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ON THE RICCI SOLITONS WITH PARALLEL VECTOR FIELDS

SUMMARY

The Riemannian geometry has been an outstanding branch of mathematics due to its
importance in understanding many geometrical structures. In the last century, some
scientists have introduced new concepts to describe more complex structures. The new
improvements helped Perelman to solve Poincaré conjecture by using the Ricci flow.
There are still lots of unknowns in the associated topics such as gradient Einstein-type
manifolds, quasi-Einstein manifolds, and Ricci solitons which are examples for the
most significant ones. To contribute to the field, we have tried to find some special
structures as instances for the Ricci solitons.

In this thesis, we started with the introduction chapter which is composed of simple
answers for how these new objects emerge, why we need them, and what is the
geometric meaning behind. The subjects which range from Einstein manifolds to
Ricci solitons have taken in hand according to the historical developments. Some
mathematicians who had contributed to the field mentioned throughout the chapter. At
the end, the aim of this study which try to relate some famous geometric concepts is
given.

In the second chapter, we have dealt with the basic knowledge on the Riemannian
geometry. Firstly, the definition of differentiable manifolds that are smooth, locally
Euclidean spaces is given. Then, some topological properties which belong to these
manifolds are mentioned. It is known that the Riemannian metric g, a distance
function, defined on differentiable manifolds to be able to examine curvatures.
Moreover, the Riemann curvature tensor which is obtained from the metric g gives
another significant instrument,the Ricci tensor, by contraction. The tools like these to
study the Riemannian geometry are described in detailed. Later on, we built up all the
work on this knowledge.

In the third chapter, we entered the main subjects of the thesis. Einstein manifolds
and quasi-Einstein manifolds are defined with respect to the Ricci tensor. Afterwards,
gradient Einstein-type manifolds and their classifications are introduced in the
existence of some vector field X on the manifold. Several examples and couples of
recent theorems are given in the following. Also, the trace-free Weyl tensor, and related
Cotton, Bach, Schouten tensors are mentioned to consider the concept of curvature
in different ways. The relations between these tensors are observed through some
important lemmas and theorems.

In the next chapter, Hamilton’s Ricci flow and Ricci solitons which are very popular
topics because of the Poincaré conjecture are taken in hand. The equation for the
gradient Ricci soliton is analyzed for the next chapter. Additionally, the cumulative
knowledge in the literature up to now has been shared with the help of theorems and
examples.
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In the last chapter, we have discussed the results of our study, and related them with the
recent works of other colleagues. It has been searched for the Ricci soliton structure
after admitting parallel vector field on various types of Einstein manifolds. Then, this
case is checked out if it fits to the well-known theorems of the topics. The outcomes
of the research are noteworthy in a way that the studied structure sets an example for
the recent findings on the topic.
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RICCI SOLITONLARI VE PARALEL VEKTOR ALANLARI

OZET

Geometri esas olarak evrenin kiigiik bir noktadan dev bir kara delife kadar
matematiksel yorumudur. Objeleri, dogrular, egriler ve agilar cinsinden ifade edip,
analiz yapmaya yardimcidir. Riemann geometrisi, daha kompleks yapilar1 anlamadaki
oneminden Otiirii matematigin gdze ¢arpan bir dali olmustur. Geometriye getirdigi yeni
kavramlar sayesinde yiiksek boyutlu egimli yiizeylere sahip uzaylar iizerinde caligmak
daha kolay hale gelmistir.

Lokal olarak Oklid uzaylarina benzeyen, tiiretilebilir Riemann manifoldlar1 bu alanda
caligirken kullandigimiz en temel yapilardir. Bu objeler daha kompleks uzaylari,
iyi bildigimiz, nispeten basit Oklid uzaylar1 yardimiyla anlamanzi saglar. Sadece
matematikte degil, klasik mekanik ve genel gorelilik gibi fizigin bircok alaninda da
kullanilan bir konsepttir.

Geometriciler, bir manifold iizerindeki en iyi Riemann yapisini bulmaya caligmiglar
ve sonrasinda en iyi yapinin sabit egrilikli manifoldlarda bulundugu gosterilmistir. Bir
manifold tizerindeki egriligi hesaplamak i¢in iki temel ara¢ kullanilmistir; Riemann
egrilik tensorii ve Ricci tensorii.  Gectigimiz ylizyilda, bazi bilim insanlar1 bu
araclar yardimiyla daha kompleks yapilar1 tasvir edebilmek i¢in yeni kavramlar
tanimlamiglardir. Bu yeni kavramlar Perelman’in bir asir boyu cevapsiz kalmig olan
tinlii Poincaré sanisini Ricci akisi yardimiyla ¢ozmesine yardimci olmusgtur.

Gradiyent Einstein tipi manifoldlar, yar1 Einstein manifoldlari, ve Ricci solitonlari gibi
arkasinda derin fiziksel anlamlar barindiran yapilar hakkinda hala bilinmeyen bir¢ok
sey bulunmaktadir. Bu alanda katkili olabilmek adina, biz Ricci solitonlara ornek
olabilecek bazi 6zel yapilar gradiyent Einstein tipi manifoldlar iizerinde arastirdik.

Tezin giris boliimiinde, bu olusumlarin nereden ¢iktigini, niye bdyle tanimlamalara
ihtiya¢c duydugumuzu ve arkalarinda yatan geometrik yorumu cevaplamaya calistik.
Konular1 FEinstein manifoldlarindan baglayarak Ricci solitonlarina kadar tarihi
ilerleyisine gore ele aldik. Boliim iginde bu alanlara katkida bulunmus bazi degerli
matematik¢ilerden de bahsettik. Son olarak, calismanin amaci, bazi ¢okca bilinen
geometrik kavramlar iliskilendirmek olarak verildi.

Ikinci boliimde, Riemann geometrisi iizerine genel bilgiler ile ilgilendik. Oncelikle,
bolgesel olarak Oklid uzaylarma benzeyen, tiiretilebilir manifoldlarin tanimini
verdik. Sonrasinda, bu manifoldlarin sahip oldugu topolojik 6zelliklerden bahsettik.
Kovaryant tiirev, kathh carpim gibi ilerleyen boliimlerde sikca kullanacagimiz
islemlerin tanimlarim1 verdik.  Daha sonra, tiiretilebilir manifoldlar {izerindeki
egimleri incelemek i¢in, uzaklik fonksiyonu diyebilecegimiz "g" Riemann metriginin
tanimli oldugu gosterdik.  Dahasi, bu metrikten elde edilen Riemann egrilik
tensoriiniin daraltilmasi ile bagka 6nemli bir ara¢ olan Ricci tensorii elde ediliyor.

Bu alandaki Einstein manifoldlar1 gibi bir¢ok manifold Ricci tensoriiniin yapisina
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gore cesitlendiriliyor. Bu ag¢idan calismamizin temel tagim olusturuyor. Riemann
geometrisini caligmak icin gerekli diger benzer araclar da tezin ilgili kisminda ayrintili
olarak islenmigstir. Bu temel bilgiler baz alinarak ilerleyen boliimlerdeki yapilar
olusturulmustur.

Uciincii boliimde, tezin temel konularma giris yapilmustir.  Biliyoruz ki, Ricci
tensOriiniin metrik tensoriiyle orantili oldugu manifoldlara Einstein manifoldlari
deniliyor. Bu manifoldlar, uzay-zaman diizleminde bir kiitle tarafinda yaratilan
cekim giiclinii aciklamaya calisan Einstein’in iinlii alan denklemleriyle yakindan
iligkilidir. Bu ac¢idan bircok matematik¢i ve fizik¢inin ilgisini ¢ekmektedir. Einstein
manifoldlar iizerindeki en degerli calismalardan biri M. C. Chaki ve R. K. Maity
tarafindan yiiriitilmiistir. 2000 yilinda, Einstein manifoldlarinin genellestirilmis
konsepti olan yar1 Einstein manifoldlarini, bir sonraki sene de genellestirilmis yar1
Einstein manifoldlarin1 tanitmiglardir. Genel goreliligin anlagilmasi ve modellenmesi
bu baglamda kolaylagsmistir. Einstein manifoldlar1 ve yar1 Einstein manifoldlari, ilgili
Ricci tensorlerinin yapisina gore tanimlanmigtir. Sonrasinda, manifoldlari {izerlerinde
belli kosullar1 saglayan bir X vektor alanina sahip olmalar1 haline gore gradiyent
Einstein tipi manifoldlar ve onlarin simiflandirilmas: olarak cesitlendirilmistir.
Calismanin devaminda, cesitli 6rnekler ve yakin zamanda ispatlanmis teoremler
verilmigtir. Ayrica, egrilik kavramini farkli agilardan degerlendirmek icin Weyl tensorii
ve onunla iligkili Cotton, Bach, Schouten tensorlerinden bahsedilmistir. Bu tensorlerin
birbiriyle iligkisi bazi dnemli Onsav ve teoremler aracilifiyla gézlemlenmistir.

Bir sonraki boliimde, iinlii Poincaré sanmisinin ¢oziimiindeki rollerinden dolayi
popiilerligi artmig Ricci akist ve Ricei solitonlart ele alinmistir.  Uzun yillar
coziillememis san1 sunu iddia etmekteydi; her basit bagintili, kapali, 3 boyutlu manifold
ile 3-kiire arasinda bir homeomorfizma vardir. Sonrasinda, bu saninin daha genel
hali olan Thurton’in geometriklestirme sanist her 3 boyutlu kompakt manifoldu
siniflandirmayla ilgiydi. Bu problemlerin ¢oziimiiyle ilgili en biiylik adim 1982’de
Ricci akigini literatiire kazandiran Hamilton tarafindan atilmistir. Gegtigimiz yillarda,
Perelman Ricci akisini kullanarak Poincaré sanisini (artik teorem) ispatlamigtir. Yeni
bir kavram olan Ricci solitonlart bu sekilde ortaya ¢ikmistir. Ricci solitonlari, Ricci
akis denkleminin kendi kendine benzer ¢oziimleridir. Bu boliimde gradiyent Ricci
solitonunu veren denklem ilerleyen boliimlerde kullanilmak iizere analiz edilmistir.
Ek olarak, bu alan ile ilgili simdiye kadar yapilmis literatiirdeki ¢alismalar taranmais,
teorem ve Ornekler yardimiyla paylagilmistir.

Son boliimde, kendi ¢alismamiz iizerine yogunlasip, sonuclarimizi giincel caligmalarla
iliskilendirdik.  Literatiire baktifimizda, FEinstein tipi yapilara sahip Riemann
manifoldlarinin Ricci soliton 6rnedi bulmak i¢in arastirildigini gériityoruz. Genellestir-
ilmis Einstein manifoldlarindan Ricci solitonlarina geciste, Ricci tensorii, Hessian
tensorii, ve tensor ¢carpimindan olusan m-Bakry-Emery-Ricci tensoriiniin kullanildigi
goriilmektedir. Bu tezde, cesitli Einstein tipi manifoldlarda paralel vektor alani
tanimlandiginda Ricci soliton yapis1 elde edilip edilemeyecegi arastirilmistir. Uzerinde
paralel vektor alani tamimlanmig bir gradiyent FEinstein tipi manifoldun, sabit
skaler egrilikli Ricci soliton ve yaklasik yar1 Einstein yapilarina sahip oldugu
gozlemlenmigtir. Sonucunda da, bu yapinin konuyla ilgili bilinen temel teoremlere
uyumlu olup olmadigi kontrol edilmistir. H. D. Cao ve Q. Chen’in ¢alismalari
yardimiyla, boyutu n > 5 olan manifoldlarin bazi kosullar altinda harmonik
Weyl tensoriine sahip oldugu ve Z. Hu, D. Li ve S. Zhai’nin calismalariyla
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iligkilendirildiginde bir aralik ile (n — 1) boyutlu bir Einstein manifoldunun katl
carptmina isometrik oldugu goriilmiistiir. Son olarak da, bu yapiya ornek olarak 3
boyutlu, Bach diiz yapiya sahip bir manifold verilmistir.
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1. INTRODUCTION

Geometry is essentially a mathematical interpretation of the universe (including the
higher dimensional forms) in the scale of a point to a black hole. It analyzes objects
or structures in terms of lines, angles, and surfaces. Up to three dimensional space,
the concept is much easier because it is the space that we are living in. It is clear
that the study of any geometrical object is more concrete in a sense that we can see
or imagine a structure. On the other hand, it gets harder to imagine as the dimension
of the space increases. If we work in an Euclidean space, it is still respectively easy
because many scientists have worked in the Euclidean spaces throughout the history,
which is associated with a very basic distance formula. When it comes to the curvature
complex spaces, the Riemannian geometry helps us understand the more complicated

structures.

In the Riemannian geometry, we define the notion of manifolds which locally look like
Euclidean spaces. Hence, the complex spaces can be expressed by using well-known
simpler spaces with the help of this concept. Moreover, subsets of a manifold which are
locally Euclidean are called charts. If these charts are compatible on the manifold, then
computations like differentiability and integrability are defined on the differentiable
(smooth) manifold as well. Smooth manifolds with a Riemann metric g (distance
function) are said to be Riemannian manifolds which is denoted by (M",g) with
dimension n. Riemannian manifolds play an important role in both mathematics and

physics, especially in classical mechanics and Einstein’s general relativity. [1]

Geometers started to think about what would be the best Riemannian structure on a
manifold in time. They have found that the manifolds of constant curvature are actually
the best Riemannian structures. In this thesis, we will describe the most significant
tools; the Riemann curvature tensor and the Ricci tensor to measure the corresponding

curvatures.

One of the attractive topics in the Riemannian geometry is the notion of Einstein

manifolds. On a Riemannian manifold, if the Ricci tensor is proportional to the metric



tensor,i.e. there exists a function A such that Ric = Ag, then we called the manifold
Einstein. These manifolds are very related to the Einstein’s field equations which try

to explain the gravitational effects produced by a mass in space-time. [2]

In the following years, the concept of Einstein manifolds has attracted considerable
attention of several mathematicians and physicists. One of the most noteworthy study
had been carried out by M. C. Chaki and R. K. Maity. They introduced the notion of
quasi-Einstein manifolds as a generalization of Einstein manifolds in 2000. [3] It was
seen that quasi-Einstein manifolds model the space-time continuum which composed
of perfect fluid matter and satisfies the Einstein’s field equations. One year later, the
generalized quasi-Einstein manifolds was presented with regard of cases of different
fluid density. General relativity has been modelled and understood better in this

context. [4]

On the other side, there was famous unsolved problem of Poincaré conjecture in
mathematical aspect. The conjecture (theorem now) was about if every simply
connected, closed 3-dimensional manifold is homeomorphic to the 3-sphere. Besides
that, Thurton proposed a more general question of the classification of every compact
3-dimensional manifold, which is known as the geometrization conjecture. [5] The
biggest step to solve these problems came from R. S. Hamilton in 1982. [6] He
introduced the Ricci flow in his famed article but the Ricci flow tends to create
singularities which causes the flow to stop. Perelman achieved to get away from the

singularities by his surgery method and solved the Poincare conjecture after a century.

The new structure,Ricci solitons, emerged from the Ricci flow during the progress.
Ricci solitons illustrate the formation of singularities in the Ricci flow and fit as
self-similar solutions. [7] When we look at the literature, we see that the Riemannian
manifolds which have FEinstein-like structure have been searched to find examples
for Ricci solitons. The m-Bakry-Emery-Ricci tensor is used in the transition from
the concept of generalized quasi-Einstein manifolds to the Ricci solitons. With the
cumulative knowledge on the topics and the same purpose, we have researched that in
which conditions the Ricci soliton structure can be observed on special type of Einstein
manifolds in this thesis. We have mentioned the main properties of these structures and

given some theorems which have proven recently.



2. BASIC CONCEPTS

In this chapter, some basic definitions and significant theorems related to Riemannian
geometry are given. Resources which are numbered [8], [9], [10], [11], [12], and [13]

are used for this purpose.

2.1 Differential Geometry and Riemannian Manifolds

The notion of differentiable manifolds is studied not only in differential geometry
but also several areas of mathematics and physics. Although it takes some time to
digest the theory, the geometry of manifolds have helped scientists to understand the
complex curvature surfaces in a better way. That’s why, elementary definitions are

good materials to start with.

Every metric space gives rise to a topological space naturally, so the manifold (M, g)
may be seen as a topological space. We will be referring to some properties of a

topological spaces, such as compactness, connectedness, and etc.

Definition 2.1.1 Let X be a set. A ropology on X is a collection T of subsets of X

satisfying
e 7 contains @ and X,
e T is closed under arbitrary unions, i.e. if U; € T for i € I then U;c;U; € T,

e T is closed under finite intersections, i.e. if U, U, € T then U1 NU, € T.
Definition 2.1.2 A topological space M is called

e Hausdorff if for all distinct points x,y € M there exist disjoint open subsets Ny, N,

such that x € Ny and y € N,.
e compact if every open cover of M has a finite subcover.

e disconnected if there exists non-empty open subsets U and V of M suchthat UNV =

Oand M =U UV. If M is not disconnected, then it is connected.
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Figure 2.1 : Coordinate Charts

Definition 2.1.3 We call a Hausdorff topological space M as an n-dimensional manifold

with the properties below:

1. M is locally Euclidean of dimension n,

2. M has a countable basis of open sets.

By saying "locally Euclidean", we intent to say that for each point p € M there is a
neighborhood U, € M which is homeomorphic to an open subset of Euclidean space
of dimension n.

In other words Vp e M 3(Up, @ = (xp,x5,...,x)) such that @, : U, CM — V, CR"
where @), is bijective and continuous function with continuous inverse function (pp_l.
We call the pair (U, ¢,) a coordinate chart of the manifold M. A collection of charts
whose domains cover M is called an atlas where any two maps (@q, ¢g) of it overlap

smoothly.

Definition 2.1.4 Given two charts (Uy,®o) and (Ug,¢g), we say that the maps
(Qa, ) are C~-compatible (or overlap smoothly) if the mappings (@q o (pﬁ*I) and
(@p o @y ') of the open subsets @y (Uqy N Ug) and @g(Uy NUg) of R" are smooth.
Hence, these mappings are diffeomorphisms that are maps between manifolds with

differentiable inverses. It is drawn in Figure 2.1.



Definition 2.1.5 Assume that M is an n-dimensional topological manifold. If there

exists an atlas on M, then the manifold is said to be differentiable manifold.

We will suppose that all the manifolds are differentiable (smooth) manifolds in the
rest of the thesis. The property of differentiability on manifolds allows us to mention
about some notions like integration, vector fields, tangent fields, and etc. On smooth
surfaces (i.e surfaces without corners or edges), there exist a normal vector N, and
tangent plane 7,,M for each point p € M, which varies continuously as we move from
a point to another. For example, the surface of a cube is homeomorphic to S? but the
cube has no tangent plane or normal vector at the corners and the edges. Hence, even

if they are equivalent spaces, working calculus on a 2-sphere is easier.

We have described the curved spaces that will be the base for this study up to here.

Now, it is time to move on a new notion to measure lengths on the manifold.

Definition 2.1.6 Let M be a smooth manifold and 7,M be a tangent space at a point
p € M. Define an inner product g : T,M x T,M —; R for any point p on the manifold

with the following properties:

1. g(u,u)=0if and only if u =0.
2. g(u,u) >0 forallu € T,M.

3. g(u,v) =g(v,u) forall u,v € T,M.

Then, such smoothly chosen g;; is called Riemannian metric. In particular, Riemannian
manifold (M, g) is a smooth manifold which is furnished with a Riemannian metric g.
1.2

For a coordinate system (x°,x~,...,x"), the metric is calculated as g;; = <%, %) In

an orthonormal basis, we have g;; = &;;.
Theorem 2.1.1 [8] Every smooth manifold carries a Riemannian metric.

Proof: Let (Ug, @) be coordinate charts for a smooth manifold M which is covered
by the union of Ug. For each f3, consider the Reimannian metric gg in Ug whose local
expression ((gg)i;) is the identity matrix. Let pg be a smooth partition of unity of M

subordinate to the covering U, B and define
8= Ppsp-
B

5



Since the family of supports of the pg is locally finite, the above sum is locally finite,
and hence g is well-defined and smooth. Moreover, it is bilinear and symmetric at
each point. Because of pg being nonnegative for all and } 5 pg = 1, it follows that g
is positive definite and a Riemannian metric in M as well. (The Einstein summation

convention will be used throughout the thesis.)

Definition 2.1.7 Consider the Riemannian manifolds (M{,g) and (M; 9,¢') with
corresponding charts (¢;,x%*) and (¢»,x%). We call My x r M, the warped product

of the manifold M; x M, with the metric g, = g X s g’ such that
gxrg =mig+(fom) myg 2.1)

where 7; (i = 1,2) are natural projections and f is a pozitive smooth function on Mj.

Here, if the function f is constant, it is called Riemannian product.

Now, we know how to find the distance between two points on a manifold with the
help of metric tensor g;;. It is required to introduce some new objects which will be

used for tensor differentiation later.

2.2 Covariant Derivative And Some Special Vector Fields

Definition 2.2.1 The functions

1.0 d 0
Lijk = E[ﬁ(gjk) + E(gki) - ﬁ(gij)]

are called Christoffel symbols of first kind. The following notation is also used in some
books:
1
Lijk = E(gjki + 8kij — 8ijk)

The important property of the Christoffel symbols of first kind is the symmetry in the
first two indices, i.e. I';jx = I'jy. Furthermore, the equation Fj.k = ¢"T ji, gives the
Christoffel symbols of second kind where (g'") is the inverse matrix of (g;,). (Since the
metric g is a linear transformation indeed, the corresponding matrix is nonsingular.)

We also have the symmetry in the lower indices in this case, i.e. Fj. = F}'C i

Definition 2.2.2 Let X and Y be smooth vector fields on a manifold M. We define the

Lie Bracket or the commutator of X and Y as
X,Y]=XY -YX,
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that is, for a smooth function f: M — R,
(X Y](f) =X(Yf) =Y (X])
with the properties:
1. [X,Y]=-[Y,X].
2. [X1+X,Y] = [X1,Y]+ [X2,Y] and [X,Y1+Y2] =[X,Y1]|+[X,T2].
3. For any smooth functions a,b : M — R

[aX,bY] = ab[X,Y]+a(XD)Y —b(Ya)X.
4. Jacobi Identity: [[X,Y],Z] +[[Y,Z],X]+[[Z,X],Y] = 0.

Definition 2.2.3 Let M be a C* n-manifold, X,Y,Z € (M), and f € C*(M), then we

define the affine connection V as follows:

Vix (M) x x (M) — x (M)
(X,Y) — V(X,Y) = VxY

where VY is called the covariant derivative of Y in the direction of X with the below

properties:

1. V(Y +Z) = VyY + VyZ.
2. V(X+Y)Z =VxZ+VyZ.

4. Vx(fY) = (Xf)Y+fVXY.

To make this operator clear, let eq,ea,...,e, be a C* base field about a point m € M,
n n

and let X, = Y.a;(m)(e;)m and Y = Y bje; on the domain of the base field (intersected
1 1

with the domain of Y). Then

(VxY)m = [Vx(}_bje;)|m = Z[(X bj) Za, )(Veej)m
J

where V,.e; = Z F



Definition 2.2.4 Let (x) be a coordinate system. The covariant derivative of a tensor

T =T'2"" with respect to xX is the following tensor:

J1J2-- J
itiy...ip
iigeip J1j2++-Jq iy i dp ip i1l ip ippitip...t
Thjzqu,k_ oxk +F lejz ]q+r lejz -Jg +- +FlkT]1]2 -Jg
X
_1_,[ T1112 lp ¢ 1112...lp_ ¢ l]lz...lp

k¥tja... jq Jok* it jg S Jak "ot

In particular, the covariant derivative of the covariant and contravariant vectors are

oT;

T 1
(a k +Fth)

T;'-,k FtkT[) and T:;c = (a k

Notice that the covariant derivative will be induced to classical partial derivative if all

components of (g;;) are constant, which in turn all the Christoffel symbols being zero.

The covariant derivative is one of the substantial tools to analyze the curves and vector
fields on a manifold. Let ¢ be a curve on a smooth manifold M with a tangent field 7',
then a C”-vector field Y is said to be parallel along ¢ if and only if V7Y =0 on ©.
Furthermore,for the curve o being a geodesic the necessary and sufficient conditions is
that V7T = 0 on o. There is one more way to measure a change in a tensor field from
a point to another point, which is Lie derivative. The concept of the Lie derivatives
is very useful in differential geometry and physics because they help to describe the
invariants. For instance, the change of a function under a flow can be measured simply

with the help of this concept.
Definition 2.2.5 The Lie derivative of a metric tensor g with respect to the vector field
X is given by

ngl] 1]‘|‘ij

where X; ; is a covariant derivative.

Definition 2.2.6 We define conformal vector field & on a Riemannian manifold (M", g)

if it satisfies
fgg =2Qg

for a smooth function Q on M. This function is known as conformal factor. For
constant Q, we call the vector field & homothetic. For identically zero Q, the vector

field & is said to be killing.



Definition 2.2.7 If the vector field & satisfy the following condition
Vxé = QX

for all X and a smooth function Q, then it is called closed conformal vector field.

Additionally, the closed conformal vector field is parallel if Q vanishes.

2.3 Riemann Curvature Tensor And Ricci Tensor

Definition 2.3.1 Let V be an affine connection on a smooth manifold (M,g) as

mentioned above. If the connection satisfy two additional properties:

1. VxY —VyX = [X,Y] (torsion-free/symmetric connection)
2. X(g(Y,2)) =X(Y,Z) = (VxY,Z) 4+ (Y,VxZ) (metric compatibility)

where X,Y,Z € (M), then this unique connection is called Riemannian connection or
Levi-Civita connection.

An interesting question emerges from this point. If we apply the symmetric connection

k

to a covariant vector (V;) twice with respect to x/ and x*, does the order of

differentiation matter?

Definition 2.3.2 Let M be a smooth manifold with the Levi-Civita connection V, and
(Vi) be an arbitrary covariant vector. Then,
Vijk —Vikj =RiyVi  (Ricci identity)

8F

where Rf k= oul Ik axk + I Fl —1I7 Jfﬁk is called Riemann curvature tensor of second

order. We define the Riemann curvature tensor or Riemann tensor of type (1,3) on the

manifold M as follows:
R:x(M)x x(M)x x(M) — x(M)
R(X,Y)Z=VxVyZ—-VyVxZ— V[XJ]Z.

Here, Riju = girR}y, or R(X,Y,Z,W) = g(R(X,Y)Z, W) is called Riemann tensor of
first kind, which is (0,4)-type tensor. Note that if X = 57 and Y = 575 are coordinate

vector fields then [X,Y] = 0, and hence the Riemann tensor becomes
R(X,Y)Z=VxVyZ—-VyVxZ.

The Riemann tensor possesses the following properties:

9



L. Rijxt = Ruijs
2. Rﬁjk = _Rfkj?

3. Riji = —Rjiy and R;jiy = —R;juk;

4. R, .+Rl . +R'., =0 (First Bianchi Identity);

ikj kji J

5. R

ik +R' .. +R! . =0 (Second Bianchi Identity).

mki, j mjk,i

As well-known, the Riemann curvature tensor is composed of the Ricci tensor and the
Weyl tensor. While the Ricci tensor is the trace of the Riemann tensor, the Weyl tensor
is the traceless part of the Riemann tensor. We will give a definition for the Weyl tensor

in a later chapter.

Definition 2.3.3 A contraction of the Riemann curvature tensor gives a significant tool

in the relativity and the Riemannian geometry;
_ pk
Rij = Rk
where R;; is called the Ricci tensor which is symmetric, and (0,2)-type tensor.

Definition 2.3.4 The scalar curvature r can be calculated from the Ricci tensor as

below:
r=R!=g"Ry.

In Riemannian geometry, the main purpose of the Ricci tensor is to describe the growth
rate along geodesics. For example, it tells how much the volume changes due to the
local curvature in 3-dimensional spaces. Additionally, if all the components of the

Ricci tensor is zero on a smooth manifold M, then M is called Ricci-flat.

Lemma 2.3.1 [2] (Schur’s Identity) The Ricci tensor and the corresponding scalar

curvature satisfy the equation below;
Ik = 2Rtk,l' (22)
Proof: To begin with, the second Bianchi identity leads

Rijik,s + Rijkss + Rijstk = 0. (2.3)

10



When we take the trace with respect to i and s, it is found that
Rijiki+ Rijkis + Rijir x = 0. (2.4)
It is known that covariant derivative commutes with tracing, hence
Rijiki = Rjrx — Rjk;- (2.5)
Contracting this with respect to j and ¢ gives

Riri = —Ryps + 1 (2.6)

— 2R[k7[ — rk (2.7)

which is known as Schur’s identity. Here, r; denotes the covariant derivative of the

scalar curvature r.

11






3. GRADIENT EINSTEIN-TYPE MANIFOLDS

In this chapter, we will give an intuitive introduction for Einstein manifolds and some
special type of quasi-Einstein manifolds. The discussion of the Einstein manifolds
developed from the interpretation of the general relativity in the context of Riemannian
geometry. FEinstein needed some tool to describe the general relativity which is
independent of the coordinate systems chosen. In today’s approach, the physicists treat
space-time as a 4-dimensional Riemannian manifold and consider the quasi-Einstein
manifolds as solutions of the fields equations which are associated to the curvature of

the space-time (gravity) as again a manifold.

3.1 Quasi-Einstein Manifolds

Definition 3.1.1 For (M, g) be a Riemannian manifold and X,Y € x (M), if there exists

a function A : M — R such that
Ric(X,Y) = Ag(X,Y)
then, M is said to be Einstein manifold. [9)]

Definition 3.1.2 [3] A non-flat Riemannian manifold (M",g) is said to be a

quasi-Einstein manifold if
Ric(X,Y) =ag(X,Y)+bA(X)A(Y) VX.,Y € x(M) (3.1)
where a and b are some scalar functions such that b # 0, and A is a non-zero 1-form
satisfying
AX)=g(X,§) VXex(M) and g(§,5)=A(G)=1

for the associated unit tangent vector & which is said to be the generator of the

manifold. We use the notation (QF ), for this kind manifolds.

Definition 3.1.3 [14] A non-flat Riemannian manifold (M",g) is called a nearly
quasi-Einstein manifold if
Ric(X,Y) = ag(X,Y)+bE(X,Y) VX.Y € x(M) (3.2)
13



for some scalar functions a,b # 0, where E is a non-zero (0,2)-type symmetric tensor.

We use the notation N(QE), for this kind manifolds.

3.2 Gradient Einstein-Type Manifolds

In this thesis, it has been searched that under which conditions we can associate
Einstein-type manifolds with Ricci solitons. Because of this purpose, Einstein-type

manifolds has importance in the rest of the study.

Definition 3.2.1 It is said that a connected Riemannian manifold (M", g) of dimension
n > 3 is an Einstein-type manifold if there exists a smooth vector field X € (M) and
A € C*(M) such that

OCRic+%,iﬂxg—ku)(b(}bXb =(pr+A)g (3.3)

for some constants o, 3,p, 1 € R, with (e, B,u) # (0,0,0). Here X” denotes the
1-form metrically dual to X. If X = V£ for some f € C*(M), the manifold (M",g) is

said to be a gradient Einstein-type manifold, so the equation (3.3) becomes
ORic+ BHess(f)+udf@df = (pr+21)g (3.4)

for some a,fB,p,4 € R. Here Hess stands for the Hessian. Catino introduced
the notion of gradient Einstein-type manifolds and added that these manifolds are
nondegenerate if B # 0 and B2 # (n —2)ou, otherwise (for B #0 and B> =

(n—2)ap) manifolds are called degenerate gradient Einstein-type manifolds. [15]

Remark that the manifold (M, g) becomes Einstein manifold obviously for constant
f. Moreover, the manifolds which have Einstein-type structure can be classified

according to the parameters and possibly the function A4 as [15] :

1. Einstein manifolds: (a,fB,u,p) = (1,0,0, %), A = 0 (or equivalently for m >
3, szand/l:%);

2. Ricci solitons: (a,B,u,p)=(1,1,0,0), A €R;
3. Ricci almost solitons: (a,B,u,p) =(1,1,0,0), A €C*(M);
4. Yamabe solitons: (a,fB,u,p) =(0,1,0,1), A €R;

5. Quasi-Einstein manifolds: (a,B,u,p) = (1,1,—1,0), k#0, A€R;
14



6. p-Einstein manifolds: (o, B,u,p) = (1,1,0,p), p#0, A€R.

Definition 3.2.2 [16] The expression

1
Wijki :Rijkl_n—

— Z(Rikgjl —Rigjk+Rjigik — R jxgir) (3.5)

L - )

(I’l— 1)(11—2) 8ik8jl — 8il8 jk
defines the Weyl tensor which is the traceless part of the Riemann tensor and invariant
under conformal transformations. There is another geometric interpretations of

curvature which is highly related to the conformal curvature tensor, ie. Weyl tensor

1
0 (rx8ij —1.j8ik) (3.6)

Cijk = Rijx — Rix,j — 2n=1)

is called the Cotton tensor which can be expressed

Cijk =Ajii — A j (3.7)
and
1
Wiiki = Riju — E(gikAjl — gilA jk + 8 jiAik — 8 jkAir) (3.8)
as well. Here,
-
Ajj =Rij—mgij (3.9

is the Schouten tensor. ( [17], [18], and [19])
Lemma 3.2.1 [20] The Weyl and the Cotton tensors defined above has the following

relation for the dimension n > 4;

n—3

1
VW, = —

Cijk- (3.10)
Proof: Let’s start with the equation

1 1 )
vi_ " (n=2) (3.11)

VIA':VIR'— o=_Viy—— Vy=— 7
it B =¥ T2 T 2= ) T 21y

that is found by the Schur’s identity. On the other side, the divergence of the Weyl
given by
1
&5V Wi = g5VRiji — E(gikglsvsA i1~ 818" VA i+ 818" VA (3.12)
— g k8" V,A).

15



If we use the contracted 2"¢ Bianchi identity, we get

1
g5V Wi = ViR — ViR j — nT(gileAﬂ —~ VA + VA —giV'Ay). (3.13)

2

Combine this with the equation (3.7) to obtain

1
&5V Wi = ViR — ViR j — m(gileAjl — g VA —Cijp). (3.14)

When we use the equation (3.8), we have

g5V Wi = Vi(—R i+ 2(n—r_1)gjk) = Vi(—Ri+ ﬁgik) + ﬁcijk
(3.15)
=—ViAj+ VA + ﬁcﬁk (3.16)
by the definition of the Schouten tensor. Then,
VWi = _%Cﬁk = V'Wiju (3.17)

follows.

We say the manifold (M",g) has harmonic Conformal curvature tensor if the
divergence of W vanishes. Furthermore, we say the manifold (M,g) is locally
conformally flat if C;jx =0 for n = 3 or W;j;; = 0 for n > 4. It is obvious from the
above equation that in case of the Weyl tensor is zero, the Cotton tensor vanishes too

in dimension n > 3 .

Definition 3.2.3 [20] The Bach tensor B is composed of the Weyl and the Cotton

tensor as below:

1
Bij = M(C jikk + RuWije) — or (3.18)
1 1
Bij = mvvika,tk‘i‘ mRktVVika for n>4. (3.19)
Note that if the manifold (M, g) is either conformally flat or Einstein manifold, then the
Bach tensor vanishes. In particular, we have an practical identity B;; j = —(r:’__;')z Ry Cryi,

which will be used in a theorem later.

Definition 3.2.4 [20] We also define the tensor D as follows:

1 1
Djjx = H(Rjkvif —RiV;f)+ m(Rilvlfgjk —R;V'fgn) (3.20)
- m(gjkvif_gikvjf)

16



where f is the potential function in the equation (3.20).

Theorem 3.2.1 [20] Let the manifold (M,g) of dimension n > 3 be a gradient
Einstein-type manifold and f is non-zero. Then the integrability conditions which

are stated below hold:

-2
aCiji+ BfiWij = [B — W]Diﬂﬁ (3.21)
1 -2)o -3
aBij = n—Z[B b [3) uDijk,k] +B(ZT2)szﬁz — WSt fiWi k- (3.22)

Proof: We start by rewriting the equation (3.4) as

aR;ij+ Bfij+ufifi = (pr+21)d;. (3.23)

Taking the covariant derivative of this equation gives

OR;j i+ Bfijx+ 1(fif + fifjix) = (P + Ak) i) (3.24)
If we skew-symmetrize with respect to j <+ k and use the identity f;jx = fix; + fiRyiji
[15], we get

O(Rijx — Rixj) + B fiRiiji + 1 (fufj — fifij) = P(ri0ij — 7j0k) + (Abij — A i)
(3.25)

To obtain the following equation, we multiply the equation (3.25) by g/ and use the

Schur’s identity ry = 2R

[0 =2p(n—1)]ry = =2B fiR +2(n— 1) A — 2u(fi fu — Af fr)- (3.26)

Now pulling the term f;; from the equation (3.23) and taking the trace gives

1
B
Af:%[(np—a)r+nl—u]Vf]2]. (3.28)

When putting these two relations into the equation (3.26), we obtain

fij = zl—aRij — pfifj+(pr+2)gijl. (3.27)

o
o= 2p(n =i =2(~B+ ") fiRu +2(n— DA 2gla—pln=Dlrfi+2 g (n = DAfe
(3.29)
From the definitions of Weyl and D; ; tensors, we deduce that
1
fiRiijk = fiWhijik — Diji — nj(ftRzksij — fiR:jOik)- (3.30)

17



Inserting the equations (3.6), (3.29), and (3.30) into (3.25) we get the equation (3.27).

For the second part of the proof, let’s take the divergence of the equation (3.21):

(n—2)ou
B

Here we use the definition of the Bach tensor, the equation (3.27), and the symmetries

-3
O‘Cijk,k_ﬁfthVitjk—ﬁ(b)f;Cji; =[B— 1Dk - (3.31)

of the Weyl tensor to get the desired result. (The Weyl tensor possesses the same

symmetries with the Riemann tensor.)

3.3 (m,p)-Quasi Einstein Manifolds

We are now familiar with the concept of the Einstein manifolds and their several
generalization. In this part of the study, we will go little bit deeper and work on a

very special type of manifolds.
Definition 3.3.1 [17] The tensor given below, which is composed of the Ricci tensor,
Hessian, and the tensor product parts as:

1
Ric'f = Ric+Hessf — —df ®@df; 0<m<oo (3.32)
m

is called the m-Bakry-Emery Ricci tensor where f is a smooth function and m is
a positive integer. It has a similar structure with the equation (3.4), but different
constants. As it seen easily, when f is constant, the m-Bakry-Emery-Ricci tensor

becomes the usual Ricci tensor.

Definition 3.3.2 [17] A Riemannian manifold (M",g) with a potential function f on

M is said to be m-generalized quasi Einstein manifold if
1
Ric+Hessf — —df @df =Ag (3.33)
m

where m € N and A € C*(M). It has the following characterizations:

e If 1 € R, the manifold becomes m-quasi Einstein manifold.

e For m = oo, the manifold reduces to a gradient Ricci soliton which will be defined

in the next chapter.

e For constant potential function f, the manifold becomes Einstein. We call this

incident rigidity.

18



Definition 3.3.3 [21] A Riemannian manifold (M",g) with a potential function f on

M is said to be (m, p)-quasi Einstein manifold if
1
Ric+Hessf — —df®df = (pr+A)g (3.34)
m

where m € N, p,A € R and r denotes the scalar curvature.
Theorem 3.3.1 [22] For an (m,p)-quasi Einstein manifold with admitted parallel
vector field ¢, we have the following form for the Ricci tensor:

Ric = (pr+A)[g—U’ aU’] (3.35)

where U” is a 1-form associated with the unit vector field in the direction of Q.

The proof will be given in the last chapter. Let’s assume that the theorem holds for

now.

Theorem 3.3.2 [22] Let (M",g) be an (m,p)-quasi Einstein manifold with admitted
gradient parallel vector field ¢. Then, there exists an isomorphism between the
manifold M and the direct product M* x R where M* is an complete Einstein manifold

with dimension (n—1).

Proof: It is well-known fact from Tashiro’s theorem [23] that such a manifold M is
the direct product M* x I of an (n— 1) dimensional Riemannian manifold M* with a
straight line . Hence, we can decompose the metric g as g = gy« + (dt)?> where g
is the metric on M* and Ric = Ricp+ + Ricy. If we choose U = d;, then by the previous

theorem, we have
Ric = (pr+A)[g—9 ©@9/] (3.36)
which implies Ric; = 0, so we get
Ricy+(X,Y) = (pr+A)gm=(X,Y) forall X,Y € x(M™). (3.37)

It can be seen that M* is an Einstein manifold with constant scalar curvature, so the

proof is completed.

In the following, we will give an example for (m,p)-quasi Einstein manifolds of

dimension n = 3.
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Example 3.3.1 Consider a Riemannian manifold M with (n = 3), which has local

coordinates (z,x,y), frame fields d;, dx, dy, and the Rimennian metric tensor

00 1
egr=101 O (3.38)
1 0 A(r)
for some function h depending only on t. [22] Then, we have
1 1 1
1 1 1
R(a[, ay)at - —Eh[[at, R(a[, ay)ay - —Ehhnat —+ ihnay (340)

where the corresponding Ricci tensor is found as

0 0 Ihy
Ric = 0O 0 O (3.41)
s O 3hhy

whose scalar curvature is r = h;,. Additionally, the manifold (M, g;,) should satisfy the
eq.(3.34) so that it has the (m, p)-quasi Einstein structure. Using the components of
the Ricci tensor and the metric g in the equation (3.34) yields

1 i=j=2
11: 7 3.42
o {O otherwise ( )

which implies that we have a solution when the potential function f depends only on x.

Hence, we obtain the following reduced system of differential equations:

foo——(f)? = ph" + 2, %h”zph”M (3.43)

1
m
where "’" denotes the partial derivative with respect to t. These can be solved as
follows:
Vk(cp 4 x)
m

Vk(cp +x)

)) or f(x) = ¢, —mln(sin( NG

)) fork>0
(3.44)

f(x) = cp —mln(cos(
and the potential function will be in the same form with the hyperbolic functions

instead of cos & sin functions for k < 0 where h(t) = kt> + It + p for some constants

k,l,p,c1,c2 €R.
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4. RICCI SOLITONS

4.1 Ricci Flow

The primary purpose of this section is an introduction for the Ricci solitons to answer
the questions such as where these structures emerge from and what is the physical

interpretation of this kind of geometric forms.

In the beginning of the 20/ century, French mathematician Henri Poincaré claimed
that every simply connected, closed 3-dimensional manifolds are homeomorphic to
the S? in a sense that 3-sphere is the only 3-dimensional space where each loop is able
to shrunk to a point continuously. The conjecture may seem easy but it had stayed
unsolved until the next century. After Poincaré, Thurston stated the geometrization
conjecture which is about the complete classification of the compact 3-dimensional
manifolds. Hence, it could give an answer for Poincaré conjecture as well. In 1982,
Hamilton introduced the concept of Ricci flow which was used to solve geometrization

conjecture by Perelman later.

Definition 4.1.1 Let (M,gp) be a Riemannian manifold. The following partial

differential equation is called the Ricci flow which evolves the metric tensor:

d

S8 = ~2Ric(s(1), @

(0) = go.

The Ricci flow can be considered as heat-type equation in which it averages out
the curvature as homogeneous heat radiation. [24] To gain some intuition about the
geometry of it, let’s consider the mean curvature flow. Take a closed 2-dimensional
surface in the 3-dimensional space and draw a tangent plane to each point: Now
move each point in the perpendicular direction to the tangent plane at that point.
Additionally, let the distance of the movement be proportional to the curvature of the
point and the inside volume be fixed. Then, the surface will get rounder and be a

sphere eventually as in the Figure 4.1. (If we do not take the inside volume fixed, then
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Figure 4.1 : Mean Curvature Flow

Figure 4.2 : Singularity Points

it will shrink to a point at the end.) The problem occurs if we take an hour glass-like
surface initially. After some time, we will end up with some point where the curvature
blows up, which is drawn in the Figure 4.2. In the case of the Ricci flow, the metric
g evolves in time proportional to the something including the (Ricci) curvature. It is
likely that the flow will create singularities as we tried to illustrate in the case of the
mean curvature flow. There is a structure which corresponds to self-similar solutions
of the Ricci flow and models the formation of singularities in the flow will be defined

the next.

4.2 Gradient Ricci Solitons

Definition 4.2.1 A complete Riemannian manifold (M, g) is said to be a Ricci soliton
if the following equation

1
Ric+ - = 4.2
lc+2$5g Ag 4.2)

holds for some smooth vector field & and a constant A. A Ricci soliton is said to be

o steadyif A =0,
e shrinking if A > 0,

e expanding if A < 0.
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Furthermore, we have gradient Ricci soliton if the potential field & is the gradient of

some smooth function f on M. In this case, the eq.(4.2) becomes
Ric+V?f=Ag (4.3)

where V2 f stands for the Hessian of f. Notice that we get an Einstein manifold when
f 1s constant and say that a soliton is trivial. Gradient Ricci solitons are significant part
of the studies on the Ricci flow since they correspond to the solutions which evolve
along symmetries of the flow. Besides from that, the Ricci solitons do not need to be
compact. In particular, the compact Ricci solitons are known as the fixed points of the

Ricci flow. [25]

Lemma 4.2.1 [26] Take a complete gradient Ricci soliton (M,g) and let f be the

corresponding potential function. Then we have
r+|Vf2—-2Af=C (4.4)

for some constant C.

Proof: A gradient Ricci soliton must satisfy the equation (4.3). If we consider the
covariant derivative of the equation (4.3) and skew-symmetrize with respect to k <+ j,

then we get
ViRjx — VjRix +RijuVif = 0. (4.5)

Multiplying by g/* and recall the contracted second Bianchi identity V jRij = %Vir

gives
Vir=2R;;V,f. (4.6)
Adding the same terms in the both sides does not change the equality, so
Vi(r+|Vf]? =2Af) =2(Rij +V,V;f — Agi;))V;f = 0. (4.7)
Therefore,
r+|Vf?P—2Af=C (4.8)

for some constant C.
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Remark: It is possible to rescale the metric and shift the function f by a constant for

shrinking Ricci solitons so that
1
Rij+ViVif = 28ij and r+ |Vf|> = f=0. (4.9)

Proposition 4.2.1 [26] [27] Any compact steady or expanding gradient Ricci soliton

must be Einstein.

Proof: We are going to show the statement for the expanding gradient Ricci solitons.
The steady case is similar. For a compact shrinking gradient Ricci soliton (M, g) with

some A < 0, if we take the trace of the soliton equation, we obtain
r+Af =nA. (4.10)
By using the lemma 4.2.1, we find
Af —|VfI? = =2Af+C 4.11)
for some constant Cy. Using the maximum principle, we see
—2A flmax+Co <0
—2A flmin+Co >0

which implies f|uax = f|min> SO f is constant. Thus, the soliton is Einstein.

It can be said that there are no compact gradient steady or expanding Ricci solitons in

the dimensions of n = 2,3 except for those of constant curvature.

Lemma 4.2.2 [20] Let (M", g) be a Riemannian manifold. Then, the equation Cy;; x =0

holds for the Cotton tensor.

Proof: Let’s start with taking the covariant derivative of the Cotton tensor:

1

Cijks = Rijje — Rix jr — m(”,kz&j — 7t i) 4.12)
We also know that [20]
1
Rir,jk = Rik kj + RyijkRek + Ry jiRei = ST~ RiiRit ji + RiRy j (4.13)

from the Schur’s identity. Then, the divergence of the Cotton tensor can be expressed

as

n 1
Cijkk = Rijpk — mr,ij +RiRi ji — Ri Ry j — mA”gz’j (4.14)
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which shows that C;j x = Cji k. We also have the next equation from the equation

(3.15);
Wiike +Wigjk + Wik j = 0 (4.15)
which is known as the first Bianchi identity for the Weyl tensor, that implies
Cijk +Cji +Ciij = 0. (4.16)
If we look at the covariant derivative of the equation (4.16), we get

Crijx = 0. 4.17)

Proposition 4.2.2 [19] Let (M",g) be a gradient Ricci soliton with potential function

f. Then the Weyl, Cotton, Bach, and D tensors satisfy the following equations:

Cijk + fiWiijk = Di ji, (4.18)

(n—2)Bij— (Z:—;)ftcjit = Djjik, (4.19)
RiCrsi = (n—2) Djrg (4.20)

%\C|2 + RitCrei i = (n—2) Dirk shi- (4.21)

Proof: We will prove the first two equations. Let’s start with taking the covariant

derivative of the equation (4.3);
Rjx+ fijk = 0. (4.22)

If we skew-symmetrize this with respect to k <+ j and use the commutation relation

fijk — fikj = fiR:iji and the formula for the Weyl tensor, we get
Rijx — Rir,j = fiRyikj (4.23)
1
= fi[Wiij + P (Rixgij — Rijgik + Rij&u — Rikgtj) (4.24)

_ m(gzkgij — 8j8ik)]

= —fiWijk + p— (fiRigij — fiRijgik + fiRij — fiRik) (4.25)
- m(ﬁcgly — figik)

Now when we use the definitions of the Cotton tensor and the D tensor, the equation
(4.18) follows easily. To prove the next equation, take the divergence of the equation

(4.18);

Cijik + fuWrijic + fiWhijkx = Diji k- (4.26)
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Put this into the definition of the Bach tensor to get
(n—=2)Bij = Djirx — fuWijik — fiW,jirx + RiaWik ji- 4.27)
Using the soliton equation, the relation formula for the Weyl and the Cotton tensor,

and the fact that the Weyl tensor is trace-free gives the equation (4.19) as desired.

Note that these four equations we just proved are known as integrability conditions for

the gradient Ricci solitons.

4.3 Examples For Ricci Solitons

For the examples throughout the section, we have considered the resources [7] and

[28].

Example 4.3.1 (Hamilton’s Cigar Soliton) A complete noncompact steady soliton on
RR? with the given metric and the potential function by
2 dx* + dy*

S 142 4y?
f=—log(1+x*+)?)

ds

The Cigar Soliton has positive (Gaussian) curvature and linear volume growth. Also,
it is asymptotic to a cylinder of finite perimeter at co. It is also known as Witten’s black

hole in general relativity.

Example 4.3.2 (Byrant Soliton) It is an analog of Cigar soliton for higher dimensions
(n > 3), which is rotationally symmetric and have positive sectional curvature. Also,

it is asymptotic to a paraboloid in a different way from the Cigar case.

Example 4.3.3 (Gaussian Soliton) It is (R", gg) with the flat Euclidean metric which
has both shrinking and expanding gradient Ricci solitons, called the Gaussian shrinker

or expander.
2
e A gradient shrinker with potential function f = ﬁ;

1
Ric+V?f = 580
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2
e A gradient expander with potential function f = —ﬁ;

1
RlC"— sz = —Eg()

Example 4.3.4 (Warped Products) It is constructed by using doubly warped product
and multiple warped product to produce noncompact gradient steady solitons by Ivey

and Dancer-Wang.
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5. THE STRUCTURE OF RICCI SOLITONS ON SOME SPECIAL KIND OF
EINSTEIN MANIFOLDS

In the previous chapters, we have mentioned about the concepts of the Riemannian
geometry, special type of Einstein manifolds, Ricci solitons, and their importance in
differential geometry and physics. In this last chapter, we will explain about what we
have worked on, how our work contribute to the related fields even to a little extent,

and what are the ongoing problems and the current studies.

In this master’s thesis, it has been searched for the Ricci soliton structure after

admitting different kinds of vector fields on various types of Einstein manifolds.

5.1 The Gradient Einstein-Type Manifold With a Parallel Vector Field

Let (M",g) be a gradient Einstein-type manifold. Then it has a potential function f

satisfying the equation

aR;;+ Bfij+ufifi = (pr+21)gi (5.1)

which is given in the earlier chapter. Now, take a parallel vector field ¢ given on the
manifold M. Since Vx¢ = 0 for all X € y (M), we have ¢; ; = 0. If we apply the Ricci

identity, we also get
Oijk — Pikj = ORly =0 = "Ry =0 = ¢"Ry =0. (5.2)
Define a new function A such that

A=9'fi = A;=9'f; (5.3)
—> A jx = 0'fijx = Hess(9(f)). (5.4)

From the above equation, it is seen that A j; — A ;; = 0 since the Hessian is symmetric.

When we turn back to the equation (5.1) and multiply the the equation by ¢’, we obtain
ad'Rij+Bo'fij+ 1o fif; = (pr+2A)9'si;. (5.5)
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Using the equations (5.3) and (5.2) in the equation (5.5) gives

BA;+UASj = (pr+2)9;. (5.6)

If we take the covariant derivative with respect to k, we find

BA ji +UALf; +UAfjik = pred;. (5.7)

Skew-symmetrize the equation with respect to k <+ j to get

WAL —Ajfi) = p(rid; —ridx). (5.8)

From the equation (5.6), we have

BTy = Aif) = B (~RAS+ (pr-+2)00)f = 5 (~HAS + (pr-+2)6)) 4
(5.9)
When we arrange the above equation, we get
W(Akfj—Ajfe) = W(%JG —0;fi)- (5.10)
If we combine the equations (5.8) and (5.10), we see
[ij*’l’”j]‘ﬁk_[Wﬁc‘ﬂﬂkw’j:o- (5.11)
Leave this equation here and multiply the equation (5.8) by ¢* to get
RO ALf; — A" fi = po*rid; — prio*dr. (5.12)
Let u¢*A; = w and ¢¥r; = v, then the equation becomes
prill9l* = nAA; +pyo; — v f. (5.13)

Combining this equation with the equation (5.6) leads us the following equation;

242 r+A
prillolf = (-5~ y g+ (KRB

Pull pr; and pry from the above equation and put them into the equation (5.11), then

+pY)9;. (5.14)

we have

plpr+i) 1 pA?

L plpr+i) 1 pA?
B o> B

B TP B

[ + )] fit = [ + )] fi9;-

(5.15)
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From the above equation, a solution naturally comes that the derived vector fields from
fand ¢ are collinear, i.e. f; = €¢ ; for some smooth function €. As a consequence of

this

A=¢|p|? = ¢ (5.16)

A
o ||2
comes out. On the other hand, the next equation comes into being from the previous

equation and the equation (5.6);

1
fik=&¢; = W[(Pr+)~)¢k—ﬂAfk]¢j> (5.17)
1 (pr+A1)
= — UA i (5.18)
loppe e MM
Before continuing, let’s check for the incident that is
(Pr_:“ — uA., (5.19)

This indicates f;;, A, and €; are all zero with regard of the equations (5.16) and (5.17),

ie. the functions A and € are constant. Then, the main equation becomes

aRij+ pfifj = (pr+24)gij- (5.20)
And hence
OR;j+ pergio; = (pr+2)gi;. (5.21)
which indicates that
(pr+) (pr+)

Rij: (gij—u,-uj) — r= (l’l—l) (5.22)

o

for u; = Now, assume that (pr+2) r+/l 7é UA. Putting the equation (5.18) into the

i
ol
equation (5.1) gives

(pr+4)
1¢]2€?

We have f; = €¢; = €u;||@||, and hence

QR+ [~ fifi = (Pr+4)gi;. (5.23)

(pr+4)

R —
l] a

(gij — uiuj). (524)

Take the trace of the equation to obtain

_ (pr;l) (1) = r= % — constant. (5.25)

31



which is similar with the other case. Note that & # p(n — 1) here. It can be seen the

Ricci soliton structure for

A
Gl'j = Muiuj, (5.26)
o
then the equation (5.1) becomes
Ric+G=AL"g (5.27)
where G = %,?Gg = %fﬂ-ﬁ— %ﬁiﬁj and A* = (pr;rl) = ﬁ as desired. It can be also

seen the nearly quasi-Einstein manifold structure for

Eij = Ujij, (5.28)
then the equation (5.1) becomes
R;;j :agij—l—bEij (5.29)
where
r
a= and b= — (5.30)
n— n—1

by the equations (5.22) and (5.24). Hence, we have the following theorems.

Theorem 5.1.1 A gradient Einstein-type manifold M with admitted a parallel vector
field ¢ has nearly quasi-Einstein manifold. Moreover, its associated scalars are

constant such that the sum is equal to zero.
From the equations (5.26) and (5.27), we get the following theorem.

Theorem 5.1.2 A gradient Einstein-type manifold M with admitted a parallel vector
field ¢ has Ricci soliton.

On the other hand, if we take w = %, then we get a shrinking gradient Ricci soliton

corresponding to a self-similar solution g;;(¢) for the Ricci flow in which

gij(t) =(1—-0)¢ (gij) t<1 (5.31)

where @, are the 1-parameter family of diffeomorphisms generated by % according

to the study of Cao. [29]

Theorem 5.1.3 A gradient Einstein-type manifold (M",g) with admitted a parallel

vector field ¢ has vanishing Cotton tensor for n > 3.
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Proof: The Ricci tensor of the manifold M is parallel with regard of the equation
(5.24). If we use this fact and the scalar curvature r being constant in the definition of

the Cotton tensor, it is easily seen that C;j; = 0 for n > 3.

Theorem 5.1.4 A gradient Einstein-type manifold (M",g) with admitted a parallel
vector field ¢ has vanishing D; j tensor for n > 3 where

I
(n—1)(n—2)

r

- m(gjkfi —8ikf)-

1
Dijx = ——= Rjufi —Rucfj) + (Rif'gjx —Rif'gi)

(n—2)

Proof: If we use the equations (5.24) and (5.25) in the above equation, we get

Djj = (niz) [fi(ni1)(8jk_ujuk)_fj(nil)(gik_”iuk)] (5.32)
1 r r
+ (n— 1)(n—2)ﬂ[(n_ 0 (gli_l/lil/ll)gjk_ =1 (glj —uluj)gik]
- m(ﬁé’jk—f;‘gik)

which leads us
D;jr = 0. (5.33)

since f; = eu;||@]|.

We could show the same result by using the below relation

1
Dijx = ——=(AuVif —AxV;f)+

P (gjkEir — gxEjn)Vif (5.34)

1
(n—1)(n—2)
where Einstein tensor E;; = R;j — %gi j- [30] This structure has importance in the field
because it also verifies couples of other theorems recently proved. In H. D. Cao and Q.
Chen’s relevant work [30], they showed that (M",g) has the Cotton tensor C;jx = 0 for
n > 5if itis a complete gradient Ricci soliton with tensor D; j, = 0, which is supported
by our case. Additionally, it is compatible with the theorem (5.1.3). The relation
Viw ikl = —Z%;Ci ik and the theorem (5.1.3) implies the next theorem.

Theorem 5.1.5 A gradient Einstein-type manifold M with admitted a parallel vector

field ¢ has conharmonic curvature tensor.

Theorem 5.1.6 If (M* g f) is a complete gradient Einstein-type manifold with
admitted a parallel vector field and positive scalar curvature, then the manifold is

locally conformally flat.
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Proof: Cao and Chen also showed that complete gradient Ricci solitons with D, =0
are locally conformally flat for n = 4. [30] With regard of this fact and the equations
(5.24), (5.25), (5.27), and (5.33) the result is seen clearly.

Theorem 5.1.7 If (M",g,f) is a complete gradient Einstein-type manifold with

admitted a parallel vector field, then the manifold is Bach flat.

Proof: We know that [19]

n—3
(n— Z)Bij — (n — 2) JiCjit = Djjic k- (5.35)

Hence from the theorems (5.1.3) and (5.1.4), the result follows.
Thus, we can say that the manifold in the next example is Bach flat.

Example 5.1.1 Consider a Riemannian manifold M with (n = 3), which has local

coordinates (f,x,y), frame fields d;, dy, dy, and the Rimennian metric tensor

00 1
=101 o0 (5.36)
1 0 A(r)

for some function h depending only on t. [22] Then, we have

1 1 1
Vatay - Ehta,, ngay - Ehh[a[ — Eh[ay (537)

1 1 1
R(a[,ay)at - —Eh[[at, R(a[,ay)ay - —Ehhtta[ + Ehttay (538)

where the corresponding Ricci tensor is found as

0 0 %hy
Ric=| 0 0 0 (5.39)
Shy O Shhy

whose scalar curvature is » = hy;. Additionally, we also have

1 i=j=2
u,-uj:{ =/ (5.40)

0 otherwise

as well, so the potential function f will be depending only on x. However, the manifold
M should satisfy the equation for gradient Einstein-type manifolds this time. It brings

us the following differential equation system;

B u 2 hy 1

afxx‘l‘a(fx) =5 = (n—1) (.41
hyt o (Phtt-i—l)
2« (5:42)
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where h(t) = ajt*> + ast + az for some constants aj,az,a3 € R, r = 2aj, and (n—fl) =

w. This system can be solved as;
2:/k1ky—2+/k1x
fl) = USRNSSR < B < VR,
Jo) = (5.43)

B
n(le2Vkika=2y/kpx_ T
Fox) = IndetVirte VE‘ x4 g |41 > VAL

where k1 = l%(Zalp +A4)= %(pr—i— A), ki,ky > 0, and for some constant k3 € R.
Theorem 5.1.8 Let M be the 3-dimensional complete gradient Einstein-type manifold
with admitted a parallel vector field and local coordinates (¢,x,y) endowed with the
metric g, = 2dtdy + (dx)*> + h(t)(dy)?> where f is the potential function depending

only on x given by the equation (5.43). Then the manifold M is a Ricci soliton where

A* is constant for Ric + G = A*g as in the equation (5.27).

Special Case: In the equation (5.1), if we take constants (e, §,u) = (1,1,—L), the
manifold becomes (m, p)-quasi Einstein manifold. Applying the same process gives a

gradient Ricci soliton with the following results:

r

Rij = (pr+A)(gij — uiuj) = m(gij_”iuj) (5.44)
r=(pr+A)(n—1) (5.45)
Gij= (pr+7L)uiuj (5.46)

Remark that the expression of Ricci tensor with the scalar curvature r is just like in the

general case. Hence, the same results hold for (m, p)-quasi Einstein manifolds as well.

Theorem 5.1.9 Let (M",g) be a complete (n > 3) nontrivial gradient Einstein-type
manifold with admitted a parallel vector field ¢. Then the manifold M is isometric to

the direct product of an interval and a (n — 1) dimensional Einstein manifold.

Proof: It is easily seen that the Ricci solitons we obtained earlier possess parallel
Ricci tensor with regard of the equations (5.24) and (5.25). Then, the result is coming
from the work of Z. Hu, D. Li and S. Zhai in their paper. [31] Also, we know that
(m, p)-quasi Einstein manifolds are a special case of gradient Einstein-type manifolds.

The corresponding theorem for (m, p)-quasi Einstein manifolds is proved in [22].

[32], [33], [34], [35], [36], [37], [38], [39], and [40] are the additional resources that

have been checked out in the process.
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6. CONCLUSIONS AND RECOMMENDATIONS

The Riemannian geometry is valuable part of overall science due to the fact that it has
developed the perception of surfaces and geometrical structures. Einstein manifolds
and Ricci solitons are respectively new topics of this concept. These two notions have
serious physical meanings behind. Thus, they have become intriguing in the context to

look for the relation between them.

In this thesis, it has been searched for the Ricci soliton structure after admitting
different kinds of vector fields on some special types of Einstein manifolds. With this
purpose, we have considered parallel vector fields. We have obtained some interesting
outcomes from the research. First one is the manifold hosts both Ricci soliton and
nearly quasi-Einstein manifold structures in this case. Secondly, the manifold has
vanishing Cotton tensor, so does conharmonic curvature tensor. This situation help us
come to the conclusion about the Weyl and Bach tensors as well. According to the last
observation, the gradient Einstein-type manifolds with associated parallel vector field
is isomorphic to the warped product of an interval and (n — 1) dimensional Einstein

manifold.

For future studies, there may also some interesting findings for the conformal vector
fields on various types of Einstein manifolds. Moreover, this case may be related to

Yamabe solitons.
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