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ON THE RICCI SOLITONS WITH PARALLEL VECTOR FIELDS

SUMMARY

The Riemannian geometry has been an outstanding branch of mathematics due to its
importance in understanding many geometrical structures. In the last century, some
scientists have introduced new concepts to describe more complex structures. The new
improvements helped Perelman to solve Poincaré conjecture by using the Ricci flow.
There are still lots of unknowns in the associated topics such as gradient Einstein-type
manifolds, quasi-Einstein manifolds, and Ricci solitons which are examples for the
most significant ones. To contribute to the field, we have tried to find some special
structures as instances for the Ricci solitons.

In this thesis, we started with the introduction chapter which is composed of simple
answers for how these new objects emerge, why we need them, and what is the
geometric meaning behind. The subjects which range from Einstein manifolds to
Ricci solitons have taken in hand according to the historical developments. Some
mathematicians who had contributed to the field mentioned throughout the chapter. At
the end, the aim of this study which try to relate some famous geometric concepts is
given.

In the second chapter, we have dealt with the basic knowledge on the Riemannian
geometry. Firstly, the definition of differentiable manifolds that are smooth, locally
Euclidean spaces is given. Then, some topological properties which belong to these
manifolds are mentioned. It is known that the Riemannian metric g, a distance
function, defined on differentiable manifolds to be able to examine curvatures.
Moreover, the Riemann curvature tensor which is obtained from the metric g gives
another significant instrument,the Ricci tensor, by contraction. The tools like these to
study the Riemannian geometry are described in detailed. Later on, we built up all the
work on this knowledge.

In the third chapter, we entered the main subjects of the thesis. Einstein manifolds
and quasi-Einstein manifolds are defined with respect to the Ricci tensor. Afterwards,
gradient Einstein-type manifolds and their classifications are introduced in the
existence of some vector field X on the manifold. Several examples and couples of
recent theorems are given in the following. Also, the trace-free Weyl tensor, and related
Cotton, Bach, Schouten tensors are mentioned to consider the concept of curvature
in different ways. The relations between these tensors are observed through some
important lemmas and theorems.

In the next chapter, Hamilton’s Ricci flow and Ricci solitons which are very popular
topics because of the Poincaré conjecture are taken in hand. The equation for the
gradient Ricci soliton is analyzed for the next chapter. Additionally, the cumulative
knowledge in the literature up to now has been shared with the help of theorems and
examples.
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In the last chapter, we have discussed the results of our study, and related them with the
recent works of other colleagues. It has been searched for the Ricci soliton structure
after admitting parallel vector field on various types of Einstein manifolds. Then, this
case is checked out if it fits to the well-known theorems of the topics. The outcomes
of the research are noteworthy in a way that the studied structure sets an example for
the recent findings on the topic.
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RİCCİ SOLİTONLARI VE PARALEL VEKTÖR ALANLARI

ÖZET

Geometri esas olarak evrenin küçük bir noktadan dev bir kara deliğe kadar
matematiksel yorumudur. Objeleri, doğrular, eğriler ve açılar cinsinden ifade edip,
analiz yapmaya yardımcıdır. Riemann geometrisi, daha kompleks yapıları anlamadaki
öneminden ötürü matematiğin göze çarpan bir dalı olmuştur. Geometriye getirdiği yeni
kavramlar sayesinde yüksek boyutlu eğimli yüzeylere sahip uzaylar üzerinde çalışmak
daha kolay hale gelmiştir.

Lokal olarak Öklid uzaylarına benzeyen, türetilebilir Riemann manifoldları bu alanda
çalışırken kullandığımız en temel yapılardır. Bu objeler daha kompleks uzayları,
iyi bildiğimiz, nispeten basit Öklid uzayları yardımıyla anlamamızı sağlar. Sadece
matematikte değil, klasik mekanik ve genel görelilik gibi fiziğin birçok alanında da
kullanılan bir konsepttir.

Geometriciler, bir manifold üzerindeki en iyi Riemann yapısını bulmaya çalışmışlar
ve sonrasında en iyi yapının sabit eğrilikli manifoldlarda bulunduğu gösterilmiştir. Bir
manifold üzerindeki eğriliği hesaplamak için iki temel araç kullanılmıştır; Riemann
eğrilik tensörü ve Ricci tensörü. Geçtiğimiz yüzyılda, bazı bilim insanları bu
araçlar yardımıyla daha kompleks yapıları tasvir edebilmek için yeni kavramlar
tanımlamışlardır. Bu yeni kavramlar Perelman’ın bir asır boyu cevapsız kalmış olan
ünlü Poincaré sanısını Ricci akışı yardımıyla çözmesine yardımcı olmuştur.

Gradiyent Einstein tipi manifoldlar, yarı Einstein manifoldları, ve Ricci solitonları gibi
arkasında derin fiziksel anlamlar barındıran yapılar hakkında hala bilinmeyen birçok
şey bulunmaktadır. Bu alanda katkılı olabilmek adına, biz Ricci solitonlara örnek
olabilecek bazı özel yapıları gradiyent Einstein tipi manifoldlar üzerinde araştırdık.

Tezin giriş bölümünde, bu oluşumların nereden çıktığını, niye böyle tanımlamalara
ihtiyaç duyduğumuzu ve arkalarında yatan geometrik yorumu cevaplamaya çalıştık.
Konuları Einstein manifoldlarından başlayarak Ricci solitonlarına kadar tarihi
ilerleyişine göre ele aldık. Bölüm içinde bu alanlara katkıda bulunmuş bazı değerli
matematikçilerden de bahsettik. Son olarak, çalışmanın amacı, bazı çokça bilinen
geometrik kavramları ilişkilendirmek olarak verildi.

İkinci bölümde, Riemann geometrisi üzerine genel bilgiler ile ilgilendik. Öncelikle,
bölgesel olarak Öklid uzaylarına benzeyen, türetilebilir manifoldların tanımını
verdik. Sonrasında, bu manifoldların sahip olduğu topolojik özelliklerden bahsettik.
Kovaryant türev, katlı çarpım gibi ilerleyen bölümlerde sıkça kullanacağımız
işlemlerin tanımlarını verdik. Daha sonra, türetilebilir manifoldlar üzerindeki
eğimleri incelemek için, uzaklık fonksiyonu diyebileceğimiz "g" Riemann metriğinin
tanımlı olduğu gösterdik. Dahası, bu metrikten elde edilen Riemann eğrilik
tensörünün daraltılması ile başka önemli bir araç olan Ricci tensörü elde ediliyor.
Bu alandaki Einstein manifoldları gibi birçok manifold Ricci tensörünün yapısına
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göre çeşitlendiriliyor. Bu açıdan çalışmamızın temel taşını oluşturuyor. Riemann
geometrisini çalışmak için gerekli diğer benzer araçlar da tezin ilgili kısmında ayrıntılı
olarak işlenmiştir. Bu temel bilgiler baz alınarak ilerleyen bölümlerdeki yapılar
oluşturulmuştur.

Üçüncü bölümde, tezin temel konularına giriş yapılmıştır. Biliyoruz ki, Ricci
tensörünün metrik tensörüyle orantılı olduğu manifoldlara Einstein manifoldları
deniliyor. Bu manifoldlar, uzay-zaman düzleminde bir kütle tarafında yaratılan
çekim gücünü açıklamaya çalışan Einstein’ın ünlü alan denklemleriyle yakından
ilişkilidir. Bu açıdan birçok matematikçi ve fizikçinin ilgisini çekmektedir. Einstein
manifoldları üzerindeki en değerli çalışmalardan biri M. C. Chaki ve R. K. Maity
tarafından yürütülmüştür. 2000 yılında, Einstein manifoldlarının genelleştirilmiş
konsepti olan yarı Einstein manifoldlarını, bir sonraki sene de genelleştirilmiş yarı
Einstein manifoldlarını tanıtmışlardır. Genel göreliliğin anlaşılması ve modellenmesi
bu bağlamda kolaylaşmıştır. Einstein manifoldları ve yarı Einstein manifoldları, ilgili
Ricci tensörlerinin yapısına göre tanımlanmıştır. Sonrasında, manifoldları üzerlerinde
belli koşulları sağlayan bir X vektör alanına sahip olmaları haline göre gradiyent
Einstein tipi manifoldlar ve onların sınıflandırılması olarak çeşitlendirilmiştir.
Çalışmanın devamında, çeşitli örnekler ve yakın zamanda ispatlanmış teoremler
verilmiştir. Ayrıca, eğrilik kavramını farklı açılardan değerlendirmek için Weyl tensörü
ve onunla ilişkili Cotton, Bach, Schouten tensörlerinden bahsedilmiştir. Bu tensörlerin
birbiriyle ilişkisi bazı önemli önsav ve teoremler aracılığıyla gözlemlenmiştir.

Bir sonraki bölümde, ünlü Poincaré sanısının çözümündeki rollerinden dolayı
popülerliği artmış Ricci akışı ve Ricci solitonları ele alınmıştır. Uzun yıllar
çözülememiş sanı şunu iddia etmekteydi; her basit bağıntılı, kapalı, 3 boyutlu manifold
ile 3-küre arasında bir homeomorfizma vardır. Sonrasında, bu sanının daha genel
hali olan Thurton’ın geometrikleştirme sanısı her 3 boyutlu kompakt manifoldu
sınıflandırmayla ilgiydi. Bu problemlerin çözümüyle ilgili en büyük adım 1982’de
Ricci akışını literatüre kazandıran Hamilton tarafından atılmıştır. Geçtiğimiz yıllarda,
Perelman Ricci akışını kullanarak Poincaré sanısını (artık teorem) ispatlamıştır. Yeni
bir kavram olan Ricci solitonları bu şekilde ortaya çıkmıştır. Ricci solitonları, Ricci
akış denkleminin kendi kendine benzer çözümleridir. Bu bölümde gradiyent Ricci
solitonunu veren denklem ilerleyen bölümlerde kullanılmak üzere analiz edilmiştir.
Ek olarak, bu alan ile ilgili şimdiye kadar yapılmış literatürdeki çalışmalar taranmış,
teorem ve örnekler yardımıyla paylaşılmıştır.

Son bölümde, kendi çalışmamız üzerine yoğunlaşıp, sonuçlarımızı güncel çalışmalarla
ilişkilendirdik. Literatüre baktığımızda, Einstein tipi yapılara sahip Riemann
manifoldlarının Ricci soliton örneği bulmak için araştırıldığını görüyoruz. Genelleştir-
ilmiş Einstein manifoldlarından Ricci solitonlarına geçişte, Ricci tensörü, Hessian
tensörü, ve tensör çarpımından oluşan m-Bakry-Emery-Ricci tensörünün kullanıldığı
görülmektedir. Bu tezde, çeşitli Einstein tipi manifoldlarda paralel vektör alanı
tanımlandığında Ricci soliton yapısı elde edilip edilemeyeceği araştırılmıştır. Üzerinde
paralel vektör alanı tanımlanmış bir gradiyent Einstein tipi manifoldun, sabit
skaler eğrilikli Ricci soliton ve yaklaşık yarı Einstein yapılarına sahip olduğu
gözlemlenmiştir. Sonucunda da, bu yapının konuyla ilgili bilinen temel teoremlere
uyumlu olup olmadığı kontrol edilmiştir. H. D. Cao ve Q. Chen’in çalışmaları
yardımıyla, boyutu n ≥ 5 olan manifoldların bazı koşullar altında harmonik
Weyl tensörüne sahip olduğu ve Z. Hu, D. Li ve S. Zhai’nin çalışmalarıyla

xx



ilişkilendirildiğinde bir aralık ile (n− 1) boyutlu bir Einstein manifoldunun katlı
çarpımına isometrik olduğu görülmüştür. Son olarak da, bu yapıya örnek olarak 3
boyutlu, Bach düz yapıya sahip bir manifold verilmiştir.
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1. INTRODUCTION

Geometry is essentially a mathematical interpretation of the universe (including the

higher dimensional forms) in the scale of a point to a black hole. It analyzes objects

or structures in terms of lines, angles, and surfaces. Up to three dimensional space,

the concept is much easier because it is the space that we are living in. It is clear

that the study of any geometrical object is more concrete in a sense that we can see

or imagine a structure. On the other hand, it gets harder to imagine as the dimension

of the space increases. If we work in an Euclidean space, it is still respectively easy

because many scientists have worked in the Euclidean spaces throughout the history,

which is associated with a very basic distance formula. When it comes to the curvature

complex spaces, the Riemannian geometry helps us understand the more complicated

structures.

In the Riemannian geometry, we define the notion of manifolds which locally look like

Euclidean spaces. Hence, the complex spaces can be expressed by using well-known

simpler spaces with the help of this concept. Moreover, subsets of a manifold which are

locally Euclidean are called charts. If these charts are compatible on the manifold, then

computations like differentiability and integrability are defined on the differentiable

(smooth) manifold as well. Smooth manifolds with a Riemann metric g (distance

function) are said to be Riemannian manifolds which is denoted by (Mn,g) with

dimension n. Riemannian manifolds play an important role in both mathematics and

physics, especially in classical mechanics and Einstein’s general relativity. [1]

Geometers started to think about what would be the best Riemannian structure on a

manifold in time. They have found that the manifolds of constant curvature are actually

the best Riemannian structures. In this thesis, we will describe the most significant

tools; the Riemann curvature tensor and the Ricci tensor to measure the corresponding

curvatures.

One of the attractive topics in the Riemannian geometry is the notion of Einstein

manifolds. On a Riemannian manifold, if the Ricci tensor is proportional to the metric
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tensor,i.e. there exists a function λ such that Ric = λg, then we called the manifold

Einstein. These manifolds are very related to the Einstein’s field equations which try

to explain the gravitational effects produced by a mass in space-time. [2]

In the following years, the concept of Einstein manifolds has attracted considerable

attention of several mathematicians and physicists. One of the most noteworthy study

had been carried out by M. C. Chaki and R. K. Maity. They introduced the notion of

quasi-Einstein manifolds as a generalization of Einstein manifolds in 2000. [3] It was

seen that quasi-Einstein manifolds model the space-time continuum which composed

of perfect fluid matter and satisfies the Einstein’s field equations. One year later, the

generalized quasi-Einstein manifolds was presented with regard of cases of different

fluid density. General relativity has been modelled and understood better in this

context. [4]

On the other side, there was famous unsolved problem of Poincaré conjecture in

mathematical aspect. The conjecture (theorem now) was about if every simply

connected, closed 3-dimensional manifold is homeomorphic to the 3-sphere. Besides

that, Thurton proposed a more general question of the classification of every compact

3-dimensional manifold, which is known as the geometrization conjecture. [5] The

biggest step to solve these problems came from R. S. Hamilton in 1982. [6] He

introduced the Ricci flow in his famed article but the Ricci flow tends to create

singularities which causes the flow to stop. Perelman achieved to get away from the

singularities by his surgery method and solved the Poincare conjecture after a century.

The new structure,Ricci solitons, emerged from the Ricci flow during the progress.

Ricci solitons illustrate the formation of singularities in the Ricci flow and fit as

self-similar solutions. [7] When we look at the literature, we see that the Riemannian

manifolds which have Einstein-like structure have been searched to find examples

for Ricci solitons. The m-Bakry-Emery-Ricci tensor is used in the transition from

the concept of generalized quasi-Einstein manifolds to the Ricci solitons. With the

cumulative knowledge on the topics and the same purpose, we have researched that in

which conditions the Ricci soliton structure can be observed on special type of Einstein

manifolds in this thesis. We have mentioned the main properties of these structures and

given some theorems which have proven recently.
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2. BASIC CONCEPTS

In this chapter, some basic definitions and significant theorems related to Riemannian

geometry are given. Resources which are numbered [8], [9], [10], [11], [12], and [13]

are used for this purpose.

2.1 Differential Geometry and Riemannian Manifolds

The notion of differentiable manifolds is studied not only in differential geometry

but also several areas of mathematics and physics. Although it takes some time to

digest the theory, the geometry of manifolds have helped scientists to understand the

complex curvature surfaces in a better way. That’s why, elementary definitions are

good materials to start with.

Every metric space gives rise to a topological space naturally, so the manifold (M,g)

may be seen as a topological space. We will be referring to some properties of a

topological spaces, such as compactness, connectedness, and etc.

Definition 2.1.1 Let X be a set. A topology on X is a collection T of subsets of X

satisfying

• T contains /0 and X ,

• T is closed under arbitrary unions, i.e. if Ui ∈ T for i ∈ I then ∪i∈IUi ∈ T ,

• T is closed under finite intersections, i.e. if U1,U2 ∈ T then U1∩U2 ∈ T .

Definition 2.1.2 A topological space M is called

• Hausdorff if for all distinct points x,y ∈M there exist disjoint open subsets Nx,Ny

such that x ∈ Nx and y ∈ Ny.

• compact if every open cover of M has a finite subcover.

• disconnected if there exists non-empty open subsets U and V of M such that U∩V =

/0 and M =U ∪V . If M is not disconnected, then it is connected.

3



Figure 2.1 : Coordinate Charts

Definition 2.1.3 We call a Hausdorff topological space M as an n-dimensional manifold

with the properties below:

1. M is locally Euclidean of dimension n,

2. M has a countable basis of open sets.

By saying "locally Euclidean", we intent to say that for each point p ∈ M there is a

neighborhood Up ⊆M which is homeomorphic to an open subset of Euclidean space

of dimension n.

In other words ∀p∈M ∃(Up,ϕp =(x1
p,x

2
p, ...,x

n
p)) such that ϕp :Up⊆M−→Vp⊆Rn

where ϕp is bijective and continuous function with continuous inverse function ϕp
−1.

We call the pair (Up,ϕp) a coordinate chart of the manifold M. A collection of charts

whose domains cover M is called an atlas where any two maps (ϕα ,ϕβ ) of it overlap

smoothly.

Definition 2.1.4 Given two charts (Uα ,ϕα) and (Uβ ,ϕβ ), we say that the maps

(ϕα ,ϕβ ) are C∞-compatible (or overlap smoothly) if the mappings (ϕα ◦ϕβ
−1) and

(ϕβ ◦ϕα
−1) of the open subsets ϕα(Uα ∩Uβ ) and ϕβ (Uα ∩Uβ ) of Rn are smooth.

Hence, these mappings are diffeomorphisms that are maps between manifolds with

differentiable inverses. It is drawn in Figure 2.1.
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Definition 2.1.5 Assume that M is an n-dimensional topological manifold. If there

exists an atlas on M, then the manifold is said to be differentiable manifold.

We will suppose that all the manifolds are differentiable (smooth) manifolds in the

rest of the thesis. The property of differentiability on manifolds allows us to mention

about some notions like integration, vector fields, tangent fields, and etc. On smooth

surfaces (i.e surfaces without corners or edges), there exist a normal vector Np and

tangent plane TpM for each point p ∈M, which varies continuously as we move from

a point to another. For example, the surface of a cube is homeomorphic to S2 but the

cube has no tangent plane or normal vector at the corners and the edges. Hence, even

if they are equivalent spaces, working calculus on a 2-sphere is easier.

We have described the curved spaces that will be the base for this study up to here.

Now, it is time to move on a new notion to measure lengths on the manifold.

Definition 2.1.6 Let M be a smooth manifold and TpM be a tangent space at a point

p ∈M. Define an inner product g : TpM×TpM −→ R for any point p on the manifold

with the following properties:

1. g(u,u) = 0 if and only if u = 0.

2. g(u,u)≥ 0 for all u ∈ TpM.

3. g(u,v) = g(v,u) for all u,v ∈ TpM.

Then, such smoothly chosen gi j is called Riemannian metric. In particular, Riemannian

manifold (M,g) is a smooth manifold which is furnished with a Riemannian metric g.

For a coordinate system (x1,x2, ...,xn), the metric is calculated as gi j = 〈 ∂

∂xi ,
∂

∂x j 〉. In

an orthonormal basis, we have gi j = δi j.

Theorem 2.1.1 [8] Every smooth manifold carries a Riemannian metric.

Proof: Let (Uβ ,ϕβ ) be coordinate charts for a smooth manifold M which is covered

by the union of Uβ . For each β , consider the Reimannian metric gβ in Uβ whose local

expression ((gβ )i j) is the identity matrix. Let ρβ be a smooth partition of unity of M

subordinate to the covering Uβ , and define

g = ∑
β

ρβ gβ .
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Since the family of supports of the ρβ is locally finite, the above sum is locally finite,

and hence g is well-defined and smooth. Moreover, it is bilinear and symmetric at

each point. Because of ρβ being nonnegative for all and ∑β ρβ = 1, it follows that g

is positive definite and a Riemannian metric in M as well. (The Einstein summation

convention will be used throughout the thesis.)

Definition 2.1.7 Consider the Riemannian manifolds (Mq
1 ,g) and (Mn−q

2 ,g′) with

corresponding charts (φ1,xα) and (φ2,xα). We call M1× f M2 the warped product

of the manifold M1×M2 with the metric g? = g× f g′ such that

g× f g′ = π
∗
1 g+( f ◦π1)

2
π
∗
2 g′ (2.1)

where πi (i = 1,2) are natural projections and f is a pozitive smooth function on M1.

Here, if the function f is constant, it is called Riemannian product.

Now, we know how to find the distance between two points on a manifold with the

help of metric tensor gi j. It is required to introduce some new objects which will be

used for tensor differentiation later.

2.2 Covariant Derivative And Some Special Vector Fields

Definition 2.2.1 The functions

Γi jk =
1
2
[

∂

∂xi (g jk)+
∂

∂x j (gki)−
∂

∂xk (gi j)]

are called Christoffel symbols of first kind. The following notation is also used in some

books:

Γi jk =
1
2
(g jki +gki j−gi jk)

The important property of the Christoffel symbols of first kind is the symmetry in the

first two indices, i.e. Γi jk = Γ jik. Furthermore, the equation Γi
jk = girΓ jkr gives the

Christoffel symbols of second kind where (gir) is the inverse matrix of (gir). (Since the

metric g is a linear transformation indeed, the corresponding matrix is nonsingular.)

We also have the symmetry in the lower indices in this case, i.e. Γi
jk = Γi

k j.

Definition 2.2.2 Let X and Y be smooth vector fields on a manifold M. We define the

Lie Bracket or the commutator of X and Y as

[X ,Y ] = XY −Y X ,
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that is, for a smooth function f : M −→ R,

[X ,Y ]( f ) = X(Y f )−Y (X f )

with the properties:

1. [X ,Y ] =−[Y,X ].

2. [X1 +X2,Y ] = [X1,Y ]+ [X2,Y ] and [X ,Y1 +Y2] = [X ,Y1]+ [X ,Y2].

3. For any smooth functions a,b : M −→ R

[aX ,bY ] = ab[X ,Y ]+a(Xb)Y −b(Ya)X .

4. Jacobi Identity: [[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = 0.

Definition 2.2.3 Let M be a C∞ n-manifold, X ,Y,Z ∈ χ(M), and f ∈C∞(M), then we

define the affine connection ∇ as follows:

∇ : χ(M)×χ(M)−→ χ(M)

(X ,Y )−→ ∇(X ,Y ) = ∇XY

where ∇XY is called the covariant derivative of Y in the direction of X with the below

properties:

1. ∇X(Y +Z) = ∇XY +∇X Z.

2. ∇(X+Y )Z = ∇X Z +∇Y Z.

3. ∇( f X)Y = f ∇XY .

4. ∇X( fY ) = (X f )Y + f ∇XY .

To make this operator clear, let e1,e2, ...,en be a C∞ base field about a point m ∈ M,

and let Xm =
n
∑
1

ai(m)(ei)m and Y =
n
∑
1

b je j on the domain of the base field (intersected

with the domain of Y). Then

(∇XY )m = [∇X(∑b je j)]m = ∑
j
[(Xmb j)(e j)m +b j(m)∑

i
ai(m)(∇eie j)m]

where ∇eie j =
n
∑

k=1
Γk

i jek.
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Definition 2.2.4 Let (xi) be a coordinate system. The covariant derivative of a tensor

T = T i1i2...ip
j1 j2... jq with respect to xk is the following tensor:

T i1i2...ip
j1 j2... jq,k

=
∂T i1i2...ip

j1 j2... jq

∂xk +Γ
i1
tkT ti2...ip

j1 j2... jq +Γ
i2
tkT i1t...ip

j1 j2... jq + ...+Γ
ip
tkT i1i2...t

j1 j2... jq

−Γ
t
j1kT i1i2...ip

t j2... jq −Γ
t
j2kT i1i2...ip

j1t... jq − ...−Γ
t
jqkT i1i2...ip

j1 j2...t .

In particular, the covariant derivative of the covariant and contravariant vectors are

Ti,k = (
∂Ti

∂xk −Γ
t
ikTt) and T i

,k = (
∂T i

∂xk +Γ
i
tkT t).

Notice that the covariant derivative will be induced to classical partial derivative if all

components of (gi j) are constant, which in turn all the Christoffel symbols being zero.

The covariant derivative is one of the substantial tools to analyze the curves and vector

fields on a manifold. Let σ be a curve on a smooth manifold M with a tangent field T ,

then a C∞-vector field Y is said to be parallel along σ if and only if ∇TY = 0 on σ .

Furthermore,for the curve σ being a geodesic the necessary and sufficient conditions is

that ∇T T = 0 on σ . There is one more way to measure a change in a tensor field from

a point to another point, which is Lie derivative. The concept of the Lie derivatives

is very useful in differential geometry and physics because they help to describe the

invariants. For instance, the change of a function under a flow can be measured simply

with the help of this concept.

Definition 2.2.5 The Lie derivative of a metric tensor g with respect to the vector field

X is given by

LX gi j = Xi, j +X j,i

where Xi, j is a covariant derivative.

Definition 2.2.6 We define conformal vector field ξ on a Riemannian manifold (Mn,g)

if it satisfies

Lξ g = 2Ωg

for a smooth function Ω on M. This function is known as conformal factor. For

constant Ω, we call the vector field ξ homothetic. For identically zero Ω, the vector

field ξ is said to be killing.
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Definition 2.2.7 If the vector field ξ satisfy the following condition

∇X ξ = ΩX

for all X and a smooth function Ω, then it is called closed conformal vector field.

Additionally, the closed conformal vector field is parallel if Ω vanishes.

2.3 Riemann Curvature Tensor And Ricci Tensor

Definition 2.3.1 Let ∇ be an affine connection on a smooth manifold (M,g) as

mentioned above. If the connection satisfy two additional properties:

1. ∇XY −∇Y X = [X ,Y ] (torsion-free/symmetric connection)

2. X(g(Y,Z)) = X〈Y,Z〉= 〈∇XY,Z〉+ 〈Y,∇X Z〉 (metric compatibility)

where X ,Y,Z ∈ χ(M), then this unique connection is called Riemannian connection or

Levi-Civita connection.

An interesting question emerges from this point. If we apply the symmetric connection

to a covariant vector (Vi) twice with respect to x j and xk, does the order of

differentiation matter?

Definition 2.3.2 Let M be a smooth manifold with the Levi-Civita connection ∇, and

(Vi) be an arbitrary covariant vector. Then,

Vi, jk−Vi,k j = Rl
i jkVl (Ricci identity)

where Rl
i jk =

∂Γl
ik

∂x j −
∂Γl

i j
∂xk +Γr

ikΓl
r j−Γr

i jΓ
l
rk is called Riemann curvature tensor of second

order. We define the Riemann curvature tensor or Riemann tensor of type (1,3) on the

manifold M as follows:

R : χ(M)×χ(M)×χ(M)−→ χ(M)

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z.

Here, Ri jkl = girRr
jkl or R(X ,Y,Z,W ) = g(R(X ,Y )Z,W ) is called Riemann tensor of

first kind, which is (0,4)-type tensor. Note that if X = ∂

∂xi and Y = ∂

∂x j are coordinate

vector fields then [X ,Y ] = 0, and hence the Riemann tensor becomes

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z.

The Riemann tensor possesses the following properties:
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1. Ri jkl = Rkli j;

2. Rl
i jk =−Rl

ik j;

3. Ri jkl =−R jikl and Ri jkl =−Ri jlk;

4. Rl
ik j +Rl

k ji +Rl
jik = 0 (First Bianchi Identity);

5. Rl
mi j,k +Rl

mki, j +Rl
m jk,i = 0 (Second Bianchi Identity).

As well-known, the Riemann curvature tensor is composed of the Ricci tensor and the

Weyl tensor. While the Ricci tensor is the trace of the Riemann tensor, the Weyl tensor

is the traceless part of the Riemann tensor. We will give a definition for the Weyl tensor

in a later chapter.

Definition 2.3.3 A contraction of the Riemann curvature tensor gives a significant tool

in the relativity and the Riemannian geometry;

Ri j = Rk
i jk

where Ri j is called the Ricci tensor which is symmetric, and (0,2)-type tensor.

Definition 2.3.4 The scalar curvature r can be calculated from the Ricci tensor as

below:

r = Ri
i = gisRsi.

In Riemannian geometry, the main purpose of the Ricci tensor is to describe the growth

rate along geodesics. For example, it tells how much the volume changes due to the

local curvature in 3-dimensional spaces. Additionally, if all the components of the

Ricci tensor is zero on a smooth manifold M, then M is called Ricci-flat.

Lemma 2.3.1 [2] (Schur’s Identity) The Ricci tensor and the corresponding scalar

curvature satisfy the equation below;

rk = 2Rtk,t . (2.2)

Proof: To begin with, the second Bianchi identity leads

Ri jtk,s +Ri jks,t +Ri jst,k = 0. (2.3)
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When we take the trace with respect to i and s, it is found that

Ri jtk,i +Ri jki,t +Ri jit,k = 0. (2.4)

It is known that covariant derivative commutes with tracing, hence

Ri jtk,i = R jt,k−R jk,t . (2.5)

Contracting this with respect to j and t gives

Rik,i =−Rtk,t + rk (2.6)

=⇒ 2Rtk,t = rk. (2.7)

which is known as Schur’s identity. Here, rk denotes the covariant derivative of the

scalar curvature r.
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3. GRADIENT EINSTEIN-TYPE MANIFOLDS

In this chapter, we will give an intuitive introduction for Einstein manifolds and some

special type of quasi-Einstein manifolds. The discussion of the Einstein manifolds

developed from the interpretation of the general relativity in the context of Riemannian

geometry. Einstein needed some tool to describe the general relativity which is

independent of the coordinate systems chosen. In today’s approach, the physicists treat

space-time as a 4-dimensional Riemannian manifold and consider the quasi-Einstein

manifolds as solutions of the fields equations which are associated to the curvature of

the space-time (gravity) as again a manifold.

3.1 Quasi-Einstein Manifolds

Definition 3.1.1 For (M,g) be a Riemannian manifold and X ,Y ∈ χ(M), if there exists

a function λ : M −→ R such that

Ric(X ,Y ) = λg(X ,Y )

then, M is said to be Einstein manifold. [9]

Definition 3.1.2 [3] A non-flat Riemannian manifold (Mn,g) is said to be a

quasi-Einstein manifold if

Ric(X ,Y ) = ag(X ,Y )+bA(X)A(Y ) ∀X ,Y ∈ χ(M) (3.1)

where a and b are some scalar functions such that b 6= 0, and A is a non-zero 1-form

satisfying

A(X) = g(X ,ξ ) ∀X ∈ χ(M) and g(ξ ,ξ ) = A(ξ ) = 1

for the associated unit tangent vector ξ which is said to be the generator of the

manifold. We use the notation (QE)n for this kind manifolds.

Definition 3.1.3 [14] A non-flat Riemannian manifold (Mn,g) is called a nearly

quasi-Einstein manifold if

Ric(X ,Y ) = ag(X ,Y )+bE(X ,Y ) ∀X ,Y ∈ χ(M) (3.2)
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for some scalar functions a,b 6= 0, where E is a non-zero (0,2)-type symmetric tensor.

We use the notation N(QE)n for this kind manifolds.

3.2 Gradient Einstein-Type Manifolds

In this thesis, it has been searched that under which conditions we can associate

Einstein-type manifolds with Ricci solitons. Because of this purpose, Einstein-type

manifolds has importance in the rest of the study.

Definition 3.2.1 It is said that a connected Riemannian manifold (Mn,g) of dimension

n ≥ 3 is an Einstein-type manifold if there exists a smooth vector field X ∈ χ(M) and

λ ∈C∞(M) such that

αRic+
β

2
LX g+µX [⊗X [ = (ρr+λ )g (3.3)

for some constants α,β ,ρ,µ ∈ R, with (α,β ,µ) 6= (0,0,0). Here X [ denotes the

1-form metrically dual to X . If X = ∇ f for some f ∈C∞(M), the manifold (Mn,g) is

said to be a gradient Einstein-type manifold, so the equation (3.3) becomes

αRic+βHess( f )+µd f ⊗d f = (ρr+λ )g (3.4)

for some α,β ,ρ,µ ∈ R. Here Hess stands for the Hessian. Catino introduced

the notion of gradient Einstein-type manifolds and added that these manifolds are

nondegenerate if β 6= 0 and β 2 6= (n− 2)αµ , otherwise ( f or β 6= 0 and β 2 =

(n−2)αµ) manifolds are called degenerate gradient Einstein-type manifolds. [15]

Remark that the manifold (M,g) becomes Einstein manifold obviously for constant

f . Moreover, the manifolds which have Einstein-type structure can be classified

according to the parameters and possibly the function λ as [15] :

1. Einstein manifolds: (α,β ,µ,ρ) = (1,0,0, 1
m), λ = 0 (or equivalently for m ≥

3, ρ = 0 and λ = r
m );

2. Ricci solitons: (α,β ,µ,ρ) = (1,1,0,0), λ ∈ R;

3. Ricci almost solitons: (α,β ,µ,ρ) = (1,1,0,0), λ ∈C∞(M);

4. Yamabe solitons: (α,β ,µ,ρ) = (0,1,0,1), λ ∈ R;

5. Quasi-Einstein manifolds: (α,β ,µ,ρ) = (1,1,−1
k ,0), k 6= 0, λ ∈ R;

14



6. ρ-Einstein manifolds: (α,β ,µ,ρ) = (1,1,0,ρ), ρ 6= 0, λ ∈ R.

Definition 3.2.2 [16] The expression

Wi jkl = Ri jkl−
1

n−2
(Rikg jl−Rilg jk +R jlgik−R jkgil) (3.5)

+
R

(n−1)(n−2)
(gikg jl−gilg jk)

defines the Weyl tensor which is the traceless part of the Riemann tensor and invariant

under conformal transformations. There is another geometric interpretations of

curvature which is highly related to the conformal curvature tensor, ie. Weyl tensor

Ci jk = Ri j,k−Rik, j−
1

2(n−1)
(r,kgi j− r, jgik) (3.6)

is called the Cotton tensor which can be expressed

Ci jk = A jk,i−Aik, j (3.7)

and

Wi jkl = Ri jkl−
1

n−2
(gikA jl−gilA jk +g jlAik−g jkAil) (3.8)

as well. Here,

Ai j = Ri j−
r

2(n−1)
gi j (3.9)

is the Schouten tensor. ( [17], [18], and [19])

Lemma 3.2.1 [20] The Weyl and the Cotton tensors defined above has the following

relation for the dimension n≥ 4;

∇
lWi jkl =−

n−3
n−2

Ci jk. (3.10)

Proof: Let’s start with the equation

∇
lA jl = ∇

lR jl−∇
l r
2(n−1)

g jl =
1
2

∇ jr−
1

2(n−1)
∇ jr =

(n−2)
2(n−1)

∇ jr (3.11)

that is found by the Schur’s identity. On the other side, the divergence of the Weyl

given by

gls
∇sWi jkl = gls

∇sRi jkl−
1

n−2
(gikgls

∇sA jl−gilgls
∇sA jk +g jlgls

∇sAik (3.12)

−g jkgls
∇sAil).
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If we use the contracted 2nd Bianchi identity, we get

gls
∇sWi jkl = ∇ jRik−∇iR jk−

1
n−2

(gik∇
lA jl−∇iA jk +∇ jAik−g jk∇

lAil). (3.13)

Combine this with the equation (3.7) to obtain

gls
∇sWi jkl = ∇ jRik−∇iR jk−

1
n−2

(gik∇
lA jl−g jk∇

lAil−Ci jk). (3.14)

When we use the equation (3.8), we have

gls
∇sWi jkl = ∇i(−R jk +

r
2(n−1)

g jk)−∇ j(−Rik +
r

2(n−1)
gik)+

1
n−2

Ci jk

(3.15)

=−∇iA jk +∇ jAik +
1

n−2
Ci jk (3.16)

by the definition of the Schouten tensor. Then,

gls
∇sWi jkl =−

(n−3)
(n−2)

Ci jk = ∇
lWi jkl (3.17)

follows.

We say the manifold (Mn,g) has harmonic Conformal curvature tensor if the

divergence of W vanishes. Furthermore, we say the manifold (M,g) is locally

conformally flat if Ci jk = 0 for n = 3 or Wi jkl = 0 for n ≥ 4. It is obvious from the

above equation that in case of the Weyl tensor is zero, the Cotton tensor vanishes too

in dimension n > 3 .

Definition 3.2.3 [20] The Bach tensor B is composed of the Weyl and the Cotton

tensor as below:

Bi j =
1

(n−2)
(C jik,k +RktWik jt) or (3.18)

Bi j =
1

(n−3)
Wik jt,tk +

1
(n−2)

RktWik jt f or n≥ 4. (3.19)

Note that if the manifold (M,g) is either conformally flat or Einstein manifold, then the

Bach tensor vanishes. In particular, we have an practical identity Bi j, j =
n−4

(n−2)2 RktCkti,

which will be used in a theorem later.

Definition 3.2.4 [20] We also define the tensor D as follows:

Di jk =
1

(n−2)
(R jk∇i f −Rik∇ j f )+

1
(n−1)(n−2)

(Ril∇
l f g jk−R jl∇

l f gik) (3.20)

− r
(n−1)(n−2)

(g jk∇i f −gik∇ j f )
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where f is the potential function in the equation (3.20).

Theorem 3.2.1 [20] Let the manifold (M,g) of dimension n ≥ 3 be a gradient

Einstein-type manifold and β is non-zero. Then the integrability conditions which

are stated below hold:

αCi jk +β ftWti jk = [β − (n−2)αµ

β
]Di jk, (3.21)

αBi j =
1

n−2
[β − (n−2)αµ

β
Di jk,k]+β (

n−3
n−2

) ftC jit−µ ft fkWit jk. (3.22)

Proof: We start by rewriting the equation (3.4) as

αRi j +β fi j +µ fi f j = (ρr+λ )δi j. (3.23)

Taking the covariant derivative of this equation gives

αRi j,k +β fi j,k +µ( fik f j + fi f jk) = (ρrk +λk)δi j. (3.24)

If we skew-symmetrize with respect to j↔ k and use the identity fi jk = fik j + ftRti jk

[15], we get

α(Ri j,k−Rik, j)+β ftRti jk +µ( fik f j− fk fi j) = ρ(rkδi j− r jδik)+(λkδi j−λ jδik)
(3.25)

To obtain the following equation, we multiply the equation (3.25) by gi j and use the

Schur’s identity rk = 2Rtk,t :

[α−2ρ(n−1)]rk =−2β ftRtk +2(n−1)λk−2µ( ft ftk−∆ f fk). (3.26)

Now pulling the term fi j from the equation (3.23) and taking the trace gives

fi j =
1
β
[−αRi j−µ fi f j +(ρr+λ )gi j]. (3.27)

∆ f =
1
β
[(nρ−α)r+nλ −µ|∇ f |2]. (3.28)

When putting these two relations into the equation (3.26), we obtain

[α−2ρ(n−1)]rk = 2(−β +
αµ

β
) ftRtk +2(n−1)λk−2

µ

β
[α−ρ(n−1)]r fk +2

µ

β
(n−1)λ fk.

(3.29)

From the definitions of Weyl and Di jk tensors, we deduce that

ftRti jk = ftWti jk−Di jk−
1

n−1
( ftRtkδi j− ftRt jδik). (3.30)
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Inserting the equations (3.6), (3.29), and (3.30) into (3.25) we get the equation (3.27).

For the second part of the proof, let’s take the divergence of the equation (3.21):

αCi jk,k−β ftkWit jk−β (
n−3
n−2

) ftC jit = [β − (n−2)αµ

β
]Di jk,k. (3.31)

Here we use the definition of the Bach tensor, the equation (3.27), and the symmetries

of the Weyl tensor to get the desired result. (The Weyl tensor possesses the same

symmetries with the Riemann tensor.)

3.3 (m,ρ)-Quasi Einstein Manifolds

We are now familiar with the concept of the Einstein manifolds and their several

generalization. In this part of the study, we will go little bit deeper and work on a

very special type of manifolds.

Definition 3.3.1 [17] The tensor given below, which is composed of the Ricci tensor,

Hessian, and the tensor product parts as:

Ricm
f = Ric+Hess f − 1

m
d f ⊗d f ; 0 < m 6 ∞ (3.32)

is called the m-Bakry-Emery Ricci tensor where f is a smooth function and m is

a positive integer. It has a similar structure with the equation (3.4), but different

constants. As it seen easily, when f is constant, the m-Bakry-Emery-Ricci tensor

becomes the usual Ricci tensor.

Definition 3.3.2 [17] A Riemannian manifold (Mn,g) with a potential function f on

M is said to be m-generalized quasi Einstein manifold if

Ric+Hess f − 1
m

d f ⊗d f = λg (3.33)

where m ∈ N and λ ∈C∞(M). It has the following characterizations:

• If λ ∈ R, the manifold becomes m-quasi Einstein manifold.

• For m = ∞, the manifold reduces to a gradient Ricci soliton which will be defined

in the next chapter.

• For constant potential function f , the manifold becomes Einstein. We call this

incident rigidity.
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Definition 3.3.3 [21] A Riemannian manifold (Mn,g) with a potential function f on

M is said to be (m,ρ)-quasi Einstein manifold if

Ric+Hess f − 1
m

d f ⊗d f = (ρr+λ )g (3.34)

where m ∈ N, ρ,λ ∈ R and r denotes the scalar curvature.

Theorem 3.3.1 [22] For an (m,ρ)-quasi Einstein manifold with admitted parallel

vector field φ , we have the following form for the Ricci tensor:

Ric = (ρr+λ )[g−U [⊗U [] (3.35)

where U [ is a 1-form associated with the unit vector field in the direction of φ .

The proof will be given in the last chapter. Let’s assume that the theorem holds for

now.

Theorem 3.3.2 [22] Let (Mn,g) be an (m,ρ)-quasi Einstein manifold with admitted

gradient parallel vector field φ . Then, there exists an isomorphism between the

manifold M and the direct product M∗×R where M∗ is an complete Einstein manifold

with dimension (n−1).

Proof: It is well-known fact from Tashiro’s theorem [23] that such a manifold M is

the direct product M∗× I of an (n− 1) dimensional Riemannian manifold M∗ with a

straight line I. Hence, we can decompose the metric g as g = gM∗ +(dt)2 where gM∗

is the metric on M∗ and Ric = RicM∗+RicI . If we choose U = ∂t , then by the previous

theorem, we have

Ric = (ρr+λ )[g−∂
[
t ⊗∂

[
t ] (3.36)

which implies RicI = 0, so we get

RicM∗(X ,Y ) = (ρr+λ )gM∗(X ,Y ) f or all X ,Y ∈ χ(M∗). (3.37)

It can be seen that M∗ is an Einstein manifold with constant scalar curvature, so the

proof is completed.

In the following, we will give an example for (m,ρ)-quasi Einstein manifolds of

dimension n = 3.
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Example 3.3.1 Consider a Riemannian manifold M with (n = 3), which has local

coordinates (t,x,y), frame fields ∂t ,∂x,∂y, and the Rimennian metric tensor

gh =

 0 0 1
0 1 0
1 0 h(t)

 (3.38)

for some function h depending only on t. [22] Then, we have

5∂t ∂y =
1
2

ht∂t , 5∂y∂y =
1
2

hht∂t−
1
2

ht∂y (3.39)

R(∂t ,∂y)∂t =−
1
2

htt∂t , R(∂t ,∂y)∂y =−
1
2

hhtt∂t +
1
2

htt∂y (3.40)

where the corresponding Ricci tensor is found as

Ric =

 0 0 1
2htt

0 0 0
1
2htt 0 1

2hhtt

 (3.41)

whose scalar curvature is r = htt . Additionally, the manifold (M,gh) should satisfy the

eq.(3.34) so that it has the (m,ρ)-quasi Einstein structure. Using the components of

the Ricci tensor and the metric g in the equation (3.34) yields

uiu j =

{
1 i = j = 2
0 otherwise

(3.42)

which implies that we have a solution when the potential function f depends only on x.

Hence, we obtain the following reduced system of differential equations:

fxx−
1
m
( fx)

2 = ρh′′+λ ,
1
2

h′′ = ρh′′+λ (3.43)

where "’" denotes the partial derivative with respect to t. These can be solved as

follows:

f (x) = c2−m ln(cos(

√
k(c1 + x)√

m
)) or f (x) = c2−m ln(sin(

√
k(c1 + x)√

m
)) f or k > 0

(3.44)

and the potential function will be in the same form with the hyperbolic functions

instead of cos & sin functions for k < 0 where h(t) = kt2 + lt + p for some constants

k, l, p,c1,c2 ∈ R.
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4. RICCI SOLITONS

4.1 Ricci Flow

The primary purpose of this section is an introduction for the Ricci solitons to answer

the questions such as where these structures emerge from and what is the physical

interpretation of this kind of geometric forms.

In the beginning of the 20th century, French mathematician Henri Poincaré claimed

that every simply connected, closed 3-dimensional manifolds are homeomorphic to

the S3 in a sense that 3-sphere is the only 3-dimensional space where each loop is able

to shrunk to a point continuously. The conjecture may seem easy but it had stayed

unsolved until the next century. After Poincaré, Thurston stated the geometrization

conjecture which is about the complete classification of the compact 3-dimensional

manifolds. Hence, it could give an answer for Poincaré conjecture as well. In 1982,

Hamilton introduced the concept of Ricci flow which was used to solve geometrization

conjecture by Perelman later.

Definition 4.1.1 Let (M,g0) be a Riemannian manifold. The following partial

differential equation is called the Ricci flow which evolves the metric tensor:

∂

∂ t
g(t) =−2Ric(g(t)), (4.1)

g(0) = g0.

The Ricci flow can be considered as heat-type equation in which it averages out

the curvature as homogeneous heat radiation. [24] To gain some intuition about the

geometry of it, let’s consider the mean curvature flow. Take a closed 2-dimensional

surface in the 3-dimensional space and draw a tangent plane to each point: Now

move each point in the perpendicular direction to the tangent plane at that point.

Additionally, let the distance of the movement be proportional to the curvature of the

point and the inside volume be fixed. Then, the surface will get rounder and be a

sphere eventually as in the Figure 4.1. (If we do not take the inside volume fixed, then
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Figure 4.1 : Mean Curvature Flow

Figure 4.2 : Singularity Points

it will shrink to a point at the end.) The problem occurs if we take an hour glass-like

surface initially. After some time, we will end up with some point where the curvature

blows up, which is drawn in the Figure 4.2. In the case of the Ricci flow, the metric

g evolves in time proportional to the something including the (Ricci) curvature. It is

likely that the flow will create singularities as we tried to illustrate in the case of the

mean curvature flow. There is a structure which corresponds to self-similar solutions

of the Ricci flow and models the formation of singularities in the flow will be defined

the next.

4.2 Gradient Ricci Solitons

Definition 4.2.1 A complete Riemannian manifold (M,g) is said to be a Ricci soliton

if the following equation

Ric+
1
2
Lξ g = λg (4.2)

holds for some smooth vector field ξ and a constant λ . A Ricci soliton is said to be

• steady if λ = 0,

• shrinking if λ > 0,

• expanding if λ < 0.
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Furthermore, we have gradient Ricci soliton if the potential field ξ is the gradient of

some smooth function f on M. In this case, the eq.(4.2) becomes

Ric+∇
2 f = λg (4.3)

where ∇2 f stands for the Hessian of f . Notice that we get an Einstein manifold when

f is constant and say that a soliton is trivial. Gradient Ricci solitons are significant part

of the studies on the Ricci flow since they correspond to the solutions which evolve

along symmetries of the flow. Besides from that, the Ricci solitons do not need to be

compact. In particular, the compact Ricci solitons are known as the fixed points of the

Ricci flow. [25]

Lemma 4.2.1 [26] Take a complete gradient Ricci soliton (M,g) and let f be the

corresponding potential function. Then we have

r+ |∇ f |2−2λ f =C (4.4)

for some constant C.

Proof: A gradient Ricci soliton must satisfy the equation (4.3). If we consider the

covariant derivative of the equation (4.3) and skew-symmetrize with respect to k↔ j,

then we get

∇iR jk−∇ jRik +Ri jkl∇l f = 0. (4.5)

Multiplying by g jk and recall the contracted second Bianchi identity ∇ jRi j =
1
2∇ir

gives

∇ir = 2Ri j∇ j f . (4.6)

Adding the same terms in the both sides does not change the equality, so

∇i(r+ |∇ f |2−2λ f ) = 2(Ri j +∇i∇ j f −λgi j)∇ j f = 0. (4.7)

Therefore,

r+ |∇ f |2−2λ f =C (4.8)

for some constant C.
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Remark: It is possible to rescale the metric and shift the function f by a constant for

shrinking Ricci solitons so that

Ri j +∇i∇ j f =
1
2

gi j and r+ |∇ f |2− f = 0. (4.9)

Proposition 4.2.1 [26] [27] Any compact steady or expanding gradient Ricci soliton

must be Einstein.

Proof: We are going to show the statement for the expanding gradient Ricci solitons.

The steady case is similar. For a compact shrinking gradient Ricci soliton (M,g) with

some λ < 0, if we take the trace of the soliton equation, we obtain

r+∆ f = nλ . (4.10)

By using the lemma 4.2.1, we find

∆ f −|∇ f |2 =−2λ f +C0 (4.11)

for some constant C0. Using the maximum principle, we see

−2λ f |max +C0 ≤ 0

−2λ f |min +C0 ≥ 0

which implies f |max = f |min, so f is constant. Thus, the soliton is Einstein.

It can be said that there are no compact gradient steady or expanding Ricci solitons in

the dimensions of n = 2,3 except for those of constant curvature.

Lemma 4.2.2 [20] Let (Mn,g) be a Riemannian manifold. Then, the equation Cki j,k = 0

holds for the Cotton tensor.

Proof: Let’s start with taking the covariant derivative of the Cotton tensor:

Ci jk,t = Ri j,kt−Rik, jt−
1

2(n−1)
(r,ktδi j− r, jtδik). (4.12)

We also know that [20]

Rik, jk = Rik,k j +Rti jkRtk +Rtk jkRti =
1
2

ri j−RtkRit jk +RitRt j (4.13)

from the Schur’s identity. Then, the divergence of the Cotton tensor can be expressed

as

Ci jk,k = Ri j,kk−
n−2

2(n−1)
r,i j +RtkRit jk−RitRt j−

1
2(n−1)

∆rδi j (4.14)
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which shows that Ci jk,k = C jik,k. We also have the next equation from the equation

(3.15);

Wi jkt +Wit jk +Wikt j = 0 (4.15)

which is known as the first Bianchi identity for the Weyl tensor, that implies

Ci jk +C jki +Cki j = 0. (4.16)

If we look at the covariant derivative of the equation (4.16), we get

Cki j,k = 0. (4.17)

Proposition 4.2.2 [19] Let (Mn,g) be a gradient Ricci soliton with potential function

f . Then the Weyl, Cotton, Bach, and D tensors satisfy the following equations:

Ci jk + ftWti jk = Di jk, (4.18)

(n−2)Bi j− (
n−3
n−2

) ftC jit = Di jk,k, (4.19)

RktCkti = (n−2)Ditk,tk, (4.20)
1
2
|C|2 +RktCkti,i = (n−2)Ditk,tki. (4.21)

Proof: We will prove the first two equations. Let’s start with taking the covariant

derivative of the equation (4.3);

Ri j,k + fi jk = 0. (4.22)

If we skew-symmetrize this with respect to k↔ j and use the commutation relation

fi jk− fik j = ftRti jk and the formula for the Weyl tensor, we get

Ri j,k−Rik, j = ftRtik j (4.23)

= ft [Wtik j +
1

n−2
(Rtkgi j−Rt jgik +Ri jgtk−Rikgt j) (4.24)

− r
(n−1)(n−2)

(gtkgi j−gt jgik)]

=− ftWti jk +
1

n−2
( ftRtkgi j− ftRt jgik + fkRi j− f jRik) (4.25)

− r
(n−1)(n−2)

( fkgi j− f jgik)

Now when we use the definitions of the Cotton tensor and the D tensor, the equation

(4.18) follows easily. To prove the next equation, take the divergence of the equation

(4.18);

Ci jk,k + ftkWti jk + ftWti jk,k = Di jk,k. (4.26)
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Put this into the definition of the Bach tensor to get

(n−2)Bi j = D jik,k− ftkWt jik− ftWt jik,k +RktWik jt . (4.27)

Using the soliton equation, the relation formula for the Weyl and the Cotton tensor,

and the fact that the Weyl tensor is trace-free gives the equation (4.19) as desired.

Note that these four equations we just proved are known as integrability conditions for

the gradient Ricci solitons.

4.3 Examples For Ricci Solitons

For the examples throughout the section, we have considered the resources [7] and

[28].

Example 4.3.1 (Hamilton’s Cigar Soliton) A complete noncompact steady soliton on

R2 with the given metric and the potential function by

ds2 =
dx2 +dy2

1+ x2 + y2

f =−log(1+ x2 + y2)

The Cigar Soliton has positive (Gaussian) curvature and linear volume growth. Also,

it is asymptotic to a cylinder of finite perimeter at ∞. It is also known as Witten’s black

hole in general relativity.

Example 4.3.2 (Byrant Soliton) It is an analog of Cigar soliton for higher dimensions

(n ≥ 3), which is rotationally symmetric and have positive sectional curvature. Also,

it is asymptotic to a paraboloid in a different way from the Cigar case.

Example 4.3.3 (Gaussian Soliton) It is (Rn,g0) with the flat Euclidean metric which

has both shrinking and expanding gradient Ricci solitons, called the Gaussian shrinker

or expander.

• A gradient shrinker with potential function f = |x|2
4 ;

Ric+∇
2 f =

1
2

g0.

26



• A gradient expander with potential function f =− |x|
2

4 ;

Ric+∇
2 f =−1

2
g0.

Example 4.3.4 (Warped Products) It is constructed by using doubly warped product

and multiple warped product to produce noncompact gradient steady solitons by Ivey

and Dancer-Wang.
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5. THE STRUCTURE OF RICCI SOLITONS ON SOME SPECIAL KIND OF
EINSTEIN MANIFOLDS

In the previous chapters, we have mentioned about the concepts of the Riemannian

geometry, special type of Einstein manifolds, Ricci solitons, and their importance in

differential geometry and physics. In this last chapter, we will explain about what we

have worked on, how our work contribute to the related fields even to a little extent,

and what are the ongoing problems and the current studies.

In this master’s thesis, it has been searched for the Ricci soliton structure after

admitting different kinds of vector fields on various types of Einstein manifolds.

5.1 The Gradient Einstein-Type Manifold With a Parallel Vector Field

Let (Mn,g) be a gradient Einstein-type manifold. Then it has a potential function f

satisfying the equation

αRi j +β fi j +µ fi f j = (ρr+λ )gi j (5.1)

which is given in the earlier chapter. Now, take a parallel vector field φ given on the

manifold M. Since ∇X φ = 0 for all X ∈ χ(M), we have φi, j = 0. If we apply the Ricci

identity, we also get

φi, jk−φi,k j = φhRh
i jk = 0 =⇒ φ

hRhi jk = 0 =⇒ φ
hRhk = 0. (5.2)

Define a new function A such that

A = φ
i fi =⇒ A j = φ

i fi j (5.3)

=⇒ A, jk = φ
i fi jk = Hess(φ( f )). (5.4)

From the above equation, it is seen that A, jk−A,k j = 0 since the Hessian is symmetric.

When we turn back to the equation (5.1) and multiply the the equation by φ i, we obtain

αφ
iRi j +βφ

i fi j +µφ
i fi f j = (ρr+λ )φ igi j. (5.5)
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Using the equations (5.3) and (5.2) in the equation (5.5) gives

βA j +µA f j = (ρr+λ )φ j. (5.6)

If we take the covariant derivative with respect to k, we find

βA, jk +µAk f j +µA f jk = ρrkφ j. (5.7)

Skew-symmetrize the equation with respect to k↔ j to get

µ(Ak f j−A j fk) = ρ(rkφ j− r jφk). (5.8)

From the equation (5.6), we have

µ(Ak f j−A j fk) = µ[
1
β
(−µA fk +(ρr+λ )φk) f j−

1
β
(−µA f j +(ρr+λ )φ j) fk]

(5.9)

When we arrange the above equation, we get

µ(Ak f j−A j fk) =
µ(ρr+λ )

β
(φk f j−φ j fk). (5.10)

If we combine the equations (5.8) and (5.10), we see

[
µ(ρr+λ )

β
f j +ρr j]φk− [

µ(ρr+λ )

β
fk +ρrk]φ j = 0. (5.11)

Leave this equation here and multiply the equation (5.8) by φ k to get

µφ
kAk f j−µA jφ

k fk = ρφ
krkφ j−ρr jφ

k
φk. (5.12)

Let µφ kAk = ψ and φ krk = γ , then the equation becomes

ρr j‖φ‖2 = µAA j +ργφ j−ψ f j. (5.13)

Combining this equation with the equation (5.6) leads us the following equation;

ρr j‖φ‖2 = (−µ2A2

β
−ψ) f j +(

µA(ρr+λ )

β
+ργ)φ j. (5.14)

Pull ρr j and ρrk from the above equation and put them into the equation (5.11), then

we have

[
µ(ρr+λ )

β
− 1
‖φ‖2 (

µ2A2

β
+ψ)] f jφk = [

µ(ρr+λ )

β
− 1
‖φ‖2 (

µ2A2

β
+ψ)] fkφ j.

(5.15)
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From the above equation, a solution naturally comes that the derived vector fields from

f and φ are collinear, i.e. f, j = εφ, j for some smooth function ε . As a consequence of

this

A = ε‖φ‖2 =⇒ ε, j =
A, j

‖φ‖2 (5.16)

comes out. On the other hand, the next equation comes into being from the previous

equation and the equation (5.6);

f jk = εkφ j =
1

‖φ‖2β
[(ρr+λ )φk−µA fk]φ j, (5.17)

=
1

‖φ‖2βε
[
(ρr+λ )

ε
−µA] fk f j. (5.18)

Before continuing, let’s check for the incident that is

(ρr+λ )

ε
= µA. (5.19)

This indicates fi j, A j, and ε j are all zero with regard of the equations (5.16) and (5.17),

ie. the functions A and ε are constant. Then, the main equation becomes

αRi j +µ fi f j = (ρr+λ )gi j. (5.20)

And hence

αRi j +µε
2
φiφ j = (ρr+λ )gi j. (5.21)

which indicates that

Ri j =
(ρr+λ )

α
(gi j−uiu j) =⇒ r =

(ρr+λ )

α
(n−1) (5.22)

for ui =
φi
‖φ‖ . Now, assume that (ρr+λ )

ε
6= µA. Putting the equation (5.18) into the

equation (5.1) gives

αRi j +[
(ρr+λ )

‖φ‖2ε2 ] fi f j = (ρr+λ )gi j. (5.23)

We have fi = εφi = εui‖φ‖, and hence

Ri j =
(ρr+λ )

α
(gi j−uiu j). (5.24)

Take the trace of the equation to obtain

r =
(ρr+λ )

α
(n−1) =⇒ r =

λ (n−1)
α−ρ(n−1)

≡ constant. (5.25)
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which is similar with the other case. Note that α 6= ρ(n− 1) here. It can be seen the

Ricci soliton structure for

Gi j =
(ρr+λ )

α
uiu j, (5.26)

then the equation (5.1) becomes

Ric+G = λ
∗g (5.27)

where G = 1
2LGg = β

α
f,i j +

µ

α
f,i f, j and λ ∗ = (ρr+λ )

α
= r

(n−1) as desired. It can be also

seen the nearly quasi-Einstein manifold structure for

Ei j = uiu j, (5.28)

then the equation (5.1) becomes

Ri j = agi j +bEi j (5.29)

where

a =
r

n−1
and b =− r

n−1
(5.30)

by the equations (5.22) and (5.24). Hence, we have the following theorems.

Theorem 5.1.1 A gradient Einstein-type manifold M with admitted a parallel vector

field φ has nearly quasi-Einstein manifold. Moreover, its associated scalars are

constant such that the sum is equal to zero.

From the equations (5.26) and (5.27), we get the following theorem.

Theorem 5.1.2 A gradient Einstein-type manifold M with admitted a parallel vector

field φ has Ricci soliton.

On the other hand, if we take (ρr+λ )
α

= 1
2 , then we get a shrinking gradient Ricci soliton

corresponding to a self-similar solution gi j(t) for the Ricci flow in which

gi j(t) = (1− t)ϕ∗t (gi j) t < 1 (5.31)

where ϕt are the 1-parameter family of diffeomorphisms generated by ∇ f
(1−t) according

to the study of Cao. [29]

Theorem 5.1.3 A gradient Einstein-type manifold (Mn,g) with admitted a parallel

vector field φ has vanishing Cotton tensor for n≥ 3.

32



Proof: The Ricci tensor of the manifold M is parallel with regard of the equation

(5.24). If we use this fact and the scalar curvature r being constant in the definition of

the Cotton tensor, it is easily seen that Ci jk = 0 for n≥ 3.

Theorem 5.1.4 A gradient Einstein-type manifold (Mn,g) with admitted a parallel

vector field φ has vanishing Di jk tensor for n≥ 3 where

Di jk =
1

(n−2)
(R jk fi−Rik f j)+

1
(n−1)(n−2)

(Ril f lg jk−R jl f lgik)

− r
(n−1)(n−2)

(g jk fi−gik f j).

Proof: If we use the equations (5.24) and (5.25) in the above equation, we get

Di jk =
1

(n−2)
[ fi

r
(n−1)

(g jk−u juk)− f j
r

(n−1)
(gik−uiuk)] (5.32)

+
1

(n−1)(n−2)
f l[

r
(n−1)

(gli−uiul)g jk−
r

(n−1)
(gl j−ulu j)gik]

− r
(n−1)(n−2)

( fig jk− f jgik)

which leads us

Di jk = 0. (5.33)

since fi = εui‖φ‖.

We could show the same result by using the below relation

Di jk =
1

n−2
(A jk∇i f −Aik∇ j f )+

1
(n−1)(n−2)

(g jkEil−gikE jl)∇l f (5.34)

where Einstein tensor Ei j = Ri j− r
2gi j. [30] This structure has importance in the field

because it also verifies couples of other theorems recently proved. In H. D. Cao and Q.

Chen’s relevant work [30], they showed that (Mn,g) has the Cotton tensor Ci jk = 0 for

n≥ 5 if it is a complete gradient Ricci soliton with tensor Di jk = 0, which is supported

by our case. Additionally, it is compatible with the theorem (5.1.3). The relation

∇lWi jkl =−n−3
n−2Ci jk and the theorem (5.1.3) implies the next theorem.

Theorem 5.1.5 A gradient Einstein-type manifold M with admitted a parallel vector

field φ has conharmonic curvature tensor.

Theorem 5.1.6 If (M4,g, f ) is a complete gradient Einstein-type manifold with

admitted a parallel vector field and positive scalar curvature, then the manifold is

locally conformally flat.
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Proof: Cao and Chen also showed that complete gradient Ricci solitons with Di jk = 0

are locally conformally flat for n = 4. [30] With regard of this fact and the equations

(5.24), (5.25), (5.27), and (5.33) the result is seen clearly.

Theorem 5.1.7 If (Mn,g, f ) is a complete gradient Einstein-type manifold with

admitted a parallel vector field, then the manifold is Bach flat.

Proof: We know that [19]

(n−2)Bi j−
(

n−3
n−2

)
ftC jit = Di jk,k. (5.35)

Hence from the theorems (5.1.3) and (5.1.4), the result follows.

Thus, we can say that the manifold in the next example is Bach flat.

Example 5.1.1 Consider a Riemannian manifold M with (n = 3), which has local

coordinates (t,x,y), frame fields ∂t ,∂x,∂y, and the Rimennian metric tensor

gh =

 0 0 1
0 1 0
1 0 h(t)

 (5.36)

for some function h depending only on t. [22] Then, we have

5∂t ∂y =
1
2

ht∂t , 5∂y∂y =
1
2

hht∂t−
1
2

ht∂y (5.37)

R(∂t ,∂y)∂t =−
1
2

htt∂t , R(∂t ,∂y)∂y =−
1
2

hhtt∂t +
1
2

htt∂y (5.38)

where the corresponding Ricci tensor is found as

Ric =

 0 0 1
2htt

0 0 0
1
2htt 0 1

2hhtt

 (5.39)

whose scalar curvature is r = htt . Additionally, we also have

uiu j =

{
1 i = j = 2
0 otherwise

(5.40)

as well, so the potential function f will be depending only on x. However, the manifold

M should satisfy the equation for gradient Einstein-type manifolds this time. It brings

us the following differential equation system;

β

α
fxx +

µ

α
( fx)

2 =
htt

2
=

r
(n−1)

(5.41)

htt

2
=

(ρhtt +λ )

α
(5.42)
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where h(t) = a1t2 + a2t + a3 for some constants a1,a2,a3 ∈ R, r = 2a1, and r
(n−1) =

(ρr+λ )
α

. This system can be solved as;

f (x) =


f (x) = ln(|e2

√
k1k2−2

√
k1x+1|)+

√
k1x

µ

β

+ k3 −
√

k1 ≤ µ

β
fx ≤
√

k1,

f (x) = ln(|e2
√

k1k2−2
√

k1x−1|)+
√

k1x
µ

β

+ k3 |µ
β

fx|>
√

k1,
(5.43)

where k1 =
µ

β 2 (2a1ρ +λ ) = µ

β 2 (ρr+λ ), k1,k2 > 0, and for some constant k3 ∈ R.

Theorem 5.1.8 Let M be the 3-dimensional complete gradient Einstein-type manifold

with admitted a parallel vector field and local coordinates (t,x,y) endowed with the

metric gh = 2dtdy+ (dx)2 + h(t)(dy)2 where f is the potential function depending

only on x given by the equation (5.43). Then the manifold M is a Ricci soliton where

λ ∗ is constant for Ric+G = λ ∗g as in the equation (5.27).

Special Case: In the equation (5.1), if we take constants (α,β ,µ) = (1,1,− 1
m), the

manifold becomes (m,ρ)-quasi Einstein manifold. Applying the same process gives a

gradient Ricci soliton with the following results:

Ri j = (ρr+λ )(gi j−uiu j) =
r

(n−1)
(gi j−uiu j) (5.44)

r = (ρr+λ )(n−1) (5.45)

Gi j = (ρr+λ )uiu j (5.46)

Remark that the expression of Ricci tensor with the scalar curvature r is just like in the

general case. Hence, the same results hold for (m,ρ)-quasi Einstein manifolds as well.

Theorem 5.1.9 Let (Mn,g) be a complete (n ≥ 3) nontrivial gradient Einstein-type

manifold with admitted a parallel vector field φ . Then the manifold M is isometric to

the direct product of an interval and a (n−1) dimensional Einstein manifold.

Proof: It is easily seen that the Ricci solitons we obtained earlier possess parallel

Ricci tensor with regard of the equations (5.24) and (5.25). Then, the result is coming

from the work of Z. Hu, D. Li and S. Zhai in their paper. [31] Also, we know that

(m,ρ)-quasi Einstein manifolds are a special case of gradient Einstein-type manifolds.

The corresponding theorem for (m,ρ)-quasi Einstein manifolds is proved in [22].

[32], [33], [34], [35], [36], [37], [38], [39], and [40] are the additional resources that

have been checked out in the process.
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6. CONCLUSIONS AND RECOMMENDATIONS

The Riemannian geometry is valuable part of overall science due to the fact that it has

developed the perception of surfaces and geometrical structures. Einstein manifolds

and Ricci solitons are respectively new topics of this concept. These two notions have

serious physical meanings behind. Thus, they have become intriguing in the context to

look for the relation between them.

In this thesis, it has been searched for the Ricci soliton structure after admitting

different kinds of vector fields on some special types of Einstein manifolds. With this

purpose, we have considered parallel vector fields. We have obtained some interesting

outcomes from the research. First one is the manifold hosts both Ricci soliton and

nearly quasi-Einstein manifold structures in this case. Secondly, the manifold has

vanishing Cotton tensor, so does conharmonic curvature tensor. This situation help us

come to the conclusion about the Weyl and Bach tensors as well. According to the last

observation, the gradient Einstein-type manifolds with associated parallel vector field

is isomorphic to the warped product of an interval and (n− 1) dimensional Einstein

manifold.

For future studies, there may also some interesting findings for the conformal vector

fields on various types of Einstein manifolds. Moreover, this case may be related to

Yamabe solitons.

37



38



REFERENCES

[1] Lee, J.M. (2006). Riemannian manifolds: an introduction to curvature,
volume176, Springer Science & Business Media.

[2] Besse, A.L. (2007). Einstein manifolds, Springer Science & Business Media.

[3] Chaki, M. and Maity, R. (2000). On quasi Einstein manifolds, Publicationes
Mathematicae, Debrecen, 57, 297–306.

[4] Chaki, M. (2001). On generalized quasi Einstein manifolds, Publ. Math. Debrecen,
58, 683–691.

[5] Perelman, G. (2002). The entropy formula for the Ricci flow and its geometric
applications, arXiv preprint math/0211159.

[6] Hamilton, R.S. et al. (1982). Three-manifolds with positive Ricci curvature,
Journal of Differential Geometry, 17(2), 255–306.

[7] Cao, H.D. (2009). Recent progress on Ricci solitons, arXiv preprint
arXiv:0908.2006.

[8] Do Carmo, M. (1992). Riemannian Geometry. Mathematics: Theory &
Applications. Birkhuser Boston, Inc., Boston, MA.

[9] Boothby, W.M. (1986). An introduction to differentiable manifolds and
Riemannian geometry, volume120, Academic press.

[10] WU, J. (2004). Lecture notes on differentiable manifolds, Department of
Mathematics, National University of Singapore.

[11] Kinyua, K.D. and Gikonyo, K.J. (2017). Differential Geometry: An Introduction
to the Theory of Curves, International Journal of Theoretical and Applied
Mathematics, 3(6), 225.

[12] O’neill, B. (2006). Elementary differential geometry, Elsevier.

[13] Kosinski, A.A. (2013). Differential manifolds, Courier Corporation.

[14] De, U.C. and Gazi, A.K. (2008). On nearly quasi-Einstein manifolds, Novi Sad J.
Math, 38(2), 115–121.

[15] Catino, G., Mastrolia, P., Monticelli, D. and Rigoli, M. (2016). On the geometry
of gradient Einstein-type manifolds, Pacific Journal of Mathematics,
286(1), 39–67.

[16] Yano, K. and Kon, M. (1984). Structures on manifolds.

39



[17] Catino, G. (2012). Generalized quasi-Einstein manifolds with harmonic Weyl
tensor, Mathematische Zeitschrift, 271(3-4), 751–756.

[18] Hwang, S. and Yun, G. (2016). Ridigity of Ricci solitons with weakly harmonic
Weyl tensors, arXiv preprint arXiv:1604.07018.

[19] Catino, G., Mastrolia, P. and Monticelli, D.D. (2017). Gradient Ricci solitons
with vanishing conditions on Weyl, Journal de Mathématiques Pures et
Appliquées, 108(1), 1–13.

[20] Catino, G., Mastrolia, P., Monticelli, D.D. and Rigoli, M. (2016). Conformal
Ricci solitons and related integrability conditions, Advances in Geometry,
16(3), 301–328.

[21] Huang, G. and Wei, Y. (2013). The classification of (m,\ρ) -quasi-Einstein
manifolds, Annals of Global Analysis and Geometry, 44(3), 269–282.
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