibility affects higher modes more if the relative girder 

stiffness is not large [11]. 

In another research which is performed by Gwon and Choi in 2018 they investigated 

three dimensional suspension bridge which consists three span. In their study they 

evaluated response of the bridge for different live loads when a moving load crosses 

the bridge. They also compute velocity and acceleration response of the bridge. Finally 

they compared their result with FEM method which proved efficacy of the method 

they used in their study [12]. 

Hayashikawa and Watanabe performed a research in 1982 to determine dynamic 

behavior of the suspension bridge under moving loads. After proposing dynamic 

equation for the suspension bridge, they investigated three different types of the bridge. 

Their results indicated that the effect of the cable support at the top of the tower on 

natural frequencies is negligible while effect of the girder supports at the end of spans 

are considerable. Values of natural frequencies in continuous suspension bridge are 

larger than hinged suspension bridge [13]. 

Materazzi and Ubertini in 2015 investigated behavior of the suspension bridge when 

the suspension cable which connects the two towers has been damaged at quarter span. 

Their investigation showed that in static response of the bridge, damaged suspension 
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cable cause sag augmentation and tension loss which are negligible since the 

mentioned changes are below the few percent. In dynamic response behavior of the 

bridge is a bit complicated, in antisymmetric modes damage would not affect mode 

shapes and with increase in modal order the sensitivity of natural frequencies of the 

bridge decrease. For symmetric modes, the second mode shows largest sensitivity to 

damage and likewise to antisymmetric modes, modal order increase cause less 

sensitivity to damage in symmetric modes. It is worth to note that natural frequency 

variations are more useful for detecting damage in suspension cable than mode shape 

variations [14]. 

Antony and Varma in 2015 modeled suspension bridge which consists of three spans 

and each span were simply supported at ends. Due to complexity of the problem they 

made some simplifications in their calculations. Results indicated that hanger 

flexibility has no effect on dynamic characteristics of the suspension bridge while 

increasing tower height and pre-stressing main cables increases natural frequencies. In 

lower modes non-linear calculation would not differ considerably from linear 

calculation while in higher modes these calculations deviate from each other 

significantly [15]. 

Sarker and Manzur in 2013 studied effect of different structural elements on the natural 

period of suspension bridge along its span. For simplicity they made some assumptions 

to ease analyze and calculations, such as that the behavior of all materials used are 

linearly elastic, and nonstructural components won’t participate in bridge behavior. In 

their models deck width was 30m while number of spans varies.  Results indicate that 

natural period of a suspension bridge affects with the tower height. As the ratio of 

tower height to span decrease, the natural period for vertical vibration decreases with 

the increment of the central span length. For lateral vibration, decreasing tower height 

to span ratio is favorable to obtain minimum natural period. Deck depth has significant 

effect on the natural period for both vertical and lateral vibration. In vertical vibration, 

with increase of deck depth to span ratio value of natural period decrease. On the other 

hand, to obtain minimum natural period for lateral vibration reducing ratio of deck 

depth to span found to be effective [16]. 

Enrique Luco and Turmo in their study in 2010 indicated that free vibration of 

suspension bridges are controlled by dimensionless parameters 𝜆2 and 𝜇2. 𝜆2 Is 

indicative of the cable axial stiffness and 𝜇2 represents bending stiffness of the girder. 

Their findings shows that the effects of 𝜇2 on the fundamental frequencies appear to 
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increase with the value of the cable stiffness parameter 𝜆2. Their study also indicate 

that effect of 𝜇2 on natural frequencies is much more for higher modes while 𝜆2 has a 

considerable effect on the natural frequencies of the first two symmetric modes, but 

these effects reduce significantly for third and higher modes which can be neglected 

[17].  

Chatterjee et al., in 1994 investigated the effect of the moving load on dynamic 

response of the suspension bridge. Likewise to other articles for simplicity they made 

some assumptions. For modeling the vehicle load, the vehicle is idealized as a 3D, 2D, 

or single sprung mass system. Results indicate that natural periods of vertical vibration 

of suspension bridges with rollertype cable connection are generally greater than those 

with hinged cable connection. Natural periods of torsional vibration with roller-type 

cable connection are found to decrease with the increase of the parameters 𝛿1 and 𝛿2 

the variation of the natural periods is less sensitive to the variation of 𝛿2 compared to 

the variation of 𝛿1. Natural periods for both vertical and torsional vibration of the 

bridge with hinged cable connection are found to decrease with the increase of flexural 

stiffness of the towers. For suspension bridges with hinged-type cable connection, 

natural periods of torsional vibration are significantly reduced with the increase of 

torsional resistance of the towers [18].  

Goremikins et al., in 2013 prepared physical model of prestressed suspension bridge. 

The prestressing is organized in the stabilization cables. Experiment shows that 

increasing prestresing level increase natural-vibration frequency and this would help 

to improve dynamic characteristics of the suspension bridge [19]. 

Turmo and Luco in 2010 in their study shows that free vibrations of a suspended span 

with unloaded backstays and elastic hangers is controlled by five dimensionless 

parameters while the response of a symmetric three-span suspension bridge is 

dependent on six dimensionless parameters. Results indicate that flexibility of the 

hangers only affects natural frequencies for symmetric and antisymmetric modes 

higher than third mode and relative girder stiffness parameter 𝜇2 is greater than 10×10-

3. First three symmetric and antisymmetric mode shapes are not influenced 

considerably by flexibility of the hangers while for higher modes influence is 

appreciable. Flexibility of the hangers have been found that have negligible effect on 

the dynamic deck displacement and additional main cable tension when the bridge is 

subjected to localized impulsive loads acting at midspan or at the quarter points of the 

deck [20]. 
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In another research which is performed by Fryba and Yau in 2009 focused on the 

vibration of suspended bridges subjected to the simultaneous action of moving loads 

and support motions in vertical direction because of earthquake. Their study shows 

that response of the suspension bridge increases if they consider earthquake effect. But 

the maximum acceleration along the main beam did not change a lot even though 

various time lags of the earthquake exciting the suspended beam have been taken into 

account. It is concluded that the suspension bridge will behave almost insensitive to 

the occurrence time of earthquakes when the train-type moving loads are passing the 

bridge. The dynamic effects are growing with the increasing speed of trains, as 

regularly on bridges. This phenomenon was observed and confirmed many times with 

other researchers [21].   
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2.  DETERMINING EQUATION OF MOTION OF SUSPENSION BRIDGES  

In order to compute deflection, velocity and acceleration response of suspension bridge 

when it is subjected to the moving load and ground motion simultaneously, equation 

of motion for suspension bridge derived. In this chapter mathematical approach for 

deriving equation of motion of suspension bridge for extensible and inextensible 

hangers assumption, explained in detail. 

In the analysis of suspension bridges two theories have dominated over the last 

century, the elastic theory and the deflection theory. It began somewhere around 1823 

with Navier’s theory of the unstiffened suspension bridge and revealed the concept of 

cable stiffness. Around 1850 Rankine revealed a theory about the stiffened suspension 

bridge. In the late 19th century, the elastic theory is improved based on the Rankine 

theory by considering the elastic flexibility of the deck and cable. The deflection theory 

used during the early 20th century was the first theory of the stiffened suspension bridge 

to consider the change in shape of the cable and gave theoretical backing to propose 

very slender stiffening trusses. 

Elastic theory assumes that the cable is parabolic under both the dead load and total 

loads. In elastic theory moment in the girder is computed by equation (2.1). 

𝑀 = 𝑀′ − 𝑦Δ𝐻 (2.1) 

In above equation 

M’ is live-load component moment of unsuspended girder. 

Δ𝐻 is increment in horizontal component of cable tension. 

y is ordinate of main span cable at location of desired moment. 

The live load moment acting in the girder is reduced by the effect of the increment in 

horizontal component of the cable tension. 

The deflection theory accounts for an additional relieving moment provided by the 

horizontal component of the total cable tension when the bridge deflects 𝑤, under live 

load. This is called cable stiffness and reduces the moment in the girder by an 
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additional amount of (𝐻 + Δ𝐻)𝑤. The deflection theory is therefore an extension of 

the elastic theory and is given in equation (2.2). 

𝑀 = 𝑀′ − 𝑦Δ𝐻 − (𝐻 + Δ𝐻)𝑤 (2.2) 

In which (𝐻 + Δ𝐻) is horizontal component of tension in the cable is produced by 

dead and live load. Deflection theory is more accurate and economic comparing than 

elastic theory but in this theory effect of the cable extensibility neglected. In Figure 

2.1 schematic view of deflection theory has been displayed. 

 

Figure 2.1 : Elastic theory and deflection theory 

However, in order to determine axial forces in the hangers and computing stress in 

hangers extensibility of the hangers must take into the account. In this study effect of 

the cable extensibility considered and deflection of the deck and cable of the 

suspension bridge computed. 

During the vibration of the suspension bridges, loads that caused by vibration starts to 

act on deck and suspended cable of the bridge. The suspension bridge’s deck is 

disconnected at pylons where bending moment (multiplication of E, I and second 

derivative of the deck deflection) is equal to zero. In order to initiate the research some 

assumptions made which are: 

1) The stiffening girder is modeled as a linear elastic Bernoulli-Euler 

beam with uniform cross section. 

2) Dead load is uniform and deflected shape of the suspension bridge due 

to the dead load and own weight of the suspension bridge, considered 

as reference point for determining deflection of the suspension bridge. 

3) The cable sag is adjustable between the suspension cable and bridge 

deck and under dead load cable shape is parabolic. 



  

35 

4) All of the dead and live loads are carried by suspension cable. 

5) Speed of moving load is constant and would not change during 

vibration and crossing the bridge. 

6) Hangers are massless, extensible and continuously distributed along the 

deck.  

7) Hangers are vertical initially and remains vertical during vibration and 

no lateral displacement in in-plane and out-of-plane direction occurs. 

2.1 Suspension Bridge Free Body diagram 

Considering that suspension bridge is vibrating free body diagram of the suspended 

bridge deck is shown in Figure 2.2. 

 

Figure 2.2 : Free body diagram of the deck 

In above figure 𝑧 represents movement of the deck while 𝑤 represents movement of 

the cable, 𝑚𝑏 is beam mass per unit length, 𝐸𝑏 is modulus of elasticity of the deck, 𝐼𝑏 

is moment of inertia for deck 𝐶𝑏 is deck damping coefficient, K is stiffness of the 

hangers and 𝑓1(𝑥, 𝑡) is external load which caused by traffic, wind and etc. 

By considering the free body diagram equation of motion for suspension bridge deck 

indicated in equation (2.3). 

𝑚𝑏�̈� + 𝐶𝑏�̇� + 𝐾(𝑧 − 𝑤)
+ − (−𝐸𝑏𝐼𝑏𝑧

𝑖𝑣) − 𝑓1(𝑥, 𝑡) = 0 (2.3) 

Free body diagram for the cable is indicated in Figure 2.3. 

𝐶𝑏�̇� 

𝑚𝑏�̈� 

𝐾(𝑧 − 𝑤)+, 𝐻𝑎𝑛𝑔𝑒𝑟𝑠 

−𝐸𝑏𝐼𝑏𝑧
𝑖𝑣 𝑓1(𝑥, 𝑡), 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑤𝑖𝑛𝑑 𝑎𝑛𝑑 𝑒𝑡𝑐. 
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Figure 2.3 : Free body diagram of the cable 

𝐻 is the horizontal component of the cable tension, 𝛥𝐻 is the increment in cable 

tension due to vibration, 𝑔 is gravitational acceleration, 𝑚𝑐 is cable mass per unit 

length and 𝑓2(𝑥, 𝑡) is external load which caused by traffic, wind and etc. 

Equation of motion for suspended cable represented in equation (2.4).  

𝑚𝑐�̈� − 𝐾(𝑧 − 𝑤)
+ − (𝐻 + 𝛥𝐻)(𝑦′′ + 𝑤′′) − (𝑚𝑐𝑔 +𝑚𝑏𝑔)

− 𝑓2(𝑥, 𝑡) = 0 
(2.4) 

2.2 Cable Tension and Increment of Tension Mathematical Formulation 

Considering finite length of the cable with the length of  Δ𝑠 and cable Tension of T 

equilibrium for the cable has been derived in next steps. In Figure 2.4 equilibrium of 

the finite length of the cable has been depicted. 

 

Figure 2.4 : Equilibrium of the finite length of the cable 

Horizontal component of the cable is manifested in equation (2.5).  

𝑇
𝑑𝑥

𝑑𝑠
= 𝐻 (2.5) 

𝑚𝑐�̈� 

𝑚𝑐𝑔 +𝑚𝑏𝑔 

𝑓2(𝑥, 𝑡), 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 
𝑤𝑖𝑛𝑑 𝑎𝑛𝑑 𝑒𝑡𝑐. 

𝐾(𝑧 − 𝑤)+ 

(𝐻 + 𝛥𝐻)(𝑦′′ + 𝑤′′) 
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𝑇 in above equation is representing the cable tension and 𝑑𝑠 is finite length of the cable 

and 𝑑𝑥 is horizontal projection of the 𝑑𝑠. 

From equation 2.5, the relation between horizontal component of the cable tension and 

total weight of the cable and deck is obtained and illustrated in equation (2.6). 

𝐻
𝑑2𝑦

𝑑𝑥2
= −(𝑚𝑐 +𝑚𝑏)𝑔

𝑑𝑠

𝑑𝑥
 (2.6) 

Length of the finite length of cable is given in equation (2.7). 

𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 (2.7) 

Dividing both sides of equation 2.7 by 𝑑𝑥2 results in equation (2.8) which brought 

hereunder. 

(
𝑑𝑠

𝑑𝑥
)
2

= 1 + (
𝑑𝑦

𝑑𝑥
)
2

 (2.8) 

By inserting equation 2.8 to equation 2.6 the relation between total weight of the cable 

and the deck and cable tension derives which is manifested in equation (2.9).  

𝐻
𝑑2𝑦

𝑑𝑥2
= −(𝑚𝑐 +𝑚𝑏)𝑔 {1 + (

𝑑𝑦

𝑑𝑥
)
2

}

1
2⁄

 (2.9) 

By considering that variation of the y with respect to x is negligible and is equal to 0, 

equation 2.9 would be simplified into equation (2.10). 

𝐻 = −
(𝑚𝑐 +𝑚𝑏)𝑔

𝑦′′
 (2.10) 

The increase in length of the cable due to vehicle vibration and external loads is 

presented in equation (2.11). 

𝑑𝑠′ − 𝑑𝑠

𝑑𝑠
=
𝑑𝑢

𝑑𝑠

𝑑𝑥

𝑑𝑠
+
𝑑𝑦

𝑑𝑠

𝑑𝑤

𝑑𝑠
+
1

2
(
𝑑𝑤

𝑑𝑠
)
2

 (2.11) 

Relation between increment in cable tension and increment in horizontal component 

of cable tension is presented in equation (2.12). 

𝜏 = 𝛥𝐻
𝑑𝑠

𝑑𝑥
 (2.12) 
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In equation 2.12, 𝜏 is representing increment in cable tension and 𝛥𝐻 represents 

increment in horizontal component of cable tension. 

Multiplying both sides of the equation 2.11 by (
𝑑𝑠

𝑑𝑥
)
2

 will lead to equation (2.13). 

{
1

𝐸𝑐𝐴𝑐
𝛥𝐻

𝑑𝑠

𝑑𝑥
} (
𝑑𝑠

𝑑𝑥
)
2

= {
𝑑𝑢

𝑑𝑠

𝑑𝑥

𝑑𝑠
+
𝑑𝑦

𝑑𝑠

𝑑𝑤

𝑑𝑠
+
1

2
(
𝑑𝑤

𝑑𝑠
)
2

} (
𝑑𝑠

𝑑𝑥
)
2

 (2.13) 

Integrating equation 2.13 with respect to x would results in equation (2.14). 

∫ {
1

𝐸𝑐𝐴𝑐
} 𝛥𝐻 (

𝑑𝑠

𝑑𝑥
)
3

. 𝑑𝑥

𝑥=𝐿

𝑥=0

= ∫ {
𝑑𝑢

𝑑𝑥
+
𝑑𝑦

𝑑𝑥

𝑑𝑤

𝑑𝑥
+
1

2
(
𝑑𝑤

𝑑𝑥
)
2

} . 𝑑𝑥

𝑥=𝐿

𝑥=0

 (2.14) 

Effective length of the cable is manifested in equation (2.15). 

𝐿𝐶 = ∫ (
𝑑𝑠

𝑑𝑥
)
3

. 𝑑𝑥

𝑥=𝐿

𝑥=0

 (2.15) 

Inserting equation 2.13 into equation 2.12 results in equation (2.16). 

𝛥𝐻𝐿𝐶
𝐸𝑐𝐴𝑐

= ∫ {
𝑑𝑢

𝑑𝑥
+
𝑑𝑦

𝑑𝑥

𝑑𝑤

𝑑𝑥
+
1

2
(
𝑑𝑤

𝑑𝑥
)
2

} . 𝑑𝑥

𝑥=𝐿

𝑥=0

 (2.16) 

Since 𝑢 is the horizontal displacement of the top of the pylons which affect the 

increment in cable tension, equation 2.16 would be simplified into equation (2.17). 

𝛥𝐻𝐿𝐶
𝐸𝑐𝐴𝑐

= (𝑢𝐿 − 𝑢0) + ∫ {
𝑑𝑦

𝑑𝑥

𝑑𝑤

𝑑𝑥
+
1

2
(
𝑑𝑤

𝑑𝑥
)
2

} . 𝑑𝑥

𝑥=𝐿

𝑥=0

 (2.17) 

Parabolic shape of the cable is manifested in equation (2.18). 

𝑦 =
1

2
𝑥 (1 −

𝑥

𝐿
) (2.18) 

By integrating second term and third term in equation 2.16 and simplifying it, equation 

(2.19) achieved. 
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𝛥𝐻𝐿𝐶
𝐸𝑐𝐴𝑐

= (𝑢𝐿 − 𝑢0) − (
1

2
𝑤𝐿 +

1

2
𝑤0) +

(𝑚𝑐 +𝑚𝑏)𝑔

𝐻
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

+
1

2
(
𝑑𝑤

𝑑𝑥
𝑤|0

𝐿 −
𝑑2𝑤

𝑑𝑥2
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

) 

(2.19) 

 

After rearranging equation 2.19 equation (2.20) obtained.  

𝛥𝐻 =
𝐸𝑐𝐴𝑐 [(𝑢𝐿 − 𝑢0) −

1
2
(𝑤𝐿 + 𝑤0) +

(𝑚𝑐 +𝑚𝑏)𝑔
𝐻 ∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0
]

𝐿𝐶

+
𝐸𝑐𝐴𝑐 [

1
2
(
𝑑𝑤
𝑑𝑥
𝑤|0

𝐿 −
𝑑2𝑤
𝑑𝑥2

∫ 𝑤. 𝑑𝑥
𝑥=𝐿

𝑥=0
)]

𝐿𝐶
 

(2.20) 

Neglecting 
𝑑𝑤

𝑑𝑥
 and 

𝑑2𝑤

𝑑𝑥2
 in equation 2.20 would result in equation (2.21).  

𝛥𝐻 =
𝐸𝑐𝐴𝑐 [(𝑢𝐿 − 𝑢0) −

1
2
(𝑤𝐿 + 𝑤0) +

(𝑚𝑐 +𝑚𝑏)𝑔
𝐻 ∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0
]

𝐿𝐶
 

(2.21) 

Simplified form of third term in equation 2.4 which is multiplication of sum of tension 

and increment of it with sum of second derivative of the cable shape and second 

derivative of cable deflection due external loads, is illustrated in equation (2.22). 

(𝐻 + 𝛥𝐻)(𝑦′′ + 𝑤′′) = (𝐻 + 𝛥𝐻)𝑦′′ + (𝐻 + 𝛥𝐻)𝑤′′

= −
1

𝐿
(𝐻 + 𝛥𝐻) + (𝐻 + 𝛥𝐻)𝑤′′ 

(2.22) 

Inserting above equation into equation 2.2 would lead to equation (2.23). 

𝑚𝑐�̈� − 𝐾(𝑧 − 𝑤)
+ − (𝐻 + 𝛥𝐻)𝑤′′ = 𝑦′′𝐻 + 𝑦′′𝛥𝐻 + (𝑚𝑐 +𝑚𝑏)𝑔 (2.23) 

After rearranging terms and simplifying the equation 2.21 with considering that 

−
1

𝐿2
𝐸𝑐𝐴𝑐

𝐿𝐶
= 𝛼 simplified equation of equation 2.23 is shown in equation (2.24). 
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𝑚𝑐�̈� − 𝐾(𝑧 − 𝑤)
+ − (𝐻 + 𝛥𝐻)𝑤′′

= 𝛼𝐿 [(𝑢𝐿 − 𝑢0) −
1

2
(𝑤𝐿 +𝑤0)

+
(𝑚𝑐 +𝑚𝑏)𝑔

𝐻
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

] 

(2.24) 

2.3 Decomposition of the Displacements 

Since displacement of the suspension bridge compose of static and dynamic parts, 

decomposing displacement of the beam helps in analyzing of the beam displacement. 

In equation (2.25) components of the displacements for the deck is presented. 

𝑧(𝑥, 𝑡) = 𝑍(𝑥, 𝑡) + 𝑧𝑑(𝑥, 𝑡) (2.25) 

Decomposition of the cable displacement is displayed in equation (2.26). 

𝑤(𝑥, 𝑡) = 𝑊(𝑥, 𝑡) + 𝑤𝑑(𝑥, 𝑡) (2.26) 

𝒁(𝒙, 𝒕) and 𝑾(𝒙, 𝒕) are static parts which are induce by support movements and live 

loads, while 𝒛𝒅(𝒙, 𝒕) and 𝒘𝒅(𝒙, 𝒕) caused by the moving loads and dynamic effects of 

moving load. 

2.3.1 Static equations for beam and cable 

Static displacement for the cable is shown in equation (2.27). 

𝑊′′ = −
𝛼𝐿(𝑈𝐿 − 𝑈0)

𝐻(𝐻 + 𝛥𝐻)
+
𝛼𝐿

2

(𝑊𝐿 +𝑊0)

(𝐻 + 𝛥𝐻)
−
𝛼𝐿(𝑚𝑐 +𝑚𝑏)𝑔

𝐻(𝐻 + 𝛥𝐻)
∫ 𝑊. 𝑑𝑥

𝑥=𝐿

𝑥=0

−
𝐾(𝑍 −𝑊)+

(𝐻 + 𝛥𝐻)
 

(2.27) 

Since the equation 2.27 is an IDE, it must be solve with numerical methods. In equation 

2.27 there are two unknowns which is higher than number of equations. To resolve 

this problem, compatibility equation introduced, which helps in finding 𝛥𝐻. In 

compatibility equation, sum of cable deflection, tower horizontal and vertical 
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deflection and total length of the cable must be equal to zero. The compatibility 

equation with mentioned conditions is displayed in equation (2.28). 

𝛥𝐻

𝐸𝑐𝐴𝑐
∫ {1 + (

𝑑𝑦

𝑑𝑥
)
2

}

3
2

𝑥=𝐿

𝑥=0

+ (𝑈𝐿 − 𝑈0) −
(𝑊𝐿 +𝑊0)

2
+ 𝑦′′ ∫ 𝑊.𝑑𝑥

𝑥=𝐿

𝑥=0

= 0 

(2.28) 

In each iteration, 𝛥𝐻 value satisfies with less error above equation, iteration continues 

until the error is equal or less than the desirable error. Static displacement of the deck 

differential equation presented in equation (2.29). 

𝑍𝑖𝑣 = −
𝐾

𝐸𝑏𝐼𝑏
(𝑍 −𝑊)+ (2.29) 

2.3.2 Boundary conditions for cable and beam 

To solve the equations with use of FDM method, there is need for an extra equations, 

since number of equations are less than unknowns. To this purpose, extra equations 

must be introduced. Using the boundary conditions provides extra equations for getting 

trivial solution. 

Displacement and moment at the both ends of the deck are zero thus, for the deck of 

the suspension bridge boundary conditions are shown in equation (2.30). 

{
 
 

 
 

𝑍(0) = 0

𝑍(𝐿) = 0

−𝐸𝑏𝐼𝑏𝑍
′′
(0)
= 0

−𝐸𝑏𝐼𝑏𝑍
′′
(𝐿)
= 0

 (2.30) 

Displacements at the top of tower are zero which in equation (2.31) boundary 

conditions for cable is displayed. 

{
𝑊(0) = 0

𝑊(𝐿) = 0
 (2.31) 

2.3.3 Solution method for static 

Since equations 2.27 and 2.29 are coupled, they must be solved simultaneously. 

Solving equations with numerical methods is required since equations are IDE. To 
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solve the equations, finite difference1 method is chosen, which is applicable to both 

BVP and IVP problems. 

2.3.4 Inertial equation of the cable and beam 

After deriving static equation for the suspension bridge, inertial equation for the deck 

of the suspension bridge derived. For defining inertial equation, mass of the deck and 

external dynamic loads which is caused by moving load introduced. Inertial equation 

of the cable is displayed in equation (2.32). 

𝑚𝑏�̈�𝑑 + 𝐾(𝑧𝑑 −𝑤𝑑)
+ + 𝐸𝑏𝐼𝑏𝑧

𝑖𝑣
𝑑 = 𝑓1(𝑥, 𝑡) (2.32) 

 

There is no external dynamic load which acts on the cable so inertial equation for cable 

after introducing mass of the cable presented in equation (2.33).  

𝑚𝑐�̈�𝑑 − 𝐾(𝑧𝑑 − 𝑤𝑑)
+ − (𝐻 + 𝛥𝐻)𝑤′′𝑑

= 𝛼𝐿 [(𝑢𝐿 − 𝑢0) −
1

2
(𝑤𝐿 + 𝑤0)

+
(𝑚𝑐 +𝑚𝑏)𝑔

𝐻
∫ 𝑤𝑑 . 𝑑𝑥

𝑥=𝐿

𝑥=0

] 

(2.33) 

Dynamic force that caused by moving load is function of the Dirac’s delta function 

which is illustrated in equation (2.34). 

𝑓(𝑥, 𝑡) = 𝑀𝑔𝛿(𝑥 − 𝑣𝑡) (2.34) 

Assuming that deck of suspension bridge deflection is in shape that can be decomposed 

to time and location variables, decomposing of these variables helps in converting PDE 

equations to IDE and ODE equations. Separation of variables for the deck of the 

suspension bridge is depicted in equation (2.35). 

𝑧𝑑(𝑥, 𝑡) = ∑𝜙𝑛(𝑥)𝑞𝑧𝑛(𝑡)

𝑛=1

 (2.35) 
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The above concept is also applicable to cable. Separation of the variables for the cable 

is illustrated in equation (2.36). 

𝑤𝑑(𝑥, 𝑡) = ∑𝜙𝑛(𝑥)𝑞𝑤𝑛(𝑡)

𝑛=1

 (2.36) 

Shape function for both the deck and the cable considered to be in shape of sine 

equation. It must be noted that modes superimposition utilized in this study. So shape 

function in above equations for n’th mode of vibration is manifested in equation (2.37). 

𝝓𝒏(𝒙) = 𝒔𝒊𝒏 (
𝒏𝝅𝒙

𝑳
) (2.37) 

2.4 Equation of Motion for Suspension Bridge Deck 

After implementing separation variable technique, equation of motion with time 

dependent variable derived which is presented in equation (2.38). 

𝒎𝒃∑𝝓𝒏(𝒙)�̈�𝒛𝒏(𝒕)

𝒏=𝟏

+𝑲(∑𝝓𝒏(𝒙)𝒒𝒛𝒏(𝒕)

𝒏=𝟏

−∑𝝓𝒏(𝒙)𝒒𝒘𝒏(𝒕)

𝒏=𝟏

)

+

+ 𝑬𝒃𝑰𝒃∑𝝓𝒊𝒗
𝒏
(𝒙)𝒒𝒛𝒏(𝒕)

𝒏=𝟏

= 𝒇𝟏(𝒙, 𝒕) 

(2.38) 

 

Multiplying equation 2.38 it by 𝜙𝑛(𝑥) and integrating above equation between 0 and L 

interval equation (2.39) obtained which is depicted below.  
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𝑚𝑏 ∫ ∑ �̈�𝑧𝑛(𝑡)𝜙𝑛
2(𝑥)

𝑛=1

. 𝑑𝑥

𝑥=𝐿

𝑥=0

2

+ 𝐾 ∫ (∑𝜙𝑛
2(𝑥)𝑞𝑧𝑛(𝑡)

𝑛=1

𝑥=𝐿

𝑥=0

−∑𝜙𝑛
2(𝑥)𝑞𝑤𝑛(𝑡)

𝑛=1

)

+

. 𝑑𝑥

+ 𝐸𝑏𝐼𝑏 ∫ ∑(
𝑛𝜋

𝐿
)
4

𝑞𝑧𝑛(𝑡)𝜙𝑛
2(𝑥). 𝑑𝑥

𝑛=1

𝑥=𝐿

𝑥=0

= ∫ 𝑓1(𝑥, 𝑡)𝜙𝑛(𝑥)

𝑥=𝐿

𝑥=0

. 𝑑𝑥 

(2.39) 

By knowing that ∫ 𝜙𝑛(𝑥)𝜙𝑗(𝑥). 𝑑𝑥 ⇒ {
0, 𝑛 ≠ 𝑗
𝐿

2
, 𝑛 = 𝑗

𝑥=𝐿

𝑥=0
 equation of motion for n’th mode 

is depicted in equation (2.40). 

𝑚𝑏

𝐿

2
�̈�𝑧𝑛(𝑡) + 𝐾 ∫ (𝜙𝑛

2(𝑥)𝑞𝑧𝑛(𝑡) − 𝜙𝑛
2(𝑥)𝑞𝑤𝑛(𝑡))

+

. 𝑑𝑥

𝑥=𝐿

𝑥=0

+
𝐿

2
(
𝑛𝜋

𝐿
)
4

𝐸𝑏𝐼𝑏𝑞𝑧𝑛(𝑡) = ∫ 𝑀𝑔𝛿(𝑥 − 𝑣𝑡)𝜙𝑛(𝑥)

𝑥=𝐿

𝑥=0

. 𝑑𝑥 

(2.40) 

By inserting Dirac’s delta function value into equation 2.40, simplified form of 

equation 2.40, which is equation (2.41) achieves. 

𝑚𝑏

𝐿

2
�̈�𝑧𝑛(𝑡) + 𝐾

𝐿

2
𝑞𝑧𝑛(𝑡) − 𝐾

𝐿

2
𝑞𝑤𝑛(𝑡) +

𝐿

2
(
𝑛𝜋

𝐿
)
4

𝐸𝑏𝐼𝑏𝑞𝑧𝑛(𝑡)

= 𝑀𝑔𝑠𝑖𝑛 (
𝑛𝜋𝑣𝑡

𝐿
) 

(2.41) 

Matrix form of the equation of motion of the deck is presented in equation (2.42). 

𝑚𝑏

𝐿

2
�̈�𝑧(𝑡) + 𝐾

𝐿

2
𝑄𝑧(𝑡) − 𝐾

𝐿

2
𝑄𝑤(𝑡) +

𝐿

2
(
𝑛𝜋

𝐿
)
4

𝐸𝑏𝐼𝑏𝑄𝑧(𝑡)

= 𝑀𝑔𝑠𝑖𝑛 (
𝑛𝜋𝑣𝑡

𝐿
) 

(2.42) 
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Simplified form of equation 2.42 is presented in equation (2.43). 

𝑚𝑏�̈�𝑧(𝑡) + [𝐾 + (
𝑛𝜋

𝐿
)
4

𝐸𝑏𝐼𝑏] 𝑄𝑧(𝑡) − 𝐾𝑄𝑤(𝑡) =
2𝑀𝑔

𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑣𝑡

𝐿
) (2.43) 

Dividing equation 2.43 by 𝑚𝑏 would give generalized equation of motion of the deck 

which is illustrated in equation (2.44). 

�̈�𝑧(𝑡) +
[𝐾 + (

𝑛𝜋
𝐿 )

4

𝐸𝑏𝐼𝑏]

𝑚𝑏
𝑄𝑧(𝑡) −

𝐾

𝑚𝑏
𝑄𝑤(𝑡) =

2𝑀𝑔

𝑚𝑏𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑣𝑡

𝐿
) (2.44) 

2.5 Equation of Motion for Suspension Bridge Cable 

Implementing same procedure in previous section for the cable of the suspension 

bridge would result in equation (2.45). 

𝑚𝑐∑𝜙𝑛(𝑥)�̈�𝑤𝑛(𝑡)

𝑛=1

− 𝐾 (∑𝜙𝑛(𝑥)𝑞𝑧𝑛(𝑡)

𝑛=1

−∑𝜙𝑛(𝑥)𝑞𝑤𝑛(𝑡)

𝑛=1

)

+

− (𝐻 + 𝛥𝐻)∑𝜙′′
𝑛
(𝑥)𝑞𝑤𝑛(𝑡)

𝑛=1

= 𝛼𝐿 [(𝑢𝐿 − 𝑢0) −
1

2
(𝑤𝐿 + 𝑤0)

+
(𝑚𝑐 +𝑚𝑏)𝑔

𝐻
∫ 𝑤𝑑. 𝑑𝑥

𝑥=𝐿

𝑥=0

] 

(2.45) 

 

Same as the previous section multiplying the equation 2.45 by 𝜙𝑛(𝑥) and then 

integrate it between 0 an L would lead to equation (2.46). 
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∫ 𝑚𝑐∑𝜙𝑛(𝑥)�̈�𝑤𝑛(𝑡)𝜙𝑛(𝑥). 𝑑𝑥

𝑛=1

𝑥=𝐿

𝑥=0

− ∫ 𝐾(∑𝜙𝑛(𝑥)𝑞𝑧𝑛(𝑡)𝜙𝑛(𝑥)

𝑛=1

−∑𝜙𝑛(𝑥)𝑞𝑤𝑛(𝑡)𝜙𝑛(𝑥)

𝑛=1

)

+

. 𝑑𝑥

𝑥=𝐿

𝑥=0

+ ∫ (𝐻 + 𝛥𝐻)∑(
𝑛𝜋

𝐿
)
2

𝜙𝑛(𝑥)𝑞𝑤𝑛(𝑡)𝜙𝑛(𝑥). 𝑑𝑥

𝑛=1

𝑥=𝐿

𝑥=0

= 𝛼𝐿 ∫ 𝜙𝑛(𝑥) [(𝑢𝐿 − 𝑢0) −
1

2
(𝑤𝐿 + 𝑤0)] . 𝑑𝑥

𝑥=𝐿

𝑥=0

+ 𝛼𝐿
(𝑚𝑐 +𝑚𝑏)𝑔

𝐻
∫ 𝜙𝑛(𝑥) ∫ ∑𝜙𝑛(𝑥)𝑞𝑤𝑛(𝑡)𝜙𝑛(𝑥)

𝑛=1

. 𝑑𝑥

𝑥=𝐿

𝑥=0

𝑥=𝐿

𝑥=0

. 𝑑𝑥 

(2.46) 

Considering that [𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝐿
)]
0

𝐿

  i s equal to zero when 𝑛 is odd and equal to two when 

𝑛 is even and after doing mathematical actions, equation of motion for the n’th mode 

of the cable would obtained which is presented in equation )2.47(. 

𝑚𝑐

𝐿

2
�̈�𝑤𝑛(𝑡) − 𝐾

𝐿

2
(𝑞𝑧𝑛(𝑡) − 𝑞𝑤𝑛(𝑡))

+

+ (𝐻 + 𝛥𝐻) (
𝑛𝜋

𝐿
)
2 𝐿

2
𝑞𝑤𝑛(𝑡)

= 𝛼
𝐿2

𝑛𝜋
[(𝑢𝐿 − 𝑢0) −

1

2
(𝑤𝐿 + 𝑤0)] [(−1)

𝑛+1 + 1]

+ 𝛼 (
𝐿

𝑛𝜋
)
2

[(−1)𝑛+1 + 1]2. 𝑞𝑤𝑛(𝑡) 

(2.47) 

Matrix form of the equation of motion is displayed in equation )2.48(. 

𝑚𝑐

𝐿

2
�̈�𝑤(𝑡) − 𝐾

𝐿

2
(𝑄𝑧(𝑡) − 𝑄𝑤(𝑡))

+
+ (𝐻 + 𝛥𝐻) (

𝑛𝜋

𝐿
)
2 𝐿

2
𝑄𝑤(𝑡)

= 𝛼
𝐿2

𝑛𝜋
[(𝑢𝐿 − 𝑢0) −

1

2
(𝑤𝐿 + 𝑤0)] [(−1)

𝑛+1 + 1]

+ 𝛼 (
𝐿

𝑛𝜋
)
2

[(−1)𝑛+1 + 1]2. 𝑄𝑤(𝑡) 

(2.48) 

After applying same procedure for equation 2.48 that taken place in previous section 

equation )2.49( obtained. 
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𝑚𝑐�̈�𝑤(𝑡) − 𝐾𝑄𝑧(𝑡)

+ [𝐾 + (𝐻 + 𝛥𝐻) (
𝑛𝜋

𝐿
)
2

− 2𝛼
𝐿

(𝑛𝜋)2
[(−1)𝑛+1 + 1]2] 𝑄𝑤(𝑡)

= 2𝛼
𝐿

𝑛𝜋
[(𝑢𝐿 − 𝑢0) −

1

2
(𝑤𝐿 + 𝑤0)] [(−1)

𝑛+1 + 1] 

(2.49) 

Dividing equation 2.49 by 𝑚𝑐 would give generalized equation of motion for n’th 

vibration mode which is presented in equation (2.50). 

�̈�𝑤(𝑡) −
𝐾

𝑚𝑐
𝑄𝑧(𝑡)

+
[𝐾 + (𝐻 + 𝛥𝐻) (

𝑛𝜋
𝐿 )

2

− 2𝛼
𝐿

(𝑛𝜋)2
[(−1)𝑛+1 + 1]2]

𝑚𝑐
𝑄𝑤(𝑡)

=
2𝛼

𝐿
𝑛𝜋 [

(𝑢𝐿 − 𝑢0) −
1
2
(𝑤𝐿 + 𝑤0)] [(−1)

𝑛+1 + 1]

𝑚𝑐
 

(2.50) 

2.6 Solution Method For Equation Of Motion 

MATLAB software is used to solve equation of motion. Same as static there are initial 

conditions which helps to determine the constants of the equation. 

Since deck of the suspension bridge is resting at the beginning of the vibration the 

initial conditions displacement and velocity of the deck are equal zero at the time 

bridge starts to vibrate. Initial conditions for the deck is presented in equation (2.51). 

{
𝑞𝑧𝑛(𝑡) = 0

�̇�𝑧𝑛(𝑡) = 0
 (2.51) 

For the cable there are similar initial conditions and when bridge starts to vibrate 

displacement and velocity of the cable is equal to zero so initial conditions for the cable 

of the suspension bridge is presented in equation (2.52). 

{
𝑞𝑤𝑛(𝑡) = 0

�̇�𝑤𝑛(𝑡) = 0
 (2.52) 
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2.7 Earthquake Effects on Equation of Motion 

Computing earthquake effects on suspension requires huge amount of computation 

and solving lot of coupled equations. To reduce amount of time that are going to spent 

on solving equation, instead of coupled equation or improved deflection theory solving 

effect of the earthquake excitation by deflection theory would be helpful. Since in 

deflection theory there is no coupled equation of motion and it depends only on 

deflection of the cable.  

To consider effect of the earthquake on the suspension bridge introduction of  

(𝑚𝑏 +𝑚𝑐)�̈�𝑔 term is sufficient, which is ground acceleration acting on the suspension 

bridge. Force equilibrium of the deck is shown in Figure 2.5. Considering that cable 

and deck have the same deflection during vibration, equation of motion for the 

vibration of the deck would be like equation (2.53). 

 

Figure 2.5 : Force equilibrium of the deck 

(𝑚𝑏 +𝑚𝑐)�̈� − (𝐻 + 𝛥𝐻)(𝑦
′′ + 𝑧′′) + 𝐸𝑏𝐼𝑏𝑧

𝑖𝑣

= (𝑚𝑏 +𝑚𝑐)𝑔 + 𝑀𝑔𝑠𝑖𝑛 (
𝑛𝜋𝑣𝑡

𝐿
) − (𝑚𝑏 +𝑚𝑐)�̈�𝑔 

(2.53) 

Equation (2.54) obtained by Substituting equation 2.22 into equation 2.53. 

(𝑚𝑏 +𝑚𝑐)�̈� − (𝐻 + 𝛥𝐻)𝑧
′′ + 𝐸𝑏𝐼𝑏𝑧

𝑖𝑣

= (𝑚𝑏 +𝑚𝑐)𝑔 + 𝑀𝑔𝑠𝑖𝑛 (
𝑛𝜋𝑣𝑡

𝐿
) − (𝑚𝑏 +𝑚𝑐)�̈�𝑔

+ 𝑦′′𝐻 + 𝑦′′𝛥𝐻 

(2.54) 

Simplified form of equation 2.54 is presented in equation (2.55).  

𝐶𝑏�̇� 

(𝑚𝑏 +𝑚𝑐)�̈� 

−𝐸𝑏𝐼𝑏𝑧
𝑖𝑣 𝑓1(𝑥, 𝑡) (𝐻 + 𝛥𝐻)(𝑦′′ + 𝑧′′) 

 

(𝑚𝑏 +𝑚𝑐)�̈�𝑔 
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(𝑚𝑏 +𝑚𝑐)�̈� − (𝐻 + 𝛥𝐻)𝑧
′′ + 𝐸𝑏𝐼𝑏𝑧

𝑖𝑣

= 𝑀𝑔𝑠𝑖𝑛 (
𝑛𝜋𝑣𝑡

𝐿
) − (𝑚𝑏 +𝑚𝑐)�̈�𝑔

+ 𝛼𝐿 [(𝑢𝐿 − 𝑢0) −
1

2
(𝑤𝐿 + 𝑤0)

+
(𝑚𝑏 +𝑚𝑐)𝑔

𝐻
∫𝑤. 𝑑𝑥

𝐿

0

] 

(2.55) 

Performing separation of variable and the same procedure that have taken place in 

previous sections on equation 2.55 would result in equation (2.56).  

 

�̈�𝑧(𝑡)

+
(
𝑛𝜋
𝐿 )

2

[𝐻 + 𝛥𝐻 + (
𝑛𝜋
𝐿 )

2

𝐸𝑏𝐼𝑏] − 2𝛼
𝐿

(𝑛𝜋)2
[(−1)𝑛+1 + 1]2

(𝑚𝑏 +𝑚𝑐)
𝑄𝑧(𝑡)

=
2𝑀𝑔

(𝑚𝑏 +𝑚𝑐)𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑣𝑡

𝐿
)

+
2𝛼𝐿

(𝑚𝑏 +𝑚𝑐)𝑛𝜋
[(𝑢𝐿 − 𝑢0) −

1

2
(𝑤𝐿 + 𝑤0)] [(−1)

𝑛+1 + 1]

−
2

𝑛𝜋
[(−1)𝑛+1 + 1]�̈�𝑔 

(2.56) 

2.8 Determining Natural Frequencies 

To determine natural frequency deflection theory is used instead of improved 

deflection theory. In deflection theory equation of motion for n’th mode would be like 

�̈�𝑧(𝑡)

+
(
𝑛𝜋
𝐿 )

2

[𝐻 + 𝛥𝐻 + (
𝑛𝜋
𝐿 )

2

𝐸𝑏𝐼𝑏] − 2𝛼
𝐿

(𝑛𝜋)2
[(−1)𝑛+1 + 1]2

(𝑚𝑏 +𝑚𝑐)
𝑄𝑧(𝑡)

=
2𝑀𝑔

(𝑚𝑏 +𝑚𝑐)𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑣𝑡

𝐿
)

+
2𝛼𝐿

(𝑚𝑏 +𝑚𝑐)𝑛𝜋
[(𝑢𝐿 − 𝑢0) −

1

2
(𝑤𝐿 + 𝑤0)] [(−1)

𝑛+1 + 1] 

(2.57) 
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Coefficient of the 𝑄𝑧(𝑡) is equal to square of angular speed. For determining dynamic 

features of the suspension bridge equations (2.58 - 2.60) proposed which are 

respectively used to calculate angular speed, frequency and period of the bridge. 

𝝎𝒏
𝟐 =

(
𝒏𝝅
𝑳 )

𝟐

[𝑯 + 𝜟𝑯 + (
𝒏𝝅
𝑳 )

𝟐

𝑬𝒃𝑰𝒃] − 𝟐𝜶
𝑳

(𝒏𝝅)𝟐
[(−𝟏)𝒏+𝟏 + 𝟏]𝟐

(𝒎𝒃 +𝒎𝒄)
 

(2.58) 

To get the frequency of the suspension bridge 

𝒇𝒏 =
𝝎𝒏
𝟐𝝅

 (2.59) 

And to get period of the suspension bridge 

𝑻𝒏 =
𝟏

𝒇𝒏
 (2.60) 
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3.  ANALYTICAL STUDIES  

Verification and numerical analysis has been performed in this chapter. For verifying 

suspension bridge that was investigated by Choi in 2013 selected and outcomes of the 

study which has been carried out by Choi compared with result that obtained by written 

code in MATLAB. At next step for determining deflection, velocity and acceleration 

response of the suspension bridge numerical example of the suspension bridge has 

been assumed. At last results that obtained by MATLAB compared by outcomes of 

the ABAQUS software. 

First of all it is necessary to be assured from validity of the code. This process increase 

the reliability of the result and also proves the correctness of the computation that has 

been done by MATLAB. To this purpose, at first, verification of the result that has 

been obtained from MATLAB compared with article results which is written by Choi 

and Gwon [10] in 2015. After verification by using equations that introduced in chapter 

2, deflection, velocity and acceleration of the suspension bridge when moving load 

crosses the bridge by using MATLAB computed.  

3.1 Verification 

To achieve the validity, suspension bridge with span that is 2000 meters long and with 

the towers that are 200 meters high modeled. After analyzing, obtained results from 

MATLAB compared with the result that Choi obtained. 

Details and material properties of the bridge deck, suspension cable and hanger is 

depicted in Tables 3.1-3.3. Tower stiffness would also affect suspension cable 

deflection thus details of tower which is analyzed in Choi’s article are given in Table 

3.4. Hangers considered are capable of extension and since they are separated, stiffness 

of the all cables are computed and then stiffness of them are distributed over the span 

of suspension bridge. 
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Table 3.1 : Material and geometric properties of the deck 

Structural part 
Modulus of 

elasticity (
𝑘𝑁

𝑚2
) 

Moment of inertia 

(𝑚4) 
Weight (

𝑘𝑁

𝑚
) 

Deck 2.1 × 108 3.195 121.47 

Table 3.2 : Material and geometric properties of the suspension cable 

Structural part 
Modulus of 

elasticity (
𝑘𝑁

𝑚2
) 

Area (𝑚2) Weight (
𝑘𝑁

𝑚
) 

Suspension cable 2 × 108 1.021 81.66 

Table 3.3 : Material and geometric properties of the hanger 

Structural part 
Modulus of 

elasticity (
𝑘𝑁

𝑚2) 
Area (𝑚2) 

Distributed 

Stiffness (
𝑘𝑁

𝑚
) 

Hanger 1.4 × 108 0.0104 2.06 × 104 

Table 3.4 : Material and geometric properties of the tower 

Structural part 
Modulus of 

elasticity (
𝑘𝑁

𝑚2
) 

Moment of inertia 

(𝑚4) 
Length (𝑚) 

Tower 3 × 107 340 250 

Main span and side span length, sag amount and tower heights of the verified bridge 

is illustrated in Figure 3.1 and also numeric values of the verified bridge are presented 

in Table 3.5. 

Table 3.5 : Geometric values of verified suspension bridge 

Sag (𝑚) 
Main span 

length (𝑚) 
Side span 

length (𝑚) 

Tower 

height 

above deck 

(𝑚) 

Tower 

height 

below 

deck (𝑚) 

Hanger 

spacing 

(𝑚) 

199.9 2000 600 200 50 25 

Live load considered to be equal to 40 
𝑘𝑁

𝑚
 which only acts on main span. Dead load 

due to the own weight of the cable and the deck was equal to 203.13 
𝑘𝑁

𝑚
 and uniformly 



  

53 

distributed on main and side span of the bridge. Magnitude of the Dead and the live 

load are given in Table 3.6. 

Table 3.6 : Details of load acting on verified bridge 

Span 

Load 
Left side span Main span Right side span 

Live load  
𝑘𝑁

𝑚
 0 40 0 

Dead load  
𝑘𝑁

𝑚
 203.13 203.13 203.13 

 

Figure 3.1 : Verified bridge details 

By using finite difference method deflection of the suspension bridge determined. Four 

differnet intervals are assumed for computing deflection of the suspension bridge in 

order to verify the result. Intervals were equal to 100, 50, 25 and 10 meters. Obtained 

results for 100, 50, 25 and 10 meters intervals from MATLAB and their schematic 

graph are illustrated in Figures 3.2-3.5 respectively.  

 

Figure 3.2 : Suspension bridge deflection plot for interval length of 100 meters (In meters) 



  

54 

 

Figure 3.3 : Suspension bridge deflection plot for interval length of 50 meters (In meters) 

 

Figure 3.4 : Suspension bridge deflection plot for interval length of 25 meters (In meters) 

 

Figure 3.5 : Suspension bridge deflection plot for interval length of 10 meters (In meters) 

Table 3.7 represents numeric values of the deck maximum deflection with different 

interval. As it is depicted in Figure 3.1 live load are acting only on main span and it is 

equal to 40 
𝑘𝑁

𝑚
. In Table 3.7 computed values for deflection of the suspension bridge 

by use of MATLAB are compared with result that Choi and Gwon obtained are 

presented [10]. 
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Table 3.7 : Comparing maximum deflection from MATLAB and Choi’s article 

  
Deck Maximum 

Deflection (m) 
Difference Difference (%) 

Obtained 

result 

Span 

Interval 

Main 

Span 

Side 

Span 

Main 

Span 

Side 

Span 

Main 

Span 

Side 

Span 

MATLAB 

100 m 4.35294 -2.53196 -0.10860 -0.02994 2.434% 1.197% 

50 m 4.38879 -2.52711 -0.07275 -0.02509 1.631% 1.003% 

25 m 4.44617 -2.52284 -0.01537 -0.02082 0.344% 0.832% 

10 m 4.44617 -2.52284 -0.01537 -0.02082 0.344% 0.832% 

Choi  4.46154 -2.50202     

 

As intervals decrease, accuracy of the result increases. It is known fact that in FDM 

method, decreasing intervals would lead to better approximations and improves 

accuracy of the result. However, computing small intervals are harder and requires 

more time to spend because number of unknowns and equations are much more 

comparing to larger intervals. The most important conclusion that can be extracted 

from this analysis, is that from some point reducing intervals would not affect result 

considerably. By analyzing of the outcomes, the 25 meters interval can be described 

as optimum interval, since computed result for 10 meters interval and 25 meters 

interval are not much different. This table also shows that written script in MATLAB 

is effective in computing deflection, because the difference between result obtained in 

this research from MATLAB and results that published by Choi is 0.344% which is 

below 1% and it is in acceptable range. 

3.2 Numerical Modeling 

For numerical modeling a suspension bridge assumed, in which main span is 1600 

meters long and side spans are 400 meters long assumed. Geometric details of 

suspension bridge are presented in Tables 3.8-3.11. 

Table 3.8 : Material and geometric properties of the deck 

Structural 

part 

Modulus of 

elasticity 

(
𝑘𝑁

𝑚2) 

Moment of 

inertia 

(𝑚4) 
Area (𝑚2) Mass (

𝑘𝑔

𝑚3) 
Weight 

(
𝑘𝑁

𝑚
) 

Deck 2.1 × 108 3.5 1.5 7850 115.465 
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Table 3.9 : Material and geometric properties of the suspension cable 

Structural 

part 

Modulus of 

elasticity 

(
𝑘𝑁

𝑚2) 
Radius (𝑚) Area (𝑚2) Mass (

𝑘𝑔

𝑚3) 
Weight 

(
𝑘𝑁

𝑚
) 

Suspension 

cable 
2 × 108 0.5 0.78539 7850 60.457 

Table 3.10 : Material and geometric properties of the hanger 

Structural 

part 

Modulus of 

elasticity 

(
𝑘𝑁

𝑚2) 
Radius (𝑚) Area (𝑚2) 

Distributed 

Stiffness (
𝑘𝑁

𝑚2
) 

Hanger 1.4 × 108 0.1 0.0314159 8.88 × 103 

Table 3.11 : Material and geometric properties of the tower 

Structural part 
Modulus of 

elasticity (
𝑘𝑁

𝑚2) 
Moment of inertia 

(𝑚4) 
Length (𝑚) 

Tower 3 × 107 600 230 

Schematic view of bridge in which numeric values of sag amount, distance of the 

hangers, span and side span length, towers height and amount of live load that acts on 

the bridge is illustrated in Figure 3.6. 

 

Figure 3.6 : Schematic view of assumed bridge 

Main span and side span length, sag amount and tower heights of the assumed bridge 

for numerical analysis are brought in Table 3.12. 

Table 3.12 : Geometric values of suspension bridge 

Sag (𝑚) 
Main span 

length (𝑚) 
Side span 

length (𝑚) 

Tower 

height 

above deck 

(𝑚) 

Tower 

height 

below deck 

(𝑚) 

Hanger 

spacing 

(𝑚) 

175 1600 400 180 50 25 
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Intensity of Live loads and dead loads which are acting on the suspension bridge are 

presented in Table 3.13. 

Table 3.13 : Details of load acting on numerical bridge 

Span 

Load 
Left side span Main span Right side span 

Live load  (
𝑘𝑁

𝑚
) 0 10 0 

Dead load  (
𝑘𝑁

𝑚
) 175.9226 175.9226 175.9226 

Horizontal component of cable tension and increment in horizontal component of 

cable tension due to live load for side spans and main span are presented in Table 3.14.  

Table 3.14 : Cable tension and increment in cable tension horizontal component 

Span 

Load 
Left side span Main span 

Right side 

span 

Cable tension horizontal 

component (𝑘𝑁) 
321686.942 321686.942 321686.942 

Increment in cable tension 

horizontal component (𝑘𝑁) 
15703.353 16484.597 15703.353 

It is worth to note that increment in horizontal component of cable tension due to live 

load in comparison to horizontal component of cable tension due to dead load are 

ignorable and can be neglected. However, in this study effect of the increment in 

horizontal component of cable tension due to the live load are taken into the account. 

3.2.1 Static 

As it was mentioned earlier, deflected shape of the suspension bridge under the dead 

load and own weight of the suspension bridge considered as reference point for the 

deflection. However, under live load which is static load, deflection of the suspension 

bridge taken into the account. Magnitude of live load is equal to 10
𝑘𝑁

𝑚
 and only main 

span was subjected to the live load which was explained before. In Figure 3.7 

deflected shape of suspension bridge under the live load has been illustrated. 
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Figure 3.7 : Static Analysis of the Suspension Bridge 

From figure it can understand that in static analysis of the suspension bridge, deflection 

of the cable and the deck is very close and almost equal. In Table 3.15 numeric results 

for deflection of the cable and the deck in main span is presented. 

Table 3.15 : Numeric Values Of Deflection Of The Cable And The Deck In Main Span 

Span ordinate (m) 
Cable deflection in 

main span (𝑚) 
Deck deflection in 

main span (𝑚) 

0 0 0 

25 0.05418261 0.055196407 

50 0.108387727 0.109478349 

75 0.161354488 0.162461492 

100 0.21281404 0.213929057 

125 0.262634885 0.263754508 

150 0.310741425 0.311863741 

175 0.357089451 0.358213345 

200 0.401653067 0.402777886 

225 0.444417105 0.445542466 

250 0.485372677 0.486498354 

275 0.524514576 0.525640439 

300 0.561839751 0.562965723 

325 0.597346416 0.598472452 
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Table 3.15 (continued): Numeric Values Of Deflection Of The Cable And The Deck In Main Span 

350 0.631033524 0.632159597 

375 0.662900462 0.664026557 

400 0.692946869 0.694072977 

425 0.721172537 0.722298653 

450 0.747577341 0.748703461 

475 0.772161209 0.773287332 

500 0.7949241 0.796050224 

525 0.815865987 0.816992112 

550 0.834986857 0.836112982 

575 0.852286701 0.853412826 

600 0.867765513 0.868891639 

625 0.881423293 0.882549419 

650 0.893260036 0.894386162 

675 0.903275743 0.904401869 

700 0.911470413 0.912596539 

725 0.917844045 0.918970171 

750 0.92239664 0.923522766 

775 0.925128196 0.926254323 

800 0.926038715 0.927164841 

825 0.925128196 0.926254323 

850 0.92239664 0.923522766 

875 0.917844045 0.918970171 

900 0.911470413 0.912596539 

925 0.903275743 0.904401869 

950 0.893260036 0.894386162 

975 0.881423293 0.882549419 

1000 0.867765513 0.868891639 

1025 0.852286701 0.853412826 

1050 0.834986857 0.836112982 

1075 0.815865987 0.816992112 
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Table 3.15 (continued): Numeric Values Of Deflection Of The Cable And The Deck In Main Span 

1100 0.7949241 0.796050224 

1125 0.772161209 0.773287332 

1150 0.747577341 0.748703461 

1175 0.721172537 0.722298653 

1200 0.692946869 0.694072977 

1225 0.662900462 0.664026557 

1250 0.631033524 0.632159597 

1275 0.597346416 0.598472452 

1300 0.561839751 0.562965723 

1325 0.524514576 0.525640439 

1350 0.485372677 0.486498354 

1375 0.444417105 0.445542466 

1400 0.401653067 0.402777886 

1425 0.357089451 0.358213345 

1450 0.310741425 0.311863741 

1475 0.262634885 0.263754508 

1500 0.21281404 0.213929057 

1525 0.161354488 0.162461492 

1550 0.108387727 0.109478349 

1575 0.05418261 0.055196407 

1600 0 0 

Due to the symmetric geometry of the suspension bridge and shape of the live load, 

deflections of the left and right side span is identical. For this reason, in Table 3.16 

numeric values of the cable and the deck deflection in the left side span has been 

depicted.   
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Table 3.16 : Numeric Values Of The Cable and The Deck Deflection In Side Span 

Span ordinate (m) 
Cable deflection in 

side span (𝑚) 
Deck deflection in 

side span (𝑚) 

0 0 0 

25 -0.096919878 -0.096387276 

50 -0.186693044 -0.186351045 

75 -0.2661841 -0.265981356 

100 -0.333102309 -0.332982285 

125 -0.386086944 -0.386014732 

150 -0.424351519 -0.424306034 

175 -0.447456373 -0.44742433 

200 -0.455180381 -0.455152421 

225 -0.447456373 -0.44742433 

250 -0.424351519 -0.424306034 

275 -0.386086944 -0.386014732 

300 -0.333102309 -0.332982285 

325 -0.2661841 -0.265981356 

350 -0.186693044 -0.186351045 

375 -0.096919878 -0.096387276 

400 0 0 

In Table 3.17 elongation of the vertical hangers due to the live load and stress and 

axial force in vertical hangers which is caused by elongation of vertical hangers is 

represented for main span. 

Table 3.17 : Elongation, stress and axial force in main span hangers 

Cable length (m) Elongation (m) Stress (MPa) Force (kN) 

169.2333984 0.001013796 0.8387 26.34768631 

158.8085938 0.001090622 0.9615 30.20496276 

148.7255859 0.001107004 1.0421 32.73719287 

138.984375 0.001115016 1.1232 35.28525053 

129.5849609 0.001119623 1.2096 38.00099889 

120.5273438 0.001122316 1.3036 40.95506739 
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Table 3.17 (continued) : Elongation, stress and axial force in main span hangers 

111.8115234 0.001123894 1.4072 44.20962132 

103.4375 0.001124819 1.5224 47.82801772 

95.40527344 0.00112536 1.6514 51.87965125 

87.71484375 0.001125677 1.7967 56.44412536 

80.36621094 0.001125863 1.9613 61.61551006 

73.359375 0.001125972 2.1488 67.50717235 

66.69433594 0.001126036 2.3637 74.25764811 

60.37109375 0.001126073 2.6114 82.03808452 

54.38964844 0.001126095 2.8986 91.06190837 

48.75 0.001126108 3.2340 101.5975712 

43.45214844 0.001126115 3.6283 113.9854949 

38.49609375 0.00112612 4.0954 128.6606905 

33.88183594 0.001126122 4.6531 146.1829092 

29.609375 0.001126124 5.3246 167.2764789 

25.67871094 0.001126125 6.1396 192.881796 

22.08984375 0.001126125 7.1371 224.2187958 

18.84277344 0.001126126 8.3670 262.8572443 

15.9375 0.001126126 9.8922 310.7739786 

13.37402344 0.001126126 11.7883 370.341862 

11.15234375 0.001126126 14.1367 444.1183953 

9.272460938 0.001126126 17.0028 534.1582133 

7.734375 0.001126126 20.3840 640.3828698 

6.538085938 0.001126126 24.1137 757.5552476 

5.68359375 0.001126126 27.7391 871.4488682 

5.170898438 0.001126126 30.4894 957.8531498 

5 0.001126126 31.5315 990.592272 

5.170898438 0.001126126 30.4894 957.8531498 

5.68359375 0.001126126 27.7391 871.4488682 

6.538085938 0.001126126 24.1137 757.5552476 

7.734375 0.001126126 20.3840 640.3828698 
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Table 3.17 (continued) : Elongation, stress and axial force in main span hangers 

9.272460938 0.001126126 17.0028 534.1582133 

11.15234375 0.001126126 14.1367 444.1183953 

13.37402344 0.001126126 11.7883 370.341862 

15.9375 0.001126126 9.8922 310.7739786 

18.84277344 0.001126126 8.3670 262.8572443 

22.08984375 0.001126125 7.1371 224.2187958 

25.67871094 0.001126125 6.1396 192.881796 

29.609375 0.001126124 5.3246 167.2764789 

33.88183594 0.001126122 4.6531 146.1829092 

38.49609375 0.00112612 4.0954 128.6606905 

43.45214844 0.001126115 3.6283 113.9854949 

48.75 0.001126108 3.2340 101.5975712 

54.38964844 0.001126095 2.8986 91.06190837 

60.37109375 0.001126073 2.6114 82.03808452 

66.69433594 0.001126036 2.3637 74.25764811 

73.359375 0.001125972 2.1488 67.50717235 

80.36621094 0.001125863 1.9613 61.61551006 

87.71484375 0.001125677 1.7967 56.44412536 

95.40527344 0.00112536 1.6514 51.87965125 

103.4375 0.001124819 1.5224 47.82801772 

111.8115234 0.001123894 1.4072 44.20962132 

120.5273438 0.001122316 1.3036 40.95506739 

129.5849609 0.001119623 1.2096 38.00099889 

138.984375 0.001115016 1.1232 35.28525053 

148.7255859 0.001107004 1.0421 32.73719287 

158.8085938 0.001090622 0.9615 30.20496276 

169.2333984 0.001013796 0.8387 26.34768631 

In Table 3.18 elongation of the hangers, stress and axial force that appears in hangers 

due to the live load for side span is represented. 
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Table 3.18 : Elongation, stress and axial force in side span hangers 

Cable length (m) Elongation (m) Stress (MPa) Force (kN) 

8.686523438 0.000532602 8.5839 269.671392 

17.71484375 0.000341999 2.7028 84.9112862 

27.08496094 0.000202743 1.0480 32.92277246 

36.796875 0.000120024 0.4567 14.34610804 

46.85058594 7.22126E-05 0.2158 6.77916247 

57.24609375 4.54853E-05 0.1112 3.494645794 

67.98339844 3.20429E-05 0.0660 2.073038421 

79.0625 2.79597E-05 0.0495 1.555391318 

90.48339844 3.20429E-05 0.0496 1.557547566 

102.2460938 4.54853E-05 0.0623 1.956601112 

114.3505859 7.22126E-05 0.0884 2.777491093 

126.796875 0.000120024 0.1325 4.163288286 

139.5849609 0.000202743 0.2033 6.38831003 

152.7148438 0.000341999 0.3135 9.849665761 

166.1865234 0.000532602 0.4487 14.09564878 

Maximum stress appears in main span and side span hangers are 31.5315 and 8.5839 

MPa which are below yielding stress and maximum axial force that appears are 

990.5923 and 269.6714 kN respectively . 

3.2.2 Moving load 

For analysis, moving load which is crossing the suspension bridge considered. Moving 

load considered in this study did not have any inertial effects and it was assumed as a 

point load. For analysis, three different velocities for moving load considered. Details 

of moving loads, velocity and location of the load at the beginning of the analysis are 

manifested in Table 3.19.  
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Table 3.19 : Details of moving load 

Case Mass (𝑡𝑜𝑛) 
Equivalent 

Load (𝑘𝑁) 
Velocity (

𝑚

𝑠
) 

Location at 

𝑡 = 0 

I 20.3956 200 16.6667 0 

II 20.3956 200 25 0 

III 20.3956 200 33.3333 0 

3.2.2.1 Case I result 

In Figure 3.8 deflection of the middle point of the deck for period of 96 seconds 

depicted, which is the time needed for the moving force to cross the bridge. Picture 

shows that there is not much difference between cable and deck deflection, as a result 

great amounts of axial tension do not occur in hangers. 

 

Figure 3.8 : The middle point deflection of the cable and the deck for Case I (In meters) 

In Figure 3.9 velocity of the cable and deck has been shown for case I. From figure it 

can be understood that there are not huge difference between velocity of the cable and 

deck and the velocities for both of them at different times are almost equal. 
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Figure 3.9 : The middle point velocity of the cable and the deck for Case I 

In Figure 3.10 acceleration of the cable and deck has been shown for case I. Likewise 

the velocity, acceleration of the cable and the deck at middle point are not differing 

significantly. 

 

Figure 3.10 : The middle point acceleration of the cable and the deck for Case I 

3D plot of the suspension bridge deflection due to the moving load is indicated at 

Figure 3.11. Figure shows that the maximum deflection of the suspension bridge 

occurs at the middle point of the span or around of it at the time moving load is nearby 

or at the center of the span. 
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Figure 3.11 : 3D Plot of span deflection for Case I (In meters) 

Figure 3.12 shows deflection of the whole bridge at time in which moving load 

reached middle of the suspension bridge. Magnified region shows that deflection of 

the suspension bridge is not symmetric and direction of the moving load in which it 

moves, affects the result. 

 

Figure 3.12 : The  Case I middle point deflection of the cable and the deck at the time the moving 

load reach the span center (In meters) 

In Figure 3.13, the deflection response of the cable and the deck is shown when the 

load reaches the middle of the span. In this figure first fifty modes of the bridge are 

taken into account. Figure 3.13 shows that considering only first seven modes is 

sufficient for determining the deflection of the span. 
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Figure 3.13 : Deflection of center span in case I for first 50 modes 

Figure 3.14 illustrates velocity response of the center of the cable and the deck when 

moving load is at the center of the span. For computing velocity response, first fifty 

modes of the bridge has been taken into account. For convergence of the velocity first 

seventeen modes has needed which is higher number comparing to modes that must 

considered for convergence of the deflection. 

 

Figure 3.14 : Velocity of center span in case I for first 50 modes 
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Figure 3.15 depicts acceleration response of the center of the cable and the deck for 

when moving load reaches the center of the span. Likewise to deflection and velocity 

response, acceleration response for the first fifty modes has been illustrated. For 

convergence of acceleration response, higher modes are taken into account since 

accelerations are fluctuating a lot. For the first twenty seven modes, accelerations are 

almost the same. However, after mentioned mode acceleration for the cable and the 

deck starts to differ. 

 

Figure 3.15 : Acceleration of center span in case I for first 50 modes 

3.2.2.2 Case II result 

In Figure 3.16 deflection of the middle point of the cable and the deck with 64 seconds 

duration depicted. This duration is the time that the moving load needs for crossing the 

bridge. According to Figure 3.16 difference between cable and deck deflection is little 

and great amounts of axial tension in hangers do not appear. 
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Figure 3.16 : The middle point deflection of the cable and the deck for Case II (In meters) 

In Figure 3.17 velocity of the cable and deck has been shown for case II. From figure 

it can be understood that there are not huge difference between velocity of the cable 

and deck and the velocities for both of them at different times are almost equal. 

 

Figure 3.17 : The middle point velocity of the cable and the deck for Case II 

In Figure 3.18 acceleration of the cable and deck has been illustrated for case II. 

Likewise the velocity, acceleration of the cable and the deck at middle point are not 

differing significantly. 
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Figure 3.18 : The middle point acceleration of the cable and the deck for Case II  

3D plot of the suspension bridge deflection due to the moving load is indicated at 

Figure 3.19. Figure shows that the maximum deflection of the suspension bridge 

occurs at the middle point of the span or around of it at the time moving load is 

nearby or at the center of the span. 

 

Figure 3.19 : 3D Plot of span deflection for Case II (In meters) 

Figure 3.20 shows deflection of the whole bridge at time in which moving load 

reached middle of the suspension bridge. Magnified region shows that deflection of 

the suspension bridge is not symmetric and direction of the moving load in which it 

moves, affects the result. 
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Figure 3.20 : The Case II middle point deflection of the cable and the deck at the time the moving 

load reach the span center (In meters) 

In Figure 3.21, the deflection response of the cable and the deck as the load reaches 

the middle of the span is shown. Figure 3.21 shows the deflection response for the 

first fifty modes of the bridge. Figure 3.21 shows that considering only first seven 

modes same as case I is sufficient for determining the deflection of the span. 

 

Figure 3.21 : Deflection of center span in case II for first 50 modes 
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response for first fifty modes are taken into account. For convergence of the velocity 

likewise to case I, consideration of higher modes required. In this case convergence of 

the velocity response occurs from mode sixteen. However, results for the first fifty 

modes has been computed. 

 

Figure 3.22 : Velocity of center span in case II for first 50 modes 

In Figure 3.23 acceleration of the center of the cable and the deck for case II has been 

displayed. Same as deflection and velocity, Figure 3.23 shows acceleration response 

for the first fifty modes of the bridge. Same as case I, in order to reach the convergence 

in acceleration higher modes must be taken into account. Figure 3.23 shows that 

accelerations of the cable and the deck are almost equal for the first forty modes. 

However, from mode forty one acceleration for the cable and the deck are not same 

and they differ. 
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Figure 3.23 : Acceleration of center span in case II for first 50 modes 

3.2.2.3 Case III result 

In Figure 3.24 deflection of the middle point of the deck for period of 48 seconds 

depicted, which is the time needed for the moving force to cross the bridge. Likewise 

to case I and II there is not much axial forces in hangers since difference between cable 

and deck deflection is not that much. 

 

Figure 3.24 : The middle point deflection of the cable and the deck for Case III (In meters) 
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In Figure 3.25 velocity of the cable and deck has been shown for case III. From figure 

it can be understood that there are not huge difference between velocity of the cable 

and deck and the velocities for both of them at different times are almost equal. 

 

Figure 3.25 : The middle point velocity of the cable and the deck for Case III 

In Figure 3.26 acceleration of the cable and deck has been displayed for case III. 

Likewise the velocity, acceleration of the cable and the deck at middle point are not 

differing significantly. 

 

Figure 3.26 : The middle point acceleration of the cable and the deck for Case III 

3D plot of the suspension bridge deflection due to the moving load is indicated at 

Figure 3.27. Figure shows that the maximum deflection of the suspension bridge 
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occurs at the middle point of the span or around of it at the time moving load is nearby 

or at the center of the span. 

 

Figure 3.27 : 3D Plot of span deflection for Case III (In meters) 

Figure 3.28 shows deflection of the whole bridge when moving load located at the 

middle of the suspension bridge. Magnified region shows that deflection of the 

suspension bridge is not symmetric and direction of the moving load in which it moves, 

affects the result.  

 

Figure 3.28 : The Case III middle point deflection of the cable and the deck at the time the moving 

load reach the span center (In meters) 
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In Figure 3.29, the deflection response of the cable and the deck as the moving load 

reaches the center of the span is illustrated. To compute the deflection first fifty modes 

of the bridge are taken into account. It can be understood from figure that considering 

first seven modes is sufficient to determine the deflection of the cable and the deck.  

 

Figure 3.29 : Deflection of center span in case III for first 50 modes 

In Figure 3.30 velocity response of the center of the cable and the deck when the 

moving load reaches the center of the span has been displayed. Figure 3.30 shows 

velocity response for the first fifty modes. To reach convergence in velocity, same as 

case I and case II, considering higher modes required. Considering first seventeen 

modes were sufficient to reach convergence for case III. 

 

Figure 3.30 : Velocity of center span in case III for first 50 modes 
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In Figure 3.31 acceleration response of the center of the cable and the deck for case 

III has been illustrated. Likewise to deflection and velocity response, acceleration 

response is depicted at the time moving load reaches center of the span. Same as case 

I and case II, in order to reach the convergence in acceleration higher modes must be 

taken into account. Figure 3.31 shows that there are not significant difference in 

accelerations of the cable and the deck for the first thirty eight modes. However, 

between mode thirty nine and forty five acceleration for the cable and the deck differs. 

 

Figure 3.31 : Acceleration of center span in case III for first 50 modes 

3.2.2.4 Hangers elongation 

Elongation of the hangers are an important topic to discuss since behavior of the 

hangers during vibration and knowing magnitude of axial forces that appears in 

hangers are crucial for proper design of the suspension bridge. 

In Tables 3.20 - 3.22 stress and axial forces that appears for case I, II and III are given. 

Table 3.20 : Elongation, stress and axial force in hangers for case I 

Cable length 

Deflection of 

the cable t = 

48s (m) 

Deflection of 

the Deck t = 

48s (m) 

Elongation 

(m) 
Stress (MPa) 

Axial Force 

(kN) 

169.2333984 0.008462695 0.00846315 4.55478E-07 0.0004 0.011837468 

158.8085938 0.016959506 0.016959957 4.50859E-07 0.0004 0.012486618 

148.7255859 0.025500836 0.025498874 -1.96285E-06 -0.0018 -0.058046996 
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Table 3.20 (continued) : Elongation, stress and axial force in hangers for case I 

138.984375 0.034104184 0.034104258 7.41957E-08 0.0001 0.002347959 

129.5849609 0.042751176 0.042752466 1.28993E-06 0.0014 0.043781286 

120.5273438 0.051422413 0.05142224 -1.7269E-07 -0.0002 -0.006301715 

111.8115234 0.060098866 0.060100051 1.18495E-06 0.0015 0.046611278 

103.4375 0.068749082 0.06875121 2.128E-06 0.0029 0.09048392 

95.40527344 0.077386253 0.077389194 2.94138E-06 0.0043 0.135598904 

87.71484375 0.08601336 0.086014389 1.02882E-06 0.0016 0.051587657 

80.36621094 0.094638636 0.094638523 -1.12792E-07 -0.0002 -0.006172823 

73.359375 0.103304099 0.103306482 2.38313E-06 0.0045 0.142879325 

66.69433594 0.112033734 0.112034693 9.58346E-07 0.0020 0.063199177 

60.37109375 0.120852229 0.120854118 1.88924E-06 0.0044 0.137637385 

54.38964844 0.12974882 0.129751604 2.78418E-06 0.0072 0.225142915 

48.75 0.138696465 0.138696604 1.38531E-07 0.0004 0.012498272 

43.45214844 0.147682926 0.147685254 2.32845E-06 0.0075 0.235686104 

38.49609375 0.156687724 0.156690776 3.05198E-06 0.0111 0.34869243 

33.88183594 0.165743622 0.165748644 5.02194E-06 0.0208 0.651902751 

29.609375 0.174854983 0.174862311 7.32851E-06 0.0347 1.088589959 

25.67871094 0.183978562 0.183984927 6.36455E-06 0.0347 1.090115364 

22.08984375 0.193078618 0.193092006 1.33879E-05 0.0848 2.665610431 

18.84277344 0.202049435 0.202067615 1.81798E-05 0.1351 4.243469236 

15.9375 0.2107972 0.210826275 2.90747E-05 0.2554 8.023661739 

13.37402344 0.219145055 0.219197698 5.26429E-05 0.5511 17.31234694 

11.15234375 0.226750789 0.226829251 7.84621E-05 0.9850 30.9436607 

9.272460938 0.23311046 0.233255939 0.000145478 2.1965 69.00511948 

7.734375 0.23717463 0.237379756 0.000205126 3.7130 116.6470175 

6.538085938 0.238095327 0.238257404 0.000162077 3.4706 109.0309735 

5.68359375 0.236430948 0.236520068 8.91202E-05 2.1952 68.96533855 

5.170898438 0.233256418 0.23331139 5.49717E-05 1.4883 46.75747523 

5 0.229131104 0.229161306 3.02019E-05 0.8457 26.56696693 

5.170898438 0.224420362 0.224438783 1.84211E-05 0.4987 15.6684989 
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Table 3.20 (continued) : Elongation, stress and axial force in hangers for case I 

5.68359375 0.21937632 0.219389812 1.34916E-05 0.3323 10.44046324 

6.538085938 0.214104058 0.214109079 5.0216E-06 0.1075 3.37807836 

7.734375 0.208689159 0.208692811 3.65204E-06 0.0661 2.076769643 

9.272460938 0.203142249 0.203142514 2.64824E-07 0.0040 0.12561452 

11.15234375 0.197467004 0.197467255 2.50787E-07 0.0031 0.098904598 

13.37402344 0.191680218 0.191683689 3.47072E-06 0.0363 1.141394443 

15.9375 0.185768592 0.185767465 -1.12696E-06 -0.0099 -0.311002894 

18.84277344 0.179724217 0.17972355 -6.67325E-07 -0.0050 -0.155765126 

22.08984375 0.173532136 0.173534197 2.06157E-06 0.0131 0.410472032 

25.67871094 0.167196046 0.167195392 -6.54328E-07 -0.0036 -0.112072739 

29.609375 0.160720174 0.160719583 -5.90937E-07 -0.0028 -0.08777891 

33.88183594 0.15409435 0.154095401 1.0507E-06 0.0043 0.136392115 

38.49609375 0.147341662 0.147343063 1.40129E-06 0.0051 0.160098986 

43.45214844 0.140472143 0.140472742 5.99378E-07 0.0019 0.060669082 

48.75 0.133478828 0.133479689 8.60914E-07 0.0025 0.077671726 

54.38964844 0.126357002 0.126359853 2.85113E-06 0.0073 0.230557471 

60.37109375 0.119081231 0.119084078 2.84666E-06 0.0066 0.207388714 

66.69433594 0.111634081 0.111638013 3.93247E-06 0.0083 0.259330716 

73.359375 0.103995969 0.10400148 5.51096E-06 0.0105 0.330407481 

80.36621094 0.096146003 0.096150991 4.98867E-06 0.0087 0.273016768 

87.71484375 0.0880839 0.088088797 4.89655E-06 0.0078 0.245524732 

95.40527344 0.079809481 0.07981364 4.15894E-06 0.0061 0.191729305 

103.4375 0.071344069 0.071348291 4.22204E-06 0.0057 0.179523771 

111.8115234 0.062723459 0.062727354 3.89448E-06 0.0049 0.153193725 

120.5273438 0.053975366 0.053977346 1.98001E-06 0.0023 0.072253768 

129.5849609 0.04513597 0.045139101 3.13138E-06 0.0034 0.106281822 

138.984375 0.036228114 0.036231017 2.90354E-06 0.0029 0.091884018 

148.7255859 0.027255266 0.027255731 4.65044E-07 0.0004 0.013752654 

158.8085938 0.018216685 0.018217749 1.06325E-06 0.0009 0.029446743 

169.2333984 0.009121336 0.009122676 1.33924E-06 0.0011 0.034805569 
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Table 3.21 : Elongation, stress and axial force in hangers for case II 

Cable length 

Deflection of 

the cable t = 

48s (m) 

Deflection of 

the Deck t = 

48s (m) 

Elongation 

(m) 
Stress (MPa) 

Axial Force 

(kN) 

169.2333984 0.008790131 0.00879041 2.79613E-07 0.0002 0.007266899 

158.8085938 0.017568391 0.017569159 7.67772E-07 0.0007 0.021263581 

148.7255859 0.026323635 0.026321398 -2.23686E-06 -0.0021 -0.066150182 

138.984375 0.035060161 0.03505718 -2.98118E-06 -0.0030 -0.094340929 

129.5849609 0.043777588 0.043776093 -1.49479E-06 -0.0016 -0.050734596 

120.5273438 0.052509028 0.052508651 -3.76825E-07 -0.0004 -0.01375094 

111.8115234 0.061286529 0.061284977 -1.55121E-06 -0.0019 -0.061018676 

103.4375 0.07009061 0.07008724 -3.37026E-06 -0.0046 -0.143305481 

95.40527344 0.078894477 0.078894162 -3.15348E-07 -0.0005 -0.014537681 

87.71484375 0.087653645 0.087654148 5.0295E-07 0.0008 0.02521912 

80.36621094 0.096314701 0.096315422 7.2099E-07 0.0013 0.039457848 

73.359375 0.104834059 0.10483732 3.26089E-06 0.0062 0.19550541 

66.69433594 0.113173238 0.113175581 2.34264E-06 0.0049 0.154487645 

60.37109375 0.121309327 0.121313305 3.97743E-06 0.0092 0.289768419 

54.38964844 0.129218805 0.129223395 4.59051E-06 0.0118 0.371212586 

48.75 0.136894246 0.136897566 3.31961E-06 0.0095 0.299495275 

43.45214844 0.144333023 0.144338847 5.82378E-06 0.0188 0.589483721 

38.49609375 0.151528056 0.151532228 4.17229E-06 0.0152 0.476689688 

33.88183594 0.158478945 0.158481878 2.93257E-06 0.0121 0.380678832 

29.609375 0.165164744 0.165169839 5.09519E-06 0.0241 0.756849056 

25.67871094 0.171590441 0.171595397 4.95618E-06 0.0270 0.848890112 

22.08984375 0.177766246 0.177770616 4.3704E-06 0.0277 0.870173962 

18.84277344 0.18368194 0.183684883 2.94292E-06 0.0219 0.686929596 

15.9375 0.189360262 0.189362522 2.25966E-06 0.0198 0.623592899 

13.37402344 0.194809779 0.194811274 1.49508E-06 0.0157 0.491676318 

11.15234375 0.200058619 0.200062277 3.65848E-06 0.0459 1.442820642 

9.272460938 0.205152491 0.205159331 6.8398E-06 0.1033 3.244338414 

7.734375 0.210083109 0.210087106 3.99622E-06 0.0723 2.272489104 
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Table 3.21 (continued) : Elongation, stress and axial force in hangers for case II 

6.538085938 0.214830944 0.214837934 6.98993E-06 0.1497 4.702191142 

5.68359375 0.219337008 0.219347435 1.0427E-05 0.2568 8.068878237 

5.170898438 0.223543148 0.223555394 1.22463E-05 0.3316 10.41638311 

5 0.227389824 0.227410411 2.05872E-05 0.5764 18.1094799 

5.170898438 0.230778169 0.230802 2.38309E-05 0.6452 20.26992741 

5.68359375 0.233647053 0.233687608 4.05553E-05 0.9990 31.38357917 

6.538085938 0.235819007 0.235885347 6.634E-05 1.4205 44.62753864 

7.734375 0.236992896 0.237092072 9.91764E-05 1.7952 56.39763376 

9.272460938 0.236550354 0.236723821 0.000173467 2.6191 82.28094159 

11.15234375 0.233406338 0.23360593 0.000199592 2.5056 78.71461474 

13.37402344 0.227296894 0.227424787 0.000127894 1.3388 42.05958121 

15.9375 0.219244291 0.219313839 6.95482E-05 0.6109 19.19303146 

18.84277344 0.210156136 0.210199581 4.34455E-05 0.3228 10.14092667 

22.08984375 0.200469633 0.200490401 2.07679E-05 0.1316 4.135027983 

25.67871094 0.190527181 0.190541544 1.43631E-05 0.0783 2.460103632 

29.609375 0.180505169 0.180511063 5.89428E-06 0.0279 0.875547458 

33.88183594 0.170536417 0.170538418 2.00057E-06 0.0083 0.259695468 

38.49609375 0.160719369 0.160723688 4.31863E-06 0.0157 0.493409323 

43.45214844 0.151080015 0.151077814 -2.20096E-06 -0.0071 -0.222781435 

48.75 0.141625134 0.141621621 -3.51333E-06 -0.0101 -0.316972926 

54.38964844 0.132315894 0.132313496 -2.39884E-06 -0.0062 -0.193982799 

60.37109375 0.123162595 0.123160858 -1.73762E-06 -0.0040 -0.126591448 

66.69433594 0.114204793 0.114204912 1.18706E-07 0.0002 0.007828182 

73.359375 0.105444021 0.105442733 -1.28749E-06 -0.0025 -0.077191162 

80.36621094 0.096852475 0.096853573 1.09801E-06 0.0019 0.060091335 

87.71484375 0.088350157 0.088351872 1.71585E-06 0.0027 0.086036837 

95.40527344 0.079859616 0.079860621 1.00576E-06 0.0015 0.04636625 

103.4375 0.07131441 0.071319836 5.42594E-06 0.0073 0.230714676 

111.8115234 0.062674211 0.062681351 7.14013E-06 0.0089 0.280864967 

120.5273438 0.053936312 0.053942519 6.20703E-06 0.0072 0.22650418 
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Table 3.21 (continued) : Elongation, stress and axial force in hangers for case II 

129.5849609 0.045085323 0.045088996 3.67321E-06 0.0040 0.124672085 

138.984375 0.036140319 0.036142658 2.33888E-06 0.0024 0.074014889 

148.7255859 0.027137399 0.027141714 4.31482E-06 0.0041 0.127601178 

158.8085938 0.018102849 0.018105008 2.15924E-06 0.0019 0.059800558 

169.2333984 0.009060327 0.009059171 -1.15646E-06 -0.0010 -0.030055512 

Table 3.22 : Elongation, stress and axial force in hangers for case III 

Cable length 

Deflection of 

the cable t = 

48s (m) 

Deflection of 

the Deck t = 

48s (m) 

Elongation 

(m) 
Stress (MPa) 

Axial Force 

(kN) 

169.2333984 0.010737294 0.010738239 9.45E-07 0.0008 0.024559735 

158.8085938 0.021468308 0.021470934 2.6257E-06 0.0023 0.072719305 

148.7255859 0.032188564 0.032193513 4.94915E-06 0.0047 0.146360114 

138.984375 0.042837844 0.04284306 5.2162E-06 0.0053 0.16506937 

129.5849609 0.053382558 0.053392141 9.58312E-06 0.0104 0.325259519 

120.5273438 0.063783483 0.063795069 1.15868E-05 0.0135 0.422818789 

111.8115234 0.07396772 0.073976053 8.3337E-06 0.0104 0.327815394 

103.4375 0.083877692 0.083887694 1.00024E-05 0.0135 0.425306483 

95.40527344 0.093483013 0.093494123 1.11103E-05 0.0163 0.512191364 

87.71484375 0.102845866 0.102856307 1.04403E-05 0.0167 0.523500786 

80.36621094 0.112056435 0.112064669 8.23435E-06 0.0143 0.450644062 

73.359375 0.121186951 0.121191265 4.31343E-06 0.0082 0.258609614 

66.69433594 0.130311461 0.130315801 4.33981E-06 0.0091 0.286193728 

60.37109375 0.139474586 0.139478947 4.36111E-06 0.0101 0.317720996 

54.38964844 0.148735177 0.148741397 6.21928E-06 0.0160 0.502923187 

48.75 0.158098712 0.158101883 3.17102E-06 0.0091 0.286089418 

43.45214844 0.167519387 0.167516417 -2.96985E-06 -0.0096 -0.300608298 

38.49609375 0.176991641 0.176996666 5.02573E-06 0.0183 0.574196555 

33.88183594 0.186519649 0.186527767 8.11799E-06 0.0335 1.053803027 

29.609375 0.196143179 0.196147255 4.07633E-06 0.0193 0.605505757 

25.67871094 0.205841378 0.205849894 8.5166E-06 0.0464 1.458716145 

22.08984375 0.215550579 0.215568344 1.77648E-05 0.1126 3.537088397 
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Table 3.22 (continued) : Elongation, stress and axial force in hangers for case III 

18.84277344 0.225192194 0.225231769 3.95754E-05 0.2940 9.23758291 

15.9375 0.234453688 0.234517206 6.35181E-05 0.5580 17.52893513 

13.37402344 0.242866886 0.242978964 0.000112078 1.1732 36.85831006 

11.15234375 0.249534879 0.249725862 0.000190982 2.3975 75.31912398 

9.272460938 0.253258444 0.253449246 0.000190802 2.8808 90.50354556 

7.734375 0.253991454 0.254106378 0.000114924 2.0802 65.35266033 

6.538085938 0.252790641 0.252862173 7.15324E-05 1.5317 48.12047726 

5.68359375 0.250410545 0.250458774 4.82288E-05 1.1880 37.32171459 

5.170898438 0.247223612 0.247248747 2.51355E-05 0.6805 21.37961641 

5 0.243487511 0.24350533 1.78195E-05 0.4989 15.67487453 

5.170898438 0.239330319 0.239342366 1.20471E-05 0.3262 10.24693656 

5.68359375 0.234896411 0.234905688 9.27789E-06 0.2285 7.17966457 

6.538085938 0.230272896 0.230279961 7.06466E-06 0.1513 4.752460065 

7.734375 0.225485644 0.225489991 4.34661E-06 0.0787 2.471742243 

9.272460938 0.220545198 0.220549128 3.92957E-06 0.0593 1.863921022 

11.15234375 0.215410395 0.215408807 -1.58859E-06 -0.0199 -0.626505509 

13.37402344 0.210070825 0.210071316 4.91106E-07 0.0051 0.16150681 

15.9375 0.204551492 0.204556366 4.87371E-06 0.0428 1.344985864 

18.84277344 0.198867664 0.198868912 1.24776E-06 0.0093 0.29124964 

22.08984375 0.193007872 0.193011467 3.59455E-06 0.0228 0.715698227 

25.67871094 0.186931042 0.186936223 5.18083E-06 0.0282 0.887368326 

29.609375 0.18058589 0.180589691 3.80103E-06 0.0180 0.564611314 

33.88183594 0.17391362 0.173920179 6.55946E-06 0.0271 0.851489685 

38.49609375 0.166889341 0.16689521 5.86901E-06 0.0213 0.670541909 

43.45214844 0.159515292 0.159521055 5.7631E-06 0.0186 0.583341467 

48.75 0.151812955 0.151819857 6.90211E-06 0.0198 0.622708882 

54.38964844 0.143839834 0.143844194 4.35965E-06 0.0112 0.352543669 

60.37109375 0.135628478 0.135633259 4.78085E-06 0.0111 0.348300276 

66.69433594 0.127191516 0.127198476 6.9597E-06 0.0146 0.45896505 

73.359375 0.118527694 0.118534051 6.35703E-06 0.0121 0.381133212 
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Table 3.22 (continued) : Elongation, stress and axial force in hangers for case III 

80.36621094 0.109598019 0.109603176 5.15725E-06 0.0090 0.282242591 

87.71484375 0.100382063 0.100386916 4.85341E-06 0.0077 0.24336156 

95.40527344 0.090893005 0.090897268 4.26352E-06 0.0063 0.196550245 

103.4375 0.081167945 0.081170468 2.52306E-06 0.0034 0.107282203 

111.8115234 0.071264714 0.071267119 2.40469E-06 0.0030 0.094591004 

120.5273438 0.061247874 0.061250793 2.91855E-06 0.0034 0.106502411 

129.5849609 0.051172443 0.051174576 2.13307E-06 0.0023 0.072398394 

138.984375 0.041052461 0.041054674 2.21272E-06 0.0022 0.070022601 

148.7255859 0.03088494 0.030885662 7.21831E-07 0.0007 0.021346566 

158.8085938 0.020656482 0.020654658 -1.82367E-06 -0.0016 -0.050506923 

169.2333984 0.01035131 0.010350038 -1.27197E-06 -0.0011 -0.033057466 

These tables shows us that in none of hangers yielding occurs and all of the hangers 

are in elastic region during vibration. Maximum stress occurred in Case I,II and III 

respectively are 3.713 MPa, 2.6191 MPa and 2.8808 MPa and maximum axial force 

appears in hangers for case I,II and III respectively are 116.647 kN, 82.2809 kN and 

90.5305 kN. 

3.2.3 Result for inextensible hangers 

In previous section extensibility of the hangers were considered and it means during 

vibration amount of deflection that occurs in the deck and the cable were different. In 

this section obtained result for extensible hangers are compared with the result that 

obtained when hangers are inextensible. For this purpose equation 2.56 is used in 

which differential equation is only dependent on deflection of the deck. 

3.2.3.1 Case I result 

In Figure 3.32 maximum deflection in middle point of the deck plotted. Results 

indicate that maximum deflection occurs at 49.549 second when load close to middle 

of the deck. 



  

86 

 

Figure 3.32 : Deck middle point deflection in case hangers are inextensible for Case I (In meters) 

In Figure 3.33 3D plot of deck deflection has been depicted. In this figure x-axis 

represent time and y-axis represents location of the bridge, while z-axis positive 

direction shows deflection of the deck. 

 

Figure 3.33 : 3D Plot of span deflection in case hangers are inextensible for Case I (In meters) 

  

Max deflection of the deck when moving load reaches middle of the deck has been 

illustrated in Figure 3.34. 
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Figure 3.34 : The Case I middle point deflection of the deck at the time the moving load reach the 

span center (In meters) 

3.2.3.2 Case II result 

In Figure 3.35 maximum deflection in middle point of the deck plotted. Results 

indicate that maximum deflection occurs at 31.6016 second when load close to middle 

of the deck. 

 

Figure 3.35 : Deck middle point deflection in case hangers are inextensible for Case II (In meters) 

In Figure 3.36 3D plot of deck deflection has been depicted. In this figure x-axis 

represent time and y-axis represents location of the bridge, while z-axis positive 

direction shows deflection of the deck. 
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Figure 3.36 : 3D Plot of span deflection in case hangers are inextensible for Case II (In meters) 

Max deflection of the deck when moving load reaches middle of the deck has been 

illustrated in Figure 3.37. 

 

Figure 3.37 : The Case II middle point deflection of the deck at the time the moving load reach the 

span center (In meters) 

3.2.3.3 Case III result 

In Figure 3.38 maximum deflection in middle point of the deck plotted. Results 

indicate that maximum deflection occurs at 23.6946 second when load close to middle 

of the deck. 
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Figure 3.38 : Deck middle point deflection in case hangers are inextensible for Case III (In meters) 

In Figure 3.39 3D plot of deck deflection has been depicted. In this figure x-axis 

represent time and y-axis represents location of the bridge, while z-axis positive 

direction shows deflection of the deck. 

 

Figure 3.39 : 3D Plot of span deflection in case hangers are inextensible for Case III (In meters) 

Max deflection of the deck when moving load reaches middle of the deck has been 

illustrated in Figure 3.40. 
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Figure 3.40 : The Case III middle point deflection of the deck at the time the moving load reach the 

span center (In meters) 

3.2.4 Result comparison 

Computed deflection of suspension bridge when a moving load reaches the middle of 

the span for both extensible and inextensible hangers are compared in Table 3.23. 

Comparison of these result are very important since for solving coupled differential 

equation a lot of time need to spent. On the other hand it is worth to note that, even 

though solving coupled differential equation needs a lot of time, solving this equation 

helps to determine axial loads in hangers and it is advantage of case in which hangers 

are considered extensible.  

Table 3.23 : Comparison of Middle Point Deflection at the time moving load reaches middle of the 

span 

Middle Point Deflection at the time load reaches middle of the span 

Hangers type 

Case No. 

Extensible 

Hangers (m) 

Inextensible 

Hangers (m) 
Difference (%) 

Case I 0.21738 0.21726 0.06% 

Case II 0.20986 0.20972 0.07% 

Case III 0.23195 0.2318 0.06% 

Likewise Max deflection of the suspension bridge span from the time that moving load 

enters the span until it quits span for both extensible and inextensible hangers are 

compared in Table 3.24. 
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Table 3.24 : Comparison of Middle Point Max Deflection 

Middle Point Max Deflection 

Hangers type 

Case No. 

Extensible 

Hangers (m) 

Inextensible 

Hangers (m) 
Difference (%) 

Case I 0.22916 0.22908 0.03% 

Case II 0.22741 0.22735 0.03% 

Case III 0.24351 0.24345 0.02% 

According to Table 3.23 and Table 3.24, the difference in deflection of the cable and 

the deck does not exceed 0.1 percent for both extensible and inextensible hangers 

assumption. Another fact that tables shows are that extensibility of the hangers are not 

affecting final result and consideration of extensible hangers is acceptable and reliable. 

3.2.5 Total deflection of the suspension bridge 

In Figures 3.41-3.43 total deflection of the bridge for Cases I, II and III has been 

illustrated respectively. In mentioned figures total deflection of the bridge computed 

by summing up static deflection and dynamical deflection due to the moving load. 

 

Figure 3.41 : 3D Plot of Total Deflection of The Suspension bridge for Case I (In meters)  
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Figure 3.42 : 3D Plot of Total Deflection of The Suspension bridge for Case II (In meters) 

 

Figure 3.43 : 3D Plot of Total Deflection of The Suspension bridge for Case III (In meters) 

3.2.6 Natural frequencies 

In order to determine natural frequencies as it is explained in section 2.8, at first 

stiffness of the system is calculated and then after dividing it by mass the square of 

angular speed of the suspension bridge is achieved. 

For determining angular speed equation 2.59 used and after computing angular speed 

equation 2.60 used for determining natural frequencies of the suspension bridge. 

Natural frequencies and angular speeds of the suspension bridge for 24 modes are 

computed and indicated in Table 3.25. 



  

93 

Table 3.25 : Natural frequencies 

Symmetric 

modes 

Frequency 

(𝐻𝑧) 
Anti-symmetric 

modes 

Frequency 

(𝐻𝑧) 

1 0.0430839 2 0.15360018 

3 0.13347878 4 0.19338369 

5 0.23592457 6 0.29670703 

7 0.35669856 8 0.42660249 

9 0.50030616 10 0.58220819 

11 0.66975366 12 0.76509215 

13 0.866972 14 0.97656482 

15 1.0931863 16 1.21752571 

17 1.34917721 18 1.48857042 

19 1.63544911 20 1.79009362 

21 1.952334 22 2.12236022 

23 2.30005497 24 2.48555115 

As it is mentioned earlier in chapter 1, it can be seen that second symmetric mode 

occurs before first anti-symmetric mode which is also observed by Abdel Ghaffar [3]. 

in other words first two modes are symmetric and after that anti-symmetric modes 

occur. First 24 Angular speeds of the suspension bridge is indicated in Table 3.26. 

Table 3.26 : Angular speed 

Symmetric 

modes 

Angular speed 

(𝑟𝑎𝑑 𝑠⁄ ) 

Anti-symmetric 

modes 

Angular speed 

(𝑟𝑎𝑑 𝑠⁄ ) 

1 0.27070414 2 0.96509839 

3 0.83867189 4 1.21506559 

5 1.48235778 6 1.86426525 

7 2.24120317 8 2.68042249 

9 3.14351634 10 3.65812193 

11 4.20818634 12 4.80721573 

13 5.44734573 14 6.13593774 

15 6.86869211 16 7.64993964 

17 8.47713043 18 9.35296379 
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Table3.26 (continued) : Angular speed 

19 10.2758298 20 11.2474899 

21 12.2668763 22 13.3351826 

23 14.4516716 24 15.6171785 

In Figures 3.44-3.49 first six mode shapes of the suspension obtained by ABAQUS 

software is illustrated respectively. 

 

Figure 3.44 : 1st Mode Shape 

 

 

Figure 3.45 : 2nd Mode Shape 
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Figure 3.46 : 3rd Mode Shape 

 

Figure 3.47 : 4th Mode Shape 

 

Figure 3.48 : 5th Mode Shape 
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Figure 3.49 : 6th Mode Shape 

3.2.7 Maximum acceleration response 

To investigate maximum of acceleration that occurs in bridge, differential equations 

solved for the total time that moving load cross the bridge. In Figure 3.50 maximum 

value of suspension bridge acceleration response is displayed. Maximum acceleration 

of the suspension bridge at each point of the span is for whole time of the vibration.  

Figure 3.50 reveals that for higher speeds acceleration of the bridge increases 

significantly which emphasis on importance of the velocity of the moving load on 

acceleration response of the suspension bridge. 

 

Figure 3.50 : Max acceleration response of the suspension bridge 
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3.3 FEM Result 

Behavior of the suspension bridge simulated in ABAQUS software. ABAQUS use 

FEM method for analysis and computation. To simulate behavior of the suspension 

bridge in ABAQUS, same as mathematical approach, behavior of the suspension 

bridge evaluated in two steps. First step was static analysis when it is subjected to  

distributed live load and second step was dynamic analysis of the suspension bridge 

when it is subjected to the moving load with constant velocity. 

In Figure 3.51 model of the suspension bridge in ABAQUS software which has been 

provided for static analysis is shown. 

 

Figure 3.51 : ABAQUS model for static analysis 

Figure 3.52 and Figure 3.53 displays 2D and 3D deformed shape of the suspension 

bridge when it is subjected to static live load. 

 

Figure 3.52 : Plot of static deformation (In meters) 
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Figure 3.53 : 3D plot of static deformation (In meters) 

Comparison of computed results by MATLAB and ABAQUS for static analysis is 

manifested in Table 3.27. 

Table 3.27 : Comparison of Mid Point Deflection Computed by MATLAB and ABAQUS 

Deflection 

Software 

Element 
MATLAB (m) ABAQUS (m) Difference (%) 

CABLE 0.926038715 0.900736000 2.732360% 

DECK 0.927164841 0.900751000 2.848883% 

 

Model of the suspension bridge for dynamic analysis is illustrated in Figure 3.54. For 

restricting bridge out-of plane deflection, 2D analysis has been performed and for 

avoiding displacement in horizontal direction supports has been provided for all of the 

points to restrain bridge movement in horizontal direction. 

 

Figure 3.54 : ABAQUS model for dynamic analysis 

Middle point deflection in case I, II and III for the cable and the deck through the time 

has been plotted and displayed in Figures 3.55-3.57. 
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Figure 3.55 : Middle Point Deflection For Case I (In meters) 

 

Figure 3.56 : Middle Point Deflection For Case II (In meters) 

 

Figure 3.57 : Middle Point Deflection For Case III (In meters) 

In Figures 3.58-3.60 vector of U2 which represent displacement in y-direction are 

illustrated. 
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Figure 3.58 : U2 Vector Deflection for Case I (In meters) 

 

Figure 3.59 : U2 Vector Deflection for Case II (In meters) 

 

Figure 3.60 : U2 Vector Deflection for Case III (In meters) 

In Figures 3.61-3.63 3D plot of deflected suspension bridge for cases I, II and III are 

respectively depicted. 
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Figure 3.61 : 3D Plot of Suspension Bridge Deflection for Case I (In meters) 

 

Figure 3.62 : 3D Plot of Suspension Bridge Deflection for Case II (In meters) 

 

Figure 3.63 : 3D Plot of Suspension Bridge Deflection for Case III (In meters) 

Result of analysis indicates that maximum deflection of the cable and the deck are 

close to results that obtained by MATLAB software.  Middle point deflection of the 
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cable and the deck computed by MATLAB and ABAQUS are compared in Table 3.28 

and Table 3.29. 

Table 3.28 : Comparison  result of MATLAB and ABAQUS for cable mid point deflection 

Cable middle point deflection 

Case MATLAB (m) ABAQUS (m) Difference (%) 

I 0.21717 0.215036 0.9826% 

II 0.20966 0.212921 1.5554% 

III 0.23174 0.25266 9.0274% 

 

Table 3.29 : Comparison  result of MATLAB and ABAQUS for deck mid point deflection 

Deck middle point deflection 

Case MATLAB (m) ABAQUS (m) Difference (%) 

I 0.21738 0.215151 1.0254% 

II 0.20986 0.21303 1.5105% 

III 0.23195 0.252785 8.9825% 

3.4 Ground Motion 

In this section deflection response of the suspension bridge for three different ground 

motions investigated. In this section, effect of ground motion on response of 

suspension bridge investigated. To investigate response of suspension bridge, three 

different earthquake records likewise to effect of the ground motion considered for 

analyzing. The earthquake records considered for this analysis were the Coyote-Lake 

ground motion record, Kobe ground motion record and El-Mayor ground motion 

record. In analyzing, vertical acceleration due to ground motions considered to 

determine suspension bridge response, and for displacements at the top of tower which 

appears in equation 2.56, displacements of earthquake records were used. Horizontal 

displacements of the tower neglected and considered to be equal to zero. First fifty 

modes of the suspension were taken into account in order to compute response of the 

suspension bridge.  
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3.4.1 Coyote Lake 

Figure 3.64 displays vertical ground acceleration record for Coyote Lake ground 

motion. 

 

Figure 3.64 : Vertical Ground Acceleration Record for Coyote Lake Ground Motion 

In Figures 3.65-3.67 deflection response of the suspension bridge for case I, II and III 

when it is subjected to Coyote Lake earthquake motion has been illustrated. 

 

Figure 3.65 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion for Case I (In 

Meters) 
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Figure 3.66 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion for Case II (In 

Meters) 

 

Figure 3.67 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion for Case III (In 

Meters) 

In Figures 3.68-3.70 deflection response of the middle point of the suspension bridge 

for case I, II and III when it is subjected to Kobe earthquake motion has been depicted. 
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Figure 3.68 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake for 

Case I (In Meters) 

 

 

Figure 3.69 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake for 

Case II (In Meters) 
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Figure 3.70 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake for 

Case III (In Meters) 

3.4.2 Kobe 

In Figure 3.71 vertical ground acceleration record for Kobe ground motion has been 

illustrated. 

 

Figure 3.71 : Vertical Ground Acceleration Record for Kobe Ground Motion 

In Figures 3.72-3.74 deflection response of the suspension bridge for case I, II and III 

when it is subjected to Kobe earthquake motion has been illustrated. 
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Figure 3.72 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion for Case I (In Meters) 

 

 

Figure 3.73 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion for Case II (In Meters) 
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Figure 3.74 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion for Case III (In Meters) 

In Figures 3.75-3.77 deflection response of the middle point of the suspension bridge 

for case I, II and III when it is subjected to Kobe earthquake motion has been depicted. 

 

Figure 3.75 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake for Case I (In 

Meters) 
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Figure 3.76 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake for Case II (In 

Meters) 

 

Figure 3.77 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake for Case III (In 

Meters)  
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3.4.3 El Mayor 

In Figure 3.78 vertical ground acceleration record for El Mayor ground motion has 

been depicted. 

 

Figure 3.78 : Vertical Ground Acceleration Record for El Mayor Ground Motion 

In Figures 3.79-3.81 deflection response of the suspension bridge for case I, II and 

III when it is subjected to El Mayor earthquake motion has been illustrated. 

 

Figure 3.79 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion for Case I (In 

Meters) 
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Figure 3.80 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion for Case II (In 

Meters) 

 

Figure 3.81 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion for Case III (In 

Meters) 

In Figures 3.82-3.84 deflection response of the middle point of the suspension bridge 

for case I, II and III when it is subjected to El Mayor earthquake motion has been 

depicted. 
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Figure 3.82 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake for Case I 

(In Meters) 

 

Figure 3.83 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake for Case II 

(In Meters) 
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Figure 3.84 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake for Case 

III (In Meters) 

3.5 Ground Motion and Moving Load Simultaneously 

In this section, effect of ground motion on response of suspension bridge investigated. 

To investigate response of suspension bridge, three different earthquake records 

likewise to effect of the ground motion considered for analyzing. The earthquake 

records considered for this analysis were the Coyote-Lake ground motion record, Kobe 

ground motion record and El-Mayor ground motion record. In analyzing, vertical 

acceleration due to ground motions considered to determine suspension bridge 

response, and for displacements at the top of tower which appears in equation 2.56, 

displacements of earthquake records were used. Horizontal displacements of the tower 

neglected and considered to be equal to zero. It must be noted that intervals for Coyote 

lake, Kobe and El Mayor ground motion acceleration was 0.005, 0.01 and 0.005 

seconds. For determining the response these intervals increased by twenty times in 

order to decrease the amount of the time needed for computing the response. First eight 

modes of the suspension was taken into account in order to compute response of the 

suspension bridge.  
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3.5.1 Coyote Lake 

In Figures 3.85-3.87 response of suspension bridge when it is subjected to Coyote Lake 

earthquake motion and moving load has been illustrated. 

 

Figure 3.85 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion and Moving 

Load for Case I 

 

Figure 3.86 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion and Moving 

Load for Case II 
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Figure 3.87 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion and Moving 

Load for Case III 

In Figures 3.88-3.90 deflection for middle point of suspension bridge due to the 

Coyote Lake earthquake motion and moving load has been depicted. 

 

Figure 3.88 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake Motion 

and Moving Load for Case I 
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Figure 3.89 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake Motion 

and Moving Load for Case II 

 

Figure 3.90 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake Motion 

and Moving Load for Case III  
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3.5.2 Kobe 

In Figures 3.91-3.93 response of suspension bridge when it is subjected to Kobe 

earthquake motion and moving load has been shown. 

 

Figure 3.91 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion and Moving Load for 

Case I 

 

Figure 3.92 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion and Moving Load for 

Case II 
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Figure 3.93 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion and Moving Load for 

Case III 

In Figures 3.94-3.96 deflection for middle point of suspension bridge due to the Kobe 

earthquake motion and moving load has been depicted. 

 

Figure 3.94 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake Motion and 

Moving Load for Case I 
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Figure 3.95 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake Motion and 

Moving Load for Case II 

 

Figure 3.96 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake Motion and 

Moving Load for Case III  
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3.5.3 El Mayor 

In Figures 3.97-3.99 response of suspension bridge when it is subjected to El Mayor 

earthquake motion and moving load has been shown. 

 

Figure 3.97 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion and Moving Load 

for Case I 

 

Figure 3.98 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion and Moving Load 

for Case II 
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Figure 3.99 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion and Moving Load 

for Case III 

In Figures 3.100-3.102 deflection for middle point of suspension bridge due to the El 

Mayor earthquake motion and moving load has been displayed. 

 

Figure 3.100 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake Motion 

and Moving Load for Case I 
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Figure 3.101 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake Motion 

and Moving Load for Case II 

 

Figure 3.102 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake Motion 

and Moving Load for Case III  



  

123 

 

4.  CONCLUSION 

In this study at first equation of motion for the suspension bridge for both extensible 

and inextensible hangers derived. Three different cases defined and equation of 

motions for mentioned cases solved in order to compute deflection, velocity and 

acceleration of the cable and the deck due to the moving load and ground excitation 

simultaneously. In Table 4.1 and Table 4.2 briefly results for extensible and 

inextensible hangers presented. 

Table 4.1 : Comparison of Middle Point Deflection at the time moving load reaches middle of the 

span 

Middle Point Deflection at the time load reaches middle of the span 

Hangers type 

Case No. 

Extensible 

Hangers (m) 

Inextensible 

Hangers (m) 
Difference (%) 

Case I 0.21738 0.21726 0.06% 

Case II 0.20986 0.20972 0.07% 

Case III 0.23195 0.2318 0.06% 

Table 4.2 : Comparison of Middle Point Max Deflection 

Middle Point Max Deflection 

Hangers type 

Case No. 

Extensible 

Hangers (m) 

Inextensible 

Hangers (m) 
Difference (%) 

Case I 0.22916 0.22908 0.03% 

Case II 0.22741 0.22735 0.03% 

Case III 0.24351 0.24345 0.02% 

Obtained result shows that computed deflection of the suspension bridge from 

differential equation in which extensibility of the hangers considered are not much 

different from result that extensibility of the hangers are ignored. It is worth to note 

that, considering extensibility of the hangers, helps researchers to compute stress and 

axial force that appears in hangers during vibration. 
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Vibration modes of the bridge and natural frequency of the suspension bridge is 

depicted in Table 4.3. First two modes of the vibration are symmetric which also 

observed by Abdel Ghaffar [3]. 

Table 4.3 : Natural frequencies 

Symmetric 

modes 

Frequency 

(𝐻𝑧) 
Anti-symmetric 

modes 

Frequency 

(𝐻𝑧) 

1 0.0430839 2 0.15360018 

3 0.13347878 4 0.19338369 

Results of this study compared with the result of ABAQUS software. In Table 4.4 and 

Table 4.5 obtained result from MATLAB and ABAQUS compared. Unlike 

mathematical assumption and written code in MATLAB, hangers in ABAQUS 

modeled as separate elements. 

Table 4.4 : Comparison  result of MATLAB and ABAQUS for cable mid point deflection 

Cable mid point deflection 

Case MATLAB (m) ABAQUS (m) Difference (%) 

I 0.21717 0.215036 0.9826% 

II 0.20966 0.212921 1.5554% 

III 0.23174 0.25266 9.0274% 

Table 4.5 : Comparison  result of MATLAB and ABAQUS for deck mid point deflection 

Deck mid point deflection 

Case MATLAB (m) ABAQUS (m) Difference (%) 

I 0.21738 0.215151 1.0254% 

II 0.20986 0.21303 1.5105% 

III 0.23195 0.252785 8.9825% 

 

 Stress of hangers do not exceed yielding stress during vibration and none of 

the hangers elongate beyond the yielding strain. 

 Computed deck deflection from deflection theory and improved deflection 

theory are very close and results from deflection theory method is also reliable. 

 Convergence for deflection of the span occurs at lower modes while for 

velocity and acceleration computing higher modes effects are necessary which 

is why in this study effect of 50 modes computed. 
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 First two modes of the suspension bridge and the first antisymmetric mode 

appears after these two symmetric modes. 

 Obtained result from MATLAB code was in good agreement with result 

computed by ABAQUS software. This fact shows reliability of the written code 

in MATLAB. 

It is suggested for future researches and studies below parameters taken into account 

 Inertial effect of the moving oscillators in which mass of the moving oscillators 

makes a coupled differential equation with differential equation of the deck and 

cable. 

 Acceleration of the moving oscillators where moving oscillator do not have 

constant speed and the speed of the moving oscillators varies depending on the 

time. 

 Series of moving loads, such as train crossing the suspension bridge. 

 Moving loads that crosses suspension bridge in opposite direction of each 

other. 

 Effect of the various damping values on the dynamic response of the 

suspension bridge. 

 Effect of the track irregularity on the dynamic response of the suspension 

Bridge. 

 Effect of the deck supports on the dynamic behavior of the suspension bridge. 

 Effect of the cable support at the top of the tower on the dynamic behavior of 

the suspension bridge. 

 Effect of the various damping’s on the dynamic behavior of the suspension 

bridge. 

 Non-uniform ground excitation (Near field and far field) at supports of the 

bridge, since suspension bridges are very large structures ground excitation 

could be different at each support. 

 Suspension cable sag amount on dynamic response of the bridge.  
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APPENDICES 

APPENDIX A: Finite Difference Method 

In finite difference method approximate values of derivatives would be computed. This 

method is a numerical method which is an easy way for differential equations that 

could not solve with conventional methods. 

With using central difference rule first derivative according to FDM method provided 

in equation (A.1). 

𝑦′(𝑖) =
𝑦(𝑖+1) − 𝑦(𝑖−1)

Δ𝑥
 (A.1) 

Implementing same method for second derivative would result in equation (A.2). 

𝑦′′(𝑖) =
𝑦(𝑖+1) − 2𝑦(𝑖) + 𝑦(𝑖−1)

Δ𝑥2
 (A.2) 

Third derivative equation manifested in equation (A.3). 

𝑦′′′(𝑖) =

−1
2 𝑦(𝑖+2) + 𝑦(𝑖+1) − 𝑦(𝑖−1) +

1
2𝑦(𝑖−2)

Δ𝑥3
 

(A.3) 

And at last fourth derivative equation explained in equation (A.4). 

𝑦𝑖𝑣(𝑖) =
𝑦(𝑖+2) − 4𝑦(𝑖+1) + 6𝑦(𝑖) − 4𝑦(𝑖−1) + 𝑦(𝑖−2)

Δ𝑥4
 (A.4) 

To get trivial solution for system of equations which is produced by FDM method, 

extra equations will be need to solve this problem equations for boundary points will 

be used.  
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APPENDIX B: Mathematics 

Production of two sine terms is equal to difference of two cosine terms which is given 

in equation (B.1). 

𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵 =
1

2
[𝑐𝑜𝑠(𝐴 − 𝐵) − cos (𝐴 + 𝐵)] (B.1) 

Integration of two sine terms with different phases are presented in equation (B.2). 

∫𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑗𝜋𝑥

𝐿
) 𝑑𝑥

=
1

2
∫{𝑐𝑜𝑠 (

[𝑛 − 𝑗]𝜋𝑥

𝐿
) − 𝑐𝑜𝑠 (

[𝑛 + 𝑗]𝜋𝑥

𝐿
)} 𝑑𝑥

=
1

2
{(

𝐿

[𝑛 − 𝑗]𝜋
) 𝑠𝑖𝑛 (

[𝑛 − 𝑗]𝜋𝑥

𝐿
)

− (
𝐿

[𝑛 + 𝑗]𝜋
) 𝑠𝑖𝑛 (

[𝑛 + 𝑗]𝜋𝑥

𝐿
)} 

(B.2) 

If n and j are separate integers any linear sum of them with integer coefficient would 

be integer which is given as mathematical expression in equation (B.3). 

∀𝑛, 𝑗 ∈ ℤ ∧ 𝑛 ≠ 𝑗 ⇒ 𝛼𝑛 ± 𝛽𝑗 ∈ ℤ ∧  𝛼𝑛 ± 𝛽𝑗 ≠ 0  (B.3) 

Equation B.2 will be equal to 0, because of given conditions in (B.4). 

𝑠𝑖𝑛 (
[𝑛 ± 𝑗]𝜋𝑥

𝐿
) = 0 (B.4) 

If 𝑛 is equal to 𝑗 equation B.2 would result in equation (B.5). 

∫ 𝑠𝑖𝑛2 (
𝑛𝜋𝑥

𝑙
) 𝑑𝑥

𝑥=𝐿

𝑥=0

= ∫ [1 − 𝑐𝑜𝑠 (
2𝑛𝜋𝑥

𝐿
)] 𝑑𝑥

𝑥=𝐿

𝑥=0

= [
𝑥

2
− 𝑠𝑖𝑛 (

2𝑖𝜋𝑥

𝐿
)]
𝑥=0

𝑥=𝐿

=
𝐿

2
 

(B.5) 

From above equations multiplications of two shape functions can be found and 

explained in equation (B.6). 

∫ 𝜙𝑛(𝑥)𝜙𝑗(𝑥). 𝑑𝑥 = {

0, 𝑛 ≠ 𝑗
𝐿

2
, 𝑛 = 𝑗

𝑥=𝐿

𝑥=0

 (B.6) 
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APPENDIX C: Cable Parabolic Equation 

The Cable Shape Considered in current study is parabolic. Therefore, the coefficients 

of second-degree polynomial and the origin of the cable axis in horizontal direction is 

started from left tower, while the origin of the cable axis in vertical direction  starts 

from top of the left tower and the positive direction is considered downward. In this 

order, the polynomial equation of the cable is provided in equation (C.1). 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (C.1) 

Three points coordinates are known which are brought in equation (C.2). 

{

𝑦0, 𝑦𝐿 = 0

𝑦𝐿
2
=
𝐿

8

 (C.2) 

Coefficients computed by solving system of equations. Coefficients are brought in 

equation (C.3). 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 ⇒

{
 
 

 
 
𝑐 = 0

𝑏 =
1

2

𝑎 = −
1

2𝐿

 (C.3) 
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APPENDIX D: Deriving Equilibrium Equation 

Horizontal equilibrium for infinitesimal element of the cable is manifested in equation 

(D.1). 

𝑑

𝑑𝑠
(𝑇
𝑑𝑥

𝑑𝑠
) ∆𝑠 = 0 (D.1) 

Vertical equilibrium of the cable is brought in equation (D.2). 

𝑑

𝑑𝑠
(𝑇
𝑑𝑧

𝑑𝑠
) ∆𝑠 + 𝑚𝑔∆𝑠 = 0 (D.2) 

By rearranging equation D.2 and simplifying it, relation between tension and weight 

of the cable extracted. This relation provided in equation (D.3). 

𝑑

𝑑𝑠
(𝑇
𝑑𝑧

𝑑𝑠
) = −𝑚𝑔 (D.3) 

Chain differential equation is given in equation (D.4) for reminding. 

𝑑𝑧

𝑑𝑠
=
𝑑𝑥

𝑑𝑠
.
𝑑𝑧

𝑑𝑥
 (D.4) 

Equation (D.5) provides relation between horizontal component of the cable tension 

and cable tension  

𝑇
𝑑𝑥

𝑑𝑠
= 𝐻 (D.5) 

Inserting equation D.4 into equation D.5 would lead to equation (D.6). 

𝑑

𝑑𝑠
(𝑇
𝑑𝑥

𝑑𝑠
.
𝑑𝑧

𝑑𝑥
) =

𝑑

𝑑𝑠
(𝐻.

𝑑𝑧

𝑑𝑥
) = −𝑚𝑔 (D.6) 

Multiplying both sides of equation D.6 with 
𝑑𝑠

𝑑𝑥
 would result into equation (D.7). 

𝐻
𝑑2𝑧

𝑑𝑥2
= −𝑚𝑔

𝑑𝑠

𝑑𝑥
 (D.7) 
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APPENDIX E: Deriving Equation For Increment In Horizontal Component Of 

Cable Tension 

Equation (E.1) explains finite length of elongated cable. 

𝑑𝑠′ = √(𝑑𝑥 + 𝑑𝑢)2 + (𝑑𝑦 + 𝑑𝑤)2 (E.1) 

Relation for force resulted from length increment is brought in equation (E.2). 

𝑃

𝐴𝐸
=
Δ

𝑙
 (E.2) 

Thus, relation for axial force that cause by elongation in the cable is manifested in 

equation (E.3). 

𝜏

𝐸𝐴
=
𝑑𝑠′ − 𝑑𝑠

𝑑𝑠
 (E.3) 

Multiplying both sides of the equation E.3 with 
𝑑𝑠′+𝑑𝑠

𝑑𝑠′+𝑑𝑠
 would result into equation E.4. 

𝑑𝑠′ − 𝑑𝑠

𝑑𝑠

𝑑𝑠′ + 𝑑𝑠

𝑑𝑠′ + 𝑑𝑠
=

𝑑𝑠′
2
− 𝑑𝑠2

𝑑𝑠(𝑑𝑠′ + 𝑑𝑠)
 (E.4) 

Simplifying equation E.4 would result into equation (E.5). 

𝑑𝑢2⏞
=0

+ 2𝑑𝑥𝑑𝑢 + 𝑑𝑤2 + 2𝑑𝑤𝑑𝑧

√𝑑𝑥
2 + 𝑑𝑢2⏟

≅0

+ 2𝑑𝑥𝑑𝑢⏟  
≅0

+ 𝑑𝑧2 + 𝑑𝑤2⏟
≅0

+ 2𝑑𝑤𝑑𝑧⏟    
≅0

+ √𝑑𝑥2 + 𝑑𝑧2

=
𝑑𝑢2 + 2𝑑𝑥𝑑𝑢 + 𝑑𝑤2 + 2𝑑𝑤𝑑𝑧

2𝑑𝑠2

=
𝑑𝑢

𝑑𝑠

𝑑𝑥

𝑑𝑠
+
𝑑𝑧

𝑑𝑠

𝑑𝑤

𝑑𝑠
+
1

2
(
𝑑𝑤

𝑑𝑠
)
2

 

(E.5) 
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APPENDIX F: Integrating First Term In Equation 2.17 

Integrating by parts ∫
𝑑𝑧

𝑑𝑥
. 𝑑𝑤

𝐿

0
 would result into equation (F.1). 

∫ (
𝑑𝑧

𝑑𝑥
) . 𝑑𝑤

𝑥=𝐿

𝑥=0

= 𝑤
𝑑𝑧

𝑑𝑥
− ∫ (

𝑑2𝑧

𝑑𝑥2
)𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

 (F.1) 

 

Knowing that (
𝑑2𝑧

𝑑𝑥2
) = −

𝑚𝑔

𝐻

𝑑𝑠

𝑑𝑥
 and considering that 

𝑑𝑠

𝑑𝑥
 is equal to 1, equation (F.2) 

expresses integration of ∫
𝑑𝑧

𝑑𝑥
. 𝑑𝑤

𝐿

0
. 

∫ (
𝑑𝑧

𝑑𝑥
) . 𝑑𝑤

𝑥=𝐿

𝑥=0

=
𝑑𝑧

𝑑𝑥
𝑤|0

𝐿 +
𝑚𝑔

𝐻
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

= (
1

2
−
𝑥

𝐿
)𝑤|0

𝐿 +
𝑚𝑔

𝐻
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

= (−
1

2
𝑤𝐿 −

1

2
𝑤0) +

𝑚𝑔

𝐻
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

= −(
1

2
𝑤𝐿 +

1

2
𝑤0) +

𝑚𝑔

𝐻
∫ 𝑤. 𝑑𝑥

𝑥=𝐿

𝑥=0

 

(F.2) 
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APPENDIX G: MATLAB Scripts 

G.1 Length Of The Cable 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %%%%%%%%%%%%%%%%%%%%% COMPUTING LENGTH OF THE CABLE %%%%%%%%%%%%%%%%%%%%%%% 

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4 clc 

5 clear all 

6 syms x L 

7 L = 1600;    % LENGTH OF THE SUSPENSION BRIDGE (m) 

8 y0 = 175;    % SAG AMOUNT (m) 

9 y = 4*y0*(x/L-(x/L)^2);  % SHAPE FUNCTION OF THE CABLE (diminsionless) 

10 yP = (1+(diff(y,x)^2)); 

11 yP = yP^(1.5); 

12 Lc = int(yP,0,1600);  % INTEGRATING FUNCTION OF THE CABLE 

13 vpa(Lc)     % LENGTH OF THE CABLE 

G.2 Computing Cable Tension & Deflection Of The Bridge 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %%%%%%%%%%% COMPUTING CABLE TENSION & DEFLECTION OF THE BRIDGE %%%%%%%%%%%% 

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4 clc 

5 clear all 

6 tic 

7 syms x z w L w_g w_c E_g E_c I_g H_w H_p p K zs ws 

8 

9 

10 %% SUSPENSION BRIDGE IMPORT DETAILS (FORCE = kN, LENGTH = m) 

11 
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12 E_g = 2.1e8;    % DECK YOUNG'S MODULUS (kN/m2) 

13 E_c = 2e8;    % CABLE YOUNG'S MODULUS (kN/m2) 

14 E_h = 1.4e8;    % HNAGER YOUNG'S MODULUS (kN/m2) 

15 A_g = 1.5;    % DECK AREA (m2) 

16 A_c = 0.78539;   % SUSPENSION CABLE AREA (m2) 

17 A_h = 0.0314159;   % HANGER AREA (m2) 

18 I_g = 3.5;    % DECK MOMENT OF INERTIA (m4) 

19 K = 8.88e3;    % HANGERS DISTRIBUTED STIFFENSS OVER THE SPAN (kN/m2) 

20 E_t = 3e7;    % TOWER YOUNG'S MODULUS (kN/m2) 

21 L_t = 180 + 50;   % TOWER HEIGHT (m) 

22 I_t = 600;    % TOWER MOMENT OF INERTIA (m4) 

23 K_t = 3*E_t*I_t/((L_t)^3); % TOWER LATERAL STIFFNESS (kN/m) 

24 R1 = 0;     % NEWTON RAPHSON METHOD 

25 R2 = 0;     % NEWTON RAPHSON METHOD 

26 R1S = 0;    % NEWTON RAPHSON METHOD 

27 R2S = 0;    % NEWTON RAPHSON METHOD 

28 

29 %% FORCES 

30 

31 w_c = 60.457;    % CABLE WEIGHT PER LENGTH (kN/m) 

32 w_g = 115.465;   % DECK WEIGHT PER LENGTH (kN/m) 

33 w_T = w_g + w_c;   % TOTAL WEIGHT 

34 p = 10;     % MAIN SPAN LIVE LOAD 

35 pS = 0;     % SIDE SPAN LIVE LOAD 

36 

37 %% MAIN SPAN DETAILS 

38 

39 L = 1600;    % SPAN LENGTH (m) 

40 L_0 = 1757.42637;   % CABLE LENGTH (m) 

41 y0 = 175;    % SAG 

42 y = 4*y0*(x/L-(x/L)^2);  % PARABOLIC SHAPE OF THE CABLE 

43 Dy = diff(y,x);   % CABLE SLOPE FUNCTION 

44 D2y = diff(y,x,2);   % CABLE SECOND DERVIATIVE W.R. TO X 

45 H_w = -w_T/D2y;   % TENSION IN CABLE DUE TO THE DEAD LOAD 

46 Dy_at_0 = subs(Dy,x,0); 

47 
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48 %% SIDE SPAN DETAILS 

49 

50 L_S = 400;    % LEFT SPAN LENGTH (m) 

51 L_0S = 530.525876;   % CABLE LENGTH (m) 

52 y_S = -y;    % PARABOLIC SHAPE OF THE CABLE 

53 DyS = diff(y_S,x); 

54 D2yS = diff(y_S,x,2); 

55 H_wS = w_T/D2yS;   % TENSION IN CABLE DUE TO THE DEAD LOAD 

56 DyS_at_LS = subs(-DyS,x,12760/7); 

57 

58 %% ANGLES 

59 

60 ThetaR = atand(double(Dy_at_0));  % THETA AT TOWER'S LEFT 

61 ThetaL = atand(double(DyS_at_LS));  % THETA AT TOWER'S RIGHT 

62 

63 %% ITERATION WHILE MINIMUM ERROR SATISFIED 

64 

65 Counter = 1;      % NUMBER OF ITERATIONS 

66 Err(Counter) = 1;     % ERROR FOR MAIN SPAN 

67 ErrS(Counter) = 1;     % ERROR FOR SIDE SPAN 

68 H_p_Iteration(Counter) = 1.6484e5;  % TENSION DUE TO LIVE LOAD ASSUMPTION AT MAIN SPAN 

69 H_pS_Iteration(Counter) = 1.5703e5;  % TENSION DUE TO LIVE LOAD ASSUMPTION AT SIDE SPAN 

70 while or(abs(Err(Counter)) > 5e-1,abs(ErrS(Counter)) > 5e-1) 

71 

72 %% MAIN SPAN FINITE DIFFERENCE 

73 

74 H_p = H_p_Iteration(Counter); 

75 Tension = H_p_Iteration(Counter)/cosd(ThetaR); 

76 H_pS_Iteration(Counter) = Tension * cosd(ThetaL); 

77 H_pS = H_pS_Iteration(Counter); 

78 Span = L ; 

79 NO_Of_Divisions = 16 ; 

80 Dx = Span/NO_Of_Divisions ; 

81 

82 %% MAIN SPAN 

83 
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84 Z = sym('z', [1 i]); 

85 eval(SymsVar(z,i)); 

86 W = sym('w', [1 i]); 

87 eval(SymsVar(w,i)); 

88 

89 %% LOOP FOR CREATING SYSTEM OF EQUATIONS 

90 

91 for j=3:i-2 

92 SZ = PFiniteDy(Z,j,Dx); 

93 PZ = PFiniteD2y(Z,j,Dx); 

94 QZ = PFiniteD3y(Z,j,Dx); 

95 RZ = PFiniteD4y(Z,j,Dx); 

96 SW = PFiniteDy(W,j,Dx); 

97 PW = PFiniteD2y(W,j,Dx); 

98 QW = PFiniteD3y(W,j,Dx); 

99 RW = PFiniteD4y(W,j,Dx); 

100 eqns(j-2) = E_g*I_g*RZ(j-2) + K*(Z(j) - W(j)) == p; 

101 eqns(j-2+i-2) = (H_w+H_p)*PW(j-2) + K*(Z(j) - W(j)) == H_p*w_T/H_w; 

102 end 

103 

104 %% BOUNDARY CONDITIONS FOR DECK 

105 

106 eqns(j-2+i-2+1) = Z(3) == 0; 

107 eqns(j-2+i-2+2) = Z(i-2) == 0; 

108 BC_D2Z_0 = PFiniteD2y(Z,3,Dx); 

109 eqns(j-2+i-2+3) = BC_D2Z_0 == 0; 

110 BC_D2Z_L = PFiniteD2y(Z,i-2,Dx); 

111 eqns(j-2+i-2+4) = BC_D2Z_L(end) == 0; 

112 

113 %% BOUNDARY CONDITIONS FOR CABLE 

114 

115 eqns(j-2+i-2+5) = W(3) == 0; 

116 eqns(j-2+i-2+6) = W(i-2) == 0; 

117 

118 %% SOLUTION 

119 
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120 Temp = Z; 

121 Temp(i+1:2*i) = W; 

122 sol = solve(eqns, Temp); 

123 vpa(RR(end-2-NO_Of_Divisions-2-3),12); 

124 vpa(RR(end-2),12); 

125 Zsol = subs(Z,Z(1:i),RR(1:i)'); 

126 Wsol = subs(W,W(1:i),RR(i+1:2*i)'); 

127 

128 %% ERROR PROCESS AND NUMERIC INTEGRATIONS FOR MAIN SPAN 

129 

130 Sum = 0; 

131 for q = 1:NO_Of_Divisions 

132 Sum = Sum + 0.5*(W_Numeric(q)+W_Numeric(q+1))*(L/NO_Of_Divisions); 

133 end 

134 Sum = -(w_T/H_w)*Sum; 

135 Tension = H_p_Iteration(Counter)/cosd(ThetaR); 

136 H_pS_Iteration(Counter) = Tension * cosd(ThetaL); 

137 H_pS = H_pS_Iteration(Counter); 

138 D_L = (H_w + H_p_Iteration(Counter) - H_wS - H_pS_Iteration(Counter))/K_t; 

139 Err(Counter+1) = L_0*(H_p_Iteration(Counter)/(E_c*A_c)) + Sum + 2*D_L 

140 

141 %% ERROR FOR MAIN SPAN 

142 

143 if Err(Counter+1) > 0 

144 H_p_Iteration(Counter+1) = 0.75*H_p; 

145 P1 = H_p; 

146 R1 = Err(Counter+1); 

147 else 

148 H_p_Iteration(Counter+1) = 1.25*H_p;  

149 P2 = H_p; 

150 R2 = Err(Counter+1); 

151 end 

152 if R1*R2 < 0; 

153 H_p_Iteration(Counter+1) = (P1+P2)/2; 

154 end 

155 
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156 %% SIDE SPAN FINITE DIFFERENCE 

157 

158 H_pS = H_pS_Iteration(Counter); 

159 SpanS = L_S ; 

160 NO_Of_DivisionsS = 4 ; 

161 DxS = SpanS/NO_Of_DivisionsS ; 

162 

163 %% SIDE SPAN 

164 

165 ZS = sym('zs', [1 iS]); 

166 eval(SymsVar(zs,iS)); 

167 WS = sym('ws', [1 iS]); 

168 eval(SymsVar(ws,iS)); 

169 

170 %% LOOP FOR CREATING SYSTEM OF EQUATIONS SIDE SPAN 

171 

172 for j=3:iS-2 

173 SZS = PFiniteDy(ZS,j,Dx); 

174 PZS = PFiniteD2y(ZS,j,Dx); 

175 QZS = PFiniteD3y(ZS,j,Dx); 

176 RZS = PFiniteD4y(ZS,j,Dx); 

177 SWS = PFiniteDy(WS,j,Dx); 

178 PWS = PFiniteD2y(WS,j,Dx); 

179 QWS = PFiniteD3y(WS,j,Dx); 

180 RWS = PFiniteD4y(WS,j,Dx); 

181 eqnsS(j-2) = E_g*I_g*RZS(j-2) + K*(ZS(j) - WS(j)) == pS; 

182 eqnsS(j-2+i-2) = (H_wS+H_pS)*PWS(j-2) + K*(ZS(j) - WS(j)) == H_pS*w_T/H_wS; 

183 end 

184 

185 %% BOUNDARY CONDITIONS FOR DECK 

186 

187 eqnsS(j-2+iS-2+1) = ZS(3) == 0; 

188 eqnsS(j-2+iS-2+2) = ZS(iS-2) == 0; 

189 BC_D2Z_0_S = PFiniteD2y(ZS,3,Dx); 

190 eqnsS(j-2+iS-2+3) = BC_D2Z_0_S == 0; 

191 BC_D2Z_L_S = PFiniteD2y(ZS,iS-2,Dx); 
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192 eqnsS(j-2+iS-2+4) = BC_D2Z_L_S(end) == 0; 

193 

194 %% BOUNDARY CONDITIONS FOR CABLE 

195 

196 eqnsS(j-2+iS-2+5) = WS(3) == 0; 

197 eqnsS(j-2+iS-2+6) = WS(iS-2) == 0; 

198 

199 %% SOLUTION 

200 

201 TempS = ZS; 

202 TempS(iS+1:2*iS) = WS; 

203 solS = solve(eqnsS, TempS); 

204 SolzS = struct2cell(solS); 

205 RRS = vpa(SolzS); 

206 vpa(RRS(end-2-NO_Of_DivisionsS-2-3),12); 

207 vpa(RRS(end-2),12); 

208 ZsolS = subs(ZS,ZS(1:iS),RRS(1:iS)'); 

209 WsolS = subs(WS,WS(1:iS),RRS(iS+1:2*iS)'); 

210 

211 %% ERROR PROCESS AND NUMERIC INTEGRATIONS FOR SIDE SPAN 

212 

213 Numeric_ResultS = vpa(RRS,5); 

214 SumS = 0; 

215 for q = 1:NO_Of_DivisionsS 

216 SumS = SumS + 0.5*(W_NumericS(q)+W_NumericS(q+1))*(L_S/NO_Of_DivisionsS); 

217 end 

218 SumS = -(w_T/H_wS)*SumS; 

219 D_LS = (H_wS + H_pS_Iteration(Counter) - H_w - H_p_Iteration(Counter))/K_t; 

220 ErrS(Counter+1) = L_0S*(H_pS_Iteration(Counter)/(E_c*A_c)) + SumS + D_LS 

221 if ErrS(Counter+1) > 0 

222 H_pS_Iteration(Counter+1) = 0.75*H_pS; 

223 P1S = H_pS; 

224 R1S = ErrS(Counter+1); 

225 else 

226 H_pS_Iteration(Counter+1) = 1.25*H_pS; 

227 P2S = H_pS; 
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228 R2S = ErrS(Counter+1); 

229 end 

230 if R1S*R2S < 0; 

231 H_pS_Iteration(Counter+1) = (P1S+P2S)/2; 

232 end 

233 Counter = Counter + 1; 

234 end 

235 

236 %% RESULT 

237 

238 Xlin = 0*Dx : Dx : NO_Of_Divisions*Dx; 

239 Xlin = subs(Xlin,L,1600); 

240 XlinLS = 0*Dx : Dx : NO_Of_DivisionsS*Dx; 

241 XlinLS = subs(XlinLS,L_S,400); 

242 XlinRS = 0*Dx : Dx : NO_Of_DivisionsS*Dx; 

243 XlinRS = subs(XlinRS,L_S,400); 

244 plot(Xlin + L_S,-W_Numeric) 

245 hold on 

246 plot(Xlin + L_S,-Z_Numeric) 

247 hold on 

248 plot(XlinLS,-W_NumericS) 

249 hold on 

250 plot(XlinLS,-Z_NumericS) 

251 hold on 

252 plot(XlinRS + L + L_S,-W_NumericS) 

253 hold on 

254 plot(XlinRS + L + L_S,-Z_NumericS) 

255 title('Pseudo-Static Analysis Of The Suspension Bridge') 

256 set(gca,'XMinorTick','on','YMinorTick','on') 

257 set(gca,'FontName','Times New Roman','FontSize',16) 

258 xlabel('Span Ordinate (m)') 

259 ylabel('Span Defelection (m)') 

260 legend('Cable Deflection In Main Span','Deck Deflection In Main Span','Cable Deflection In Left Side Span','Deck 

Deflection In Left Side Span','Cable Deflection In Right Side Span','Deck Deflection In Right Side Span') 

261 toc 
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G.3 Fitting Equation For static Displacement 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %%%%%%%%%%%%%%%% FITTING EQUATION FOR STATIC DISPLACEMENT %%%%%%%%%%%%%%%%% 

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4 clc 

5 clear all 

6 syms x 

7 W_Pseudo_Static = xlsread('STATIC.xlsx' ,'Span' , 'C3:C67'); 

8 Z_Pseudo_Static = xlsread('STATIC.xlsx' ,'Span' , 'D3:D67'); 

9 t = 0:25:1600; 

10 XV = 0:25:1600; 

11 Wp = polyfit(t',W_Pseudo_Static,20); 

12 Zp = polyfit(t',Z_Pseudo_Static,20); 

13 WEquation = poly2sym(Wp); 

14 ZEquation = poly2sym(Zp); 

15 WEquation = simplify(vpa(WEquation)); 

16 ZEquation = simplify(vpa(ZEquation)); 

17 for i = 1:65 

18 Wspan(i) = subs(WEquation,x,XV(i)); 

19 Zspan(i) = subs(ZEquation,x,XV(i)); 

20 end 

21 Wspan = double(Wspan'); 

22 Zspan = double(Zspan'); 

G.4 Extensible Hangers 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %%%%%%%%%%%%%%%%%%%%%%%%%% EXTENSIBLE HANGERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4 

5 clc 

6 clear all 

7 syms W(t) Z(t) wx wv zx zv t x n 

8 tic 
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9 

10 format long 

11 

12 %% UNKOWNS VALUES 

13 

14 E_g = 2.1e8;     % DECK MOODULUS OF ELASITICITY (kN/m^2) 

15 E_c = 2e8;     % SUSPENSION CABLE MOODULUS OF ELASITICITY (kN/m^2) 

16 E_h = 1.4e8;     % HANGER MOODULUS OF ELASITICITY (kN/m^2) 

17 I_g = 3.5;     % DECK MOMENT OF INERTIA (m^4) 

18 I_c = 0.05;     % CABLE MOMENT OF INERTIA (m^4) 

19 A_g = 1.5;     % DECK AREA (m^2) 

20 A_c = 0.78539;    % SUSPENSION CABLE AREA (m^2) 

21 A_h = 0.0314159;    % HANGER AREA (m^2) 

22 d_h = 25;     % SPACE BETWEEN HANGER (m) 

23 K = 8.88e3;     % DISTRIBUTED HANGER STIFFNESS (kN/m^2) 

24 M = 20.3956;     % VEHICLE MASS (ton) 

25 V = 120/3.6;     % VELOCITY OF MOVING MASS (m/s) 

26 m_g = 11.775;     % DECK PER LENGTH MASS (ton/m) 

27 m_c = 6.1653;     % CABLE PER LENGTH MASS (ton/m) 

28 H = 321685.942;    % CABLE HORZIONTAL TENSION (kN) 

29 DH = 16484.597;    % INCREMENT IN CABLE HORZIONTAL TENSION (kN) 

30 L = 1600;     % SPAN LENGTH (m) 

31 T = H+DH;     % DEFINING H & DH (kN) 

32 L_0 = 1757.42637;    % CABLE LENGTH (m) 

33 Alfa = -((E_c*A_c)/(L_0))/(L^2); % ALFA COEFFICENT 

34 g = 9.806;     % GRAVITY ACCELERATION (m/s^2) 

35 u_0 = 0;     % TOWER HORZIONTAL DISPLACEMENT @ x = 0 

36 u_L = 0;     % TOWER HORZIONTAL DISPLACEMENT @ x = L 

37 w_0 = 0;     % TOWER VERTICAL DISPLACEMENT @ x = 0 

38 w_L = 0;     % TOWER VERTICAL DISPLACEMENT @ x = L 

39 N = 50;      % NUMBER OF INVOLVED MODES 

40 tMax = L/V; 

41 

42 %% DEFINING T & K_c & K_g 

43 for n=1:N 

44 K_c(n) = (K + T*((n*pi()/L)^2)-((2*Alfa*L)/((n*pi())^2))*((((-1)^n+1)+1)^2)); % K VALUE IN EQUTION OF MOTION OF 
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THE CABLE 

45 K_g(n) = (K + E_g*I_g*((n*pi()/L)^4)); % K VALUE IN EQUTION OF MOTION OF 

THE DECK 

46 Erq(n) = ((u_L-u_0) - (1/2)*(w_L+w_0))*(((-1)^n+1)+1); 

47 end 

48 

49 %% DIFFERENTIAL EQUATIONS 

50 

51 for n=1:N 

52 ODE1(n) = diff(W,t,2) + (K_c(n)*W - K*Z)/m_c - (Erq(n)*2*Alfa*L)/(n*pi()*m_c) == 0; 

53 ODE2(n) = diff(Z,t,2) + (K_g(n)*Z - K*W)/m_g == (2*M*g/(m_g*L))*sin(n*pi()*V*t/L); 

54 end 

55 COND1 = W(0) == 0; 

56 COND2 = dW(0) == 0; 

57 COND3 = Z(0) == 0; 

58 COND4 = dZ(0) == 0; 

59 CONDS = [COND1, COND2, COND3, COND4]; 

60 

61 %% SOLUTION 

62 

63 WsolN = 0; 

64 WsolxN = 0; 

65 ZsolN = 0; 

66 ZsolxN = 0; 

67 for n=1:N 

68 ODES = [ODE1(n), ODE2(n)]; 

69 [Wsol(n), Zsol(n)] = dsolve(ODES, CONDS); 

70 Wsolx(n) = Wsol(n) * sin(n*pi()*x/L); 

71 WsolxN = WsolxN + Wsolx(n); 

72 Zsolx(n) = Zsol(n) * sin(n*pi()*x/L); 

73 ZsolxN = ZsolxN + Zsolx(n); 

74 end 

75 

76 %% PLOTING SPECIFIC POINT AT TOTAL TIME 

77 

78 format longG 
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79 figure(1) 

80 fplot(WsolN,[0,tMax]) 

81 yLimits = get(gca,'YLim'); 

82 ylim([1.15*yLimits(1), 1.15*yLimits(2)]) 

83 hold on 

84 fplot(ZsolN,[0,tMax]) 

85 ylim([1.15*yLimits(1), 1.15*yLimits(2)]) 

86 hold on 

87 plot(WXminN,-WYminN,'s','MarkerSize',10,'MarkerEdgeColor','yellow','MarkerFaceColor',[1 1 0]) 

88 hold on 

89 plot(ZXminN,-ZYminN,'s','MarkerSize',10,'MarkerEdgeColor','red','MarkerFaceColor',[1 0 0]) 

90 hold on 

91 COORW = strcat('\uparrow'); 

92 StrW = strcat(' T = ', num2str(WXminN), ' s & ', ' Cable Deflection = ', num2str(double(-WYminN)), ' m'); 

93 COORW = {COORW, StrW}; 

94 PW = text(WXminN,-WYminN,COORW); 

95 PW.FontSize = 16; 

96 PW.FontName = 'Times New Roman'; 

97 PW.FontWeight = 'normal'; 

98 PW.HorizontalAlignment = 'center'; 

99 PW.VerticalAlignment = 'top'; 

100 COORZ = '\downarrow'; 

101 StrZ = strcat(' T = ', num2str(ZXminN), ' s & ', ' Deck Deflection = ', num2str(double(-ZYminN)), ' m'); 

102 COORZ = {StrZ, COORZ}; 

103 PZ = text(ZXminN,-ZYminN,COORZ); 

104 PZ.FontSize = 16; 

105 PZ.FontName = 'Times New Roman'; 

106 PZ.FontWeight = 'normal'; 

107 PZ.HorizontalAlignment = 'center'; 

108 PZ.VerticalAlignment = 'bottom'; 

109 legend({'Cable Deflection','Deck Deflection'},'Location','east') 

110 title('Cable and Deck middle point Deflection') 

111 xlabel('Time') 

112 ylabel('Deflection') 

113 set(gca,'FontName','Times New Roman','FontSize',16) 

114 set(gca,'XMinorTick','on','YMinorTick','on') 
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115 X_Coor = double((WXminN + ZXminN)*(1/2)); 

116 Y_Coor = double((-WYminN - ZYminN)*(1/2)); 

117 Width_Rec1 = X_Coor/6; 

118 yLimits = get(gca,'YLim'); 

119 yLimits = abs(yLimits(2) - yLimits(1)); 

120 Height_Rec1 = yLimits/40; 

121 rectangle('Position', [X_Coor - Width_Rec1/2, Y_Coor - Height_Rec1/2, Width_Rec1, Height_Rec1],'EdgeColor', 

[0.4, 

0.1, 0.4], 'LineWidth', 1); 

122 x_a = 0.65; 

123 y_a = 0.2; 

124 w_a = 0.2; 

125 h_a = 0.2; 

126 ax = axes('Units', 'Normalized','Position', [x_a, y_a, w_a, h_a],'XTick', [],'YTick', [],'Box', 

'on','LineWidth', 

1,'Color', [0.95, 0.99, 0.95]); 

127 hold on 

128 fplot(WsolN,[0,tMax]); 

129 hold on; 

130 fplot(ZsolN,[0,tMax]); 

131 hold on 

132 plot(WXminN,-WYminN,'s','MarkerSize',10,'MarkerEdgeColor','yellow','MarkerFaceColor',[1 1 0]) 

133 hold on 

134 plot(ZXminN,-ZYminN,'s','MarkerSize',10,'MarkerEdgeColor','red','MarkerFaceColor',[1 0 0]) 

135 hold on 

136 axis([X_Coor-Width_Rec1/5, X_Coor+Width_Rec1/5, Y_Coor-Height_Rec1/5, Y_Coor+Height_Rec1/5]); 

137 title('') 

138 xlabel('Time') 

139 ylabel('Deflection') 

140 set(gca,'FontName','Times New Roman','FontSize',16) 

141 

142 %% 3D PLOT OF SPAN DEFLECTION 

143 

144 figure(2) 

145 ezsurf(WsolxN,[0,tMax, 0,L]) 

146 hold on 
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147 ezsurf(ZsolxN,[0,tMax, 0,L]) 

148 % legend('Cable Deflection','Deck Deflection') 

149 title('3D PLOT OF SPAN DEFLECTION') 

150 xlabel('Time') 

151 ylabel('Longitudinal coordinate') 

152 zlabel('Deflection') 

153 set(gca,'FontName','Times New Roman','FontSize',16) 

154 axis tight 

155 xh = get(gca,'XLabel'); % Handle of the x label 

156 set(xh, 'Units', 'Normalized') 

157 set(xh, 'Position',[0.75,0.025,0],'Rotation',12) 

158 yh = get(gca,'YLabel'); % Handle of the y label 

159 set(yh, 'Units', 'Normalized') 

160 set(yh, 'Position',[0.175,0.05,0],'Rotation',-14) 

161 

162 %% FUNCTIONS 

163 

164 WsoltNFun = matlabFunction(-WsoltN); 

165 WXmintN = fminbnd(WsoltNFun,0,L); 

166 WYmintN = subs(WsoltNFun,x,WXmintN); 

167 WsoltNFun = matlabFunction(WsoltN); 

168 WXmaxtN = fminbnd(WsoltNFun,0,L); 

169 WYmaxtN = subs(WsoltNFun,x,WXmaxtN); 

170 ZsoltNFun = matlabFunction(-ZsoltN); 

171 ZXmintN = fminbnd(ZsoltNFun,0,L); 

172 ZYmintN = subs(ZsoltNFun,x,ZXmintN); 

173 ZsoltNFun = matlabFunction(ZsoltN); 

174 ZXmaxtN = fminbnd(ZsoltNFun,0,L); 

175 ZYmaxtN = subs(ZsoltNFun,x,ZXmaxtN); 

176 

177 %% PLOTING SPAN DISPLACEMENT AT SPECIFIC TIME 

178 

179 format longG 

180 figure(3) 

181 fplot(WsoltN,[0,L]) 

182 yLimits = get(gca,'YLim'); 
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183 ylim([1.15*yLimits(1), 1.15*yLimits(2)]) 

184 hold on 

185 fplot(ZsoltN,[0,L]) 

186 yLimits = get(gca,'YLim'); 

187 ylim([1.15*yLimits(1), 1.15*yLimits(2)]) 

188 hold on 

189 COORW = strcat('\uparrow'); 

190 StrW = strcat(' Location = ', num2str(WXmintN), ' m & ', ' Cable Deflection = ', num2str(double(-WYmintN)), ' 

m'); 

191 COORW = {COORW, StrW}; 

192 PW = text(WXmintN,-WYmintN,COORW); 

193 PW.FontSize = 16; 

194 PW.FontName = 'Times New Roman'; 

195 PW.FontWeight = 'normal'; 

196 PW.HorizontalAlignment = 'center'; 

197 PW.VerticalAlignment = 'top'; 

198 COORZ = '\downarrow'; 

199 StrZ = strcat(' Location = ', num2str(ZXmintN), ' m & ', ' Deck Deflection = ', num2str(double(-ZYmintN)), ' 

m'); 

200 COORZ = {StrZ, COORZ}; 

201 PZ = text(ZXmintN,-ZYmintN,COORZ); 

202 PZ.FontSize = 16; 

203 PZ.FontName = 'Times New Roman'; 

204 PZ.FontWeight = 'normal'; 

205 PZ.HorizontalAlignment = 'center'; 

206 PZ.VerticalAlignment = 'bottom'; 

207 legend({'Cable Deflection','Deck Deflection'},'Location','east') 

208 TitleString = strcat({'Cable and Deck middle point Deflection at t = '} , num2str(tMax/2), ' s'); 

209 title(TitleString) 

210 xlabel('Location') 

211 ylabel('Deflection') 

212 set(gca,'FontName','Times New Roman','FontSize',16) 

213 set(gca,'XMinorTick','on','YMinorTick','on') 

214 X_Coor = double((WXmintN + ZXmintN)*(1/2)); 

215 Y_Coor = double((-WYmintN - ZYmintN)*(1/2)); 

216 Width_Rec1 = X_Coor/6; 



  

152 

217 Height_Rec1 = Y_Coor/12; 

218 rectangle('Position', [X_Coor - Width_Rec1/2, Y_Coor - Height_Rec1/2, Width_Rec1, Height_Rec1],'EdgeColor', 

[0.4, 

0.1, 0.4], 'LineWidth', 1); 

219 x_a = 0.65; 

220 y_a = 0.2; 

221 w_a = 0.2; 

222 h_a = 0.2; 

223 ax = axes('Units', 'Normalized','Position', [x_a, y_a, w_a, h_a],'XTick', [],'YTick', [],'Box', 

'on','LineWidth', 

1,'Color', [0.95, 0.99, 0.95]); 

224 hold on 

225 fplot(WsoltN,[0,L]); 

226 hold on; 

227 fplot(ZsoltN,[0,L]); 

228 hold on 

229 axis([X_Coor-Width_Rec1/100, X_Coor+Width_Rec1/100, Y_Coor-Height_Rec1/100, Y_Coor+Height_Rec1/100]); 

230 title('') 

231 xlabel('Time') 

232 ylabel('Deflection') 

233 set(gca,'FontName','Times New Roman','FontSize',16) 

234 

235 %% HANGERS ELONGATION 

236 

237 T_Max_Elongation = WXminN; 

238 T_Middle_Elongation = WXmintN; 

239 WsolElongation = subs(WsolxN,t,T_Max_Elongation); 

240 ZsolElongation = subs(ZsolxN,t,T_Max_Elongation); 

241 WsolMaxElongation = subs(WsolxN,t,T_Middle_Elongation); 

242 ZsolMaxElongation = subs(ZsolxN,t,T_Middle_Elongation); 

243 for i = 1 : 63 

244 W_Elongation(i) = subs(WsolElongation,x,i*d_h); 

245 Z_Elongation(i) = subs(ZsolElongation,x,i*d_h); 

246 W_Middle_Elongation(i) = subs(WsolMaxElongation,x,i*d_h); 

247 Z_Middle_Elongation(i) = subs(ZsolMaxElongation,x,i*d_h); 

248 end 



  

153 

249 

250 xlswrite('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIII.xlsx' , double(W_Elongation 

(:)), 'Elongation' , 'C3:C66') 

251 xlswrite('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIII.xlsx' , double(Z_Elongation 

(:)), 'Elongation' , 'D3:D66') 

252 xlswrite('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIII.xlsx' , double 

(W_Middle_Elongation(:)), 'Elongation' , 'F3:F66') 

253 xlswrite('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIII.xlsx' , double 

(Z_Middle_Elongation(:)), 'Elongation' , 'G3:G66') 

254 

255 toc 

G.5 Inextensible Hangers 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %%%%%%%%%%%%%%%%%%%%%%%%% INEXTENSIBLE HANGERS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4 clc 

5 clear all 

6 syms Z(t) wx wv zx zv t x n 

7 tic 

8 

9 format long 

10 

11 %% UNKOWNS VALUES 

12 

13 E_g = 2.1e8;    % DECK MOODULUS OF ELASITICITY (kN/m^2) 

14 E_c = 2e8;    % SUSPENSION CABLE MOODULUS OF ELASITICITY (kN/m^2) 

15 E_h = 1.4e8;    % HANGER MOODULUS OF ELASITICITY (kN/m^2) 

16 I_g = 3.5;    % DECK MOMENT OF INERTIA (m^4) 

17 I_c = 0.05;    % CABLE MOMENT OF INERTIA (m^4) 

18 A_g = 1.5;    % DECK AREA (m^2) 

19 A_c = 0.78539;   % SUSPENSION CABLE AREA (m^2) 

20 A_h = 0.0314159;   % HANGER AREA (m^2) 

21 d_h = 25;    % SPACE BETWEEN HANGER (m) 
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22 K = 8.88e3;    % DISTRIBUTED HANGER STIFFNESS (kN/m^2) 

23 M = 20.3956;    % VEHICLE MASS (ton) 

24 V = 120/3.6;    % VELOCITY OF MOVING MASS (m/s) 

25 m_g = 11.775;    % DECK PER LENGTH MASS (ton/m) 

26 m_c = 6.1653;    % CABLE PER LENGTH MASS (ton/m) 

27 H = 321685.942;   % CABLE HORZIONTAL TENSION (kN) 

28 DH = 16484.597;   % INCREMENT IN CABLE HORZIONTAL TENSION (kN) 

29 L = 1600;    % SPAN LENGTH (m) 

30 T = H+DH;    % DEFINING H & DH (kN) 

31 L_0 = 1757.42637;   % CABLE LENGTH (m) 

32 Alfa = -((E_c*A_c)/(L_0))/(L^2); % ALFA COEFFICENT 

33 g = 9.806;    % GRAVITY ACCELERATION (m/s^2) 

34 u_0 = 0;    % TOWER HORZIONTAL DISPLACEMENT @ x = 0 

35 u_L = 0;    % TOWER HORZIONTAL DISPLACEMENT @ x = L 

36 w_0 = 0;    % TOWER VERTICAL DISPLACEMENT @ x = 0 

37 w_L = 0;    % TOWER VERTICAL DISPLACEMENT @ x = L 

38 N = 50;     % NUMBER OF INVOLVED MODES 

39 tMax = L/V; 

40 

41 %% DEFINING T & K_c & K_g 

42 

43 for n=1:N 

44 K_g(n) = ( E_g*I_g*((n*pi()/L)^4) + T*((n*pi()/L)^2)-((2*Alfa*L)/((n*pi())^2))*((((-1)^n+1)+1)^2)); % K VALUE IN 

EQUTION OF MOTION OF THE CABLE 

45 Erq(n) = ((u_L-u_0) - (1/2)*(w_L+w_0))*(((-1)^n+1)+1); 

46 end 

47 

48 %% DIFFERENTIAL EQUATIONS 

49 

50 for n=1:N 

51 ODE1(n) = diff(Z,t,2) + (K_g(n)*Z)/(m_g + m_c) == (2*M*g/((m_g + m_c)*L))*sin(n*pi()*V*t/L) + (Erq(n) 

*2*Alfa*L)/(n*pi()*(m_g + m_c)); 

52 end 

53 COND1 = Z(0) == 0; 

54 COND2 = dZ(0) == 0; 

55 CONDS = [COND1, COND2]; 
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56 

57 %% SOLUTION 

58 

59 ZsolN = 0; 

60 ZsolxN = 0; 

61 for n=1:N 

62 Zsol(n) = dsolve(ODE1(n), CONDS); 

63 Zsolx(n) = Zsol(n) * sin(n*pi()*x/L); 

64 ZsolxN = ZsolxN + Zsolx(n); 

65 end 

66 

67 %% PLOTING SPECIFIC POINT AT TOTAL TIME 

68 

69 format longG 

70 figure(1) 

71 fplot(ZsolN,[0,tMax]) 

72 yLimits = get(gca,'YLim'); 

73 ylim([1.15*yLimits(1), 1.15*yLimits(2)]) 

74 hold on 

75 plot(ZXminN,-ZYminN,'s','MarkerSize',10,'MarkerEdgeColor','red','MarkerFaceColor',[1 0 0]) 

76 hold on 

77 COORZ = '\downarrow'; 

78 StrZ = strcat(' T = ', num2str(ZXminN), ' s & ', ' Deck Deflection = ', num2str(double(-ZYminN)), ' m'); 

79 COORZ = {StrZ, COORZ}; 

80 PZ = text(ZXminN,-ZYminN,COORZ); 

81 PZ.FontSize = 16; 

82 PZ.FontName = 'Times New Roman'; 

83 PZ.FontWeight = 'normal'; 

84 PZ.HorizontalAlignment = 'center'; 

85 PZ.VerticalAlignment = 'bottom'; 

86 legend({'Deck Deflection'},'Location','east') 

87 title('Deck middle point Deflection') 

88 xlabel('Time') 

89 ylabel('Deflection') 

90 set(gca,'FontName','Times New Roman','FontSize',16) 

91 set(gca,'XMinorTick','on','YMinorTick','on') 
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92 X_Coor = double(ZXminN); 

93 Y_Coor = double(- ZYminN); 

94 Width_Rec1 = X_Coor/6; 

95 yLimits = get(gca,'YLim'); 

96 yLimits = abs(yLimits(2) - yLimits(1)); 

97 Height_Rec1 = yLimits/40; 

98 rectangle('Position', [X_Coor - Width_Rec1/2, Y_Coor - Height_Rec1/2, Width_Rec1, Height_Rec1],'EdgeColor', [0.4, 

0.1, 0.4], 'LineWidth', 1); 

99 x_a = 0.65; 

100 y_a = 0.2; 

101 w_a = 0.2; 

102 h_a = 0.2; 

103 ax = axes('Units', 'Normalized','Position', [x_a, y_a, w_a, h_a],'XTick', [],'YTick', [],'Box', 

'on','LineWidth', 

1,'Color', [0.95, 0.99, 0.95]); 

104 hold on 

105 fplot(ZsolN,[0,tMax]); 

106 hold on 

107 plot(ZXminN,-ZYminN,'s','MarkerSize',10,'MarkerEdgeColor','red','MarkerFaceColor',[1 0 0]) 

108 hold on 

109 axis([X_Coor-Width_Rec1/5, X_Coor+Width_Rec1/5, Y_Coor-Height_Rec1/5, Y_Coor+Height_Rec1/5]); 

110 title('') 

111 xlabel('Time') 

112 ylabel('Deflection') 

113 set(gca,'FontName','Times New Roman','FontSize',16) 

114 

115 %% 3D PLOT OF SPAN DEFLECTION 

116 

117 figure(2) 

118 ezsurf(ZsolxN,[0,tMax, 0,L]) 

119 title('3D PLOT OF SPAN DEFLECTION') 

120 xlabel('Time') 

121 ylabel('Longitudinal coordinate') 

122 zlabel('Deflection') 

123 set(gca,'FontName','Times New Roman','FontSize',16) 

124 axis tight 
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125 xh = get(gca,'XLabel'); 

126 set(xh, 'Units', 'Normalized') 

127 set(xh, 'Position',[0.75,0.025,0],'Rotation',12) 

128 yh = get(gca,'YLabel'); 

129 set(yh, 'Units', 'Normalized') 

130 set(yh, 'Position',[0.175,0.05,0],'Rotation',-14) 

131 

132 %% PLOTING SPAN DISPLACEMENT AT SPECIFIC TIME 

133 

134 format longG 

135 figure(3) 

136 fplot(ZsoltN,[0,L]) 

137 yLimits = get(gca,'YLim'); 

138 ylim([1.15*yLimits(1), 1.15*yLimits(2)]) 

139 hold on 

140 plot(ZXmintN,-ZYmintN,'s','MarkerSize',10,'MarkerEdgeColor','red','MarkerFaceColor',[1 0 0]) 

141 hold on 

142 COORZ = '\downarrow'; 

143 StrZ = strcat(' Location = ', num2str(ZXmintN), ' m & ', ' Deck Deflection = ', num2str(double(-ZYmintN)), ' 

m'); 

144 COORZ = {StrZ, COORZ}; 

145 PZ = text(ZXmintN,-ZYmintN,COORZ); 

146 PZ.FontSize = 16; 

147 PZ.FontName = 'Times New Roman'; 

148 PZ.FontWeight = 'normal'; 

149 PZ.HorizontalAlignment = 'center'; 

150 PZ.VerticalAlignment = 'bottom'; 

151 legend({'Deck Deflection'},'Location','east') 

152 TitleString = strcat({'Deck middle point Deflection at t = '} , num2str(tMax/2), ' s'); 

153 title(TitleString) 

154 xlabel('Location') 

155 ylabel('Deflection') 

156 set(gca,'FontName','Times New Roman','FontSize',16) 

157 set(gca,'XMinorTick','on','YMinorTick','on') 

158 X_Coor = double(ZXmintN); 

159 Y_Coor = double(- ZYmintN); 
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160 Width_Rec1 = X_Coor/6; 

161 Height_Rec1 = Y_Coor/12; 

162 rectangle('Position', [X_Coor - Width_Rec1/2, Y_Coor - Height_Rec1/2, Width_Rec1, Height_Rec1],'EdgeColor', 

[0.4, 

0.1, 0.4], 'LineWidth', 1); 

163 x_a = 0.65; 

164 y_a = 0.2; 

165 w_a = 0.2; 

166 h_a = 0.2; 

167 ax = axes('Units', 'Normalized','Position', [x_a, y_a, w_a, h_a],'XTick', [],'YTick', [],'Box', 

'on','LineWidth', 

1,'Color', [0.95, 0.99, 0.95]); 

168 hold on 

169 fplot(ZsoltN,[0,L]); 

170 hold on 

171 axis([X_Coor-Width_Rec1/100, X_Coor+Width_Rec1/100, Y_Coor-Height_Rec1/100, Y_Coor+Height_Rec1/100]); 

172 title('') 

173 xlabel('Location') 

174 ylabel('Deflection') 

175 set(gca,'FontName','Times New Roman','FontSize',16) 

176 

177 toc 

G.6 Maximum Acceleration 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2 %%%%%%%%%%%%%%%%%%%%%%%%%%% MAX ACCELERATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

4 

5 clc 

6 clear all 

7 syms W(t) Z(t) wx wv zx zv t x n V 

8 tic 

9 

10 format long 
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11 

12 %% UNKOWNS VALUES 

13 

14 E_g = 2.1e8;    % DECK MOODULUS OF ELASITICITY (kN/m^2) 

15 E_c = 2e8;    % SUSPENSION CABLE MOODULUS OF ELASITICITY (kN/m^2) 

16 E_h = 1.4e8;    % HANGER MOODULUS OF ELASITICITY (kN/m^2) 

17 I_g = 3.5;    % DECK MOMENT OF INERTIA (m^4) 

18 I_c = 0.05;    % CABLE MOMENT OF INERTIA (m^4) 

19 A_g = 1.5;    % DECK AREA (m^2) 

20 A_c = 0.78539;   % SUSPENSION CABLE AREA (m^2) 

21 A_h = 0.0314159;   % HANGER AREA (m^2) 

22 d_h = 25;    % SPACE BETWEEN HANGER (m) 

23 K = 8.88e3;    % DISTRIBUTED HANGER STIFFNESS (kN/m^2) 

24 M = 20.3956;    % VEHICLE MASS (ton) 

25 m_g = 11.775;    % DECK PER LENGTH MASS (ton/m) 

26 m_c = 6.1653;    % CABLE PER LENGTH MASS (ton/m) 

27 H = 321685.942;   % CABLE HORZIONTAL TENSION (kN) 

28 DH = 16484.597;   % INCREMENT IN CABLE HORZIONTAL TENSION (kN) 

29 L = 1600;    % SPAN LENGTH (m) 

30 T = H+DH;    % DEFINING H & DH (kN) 

31 L_0 = 1757.42637;   % CABLE LENGTH (m) 

32 Alfa = -((E_c*A_c)/(L_0))/(L^2); % ALFA COEFFICENT 

33 g = 9.806;    % GRAVITY ACCELERATION (m/s^2) 

34 u_0 = 0;    % TOWER HORZIONTAL DISPLACEMENT @ x = 0 

35 u_L = 0;    % TOWER HORZIONTAL DISPLACEMENT @ x = L 

36 w_0 = 0;    % TOWER VERTICAL DISPLACEMENT @ x = 0 

37 w_L = 0;    % TOWER VERTICAL DISPLACEMENT @ x = L 

38 N = 50;     % NUMBER OF INVOLVED MODES 

39 

40 %% DEFINING T & K_c & K_g 

41 

42 for n=1:N 

43 K_g(n) = ( E_g*I_g*((n*pi()/L)^4) + T*((n*pi()/L)^2)-((2*Alfa*L)/((n*pi())^2))*((((-1)^n+1)+1)^2)); % K VALUE IN 

EQUTION OF MOTION OF THE CABLE 

44 Erq(n) = ((u_L-u_0) - (1/2)*(w_L+w_0))*((-1)^n+1); 

45 end 
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46 

47 %% DIFFERENTIAL EQUATIONS 

48 

49 dZ = diff(Z,t); 

50 for n=1:N 

51 ODE1(n) = diff(Z,t,2) + (K_g(n)*Z)/(m_g + m_c) == (2*M*g/((m_g + m_c)*L))*sin(n*pi()*V*t/L) + (Erq(n) 

*2*Alfa*L)/(n*pi()*(m_g + m_c)); 

52 end 

53 COND1 = Z(0) == 0; 

54 COND2 = dZ(0) == 0; 

55 CONDS = [COND1, COND2]; 

56 

57 %% SOLUTION 

58 

59 ZsolN = 0; 

60 ZsolxN = 0; 

61 for n=1:N 

62 Zsol(n) = dsolve(ODE1(n), CONDS); 

63 Zsolx(n) = Zsol(n) * sin(n*pi()*x/L); 

64 ZsolxN = ZsolxN + Zsolx(n); 

65 end 

66 

67 %% FUNCTIONS 

68 

69 [MeshR, MeshC] = size(xV); 

70 ZsolVN = diff(ZsolxN,t,1); 

71 ZsolAN = diff(ZsolxN,t,2); 

72 Step = 20; 

73 VMAX = Step * 12; 

74 VMAX = VMAX + 1; 

75 for Vstep = 1 : Step : VMAX % VELOCITY OF MOVING LOAD (m/s) 

76 tMax = L/Vstep; 

77 for i = 1 : MeshC 

78 ZsolANV = subs(ZsolAN,[x,V],[xV(i),Vstep]); 

79 AV_Min_Location(Iteration,i) = fminbnd(matlabFunction(ZsolANV),0,tMax); 

80 AV_Max_Location(Iteration,i) = fminbnd(matlabFunction(-ZsolANV),0,tMax); 
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81 en 

82 end 

83 

84 for Vstep = 1 : Step : VMAX % VELOCITY OF MOVING LOAD (m/s) 

85 for i = 1 : MeshC 

86 ZsolANV = subs(ZsolAN,x,xV(i)); 

87 AV_Max(Iteration,i) = subs(ZsolANV,[t,V],[AV_Location(Iteration,i),Vstep]); 

88 end 

89 end 

90 

91 format longG 

92 

93 xV = [0,xV,L]; 

94 Intial = zeros([1,MeshC + 2]); 

95 AV_Max = double([0,AV_Max,0]); 

96 AV_Max = double([Intial;AV_Max]); 

97 AV_Max = AV_Max * 1e3/9.81; 

98 Vstep = 1 : Step : VMAX; 

99 Vstep = [0,Vstep]; 

100 figure (1) 

101 surf(Vstep',xV',AV_Max') 

102 hold on 

103 title('3D PLOT OF MAX ACCELERATION ') 

104 xlabel('Velocity (m/s)') 

105 ylabel('Longitudinal coordinate (m)') 

106 zlabel('Acceleration Max 10^-^3 g') 

107 set(gca,'FontName','Times New Roman','FontSize',16) 

108 axis tight 

109 xh = get(gca,'XLabel'); % Handle of the x label 

110 set(xh, 'Units', 'Normalized') 

111 set(xh, 'Position',[0.75,0.025,0],'Rotation',12) 

112 yh = get(gca,'YLabel'); % Handle of the y label 

113 set(yh, 'Units', 'Normalized') 

114 set(yh, 'Position',[0.175,0.05,0],'Rotation',-14) 

115 

116 toc 
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