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VERTICAL VIBRATION OF SUSPENSION BRIDGES DUE TO TRAFFIC
AND VERTICAL GROUND EXCIATATIONS

SUMMARY

Bridges are among the important civil infrastructures and are normally designed to
have long life spans. Suspension bridges has a larger span in comparison to any other
form of bridges. As it get larger span it become more flexible structure. As a structure
get flexible its behaviour under dynamic load become more complicated. Suspension
bridges are infrastructures in which the load-bearing portion is hung under the
suspension cables upon the vertical hangers. Due to their aesthetic, architectural beauty
and capability of utilization in long spans suspension bridges, have gained much
popularity in recent decades. Throughout the history of suspension bridges, their
tendency to vibrate under different dynamic loadings such as wind, earthquake, and
traffic loads has been a matter of concern for engineers and researchers. Along with
the rapid development of modern transportation networks, suspension bridges are
often adopted to wide span rivers or deep valleys. Increasing the construction of
suspension bridges and the challenge of modelling their behaviour has attracted the
interest of researchers. Many difficulties related to design arises due to its long central
span. There are many suspension bridges around the world and dynamic behaviour has
been found to be the primary concern for those bridges. Several investigations have
been taken place in recent years to determine the behaviour of suspension bridges and
dynamical characteristics of it when they are vibrating. However, the complexity of
the structure of a suspension bridge makes difficulties on determining dynamical
behaviour and dynamical features of suspension bridge.

Various studies on dynamic response of moving loads have been conducted on
ordinary bridges. However because of complex structures of suspension bridge which
consist of various components with different properties, they cannot be directly applied
to cable supported bridges. Consequently, more research is required on cable
supported bridges to consider the complex structural response and realistically predict
their response under moving loads. Various methods of analysis have been applied to
the study of the behavior of suspension bridges. One of analytical methods for
determining behavior of a suspension bridge is deflection theory. A historical review
of the approximate methods that lead to the deflection theory can be found elsewhere.
The well-established deflection theory tries to solve the differential equilibrium
equation and allows the use of analytical expressions for the solutions. However,
explicit analytical solutions are not always possible, and numerical techniques must be
used. With the advent of high-speed computer and through the use of numerical
methods, major advances in studying the dynamic characteristics of suspension
bridges have been achieved. Many efforts have been given to develop a simplified
model that can predict the consistency of the responses with detailed model. In recent
years, several commercially available finite element software packages have been used
by practicing engineers as well as researchers to evaluate the response of suspension
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bridges for operational traffic, wind and earthquake loads by considering both property
and geometry non-linear behavior.

Vibration of the suspension bridges are important topic in design of them and it must
taken into account in areas where seismic activity is high or in places where a typhoon
and a strong wind blowing occurs. For this purpose, displacement response of the
suspension bridge when it was subjected to the moving load and ground motions
simultaneously investigated in this study. In previous studies static deflection of the
suspension bridge, cable tension and also increment in cable tension are investigated.
Some of researchers focused on the vibration of the suspension bridge due to the
moving load and oscillator, but in most of the studies, the hangers extensibility have
neglected. In this research in addition to computing cable tension due to live loads,
deflection, velocity and acceleration response of the suspension bridge computed.

In this order, at first equation of motion for the deck and the suspension cable of the
suspension bridge is derived. Since extensibility of the hangers is considered in this
study, a coupled PDE equation must be solved to determine deflection, velocity and
acceleration response of the suspension bridge. After derivation of the equation of
motion for the cable and the deck, separating variables performed in order to simplify
PDE equation to two separate ODE equations which are dependent on time and
ordinate of the suspension bridge. To determine deflection of the suspension bridge,
behavior of the suspension bridge divided into two parts, first part was static analysis
and second part was dynamic analysis. Numerical method has been used to solve static
part since it has integral term in equation. Finite difference method as numerical
method implemented for static analysis while in dynamic part exact solutions
achieved.

To verify the written code in MATLAB, obtained result in static analysis from
MATLAB compared with achieved result by Choi’s article which was published in
2013. Difference of the results were in acceptable range and it indicates that decreasing
intervals in FDM method reduces the difference.

To this purpose, a suspension bridge which is subjected to moving load and ground
motions simultaneously assumed. Three different load cases considered for analyzing.
All of load cases were identical in all aspects and the only difference between them
was Vvelocity of the moving load. For this purpose written code prepared in MATLAB
to determine deflection, velocity and acceleration response of the suspension bridge
with use of improved deflection theory. Outcomes indicate that increasing velocity of
the moving load would results in increasing deflection of the suspension bridge.
Number of modes that considered in determining deflection, velocity and acceleration
of the suspension bridge was 50 modes. Obtained result from improved deflection
theory compared with results that achieved by deflection theory. Comparison of these
results shows that deflection theory is reliable method for determining deflection of
the suspension bridge. Hence, in order to determine elongation, axial forces and
stresses in hangers, use of improved deflection theory advised.

Natural frequency of a suspension bridge mainly dependent on the span and other
structural dimensions related to the stiffness. According to the outcomes, the first two
vibration modes of the suspension bridge are symmetric and the first anti symmetric
mode of the suspension bridge was appeared on third mode.

Three different vertical ground motion records were considered in this study in order
to determine behavior of the suspension bridge when it was subjected to the moving
load and ground motion simultaneously. To prove the validity of the result, FEM
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commercial software, ABAQUS were used to simulate behavior of the suspension
bridge. and when it is subjected to the moving load and after that obtained result from
MATLAB was compared with the result that obtained from ABAQUS software.
Results shows that achieved outcomes from both of the softwares are in good
agreement which proves the reliability of the written code in MATLAB.
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ASMA KOPRULERIN TRAFIiK VE DUSEY DEPREM YER HAREKETI
ALTINDA TiTRESIMIi

OZET

Kopriiler 6nemli sivil altyapilar arasindadir ve normal olarak uzun 6miirlii olacak
sekilde tasarlanirlar. Asma kopriiler diger kopriilerle karsilastirildiginda daha uzun bir
acikliga sahiptir. Daha uzun acikliga sahip oldugu icin de daha esnek bir yapi1 haline
gelir. Bir yap1 esneklestikce dinamik yiik altindaki davraniglar1 daha karmasik hale
gelir.

Asma kopriiler, yiik tasiyici kismi olan tabliyesi diisey veya egik askilar ile yine
tastyict olan kabloya asilmis yapilardir. Estetik, mimari guzellikleri ve uzun erimli
asma kopriilerdeki kullanim yetenekleri nedeniyle son yillarda biiyiik bir ilgi
gormiistiir. Asma kopriiler, ekonomik Omiirleri siiresince riizgar, deprem ve trafik
yiikleri gibi farkli dinamik yiikler altinda titresme egilimleri nedeniyle muhendisler ve
arastirmacilar i¢in endise kaynagi olmustur. Modern ulasim aglarinin hizli gelisimi ile
birlikte, asma kopriiler genellikle genis agiklikli nehirleri ve derin vadileri gegmek i¢in
insa edilirler. Asma kopriilerin sayisinin artmasi ve davranislarini modelleme zorlugu
arastirmacilarin ilgisini ¢cekmistir. Tasarimla ilgili bir¢ok zorluk, uzun merkezi agikligi
nedeniyle ortaya ¢ikar. Diinyada birgok asma koprii vardir ve bu kdpriiler i¢in dinamik
davranigin birincil sorun oldugu anlasilmistir. Son yillarda, asma kopriilerinin
davraniglarint ve titrestikleri zaman dinamik o6zelliklerini belirlemek i¢in ¢esitli
aragtirmalar yapilmistir. Bununla birlikte, bir asma kopriiniin yapisinin karmasikligi,
asma kopriiniin dinamik davranigini anlamada ve dinamik 6zelliklerini belirlemede
onemli zorluklar ¢ikarir.

Siradan kopriilerde hareketli yiiklerin dinamik etkisi {izerine g¢esitli caligsmalar
yapilmistir. Ancak, farkli 6zelliklere sahip cesitli bilesenlerden olusan karmasik asma
koprii yapilar1 nedeniyle, kablo destekli kopriilere dogrudan uygulanamazlar. Sonug
olarak, karmagik yapisal yanit1 dikkate almak ve hareketli yiikler altinda tepkilerini
gercekei bir sekilde tahmin etmek icin kablo destekli kopriiler lizerinde daha fazla
aragtirma yapilmasi gerekmektedir. Asma kopriilerinin davraniginin incelenmesi igin
cesitli ¢oziim yontemleri uygulanmistir. Bir asma kopriiniin davranigin1 belirlemek
icin kullanilan analitik yontemlerden biri Yerdegistirme (Deflection) Teorisi’ ne
dayanir. Yerdegistirme Teorisi’ ne giden yaklasik yontemlerin tarihsel bir incelemesi
baska bir yerde bulunabilir. Iyi ortaya konulmus yerdegistirme teorisi, diferansiyel
denge denklemini ¢6zmeye ¢alisir ve ¢ozlimler i¢in analitik ifadelerin kullanilmasina
izin verir. Bununla birlikte kapali agik analitik ¢oziimler her zaman miimkiin degildir
ve bir ¢ok durumda sayisal hesap yontemleri kullanilmalidir. Yiiksek hizl
bilgisayarlarin ortaya ¢ikmasi ve sayisal yontemlerin kullanilmasiyla asma kopriilerin
dinamik Ozelliklerinin incelenmesinde buyik ilerlemeler saglanmistir. Ayrintili
modelerle elde edilen yaklasik c¢oziimlerin tutarliligini tahmin edebilecek
basitlestirilmis modeller gelistirmek icin birgok ¢aba gosterilmistir. Son yillarda, hem
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malzeme ve hem de geometri degisimi bakimindan dogrusal olmayan Kkopri
davranigin1 goz oniinde bulundurarak isletme trafigi, riizgar ve deprem ytikleri etkisi
altindaki asma kopriilerin tepkisini degerlendirmek i¢in arastirmacilarin yani sira
arastirmacilarin da uyguladigi birgok ticari sonlu eleman yazilim paketi gelistirilmistir.

Asma kopriilerinin titresimi tasarimda goz Oniinde tutulmasi gerekli 6nemli bir
konudur ve depremsel aktivitenin yiiksek oldugu yerlerde ve tayfunun ve kuvvetli
riizgarlarin meydana geldigi yerlerde dikkate alinmalidir. Bu amacla bu calismada,
asma kopriiniin yer degistirme yanit1 hareketli yiik ile diisey depremin kopriiye ayni
anda etki etmesi durumda incelenmistir. Onceki ¢alismalarda, asma képriiniin diisey
yerdegistirmeleri, kablo gerilmesi ve ayrica kablo gerilmesindeki degisim
incelenmistir. Baz1 aragtirmacilar hareketli ylik nedeniyle asma kopriilerin titresimine
odaklanmisti, ancak ¢aligmalarin ¢ogunda askilarin uzayabilirligi ihmal edilmistir. Bu
calismada hareketli yiiklere bagh olarak kablo kuvvetinin hesaplanmasina ek olarak,
asma kopriiniin yerdegistirme hiz ve ivme yanit1 hesaplanmistir.

Bu sirada, ilk olarak asma kopriiniin tabliyesi ile kablosunun hareket denklemi
tiiretilmigtir. Hareket denklemleri tiiretirken, bu ¢aligmanin metninde kapsamli bir
sekilde ele alinan baz1 varsayimlar yapilmistir. Bu ¢alismada askilarin uzayabilirligi
g6z Oniine alindigindan, asma kopriiniin diisey yerdegistirme, hiz ve ivme yanitini
belirlemek i¢in hareket denklemi olan bir kismi tiirevli diferansiyel denklem sistemi
cozilmektedir. Kablo ve tabliye icin hareket denkleminin tiiretilmesinden sonra, kismi
tirevli diferansiyel denklem sistemi, degiskenlerin ayrilmasi yontemi uygulanarak
sadece zamana ve sadece uzay koordinatlarina bagli olan iki ayr1 adi tiirevli
diferansiyel denkleme doniistiiriilmiistiir. Asma kopriiniin diisey yerdegistirmelerini
belirlemek i¢in, asma kopriiniin davranisi iki kisma ayrilmistir, ilk kisim statik analiz
ve ikinci kisitm dinamik analizdir. Psilido-statik parcanin ¢6ziimii i¢in, denklemde
integral bir terim oldugundan sonlu farklar yontemi kullanilmistir. Dinamik parcanin
¢Oziimii ise herhangi bir sayisal ¢6ziim yontemine basvurulmadan kapali olarak elde
edilmistir.

Sayisal ¢oziimlemeyi gergeklestirmek i¢in bir MATLAB programi hazirlanmis, bu
programin dogrulugunu belirlemek i¢in de 2013 yilinda yayinlanmis olan Choi
makalesinde ¢oziilen uygulama kullanilmistir. Sonuglar arasindaki fark kabul
edilebilir mertebededir ve sonlu fark yonteminde kullanilan aralik uzunlugu
kiigiiltildiikge ¢oziim yakinsamaktadir.

Bu amagla, asma koprii es zamanli olarak hareketli trafik yiikiine ve diisey yer
hareketlerine maruz birakilmistir. Analiz i¢in ii¢ farkl ylik durumu dikkate alinmistir.
Tiim trafik yiikii durumlart trafik ylikiinlin koprii lizerinde ilerleme hizi diginda ayni
bicimdedir. Bu amagla, MATLAB' da, iyilestirilmis yerdegistirme yOntemi
kullanilarak asma kopriiniin diisey yerdegistirme, hiz ve ivme yanitlar1 belirlenmistir.
Sonug olarak, hareketli yiikiin koprii lizerinde ilerleme hizinin artmasinin, asma
kopriiniin diisey yerdegistirmesinin de artmasina neden olacagini gdstermektedir.
Asma kopriiniin diisey yerdegistirme, hiz ve ivmelerinin belirlenmesinde 50 mod
dikkate alinmustir. Iyilestirilmis yerdegistirme teorisi ile elde edilen sonuglar
yerdegistirme teorisi ile elde edilen sonuglarla karsilagtirilmis, yerdegistirme teorisi ile
elde edilen asma kopri diisey yerdegistirme sonuglarin giivenilir oldugu goriilmiistiir.
Aski kablolarinda uzama, eksenel kuvvetler ve gerilmeleri belirlemek igin,
tyilestirilmis yerdegistirme teorisinin kullanilmas1 6nerilmektedir.

......

uzunlugu ile diger yapisal boyutlara baglidir. Sonuglara gore, asma kopriiniin ilk iki
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titresim modu simetriktir ve tiglincli modu ise asma kopriiniin ilk antimetrik modu
olarak ortaya ¢ikmistir.

Asma kopriiniin trafik yiikii ile eszamanli olarak etki eden diisey deprem yer hareketine
verecegi yanit1 belirlemek i¢in ti¢ farkli diisey deprem yer hareketi kaydi dikkate
alinmistir. Yazilan MATLAB programimin dogrulugunu saptamak i¢in de sonlu
elemanlar yontemi kullanilarak ABAQUS ortaminda hazirlanan bir bilgisayar modeli
kuruldu. Her iki program c¢alistirilarak elde edile sonuglar karsilastirildiginda
sonuclarin oldukg¢a yakin oldugu ve uyum i¢inde oldugu goriildi.
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1. INTRODUCTION

One of the most important civil infrastructures are bridges and they are normally
designed to have long life spans. In suspension bridges which are flexible
infrastructures the load-bearing portion is hung below suspension cables on vertical
suspenders. Because of their aesthetic, architectural beauty and capability of utilization
in long spans suspension bridges and cable-stayed, have gained much popularity and
attention in recent decades. Vibration of the suspension bridges due to different
dynamic loadings such as earthquake, wind, and moving loads has been a matter of
concern throughout the history. Multiple support motions is a dynamic problem for
structural engineers when they are trying to analyze long-span structures. Along with
the rapid development of modern transportation networks, suspension bridges are
mostly used to span deep valleys or wide rivers. Lot of studies have been performed
in recent years to find out the vibrational properties of suspension bridges. Despite
these researches and studies, the complexity of a suspension bridge structure makes

difficult to determine vibrational characteristics.

Various studies have been performed for dynamic response of ordinary bridges when
they are subjected to moving loads. However, for cable supported bridges, they cannot
be directly applied since cable supported bridges are more complicate structures
consisting of various components with different properties. Consequently, more
research is required on cable supported bridges to consider the complex structural
response and realistically predict their response due to moving vehicles. To determine
and study the behavior of suspension bridges various methods of analysis have been
applied. A historical review of the approximate methods that lead to the deflection
theory can be found elsewhere. The well-established deflection theory tries to solve
the differential equilibrium equation and allows the use of analytical expressions for
the solutions. However, explicit analytical solutions are not always possible, and
numerical techniques must be used. With the advancement in computer technology
and emergence of high-speed computers, major progresses in studying the dynamic

characteristics of suspension bridges have been achieved through the use of numerical



methods. In addition, effort has also been given for developing simplified models that
can predict response consistent with detailed model. In recent years, several
commercially available finite element software packages have been used by engineers
and researchers in order to predict and analyze the response of a suspension bridge
from operational traffic, wind and earthquake loads taking into account both material

and geometric non-linear behavior.

1.1 Classification of Bridges

Bridges are structures constructed to connect places to overcome physical obstacles as
well as provide passage for the road, railway, pedestrians, a canal or a pipeline. The
obstacles to be spanned could be either developed by natural or man made causes and
may belong to a river, a road, railway or a valley. Purpose and function of the bridge
are important parameters in designing of bridges, the type of the terrain where the
bridge is constructed and anchored, the required material for developing it, and the
existing funds to construct it. There are several methods to categorize and classify

bridge, the four usual and typical ways to classify bridges are:
1. Classification based on superstructure
e Beam bridges
e Truss bridges
e Arch bridges
e Cantilever bridges
e Cable-stayed bridges
e Suspension bridges
2. Classification based on material used
e Timber bridge
e R.C.C bridge (Reinforced Cement Concrete)
e Concrete bridge
e P.C.C bridge (Plain Cement Concrete)

e Aluminum bridge



e Composite bridge
e Stone bridge
e Steel bridge
3. Classification based on purpose
e Double-decked bridges
e Car Traffic
e Pedestrian bridges
e Viaducts
e Train bridges
e Commercial bridges
e Pipelines
4. Classification based on inter span relation
e Simple bridge
e Continuous bridge

e Cantilever bridge

1.1.1 Classification based on superstructure

We are going to comprehensively describe classification based on superstructure in

this section.

1.1.1.1 Beam Bridge

The most simple and oldest bridge type is Beam bridge or girder bridge. It generally

made of one or more spans which are rested on pier or an abutment at each end.

First beam bridges that built by humans was an imitation of nature — seeing tree that
had fallen across a stream inspired prehistoric humans to use the same technique where
presence of bridge is necessary and crucial and also building of it was convenient for
them. Herodotus, Greek historian, was the first person to leave the written document
about the bridge in 484 BC. Bridge he wrote and mentioned about had been
constructed across the Euphrates River in 8" century BC and was made from stone and



wood. Ancient Romans are famous for their arch bridges made of concrete and stone
but they began to build bridges with simpler bridge types. The oldest known ancient
Roman beam bridge was constructed across the Tiber River in 7 century BC which
was in rome and also known as “Pons Sublicius” which literally means “bridge made
of wooden beams.” Romans were also the first to use cofferdams to build columns.
They would drive a circular construction, made of wood and lined with clay, into the
riverbed and pumped out water. That would leave the place to pour the concrete in and
would also serve as a mold. When French engineer Hubert Gautier wrote the first book
about building bridges in 18" century, bridge building became more of an exact
science. Next book, “A Work on Bridge Building” written by American Squire
Whipple improved this further by being the first text on analytical methods for

calculating the stresses and strains in a bridge.

For building a simple bridge over a creek all you need is a wood plank or a stone slab.
To carry road traffic and railroad modern beam bridges are built of steel or reinforced

concrete which can also be post-tensioned or prestressed.

Placing of cofferdams which are constructed around each column location in the
riverbed is first and crucial step in constructing of a beam bridge. Water is pumped
from inside of them and shafts are drilled into the riverbed until they reach bedrock
(which can be more than twenty five meters in depth.) To construct a foundation
cylindrical cage of reinforcing steel is lowered into the shaft and then concrete is
poured. Columns can be cast onto the foundation or precast and then placed there. The
bridge end will rest on abutments and abutments are built on the riverbank where
bridge ends by pouring concrete between the top of the bank and the riverbed. It will
hold the deck of the bridge and prevent dirt from getting into the river. Prestressed
concrete or steel girders are placed with crane onto columns and then bolted to the
column caps. To complete bridge superstructure, precast concrete slabs or steel plates
are placed across the girders which forms a solid platform. After last step, hot-applied
polymer-modified asphalt is placed on the platform. Purpose of it is to be a moisture
barrier. Above of the asphalt is placed a grid of reinforcing steel bars and then encased
in a concrete slab. This grid contains two layers. As a final layer of the deck a concrete
pavement is poured in a layer between twenty and thirty centimeters. Concrete can be
poured into stay-in-place forms if they are used. If not, concrete pours a paving

machine that spreads, consolidates, and smooth the concrete — all at once. Before



concrete stiffens, a skid-resistant texture is placed on it by manually or mechanically
scoring the surface. Concrete also gets joints to prevent cracking every five meters

before it is poured or after. These joints are the sealed with flexible sealant.

When a bridge is consist of beams spanning between only two supports, it is called a
simply supported beam bridge. If more than two beams are connected rigidly together
above the supports, bridge is called a continuous bridge. Schematic view of the beam

bridge is displayed in Figure 1.1.
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Figure 1.1 : Beam Bridge schematic view.

1.1.1.2 Arch Bridge

One of the most popular types of bridges is arch bridge, which has been used for three
millenniums and it was in height of popularity till industrial revolution when there
were invention of advanced materials which can bear more stress allowed architect to
create other modern bridge designs. However, even today arch bridges are still in use,
and with the advent of modern materials which could bear more force and load, longer

and larger arches can be build.

The basic principle of arch bridge is its curved design, instead of transferring load
forces straight down they are conveyed along the curve of the arch to the supports on
each end. These supports which called abutments withstand the load of entire bridge
and are responsible for holding the arch in the precise position. Conveying of forces
across the arch is done via central keystone on the top of the arch. Weight of the arch
bridge pushes the surrounding rocks down and outward which results in very rigid and

strong structure.

Because of this design, stone and wood arch bridges become very popular during the
Roman Empire, whose architects managed to construct over one thousand stone arch

bridges in Europe, North Africa and Asia. Even though many years passed a lot of



those bridges remain standing today, giving us the chance to personally see the
wonders of the ancient architecture. There were usually semicircular arches in Roman
designs, although several segmented arch bridges were made during their reign. These
segmental arch bridges had one crucial design advantage which separated them from
ordinary semicircular bridges — they allowed bridge builders to build arch of the bridge
much higher and reduce the mass of the entire structure. These changes extended life
span of bridges and also protected them from stresses of floods and strong rivers.
During the life of Roman Empire, they built many wondrous and amazing bridges,
lengthy aqueducts with multiple arches, bridges with flood openings on the piers, and
many others.

As centuries passed on, medieval architects improved the designs of Romans, creating
arch bridges with thinner arch barrels, narrower piers, pointed arches, lower span-rise
rations, and increased spans of arches (increasing to over 70 meters, most famously on
the bridge at Trezzo sull'Adda who was in use from 17" to the end of 18" century). In
Renaissance era architects attracted into arch bridges which not only sound
engineering, but also fashion of their time, creating some of the most beautiful and
famous bridges of the modern human civilization (such as Rialto Bridge in Venice).
In the last 150 years, concrete, iron and steel helped engineers to create much more
ambitious arch bridges which can now be seen in every country in the world. Arch

bridge Schematic view is illustrated in Figure 1.2.
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Figure 1.2 : Arch Bridge schematic view.

1.1.1.3 Cantilever Bridge

Main elements in cantilever bridge are cantilevers (cantilevers are horizontal beams,

which are supported at only one end). Beams can be used in these bridges for smaller



(pedestrian) bridges or trusses which is made of box girders of prestressed concrete,
or structural steel for larger bridges that bear road or rail traffic.

First cantilever bridges emerged in 19" century when a need for longer bridges showed
itself. To overcome the problem of length, engineers of that time found out that
presence of many supports would distribute the loads among them and help to achieve
longer length. Predecessors of cantilever bridges were bridges which had hinge points
at their mid-span. Heinrich Gerber was the one to be the first to invent and patent a
cantilever bridge which did it in 1866. The first cantilever bridge that he designed was
the Hassfurt Bridge over the Main River in Germany. It wasn't too impressive by
today's standards - it had 38 meters in length but is considered the first modern
cantilever bridge. Other early cantilever bridges were the High Bridge of Kentucky,
designed by C. Shaler Smith in 1877, the Niagara Cantilever Bridge designed by
Charles Conrad Schneider in 1883, and the Poughkeepsie Bridge designed by John
Francis O'Rourke and Pomeroy P. Dickinson in 1889. The Forth Bridge, which is
located in the east of Scotland was built over the Firth of Forth and it is one of the most
famous early cantilever bridges. Full length of this railway bridge is 2,528.7 meters
while its longest span has length of 520 m and construction of the bridge began in 1882
and it was completed on 1890. It remained the bridge with the longest span in the world

until Quebec Bridge wasn't built in 1919 with its span of 549 meters.

In simple cantilever bridge we can see two cantilever arms extending from opposite
sides of an obstacle that has to be spanned and they meet at the center. One of great
advantages of cantilever bridges is that they can be built without false-works below
nor temporary supporting towers and cables above. These tyoe of bridges are very stiff
and they can carry large amount of loads without being threat to construction.

Schematic view of the Cantilever bridge is indicated in Figure 1.3.

tension
compression

Compression cantilever

Figure 1.3 : Cantilever Bridge schematic view.



1.1.1.4 Truss Bridge

In Truss bridge main element is a truss which also is the main feature for these type of
bridges. Truss is a system, which for being stable needs to be triangulated and usually
made up straight interconnected structural elements. Since truss is is a very rigid
structure and it conveys the load from a single point to a much larger area it is used as
bridge. Appearance of truss bridges return to very early time in the history of modern

bridges and since they use materials efficiently are economic to construct.

Until industrial revolution in 19" century, nearly all bridges in use were made of stone.
But iron and wood can withstand compression and tension force better comparing to
stone and United States was rich in wood so they made many wooden bridges in those
times and structure system for most of them were truss bridges. Town's lattice truss, a
very simple variant of truss, was patented in 1820. In first half of 191" century very few
truss bridges which made of iron were built although the first patent for an iron truss
bridge was issued to Squire Whipple in 1841. But metal eventually started to replace
wood, and wrought iron bridges started appearing in the United States in the 1870s
only to be replaced by steel in 1880s and 1890s. In time in some states (like
Pennsylvania) continued building of truss bridges for long spans continued till 1930s,
while other (like Michigan) started building standard plan concrete girder and beam

bridges.

Since the built of the first truss bridge, engineers made different shapes of truss bridge
to overcome their particular problem and find better shape. This is the reason for
appearance various forms of truss bridges. In truss bridge deck (roadbed) can be placed
on top (deck truss), in the middle (through truss), or at the bottom of the truss. In case
that the sides of the truss extend above the roadbed but are not connected, it is called
a half-through truss or pony truss. Schematic view of the Truss Bridge displayed in

Figure 1.4.
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Figure 1.4 : Truss Bridge schematic view.
1.1.1.5 Cable-stayed Bridge

Cable-stayed bridge like suspended bridge has towers and cables which hold the deck,
but instead of holding by suspender cables, deck is held by connecting cables directly
to the towers. These type of bridges are usually designed to carry pedestrians, bicycles,
automobiles, trucks and light rail. Usage of this kind of bridge is usually at places
where cantilever bridges are short to cover the spanned length. First person who
designed cable stayed bridges was Venetian inventor Fausto Veranzio (It is worth to
note that he was the first person who designed modern suspended bridge). He
published his works in 1595 in his book “Machinae Novae”. Appearance of first built
cable-stayed bridges was around the 19" century and many early versions of
suspension bridges were cable-stayed like footbridge Dryburgh Abbey Bridge (built
in 1818), James Dredge's Victoria Bridge, in Bath, England (Built in 1836), Albert
Bridge (built in 1872) and Brooklyn Bridge (1883). Other early cable-stayed bridges
in the United States were Barton Creek Bridge between Huckabay, Texas and Gordon,
Texas (built in 1889), bridge over Bluff Dale, Texas, (built in 1890a and it still largely

stands). suspension bridge is not practical there economically.

Until the 20" century construction of this type of bridge continued when where built
“Cassagnes bridge” (designed by A. Gisclard and built in 1909), le Coq's bridge at
Lézardrieux in Brittany, France (designed by G. Leinekugel and built in 1924), and
aqueduct at Tempul in 1926. Concrete-decked cable-stayed bridge over the Donzere-
Mondragon canal at Pierrelatte was designed by Albert Caquot in 1952 and was one

of the first the modern cable-stayed bridges but no other that came after, looked up to



it. Stromsund Bridge designed by Franz Dischinger completed in 1955 had more
influence on the design of the later bridges and is more often mentioned as the first
modern. Riccardo Morandi, Fabrizio de Miranda and Fritz Leonhardt are the design
pioneers of the modern cable-stayed bridge and their designs had very few stay cables
which was modern but resulted in higher erection costs. Later designs consists of much

more cables which is more economic in the terms of building.
There are different variations for building a cable-stayed bridge:

“A side-spar cable-stayed bridge” consist of one tower and it has only one support
which is at the one side of the bridge. One bridge constructed based on this principle
Is bridge in Winnipeg, Manitoba, Canada and is made to only bear the loads that caused

by pedestrians.

“Cantilever-spar cable-stayed bridge” has a single cantilever spar on one side of the
span. The purpose of the spar is to withstand the bending caused by the cables because
cable forces of this bridge are not balanced by opposing cables and bridge applies large
overturning force on its foundation. Some example of this bridge type are Puente de la
Mujer (2001), Sundial Bridge (2004) and Chords Bridge (2008), which all of them are

located in spain.

When number of spans in a cable-stayed bridge exceeds three, bridge is called
“Multiple-span cable-stayed bridge”. This kind of bridge is more complex since the
loads from the main spans are not anchored back near the end abutments. In this case
structure become less stiff so additional design solutions (like “cross-bracing” stays

and stiff multi-legged frame towers) have to be applied.

In “Extradosed bridge” cables are connected to the deck further from the towers which
are also lower than those of standard cable-stayed bridges, while it has stiffer and

stronger deck.

In “Cable-stayed cradle-system Bridge” which is one of the latest forms, It has “cradle
system” which carries the strands within the stays from bridge deck to bridge deck.
These cables are continuous which means that there are not anchorages in the towers
and its cables can be inspected, removed and replaced individually. Schematic view of

the Cable-Stay bridge is illustrated in Figure 1.5.
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Figure 1.5 : Cable-stayed Bridge schematic view.

1.1.1.6 Suspension Bridge

Suspension cable in suspension bridge is an important feature of suspension bridge.
Suspension cable is between pylons and the deck are hanged from them vertical
hangers. Almost all of the load is carried by Suspension cables which are anchored at
each end of the bridge.

Current Suspension bridges and examples of them which were built in the early 1800s,
actually evolved from the simple suspension bridges. These bridges are one of the
oldest versions of bridge which made by man. They have cables for load-bearing but
don't have towers. Thangtong Gyalpo King of the Empty Plain,Tibetan saint and
bridge-builder from the 15" century was the one who built Earliest versions of
suspension bridges. He built over 58 iron chain suspension bridges around Tibet and
Bhutan and it is worth to note that one of his bridges survived until 2004 when it was
destroyed by a flood. Majority of his bridges had chains which acts as suspension
cables while in earlier bridges that designed by him, he used ropes from twisted

willows or yak skins.

The first design of a suspension bridge that is similar to today's modern designs
appeared in book “Machinae Novae” from 1959 which was written by Venetian
polymath Fausto Veranzio. He also has designs in his book for a timber and rope

suspension bridge, and a cable-stayed bridge and hybrid suspension using iron chains.

Suspension bridge at Jacob's Creek in Westmoreland County, Pennsylvania is the first
iron chain suspension bridge built in United States. This bridge was the first to have
all the necessary components of a modern suspension bridge and was designed by
James Finley who patented a system for suspending a rigid deck from a bridge's cables

in 1808. This years is considered as a Beginning of an era of the modern suspension
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bridges. After that, two bridges were built in England: Dryburgh Abbey Bridge which
is built in 1817 and Union Bridge which is built in 1820. The first large bridge that
implemented the technique invented by Finley was bridge over the Menai Straits in
Wales built by Thomas Telford and finished in 1826. For the first time Cables
consisting of many strands of wire for suspension were used instead of chains in 1930
by French engineers. Instead of transporting cables prefabricated John Roebling,
American inventor, found a way to spin them at the place of building. He also comes

up with rigid deck platform idea which is stiffened by trusses.

From that time suspension bridges gain more attention because they allowed to span
spaces that could not be spanned with conventional methods. Its advantages are that it
could have longer spans comparing to other types; Since it uses less material it is
cheaper bridge type (even with longer spans); during construction it does not require
access from below so bridge elevation would not affect construction procedure; it can
resist earthquake more than other types; and it can be changed and modified easily to
accommodate wider vehicles or to add additional lanes. Like everything it also has its
disadvantages: In order to avoid vibration it must be made very stiff or aerodynamic
so winds with high speed would not cause any vibrations; due to relatively lower
stiffness of a board it is very difficult to carry heavy rail traffic compared to other
bridge types. Length of the suspension bridges main span (longest span in bridge) are
often used for comparing suspension bridges. Akashi Kaikyo Bridge is the suspension
bridge which is built in 1998. Main span length is 1,991 meters and it connects Awaji
Island and Kobe in Japan. Xihoumen Bridge on the Zhoushan Archipelago is another
example of long suspension bridge, which located in the largest offshore island group
in China with length of 1,650 meters. Schematic view of the Suspension Bridge is

displayed in Figure 1.6.
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Figure 1.6 : Suspension Bridge schematic view.
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1.2 Cable Bridges Structural System

In cable bridges, cables play an important role in integrity and stability of the bridge.
For instance in cable stayed bridge deck is connected directly to towers which
existence of the cables are necessary for stability of the bridge and this is same for
suspension bridge in which hangers hold the deck at position which are connected to
the suspender cable or main cable. In the following subsection structural system of

both bridges are discussed.

1.2.1 Cable-stayed bridge structural system

Cable-stayed systems are categorized based on the different longitudinal and
transverse cable arrangements. Cable layout is fundamental issue that concerns cable-
stayed bridges. It not only affects the structural performance of the bridge, but also the
method of erection and the economics.

The arrangement of the cables involves a number of considerations. It depends on the
bridge requirements, site conditions and aesthetics appearance. The longitudinal
arrangements are classified as follows:

Harp or parallel system:

In harp or parallel system cables are parallel to each other and they are connected to
the tower at different heights. Beauty of this configuration is very pleasant. However,
the compression in the girder is higher than the others patterns, and the tower is
subjected to bending moments.

Fan System:

Fan system is result of modification of the harp system; the cables are connected at the
same distance from the top of the tower. The fan system is attractive for a bridge where
the longitudinal layout is a single-plane, because the cable slope is steeper, it needs
and consequently the axial force in the girder is smaller.

Radial System:

With the radial configuration, all the cables connect to the top of the tower. This is a
convenient cable configuration because all the cables have their maximum inclination;
therefore the amount of material required in the girder is reduced. However, this

configuration may cause congestion problems and the detailing may be complex.

In Figure 1.7 cable arrangement of the cable-stay bridge is displayed.
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Figure 1.7 : Cable stayed bridge cable arrangement.

1.2.2 Suspension bridge structural system

Even though that a modern suspension bridge looks like a cable-stayed bridge, but
truth is that they are actually different in construction, concept and principle. The
suspension bridge has vertically suspended cables from a main cable to support the
deck. The main cable is fastened at both ends of the bridge and runs between towers.
The latter, on the other hand, has one or more towers from which taut cables connected
directly to tower to support the deck, and these normally creating a series of parallel

lines with a fan-like pattern.

For medium distances cable-stayed bridges are best option (since the length is longer
than a cantilever bridge and shorter than a suspension bridge). From the 16™ century
cable-stayed bridges have been used and in the 19" century they became popular, and
early designs combined features from both the suspension bridges and cable-stayed
bridges. Famous Brooklyn Bridge is a great example of this. But in the 20" century,
cable-stayed designs lost their popularity because larger distances used suspension
bridges, while shorter gaps could be cover using reinforced concrete. At the end of the
20" century, cable-stayed became more popular again because there were larger
construction machinery, a combination of new materials, and an increase in the need
to replace renewing older bridges. Most of cable-styled bridges are located in the China
and the United States.
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1.2.3 Famous suspension bridges

In this section the most famous suspension bridges are presented. Furthermore the
history of the longest bridges around the world and the prominent bridges that are
located in Turkey are briefly discussed.

The most longest suspension bridges and their location is presented in Table 1.1.

Table 1.1 : Longest suspension bridges

Name Year opened Main span (m) Location
Akashi Kaikyo Bridge 1998 1991 Japan
Xihoumen Bridge 2009 1650 China
Great Belt Bridge 1998 1624 Denmark
Osman Gazi Bridge 2016 1550 Turkey
Yi Sun-sin Bridge 2012 1545 South Korea
Runyang Bridge 2005 1490 China
Dongting Lake Bridge 2018 1480 China
Hangrui
Nanjing Foyrth Yangtze 2012 1418 China
Bridge
Humber Bridge 1981 1410 United Kingdom
Yavuz Sultan Selim Bridge 2016 1408 Turkey

e Akashi Kaikyo Bridge

Akashi Kaikyo Bridge is longest suspension bridge in world which construction of it
ended at 1998. The main span of this bridge is 1991 meters long while side spans
length are 960 meters and total length of this bridge is 3911 meters. It is worth to note
that at the beginning of the construction main span was 1990 meters which due to the
major earthquake which occurred in January of 1995 added extra 1 meter to the space
between towers. Height of towers are 282.8 meters and diameter of cable are 112

centimeters. Akashi Kaikyo Bridge is shown in Figure 1.8.
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Figure 1.8 : Akashi Kaikyo Bridge
e Xihoumen Bridge
Xihoumen Bridge is opened to traffic at 2009. Main span of this bridge is 1650 meters
while total length of the bridge is 2588 meters. Pylons height are 211.286 meters. The

side view of the Xihoumen Bridge is depicted in Figure 1.9.

Figure 1.9 : Xihoumen Bridge
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e Great Belt Bridge

This bridge is located at Denmark and it opened to rail traffic in 1997 and road traffic
in 1998. It has total length of 6790 meters and the main span of it is 1624 meters long.
Width of the bridge is 25 meters and height of the towers is 254 meters. The captured
photograph of the Great Belt Bridge is displayed in Figure 1.10.

Figure 1.10 : Great Belt Bridge

e Osman Gazi Bridge

Construction of this bridge is started at 2013 and it opened to traffic in 2016. Total
length of the suspension bridge is 2682 meters and main span is 1550 meters long.
Girder depth is 4.75 meters and is made from steel. Pylons are also made from steel
while their height is 236.4 meters. The view of the Osman Gazi bridge is depicted in
Figure 1.11.
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Figure 1.11 : Osman Gazi Bridge
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e Yavuz Sultan Selim Bridge

Construction of this bridge is started at 2013 and construction ended at 2016. Total
length of this bridge is 1875 meters and main span is 1408 meters. The width of the
bridge is 59 meters, girder depth is 5.5 meters and Pylons are 330 meters tall. Deck of
bridge is made from steel and pylons are made from reinforced concrete. The captured

photograph of the Yavuz Sultan Selim bridge is presented in Figure 1.12.

Figure 1.12 : Yavuz Sultan Selim Bridge

1.2.4 Advantages and disadvantages of suspension bridges

The Advantages of Suspension Bridges

1. Low Construction Costs

Since suspension bridges requires less materials for construction they cost less
comparing to other type of the bridge. With three basic necessities such as anchorages,
roadways and cables, suspension bridges are possible to construct. Having said, this,
suspension bridges are great solutions to provide communities with functioning and
useful bridges without much need for funding. These are beneficial in areas that lack
infrastructure funds. And in the case of allotting budget for projects, the inexpensive
costs in building these types of bridges can allow for other projects to be financed.

2. Long Span

Possibility to construct them at different lengths, from 600 to 4000 meters is another
advantage of suspension bridges and they are longer comparing to other types of the
bridges. This feature allows engineers to build suspension bridges to connect and join
very long distance locations. Depending on the demand and possibility given, these
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bridges can be underspanned like the Pont des Bergues and the Micklewood Bridge.
On the other hand, three long suspension bridges are in Denmark, Japan and China.
3. Ease of Maintenance

Apart from inexpensive construction costs, suspension bridges are known for their
minimal maintenance requirements. Once construction is completed, there are no
immediate needs for additional materials like cables. What is called for is simply
regular maintenance. Moreover, it is known for durability and longevity, making major
repairs not needed as often. Consequently, maintenance costs are also not that high.
4. Versatility

Suspension bridges do not only cost less to build, they can also be built practically
anywhere so long as there are places for building support towers and anchorages. This
is also because of the design which is suspended in the air, no inflow restrictors are
needed to be placed underneath. They can also bear the beatings of earthquakes.

5. Attractive

Tourists, local and foreign in America love to cross the Brooklyn Bridge and visit the
Golden Gate Bridge in San Francisco. Suspension bridges are more aesthetic and
pleasing compared to truss and beam bridges because of the different shapes of these
bridges. The linear and curved features of these bridges make them structurally
beautiful. This is on top of the cables giving support to these bridges, making them
versatile bridges.

The disadvantages of Suspension Bridges

1. Loss of Income

Despite the low costs of constructing suspension bridges and the job opportunities they
offer, the length of time needed to finish building these bridges are long. What happens
is that the businesses that are within the vicinity will be affected since business
operations will be hampered. Consequently, there will be loss of sales and profit. This
can have a negative impact on the economy of the city or town. Also, bridges built to
connect locations between bodies of water can affect the course of ships carrying
supplies since they need to divert their routes. This can also result to loss of money
since deliveries of goods can take longer.

2. Weak in Winds

Despite flexibility and strength to withstand earthquakes, these bridges are not too
strong when it comes to powerful winds caused by hurricanes. Too much strong winds

can result to damages to suspension bridges. Collapse of the Tacoma Narrows Bridge
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on November 7, 1940 in winds of at only 40 miles per hour is classic example for
weakness of suspension bridges when they are subjected to strong wind loads.
Although the disaster was blamed on design and construction, what happened that time
presented risks associated with suspension bridges.

3. Load Limitations

Another disadvantage of suspension bridges is the material used which are the cables.
These cables have limitations when it comes to bearing the weight of loads. Although
it can allow a minimal weight with regard to vehicles passing through, too much
weight can lead to the breaking of cables.

4. Limited Applications

Suspension bridges, despite their cost-effectiveness in construction and flexibility
when it comes to site location, have limitations when it comes to its use. This is
because they are vulnerable to be damaged and destroyed by strong winds and not
durable enough to hold limitless weight, careful consideration should be taken before
construction. That said, they can only be used by general traffic.

Suspension bridges have retained popularity around the world and this is evident with
the number of these bridges that built all around the world. However, along with
advantages also come the disadvantages. This is why engineers building these bridges
should study the design and ensure requirements in building these bridges are met with

accuracy and compliance.

1.3 Structural Components of Suspension Bridge

Like most of the structures suspension bridges are made of substructure and
superstructure. Substructure part is related to foundation, anchorage and piers.
Meanwhile superstructure is referred to tower, deck, suspension cable and hangers. In
brief, in the following section important parts of the suspension bridge will be

discussed. Structural components of the suspension bridge are depicted in Figure 1.13.
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Figure 1.13 : Structural components of the suspension bridge

1.3.1 Tower

Purpose of tower or pylon is to hold the suspended cable. End points of the cable is
attached to the tower to provide cable sag at a sufficient height. Other function of the
tower is to carry the stiffening girder and side span. Vertical loads due to suspended
cables are static loads applied to the tower, and loads due to wind and traffic are
dynamic loads applied to the tower. For building towers usually three materials are
used which are reinforced concrete, steel and timber. For building towers of long span
cable-stayed and suspension bridge, reinforced concrete and steel can be used whereas

the timber is only used for building towers of pedestrian bridge.

1.3.1.1 Towers classification in longitudinal and transverse direction

Towers are classified into rigid, flexible, or locking types which are illustrated in
Figure 1.14. Flexible towers are commonly used in long-span suspension bridges,
rigid towers of multi-span suspension bridges to provide enough stiffness to the bridge,
and locking towers occasionally for relatively short-span suspension bridges.

In Figure 1.15 Towers classification in transverse direction are displayed. Towers in
transverse direction are classified into portal or diagonally-braced types. Moreover,
the tower shafts can either be vertical or inclined. Typically, the center axis of inclined
shafts coincide with the center line of the cable at the top of the tower. Careful
examination of the tower configuration is significant, in that towers dominate the
bridge aesthetics [1].

21



Rigid tower Flexible tower Rocker tower

Figure 1.14 : Towers classification in Longitudinal Direction

Truss Portal Combined Truss and Portal
Shape
7 77777 77777 777. 7
Bridge Akashi Kaikyo Great Belt East Golden Gate
Forth Road Humber Second Tacoma Narrows
Figure 1.15 : Towers classification in Transverse Direction
1.3.2 Deck

The duty of the deck is to withstand the load caused by the train and the vehicles. The
deck is connected to the main cable by the vertical hangers. The self weight of the deck
should be as low as possible, and this is due to the fact that the deck is kept by the
hangers. Existence of stiffening girders in suspension bridges is necessary since they
withstand wind loads and important example of their crucial role in stability of
suspension bridge is Tacoma Narrows Bridge which absence of stiffening girder

reduced structure stiffness which bridge colla
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d due to moderate wind load. stiffening girder could be in shape of I-girder, truss and
box girder. In Figure 1.16 different types of the girders displayed.

(a)

(®)
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Figure 1.16 : Girder types (a) Truss girder (b) Box girder and (c) I-girder
Stiffening girder could be hinged or continuous in former there is not any moments
at the tower and deck intersection while in later moment exist at the intersection.

Figure 1.17 depicts both types of stiffening girder.

Hinged stiffening girder
(@)

Continuous stiffening girder

(b)

Figure 1.17 : Stiffening girder (a) Hinged stiffening girder and (b) Continuous stiffening girder
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1.3.3 Hangers

The purpose of the hangers is to connect the deck and stiffening girders to the main
cable and also to transfer the loads from vehicles and trains to the main cable. Hangers
are spaced with equal distances along the span and they could be vertical or diagonal.

In Figure 1.18 different types of hanger and their arrangement illustrated.

Combined suspension and cable stayed system

(©

Figure 1.18 : Hangers type (a) Vertical hangers, (b) Diagonal hangers and (¢) Combined suspension
and cable-stayed system

Tsing Ma bridge and Akashi Kaikyd Bridge which are located in China and Japan are
famous examples of suspension with vertical hangers. Bosphorus bridge in Turkey and
humber bridge in England are examples of the suspension bridge with diagonal
hangers. The one of the most famous types of combined suspension and cable-stayed
system is Yavuz Sultan Selim Bridge which is the third bridge constructed over the

bosphorous and opened to the traffic recently.
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1.3.4 Suspension cable

Suspension cables hold the deck which carries the traffic loading and also they transfer
these load to the towers. Suspension cables usually are designed for tension forces and
most of the time they can not withstand any compressive forces. Suspension cables are
longer than span of the bridge since at their end points they are connected to top of the
towers while there is sag at middle point of them which means that these cables are

not taut. In most of the suspension bridges sag to span ratio is between 1:8 and 1:12.

1.3.5 Anchorages

The main function of anchorage is to support the ends of the main cable and to prevents
any movements in the main cable by transferring the force from the main cable to the
ground. Since the anchorage has to resist a large force the design of anchorages is very
tough unless the ground on which the anchorage is to be positioned is good and also if

sound rock is available in the ground.

1.3.5.1 Types of cable anchoring

Suspension bridge could be either self anchored or externally anchored. External
anchorage is most common while in some of bridges self anchored system
implemented. In externally anchored, suspension bridges transmit their tensile forces
form the main suspension cables to an external anchorage and the possibility of an
external anchorage depends on the soil conditions. In Self-anchored main cables are
secured to the stiffening girders instead of the anchorage and the axial compression is
carried into the girders. The Konohana Bridge in Japan and The Chelsea Bridge in
England are examples of the self anchored bridge. Both of these anchorage types are
illustrated in Figure 1.19.

Externally anchored type
(b)

Figure 1.19 : Anchorage type (a) Self anchored type and (b) Externally anchored type
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1.4 Literature Review

Lots of studies have been carried out on suspension bridges, in which some of them
focused on extensible hangers. In most of these studies researchers considered hangers
as inextensible elements during vibration which do not show any axial deformation.
Steinmen in 1959 computed natural frequencies of suspension bridge. In his study he
assumed sine-curve for span and also parabolic shape for the cable. By using energy
method he found stiffness equation and proposed two equations for each symmetric
and anti-symmetric modes. In anti-symmetric equation only I(moment of inertia) and
H (Horizontal cable tension) is effective while in symmetric equation he introduces
new parameter called AH (increment in Horizontal cable tension) This equation is
applicable to symmetric modes while for ease and to increase the speed of calculation
former suggested for symmetric modes [2].

Xu et al in 1997 done research about vibration of the Tsing Ma suspension bridge. This
bridge connects new infrastructures such as airport and ports located on Lantau island
to Hong Kong. In this study they computed dynamic characteristics of the bridge which
is built in a typhoon region. They measured dynamic characteristics for lateral, vertical
and torsional vibration with finite element method and compared it with the results
obtained from numerical method. The first vertical mode of the bridge they compute
was almost anti-symmetric while the second and third modes they computed were
almost symmetric. The interesting thing in this study was appearance of the first anti-
symmetric mode before the symmetric mode [3]. This fact has also been observed in
the study of Abdel-Ghaffar and Scanlan in 1985 [4].

Wollmann in his study in 2001 derived fundamental equations of suspension bridge
analysis based on the deflection theory and computed cable tension due to the live
loads that act on the bridge. This method covers tower flexural rigidity which is
different from Steinman’s research and Timoshenko and Young research. Since
differential equilibrium equation consists of one variable and one unknowns they
needed an extra equation to find unknown parameter. Thus, they used compatibility
equation in which there is connection between increment in horizontal tension of the
cable, tower displacement and cable elongation. After solving this equation which
must be solved in iterative manner until the error is considerably small, they introduce
increment in tension to the differential equation. It is worth to note they use a numerical

example which shows how to find deflection function of the suspension bridge [5].
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Compatibility equation and the derivation of it is completely described in second
chapter.

Cobo del Arco and Aparicio in 2001 done research for static analysis of the suspension
bridge to determine vertical displacement of the bridge. In their research they try to
investigate famous suspension bridges in the world. In their study they defined
dimensionless parameters which helped them for comparing various suspension
bridges. They define dimensionless parameters A and o which are dependent on
geometric properties and live load which acts on the bridge. They showed that
deflection theory is still efficient to determine displacement and deflection even in
presence of the computer softwares which implement FEM method to solve problems.
Another result that they obtained indicated that the stiffening girder has small influence
in the control of the deflections and also A? has negligible effect in the determination
of bending moments [6]

Yau in 2009 done research in regard of the suspension bridge dynamic response due
to the moving oscillator and ground excitation. In this study some assumptions has
been made such as stiffening girder is elastic and behaves linear, bridge towers are
rigid and they do not show any deflection and the cable sag is adjustable between the
suspension cable and bridge deck. He defined equation of motion for the suspension
bridge while he assumed that vertical hangers are inextensible. Since equation of
motion is partial integro-differential equation they decompose the equation to pseudo
static and dynamic part which leads he to solve ODE and IDE. To solve IDE he
considered that increment in horizontal component of cable tension is negligible and
it is equal to horizontal component of cable tension. To solve time dependent ODE he
uses Newmark method. At last part he tries numerical example in which he investigates
multiple support motion with uniform support motion and also speed of moving load
in which resonant of the bridge occurs [7].

Liu et al. in 2011 in their research they proposed differential equations for both cable
and deck. Likewise to yau’s research they decomposed differential equation to pseudo-
static and dynamic part. In their research they assumed that deck and cable deflection
are same during vibration, thus assumption causes that stiffness term related in
differential equation to drop. They used newmark method to solve their differential
equation which is an iterative method to solve differential equation. At last step they

investigated numerical example and for this purpose they investigated Messina Bridge

[8].
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A research study performed by Choi et al. on 2013 computed multi span suspension
bridge deflection with deflection theory method for different load cases and then
compared the results with FEM method. In this research the effect of towers
displacement on deflection of the bridge considered [9].

Choi and Gwon performed a research in 2015 to computed vertical deflection of the
suspension bridge and compared the result for deflection theory, improved deflection
theory and FEM method. In their research they investigated different parameters such
as continuity of the deck, span length and magnitude of the load. Result indicated that
there are not much difference in vertical deflection of the suspension bridge between
these three methods but for finding moment in span improved deflection theory and
FEM methods are in good agreement while result differ considerably with deflection
theory [10].

Gwon and Choi in 2017 investigated free vibration of the suspension bridge. In their
research, an improved continuum model for free vibration analysis of three-span
suspension bridges with either a hinged girder or a continuous girder was assessed to
investigate the effects of hanger extensibility on free vertical vibrations. Their research
indicated that hanger extensibility affects higher modes more if the relative girder
stiffness is not large [11].

In another research which is performed by Gwon and Choi in 2018 they investigated
three dimensional suspension bridge which consists three span. In their study they
evaluated response of the bridge for different live loads when a moving load crosses
the bridge. They also compute velocity and acceleration response of the bridge. Finally
they compared their result with FEM method which proved efficacy of the method
they used in their study [12].

Hayashikawa and Watanabe performed a research in 1982 to determine dynamic
behavior of the suspension bridge under moving loads. After proposing dynamic
equation for the suspension bridge, they investigated three different types of the bridge.
Their results indicated that the effect of the cable support at the top of the tower on
natural frequencies is negligible while effect of the girder supports at the end of spans
are considerable. Values of natural frequencies in continuous suspension bridge are
larger than hinged suspension bridge [13].

Materazzi and Ubertini in 2015 investigated behavior of the suspension bridge when
the suspension cable which connects the two towers has been damaged at quarter span.

Their investigation showed that in static response of the bridge, damaged suspension
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cable cause sag augmentation and tension loss which are negligible since the
mentioned changes are below the few percent. In dynamic response behavior of the
bridge is a bit complicated, in antisymmetric modes damage would not affect mode
shapes and with increase in modal order the sensitivity of natural frequencies of the
bridge decrease. For symmetric modes, the second mode shows largest sensitivity to
damage and likewise to antisymmetric modes, modal order increase cause less
sensitivity to damage in symmetric modes. It is worth to note that natural frequency
variations are more useful for detecting damage in suspension cable than mode shape
variations [14].

Antony and Varma in 2015 modeled suspension bridge which consists of three spans
and each span were simply supported at ends. Due to complexity of the problem they
made some simplifications in their calculations. Results indicated that hanger
flexibility has no effect on dynamic characteristics of the suspension bridge while
increasing tower height and pre-stressing main cables increases natural frequencies. In
lower modes non-linear calculation would not differ considerably from linear
calculation while in higher modes these calculations deviate from each other
significantly [15].

Sarker and Manzur in 2013 studied effect of different structural elements on the natural
period of suspension bridge along its span. For simplicity they made some assumptions
to ease analyze and calculations, such as that the behavior of all materials used are
linearly elastic, and nonstructural components won’t participate in bridge behavior. In
their models deck width was 30m while number of spans varies. Results indicate that
natural period of a suspension bridge affects with the tower height. As the ratio of
tower height to span decrease, the natural period for vertical vibration decreases with
the increment of the central span length. For lateral vibration, decreasing tower height
to span ratio is favorable to obtain minimum natural period. Deck depth has significant
effect on the natural period for both vertical and lateral vibration. In vertical vibration,
with increase of deck depth to span ratio value of natural period decrease. On the other
hand, to obtain minimum natural period for lateral vibration reducing ratio of deck
depth to span found to be effective [16].

Enrique Luco and Turmo in their study in 2010 indicated that free vibration of
suspension bridges are controlled by dimensionless parameters A% and u?. A2 Is
indicative of the cable axial stiffness and u? represents bending stiffness of the girder.

Their findings shows that the effects of u? on the fundamental frequencies appear to
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increase with the value of the cable stiffness parameter A2. Their study also indicate
that effect of u2 on natural frequencies is much more for higher modes while A% has a
considerable effect on the natural frequencies of the first two symmetric modes, but
these effects reduce significantly for third and higher modes which can be neglected
[17].

Chatterjee et al., in 1994 investigated the effect of the moving load on dynamic
response of the suspension bridge. Likewise to other articles for simplicity they made
some assumptions. For modeling the vehicle load, the vehicle is idealized as a 3D, 2D,
or single sprung mass system. Results indicate that natural periods of vertical vibration
of suspension bridges with rollertype cable connection are generally greater than those
with hinged cable connection. Natural periods of torsional vibration with roller-type
cable connection are found to decrease with the increase of the parameters §; and &,
the variation of the natural periods is less sensitive to the variation of §, compared to
the variation of &;. Natural periods for both vertical and torsional vibration of the
bridge with hinged cable connection are found to decrease with the increase of flexural
stiffness of the towers. For suspension bridges with hinged-type cable connection,
natural periods of torsional vibration are significantly reduced with the increase of
torsional resistance of the towers [18].

Goremikins et al., in 2013 prepared physical model of prestressed suspension bridge.
The prestressing is organized in the stabilization cables. Experiment shows that
increasing prestresing level increase natural-vibration frequency and this would help
to improve dynamic characteristics of the suspension bridge [19].

Turmo and Luco in 2010 in their study shows that free vibrations of a suspended span
with unloaded backstays and elastic hangers is controlled by five dimensionless
parameters while the response of a symmetric three-span suspension bridge is
dependent on six dimensionless parameters. Results indicate that flexibility of the
hangers only affects natural frequencies for symmetric and antisymmetric modes
higher than third mode and relative girder stiffness parameter u? is greater than 10x10°
3, First three symmetric and antisymmetric mode shapes are not influenced
considerably by flexibility of the hangers while for higher modes influence is
appreciable. Flexibility of the hangers have been found that have negligible effect on
the dynamic deck displacement and additional main cable tension when the bridge is
subjected to localized impulsive loads acting at midspan or at the quarter points of the
deck [20].
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In another research which is performed by Fryba and Yau in 2009 focused on the
vibration of suspended bridges subjected to the simultaneous action of moving loads
and support motions in vertical direction because of earthquake. Their study shows
that response of the suspension bridge increases if they consider earthquake effect. But
the maximum acceleration along the main beam did not change a lot even though
various time lags of the earthquake exciting the suspended beam have been taken into
account. It is concluded that the suspension bridge will behave almost insensitive to
the occurrence time of earthquakes when the train-type moving loads are passing the
bridge. The dynamic effects are growing with the increasing speed of trains, as
regularly on bridges. This phenomenon was observed and confirmed many times with

other researchers [21].
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2. DETERMINING EQUATION OF MOTION OF SUSPENSION BRIDGES

In order to compute deflection, velocity and acceleration response of suspension bridge
when it is subjected to the moving load and ground motion simultaneously, equation
of motion for suspension bridge derived. In this chapter mathematical approach for
deriving equation of motion of suspension bridge for extensible and inextensible
hangers assumption, explained in detail.

In the analysis of suspension bridges two theories have dominated over the last
century, the elastic theory and the deflection theory. It began somewhere around 1823
with Navier’s theory of the unstiffened suspension bridge and revealed the concept of
cable stiffness. Around 1850 Rankine revealed a theory about the stiffened suspension
bridge. In the late 19" century, the elastic theory is improved based on the Rankine
theory by considering the elastic flexibility of the deck and cable. The deflection theory
used during the early 20" century was the first theory of the stiffened suspension bridge
to consider the change in shape of the cable and gave theoretical backing to propose
very slender stiffening trusses.

Elastic theory assumes that the cable is parabolic under both the dead load and total

loads. In elastic theory moment in the girder is computed by equation (2.1).
M =M'"—yAH 2.1)

In above equation

M’ is live-load component moment of unsuspended girder.

AH is increment in horizontal component of cable tension.

y is ordinate of main span cable at location of desired moment.

The live load moment acting in the girder is reduced by the effect of the increment in
horizontal component of the cable tension.

The deflection theory accounts for an additional relieving moment provided by the
horizontal component of the total cable tension when the bridge deflects w, under live

load. This is called cable stiffness and reduces the moment in the girder by an
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additional amount of (H + AH)w. The deflection theory is therefore an extension of

the elastic theory and is given in equation (2.2).
M =M'—yAH — (H + AH)w 2.2)

In which (H + AH) is horizontal component of tension in the cable is produced by
dead and live load. Deflection theory is more accurate and economic comparing than
elastic theory but in this theory effect of the cable extensibility neglected. In Figure

2.1 schematic view of deflection theory has been displayed.

H + AH H + AH
«— f —
D y(x) l &

\\ L //

\\‘\/V(X) ,//

T.\\\- _”’/

M)
S Vi) -

- -

Figure 2.1 : Elastic theory and deflection theory
However, in order to determine axial forces in the hangers and computing stress in
hangers extensibility of the hangers must take into the account. In this study effect of
the cable extensibility considered and deflection of the deck and cable of the

suspension bridge computed.

During the vibration of the suspension bridges, loads that caused by vibration starts to
act on deck and suspended cable of the bridge. The suspension bridge’s deck is
disconnected at pylons where bending moment (multiplication of E, | and second
derivative of the deck deflection) is equal to zero. In order to initiate the research some

assumptions made which are:

1) The stiffening girder is modeled as a linear elastic Bernoulli-Euler

beam with uniform cross section.

2) Dead load is uniform and deflected shape of the suspension bridge due
to the dead load and own weight of the suspension bridge, considered

as reference point for determining deflection of the suspension bridge.

3) The cable sag is adjustable between the suspension cable and bridge

deck and under dead load cable shape is parabolic.
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4) All of the dead and live loads are carried by suspension cable.

5) Speed of moving load is constant and would not change during

vibration and crossing the bridge.

6) Hangers are massless, extensible and continuously distributed along the
deck.

7) Hangers are vertical initially and remains vertical during vibration and

no lateral displacement in in-plane and out-of-plane direction occurs.

2.1 Suspension Bridge Free Body diagram

Considering that suspension bridge is vibrating free body diagram of the suspended
bridge deck is shown in Figure 2.2.

Cpz K(z —w)*,Hangers
A
I 4
1
1
1
1
1
1
me
. v
—E,I,z" fi(x, t), due to vehicle, wind and etc.

Figure 2.2 : Free body diagram of the deck
In above figure z represents movement of the deck while w represents movement of

the cable, m;, is beam mass per unit length, E; is modulus of elasticity of the deck, I,
is moment of inertia for deck C, is deck damping coefficient, K is stiffness of the
hangers and f; (x, t) is external load which caused by traffic, wind and etc.

By considering the free body diagram equation of motion for suspension bridge deck

indicated in equation (2.3).

myZ + Cpz + K(z = w)* = (=Eplpz™) = fi(x,t) = 0 2.3)

Free body diagram for the cable is indicated in Figure 2.3.
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Figure 2.3 : Free body diagram of the cable
H is the horizontal component of the cable tension, AH is the increment in cable

tension due to vibration, g is gravitational acceleration, m, is cable mass per unit
length and £, (x, t) is external load which caused by traffic, wind and etc.

Equation of motion for suspended cable represented in equation (2.4).

mew —K(z—-w)" = (H+AH) (" +w") — (m.g + mpg)

~f(xt) =0 24)

2.2 Cable Tension and Increment of Tension Mathematical Formulation

Considering finite length of the cable with the length of As and cable Tension of T
equilibrium for the cable has been derived in next steps. In Figure 2.4 equilibrium of

the finite length of the cable has been depicted.

Ty
T .
s T As
1 mgXAs‘v S ’T%+%(T%)AS
| Ax Ly aTdIAg
TE+5(TE)As

Figure 2.4 : Equilibrium of the finite length of the cable

Horizontal component of the cable is manifested in equation (2.5).

dx_
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T in above equation is representing the cable tension and ds is finite length of the cable

and dx is horizontal projection of the ds.

From equation 2.5, the relation between horizontal component of the cable tension and
total weight of the cable and deck is obtained and illustrated in equation (2.6).

d?y ds

Hos= —(m. + mb)ga (2.6)

Length of the finite length of cable is given in equation (2.7).

ds = +/dx? + dy? (2.7)

Dividing both sides of equation 2.7 by dx? results in equation (2.8) which brought

hereunder.

() -1 )

By inserting equation 2.8 to equation 2.6 the relation between total weight of the cable

and the deck and cable tension derives which is manifested in equation (2.9).

1
/
dzy B dy 2 2 29
HW——(mc+mb)g{1+(a>} ( )

By considering that variation of the y with respect to x is negligible and is equal to 0,
equation 2.9 would be simplified into equation (2.10).

o metmy)g (2.10)

yII
The increase in length of the cable due to vehicle vibration and external loads is

presented in equation (2.11).

r_ 2
ds'—ds dug dyd_w 1 (dw> 2.11)

=t 4=
ds dsds dsds 2\ds
Relation between increment in cable tension and increment in horizontal component

of cable tension is presented in equation (2.12).

d
r=anZ (2.12)
dx
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In equation 2.12, T is representing increment in cable tension and AH represents

increment in horizontal component of cable tension.

2
Multiplying both sides of the equation 2.11 by (Z—;) will lead to equation (2.13).
1 ds) (d dudx dydw 1 /dw\?) /ds\>
R (F R e COR 219
E A, dx) \dx dsds  dsds  2\ds dx
Integrating equation 2.13 with respect to x would results in equation (2.14).
x=L
[ teaten
ECAC
x=0

Effective length of the cable is manifested in equation (2.15).

x=L

du dydw 1 /dw
2.14
,f { dx dx T2 (dx) } dx (214)

x:

j . (2.15)

Inserting equation 2.13 into equation 2.12 results in equation (2.16).

x=L

AHLC du dydw 1 /dw
2.16
f { dx dx "2 (dx) } ax (2.16)

Since u is the horizontal displacement of the top of the pylons which affect the

increment in cable tension, equation 2.16 would be simplified into equation (2.17).

X=
AHL, dydw 1 /dw
= — 2.17
4, - ()t f {dx ax 2 (dx) } dx @17)

x=0
Parabolic shape of the cable is manifested in equation (2.18).

y=%x(1—%) (2.18)

By integrating second term and third term in equation 2.16 and simplifying it, equation
(2.19) achieved.
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x=L

1 1 (m, +my)g
=(uL_uO)_(§WL+EWO)+CT f w.dx

x=L
4 1({dw wlk 2w f
2\ dx wls d

After rearranging equation 2.19 equation (2.20) obtained.

AHL,
E.A.

x=0 (2.19)

1 m.+m =L
ECAC [(uL - uO) - 2 (WL + Wo) + (CTb)gf;:O w. dx]
AH =

Lc

1(dw . d*w x=L (2.20)
Eche |7\ @ Wl — oz Jemy W- 0
+
Lc
1 me +m =L
E A, [(uL —up) — 5 (w, + wp) + (me & mp)g T 29 chzo w. dx] (2.21)
AH = |

Lc

Simplified form of third term in equation 2.4 which is multiplication of sum of tension
and increment of it with sum of second derivative of the cable shape and second

derivative of cable deflection due external loads, is illustrated in equation (2.22).

(H+ 4D (" +w") = (H + AH)y" + (H + AH)w"

1 2.22
=—Z(H+AH)+(H+AH)W" (222)

Inserting above equation into equation 2.2 would lead to equation (2.23).
mw —K(z—w)t —(H+ AH)w" =y"H + y"AH + (m, + my)g (2.23)

After rearranging terms and simplifying the equation 2.21 with considering that

- Liz% = o simplified equation of equation 2.23 is shown in equation (2.24).
Cc
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m.w—K(z—w)" — (H+ AH)w"

= aL [(u, —ugp) _%(WL + wp)
(2.24)

( ) x=L
m. +
H
x=0

2.3 Decomposition of the Displacements

Since displacement of the suspension bridge compose of static and dynamic parts,
decomposing displacement of the beam helps in analyzing of the beam displacement.

In equation (2.25) components of the displacements for the deck is presented.
z(x,t) = Z(x,t) + z4(x, t) (2.25)
Decomposition of the cable displacement is displayed in equation (2.26).
w(x, t) = W(x,t) + wy(x, t) (2.26)
Z(x,t) and W(x, t) are static parts which are induce by support movements and live

loads, while z;(x, t) and wy(x, t) caused by the moving loads and dynamic effects of

moving load.

2.3.1 Static equations for beam and cable

Static displacement for the cable is shown in equation (2.27).

x=L
LU, — U L (W, + W, L +
W,,:_“(L 0)+“_( L o)_“(mc mb)gf W da
H(H+4H) © 2 (H+4H)  H(H + 4H)
x=0 (2-27)
K(Z —W)*
(H + AH)

Since the equation 2.27 is an IDE, it must be solve with numerical methods. In equation
2.27 there are two unknowns which is higher than number of equations. To resolve
this problem, compatibility equation introduced, which helps in finding 4H. In

compatibility equation, sum of cable deflection, tower horizontal and vertical
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deflection and total length of the cable must be equal to zero. The compatibility
equation with mentioned conditions is displayed in equation (2.28).

AH dy\* (W + W)
{1 + (_x) } + (U, - Up) ————= ) _f W.dx (2.28)

In each iteration, AH value satisfies with less error above equation, iteration continues
until the error is equal or less than the desirable error. Static displacement of the deck
differential equation presented in equation (2.29).

7W = —L(z w)H*t (2.29)
Eply,

2.3.2 Boundary conditions for cable and beam

To solve the equations with use of FDM method, there is need for an extra equations,
since number of equations are less than unknowns. To this purpose, extra equations
must be introduced. Using the boundary conditions provides extra equations for getting
trivial solution.

Displacement and moment at the both ends of the deck are zero thus, for the deck of

the suspension bridge boundary conditions are shown in equation (2.30).

Z(O) = 0
Z(L) = 0
k_EbIbZ”(L) =0

Displacements at the top of tower are zero which in equation (2.31) boundary
conditions for cable is displayed.

{W(O) =0 (2.31)

W(L) = O

2.3.3 Solution method for static

Since equations 2.27 and 2.29 are coupled, they must be solved simultaneously.

Solving equations with numerical methods is required since equations are IDE. To
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solve the equations, finite difference’ method is chosen, which is applicable to both
BVP and IVVP problems.
2.3.4 Inertial equation of the cable and beam

After deriving static equation for the suspension bridge, inertial equation for the deck
of the suspension bridge derived. For defining inertial equation, mass of the deck and
external dynamic loads which is caused by moving load introduced. Inertial equation

of the cable is displayed in equation (2.32).

med + K(Zd - Wd)+ + EbIbZivd = fl(x, t) (232)

There is no external dynamic load which acts on the cable so inertial equation for cable

after introducing mass of the cable presented in equation (2.33).

mCVf/d - K(Zd — Wd)+ - (H + AH)W”d

1
=aL|(u, —up) — E(WL + wp)
(2.33)

( g [
m.+m
+6Tbg f Wd.dx

x=0

Dynamic force that caused by moving load is function of the Dirac’s delta function

which is illustrated in equation (2.34).

flx,t) = Mgs(x — vt) (2.34)

Assuming that deck of suspension bridge deflection is in shape that can be decomposed
to time and location variables, decomposing of these variables helps in converting PDE
equations to IDE and ODE equations. Separation of variables for the deck of the

suspension bridge is depicted in equation (2.35).

24,0 = ) $n(9:,® (239)

L APPENDIX A
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The above concept is also applicable to cable. Separation of the variables for the cable
is illustrated in equation (2.36).

wq(x,t) = Z G (x)qw,, (0 (2.36)
n=1

Shape function for both the deck and the cable considered to be in shape of sine
equation. It must be noted that modes superimposition utilized in this study. So shape

function in above equations for n’th mode of vibration is manifested in equation (2.37).

nmx

$n(x) = sin (T) (2.37)

2.4 Equation of Motion for Suspension Bridge Deck

After implementing separation variable technique, equation of motion with time

dependent variable derived which is presented in equation (2.38).

m,, Zl b ()i, () + K (Z b (20, () - Z ¢n(x)qwn(t)>

FE, ) ¢, (08,0 = f1(x,0)

n=1

(2.38)

Multiplying equation 2.38 it by Prx) and integrating above equation between 0 and L

interval equation (2.39) obtained which is depicted below.
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my, iz, (O)Pn”(x) . dx?

x=L

K | (Z B2 ()42, (D)
x=0

n=1

Z ¢n2(x)qwn(t)> .dx (2.39)

n=

x=L
+ Ep I, f
x=0

x=

= [ AG OG0 dx
x=0

(7’2_7-[)4 QZn(t)d)nz (x).dx
1

n=

_ 0,n#j
By knowing that f;z_OL Gn(0)Pj(x).dx = {£ =i equation of motion for n’th mode
2’

is depicted in equation (2.40).

xX=L
L +
Moy @ + K[ ($02000,,(0 = 602w, (0)) - dx
- - (240
L 4
+§("T”) Eplyqy, (t) = J Mg8(x — vt)y (x) . dx
x=0

By inserting Dirac’s delta function value into equation 2.40, simplified form of

equation 2.40, which is equation (2.41) achieves.

L L L L mm\*
My 5 2 () + K 505, (0) = K 56w (0 +5(T) Evlydz, (©)

L
— Masi (nnvt) (2.41)
= Mgsin I
Matrix form of the equation of motion of the deck is presented in equation (2.42).

Lo t +KL t KL t +L(nn)4E 1,Q,(t

my ZQZ( ) ZQZ( ) ZQW( ) 2\ L b sz( )
S (2.42)

= Mgsin( i )

2 Appendix B
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Simplified form of equation 2.42 is presented in equation (2.43).

my0,(0) + [k + (72—”)4Eb1b] Q) = KQu (1) = lelg sin (2) (2.43)

Dividing equation 2.43 by m,;,, would give generalized equation of motion of the deck

which is illustrated in equation (2.44).

[K + ("T”)4 Eblb]

b

.. K 2Mg . (nmvt
0,(t) + 0:(t) == Qu(®) = sm( ) (2.44)

mbL L

2.5 Equation of Motion for Suspension Bridge Cable

Implementing same procedure in previous section for the cable of the suspension
bridge would result in equation (2.45).

Me D (i ()~ K (Z Bu ()0 (O = ) by (x)qwnu))
— (H+4H) ) ¢", (), (©
n=1

(2.45)

1
= aL | (u, —ug) — E(WL + wp)

x=L
m,.+m
+—( < T b f wy.dx

x=0

Same as the previous section multiplying the equation 2.45 by ¢, (x) and then

integrate it between 0 an L would lead to equation (2.46).
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mc ¢n(x)qwn(t)¢n(3€)dx

=1

=
1l

o
S

~

( Bn ()4, ()b () = Zcpn(x)qwn(tm(x))
n=1

=

I
R %
i I

~

2
(57) 600G, (0 (). dx (2.46)

+
~
=
+
[N
S

g

8
Il
o
S
Il
i

f Bu) |1~ o) ——(wL +wp)| dx

i a (mc+mb)g f b, () j z¢n(x)an(t)¢n(x).dx.dx

L
Considering that [cos ("Lﬂ)] i s equal to zero when n is odd and equal to two when
0
n is even and after doing mathematical actions, equation of motion for the n’th mode
of the cable would obtained which is presented in equation (2.47).

L L + nm\2 L
Me 2 (©) = K5 (400 = 4w, (©) + H +8H) () 5w, ©

L 1 n+1
= == = w) = 5 G + wo) | (<D™ + 1] 247

2

ta(2) (-0 4 11,0

Matrix form of the equation of motion is displayed in equation (2.48).

L. L + 2]
e 0u(®) = K5 (000 = Qu(®) + (H + 21 (T) 50u(®

L? 1
= = | = ug) = 5 (v, + w) | (-1 + 1] (248

2

ta(o) (D™ + 1120,

After applying same procedure for equation 2.48 that taken place in previous section
equation (2.49) obtained.
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mcéw(t) - KQz(t)
+ [K + (H + AH) (E)z

a0 4117 00 -

=ZaEJwL—%>—§m@+wahoaw“+1]

Dividing equation 2.49 by m, would give generalized equation of motion for n’th

vibration mode which is presented in equation (2.50).

.. K
Qw (t) - m_ Qz (t)

L

[K + (H + AH) ("T")2 ~2a (s

(D™ + 12
+

Qw(®) (2.50)

me

20 [y~ up) — 5 (wy + wo)| [(=1)™ + 1]

me

2.6 Solution Method For Equation Of Motion

MATLAB software is used to solve equation of motion. Same as static there are initial
conditions which helps to determine the constants of the equation.

Since deck of the suspension bridge is resting at the beginning of the vibration the
initial conditions displacement and velocity of the deck are equal zero at the time
bridge starts to vibrate. Initial conditions for the deck is presented in equation (2.51).

{qzn(t) =0

42D = 0 (#51

For the cable there are similar initial conditions and when bridge starts to vibrate
displacement and velocity of the cable is equal to zero so initial conditions for the cable
of the suspension bridge is presented in equation (2.52).

{qwn(t) =0

Gy (®) = 0 (252
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2.7 Earthquake Effects on Equation of Motion

Computing earthquake effects on suspension requires huge amount of computation
and solving lot of coupled equations. To reduce amount of time that are going to spent
on solving equation, instead of coupled equation or improved deflection theory solving
effect of the earthquake excitation by deflection theory would be helpful. Since in
deflection theory there is no coupled equation of motion and it depends only on
deflection of the cable.

To consider effect of the earthquake on the suspension bridge introduction of
(myp + m.)Z, term is sufficient, which is ground acceleration acting on the suspension
bridge. Force equilibrium of the deck is shown in Figure 2.5. Considering that cable
and deck have the same deflection during vibration, equation of motion for the
vibration of the deck would be like equation (2.53).

Cbz' (mb + mc)zg
y 3 A
4
]
1
1
1
1
1
(mb + mc)z
v . v
~Eplyz” (H + AH)(y" + z") filx,t)
Figure 2.5 : Force equilibrium of the deck
(my + m)z — (H+ AH)(y" + z") + Epl,z"
nmvt 2.53
= (my + my)g + Mgsin (T) — (mp + M)z, (253)
Equation (2.54) obtained by Substituting equation 2.22 into equation 2.53.
(mp + me)Z — (H+ AH)z" + E,I,z"
. (nmvt .
= (mb + mc)g + MgSLn (T) - (mb + mc)Zg (254)

+y"H +y"AH

Simplified form of equation 2.54 is presented in equation (2.55).
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(mp + my)Z — (H+ AH)z" + E,I,z%

nmut .
= Mgsin (T) — (mp + me)Z,

1
+ aL |(u, —uy) — 5 (wy, + wy) (2.55)

L
my, +m
+—( b q C)gfw.dx

0

Performing separation of variable and the same procedure that have taken place in

previous sections on equation 2.55 would result in equation (2.56).

Q.(®)

("L—”)2 [H + AH + ("T")2 Eblb] r Za(nLT)Z [(—1)™1 + 1]2

Gy + ) Q. (t)
2Mg . (nmvt
=G (1) @50
2al 1
T | e 100) = 5 (Wi w) | (D)™ 1]
2

— (D)™ + 1],

2.8 Determining Natural Frequencies

To determine natural frequency deflection theory is used instead of improved
deflection theory. In deflection theory equation of motion for n’th mode would be like

Q.(t)
(%)2 [H + AH + ("L—")2 Eblb] - Zaﬁ[(—n"“ +1]2
Gy & ) Q.(t)
2Mg . (nmvt (2.57)
- (my + mc)Lsm< L )
2alL 1 1
+ Gy + mn [(UL —up) —5;(w, + Wo)] [(=D)"™* +1]
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Coefficient of the Q,(t) is equal to square of angular speed. For determining dynamic
features of the suspension bridge equations (2.58 - 2.60) proposed which are

respectively used to calculate angular speed, frequency and period of the bridge.

nn:

7 2 [(~D)™1 + 17

[H + 4H + () E,,I,,] 20 sy

) (2.58)

2
n

(mb + mc)

To get the frequency of the suspension bridge

wn

fn= (2.59)

21r

And to get period of the suspension bridge
1

= 2.60
Tn =% (2.60)

50



3. ANALYTICAL STUDIES

Verification and numerical analysis has been performed in this chapter. For verifying
suspension bridge that was investigated by Choi in 2013 selected and outcomes of the
study which has been carried out by Choi compared with result that obtained by written
code in MATLAB. At next step for determining deflection, velocity and acceleration
response of the suspension bridge numerical example of the suspension bridge has
been assumed. At last results that obtained by MATLAB compared by outcomes of
the ABAQUS software.

First of all it is necessary to be assured from validity of the code. This process increase
the reliability of the result and also proves the correctness of the computation that has
been done by MATLAB. To this purpose, at first, verification of the result that has
been obtained from MATLAB compared with article results which is written by Choi
and Gwon [10] in 2015. After verification by using equations that introduced in chapter
2, deflection, velocity and acceleration of the suspension bridge when moving load

crosses the bridge by using MATLAB computed.

3.1 Verification

To achieve the validity, suspension bridge with span that is 2000 meters long and with
the towers that are 200 meters high modeled. After analyzing, obtained results from
MATLAB compared with the result that Choi obtained.

Details and material properties of the bridge deck, suspension cable and hanger is
depicted in Tables 3.1-3.3. Tower stiffness would also affect suspension cable
deflection thus details of tower which is analyzed in Choi’s article are given in Table
3.4. Hangers considered are capable of extension and since they are separated, stiffness
of the all cables are computed and then stiffness of them are distributed over the span

of suspension bridge.
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Table 3.1 : Material and geometric properties of the deck

Modulus of Moment of inertia kN
Structural part elasticity (%) (m*) Weight (;)
Deck 2.1 x 108 3.195 121.47

Table 3.2 : Material and geometric properties of the suspension cable

Modulus of

Structural part elasticity (%)

Area (m?) Weight (%N)

Suspension cable 2x 108 1.021 81.66

Table 3.3 : Material and geometric properties of the hanger

Modulus of Distributed

2
Structural part elasticity (%) Area (m) Stiffness (%N)

Hanger 1.4 x 108 0.0104 2.06 x 10*

Table 3.4 : Material and geometric properties of the tower

Modulus of Moment of inertia
Structural part elasticity (%) (m*) Length (m)
Tower 3 x 107 340 250

Main span and side span length, sag amount and tower heights of the verified bridge
is illustrated in Figure 3.1 and also numeric values of the verified bridge are presented
in Table 3.5.

Table 3.5 : Geometric values of verified suspension bridge

Tower Tower Hanger
s Main span  Side span height height spacin
ag (m) length (m) length (m) above deck below pacing
(m)  deck(m) (™
199.9 2000 600 200 50 25

Live load considered to be equal to 40 %N which only acts on main span. Dead load

due to the own weight of the cable and the deck was equal to 203.13 %N and uniformly
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distributed on main and side span of the bridge. Magnitude of the Dead and the live
load are given in Table 3.6.

Table 3.6 : Details of load acting on verified bridge

Span . . . .
Load Left side span Main span Right side span
Live load <& 0 40 0
m
Dead load %N 203.13 203.13 203.13
OkN

200 m

—{~25m
Wﬂﬂmmmmm Wmﬂmﬂmﬂm

0.1 m
2000 m 600 m

Figure 3.1 : Verified bridge details

By using finite difference method deflection of the suspension bridge determined. Four
differnet intervals are assumed for computing deflection of the suspension bridge in
order to verify the result. Intervals were equal to 100, 50, 25 and 10 meters. Obtained
results for 100, 50, 25 and 10 meters intervals from MATLAB and their schematic
graph are illustrated in Figures 3.2-3.5 respectively.
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Z LEFT SPAN
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Figure 3.2 : Suspension bridge deflection plot for interval length of 100 meters (In meters)
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Figure 3.3 : Suspension bridge deflection plot for interval length of 50 meters (In meters)
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Figure 3.4 : Suspension bridge deflection plot for interval length of 25 meters (In meters)
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Figure 3.5 : Suspension bridge deflection plot for interval length of 10 meters (In meters)

Table 3.7 represents numeric values of the deck maximum deflection with different

interval. As it is depicted in Figure 3.1 live load are acting only on main span and it is
equal to 40 %N In Table 3.7 computed values for deflection of the suspension bridge

by use of MATLAB are compared with result that Choi and Gwon obtained are
presented [10].
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Table 3.7 : Comparing maximum deflection from MATLAB and Choi’s article

Deck Maximum
Deflection (m)

Obtained Span Main Side Main Side Main Side
result Interva Span Span Span Span Span Span

Difference Difference (%)

100 m 435294 -253196 -0.10860 -0.02994 2.434%  1.197%
50m 438879 -2.52711 -0.07275 -0.02509 1.631%  1.003%
MATLAB
25m 444617 -2.52284 -0.01537 -0.02082 0.344%  0.832%
10m 444617 -2.52284 -0.01537 -0.02082 0.344%  0.832%
Choi 446154  -2.50202

As intervals decrease, accuracy of the result increases. It is known fact that in FDM
method, decreasing intervals would lead to better approximations and improves
accuracy of the result. However, computing small intervals are harder and requires
more time to spend because number of unknowns and equations are much more
comparing to larger intervals. The most important conclusion that can be extracted
from this analysis, is that from some point reducing intervals would not affect result
considerably. By analyzing of the outcomes, the 25 meters interval can be described
as optimum interval, since computed result for 10 meters interval and 25 meters
interval are not much different. This table also shows that written script in MATLAB
is effective in computing deflection, because the difference between result obtained in
this research from MATLAB and results that published by Choi is 0.344% which is
below 1% and it is in acceptable range.

3.2 Numerical Modeling

For numerical modeling a suspension bridge assumed, in which main span is 1600
meters long and side spans are 400 meters long assumed. Geometric details of
suspension bridge are presented in Tables 3.8-3.11.

Table 3.8 : Material and geometric properties of the deck

Modulus of  Moment of

s Weight
Structural — gasticity inertia~ Area (m?) Mass (39) ot
part (k_N (m4) m (?)
m2
Deck 2.1 x 108 3.5 1.5 7850 115.465
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Table 3.9 : Material and geometric properties of the suspension cable

Structural Modulus of Weight
ructural  g|asticit i 2 kg
part L Y Radius (m) Area(m?) Mass ) )
(= m
Suspension -, 4 gs 0.5 0.78539 7850 60.457
cable
Table 3.10 : Material and geometric properties of the hanger
Modulus of .
part (k_N Radius (m) Area (m?) Stiffness (%)
m?2
Hanger 1.4 x 108 0.1 0.0314159 8.88 x 103
Table 3.11 : Material and geometric properties of the tower
Modulus of Moment of inertia
Structural part elasticity (%) (m*) Length (m)
Tower 3 x 107 600 230

Schematic view of bridge in which numeric values of sag amount, distance of the

hangers, span and side span length, towers height and amount of live load that acts on
the bridge is illustrated in Figure 3.6.

104
10.9375m 180 m 109375 m
( 3 —I1—25m - - (
: i |
A [A)
-T 5 m ——— ‘
L;L}OO m——t 1600 m 400 m \
50 m

Figure 3.6 : Schematic view of assumed bridge
Main span and side span length, sag amount and tower heights of the assumed bridge
for numerical analysis are brought in Table 3.12.

Table 3.12 : Geometric values of suspension bridge

_ _ To_vver To_vver Hanger
Sag () Mainspan  Side span height height spacing
length (m) length (m) above deck below deck
(m) (m) ()
175 1600 400 180 50 25

56



Intensity of Live loads and dead loads which are acting on the suspension bridge are

presented in Table 3.13.

Table 3.13 : Details of load acting on numerical bridge

Span

Load Left side span Main span Right side span
Live load (%N) 0 10 0
Dead load (%N) 175.9226 175.9226 175.9226

Horizontal component of cable tension and increment in horizontal component of

cable tension due to live load for side spans and main span are presented in Table 3.14.

Table 3.14 : Cable tension and increment in cable tension horizontal component

Right side
span

321686.942 321686.942 321686.942

Load Span Left side span ~ Main span
Cable tension horizontal
component (kN)
Increment in cable tension

horizontal component (kN)

15703.353 16484.597 15703.353

It is worth to note that increment in horizontal component of cable tension due to live
load in comparison to horizontal component of cable tension due to dead load are
ignorable and can be neglected. However, in this study effect of the increment in
horizontal component of cable tension due to the live load are taken into the account.

3.2.1 Static

As it was mentioned earlier, deflected shape of the suspension bridge under the dead
load and own weight of the suspension bridge considered as reference point for the
deflection. However, under live load which is static load, deflection of the suspension

bridge taken into the account. Magnitude of live load is equal to 10 %N and only main

span was subjected to the live load which was explained before. In Figure 3.7

deflected shape of suspension bridge under the live load has been illustrated.
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Psuedo-Static Analysis Of The Suspension Bridge
‘ : : : ! ‘ : : : : ‘ : ‘

0.5

Span Defelection (m)
(=)
e
!

<o

n
—
1

Cable Deflection In Main Span
Deck Deflection In Main Span
Cable Deflection In Left Side Span | |
Deck Deflection In Left Side Span

Cable Deflection In Right Side Span
B Deck Deflection In Right Side Span | |

L L L 1 1 L L L
1500 2000

0 500 1000
Span Ordinate (m)

Figure 3.7 : Static Analysis of the Suspension Bridge
From figure it can understand that in static analysis of the suspension bridge, deflection
of the cable and the deck is very close and almost equal. In Table 3.15 numeric results

for deflection of the cable and the deck in main span is presented.

Table 3.15 : Numeric Values Of Deflection Of The Cable And The Deck In Main Span

Deck deflection in
main span (m)

Cable deflection in

Span ordinate (m) main span (m)

0 0 0
25 0.05418261 0.055196407
50 0.108387727 0.109478349
75 0.161354488 0.162461492
100 0.21281404 0.213929057
125 0.262634885 0.263754508
150 0.310741425 0.311863741
175 0.357089451 0.358213345
200 0.401653067 0.402777886
225 0.444417105 0.445542466
250 0.485372677 0.486498354
275 0.524514576 0.525640439
300 0.561839751 0.562965723
325 0.597346416 0.598472452
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Table 3.15 (continued): Numeric VValues Of Deflection Of The Cable And The Deck In Main Span

350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975
1000
1025
1050
1075

0.631033524
0.662900462
0.692946869
0.721172537
0.747577341
0.772161209
0.7949241
0.815865987
0.834986857
0.852286701
0.867765513
0.881423293
0.893260036
0.903275743
0.911470413
0.917844045
0.92239664
0.925128196
0.926038715
0.925128196
0.92239664
0.917844045
0.911470413
0.903275743
0.893260036
0.881423293
0.867765513
0.852286701
0.834986857
0.815865987
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0.632159597
0.664026557
0.694072977
0.722298653
0.748703461
0.773287332
0.796050224
0.816992112
0.836112982
0.853412826
0.868891639
0.882549419
0.894386162
0.904401869
0.912596539
0.918970171
0.923522766
0.926254323
0.927164841
0.926254323
0.923522766
0.918970171
0.912596539
0.904401869
0.894386162
0.882549419
0.868891639
0.853412826
0.836112982
0.816992112



Table 3.15 (continued): Numeric Values Of Deflection Of The Cable And The Deck In Main Span

1100 0.7949241 0.796050224
1125 0.772161209 0.773287332
1150 0.747577341 0.748703461
1175 0.721172537 0.722298653
1200 0.692946869 0.694072977
1225 0.662900462 0.664026557
1250 0.631033524 0.632159597
1275 0.597346416 0.598472452
1300 0.561839751 0.562965723
1325 0.524514576 0.525640439
1350 0.485372677 0.486498354
13756 0.444417105 0.445542466
1400 0.401653067 0.402777886
1425 0.357089451 0.358213345
1450 0.310741425 0.311863741
1475 0.262634885 0.263754508
1500 0.21281404 0.213929057
1525 0.161354488 0.162461492
1550 0.108387727 0.109478349
1575 0.05418261 0.055196407
1600 0 0

Due to the symmetric geometry of the suspension bridge and shape of the live load,
deflections of the left and right side span is identical. For this reason, in Table 3.16
numeric values of the cable and the deck deflection in the left side span has been

depicted.
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Table 3.16 : Numeric Values Of The Cable and The Deck Deflection In Side Span

Span ordinate (m)

Cable deflection in

Deck deflection in

side span (m)

side span (m)

0 0 0

25 -0.096919878 -0.096387276
50 -0.186693044 -0.186351045
75 -0.2661841 -0.265981356
100 -0.333102309 -0.332982285
125 -0.386086944 -0.386014732
150 -0.424351519 -0.424306034
175 -0.447456373 -0.44742433
200 -0.455180381 -0.455152421
225 -0.447456373 -0.44742433
250 -0.424351519 -0.424306034
275 -0.386086944 -0.386014732
300 -0.333102309 -0.332982285
325 -0.2661841 -0.265981356
350 -0.186693044 -0.186351045
375 -0.096919878 -0.096387276
400 0 0

In Table 3.17 elongation of the vertical hangers due to the live load and stress and
axial force in vertical hangers which is caused by elongation of vertical hangers is

represented for main span.

Table 3.17 : Elongation, stress and axial force in main span hangers

61

Cable length (m) Elongation (m) Stress (MPa) Force (kN)
169.2333984 0.001013796 0.8387 26.34768631
158.8085938 0.001090622 0.9615 30.20496276
148.7255859 0.001107004 1.0421 32.73719287
138.984375 0.001115016 1.1232 35.28525053
129.5849609 0.001119623 1.2096 38.00099889
120.5273438 0.001122316 1.3036 40.95506739



Table 3.17 (continued) : Elongation, stress and axial force in main span hangers

111.8115234
103.4375
95.40527344
87.71484375
80.36621094
73.359375
66.69433594
60.37109375
54.38964844
48.75
43.45214844
38.49609375
33.88183594
29.609375
25.67871094
22.08984375
18.84277344
15.9375
13.37402344
11.15234375
9.272460938
7.734375
6.538085938
5.68359375
5.170898438
5
5.170898438
5.68359375
6.538085938
7.734375

0.001123894
0.001124819
0.00112536
0.001125677
0.001125863
0.001125972
0.001126036
0.001126073
0.001126095
0.001126108
0.001126115
0.00112612
0.001126122
0.001126124
0.001126125
0.001126125
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
0.001126126
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1.4072
1.5224
1.6514
1.7967
1.9613
2.1488
2.3637
2.6114
2.8986
3.2340
3.6283
4.0954
4.6531
5.3246
6.1396
7.1371
8.3670
9.8922
11.7883
14.1367
17.0028
20.3840
241137
27.7391
30.4894
31.5315
30.4894
27.7391
24.1137
20.3840

44.20962132
47.82801772
51.87965125
56.44412536
61.61551006
67.50717235
74.25764811
82.03808452
91.06190837
101.5975712
113.9854949
128.6606905
146.1829092
167.2764789
192.881796
224.2187958
262.8572443
310.7739786
370.341862
444.1183953
534.1582133
640.3828698
757.5552476
871.4488682
957.8531498
990.592272
957.8531498
871.4488682
757.5552476
640.3828698



Table 3.17 (continued) : Elongation, stress and axial force in main span hangers

9.272460938 0.001126126 17.0028 534.1582133
11.15234375 0.001126126 14.1367 444.1183953
13.37402344 0.001126126 11.7883 370.341862
15.9375 0.001126126 9.8922 310.7739786
18.84277344 0.001126126 8.3670 262.8572443
22.08984375 0.001126125 7.1371 224.2187958
25.67871094 0.001126125 6.1396 192.881796
29.609375 0.001126124 5.3246 167.2764789
33.88183594 0.001126122 4.6531 146.1829092
38.49609375 0.00112612 4.0954 128.6606905
43.45214844 0.001126115 3.6283 113.9854949
48.75 0.001126108 3.2340 101.5975712
54.38964844 0.001126095 2.8986 91.06190837
60.37109375 0.001126073 2.6114 82.03808452
66.69433594 0.001126036 2.3637 74.25764811
73.359375 0.001125972 2.1488 67.50717235
80.36621094 0.001125863 1.9613 61.61551006
87.71484375 0.001125677 1.7967 56.44412536
95.40527344 0.00112536 1.6514 51.87965125
103.4375 0.001124819 1.5224 47.82801772
111.8115234 0.001123894 1.4072 44.20962132
120.5273438 0.001122316 1.3036 40.95506739
129.5849609 0.001119623 1.2096 38.00099889
138.984375 0.001115016 1.1232 35.28525053
148.7255859 0.001107004 1.0421 32.73719287
158.8085938 0.001090622 0.9615 30.20496276
169.2333984 0.001013796 0.8387 26.34768631

In Table 3.18 elongation of the hangers, stress and axial force that appears in hangers

due to the live load for side span is represented.
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Table 3.18 : Elongation, stress and axial force in side span hangers

Cable length (m) Elongation (m) Stress (MPa) Force (kN)
8.686523438 0.000532602 8.5839 269.671392
17.71484375 0.000341999 2.7028 84.9112862
27.08496094 0.000202743 1.0480 32.92277246

36.796875 0.000120024 0.4567 14.34610804
46.85058594 7.22126E-05 0.2158 6.77916247
57.24609375 4.54853E-05 0.1112 3.494645794
67.98339844 3.20429E-05 0.0660 2.073038421

79.0625 2.79597E-05 0.0495 1.555391318
90.48339844 3.20429E-05 0.0496 1.557547566
102.2460938 4.54853E-05 0.0623 1.956601112
114.3505859 7.22126E-05 0.0884 2.777491093
126.796875 0.000120024 0.1325 4.163288286
139.5849609 0.000202743 0.2033 6.38831003
152.7148438 0.000341999 0.3135 9.849665761
166.1865234 0.000532602 0.4487 14.09564878

Maximum stress appears in main span and side span hangers are 31.5315 and 8.5839
MPa which are below yielding stress and maximum axial force that appears are
990.5923 and 269.6714 kN respectively .

3.2.2 Moving load

For analysis, moving load which is crossing the suspension bridge considered. Moving
load considered in this study did not have any inertial effects and it was assumed as a
point load. For analysis, three different velocities for moving load considered. Details
of moving loads, velocity and location of the load at the beginning of the analysis are
manifested in Table 3.19.
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Table 3.19 : Details of moving load

Case Mass (ton) Eggévglc%]; Velocity (7) Loc;at:io(? at
| 20.3956 200 16.6667 0
I 20.3956 200 25 0
i 20.3956 200 33.3333 0

3.2.2.1 Case | result

In Figure 3.8 deflection of the middle point of the deck for period of 96 seconds
depicted, which is the time needed for the moving force to cross the bridge. Picture
shows that there is not much difference between cable and deck deflection, as a result
great amounts of axial tension do not occur in hangers.

Cable and Deck middle point Deflection

T T

0.25 B T =42.1637 s & Deck Deflection =0.22916 m ]

T=42.1488 s &

Cable Deflection| |
Deck Deflection |

o
W
I

Deflection
I
T

0.05

Deflection

0 10 20 30 40 50 60 70 80 90
Time

Figure 3.8 : The middle point deflection of the cable and the deck for Case I (In meters)
In Figure 3.9 velocity of the cable and deck has been shown for case I. From figure it
can be understood that there are not huge difference between velocity of the cable and

deck and the velocities for both of them at different times are almost equal.
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Figure 3.9 : The middle point velocity of the cable and the deck for Case |
In Figure 3.10 acceleration of the cable and deck has been shown for case I. Likewise
the velocity, acceleration of the cable and the deck at middle point are not differing

significantly.
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Figure 3.10 : The middle point acceleration of the cable and the deck for Case |

3D plot of the suspension bridge deflection due to the moving load is indicated at
Figure 3.11. Figure shows that the maximum deflection of the suspension bridge
occurs at the middle point of the span or around of it at the time moving load is nearby
or at the center of the span.
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3D PLOT OF SPAN DEFLECTION
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Figure 3.11 : 3D Plot of span deflection for Case | (In meters)

Figure 3.12 shows deflection of the whole bridge at time in which moving load
reached middle of the suspension bridge. Magnified region shows that deflection of

the suspension bridge is not symmetric and direction of the moving load in which it

moves, affects the result.
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Figure 3.12 : The Case | middle point deflection of the cable and the deck at the time the moving
load reach the span center (In meters)

In Figure 3.13, the deflection response of the cable and the deck is shown when the
load reaches the middle of the span. In this figure first fifty modes of the bridge are
taken into account. Figure 3.13 shows that considering only first seven modes is

sufficient for determining the deflection of the span.

67



Deflection

0.22
0.21
\E/ 0.2
c
2
] —@— Cable Deflection
= 0.19 _
) —&— Deck Deflection
0.18
0.17
0 10 20 30 40 50 60

Number of modes

Figure 3.13 : Deflection of center span in case | for first 50 modes

Figure 3.14 illustrates velocity response of the center of the cable and the deck when
moving load is at the center of the span. For computing velocity response, first fifty
modes of the bridge has been taken into account. For convergence of the velocity first
seventeen modes has needed which is higher number comparing to modes that must

considered for convergence of the deflection.
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Figure 3.14 : Velocity of center span in case | for first 50 modes
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Figure 3.15 depicts acceleration response of the center of the cable and the deck for
when moving load reaches the center of the span. Likewise to deflection and velocity
response, acceleration response for the first fifty modes has been illustrated. For
convergence of acceleration response, higher modes are taken into account since
accelerations are fluctuating a lot. For the first twenty seven modes, accelerations are
almost the same. However, after mentioned mode acceleration for the cable and the
deck starts to differ.
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Figure 3.15 : Acceleration of center span in case | for first 50 modes

3.2.2.2 Case Il result

In Figure 3.16 deflection of the middle point of the cable and the deck with 64 seconds
duration depicted. This duration is the time that the moving load needs for crossing the
bridge. According to Figure 3.16 difference between cable and deck deflection is little

and great amounts of axial tension in hangers do not appear.
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Figure 3.16 : The middle point deflection of the cable and the deck for Case Il (In meters)

In Figure 3.17 velocity of the cable and deck has been shown for case 1. From figure

it can be understood that there are not huge difference between velocity of the cable

and deck and the velocities for both of them at different times are almost equal.
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Figure 3.17 : The middle point velocity of the cable and the deck for Case Il

In Figure 3.18 acceleration of the cable and deck has been illustrated for case Il.

Likewise the velocity, acceleration of the cable and the deck at middle point are not

differing significantly.
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Figure 3.18 : The middle point acceleration of the cable and the deck for Case Il

3D plot of the suspension bridge deflection due to the moving load is indicated at
Figure 3.19. Figure shows that the maximum deflection of the suspension bridge
occurs at the middle point of the span or around of it at the time moving load is
nearby or at the center of the span.
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Figure 3.19 : 3D Plot of span deflection for Case Il (In meters)

Figure 3.20 shows deflection of the whole bridge at time in which moving load
reached middle of the suspension bridge. Magnified region shows that deflection of
the suspension bridge is not symmetric and direction of the moving load in which it
moves, affects the result.
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Figure 3.20 : The Case Il middle point deflection of the cable and the deck at the time the moving
load reach the span center (In meters)

In Figure 3.21, the deflection response of the cable and the deck as the load reaches
the middle of the span is shown. Figure 3.21 shows the deflection response for the
first fifty modes of the bridge. Figure 3.21 shows that considering only first seven

modes same as case | is sufficient for determining the deflection of the span.
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Figure 3.21 : Deflection of center span in case Il for first 50 modes

In Figure 3.22 velocity response of the center of the cable and the deck when moving

load reaches center of the span has been shown. Likewise to deflection, velocity
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response for first fifty modes are taken into account. For convergence of the velocity
likewise to case I, consideration of higher modes required. In this case convergence of
the velocity response occurs from mode sixteen. However, results for the first fifty

modes has been computed.
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Figure 3.22 : Velocity of center span in case Il for first 50 modes

In Figure 3.23 acceleration of the center of the cable and the deck for case Il has been
displayed. Same as deflection and velocity, Figure 3.23 shows acceleration response
for the first fifty modes of the bridge. Same as case I, in order to reach the convergence
in acceleration higher modes must be taken into account. Figure 3.23 shows that
accelerations of the cable and the deck are almost equal for the first forty modes.
However, from mode forty one acceleration for the cable and the deck are not same
and they differ.
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Figure 3.23 : Acceleration of center span in case Il for first 50 modes

3.2.2.3 Case Il result

In Figure 3.24 deflection of the middle point of the deck for period of 48 seconds
depicted, which is the time needed for the moving force to cross the bridge. Likewise
to case | and Il there is not much axial forces in hangers since difference between cable

and deck deflection is not that much.
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Figure 3.24 : The middle point deflection of the cable and the deck for Case Il (In meters)
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In Figure 3.25 velocity of the cable and deck has been shown for case I11. From figure
it can be understood that there are not huge difference between velocity of the cable

and deck and the velocities for both of them at different times are almost equal.
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Figure 3.25 : The middle point velocity of the cable and the deck for Case Il
In Figure 3.26 acceleration of the cable and deck has been displayed for case III.
Likewise the velocity, acceleration of the cable and the deck at middle point are not
differing significantly.
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Figure 3.26 : The middle point acceleration of the cable and the deck for Case |11

3D plot of the suspension bridge deflection due to the moving load is indicated at

Figure 3.27. Figure shows that the maximum deflection of the suspension bridge
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occurs at the middle point of the span or around of it at the time moving load is nearby

or at the center of the span.

Deflection

3D PLOT OF SPAN DEFLECTION

i "l/;/l’/"/';::‘\\\\%\
77N
,,/i:’%;;;llll;;;l,l,;;":x§\
TSN
'o“\‘
IIIII"‘\“

ongit, g; -
1, .
"4l oy, I PNt Time

Figure 3.27 : 3D Plot of span deflection for Case Il (In meters)

Figure 3.28 shows deflection of the whole bridge when moving load located at the

middle of the suspension bridge. Magnified region shows that deflection of the

Su

spension bridge is not symmetric and direction of the moving load in which it moves,

affects the result.
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Figure 3.28 : The Case Il middle point deflection of the cable and the deck at the time the moving
load reach the span center (In meters)

76



In Figure 3.29, the deflection response of the cable and the deck as the moving load
reaches the center of the span is illustrated. To compute the deflection first fifty modes
of the bridge are taken into account. It can be understood from figure that considering

first seven modes is sufficient to determine the deflection of the cable and the deck.
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Figure 3.29 : Deflection of center span in case Il for first 50 modes

In Figure 3.30 velocity response of the center of the cable and the deck when the
moving load reaches the center of the span has been displayed. Figure 3.30 shows
velocity response for the first fifty modes. To reach convergence in velocity, same as
case | and case Il, considering higher modes required. Considering first seventeen

modes were sufficient to reach convergence for case IlI.
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Figure 3.30 : Velocity of center span in case I11 for first 50 modes
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In Figure 3.31 acceleration response of the center of the cable and the deck for case
Il has been illustrated. Likewise to deflection and velocity response, acceleration
response is depicted at the time moving load reaches center of the span. Same as case
I and case II, in order to reach the convergence in acceleration higher modes must be
taken into account. Figure 3.31 shows that there are not significant difference in
accelerations of the cable and the deck for the first thirty eight modes. However,

between mode thirty nine and forty five acceleration for the cable and the deck differs.
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Figure 3.31 : Acceleration of center span in case Il for first 50 modes
3.2.2.4 Hangers elongation
Elongation of the hangers are an important topic to discuss since behavior of the
hangers during vibration and knowing magnitude of axial forces that appears in

hangers are crucial for proper design of the suspension bridge.

In Tables 3.20 - 3.22 stress and axial forces that appears for case I, Il and I11 are given.

Table 3.20 : Elongation, stress and axial force in hangers for case |

Deflection of  Deflection of
Cable length thecablet=  the Deck t= (m)
48s (m) 48s (m)

169.2333984 0.008462695  0.00846315  4.55478E-07 0.0004 0.011837468

Axial Force
(kN)

Elongation Stress (MPa)

158.8085938 0.016959506  0.016959957  4.50859E-07 0.0004 0.012486618

148.7255859 0.025500836  0.025498874  -1.96285E-06 -0.0018 -0.058046996

78



Table 3.20 (continued) :

138.984375

129.5849609

120.5273438

111.8115234

103.4375

95.40527344

87.71484375

80.36621094

73.359375

66.69433594

60.37109375

54.38964844

48.75

43.45214844

38.49609375

33.88183594

29.609375

25.67871094

22.08984375

18.84277344

15.9375

13.37402344

11.15234375

9.272460938

7.734375

6.538085938

5.68359375

5.170898438

5

5.170898438

0.034104184

0.042751176

0.051422413

0.060098866

0.068749082

0.077386253

0.08601336

0.094638636

0.103304099

0.112033734

0.120852229

0.12974882

0.138696465

0.147682926

0.156687724

0.165743622

0.174854983

0.183978562

0.193078618

0.202049435

0.2107972

0.219145055

0.226750789

0.23311046

0.23717463

0.238095327

0.236430948

0.233256418

0.229131104

0.224420362

Elongation, stress and axial force in hangers for case |

0.034104258

0.042752466

0.05142224

0.060100051

0.06875121

0.077389194

0.086014389

0.094638523

0.103306482

0.112034693

0.120854118

0.129751604

0.138696604

0.147685254

0.156690776

0.165748644

0.174862311

0.183984927

0.193092006

0.202067615

0.210826275

0.219197698

0.226829251

0.233255939

0.237379756

0.238257404

0.236520068

0.23331139

0.229161306

0.224438783

79

7.41957E-08

1.28993E-06

-1.7269E-07

1.18495E-06

2.128E-06

2.94138E-06

1.02882E-06

-1.12792E-07

2.38313E-06

9.58346E-07

1.88924E-06

2.78418E-06

1.38531E-07

2.32845E-06

3.05198E-06

5.02194E-06

7.32851E-06

6.36455E-06

1.33879E-05

1.81798E-05

2.90747E-05

5.26429E-05

7.84621E-05

0.000145478

0.000205126

0.000162077

8.91202E-05

5.49717E-05

3.02019E-05

1.84211E-05

0.0001

0.0014

-0.0002

0.0015

0.0029

0.0043

0.0016

-0.0002

0.0045

0.0020

0.0044

0.0072

0.0004

0.0075

0.0111

0.0208

0.0347

0.0347

0.0848

0.1351

0.2554

0.5511

0.9850

2.1965

3.7130

3.4706

2.1952

1.4883

0.8457

0.4987

0.002347959

0.043781286

-0.006301715

0.046611278

0.09048392

0.135598904

0.051587657

-0.006172823

0.142879325

0.063199177

0.137637385

0.225142915

0.012498272

0.235686104

0.34869243

0.651902751

1.088589959

1.090115364

2.665610431

4.243469236

8.023661739

17.31234694

30.9436607

69.00511948

116.6470175

109.0309735

68.96533855

46.75747523

26.56696693

15.6684989



Table 3.20 (continued) :

5.68359375

6.538085938

7.734375

9.272460938

11.15234375

13.37402344

15.9375

18.84277344

22.08984375

25.67871094

29.609375

33.88183594

38.49609375

43.45214844

48.75

54.38964844

60.37109375

66.69433594

73.359375

80.36621094

87.71484375

95.40527344

103.4375

111.8115234

120.5273438

129.5849609

138.984375

148.7255859

158.8085938

169.2333984

0.21937632

0.214104058

0.208689159

0.203142249

0.197467004

0.191680218

0.185768592

0.179724217

0.173532136

0.167196046

0.160720174

0.15409435

0.147341662

0.140472143

0.133478828

0.126357002

0.119081231

0.111634081

0.103995969

0.096146003

0.0880839

0.079809481

0.071344069

0.062723459

0.053975366

0.04513597

0.036228114

0.027255266

0.018216685

0.009121336

Elongation, stress and axial force in hangers for case |

0.219389812

0.214109079

0.208692811

0.203142514

0.197467255

0.191683689

0.185767465

0.17972355

0.173534197

0.167195392

0.160719583

0.154095401

0.147343063

0.140472742

0.133479689

0.126359853

0.119084078

0.111638013

0.10400148

0.096150991

0.088088797

0.07981364

0.071348291

0.062727354

0.053977346

0.045139101

0.036231017

0.027255731

0.018217749

0.009122676

1.34916E-05

5.0216E-06

3.65204E-06

2.64824E-07

2.50787E-07

3.47072E-06

-1.12696E-06

-6.67325E-07

2.06157E-06

-6.54328E-07

-5.90937E-07

1.0507E-06

1.40129E-06

5.99378E-07

8.60914E-07

2.85113E-06

2.84666E-06

3.93247E-06

5.51096E-06

4.98867E-06

4.89655E-06

4.15894E-06

4.22204E-06

3.89448E-06

1.98001E-06

3.13138E-06

2.90354E-06

4.65044E-07

1.06325E-06

1.33924E-06

0.3323

0.1075

0.0661

0.0040

0.0031

0.0363

-0.0099

-0.0050

0.0131

-0.0036

-0.0028

0.0043

0.0051

0.0019

0.0025

0.0073

0.0066

0.0083

0.0105

0.0087

0.0078

0.0061

0.0057

0.0049

0.0023

0.0034

0.0029

0.0004

0.0009

0.0011

10.44046324

3.37807836

2.076769643

0.12561452

0.098904598

1.141394443

-0.311002894

-0.155765126

0.410472032

-0.112072739

-0.08777891

0.136392115

0.160098986

0.060669082

0.077671726

0.230557471

0.207388714

0.259330716

0.330407481

0.273016768

0.245524732

0.191729305

0.179523771

0.153193725

0.072253768

0.106281822

0.091884018

0.013752654

0.029446743

0.034805569
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Table 3.21 : Elongation, stress and axial force in hangers for case Il

Deflection of

Deflection of

Cable length thecablet=  the Deckt= EIor(lg;tion Stress (MPa) AXi?ILNF;) ree
48s (m) 48s (m)

169.2333984 0.008790131  0.00879041 2.79613E-07 0.0002 0.007266899
158.8085938  0.017568391 0.017569159  7.67772E-07 0.0007 0.021263581
148.7255859 0.026323635 0.026321398 -2.23686E-06 -0.0021 -0.066150182
138.984375 0.035060161  0.03505718  -2.98118E-06 -0.0030 -0.094340929
129.5849609  0.043777588  0.043776093 -1.49479E-06 -0.0016 -0.050734596
120.5273438 0.052509028 0.052508651 -3.76825E-07 -0.0004 -0.01375094
111.8115234  0.061286529 0.061284977 -1.55121E-06 -0.0019 -0.061018676
103.4375 0.07009061 0.07008724  -3.37026E-06 -0.0046 -0.143305481
95.40527344 0.078894477  0.078894162 -3.15348E-07 -0.0005 -0.014537681

87.71484375 0.087653645 0.087654148  5.0295E-07 0.0008 0.02521912
80.36621094 0.096314701  0.096315422 7.2099E-07 0.0013 0.039457848

73.359375 0.104834059  0.10483732  3.26089E-06 0.0062 0.19550541
66.69433594 0.113173238 0.113175581  2.34264E-06 0.0049 0.154487645
60.37109375  0.121309327 0.121313305 3.97743E-06 0.0092 0.289768419
54.38964844 0.129218805 0.129223395  4.59051E-06 0.0118 0.371212586
48.75 0.136894246  0.136897566  3.31961E-06 0.0095 0.299495275
43.45214844 0.144333023  0.144338847  5.82378E-06 0.0188 0.589483721
38.49609375 0.151528056  0.151532228  4.17229E-06 0.0152 0.476689688
33.88183594  0.158478945 0.158481878  2.93257E-06 0.0121 0.380678832
29.609375 0.165164744  0.165169839  5.09519E-06 0.0241 0.756849056
25.67871094 0.171590441  0.171595397  4.95618E-06 0.0270 0.848890112
22.08984375 0.177766246  0.177770616  4.3704E-06 0.0277 0.870173962
18.84277344 0.18368194  0.183684883  2.94292E-06 0.0219 0.686929596
15.9375 0.189360262  0.189362522  2.25966E-06 0.0198 0.623592899
13.37402344 0.194809779  0.194811274  1.49508E-06 0.0157 0.491676318
11.15234375  0.200058619  0.200062277  3.65848E-06 0.0459 1.442820642
9.272460938 0.205152491  0.205159331 6.8398E-06 0.1033 3.244338414
7.734375 0.210083109 0.210087106  3.99622E-06 0.0723 2.272489104
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Table 3.21 (continued) : Elongation, stress and axial force in hangers for case 11

6.538085938

5.68359375

5.170898438

5

5.170898438

5.68359375

6.538085938

7.734375

9.272460938

11.15234375

13.37402344

15.9375

18.84277344

22.08984375

25.67871094

29.609375

33.88183594

38.49609375

43.45214844

48.75

54.38964844

60.37109375

66.69433594

73.359375

80.36621094

87.71484375

95.40527344

103.4375

111.8115234

120.5273438

0.214830944

0.219337008

0.223543148

0.227389824

0.230778169

0.233647053

0.235819007

0.236992896

0.236550354

0.233406338

0.227296894

0.219244291

0.210156136

0.200469633

0.190527181

0.180505169

0.170536417

0.160719369

0.151080015

0.141625134

0.132315894

0.123162595

0.114204793

0.105444021

0.096852475

0.088350157

0.079859616

0.07131441

0.062674211

0.053936312

0.214837934

0.219347435

0.223555394

0.227410411

0.230802

0.233687608

0.235885347

0.237092072

0.236723821

0.23360593

0.227424787

0.219313839

0.210199581

0.200490401

0.190541544

0.180511063

0.170538418

0.160723688

0.151077814

0.141621621

0.132313496

0.123160858

0.114204912

0.105442733

0.096853573

0.088351872

0.079860621

0.071319836

0.062681351

0.053942519
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6.98993E-06

1.0427E-05

1.22463E-05

2.05872E-05

2.38309E-05

4.05553E-05

6.634E-05

9.91764E-05

0.000173467

0.000199592

0.000127894

6.95482E-05

4.34455E-05

2.07679E-05

1.43631E-05

5.89428E-06

2.00057E-06

4.31863E-06

-2.20096E-06

-3.51333E-06

-2.39884E-06

-1.73762E-06

1.18706E-07

-1.28749E-06

1.09801E-06

1.71585E-06

1.00576E-06

5.42594E-06

7.14013E-06

6.20703E-06

0.1497

0.2568

0.3316

0.5764

0.6452

0.9990

1.4205

1.7952

2.6191

2.5056

1.3388

0.6109

0.3228

0.1316

0.0783

0.0279

0.0083

0.0157

-0.0071

-0.0101

-0.0062

-0.0040

0.0002

-0.0025

0.0019

0.0027

0.0015

0.0073

0.0089

0.0072

4.702191142

8.068878237

10.41638311

18.1094799

20.26992741

31.38357917

44.62753864

56.39763376

82.28094159

78.71461474

42.05958121

19.19303146

10.14092667

4.135027983

2.460103632

0.875547458

0.259695468

0.493409323

-0.222781435

-0.316972926

-0.193982799

-0.126591448

0.007828182

-0.077191162

0.060091335

0.086036837

0.04636625

0.230714676

0.280864967

0.22650418



Table 3.21 (continued) : Elongation, stress and axial force in hangers for case 11

129.5849609  0.045085323  0.045088996  3.67321E-06 0.0040 0.124672085
138.984375 0.036140319  0.036142658  2.33888E-06 0.0024 0.074014889
148.7255859  0.027137399  0.027141714  4.31482E-06 0.0041 0.127601178
158.8085938  0.018102849  0.018105008  2.15924E-06 0.0019 0.059800558
169.2333984  0.009060327 0.009059171 -1.15646E-06 -0.0010 -0.030055512
Table 3.22 : Elongation, stress and axial force in hangers for case IlI
Deflection (zf Deflection cif Elongation Axial Force
Cable length thecablet=  the Deckt= (m) Stress (MPa) (kN)
48s (m) 48s (m)
169.2333984  0.010737294  0.010738239 9.45E-07 0.0008 0.024559735
158.8085938  0.021468308 0.021470934  2.6257E-06 0.0023 0.072719305
148.7255859  0.032188564  0.032193513  4.94915E-06 0.0047 0.146360114
138.984375 0.042837844  0.04284306 5.2162E-06 0.0053 0.16506937
129.5849609  0.053382558 0.053392141  9.58312E-06 0.0104 0.325259519
120.5273438  0.063783483  0.063795069  1.15868E-05 0.0135 0.422818789
111.8115234 0.07396772  0.073976053  8.3337E-06 0.0104 0.327815394
103.4375 0.083877692  0.083887694  1.00024E-05 0.0135 0.425306483
95.40527344  0.093483013 0.093494123  1.11103E-05 0.0163 0.512191364
87.71484375  0.102845866  0.102856307  1.04403E-05 0.0167 0.523500786
80.36621094  0.112056435 0.112064669  8.23435E-06 0.0143 0.450644062
73.359375 0.121186951  0.121191265  4.31343E-06 0.0082 0.258609614
66.69433594  0.130311461 0.130315801  4.33981E-06 0.0091 0.286193728
60.37109375  0.139474586  0.139478947  4.36111E-06 0.0101 0.317720996
54.38964844  0.148735177  0.148741397  6.21928E-06 0.0160 0.502923187
48.75 0.158098712  0.158101883  3.17102E-06 0.0091 0.286089418
43.45214844  0.167519387 0.167516417 -2.96985E-06 -0.0096 -0.300608298
38.49609375  0.176991641 0.176996666 5.02573E-06 0.0183 0.574196555
33.88183594  0.186519649 0.186527767  8.11799E-06 0.0335 1.053803027
29.609375 0.196143179  0.196147255  4.07633E-06 0.0193 0.605505757
25.67871094  0.205841378  0.205849894  8.5166E-06 0.0464 1.458716145
22.08984375  0.215550579  0.215568344  1.77648E-05 0.1126 3.537088397
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Table 3.22 (continued) : Elongation, stress and axial force in hangers for case 11l

18.84277344

15.9375

13.37402344

11.15234375

9.272460938

7.734375

6.538085938

5.68359375

5.170898438

5

5.170898438

5.68359375

6.538085938

7.734375

9.272460938

11.15234375

13.37402344

15.9375

18.84277344

22.08984375

25.67871094

29.609375

33.88183594

38.49609375

43.45214844

48.75

54.38964844

60.37109375

66.69433594

73.359375

0.225192194

0.234453688

0.242866886

0.249534879

0.253258444

0.253991454

0.252790641

0.250410545

0.247223612

0.243487511

0.239330319

0.234896411

0.230272896

0.225485644

0.220545198

0.215410395

0.210070825

0.204551492

0.198867664

0.193007872

0.186931042

0.18058589

0.17391362

0.166889341

0.159515292

0.151812955

0.143839834

0.135628478

0.127191516

0.118527694

0.225231769
0.234517206
0.242978964
0.249725862
0.253449246
0.254106378
0.252862173
0.250458774
0.247248747
0.24350533
0.239342366
0.234905688
0.230279961
0.225489991
0.220549128
0.215408807
0.210071316
0.204556366
0.198868912
0.193011467
0.186936223
0.180589691
0.173920179
0.16689521
0.159521055
0.151819857
0.143844194
0.135633259
0.127198476

0.118534051
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3.95754E-05

6.35181E-05

0.000112078

0.000190982

0.000190802

0.000114924

7.15324E-05
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2.51355E-05

1.78195E-05

1.20471E-05

9.27789E-06

7.06466E-06

4.34661E-06

3.92957E-06

-1.58859E-06

4.91106E-07
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1.24776E-06

3.59455E-06

5.18083E-06

3.80103E-06

6.55946E-06

5.86901E-06

5.7631E-06

6.90211E-06

4.35965E-06

4.78085E-06

6.9597E-06

6.35703E-06

0.2940

0.5580

1.1732

2.3975

2.8808

2.0802

1.5317

1.1880

0.6805

0.4989

0.3262

0.2285

0.1513

0.0787

0.0593

-0.0199

0.0051

0.0428

0.0093

0.0228

0.0282

0.0180

0.0271

0.0213

0.0186

0.0198

0.0112

0.0111

0.0146

0.0121

9.23758291

17.52893513

36.85831006

75.31912398

90.50354556

65.35266033

48.12047726

37.32171459

21.37961641

15.67487453

10.24693656

7.17966457

4.752460065

2471742243

1.863921022

-0.626505509

0.16150681

1.344985864

0.29124964

0.715698227

0.887368326

0.564611314

0.851489685

0.670541909

0.583341467

0.622708882

0.352543669

0.348300276

0.45896505

0.381133212



Table 3.22 (continued)

: Elongation, stress and axial force in hangers for case 11

80.36621094 0.109598019  0.109603176  5.15725E-06 0.0090 0.282242591
87.71484375 0.100382063  0.100386916  4.85341E-06 0.0077 0.24336156
95.40527344 0.090893005  0.090897268  4.26352E-06 0.0063 0.196550245
103.4375 0.081167945 0.081170468  2.52306E-06 0.0034 0.107282203
111.8115234 0.071264714  0.071267119  2.40469E-06 0.0030 0.094591004
120.5273438 0.061247874  0.061250793  2.91855E-06 0.0034 0.106502411
129.5849609 0.051172443  0.051174576  2.13307E-06 0.0023 0.072398394
138.984375 0.041052461  0.041054674 2.21272E-06 0.0022 0.070022601
148.7255859 0.03088494  0.030885662  7.21831E-07 0.0007 0.021346566
158.8085938 0.020656482  0.020654658 -1.82367E-06 -0.0016 -0.050506923
169.2333984 0.01035131  0.010350038 -1.27197E-06 -0.0011 -0.033057466

These tables shows us that in none of hangers yielding occurs and all of the hangers
are in elastic region during vibration. Maximum stress occurred in Case I,11 and 1lI
respectively are 3.713 MPa, 2.6191 MPa and 2.8808 MPa and maximum axial force
appears in hangers for case I,11 and 111 respectively are 116.647 kN, 82.2809 kN and
90.5305 kN.

3.2.3 Result for inextensible hangers

In previous section extensibility of the hangers were considered and it means during
vibration amount of deflection that occurs in the deck and the cable were different. In
this section obtained result for extensible hangers are compared with the result that
obtained when hangers are inextensible. For this purpose equation 2.56 is used in

which differential equation is only dependent on deflection of the deck.

3.2.3.1 Case | result

In Figure 3.32 maximum deflection in middle point of the deck plotted. Results
indicate that maximum deflection occurs at 49.549 second when load close to middle
of the deck.
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Figure 3.32 : Deck middle point deflection in case hangers are inextensible for Case | (In meters)
In Figure 3.33 3D plot of deck deflection has been depicted. In this figure x-axis
represent time and y-axis represents location of the bridge, while z-axis positive

direction shows deflection of the deck.
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Figure 3.33 : 3D Plot of span deflection in case hangers are inextensible for Case I (In meters)

Max deflection of the deck when moving load reaches middle of the deck has been

illustrated in Figure 3.34.
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Figure 3.34 : The Case | middle point deflection of the deck at the time the moving load reach the
span center (In meters)

3.2.3.2 Case Il result

In Figure 3.35 maximum deflection in middle point of the deck plotted. Results
indicate that maximum deflection occurs at 31.6016 second when load close to middle

of the deck.
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Figure 3.35 : Deck middle point deflection in case hangers are inextensible for Case 11 (In meters)
In Figure 3.36 3D plot of deck deflection has been depicted. In this figure x-axis

represent time and y-axis represents location of the bridge, while z-axis positive

direction shows deflection of the deck.
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Figure 3.36 : 3D Plot of span deflection in case hangers are inextensible for Case Il (In meters)

Max deflection of the deck when moving load reaches middle of the deck has been

illustrated in Figure 3.37.
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Figure 3.37 : The Case Il middle point deflection of the deck at the time the moving load reach the
span center (In meters)

3.2.3.3 Case Il result

In Figure 3.38 maximum deflection in middle point of the deck plotted. Results
indicate that maximum deflection occurs at 23.6946 second when load close to middle

of the deck.
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Figure 3.38 : Deck middle point deflection in case hangers are inextensible for Case 11 (In meters)
In Figure 3.39 3D plot of deck deflection has been depicted. In this figure x-axis
represent time and y-axis represents location of the bridge, while z-axis positive

direction shows deflection of the deck.
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Figure 3.39 : 3D Plot of span deflection in case hangers are inextensible for Case Il (In meters)

Max deflection of the deck when moving load reaches middle of the deck has been

illustrated in Figure 3.40.
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Figure 3.40 : The Case I1l middle point deflection of the deck at the time the moving load reach the
span center (In meters)

3.2.4 Result comparison

Computed deflection of suspension bridge when a moving load reaches the middle of
the span for both extensible and inextensible hangers are compared in Table 3.23.
Comparison of these result are very important since for solving coupled differential
equation a lot of time need to spent. On the other hand it is worth to note that, even
though solving coupled differential equation needs a lot of time, solving this equation
helps to determine axial loads in hangers and it is advantage of case in which hangers

are considered extensible.

Table 3.23 : Comparison of Middle Point Deflection at the time moving load reaches middle of the
span

Middle Point Deflection at the time load reaches middle of the span

ST S petnsbe o 0
Case No.
Case | 0.21738 0.21726 0.06%
Case Il 0.20986 0.20972 0.07%
Case Il 0.23195 0.2318 0.06%

Likewise Max deflection of the suspension bridge span from the time that moving load

enters the span until it quits span for both extensible and inextensible hangers are

compared in Table 3.24.
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Table 3.24 : Comparison of Middle Point Max Deflection

Middle Point Max Deflection

Hangers type

Srisble et it
Case | 0.22916 0.22908 0.03%
Case Il 0.22741 0.22735 0.03%
Case Il 0.24351 0.24345 0.02%

According to Table 3.23 and Table 3.24, the difference in deflection of the cable and
the deck does not exceed 0.1 percent for both extensible and inextensible hangers
assumption. Another fact that tables shows are that extensibility of the hangers are not

affecting final result and consideration of extensible hangers is acceptable and reliable.

3.2.5 Total deflection of the suspension bridge

In Figures 3.41-3.43 total deflection of the bridge for Cases I, Il and Il has been
illustrated respectively. In mentioned figures total deflection of the bridge computed

by summing up static deflection and dynamical deflection due to the moving load.
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Figure 3.41 : 3D Plot of Total Deflection of The Suspension bridge for Case I (In meters)
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Figure 3.42 : 3D Plot of Total Deflection of The Suspension bridge for Case Il (In meters)
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Figure 3.43 : 3D Plot of Total Deflection of The Suspension bridge for Case 111 (In meters)

3.2.6 Natural frequencies

In order to determine natural frequencies as it is explained in section 2.8, at first
stiffness of the system is calculated and then after dividing it by mass the square of
angular speed of the suspension bridge is achieved.

For determining angular speed equation 2.59 used and after computing angular speed
equation 2.60 used for determining natural frequencies of the suspension bridge.
Natural frequencies and angular speeds of the suspension bridge for 24 modes are

computed and indicated in Table 3.25.
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Table 3.25 : Natural frequencies

Symmetric Frequency Anti-symmetric Frequency
modes (Hz) modes (Hz)
1 0.0430839 2 0.15360018
3 0.13347878 4 0.19338369
5 0.23592457 6 0.29670703
7 0.35669856 8 0.42660249
9 0.50030616 10 0.58220819
11 0.66975366 12 0.76509215
13 0.866972 14 0.97656482
15 1.0931863 16 1.21752571
17 1.34917721 18 1.48857042
19 1.63544911 20 1.79009362
21 1.952334 22 2.12236022
23 2.30005497 24 2.48555115

As it is mentioned earlier in chapter 1, it can be seen that second symmetric mode
occurs before first anti-symmetric mode which is also observed by Abdel Ghaffar [3].
in other words first two modes are symmetric and after that anti-symmetric modes

occur. First 24 Angular speeds of the suspension bridge is indicated in Table 3.26.

Table 3.26 : Angular speed

Symmetric Angular speed  Anti-symmetric  Angular speed
modes (rad/ modes (rad/
1 0.27070414 2 0.96509839
3 0.83867189 4 1.21506559
5 1.48235778 6 1.86426525
7 2.24120317 8 2.68042249
9 3.14351634 10 3.65812193
11 4.20818634 12 4.80721573
13 5.44734573 14 6.13593774
15 6.86869211 16 7.64993964
17 8.47713043 18 9.35296379
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Table3.26 (continued) : Angular speed

19 10.2758298 20 11.2474899
21 12.2668763 22 13.3351826
23 14.4516716 24 15.6171785

In Figures 3.44-3.49 first six mode shapes of the suspension obtained by ABAQUS

software is illustrated respectively.
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Figure 3.49 : 6" Mode Shape

3.2.7 Maximum acceleration response

To investigate maximum of acceleration that occurs in bridge, differential equations
solved for the total time that moving load cross the bridge. In Figure 3.50 maximum
value of suspension bridge acceleration response is displayed. Maximum acceleration
of the suspension bridge at each point of the span is for whole time of the vibration.
Figure 3.50 reveals that for higher speeds acceleration of the bridge increases
significantly which emphasis on importance of the velocity of the moving load on

acceleration response of the suspension bridge.
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Figure 3.50 : Max acceleration response of the suspension bridge
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3.3 FEM Result

Behavior of the suspension bridge simulated in ABAQUS software. ABAQUS use
FEM method for analysis and computation. To simulate behavior of the suspension
bridge in ABAQUS, same as mathematical approach, behavior of the suspension
bridge evaluated in two steps. First step was static analysis when it is subjected to
distributed live load and second step was dynamic analysis of the suspension bridge
when it is subjected to the moving load with constant velocity.

In Figure 3.51 model of the suspension bridge in ABAQUS software which has been

provided for static analysis is shown.

Y

i.x

Figure 3.51 : ABAQUS model for static analysis
Figure 3.52 and Figure 3.53 displays 2D and 3D deformed shape of the suspension

bridge when it is subjected to static live load.

+0.000¢+00
-7.506e-02
-1.501e-01
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Figure 3.52 : Plot of static deformation (In meters)
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Figure 3.53 : 3D plot of static deformation (In meters)

Comparison of computed results by MATLAB and ABAQUS for static analysis is
manifested in Table 3.27.

Table 3.27 : Comparison of Mid Point Deflection Computed by MATLAB and ABAQUS

Deflection
Software . 0
Element MATLAB (m) ABAQUS (m) Difference (%)
CABLE 0.926038715 0.900736000 2.732360%
DECK 0.927164841 0.900751000 2.848883%

Model of the suspension bridge for dynamic analysis is illustrated in Figure 3.54. For
restricting bridge out-of plane deflection, 2D analysis has been performed and for
avoiding displacement in horizontal direction supports has been provided for all of the

points to restrain bridge movement in horizontal direction.

Y

i.x

Figure 3.54 : ABAQUS maodel for dynamic analysis
Middle point deflection in case I, 11 and 111 for the cable and the deck through the time
has been plotted and displayed in Figures 3.55-3.57.
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Displacement

Middle point deflection
= ®  Deck Mid Point Deflection
®----¢ Cable Mid Point Deflection

Figure 3.55 : Middle Point Deflection For Case I (In meters)

Displacement

Mid point deflection
L] #  Deck Mid Point Deflection
¢----@ Cable Mid Point Deflection

Figure 3.56 : Middle Point Deflection For Case Il (In meters)

Displacement

Mid point deflection
] ®  Deck Mid Point Deflection
®----¢ Cable Mid Point Deflection

Figure 3.57 : Middle Point Deflection For Case Il (In meters)
In Figures 3.58-3.60 vector of U2 which represent displacement in y-direction are
illustrated.

99



+0.000+00
-1.8002-02
-3.601e-02
-5.401e-02
-7.201e-02
-9.001e-02
-1.080e-01
-1.260e-01
-1.440e-01
-1.620¢101

s

+0.000+00
-1.777¢-02
-3.554e.02
-5.332¢-02
-7.1092-02
-8.886¢-02
-1.066e-01
-1.244¢-01
-1.422¢-01
-1.599¢101

s

+0.000+00
-2.037e-02
-4.074e-02
-6.111e-02
-§.148e-02
-1.019¢-01
1222601
-1.426¢-01
-1.630e-01
-1.833101

s

In Figures 3.61-3.63 3D plot of deflected suspension bridge for cases I, Il and Il are
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Figure 3.58 : U2 Vector Deflection for Case | (In meters)

177701 | [ T
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-2.133:01 | | |

Figure 3.59 : U2 Vector Deflection for Case Il (In meters)
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Figure 3.60 : U2 Vector Deflection for Case I11 (In meters)

respectively depicted.
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Figure 3.63 : 3D Plot of Suspension Bridge Deflection for Case 111 (In meters)
Result of analysis indicates that maximum deflection of the cable and the deck are
close to results that obtained by MATLAB software. Middle point deflection of the
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cable and the deck computed by MATLAB and ABAQUS are compared in Table 3.28
and Table 3.29.

Table 3.28 : Comparison result of MATLAB and ABAQUS for cable mid point deflection

Cable middle point deflection

Case MATLAB (m) ABAQUS (m) Difference (%)
I 0.21717 0.215036 0.9826%
Il 0.20966 0.212921 1.5554%
" 0.23174 0.25266 9.0274%

Table 3.29 : Comparison result of MATLAB and ABAQUS for deck mid point deflection

Deck middle point deflection

Case MATLAB (m) ABAQUS (m)  Difference (%)
I 0.21738 0.215151 1.0254%
Il 0.20986 0.21303 1.5105%
Il 0.23195 0.252785 8.9825%

3.4 Ground Motion

In this section deflection response of the suspension bridge for three different ground
motions investigated. In this section, effect of ground motion on response of
suspension bridge investigated. To investigate response of suspension bridge, three
different earthquake records likewise to effect of the ground motion considered for
analyzing. The earthquake records considered for this analysis were the Coyote-Lake
ground motion record, Kobe ground motion record and EI-Mayor ground motion
record. In analyzing, vertical acceleration due to ground motions considered to
determine suspension bridge response, and for displacements at the top of tower which
appears in equation 2.56, displacements of earthquake records were used. Horizontal
displacements of the tower neglected and considered to be equal to zero. First fifty
modes of the suspension were taken into account in order to compute response of the

suspension bridge.
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3.4.1 Coyote Lake

Figure 3.64 displays vertical ground acceleration record for Coyote Lake ground

motion.

Coyote Lake vertical ground motion record
0.15

0.1

0.05

Acceleration (g)
o

-0.05

-0.1

-0.15
0 5 10 15 20 25

Time ()

Figure 3.64 : Vertical Ground Acceleration Record for Coyote Lake Ground Motion
In Figures 3.65-3.67 deflection response of the suspension bridge for case I, 11 and 111

when it is subjected to Coyote Lake earthquake motion has been illustrated.

3D PLOT OF SPAN DEFLECTION DURING COYOTE LAKE GROUND EXCITATION

0.06

Deflection

Figure 3.65 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion for Case | (In
Meters)

103



3D PLOT OF SPAN DEFLECTION DURING COYOTE LAKE GROUND EXCITATION

0.06

Deflection

Figure 3.66 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion for Case Il (In
Meters)

3D PLOT OF SPAN DEFLECTION DURING COYOTE LAKE GROUND EXCITATION

0.06

Deflection

Figure 3.67 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion for Case 11 (In
Meters)

In Figures 3.68-3.70 deflection response of the middle point of the suspension bridge
for case I, Il and I11 when it is subjected to Kobe earthquake motion has been depicted.
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Figure 3.68 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake for
Case | (In Meters)
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Figure 3.69 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake for
Case Il (In Meters)

105



%107 MID POINT DEFLECTION
I I I

—_
T

Deflection
o
W

VI

(=1
——

-0.5

! ! ! ! \
0 5 10 15 20 25 30 35 40 45
Time

Figure 3.70 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake for
Case Il (In Meters)

3.4.2 Kobe

In Figure 3.71 vertical ground acceleration record for Kobe ground motion has been

illustrated.

Kobe vertical ground motion record
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Figure 3.71 : Vertical Ground Acceleration Record for Kobe Ground Motion
In Figures 3.72-3.74 deflection response of the suspension bridge for case I, 11 and 111

when it is subjected to Kobe earthquake motion has been illustrated.
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3D PLOT OF SPAN DEFLECTION DURING KOBE GROUND EXCITATION
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Figure 3.72 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion for Case I (In Meters)
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Figure 3.73 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion for Case Il (In Meters)
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3D PLOT OF SPAN DEFLECTION DURING KOBE GROUND EXCITATION

Deflection

Figure 3.74 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion for Case Il1 (In Meters)
In Figures 3.75-3.77 deflection response of the middle point of the suspension bridge

for case I, Il and I11 when it is subjected to Kobe earthquake motion has been depicted.
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Figure 3.75 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake for Case | (In
Meters)
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Figure 3.76 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake for Case Il (In
Meters)
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Figure 3.77 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake for Case 111 (In
Meters)
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3.4.3 El Mayor
In Figure 3.78 vertical ground acceleration record for EI Mayor ground motion has
been depicted.
El Mayor vertical ground motion record
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Figure 3.78 : Vertical Ground Acceleration Record for EI Mayor Ground Motion
In Figures 3.79-3.81 deflection response of the suspension bridge for case I, 1l and

I11 when it is subjected to EI Mayor earthquake motion has been illustrated.
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Figure 3.79 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion for Case | (In
Meters)
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3D PLOT OF SPAN DEFLECTION DURING EL MAYOR GROUND EXCITATION
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Figure 3.80 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion for Case Il (In
Meters)
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Figure 3.81 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion for Case 111 (In
Meters)

In Figures 3.82-3.84 deflection response of the middle point of the suspension bridge

for case I, 1l and Il when it is subjected to EI Mayor earthquake motion has been

depicted.
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Figure 3.82 : Suspension Bridge Middle Point Deflection Due to the EI Mayor Earthquake for Case |
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Figure 3.83 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake for Case Il

(In Meters)
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Figure 3.84 : Suspension Bridge Middle Point Deflection Due to the EI Mayor Earthquake for Case
11 (In Meters)

3.5 Ground Motion and Moving Load Simultaneously

In this section, effect of ground motion on response of suspension bridge investigated.
To investigate response of suspension bridge, three different earthquake records
likewise to effect of the ground motion considered for analyzing. The earthquake
records considered for this analysis were the Coyote-Lake ground motion record, Kobe
ground motion record and El-Mayor ground motion record. In analyzing, vertical
acceleration due to ground motions considered to determine suspension bridge
response, and for displacements at the top of tower which appears in equation 2.56,
displacements of earthquake records were used. Horizontal displacements of the tower
neglected and considered to be equal to zero. It must be noted that intervals for Coyote
lake, Kobe and ElI Mayor ground motion acceleration was 0.005, 0.01 and 0.005
seconds. For determining the response these intervals increased by twenty times in
order to decrease the amount of the time needed for computing the response. First eight
modes of the suspension was taken into account in order to compute response of the

suspension bridge.
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3.5.1 Coyote Lake

In Figures 3.85-3.87 response of suspension bridge when it is subjected to Coyote Lake

earthquake motion and moving load has been illustrated.

3D PLOT OF SPAN DEFLECTION DURING COYOTE LAKE GROUND EXCITATION
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Figure 3.85 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion and Moving
Load for Case |

3D PLOT OF SPAN DEFLECTION DURING COYOTE LAKE GROUND EXCITATION

Figure 3.86 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion and Moving
Load for Case Il
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3D PLOT OF SPAN DEFLECTION DURING COYOTE LAKE GROUND EXCITATION

Figure 3.87 : 3D Plot of Span Deflection Due to the Coyote Lake Earthquake Motion and Moving
Load for Case Il

In Figures 3.88-3.90 deflection for middle point of suspension bridge due to the
Coyote Lake earthquake motion and moving load has been depicted.
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Figure 3.88 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake Motion
and Moving Load for Case |
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Figure 3.89 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake Motion
and Moving Load for Case Il
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Figure 3.90 : Suspension Bridge Middle Point Deflection Due to the Coyote Lake Earthquake Motion
and Moving Load for Case Il
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3.5.2 Kobe

In Figures 3.91-3.93 response of suspension bridge when it is subjected to Kobe

earthquake motion and moving load has been shown.
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Figure 3.91 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion and Moving Load for
Case |
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Figure 3.92 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion and Moving Load for
Case Il
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3D PLOT OF SPAN DEFLECTION DURING KOBE GROUND EXCITATION

0.6

Deflection

Figure 3.93 : 3D Plot of Span Deflection Due to the Kobe Earthquake Motion and Moving Load for
Case Il

In Figures 3.94-3.96 deflection for middle point of suspension bridge due to the Kobe

earthquake motion and moving load has been depicted.
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Figure 3.94 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake Motion and
Moving Load for Case |
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Figure 3.95 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake Motion and
Moving Load for Case Il
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Figure 3.96 : Suspension Bridge Middle Point Deflection Due to the Kobe Earthquake Motion and
Moving Load for Case 11
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3.5.3 El Mayor
In Figures 3.97-3.99 response of suspension bridge when it is subjected to EI Mayor

earthquake motion and moving load has been shown.

3D PLOT OF SPAN DEFLECTION DURING EL MAYOR GROUND EXCITATION
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Figure 3.97 : 3D Plot of Span Deflection Due to the ElI Mayor Earthquake Motion and Moving Load
for Case |
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Figure 3.98 : 3D Plot of Span Deflection Due to the EI Mayor Earthquake Motion and Moving Load
for Case Il
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3D PLOT OF SPAN DEFLECTION DURING EL MAYOR GROUND EXCITATION
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Figure 3.99 : 3D Plot of Span Deflection Due to the El Mayor Earthquake Motion and Moving Load
for Case Il

In Figures 3.100-3.102 deflection for middle point of suspension bridge due to the EI

Mayor earthquake motion and moving load has been displayed.
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Figure 3.100 : Suspension Bridge Middle Point Deflection Due to the EI Mayor Earthquake Motion
and Moving Load for Case |
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Figure 3.101 : Suspension Bridge Middle Point Deflection Due to the El Mayor Earthquake Motion
and Moving Load for Case Il
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Figure 3.102 : Suspension Bridge Middle Point Deflection Due to the EI Mayor Earthquake Motion
and Moving Load for Case 111
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4. CONCLUSION

In this study at first equation of motion for the suspension bridge for both extensible
and inextensible hangers derived. Three different cases defined and equation of
motions for mentioned cases solved in order to compute deflection, velocity and
acceleration of the cable and the deck due to the moving load and ground excitation
simultaneously. In Table 4.1 and Table 4.2 briefly results for extensible and

inextensible hangers presented.

Table 4.1 : Comparison of Middle Point Deflection at the time moving load reaches middle of the
span

Middle Point Deflection at the time load reaches middle of the span

Hangers type

e, lneenble . oytce
Case | 0.21738 0.21726 0.06%
Case Il 0.20986 0.20972 0.07%
Case Il 0.23195 0.2318 0.06%

Table 4.2 : Comparison of Middle Point Max Deflection

Middle Point Max Deflection

Hangers type

Sl nresble i
Case | 0.22916 0.22908 0.03%
Case Il 0.22741 0.22735 0.03%
Case Il 0.24351 0.24345 0.02%

Obtained result shows that computed deflection of the suspension bridge from
differential equation in which extensibility of the hangers considered are not much
different from result that extensibility of the hangers are ignored. It is worth to note
that, considering extensibility of the hangers, helps researchers to compute stress and

axial force that appears in hangers during vibration.
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Vibration modes of the bridge and natural frequency of the suspension bridge is
depicted in Table 4.3. First two modes of the vibration are symmetric which also
observed by Abdel Ghaffar [3].

Table 4.3 : Natural frequencies

Symmetric Frequency Anti-symmetric Frequency
modes (Hz) modes (Hz)

1 0.0430839 2 0.15360018

3 0.13347878 4 0.19338369

Results of this study compared with the result of ABAQUS software. In Table 4.4 and
Table 4.5 obtained result from MATLAB and ABAQUS compared. Unlike
mathematical assumption and written code in MATLAB, hangers in ABAQUS

modeled as separate elements.

Table 4.4 : Comparison result of MATLAB and ABAQUS for cable mid point deflection

Cable mid point deflection

Case MATLAB (m) ABAQUS (m) Difference (%)
I 0.21717 0.215036 0.9826%
Il 0.20966 0.212921 1.5554%
Il 0.23174 0.25266 9.0274%

Table 4.5 : Comparison result of MATLAB and ABAQUS for deck mid point deflection

Deck mid point deflection

Case MATLAB (m) ABAQUS (m)  Difference (%)
I 0.21738 0.215151 1.0254%
1 0.20986 0.21303 1.5105%
Il 0.23195 0.252785 8.9825%

e Stress of hangers do not exceed yielding stress during vibration and none of
the hangers elongate beyond the yielding strain.

e Computed deck deflection from deflection theory and improved deflection
theory are very close and results from deflection theory method is also reliable.

e Convergence for deflection of the span occurs at lower modes while for
velocity and acceleration computing higher modes effects are necessary which

is why in this study effect of 50 modes computed.
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First two modes of the suspension bridge and the first antisymmetric mode
appears after these two symmetric modes.

Obtained result from MATLAB code was in good agreement with result
computed by ABAQUS software. This fact shows reliability of the written code
in MATLAB.

It is suggested for future researches and studies below parameters taken into account

Inertial effect of the moving oscillators in which mass of the moving oscillators
makes a coupled differential equation with differential equation of the deck and
cable.

Acceleration of the moving oscillators where moving oscillator do not have
constant speed and the speed of the moving oscillators varies depending on the
time.

Series of moving loads, such as train crossing the suspension bridge.

Moving loads that crosses suspension bridge in opposite direction of each
other.

Effect of the various damping values on the dynamic response of the
suspension bridge.

Effect of the track irregularity on the dynamic response of the suspension
Bridge.

Effect of the deck supports on the dynamic behavior of the suspension bridge.
Effect of the cable support at the top of the tower on the dynamic behavior of
the suspension bridge.

Effect of the various damping’s on the dynamic behavior of the suspension
bridge.

Non-uniform ground excitation (Near field and far field) at supports of the
bridge, since suspension bridges are very large structures ground excitation
could be different at each support.

Suspension cable sag amount on dynamic response of the bridge.
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APPENDICES

APPENDIX A: Finite Difference Method

In finite difference method approximate values of derivatives would be computed. This
method is a numerical method which is an easy way for differential equations that
could not solve with conventional methods.

With using central difference rule first derivative according to FDM method provided

in equation (A.1).

;o Y+ — Yi-1
YYo= T ax (A1)

Implementing same method for second derivative would result in equation (A.2).

v Y+ — 2V T V-1 (A2)
] - sz '

Third derivative equation manifested in equation (A.3).

-1 1
_ 2 Y6+ T Y+ ~ Y- T3 Vi-2) (A.3)
@~ Ax3

"

And at last fourth derivative equation explained in equation (A.4).

w _ Ya+2) — AVa+n T 6Y0) — AVi-1) T Vi-2) (A2)
® Ax* '

To get trivial solution for system of equations which is produced by FDM method,
extra equations will be need to solve this problem equations for boundary points will

be used.
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APPENDIX B: Mathematics
Production of two sine terms is equal to difference of two cosine terms which is given

in equation (B.1).

sinAsinB = %[cos(A — B) — cos(4 + B)] (B.1)

Integration of two sine terms with different phases are presented in equation (B.2).

f sin (nLLx) sin (]%x) dx

1 L {In—jlmx (B.2)
9 E{([n —j]n) S‘”( L )

_( L ) [n+ jlmx
[n+ jlm ik L

If n and j are separate integers any linear sum of them with integer coefficient would

be integer which is given as mathematical expression in equation (B.3).

VnjeEZ An#¥j=>antBjEZ Nant fj#0 (B.3)

Equation B.2 will be equal to 0, because of given conditions in (B.4).

+jlnx
sin <M> =0 (B.4)
L
If n is equal to j equation B.2 would result in equation (B.5).
x=L x=L
nmx 2nmx

f sin? (T)dx = f [1—605( T >]dx

x=0 x=0 (BS)

3 [x _ (Zinx)]sz L
= |5 sin(— T3

From above equations multiplications of two shape functions can be found and

explained in equation (B.6).

x=L 0,n#j

j P Py ¥ = {E.n =j &9
x=0 2
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APPENDIX C: Cable Parabolic Equation

The Cable Shape Considered in current study is parabolic. Therefore, the coefficients
of second-degree polynomial and the origin of the cable axis in horizontal direction is
started from left tower, while the origin of the cable axis in vertical direction starts
from top of the left tower and the positive direction is considered downward. In this
order, the polynomial equation of the cable is provided in equation (C.1).

y=ax?+bx+c (C.1)
Three points coordinates are known which are brought in equation (C.2).

0

Yo YL =
£ (C.2)
8

YL =
2

Coefficients computed by solving system of equations. Coefficients are brought in

equation (C.3).

ax’+bx+c=> (C.3)
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APPENDIX D: Deriving Equilibrium Equation

Horizontal equilibrium for infinitesimal element of the cable is manifested in equation
(D.1).

d de As =0
(1) ©3)
Vertical equilibrium of the cable is brought in equation (D.2).

d dz
— (== = D.2
Is (T ds) As +mgAs =0 (D.2)

By rearranging equation D.2 and simplifying it, relation between tension and weight
of the cable extracted. This relation provided in equation (D.3).
d/ dz
— (=) =< D.3
ds( ds) mg (D3

Chain differential equation is given in equation (D.4) for reminding.

dz _ dx dz

T el D.4
ds ds dx (0-4)

Equation (D.5) provides relation between horizontal component of the cable tension

and cable tension

d
T _n (D.5)
ds
Inserting equation D.4 into equation D.5 would lead to equation (D.6).
d dx dz d dz
—(r=Z =2y = (g =)= — D.6
ds (T ds 'dx) ds (H'dx) mg (b-9)

Multiplying both sides of equation D.6 with 3—; would result into equation (D.7).

d*z ds
- - D.7
dez mg ax (D.7)
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APPENDIX E: Deriving Equation For Increment In Horizontal Component Of
Cable Tension

Equation (E.1) explains finite length of elongated cable.

ds' = \/(dx + du)? + (dy + dw)? (E.1)
Relation for force resulted from length increment is brought in equation (E.2).
(E-2)

Thus, relation for axial force that cause by elongation in the cable is manifested in
equation (E.3).

T _ g oS (E.3)

ds’+ds
ds’+ds

Multiplying both sides of the equation E.3 with

would result into equation E.4.

ds' —dsds'+ds _ ds'* — ds?

= (E4)
ds ds'+ds ds(ds'+ds)

Simplifying equation E.4 would result into equation (E.5).

=0
du? + 2dxdu + dw? + 2dwdz
dez + Elgf + 2dxdu + dz? + @vj + 2dwdz + Vdx? + dz?

=0 =0 =0 =0
B du? 4 2dxdu + dw? + 2dwdz (E5)

2ds?
_dudx dz dw 1(dw>2

“dsds T dsds z\ds
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APPENDIX F: Integrating First Term In Equation 2.17

Integrating by parts f:j—i. dw would result into equation (F.1).

x=L d d x=L dz
Z Z Z
—).dw =w—— — |w. F.1
(dx) dw = de f (dxz)w dx (F.1)
Knowing that (%) = —%g and considering that g is equal to 1, equation (F.2)

. . La
expresses integration of [ é d

x=0 J (F.Z)
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APPENDIX G: MATLAB Scripts

G.1 Length Of The Cable

a° oo o a° o o
a° oo o a° o o
a° oo oo a° o o
aC oo o aC o o
aC oo o aC o o
aC oo o
aC oo o
aC oo o
aC oo o
aC oo o
a° oo o
a° oo oo

aC o o
aC o o

aC o o
aC o o

(m)
(diminsionless)

a° oo o =) oe o°
a° Ao oo i o° [ oe
aC Ao o = m oo D oe
o° oo oo 1T} = o° A oe
o o° oo A &) o° H oe
o° oo oo — o\ % o\
aC oo oo oe o°
a° oo oo WM E % oe o°
o o° oo m B o° [ o°
a° oo o =, < oo o o°
ad° Ao oo o O [ o° B oo
o o\ e o oe o°
o° [ o° 0 I oe [ oo
o° g oe = T = d° O o°
o° M oe I e O m o° o°
o0 & oo o, = 4 [«5) o =2 oo
o0 U oo 0 o = m (=) o0 O oo
o\° o\ ) o O < .Im o° H o°
o° [ o° 0 RS — o° oo
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o0 I oe o858 ) Y= o\ o\
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(FORCE = kN, LENGTH = m)
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o9
3]

6 tic

7 syms x zw L wgwcEQgEocIgHwHQppZKazs ws
8

10

11

5 clear all
9



E g = 2.le8; % DECK YOUNG'S MODULUS (kN/m2)

E c = 2e8; % CABLE YOUNG'S MODULUS (kN/m2)
E h = 1.4e8; % HNAGER YOUNG'S MODULUS (kN/m2)
A g=1.5; % DECK AREA (m2)

A c = 0.78539; % SUSPENSION CABLE AREA (m2)

A h = 0.0314159; % HANGER AREA (m2)

I g=3.5; % DECK MOMENT OF INERTIA (m4)

K = 8.88e3; % HANGERS DISTRIBUTED STIFFENSS OVER THE SPAN (kN/m2)
E t = 3e7; % TOWER YOUNG'S MODULUS (kN/m2)
L t = 180 + 50; % TOWER HEIGHT (m)

It = 600; % TOWER MOMENT OF INERTIA (m4)

K t = 3*E_t*I t/((L _t)~3); % TOWER LATERAL STIFFNESS (kN/m)
Rl = 0; % NEWTON RAPHSON METHOD

R2 = 0; % NEWTON RAPHSON METHOD

R1S = 0; % NEWTON RAPHSON METHOD

R2S = 0; % NEWTON RAPHSON METHOD

28
29
30
31
32
33
34
35
36
37
38
39

o° o

o\°

w g+t wc;

oe

oe

MAIN SPAN DETAILS

CABLE WEIGHT PER LENGTH

DECK WEIGHT PER LENGTH
TOTAL WEIGHT

MAIN SPAN LIVE LOAD
SIDE SPAN LIVE LOAD

L =1 $ SPAN LENGTH (m)

L 0 =1757.42637; % CABLE LENGTH (m)

y0 = 175; % SAG

y = 4*y0* (x/L-(x/L)"2); % PARABOLIC SHAPE OF THE CABLE
D % CABLE SLOPE FUNCTION

y = diff(y,x);
2y = diff(y,x,2);

w = -w_T/D2y;

Dy at 0 = subs(Dy,x,0);

D

oe

CABLE SECOND DERVIATIVE W.R. TO X
TENSION IN CABLE DUE TO THE DEAD LOAD

jus)

oe
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48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

%% SIDE SPAN DETAILS

L S = 400; % LEFT SPAN LENGTH (m)

L_OS = 530.525876; % CABLE LENGTH (m)

y S = -y; % PARABOLIC SHAPE OF THE CABLE
DyS = diff(y S,x);

D2yS = diff(y S,x,2);
H wS = w_T/D2yS;
DyS at LS = subs (-DyS,x,12760/7);

o

ThetaR = atand(double (Dy at 0)); % THETA AT TOWER'S LEFT
Thetal. = atand(double (DyS at LS)); % THETA AT TOWER'S RIGHT
%% ITERATION WHILE MINIMUM ERROR SATISFIED

Counter = 1; % NUMBER OF ITERATIONS
Err (Counter) = 1; % ERROR FOR MAIN SPAN
ErrS (Counter) = 1; % ERROR FOR SIDE SPAN
H p Iteration(Counter) = 1.6484e5; %
H pS Iteration(Counter) = 1.5703e5; %
while or (abs (Err (Counter)) > 5e-1,abs (ErrS(Counter)) > 5e-1)

%% MAIN SPAN FINITE DIFFERENCE

H p = H p Iteration(Counter);
Tension = H p Iteration(Counter)/cosd(ThetaR);

H pS Iteration(Counter) = Tension * cosd(Thetal);
H pS = H pS Iteration(Counter);

Span = L ;

NO _Of Divisions = 16 ;

Dx = Span/NO _Of Divisions ;

%% MAIN SPAN
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84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Z = sym('z"'", [1 1]
eval (SymsVar (z,1i));
W= sym('w', [1 i]);
eval (SymsVar (w, 1))

%% LOOP FOR CREATING SYSTEM OF EQUATIONS

for j=3:1-2
Sz = PFiniteDy(Z,j,Dx)

PZ = PFiniteD2y(Z,7j,Dx);
QZz = PFiniteD3y(Z,7j,Dx);
RZ = PFiniteD4y (7,7, Dx)

SW = PFiniteDy (W, j,Dx);

PW = PFiniteD2y (W, j,Dx);
QW = PFiniteD3y (W, j,Dx);
RW = PFiniteD4y (W, j,Dx) ;

’

eqns (j-2) = E g*I g*RZ(j-2) + K*(Z(J) - W(J)) == p;
eqns (j-2+i-2) = (H_w+H p)*PW(Jj-2) + K*(Z(J) - W(J))
end

%% BOUNDARY CONDITIONS FOR DECK

eqns (j-2+i-2+1) = 72 (3) == 0;

egns (j-2+i-2+2) = 72 (i-2) == 0;

BC D27 0 = PFiniteD2y(Z,3,Dx);

eqns (j-2+i-2+3) = BC D2Z 0 == 0;

BC D27 L = PFiniteD2y(Z,i-2,Dx);

eqns (j-2+i-2+4) = BC _D2Z L(end) == 0;

%% BOUNDARY CONDITIONS FOR CABLE

egns (j-2+i-2+5) = W(3) == 0;

egns (j-2+1-2+6) = W(i-2) == 0;

%% SOLUTION

== H p*w T/H w;
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120 Temp = Z;
121 Temp (i+l:2*1i) = W;

(
122 sol = solve(egns, Temp) ;
123 vpa(RR(end-2-NO_Of Divisions-2-3),12);
124 vpa (RR(end-2),12);
125 Zsol = subs(Z,Z2(1:1),RR(1:1)");

126 Wsol = subs(W,W(l:1),RR(i+1:2*1)");

127

128 %% ERROR PROCESS AND NUMERIC INTEGRATIONS FOR MAIN SPAN
129

130 Sum = 0;

131 for g = 1:NO _Of Divisions

132 Sum = Sum + 0.5* (W Numeric(q)+W Numeric(g+l))* (L/NO_Of Divisions);
133 end

134 Sum = - (w_T/H w)*Sum;

135 Tension = H p Iteration(Counter)/cosd(ThetaR);
136 H pS Iteration(Counter) = Tension * cosd(Thetal);
137 H pS = H pS Iteration(Counter);

138 DL = (Hw + Hp Iteration(Counter) - H wS - H pS Iteration(Counter)) /K t;
139 Err (Counter+l) = L_O*(H_p_Iteration(Counter)/(E_c*A_c)) + Sum + 2*D L
140

141 $% ERROR FOR MAIN SPAN

142

143 if Err (Counter+1l) > 0

144 H p Iteration(Counter+l) = 0.75*H p;

145 P1 = H p;

146 R1 = Err (Counter+l);

147 else

148 H p Iteration(Counter+l) = 1.25*H p;

149 P2 = H p;

150 R2 = Err (Counter+l);

151 end

152 if R1*R2 < O;

153 H p Iteration(Counter+l) = (P1+P2)/2;

154 end

155
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156 %% SIDE SPAN FINITE DIFFERENCE

157

158 H pS = H pS Iteration (Counter);

159 SpanS =L S ;

160 NO_Of DivisionsS = 4 ;

161 DxS = SpanS/NO Of DivisionsS ;

162

163 %% SIDE SPAN

164

165 ZS = sym('zs', [1 iS]);

166 eval (SymsVar (zs,1S));

167 WS = sym('ws', [1 iS]);

168 eval (SymsVar (ws,1S));

169

170 %% LOOP FOR CREATING SYSTEM OF EQUATIONS SIDE SPAN
171

172 for j=3:iS8-2

173 SZS = PFiniteDy(ZS,]j,Dx);

174 PZS = PFiniteD2y(ZS,j,Dx);

175 QZS = PFiniteD3y(ZS,]j,Dx);

176 RZS = PFiniteD4y (ZS,j,Dx)

177 SWS = PFiniteDy (WS, j,Dx);

178 PWS = PFiniteD2y (WS, Jj,Dx);
179 QWS = PFiniteD3y (WS, Jj,Dx);
180 RWS = PFiniteD4y (WS, j,Dx)

’

’

181 egnsS(j-2) = E g*I g*RZS(j-2) + K*(ZS(j) - WS(Jj)) == pS;
182 egnsS(j-2+i-2) = (H wS+H pS)*PWS(j-2) + K*(2S(j) - WS(J)) == H pS*w_T/H wS;
183 end

184

185 %% BOUNDARY CONDITIONS FOR DECK

186

187 egnsS(j—-2+iS-2+1) = ZS(3) == 0;

188 egnsS(j-2+iS-2+2) = 735(1i5-2) == 0;

189 BC D2Z 0 S = PFiniteD2y(ZS,3,Dx);

190 egnsS(j-2+is-2+3) = BC D2Z 0 S == 0;

191 BC D27 1 S = PFiniteD2y(ZS,iS-2,Dx);
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192 egnsS(j-2+isS-2+4) = BC D2Z L S(end) == 0;
193

194 %% BOUNDARY CONDITIONS FOR CABLE

195

196 egnsS(j-2+iS-2+5) = WS (
197 egnsS(j-2+1i5-2+6) S (4
198

199 %% SOLUTION

200

201 TempS = ZS;

202 TempS(iS+1:2*iS) = WS;
203 solS = solve(eqgnsS, TempS);

204 So0lzS = structl2cell (solS);

205 RRS = vpa(SolzS);

206 vpa (RRS (end-2-NO_Of DivisionsS-2-3),12);
207 vpa (RRS (end-2),12);

I o

’

- W

) ==
5-2) 0;

208 ZsolS = subs(ZS,2S(1:iS8),RRS(1:1iS)");
209 WsolS = subs (WS,WS(1:iS),RRS(iS+1:2*1iS)");
210

211 %% ERROR PROCESS AND NUMERIC INTEGRATIONS FOR SIDE SPAN
212

213 Numeric ResultS = vpa(RRS,5);

214 SumS = 0;

215 for g = 1:NO Of DivisionsS

216 SumS = SumS + 0.5* (W NumericS(qg)+W NumericS(g+l))* (L _S/NO Of DivisionsS);
217 end

218 SumS = - (w_T/H wS)*SumS;

219 D LS = (H wS + H pS Iteration(Counter) - H w - H p Iteration(Counter))/K t;
220 ErrS(Counter+l) = L 0S*(H pS Iteration(Counter)/(E c*A c)) + SumS + D LS
221 if ErrS(Counter+l) > 0

222 H pS Iteration(Counter+l) = 0.75*H pS;

223 P1S = H pS;

224 R1S = ErrS(Counter+l);

225 else

226 H pS Iteration(Counter+l) = 1.25*H pS;
227 P2S = H pS;
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228 R2S = ErrS(Counter+l);

229 end

230 if R1S*R2S < O;

231 H pS Tteration(Counter+l) = (P1S+P2S)/2;

232 end

233 Counter = Counter + 1;

234 end

235

236 %% RESULT

237

238 Xlin = 0*Dx : Dx : NO Of Divisions*Dx;

239 Xlin = subs (X1lin,L,1600);

240 X1inLs = 0*Dx : Dx : NO Of DivisionsS*Dx;

241 X1inLS = subs (X1inLS,L S,400);

242 X1inRS 0*Dx : Dx : NO Of DivisionsS*Dx;

243 X1inRS = subs (X1inRS,L S,400);

244 plot(Xlin + L_S,-W Numeric)

245 hold on

246 plot(Xlin + L_S,-7Z Numeric)

247 hold on

248 plot (X1inLS,-W Numerics)

249 hold on

250 plot (X1inLS,-Z Numerics)

251 hold on

252 plot(X1inRS + L + L_S,-W NumericS$)

253 hold on

254 plot(X1linRS + L + L_S,-Z NumericS$)

255 title('Pseudo-Static Analysis Of The Suspension Bridge')
256 set(gca, 'XMinorTick','on', 'YMinorTick', 'on'")

257 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)
258 xlabel ('Span Ordinate (m)"')

259 ylabel ('Span Defelection (m)")

260 legend('Cable Deflection In Main Span', 'Deck Deflection In Main Span', 'Cable Deflection In Left Side Span', 'Deck
Deflection In Left Side Span', 'Cable Deflection In Right Side Span', 'Deck Deflection In Right Side Span')
261 toc
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G.3 Fitting Equation For static Displacement
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'C3:Ce7");
'D3:D67") ;

4
14

, '"Span'
, '"Span'

12 Zp = polyfit(t',Z Pseudo Static,20);

xlsread ('STATIC.xlsx"'
polyZsym (Wp) ;

xlsread ('STATIC.x1lsx'

simplify (vpa (ZEquation));

poly2sym(Zp) ;

15 WEquation = simplify(vpa (WEquation));
subs (ZEquation, x,XV (1)) ;

subs (WEquation,x,XV (1)) ;

double (Zspan') ;

double (Wspan') ;

1:65

0:25:1600;

0:25:1600;
11 Wp = polyfit(t',W Pseudo Static,20);

8 7 Pseudo Static

G.4 Extensible Hangers

5 clear all
6 syms x

7 W Pseudo Static
9 t

10 XV =

13 WEquation
14 ZEquation
16 ZEquation
17 for i

18 Wspan (i)
19 Zspan (i)
20 end

21 Wspan

22 Zspan
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6 clear all
Z(t) wx wv zxX zv t X n

7 syms W(t)
8 tic



9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

format long

%% UNKOWNS VALUES

E g = 2.1e8; % DECK MOODULUS OF ELASITICITY (kN/m"2)

E ¢ = 2e8; % SUSPENSION CABLE MOODULUS OF ELASITICITY (kN/m"2)
E h = 1.4e8; % HANGER MOODULUS OF ELASITICITY (kN/m"2)
I g= 3.5 % DECK MOMENT OF INERTIA (m"™4)

I ¢ = 0.05; % CABLE MOMENT OF INERTIA (m"4)

A g 1 458 % DECK AREA (m"2)

A c = 0.78539; % SUSPENSION CABLE AREA (m"2)

A h = 0.0314159; % HANGER AREA (m"2)

d h = 25; % SPACE BETWEEN HANGER (m)

K = 8.88e3; % DISTRIBUTED HANGER STIFFNESS (kN/m"2)

M = 20.3956; % VEHICLE MASS (ton)

V = 120/3.6; % VELOCITY OF MOVING MASS (m/s)

mg = 11.775; % DECK PER LENGTH MASS (ton/m)

mc = 6.1653; % CABLE PER LENGTH MASS (ton/m)

H = 321685.942; % CABLE HORZIONTAL TENSION (kN)

DH = 16484.597; % INCREMENT IN CABLE HORZIONTAL TENSION (kN)
L = 1600; % SPAN LENGTH (m)

T = H+DH; % DEFINING H & DH (kN)

L 0 =1757.42637; % CABLE LENGTH (m)

Alfa = -((E_c*A ¢)/(L_0))/(L"2); % ALFA COEFFICENT

g = 9.806; % GRAVITY ACCELERATION (m/s”"2)

u 0 = 0; % TOWER HORZIONTAL DISPLACEMENT @ x = 0
ul = 0; % TOWER HORZIONTAL DISPLACEMENT @ x = L
w 0 =0; % TOWER VERTICAL DISPLACEMENT @ x = 0

w L =0; % TOWER VERTICAL DISPLACEMENT @ x = L

N = 50; % NUMBER OF INVOLVED MODES

tMax = L/V;

$% DEFINING T & K ¢ & K g

for n=1:N

K c(n) = (K + T*((n*pi()/L)"2)-((2*Alfa*L)/ ((n*pi())"2))* ((((-1)"n+l)+1)"2)); % K VALUE IN EQUTION OF MOTION OF

146



THE CABLE
45 K g(n)
THE DECK
46 Erqg(n)
47 end

48
49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

°0

for n=1
ODE1 (n)
ODE2 (n)
end

COND1
COND2
COND3
COND4
CONDS

WsolN =
WsolxN

ZsolN
Z2s01xN

ODES =
[Wsol (n
Wsolx (n
WsolxN
Zsolx (n
Z2s01xN
end

29
[Cle)

[
)
)
)

(K + E_g*I_g* ((n*pi()/L)"4)); %

((u_L-u 0)

DIFFERENTIAL EQUATIONS

diff(w,t,2)
diff(z,t,2)

+ (K c(n)*W - K*Z)/m c -
+

dz (0)

[COND1, COND2, COND3, CONDA4];

SOLUTION

0;

0;
0;
0;

for n=1:N

DE1 (n), ODE2(n)];

Zzsol (n) ] dsolve (ODES, CONDS) ;
= Wsol(n) * sin(n*pi()*x/L);
WsolxN + Wsolx(n);
= 7Zsol(n) * sin(n*pi()*x/L);
Z2solxN + Zsolx(n);

o
’

PLOTING SPECIFIC POINT AT TOTAL TIME

format longG

K VALUE IN EQUTION OF MOTION OF

(L/2)* (w_Lt+w _0))*(((-1)"n+l)+1);

(Erg(n) *2*Alfa*L)/ (n*pi()*m _c) == 0;

(K g(n)*z - K*W)/m g == (2*M*g/(m_g*L))*sin (n*pi () *V*t/L);
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

figure (1)
fplot (WsolN, [0, tMax])

yLimits = get(gca, 'YLim') ;
ylim([1.15*yLimits (1), 1.15*yLimits(2)])
hold on

fplot (ZsolN, [0, tMax])
)

ylim([1.15*yLimits (1), 1.15*yLimits(2)])

plot (WXminN, -WYminN, 's', 'MarkerSize',10, '"MarkerEdgeColor', 'yellow', 'MarkerFaceColor',[1 1 0])

plot (ZXminN, -ZY¥minN, 's', 'MarkerSize',10, '"MarkerEdgeColor', 'red', '"MarkerFaceColor',[1 0 01])

Cable Deflection

Deck Deflection

hold on
hold on
hold on
COORW = strcat ('\uparrow') ;
StrW = strcat(' T = ', num2str (WXminN), ' s & ', '
COORW = {COORW, StrW};
PW = text (WXminN, -WYminN, COORW) ;
PW.FontSize = 16;
PW.FontName = 'Times New Roman';
PW.FontWeight = 'normal';
PW.HorizontalAlignment = 'center';
PW.VerticalAlignment = 'top';
COORZ = '\downarrow';
Strz = strcat(' T = ', num2str (ZXminN), ' s & ', '
COORZ = {Strz, COORZ};
PZ = text (ZXminN, -ZYminN, COORZ) ;
PZ.FontSize = 16;
PZ.FontName = 'Times New Roman';
PZ.FontWeight = 'normal';
PZ.HorizontalAlignment = 'center';
PZ.VerticalAlignment = 'bottom';
legend ({'Cable Deflection', 'Deck Deflection'}, 'Location', 'east')
title('Cable and Deck middle point Deflection')
xlabel ('Time")
ylabel ('Deflection')
set (gca, 'FontName', 'Times New Roman', 'FontSize',16)
set (gca, '"XMinorTick', 'on', 'YMinorTick', 'on'")
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num2str (double (-WYminN) ),

num2str (double (-ZY¥minN) ),



115 X Coor = double ((WXminN + ZXminN)* (1/2));

116 Y Coor = double ((-WYminN - ZYminN)*(1/2));

117 width Recl = X Coor/6;

118 yLimits = get(gca, 'YLim');

119 yLimits = abs(yLimits(2) - yLimits(1l));

120 Height Recl = yLimits/40;

121 rectangle('Position', [X Coor - Width Recl/2, Y Coor - Height Recl/2, Width Recl, Height Recl], 'EdgeColor',
[0.4,

0.1, 0.4], 'LineWidth', 1);

122 x a = 0.65;

123 y a 0.2;

124 w a = 0.2;

125 h a = 0.2;

126 ax = axes('Units', 'Normalized', 'Position', [x a, y a, w_a, h al,'XTick', [],'YTick', [],'Box',
'on', 'LinewWidth',

1,'Color', [0.95, 0.99, 0.95]);

127 hold on

128 fplot (WsolN, [0, tMax]) ;

129 hold on;

130 fplot(ZsolN, [0, tMax]);

131 hold on

132 plot (WXminN, -WYminN, 's', '"MarkerSize', 10, 'MarkerEdgeColor', 'yellow', "MarkerFaceColor',[1 1 01])
133 hold on

134 plot (ZXminN,-ZYminN, 's', '"MarkerSize', 10, "MarkerEdgeColor', 'red', 'MarkerFaceColor',[1 0 0])
135 hold on

136 axis ([X Coor-Width Recl/5, X Coor+Width Recl/5, Y Coor-Height Recl/5, Y Coor+Height Recl/5]);
137 title('")

138 xlabel ('Time')

139 ylabel ('Deflection')

140 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)

141

142 %% 3D PLOT OF SPAN DEFLECTION

143

144 figure(2)

145 ezsurf (WsolxN, [0, tMax, 0,L])

146 hold on
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147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

ezsurf (ZsolxN, [0, tMax, 0,L])

% legend('Cable Deflection', 'Deck Deflection')

title ('3D
xlabel ('T1
ylabel ('Lo
zlabel ('De

set (gca, 'FontName', 'Times New Roman', 'FontSize',16)

axis tight

xh = get(gca, 'XLabel'); % Handle of the x label
h, 'Units', 'Normalized'")
h, 'Position',[0.75,0.025,0], '"Rotation',12)
et (gca, 'YLabel'); % Handle of the y label
yh, 'Units', 'Normalized')

yh, 'Position',[0.175,0.05,0], 'Rotation',-14)

%% FUNCTIO

WsoltNFun
WXmintN =
WYmintN =
WsoltNFun
WXmaxtN =
WYmaxtN =
ZsoltNFun
ZXmintN =
ZYmintN
ZsoltNFun
ZXmaxtN =
ZYmaxtN

%% PLOTING SPAN DISPLACEMENT AT SPECIFIC TIME

format lon
figure (3)
fplot (Wsol
yLimits =

PLOT OF SPAN DEFLECTION'")
me')

ngitudinal coordinate')
flection')

NS

= matlabFunction (-WsoltN) ;
fminbnd (WsoltNFun,0,L) ;
subs (WsoltNFun, x, WXmintN) ;
= matlabFunction (WsoltN) ;
fminbnd (WsoltNFun, 0, L) ;
subs (WsoltNFun, x, WXmaxtN) ;
= matlabFunction (-ZsoltN) ;
fminbnd (ZsoltNFun,0,L) ;
subs (ZsoltNFun, x, ZXmintN) ;
= matlabFunction (ZsoltN) ;
fminbnd (ZsoltNFun,0,L) ;
subs (ZsoltNFun, x, ZXmaxtN) ;

gG

tN, [0,L])
get (gca, 'YLim'") ;
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183
184
185
186
187
188
189
190
m');
191
192
193
194
195
196
197
198
199
m');
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

ylim([1.15*yLimits (1), 1.15*yLimits(2)])
hold on

fplot (ZsoltN, [0,L])

yLimits = get(gca, 'YLim');
ylim([1.15*yLimits (1), 1.15*yLimits(2)])

hold on

COORW = strcat ('\uparrow');

StrW = strcat (' Location = ', num2str (WXmintN), ''m & ',
COORW = {COORW, StrW};

PW = text (WXmintN, -WYmintN, COORW) ;
PW.FontSize = 16;

PW.FontName = 'Times New Roman';

PW.FontWeight = 'normal';

PW.HorizontalAlignment = 'center';

PW.VerticalAlignment = 'top';

COORZ = '\downarrow';

StrZz = strcat (' Location = ', num2str (ZXmintN), ''m & ',

COORZ = {StrZ, COORZ};

PZ = text (ZXmintN,-ZYmintN, COORZ) ;
PZ.FontSize = 16;

PZ.FontName = 'Times New Roman';
PZ.FontWeight = 'normal';
PZ.HorizontalAlignment = 'center';
PZ.VerticalAlignment = 'bottom';

Cable Deflection = ', num2str (double (-WYmintN)),

Deck Deflection

legend ({'Cable Deflection', 'Deck Deflection'}, 'Location', 'east')
TitleString = strcat({'Cable and Deck middle point Deflection at t =

title(TitleString)

xlabel ('Location')

ylabel ('Deflection')

set (gca, 'FontName', 'Times New Roman', 'FontSize',16)
set (gca, 'XMinorTick', 'on', 'YMinorTick', 'on'")

X Coor = double ((WXmintN + ZXmintN)*(1/2));

Y Coor = double ((-WYmintN - Z¥YmintN)*(1/2));

Width Recl = X Coor/6;
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= ', num2str (double (-ZYmintN)),

num2str (tMax/2),



217 Height Recl = Y Coor/12;

218 rectangle('Position', [X Coor - Width_Recl/2, Y Coor - Height_Recl/2, Width Recl, Height Recl], "EdgeColor',
[0.4,

0.1, 0.4], 'LineWidth', 1);

219 x a = 0.65;

220 y a = 0.2;
221 w a = 0.2;
222 h a = 0.2;
223 ax = axes('Units', 'Normalized', 'Position', [x a, y a, w a, h al],'XTick', [],'YTick', [],'Box"',

'on', 'LineWidth',

1, 'Color', [0.95, 0.99, 0.95]);

224 hold on

225 fplot (WsoltN, [0,L]);

226 hold on;

227 fplot(ZsoltN, [0,L]);

228 hold on

229 axis ([X Coor-Width Recl/100, X Coor+Width Recl1/100, Y Coor-Height Recl/100, Y Coor+Height Recl/100]);
230 title('")

231 xlabel('Time')

232 ylabel ('Deflection')

233 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)

234

235 %% HANGERS ELONGATION

236

237 T Max Elongation = WXminN;

238 T Middle Elongation = WXmintN;

239 WsolElongation = subs (WsolxN,t,T Max Elongation);

240 ZsolElongation = subs(ZsolxN,t,T Max Elongation);

241 WsolMaxElongation = subs(WsolxN,t,T Middle Elongation);
242 ZsolMaxElongation subs (ZsolxN,t,T Middle Elongation);
243 for i =1 : 63

244 W Elongation(i) = subs(WsolElongation,x,i*d h);

245 Z Elongation (i) subs (ZsolElongation, x,1i*d h);

246 W Middle Elongation(i) = subs (WsolMaxElongation,x,i*d h);
247 Z Middle Elongation(i) = subs(ZsolMaxElongation,x,i*d h);
248 end
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249

250 xlswrite ('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIIlI

(:)), 'Elongation' , 'C3:C66"'")

251 xlswrite ('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIIl

(:)), 'Elongation' , 'D3:D66')

252 xlswrite ('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIIlI

(W Middle Elongation(:)), 'Elongation' , 'F3:F66")

253 xlswrite ('E:\ABAQUSTEZ\Software Modeling\MATLAB\Numeric Assumption\ElongationCaseIIl

(Z Middle Elongation(:)), 'Elongation' , 'G3:G66")
254
255 toc

G.5 Inextensible Hangers

1l 5555555555555 %%5%%%5%%%5%%%5%%%55%%5%%%5%%%5%5%5%5%%%5%5%5%5%5%%5%%5%5%%5%5%5%5%5%%%5%%5%5%%5%5%5%5%5%%%%%
2 $5%%%5%%5%%5%%5%%%5%%%%%%%% INEXTENSIBLE HANGERS $%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 3555555555855 855855 8555558555555 55%555%55%55%55%55%55%55%%55%%55%%5%5%%%
4 clc

5 clear all

6 syms Z(t) wx wv zx zv t X n

7 tic

8

9 format long

10

11 %% UNKOWNS VALUES

12

13 E g = 2.1e8; % DECK MOODULUS OF ELASITICITY (kN/m”2)

14 E ¢c = 2e8; % SUSPENSION CABLE MOODULUS OF ELASITICITY (kN/m”2)
15 E h = 1.4e8; % HANGER MOODULUS OF ELASITICITY (kN/m"2)

16 T g = 3.5; % DECK MOMENT OF INERTIA (m"™4)

17 I ¢ = 0.05; % CABLE MOMENT OF INERTIA (m"™4)

18 A g =1.5; % DECK AREA (m"2)

19 A c = 0.78539; % SUSPENSION CABLE AREA (m"2)

20 A h = 0.0314159; % HANGER AREA (m"2)

21 d h = 25; % SPACE BETWEEN HANGER (m)
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.x1lsx!

.xlsx'!

.x1lsx!

.xlsx!

double (W _Elongation
double (Z_Elongation
double

double



22 K = 8.88e3; % DISTRIBUTED HANGER STIFFNESS (kN/m"2)
23 M = 20.3956; % VEHICLE MASS (ton)

24 vV = 120/3.6; % VELOCITY OF MOVING MASS (m/s)

25 mg = 11.775; % DECK PER LENGTH MASS (ton/m)

26 mc = 6.1653; % CABLE PER LENGTH MASS (ton/m)

27 H = 321685.942; % CABLE HORZIONTAL TENSION (kN)

28 DH = 16484.597; % INCREMENT IN CABLE HORZIONTAL TENSION (kN)
29 L = 1600; % SPAN LENGTH (m)

30 T = H+DH; % DEFINING H & DH (kN)

31 L0 = 1757.42637; % CABLE LENGTH (m)

32 Alfa = -((E_c*A ¢c)/(L_0))/(L"2); % ALFA COEFFICENT

33 g = 9.806; % GRAVITY ACCELERATION (m/s”"2)

34 u_O = 0; % TOWER HORZIONTAL DISPLACEMENT @ x = 0
35 u L = 0; % TOWER HORZIONTAL DISPLACEMENT @ x = L
36 w_O = 0; % TOWER VERTICAL DISPLACEMENT @ x = 0
37 w_L = 0; $ TOWER VERTICAL DISPLACEMENT @ x = L
38 N = 50; % NUMBER OF INVOLVED MODES

39 tMax = L/V;

40

41 $% DEFINING T & K c & K g

42

43 for n=1:N

44 K g(n) = ( E g*I g*((n*pi()/L)"4) + T*((n*pi()/L)"2)-((2*Alfa*L)/ ((n*pi())"2))*((((-1)"n+l)+1)"2)); % K VALUE IN
EQUTION OF MOTION OF THE CABLE

45 Erg(n) = ((u_L-u 0) - (1/2)*(w _L+w_0))* (((-1)"n+l)+1);

46 end

47

48 $% DIFFERENTIAL EQUATIONS

49

50 for n=1:N

51 ODEl(n) = diff(z,t,2) + (K g(n)*zZ)/(m g + m c) == (2*M*g/((m_g + m c)*L))*sin(n*pi()*V*t/L) + (Erqg(n)
*2*Alfa*L)/(n*pi()*(m g + m_c));

52 end

53 COND1 = Z(0) == 0;

54 COND2 = dz(0) == 0;

55 CONDS = [COND1l, COND2];
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

%% SOLUTION

ZsolN = 0;

ZsolxN = 0;

for n=1:N

Zsol (n) = dsolve (ODEl (n), CONDS);
Zsolx(n) = Zsol(n) * sin(n*pi()*x/L);
2s0lxN = ZsolxN + Zsolx(n);

end

%% PLOTING SPECIFIC POINT AT TOTAL TIME

format longG

figure (1)

fplot (ZsolN, [0, tMax])

yLimits = get(gca, 'YLim");
ylim([1.15*yLimits (1), 1.15*yLimits(2)])
hold on

plot (ZXminN, -ZYminN, 's', 'MarkerSize',10, '"MarkerEdgeColor', 'red', 'MarkerFaceColor', [1 0 0])

hold on

COORZ = '\downarrow';

Strz = strcat(' T = ', num2str (ZXminN), ' s & ', '
COORZ = {Strz, COORZ};

PZ = text (ZXminN, -ZYminN, COORZ) ;

PZ.FontSize = 16;

PZ.FontName = 'Times New Roman';

PZ.FontWeight = 'normal';

PZ.HorizontalAlignment = 'center';
PZ.VerticalAlignment = 'bottom';

legend ({'Deck Deflection'}, 'Location', 'east')
title('Deck middle point Deflection')

xlabel ('Time")

ylabel ('Deflection')

set (gca, 'FontName', 'Times New Roman', 'FontSize',16)
set (gca, '"XMinorTick', 'on', 'YMinorTick', 'on'")

Deck Deflection
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92 X Coor = double (ZXminN) ;

93 Y Coor = double (- ZYminN) ;

94 Width Recl = X Coor/6;

95 yLimits = get(gca,'YLim'");

96 yLimits = abs(yLimits(2) - yLimits(1l));

97 Height Recl = yLimits/40;

98 rectangle('Position', [X Coor - Width Recl/2, Y Coor - Height Recl/2, Width Recl, Height Recl], 'EdgeColor', [0.4,
0.1, 0.4], 'LineWidth', 1);

99 x a = 0.65;

100 y a = 0.2;
101 w a = 0.2;
102 h a = 0.2;
103 ax = axes('Units', 'Normalized', 'Position', [x a, y a, w_a, h al,'XTick', [],'YTick', [],'Box',

'on', 'LineWidth',

1,'Color', [0.95, 0.99, 0.951);

104 hold on

105 fplot(ZsolN, [0, tMax]) ;

106 hold on

107 plot (ZXminN,-ZYminN, 's', '"MarkerSize', 10, "MarkerEdgeColor', 'red', 'MarkerFaceColor', [1 0 0])
108 hold on

109 axis ([X Coor-Width Recl/5, X Coor+Width Recl/5, Y Coor-Height Recl/5, Y Coor+Height Recl/5]);
110 title('")

111 xlabel ('Time")

112 ylabel ('Deflection')

113 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)
114

115 %% 3D PLOT OF SPAN DEFLECTION

116

117 figure(2)

118 ezsurf (ZsolxN, [0,tMax, 0,L])

119 title('3D PLOT OF SPAN DEFLECTION')

120 xlabel ('Time'")

121 ylabel ('Longitudinal coordinate')

122 zlabel ('Deflection')

123 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)
124 axis tight
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125 xh = get(gca, 'XLabel');

126 set(xh, 'Units', 'Normalized')

127 set(xh, 'Position',[0.75,0.025,0], 'Rotation',12)
128 yh = get(gca, 'YLabel');

129 set(yh, 'Units', 'Normalized')

130 set(yh, 'Position',[0.175,0.05,0], 'Rotation',-14)
131

132 %% PLOTING SPAN DISPLACEMENT AT SPECIFIC TIME
133

134 format longG

135 figure(3)

136 fplot(ZsoltN, [0,L])

137 yLimits = get(gca, 'YLim'");

138 ylim([1.15*yLimits (1), 1.15*yLimits(2)])

139 hold on

140 plot (ZXmintN,-ZYmintN, 's', '"MarkerSize',10, 'MarkerEdgeColor', 'red', "MarkerFaceColor',[1 0 0])
141 hold on

142 COORZ = '\downarrow';
143 Strz = strcat (' Location = ', num2str (ZXmintN), ' m & ', ' Deck Deflection = ', num2str (double (-ZY¥mintN)), '
m');

144 COORZ = {Strz, COORZ};

145 PZ = text (ZXmintN, -ZYmintN, COORZ) ;

146 PZ.FontSize = 16;

147 PZ.FontName = 'Times New Roman';

148 PZ.FontWeight = 'normal';

149 PZ.HorizontalAlignment = 'center';

150 PZ.VerticalAlignment = 'bottom';

151 legend({'Deck Deflection'}, 'Location', 'east"')

152 TitleString = strcat({'Deck middle point Deflection at t = '} , num2str (tMax/2), ' s');
153 title(TitleString)

154 xlabel ('Location')

155 ylabel ('Deflection')

156 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)
157 set(gca, 'XMinorTick', 'on', 'YMinorTick', 'on")

158 X Coor = double (ZXmintN) ;

159 Y Coor = double(- ZYmintN);
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160 Width Recl = X Coor/6;

161 Height Recl = Y Coor/12;

162 rectangle('Position', [X Coor - Width Recl/2, Y Coor - Height Recl/2, Width Recl, Height Recl], 'EdgeColor',
[0.4,

0.1, 0.41, 'Linewidth', 1);

163 x a = 0.65;

164 y a 0.2;

165 w_a 0.2;

166 h a = 0.2;

167 ax = axes('Units', 'Normalized', 'Position', [x a, y a, w_a, h al],'XTick', [],'YTick', [],'Box',
'on', 'LineWidth',

1,'Color', [0.95, 0.99, 0.95]);

168 hold on

169 fplot(ZsoltN, [0,L]);

170 hold on

171 axis ([X Coor-Width Recl/100, X Coor+Width Recl/100, Y Coor-Height Recl/100, Y Coor+Height Recl/100]);
172 title('")

173 xlabel ('Location')

174 ylabel ('Deflection')

175 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)

176

177 toc

G.6 Maximum Acceleration
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clc

clear all

syms W(t) Z(t) wx wv zx zv £t x n V
tic

R © o Jo Ul Wi

0 format long
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11
12 %% UNKOWNS VALUES

13

14 E g = 2.1e8; % DECK MOODULUS OF ELASITICITY (kN/m"2)
15 E ¢ = 2e8; % SUSPENSION CABLE MOODULUS OF ELASITICITY (kN/m"2)
16 E h = 1.4e8; % HANGER MOODULUS OF ELASITICITY (kN/m"2)
17 I g = 3.5; % DECK MOMENT OF INERTIA (m"4)

18 I ¢ = 0.05; % CABLE MOMENT OF INERTIA (m”4)

19 A g =1.5; % DECK AREA (m"2)

20 A c = 0.78539; % SUSPENSION CABLE AREA (m"2)

21 A h = 0.0314159; % HANGER AREA (m"2)

22 d h = 25; % SPACE BETWEEN HANGER (m)

23 K = 8.88e3; % DISTRIBUTED HANGER STIFFNESS (kN/m"2)
24 M = 20.3956; % VEHICLE MASS (ton)

25 m g = 11.775; % DECK PER LENGTH MASS (ton/m)

26 m_c = 6.1653; % CABLE PER LENGTH MASS (ton/m)

27 H = 321685.942; % CABLE HORZIONTAL TENSION (kN)

oe

28 DH = 16484.597;
29 L = 1600;

INCREMENT IN CABLE HORZIONTAL TENSION (kN)
SPAN LENGTH (m)

oe

30 T = H+DH; $ DEFINING H & DH (kN)

31 L_O = 1757.42637; % CABLE LENGTH (m)

32 Alfa = - ((E_c*A c¢)/(L_0))/(L"2); % ALFA COEFFICENT

33 g = 9.806; % GRAVITY ACCELERATION (m/s”2)

34 u_O = 0; % TOWER HORZIONTAL DISPLACEMENT @ x = 0
35 u L = 0; % TOWER HORZIONTAL DISPLACEMENT @ x = L
36 w 0 = 0; % TOWER VERTICAL DISPLACEMENT @ x = 0
37 W_L = 0; % TOWER VERTICAL DISPLACEMENT @ x = L
38 N = 50; $ NUMBER OF INVOLVED MODES

39

40 %% DEFINING T & K c & K g

41

42 for n=1:N

43 K g(n) = ( E g*I g*((n*pi()/L)"4) + T*((n*pi()/L)"2)-((2*Alfa*L)/ ((n*pi())"2))*((((-1)"n+l)+1)"2)); % K VALUE IN
EQUTION OF MOTION OF THE CABLE

44 Erg(n) = ((u_L-u 0) - (1/2)*(w _L+w_0))*((-1) " n+l);

45 end
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46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

*2*Alfa*L)/(n*pi()*(m g + m _c));

%% DIFFERENTIAL EQUATIONS

dz = diff(z,t);
for n=1:N
ODE1 (n)

end

COND1 = Z(0) == 0;
COND2 = dZ (0) == 0;
CONDS = [COND1, COND2];
%% SOLUTION

ZsolN = 0;

ZsolxN = 0;

for n=1:N

Z2sol (n) = dsolve (ODEl (n), CONDS);
Zsolx (n) = Zsol(n) * sin(n*pi()*x/L);
2s0lxN = ZsolxN + Zsolx(n);

end

%% FUNCTIONS

[MeshR, MeshC] = size(xV);
72s0lVN = diff (ZsolxN,t,1);
72s0lAN = diff (ZsolxN,t,2);
Step = 20;

VMAX = Step * 12;

VMAX = VMAX + 1;

for Vstep = 1 : Step : VMAX % VELOCITY OF MOVING LOAD

tMax = L/Vstep;
for i = 1 : MeshC
Zs0lANV = subs (ZsolAN, [x,V]

diff(Z,t,2) + (K g(n)*2z)/ (m_

[xV (i) ,Vstepl):

((m_ g + m _c)*L))*sin(n*pi () *V*t/L) + (Erqg(n)

(m/s)

r
AV Min Location (Iteration,i) = fminbnd(matlabFunction (ZsolANV),0,tMax);
)

AV Max Location(Iteration,i

160

= fminbnd (matlabFunction (-ZsolANV), 0, tMax) ;



81 en

82 end

83

84 for Vstep = 1 : Step : VMAX % VELOCITY OF MOVING LOAD (m/s)

85 for 1 = 1 : MeshC

86 ZsolANV = subs (ZsolAN, x,xV (1))

87 AV Max (Iteration,i) = subs(ZsolANV, [t,V], [AV Location (Iteration,i),Vstepl]);
88 end

89 end

90

91 format longG
92

93 xv = [0,xV,L];

94 Intial = zeros([1l,MeshC + 2]);

95 AV Max double ([0,AV Max,0]);

96 AV Max = double([Intial;AV Max]);

97 AV Max AV Max * 1e3/9.81;

98 Vstep = 1 : Step : VMAX;

99 Vstep = [0,Vstep];

100 figure (1)

101 surf (Vstep',xV',AV Max')

102 hold on

103 title('3D PLOT OF MAX ACCELERATION ')

104 xlabel ('Velocity (m/s)")

105 ylabel ('Longitudinal coordinate (m) ")

106 zlabel ('Acceleration Max 107-"3 g')

107 set(gca, 'FontName', 'Times New Roman', 'FontSize',16)
108 axis tight

109 xh = get(gca, 'XLabel'); % Handle of the x label

110 set(xh, 'Units', 'Normalized'")

111 set(xh, 'Position',[0.75,0.025,0], 'Rotation',12)
112 yh = get(gca, 'YLabel'); % Handle of the y label
113 set(yh, 'Units', 'Normalized')

114 set(yh, 'Position',[0.175,0.05,0], 'Rotation',-14)
115

116 toc
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