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THREE DIMENSIONAL SIMULATION OF
FLUID STRUCTURE INTERACTIONS FOR
RED BLOOD CELLS

SUMMARY

Red blood cells, also called erythrocytes, can be defined as nucleus-free deformable
liquid capsules enclosed by a biological membrane that is nearly incompressible and
exhibits a viscoelastic response to shearing and bending deformation. The mechanical
properties of red cells strongly influence the rheological behavior of blood and
introduce non-Newtonian effects. A number of human diseases such as hypertension,
malaria, sickle cell anemia and diabetes mellitus leads to change in the mechanical
properties of red blood cells and reduction in deformability, which increase in
microvascular flow resistance and a decrease in cellular oxygen delivery.

A parallel fully-coupled (monolithic) fluid-structure interaction (FSI) algorithm has
been applied to the deformation of red blood cells (RBCs) in capillaries, where cell
deformability has significant effects on blood rheology. In the present FSI algorithm,
fluid domain is discretized using the side-centered unstructured finite volume method
based on Arbitrary Lagrangian-Eulerian (ALE) formulation, meanwhile solid domain
is discretized with the classical Galerkin finite element formulation for the Saint
Venant-Kirchhoff material in a Lagrangian frame. In addition, the compatible
kinematic boundary condition is enforced at the interface between the solid and fluid
domains in order to satisfy the global discrete geometric conservation law (DGCL),
which is important in order to conserve the mass of cytoplasmic fluid within the
red cell at machine precision. In order to solve the resulting large-scale algebraic
linear systems in a fully coupled (monolithic) manner, a new matrix factorization is
introduced similar to that of the projection method and the parallel algebraic multigrid
solver BoomerAMG is used for the scaled discrete Laplacian provided by the HYPRE
library which we access through the PETSc library.

Three important physical parameters for the blood flow are simulated and analyzed: (1)
the effect of capillary diameter, (i1) the effect of red cell membrane thickness and (iii)
the effect of red cell spacing (hematocrit). The capillary diameter is found out to be
particularly important not only for the pressure gradient but also for the deformation of
red blood cells. The numerical calculations also indicate a complex shape deformation
in which biconcave discoid shape changes to a parachute-like shape which is in accord
with the early results in the literature. Furthermore, the parachute-like cell shape in
small capillaries undergoes a cupcake shaped buckling instability, which has not been
observed in the literature. The instability forms thin rib-like features and the red cell
deformation is not axisymmetric but three-dimensional.
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KIRMIZI KAN HUCRELERI ICiIN UC BOYUTLU
AKISKAN YAPI ETKILESIMI SIMULASYONU

OZET

Kan reolojisi, kanin akis ozelliklerini ve kan icindeki elemanlarin deformasyon
davraniglarim ele alir. Kanin reolojik 6zellikleri, dokularin beslenmesinde ve atiklarin
bu dokulardan uzaklastirilmasinda hayati rol oynamaktadir. Ciinkii kan, besin
maddeleri ve oksijen gibi gerekli maddeleri hiicreye tasirken karbon dioksit, amonyak
gibi metabolik atiklar hiicreden uzaklastirir. Buna ek olarak, kanin reolojik 6zellikleri
bagisiklik sisteminde ve viicut sicakliginin sabit tutulmasinda biiyiik etkilere sahiptir.
Kan esas olarak plazma (cogunlukla suda ¢oziinmiis cesitli proteinler, glikoz,
pithtilagsma faktorleri, elektrolitler, hormonlar, atik {iriinler, vb.), kirmizi kan hiicreleri
(RBCs), beyaz kan hiicreleri (WBCs) ve trombositlerden olusur. Bu calisma esas
olarak, kirmiz1 kan hiicreleri tizerine yapilmustir.

Kirmiz1 kan hiicreleri, biyolojik zarla cevrilmis, neredeyse sikistirllamaz olmakla
birlikte kesme ve biikiilme deformasyonlarina kars1 viskoelastik tepki veren, deforme
olabilen, cekirdeksiz, sivi dolu bir kapsiil olarak diistiniilebilir. Yetigkin saglikli bir
insan viicudunda, kirmiz1 kan hiicreleri genellikle 8um ¢apl ve 2pum kalinlikli esnek
her iki yiizii icbiikey diskler halinde sekil almaktadir. Kirmizi kan hiicresinin zar
yapist bir ¢cok katmanin bir araya gelmesiyle olusur. Kalinlif1 yaklasik Snm olan
dis lipit cift katmanminin elastisitesi, zarin sertligini etkileyen en onemli faktordiir
[6]. Kirmiz1 hiicre zar yapisi, dig strese maruz kaldiginda kendi c¢apinin yarisi
veya daha kiiclik capa sahip kilcal damarlardan ge¢mesine imkan taniyabilecek
kadar biiyiikk deformasyonlar1 kaldirabilecek kabiliyete sahiptir. Normal kirmizi kan
hiicresinin yiizey alaninin hacime orani, ayn1 hacimdeki bir kiireye gore %40
oraninda daha yiiksektir [7]. Kirmiz1 kan hiicrelerinin difiizyon yiizeyinin artmasi
sayesinde, dokularin beslenmesinde ve atiklarin bu dokulardan uzaklastirilmasindaki
hayati roliinde kiireden daha verimli olmasim saglar. Kan icindeki asili kirmizi kan
hiicrelerinin hacim fraksiyonu olarak tanimlanan hematokrit, normal insan kaninda
%40 ila %45 arasinda degisir. Bu oran cinsiyet, yas ve spor yapma aligkanliklarina
bagh olarak degisim gostermektedir.

Diger biitiin kan elamanlarinin yani sira kirmizi kan hiicrelerin mekanik 6zellikleri,
kanin reolojik davranigini biiyiikk Olclide etkiler ve Newtonyen olmayan etkileri
beraberinde getirir. Ote yandan, beyaz kan hiicreleri kanda hacimce sadece yaklasik
1/600 oraninda bulunurlar ve i¢indeki akigkanin viskozitesi, kanin viskozitesinden
binlerce kez daha biiyiiktiir. Bunun sonucu olarak, ayni akis altindaki kirmizi kan
hiicreleri kadar deforme olamazlar [8].

Hipertansiyon, sitma, orak hiicre anemisi/hastaligi ve seker hastaligi gibi bir
takim hastaliklar, kirmizi kan hiicrelerinin mekanik 6zelliklerinde degisiklikler
olusturur ve deforme edilebilirliginin azalmasina neden olur. Kirmizi kan hiicrelerinin
deformabilitesindeki azalma, mikrovaskiiler akis direncinde belirgin bir artisa ve
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hiicresel oksijen alig verisinde ve doku beslenmesinde ciddi derecede azalmaya,
mikrosirkiilasyonda da bozulmaya neden olur. Bu nedenle, kilcal damardaki kirmizi
kan hiicrelerini ve onu ¢evreleyen plazmanin hareket ve deformasyonunu anlamak
ilgili hastaliklarla miicadelede degerli bilgiler saglayabilir.

Biiyliik damarlardaki kan genellikle sikistirllamaz, homojen ve Newtonyen oldugu
diistiniiliir, ¢iinkii kirmizi kan hiicrelerinin akis esanasinda ne kiimelenme ne de
deformasyona yetecek kadar zamana sahip olmadig1 varsayilmaktadir. Ote yandan,
kilcal damar icindeki kan akisi, viskozitesi hematokrit ve kayma oraniyla degisen,
homojen ve Newtonyen olmayan bir s1vi olarak modellenmektedir.

Cesitli akis durumlarindaki kirmizi kan hiicresi davraniglarini belirlemek icin teorik,
deneysel ve sayisal caligmalar, uzun siiredir ilgi goren, aktif bir aragtirma alanidir.
Secomb [9], yaglama teorisine dayanan dar kilcal damarlarda kirmizi hiicre hareketi
icin teorik bir model Onermistir ve deneysel verilerle iyi bir uyum i¢inde olan
dar tiiplerdeki goriiniir viskozite degerlerini tahmin etmistir. Eggleton ve Popel [7]
ve Peskin [10] tarafindan onerilen daldirilmig sinir yontemini (immersed boundary
method) damar i¢i akisa adapte ederek, RBC’ler i¢in zar-sivi akis etkilesimlerinin
iic boyutlu simiilasyonlar sunmustur. Liu et al. [11], daldirilmig sonlu elemanlar
yontemini (IFEM) protein molekiillerinin dinamikleriyle birlestirerek kan hiicrelerinin
kiimelenmesini ve bu davranisin kan reolojisi iizerindeki etkilerini arastirmigtir.
Hiicre zarinin hem kesme hem de biikiilme sertligini hesaba katabilmek igin,
kirmiz1 kan hiicresi iic boyutlu kati elemanlarla modellenmistir. Daha sonraki bir
calisma da, Liu and Liu [12], ii¢ boyutlu olarak, mikro ve kilcal damarlar i¢inde
bulunan RBC’lerde meydana gelen biiyiik deformasyonu incelemek i¢in, daldirilmis
(immersed) sonlu elemanlar yontemini ¢oziim agsiz (meshfree) yontemlerle birlestirip
dogrusal olmayan kati maddeler i¢in uygulamislardir. Yazarlar, RBC rouleau’nun
farkli kesme oranlarinda ayristirilmasini incelemeye ¢alismiglardir.

Sonlu zar kalinligina sahip kirmizi kan hiicrelerinde akis yapi etkilesimiyle iglili
sinirli sayida ¢alisma mevcuttur. Oysa ki, akigskan yapi etkilesimi (FSI) literatiirdeki
coklu fizik problemleri icinden siklikla bagvurulan modelleme tekniklerinden birisidir.
FSI, akigkan ile bu akigkanin ¢evreledigi veya igerisinde bulundugu kat1 yapiyla olan
etkilesimi konu alir. Kirmiz1 kan hiicreleri de FSI’nin inceleme konular1 arasinda yer
alabilir. Ciinkii kan hiicresinin zar1 disaridan kan plazmasi ve iceriden hemoglobin
olmak tizere iki akigkan yapiyla etkilesim i¢indedir.

Bu calismada, problemin akigkan bolgesi icin daimi olmayan; sikistirilamaz
Navier-Stokes denklemi, Keyfi Lagrangian-Eulerian (ALE) formiilasyonuna dayanan,
kenar merkezli (side-centered) yapisal olmayan sonlu hacimler yontemiyle ayrik-
lastirllmigtir.  Yapisal alaniysa, Lagrangian cercevesinde Saint Venant-Kirchhoff
malzeme modeli icin klasik Galerkin sonlu element yontemi ile ayriklastirilmaktadir.
Klasik boliinmiis (patitioned) yaklasimlar, Drichlet sinir kosuluyla c¢evrelenmis
akiskanin FSI iterasyonlar: sirasinda akigkanin sikistirilamazligini saglayamamaktadir.
Bahsi gecen bu problem kan hiicresinin sinir kosullarini gevreleyen sistemlerde de
gorliiliir. Bu nedenle, tam baglagik akiskan-yap1 etkilesim algoritmasi gerekmektedir.
Mevcut calismada, akiskan ve yapr alaninin ¢oziimii tam baglasik bir yaklasima
dayanmaktadir. Bu sayede kilcal damar icerisindeki kirmizi kan hiicresinin defor-
masyonunun sayisal simiilasyonu i¢in, akigkan ve yapi denklemleri tek bir denklem
sistemi olacak sekilde seklillendirilip, ¢6ziim her adimda tam baglasik olarak elde
edilmektedir. Mevcut yaklasim ayni zamanda global ayrik geometrik karunum yasasi
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(global discrete geometric conservation law (DGCL)) saglamak icin kat1 ve akigkan
alanlar arasindaki ara yiizeyde uyumlu bir kinematik sinir kogulu saglar. Bu sayede,
kirmiz1 kan hiicresi i¢indeki sivi (hemoglobin) kiitlesi simiilasyon boyunca makine
hassasiyetinde korunur.

Calisma kapsaminda kan akisi icin ii¢ Oonemli fiziksel parametre simiile ve analiz
edilecektir: (i) kilcal damar ¢apiin etkisi, (ii) kirmizi hiicre zar kalinliginin etkisi
ve (iii) kirmizi hiicre araliginin (hematokrit) etkisi. Kilcal damar ¢apinin, sadece
basin¢ gradyani icin degil, ayn1 zamanda kirmizi kan hiicrelerinin deformasyonu
icin Ozellikle 6nemli oldugu bulunmustur. Sayisal hesaplamalar, biconcave diskoid
seklinin, literatiirdeki sonuclara uygun olarak parasiit benzeri bir sekle doniistiigiinii
de gostermistir. Buna ek olarak, kii¢iik kilcal damarlardaki parasiit benzeri hiicre sekli,
literatiirde gdzlemlenmemis bir cupcake sekillinde biikiilme (buckling) kararsizligina
maruz kaldig1 gozlemlenmektedir. Kararsizlik, kirmiz1 kan hiicresi etrafinda diisiik
dalga boylu deformasyonlar olusturur ve kirmizi hiicre deformasyonu, aksisimetrik
degil, ii¢ boyutludur.

Bu tezin geri kalani su sirayla diizenlenmigtir: Boliim 1, motivasyon ve detayh
literatiir taramasin1 kapsamaktadir. Boliim 2, mevcut FSI algoritmasinin yeni ve tam
baglasik (monolitik) iteratif yontemi ile birlikte kisa bir aciklama sunmaktadir. Boliim
3’te, kirmiz1 kan hiicresinin geometrisi ve fiziksel parametreleri verilmistir. Ayrica,
problemin sinir kosullar1 bu boliimde verilmektedir. Boliim 4 ve 5’de sirasiyla iki ve
tic boyutlu analiz sonuglar1 yer almaktadir. Mevcut ¢alismanin ¢ikarimlarina boliim
6’da deginilmistir.
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1. INTRODUCTION

1.1 Purpose of Thesis

Hemorheology, also called as blood rheology, deals with the flow properties of blood as
well as the deformation behavior of its formed elements. The rheological properties of
blood play a vital role for appropriate tissue perfusion, since blood delivers necessary
substances such as nutrients and oxygen to the cells and transports metabolic waste
products such as carbon dioxide, ammonia, etc. away from those same cells. In
addition, these rheological properties have major effects on the immune system. The
blood mainly contains plasma, which is composed of mostly water with a variety of
dissolved proteins, glucose, clotting factors, electrolytes, hormones, waste products,
etc., and living cells, which are red blood cells (RBCs) (or erythrocytes), white blood
cells (WBCs) (or leukocytes), and platelets (or thrombocytes) as illustrated in Figure
1.1.
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Figure 1.1 : Ilustration of red blood cells (RBCs) (or erythrocytes), white blood cells
(WBC:s) (or leukocytes), and platelets (or thrombocytes).

The red blood cells can be considered as a deformable, nucleus-free fluid-filled capsule
enclosed by a biological membrane, that is nearly incompressible and exhibits a

viscoelastic response to shearing and bending deformation. A mature human red blood



cell normally takes the form of flexible biconcave disc, which is approximately about
8um in diameter and 2um in thickness. The red cell membrane is composed of several
layers and the stiffness of the membrane is mainly dominated by the elasticity of the
outer lipid bilayer, which has approximately Snm thickness [6]. The red cell membrane
structures have the ability to undergo remarkably large deformations when subjected to
external stresses, which allow them to pass through capillaries with half the diameter
of the RBC or less. The surface area to volume ratio of the normal RBC cell is 40%
greater than that of a sphere with the same volume [7]. The hematocrit, which is defined
as the volume fraction of the suspended red blood cells inside blood, varies between
40 to 45% for normal human blood. Therefore, the mechanical properties of red cells
strongly influence the rheological behavior of blood and introduce non-Newtonian
effects. Apparent viscosity of blood as a function of shear rates and hematocrit effects
on blood as a function of shear rates are given in Figure 1.2 [1]. On the other hand, the
white blood cells occupy only about 1/600th of blood by volume and have an internal
viscosity thousands times larger than the viscosity of blood, and thus do not deform as

much as the red blood cells under the same flow conditions [8].
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Figure 1.2 : Apparent viscosity of blood as a function of shear rates [a] and
hematocrit effects on blood as a function of shear rates [b].

In a number of human diseases such as hypertension, malaria, sickle cell
anemia/disease and diabetes mellitus, variations in the mechanical properties of red
blood cells occur and cause reduced deformability. A decrease in red cell deformability
causes a significant increase in microvascular flow resistance and a decrease in cellular
oxygen delivery and tissue oxygenation, an impairment of microcirculation. Therefore,

it is of great importance to understand the motion and deformation of the RBCs and



the surrounding plasma in capillaries, which may provide valuable knowledge in the

fight against the relevant diseases.

1.2 Literature Review

Theoretical, experimental and numerical studies to determine the red cell behaviors in
various flow situations have been a longstanding and active area of research. Figure
1.3 [2] shows that human red blood cells whose flow directions are from left to
right, flowing in glass tubes with approximate diameters of 4.5um (top), 7pum (center)
and 15um m (bottom), respectively. Secomb [9] proposed a theoretical model for
red cell motion in narrow capillaries based on lubrication theory and predicted the
values of apparent viscosity in narrow tubes, which are in good agreement with
experimental data. Pozrikidis [13] employed the boundary integral method for the
axisymmetric motion of a periodic array of red cells with arbitrary cell separations
and tube diameters in the context of the Stokes flow and the nearly incompressible and
elastic behavior of the cell membrane with respect to shearing and bending deformation
is taken into consideration. Eggleton and Popel [7] adapted the immersed boundary
method proposed by Peskin [10] and presented the three-dimensional simulations of
membrane-fluid flow interactions for RBCs. Liu et al. [11] coupled the immersed
finite element method (IFEM) with protein molecular dynamics to investigate the
behaviors of RBC aggregates and their effects on the blood rheology. To account
for both membrane shear and bending stiffness, RBC membrane is modelled with

three-dimensional solid elements. In a later study, Liu and Liu [12] combined the

| — 10 pm
Figure 1.3 : Human red blood cells flowing in glass tubes.



immersed finite element method with meshfree methods for nonlinear solids to handle
the large deformation of RBCs within micro and capillary vessels in three-dimensions.
The authors attempted to study the disaggregation of an RBC rouleau at different shear
rates. Zhang et al. [14] developed a lattice Boltzmann algorithm to simulate the RBC
behavior in shear and channel flows. The immersed boundary method is employed
to incorporate the fluid-membrane interactions. The phenomena of microscopic blood
flows, such as cell-free layers, blunt velocity profiles, and the Fahraeus effect [15]
have also been reproduced. In another study, Zhang et al. [16] considered the RBC
membrane mechanics, plasma/cytoplasm viscosity difference, intercellular interaction,
and the hydrodynamic viscous forces in their two-dimensional numerical simulations.
Le et al. [17] developed an implicit immersed boundary method for the incompressible
Navier-Stokes equations capable of handling three-dimensional membrane-fluid flow
interactions and applied the numerical algorithm to simulate the large deformation of
human RBCs subjected to direct stretching by optical tweezers. Hosseini and Feng [18]
presented a two-dimensional particle-based model for the red blood cells and the cell
membrane is replaced by a set of discrete particles connected by nonlinear springs.
The cytoplasm and the external liquid are discretized by particles as in standard
smoothed particle hydrodynamics (SPH) solution of the Navier-Stokes equations. The
numerical approach were extended to three-dimensions in Hosseini and Feng [19] and
applied to the steady-state cell stretching of a healthy or malaria-infected RBCs by
optical tweezers. Zhao et al. [4] presented a spectral element based boundary integral
method for the Stokes flow and investigated the interactions of large numbers of
blood cells as encountered in blood flows in the microcirculation. Wang and Xing
[20] studied the dynamics of the axisymmetric, pressure driven motion of RBCs in
capillaries using the immersed boundary method and recreated several important in
vivo hemodynamic and hemorheological properties of microscopic blood flow, such
as parachute shape of the cells, blunt velocity profile, and the Fahracus effect. Ye et
al. [21] presented a particle level set method in conjunction with a modified SIMPLER
algorithm on a fixed staggered Cartesian mesh in order to investigate the effects of
RBC diameter, elastic modulus, bending stiffness of RBC membrane, initial flow
velocity as well as plasma/cytoplasm density and viscosity ratios. In a later work, Ye
et al. [22] developed a three-dimensional computational model using the dissipative

particle dynamics (DPD) method in conjunction with a Morse potential to account
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cell-cell interactions. Huang et al. [23] proposed an improved penalty immersed
boundary method (pIBM) for the simulation of the flow-induced deformation of
three-dimensional elastic capsules, including biconcave capsule as a model of RBC,
and the numerical simulations indicated the formation of buckling in a linear shear
flow. Reasor Jr et al. [24] implemented a spectrin-link (SL) red blood cell membrane
method coupled with a lattice Boltzmann method to construct a computationally
efficient numerical algorithm for the simulation of realistic suspensions of RBCs.
Freund [25] employed boundary integral model to simulate the passage of a blood
cell through a particularly narrow geometry motivated by the human spleen and
observed several distinct behaviors based on flow rates and cytosol viscosities. Shi
et al. [5] combined the numerical technique derived from the lattice Boltzmann
method and the distributed Lagrange multiplier/fictitious domain method with a
mesoscopic membrane model in order to study hydrodynamic interactions between
RBCs. Chivuka et al. [26] simulated deformation of a biconcave red blood cell
in a fully developed Poiseuille flow through a capillary using the NURBS-based
isogeometric analysis combined with the immersed boundary method proposed by
Peskin [10]. Hashemi and Rahnama [27] proposed a three-dimensional hybrid method,
combining lattice Boltzmann method for plasma flow, finite element method for RBC
membrane analysis, and immersed boundary method for their interaction. The effect
of membrane deformability, its initial orientation, velocity, and flow pressure gradient
are investigated. More recently, Balogh and Bagchi [28] have presented a large-scale
computational methodology based on the immersed boundary methods for modeling
cellular-scale blood flow in complex geometries. We refer to the review articles by

Freund [29] and Jua et al. [30] on the further details of the numerical algorithms.
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Figure 1.4 : Mathematical FSI domain.



In contrast to the above studies, there are very limited works on the fluid-structure
interaction (FSI) of red blood cells based on body conformal meshes with a finite
membrane thickness. The FSI problem can be basically defined as the interaction
between surrounding fluid and deformable solid structure, as seen in Figure 1.4 [3].
The main working areas of FSI is aeroelastic phenomena which contain as flutter,
buffeting and divergence, design of offshore structures, structural effect of strong
wind on bridges and tall buildings, flow induced vibrations in heat exchangers tubes,
explosions or high-velocity impacts, large class of acoustic problems. FSI is also a
preferred aspect for biomechanic which include blood flow in vessel, deformation
of blood cell or animal locomotion. As mentioned before, the use of FSI algorithm
for the deformation of red blood cells is limited. To the best of our knowledge, only
Kloppel and Wall [31] employed the fluid-structure interaction algorithm with finite
thickness solid shell elements in three-dimensions for the red cell membrane and
investigated the mechanical behavior of human red blood cell filled with a Newtonian
fluid in optical tweezers. The main reason is that the classical partitioned (segregated)
approaches can not satisfy the incompressibility constraint of the fluid during standard
alternating FSI iterations when the fluid domain is entirely enclosed by all Dirichlet
boundary conditions as pointed out by Kiittler et al. [32]. This is also the case for
the incompressible cytoplasmic fluid within the solid red cell membrane since the
incompressible fluid boundary condition for the cytoplasmic fluid is not necessarily
compatible during alternating FSI iterations (§-n-udS # 0) and the segregated
divergence-free fluid solver will fail to converge. In addition, the explicit partitioned
methods generally employs fixed point (Picard type) iterations and the standard fixed
point iterations may diverge in the presence of strong fluid-structure coupling due to
the high fluid/structure density ratio, similar to that of the cytoplasmic fluid to RBC
membrane, which causes the so-called artificial added mass effect [33]. Therefore, a
fully coupled (monolithic) FSI algorithm has to be employed for these balloon-type
problems. There is also problem with high aspect ratio of the three-dimensional solid
shell elements employed within relatively thin lipid bilayer (Snm), which leads to a
very bad condition number [34]. The high aspect ratio computational domains such
as long capillaries also adversely affect the convergence of iterative method. These
numerical difficulties poses significant challenges for the FSI algorithms based on

body conformal meshes with a finite membrane thickness. In the current paper, we
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employ the monolithic FSI algorithm proposed in Eken and Sahin [35, 36] with a
new preconditioner in order to simulate the flow-induced deformation and transport
of the red blood cells in blood plasma flowing through small capillaries. In the present
approach, the fluid domain is discretized using the stable side-centered unstructured
finite volume method based on Arbitrary Lagrangian-Eulerian (ALE) formulation,
meanwhile the solid domain is discretized with the classical Galerkin finite element
formulation for the Saint Venant-Kirchhoff material in a Lagrangian frame. The
method employs conformal hexahedral elements at the fluid-solid interface in order
to accurately resolve sharp gradients. In addition, the local and global geometric
conservation laws (DGCL) [37] are satisfied at discrete level and the compatible
kinematic boundary condition is applied at the fluid-solid interface [36], which
leads to the conservation of cytoplasmic fluid mass at machine precision. In the
current paper, the resulting large-scale algebraic linear systems are solved in a fully
coupled (monolithic) manner using the FGMRES(m) Krylov iterative method [38]
preconditioned with a matrix factorization similar to that of the projection method [39]
for the whole system and the parallel algebraic multigrid solver BoomerAMG is used
for the scaled discrete Laplacian provided by the HYPRE library [40] which we
access through the PETSc library [41]. The present new block preconditioner may

be considered as the extension of the classical projection method [39] to FSI problem:s.

In order to better understand the phenomenon associated with the blood flow in small
capillaries, the above monolithic FSI algorithm has been employed to investigate the
transport and deformation of red cells in small capillaries, with the main focus on
gaining a greater insight into the influences of those cells to the plasma flow. As far
as our knowledge, the three-dimensional mechanical behaviors of red blood cells in
capillaries have not been investigated using a FSI algorithm based on body conformal
meshes with a finite membrane thickness. In the literature, the simulations of RBCs
indicate that the bending stiffness must be included [7] in order to simulate more
complex red cell deformations, since it plays an important role in the mechanical
behavior of RBCs, especially at the locations with sharp changes in curvature [21]. The
present FSI approach with a finite membrane thickness naturally leads to the bending
rigidity and it does not require complex local curvature calculations (e.g., [42]). In

order to better analyse the blood flow in small capillaries, the numerical simulations



conducted in this paper include parametric studies on the effects of capillary diameter,
red cell membrane thickness, and red cell spacing (hematocrit). The calculations
indicate that the biconcave discoid shape in large capillaries changes to a parachute-like
shape, which is in accord with the early experimental and numerical results in the
literature. However, the numerical simulations for small capillaries illustrate that the
parachute-like cell shape undergoes a cupcake shaped buckling instability due to
the compressive elastic tension forces along the membrane surface, which has not
been noted in the literature. The buckling instability forms thin rib-like features and
the membrane deformation is no longer axisymmetric but three-dimensional. In the
literature, the buckling behavior of red cells has been observed only in the case of
a red cell passing through a very narrow neck [4] and a red cell in a simple shear
flow [23] as well as at cell-cell interface for the aggregation of red blood cells [43]
and the present cupcake shaped buckled red cell geometry is completely new. The
similar buckling instability is also observed for a spherical fluid-filled capsule as it
passes through a circular tube with a diameter less than that of the capsule [44].
However, the spherical capsules in a circular tube with the blockage ratios and capillary
numbers close to the present values do not indicate any rib-like features and only the
trailing end buckles inward [45]. The spherical capsules is a simple shear also indicates
buckling behavior [23,46-49], where the spherical capsule initially deforms into a
nearly ellipsoidal shape with an inclination angle and then buckles around the equator.
However, the buckling on the red cell membrane is relatively more complex due to
its initial biconcave discoid shape compared to that of the oblate spheroidal capsule.
As pointed out by Huang et al. [23], the buckling of a spherical fluid-filled capsule in
a simple shear indicate that the buckling on the surface of a biconcave capsule leads
more wrinkles and complex deformations as compared to those of the oblate spheroidal
case. In addition, the buckling instability in a simple shear is observed to occurs near

the equator of the capsule for small shear rates but near the tips for large shear rates.

1.3 Outline

The remainder of this thesis is organized as follow: chapter 2 provides a brief
description of the present FSI algorithm along with the new fully coupled (monolithic)

iterative method. Geometry and physical parameter of red blood cell is described in



chapter 3. In addition, the physical boundary conditions are given in this section.
In chapter 4 and 5, the FSI algorithm has been initially validated by performing
spatial and temporal converge studies for a single cell in a narrow capillary and then
employed to analyse (i) the effect of capillary diameter, (ii) the effect of red cell
membrane thickness, and (iii) the effect of the red cell spacing (hematocrit) in two-
and three-dimensions. The three-dimensional cupcake shaped buckling instability in
small capillaries is discussed in detail. The final conclusions of the present work are

provided in chapter 6.






2. GOVERNING EQUATIONS

2.1 Fluid Equations

The integral form of the incompressible Navier-Stokes equations for an arbitrary
moving control volume Q(7) with boundary dQ(z) can be written in the Cartesian

coordinate system in dimensional form as follows: the momentum equation

d i B
pr/QudV -l-pf?({m[n-(u—x)]udS— jggcrfndS (2.1)

the continuity equation
—% n-udS=20 2.2)
Q

In here, V is the control volume, S is the control volume surface area, n is the outward
normal vector, pr is the constant fluid density, u is the local fluid velocity vector, X
is the grid velocity, and oy is the fluid stress tensor. The constitutive relation for an

incompressible Newtonian fluid is given by
or=—pl+us(Vu+vu') (2.3)

where p is the fluid pressure and tif is the fluid dynamic viscosity.

2.2 Solid Equations

The balance of the linear momentum equation in the Lagrangian framework, where the
material derivative becomes a partial derivative with respect to time, can be written as

pS% = Vo, 2.4)
where pjy is the spatial density, d is the displacement vector, and o; is the Cauchy stress
tensor defined using the following constitutive law for the Saint Venant-Kirchhoff
material

S=JF ' F " (2.5)

F = (I1+Vd) (2.6)
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E= 5(FTF -1 (2.7)
S = Astrace(E)I+2uE (2.8)
IT=FS 2.9)

where S is the second Piola-Kirchhoff stress tensor, F is the deformation gradient
tensor, J = det(F) is the deformation gradient determinant, E is the Green-Lagrange
strain tensor, IT is the non-symmetric first Piola-Kirchhoff stress tensor, and A; and
Us are the material Lamé’s constants. These Lamé’s values can be computed from the
material Young’s modulus E and the Poisson ratio v as A, = Ev/(1+Vv)(1 —2v) and
s = E/2(1+ V). Then, the equation of motion with respect to the initial configuration
is given by

Po% =V,-I1" (2.10)
where pg is the solid material density per unit undeformed volume and V indicates

the gradient with respect to the reference (undeformed) configuration.

2.3 Interface Conditions

Interface conditions require two main conditions across the fluid-structure interface
at all times. These are the kinematic and the dynamic continuity conditions. The
kinematic boundary condition on the common fluid-structure interface is driven by
continuity of the velocity.

u=d (2.11)

The dynamic condition holds for surface traction vector at the common fluid-structure
interface.

Osy = —OfNy (2.12)

where oy is the Cauchy stress tensor of the solid domain and oy is the fluid stress tensor

in the case of an incompressible Newtonian fluid.

2.4 Fully Coupled Solver

The spatial and temporal discretization of the governing equations along with the
interface conditions are provided in Eken and Sahin [35,36] in detail. In the present

FSI algorithm, the fluid domain is discretized using the side-centered unstructured
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finite volume method based on Arbitrary Lagrangian-Eulerian (ALE) formulation
[50], meanwhile the solid domain is discretized with the classical Galerkin finite
element formulation for the Saint Venant-Kirchhoff material in a Lagrangian frame.
The time integration method for the solid domain is based on the Newmark type
generalized—a method while the second-order backward difference (BDF2) is used
in the fluid domain. The compatible kinematic boundary condition [36] is applied at
the interface between the solid and fluid domains in order to satisfy the global discrete
geometric conservation law (DGCL) [37], which leads to the mass conservation of
the cytoplasmic fluid within the red cell at machine precision. The resulting system
of nonlinear algebraic equations can be given in the following block structure form

including the velocity, displacement and pressure unknowns:

A Aua Aup u't! d,
Agu A Aap A" | = | &b (2.13)
Ape 0 0 pitl 0

In here, the first row of blocks corresponds to the fluid momentum equations
and the kinematic boundary conditions. The first column is due to the fluid
convection-diffusion and time derivation parts, the second column is due to the
ALE mesh motion and the last column is due to the pressure gradient. The second
row represents the fluid mesh deformation equations, the solid momentum equations
and the FSI dynamic boundary conditions. The last row is due to the fluid mass
conservation. However, it is rather difficult to construct robust preconditioners due to
the presence of the zero-block diagonal resulting from the divergence-free constraint.
For the first preconditioner, an upper triangular right preconditioner matrix, which
results in a scaled discrete Laplacian instead of a zero block in the original system,

is used. Then, the modified system becomes:

Auu Aud Aup [ I 0 Aup qn—H

Agu Aga Adp 0 Ar O rt! =

Apw 0 0 [|O O 1 Pt
i Auu AtAud Auu Aup ‘|’Aup qn+1 dl
Agw AAgq AguAup+Aap =1 d | (214
| Ap O ApuAup prtl 0

where q""! = w"t! — A,,p""! and "' = Ad"T!/Ar. The second term r"*!
corresponds to the nodal velocity vector for the mesh motion and it is comparable

(same order) with the fluid velocity. The multiplication with Az helps to reduce
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large non-zero entries in the off-diagonal block A,; due to the 1/Ar term resulting
from the mesh motion for a better preconditioning. Then, a one-level restricted
additive Schwarz preconditioner with a block-incomplete factorization within each
partitioned sub-domain is utilized. The implementation of the preconditioned Krylov
subspace algorithm, matrix-matrix multiplication, and the restricted additive Schwarz
preconditioner are carried out using the PETSc [41] software package developed
at the Argonne National Laboratories. The second preconditioner is based on a
block factorization. In the literature, the block parallel preconditioners for the
coupled linearized FSI system have been extensively studied. Heil [51] proposed
a block factorization based on neglecting the fluid-solid or solid-fluid interaction
blocks. Deparis et al. [52] used a similar preconditioner based on dropping the
block associated with the transpose of the kinematic coupling condition. In these
approaches, the two-way coupling between the fluid and solid domains is ignored at the
preconditioning level. This is improved in the block preconditioner proposed by Langer
and Yang [53] based on the complete LDU factorization of the coupled system matrix,
where L, D and U matrices are approximated using the sub-block matrices. The present
approach is motivated by the relatively simple LDU factorization of the projection
method [39] assuming that the time step is small and the viscous (not pressure) forces

can be neglected. Then, the preconditioner matrix P; can be approximated as

I Aw Ay I 0 0 0 I Auw A
PR=| 0 I Ag|=| 0 I 0 0 0 I Agp [(2.15)
Apu _ApuAud I

Apu 0 0 0 0 I
where S, = —ApuAup +ApuAuaAap. The exact inverse of the first and third matrices

S O~
S~ O

Spp

can be easily computed since the matrices are triangular. Then P~ ! can be computed

as
I —Au Awhap—Aup 1 [1 0 0 I 0 0
pl=|0 I ~Adp 01 0 0 I 0](.16)
0 0 1 00 S, || —Aw ApAu 1

For the second matrix, the matrix inverse S;pl is approximated by employing two
steps of the parallel algebraic multigrid solver BoomerAMG provided by the HYPRE
library [40], which we access through the PETSc library [41]. The coarsening scheme
is set to the Parallel Modified Independent Set (PMIS) algorithm [54] within the
BoomerAMG library in order to reduce the complexity. The implementation of the

preconditioning operation is carried out by using the PCSHELL option provided
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within the PETSc library. Then the right preconditioned system of algebraic equation
is solved using the Flexible Generalized Conjugate Residual Method-FGMRES(m)
proposed by Saad [38], since it allows the variations within the preconditioner between
iterations. In here, A ,A,4A 4, term of the Sp,, matrix should not be neglected, since the
eigenvalue analysis of the A,,A,, matrix indicates that one of its eigenvalues is zero
(the number is actually equal to the number of RBCs) due to the decoupling of the
pressure fields between the inner cytoplasmic fluid and the exterior plasma fluid. The
present second preconditioner can be further improved by employing the following
block factorization.
I Aw Ap ] '[1 0 0
lez{ 0 I Sd,,] {8 Sqa O

Apw 0 0 0

rr o001 I Aw Ay |
Aw 10| = Aw Aw Agp | (217
0 0 I Ap O 0

where S;, = AJdlAdp and Syq = Agq — AquAua- In here, the Sy, term is approximated
as Sqp = diag(Add)_lAdp, where diag(A ;) represents the diagonal entries of the A,
matrix. The above first matrix is factorized using the same approach in the equation
2.15 and it is approximated by employing one step of the parallel algebraic multigrid
solver BoomerAMG. The PCFIELDSPLIT preconditioner within the PETSc library
is used for the second matrix to implement the block preconditioner for the Sy4
matrix corresponding the each components of the displacement vector and the parallel
algebraic multigrid solver BoomerAMG is also used for the each diagonal blocks.
The eigenspectrum analysis of the S;; indicates that the —A;,A,; term should not be
neglected since the A;; matrix for the solid equations with zero Dirichlet boundary
condition leads to a singular system (six zero eigenvalues in three-dimensions for
a single RBC) in the case of a zero solid density due to the rigid body modes
corresponding to translations and rotations [55]. Although the solid density is not
zero and the mass matrix shifts these zero eigenvalues, their values are still relatively
small. The —A4,A,4 term improves these eigenvalues and the zero solid density can
also be used. Therefore, the present block preconditioners are carefully constructed
for the blocks corresponding to both the nodal displacement vector and the pressure
not to lead to a singular system, which may cause convergence issues. Although the
BoomerAMG solver with the near null spaces corresponding to the translational and
rotational rigid modes can be directly used for the solid displacement equations [55],
it is not as effective as the above block preconditioning. In the current paper, we

employ the second preconditioner for the three-dimensional simulations, since the first
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preconditioner with ILU(0) and ILU(1) fails to converge for large aspect ratio domains.
The calculations also indicate that the convergence rate of the second preconditioner
is not significantly affected by the computational domain aspect ratio, such as RBCs
in long capillaries. For the both preconditioned iterative methods, the block matrices
and the right hand side corresponding to the momentum and displacement equations
are scaled using the matrix diagonal entries, meanwhile the absolute row sum value is
used for the continuity equation. The computational domain is decomposed into a set

of partitions using the METIS library [56].
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3. DESCRIPTION OF THE PROBLEM

In this section, geometry and physical parameter of red blood cell is described. In

addition, the physical boundary conditions are given in this section.

3.1 Red Blood Cell Geometry

The geometry of the red blood cell is provided in Figure 3.1 and the outer surface of
the red blood cell is defined as [57, 58]

T(r) = £1/1— (r/R)?[Co+Ci(r/Ro)* + Ca(r/Ro)’] (3.1)

where T'(r) is the thickness of RBC in the x—direction as a function of the distance
r= \/m, and Ry is the initial radius of RBC. We assume that Ry = 3.9um,
Co =0.81um, C; = 7.83um and C; = —4.39um. The minimum thickness is 77 =
0.81um and the maximum thickness is 75 = 2.4um. The diameter of the red blood
cell is D = 7.8um. The red cell membrane spans approximately 40—50 nm in thickness

[59, 60] and the present inner surface of the red blood cell is created with an inward

Figure 3.1 : Geometry of red blood cell.
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thickness of & = 0.05um (50nm). The physical parameters of the red blood cell and
fluid plasma are tabulated in Table 3.1. The experimental value of the Young’s modulus
for the whole membrane is approximately 4.4kPa (4.4pg/us*um) for a healthy red
blood cell [6]. However, the membrane is composed of several layers and the stiffness
of the membrane is mainly dominated by the elasticity of the outer lipid bilayer, which
has a Snm thickness [6]. However, numerically it is not possible to reach an adequate
mesh resolution to resolve the lipid bilayer due to the bad condition number of solid
shell elements with high aspect ratio in three-dimensions [34]. The theory of plates
and shells indicates that the flexural/bending rigidity (E#> /12(1 — v?)) is proportional
to the cubic power of the wall thickness, meanwhile the extensional rigidity (Eh) is
proportional to the first power of the wall thickness [61]. When the wall thickness h
is relatively very small, the extensional rigidity dominates the behavior of a thin shell.
The flexural rigidity is only important where there are sharp changes in curvature.
Therefore, the present Young’s modulus is reduced by a factor of 10 in order to
compensate the current membrane thickness of 50nm. This approximation leads to the
overall shear modulus value of ugh = 7.586 x 10~SN/m, which is relatively close to
the experimental upper value 6 x 10~°N /m in Yoon et al. [60] as well as the numerical
value of 4.2 x 107°N /m in both Pozrikidis [13] and Zhao et al. [4]. The present 50nm
membrane thickness is also comparable with the work of Kloppel and Wall [31], where
the red blood cell membrane is modelled as 40nm inner layer and 20nm outer lipid

bilayer for a realistic mechanical behavior of human erythrocytes.

3.2 Boundary Conditions

The physical problem with the boundary conditions is illustrated in Figure 3.2 for a

single red blood cell in a capillary. The fluid boundary conditions are set to the no-slip

Table 3.1 : Physical parameters for red blood cell and fluid plasma (pg : picogram).

Density, py [pg/um’] 1.025
Fluid Dynamic viscosity, fir [pg/umpLs] 1.1
Maximum inflow velocity, Uyax [m/ L] 0.001
Density, ps [pg/um’] 1.098
Structure Poison ratio, V; — 0.45
Elasticity module, E [pg/umus?] 4.4
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dy =0

=0

u=v=w=_0 dz =0

Inflow Capillary wall Outflow
Figure 3.2 : Physical boundary conditions for a single red blood cell in a capillary

tube.

boundary condition on the solid walls, the Dirichlet (paraboloid profile) velocity at the
inlet, and the natural (traction-free) boundary condition at the outlet. Meanwhile, the
displacement boundary conditions on the inlet and outlet are fixed to the zero Dirichlet
condition. The displacement boundary conditions on the capillary wall are set to the
homogeneous Neumann condition for the x—direction and the zero Dirichlet condition
for the remaining y— and z—directions. The Neumann boundary condition ensures that
the vertices on the capillary wall slide in the x—direction as the solid red blood cell
membrane moves with the plasma flow. The mesh deformation algorithm within the
fluid domain is based on the solution of the linear elasticity equations with modified
coefficients [62]. The above kinematic and dynamic interface conditions are imposed at
the fluid-solid interface corresponding to the inner and outer surfaces of the red blood
cell membrane. It should be noted that there is no Dirichlet boundary condition for the
solid red cell membrane and it is free to move and rotate due to the applied fluid forces
on the interface. The present numerical calculations are started impulsively from the

rest and solved in a time-accurate manner by marching in time with a fixed time step.
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4. TWO-DIMENSIONAL NUMERICAL RESULTS

The first numerical simulations correspond to the two-dimensional simulation of a
single red blood cells in a capillary. The height of the capillary channel is set to
15.6um which is equal to two times of diameter of red blood cell. Single red blood
cell in a channel with height of 15.6um can be considered as benchmark case for this
work. Spatial and temporal convergence are worked on this case. In addition, effect of

different membrane thickness is also worked in a channel with height of 15.6um.

The calculations are carried out on three different meshes: coarse mesh M1, medium
mesh M2 and fine mesh M3. The successive meshes are generated with DISTENE
MeshGems-Hexa algorithm in three-dimensions based on the octree method by halving
mesh size function. The initial meshes are created for a zero red cell membrane
thickness. Then the radial basis function (RBF) based mesh deformation algorithm [50]
is used to create the three-dimensional solid hexahedral elements with several layers by
moving the vertices on the red cell membrane surface inwards with the distance equal
to the solid membrane thickness. These conformal unstructured all-hexahedral meshes
are used both two- and three-dimensional calculations. However, the slices on the z =0
plane are extracted for the two-dimensional simulations as shown in Figure 4.1. The
number of solid layers indicates the number of quadrilateral elements in the normal
direction for the solid membrane. There are 4, 8 and 16 layers of solid quadrilateral
elements on meshes M1 to M3, respectively, for the red blood cell membrane. The
maximum aspect ratio of solid elements is set to 20. Ahy;, and Ahy,,, represents the
minimum and maximum mash sizes, respectively. Coarse mesh M1 has 4,088 nodes
and 3,923 elements, medium mesh M2 has 13,920 nodes and 13,611 elements and fine
mesh M3 has 51,752 nodes and 51,139 elements for a channel with height of 15.6uum.

The details of the two-dimensional meshes are provided in Table 4.1.

The physical boundary conditions are set to no-slip boundary conditions on the
solid walls, the Dirichlet (parabolic profile) velocity at the inlet and the natural

(traction-free) boundary condition at the outlet. The maximum inlet velocity U,y
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is set to 0.001um/us. The capillary channel spans between +70um where the
initial undeformed red cell is located at the origin. The calculations are started from
the rest and the time step is set to 100us. The non-dimensional Reynolds number
(Re = prUpaxD/ 1ir) is computed to be 0.007268 based on the plasma density py, the
maximum inlet velocity Uy, the red cell diameter D and the plasma dynamic viscosity
ts. The non-dimensional capillary number (Ca = p¢Upay/ 1ish) is obtained to be 0.145
based on the shear modulus p, the maximum inlet velocity Uy, the fluid dynamic
viscosity Uy and the membrane thickness 4. Although the internal (cytoplasmic) fluid
is assumed to be the same as the exterior suspending fluid (plasma), it does not effect
the final red blood cell shape since the final cytoplasmic fluid has a constant velocity.
However, this difference is important for white blood cells due to high viscosity
difference [8]. For the solid membrane, Young’s modulus is taken to be 4.4 kPa or
4.4 pg/us*um for a healthy red blood cell from previous experiments [6]. Although
the membrane of RBC composed of several layer, the stiffness of RBC membranes
is mainly dominated by the elasticity of the lipid bilayer which has approximately 5
nm thickness [6]. However, it is not possible reach this mesh resolution due to the
resulting bad conditioned system for high aspect ratio solid elements. Therefore, the
present Young’s modulus is reduced by a factor of 10 in order to compensate the
present membrane thickness of 50nm for the same membrane shear modulus value

wh as well as the same Ca number.

4.1 Convergence Studies

The initial numerical calculations are used to establish the spatial and temporal
convergence of the present numerical method. For this purpose, the single red cell
simulations are carried on meshes M1—M3 with a time step of 100us and the final

red cell deformations at + = 60ms are compared with each other in Figure 4.2-[a].

Table 4.1 : Computational meshes used for simulation of red blood cell for a channel
height of 15.6um.

Solid Node Element
Mesh layers Ahpin  Ahygy | number  number DOF

MI1 4 0.25 1 4,088 3,923 26,319
M2 8 0.125 0.5 13,920 13,611 89,215
M3 16  0.0625 0.25 | 51,752 51,139 330,471
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Figure 4.1 : Computational two-dimensional coarse mesh M1 [a], medium mesh M2
[b] and fine mesh M3 [c] for a single red blood cell in a channel with a

height of 15.6um.
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Figure 4.2 : Spatial convergence with At = 100us [a] and temporal convergence on
mesh M2 [b] for a single red blood cell in a channel with a height of
15.6um att = 60ms.
The numerical results indicate that the results on meshes M2 and M3 are very similar
to each other. Although the red cell shape on M1 is also very similar to others, it
moves slightly slower. The reason is that we impose the analytic value of the velocity
magnitude at the edge/face vertices at the inlet, which leads to a slightly lower average
velocity throughout the capillary channel, since the mesh is relatively coarse at the
inlet. The temporal convergence of numerical results is also investigated on mesh M2
at t = 60ms by using Ar = 50us and At = 100us as shown in Figure 4.2-[b]. The
comparison of the numerical results indicates that the results are indistinguishable from

one another.

In addition to the spatial and temporal convergence studies, a convergence analysis is

also carried out by changing the red cell membrane thickness as shown in Figure 4.3.
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Figure 4.3 : Effect of different membrane thickness 4 using same shear modulus L
[a] and same membrane shear modulus i/ [b] to final red cell geometry

at t = 60ms in a channel with a height of 15.6um at t = 60ms on mesh

M3.

As the red cell membrane thickness decreases for a constant shear modulus (L, the both
flexural rigidity and extensional rigidity decrease and the red cell deforms more as seen
in Figure 4.3-[a]. On the other hand, if the membrane thickness decreases for a constant
overall shear modulus L/, the extensional rigidity stays constant while flexural rigidity
decreases with the decrease in the thickness of the red cell membrane. When the wall
thickness 4 is relatively very small, the extensional rigidity dominates the behavior of
a red cell and the convergence of the deformed red cell membrane geometry can be
seen in Figure 4.3-[b]. As it may be seen, the deformed geometries with the membrane

thickness of & = 50nm and h = 25nm at t = 60ms are almost identical.

4.2 Single Red Blood Cell in a Channel with Different Height

In order to demonstrate the importance of the fluid shear stress on the red cell
deformation, the capillary channel heights are further reduced to 11.7um and then
10um. The final deformed red cell geometries at ¢t = 60ms are provided in Figure 4.4
along with the computed contours of the u—velocity component within the capillary
channel. The red cell deformation seems to be increased significantly with the decrease
in channel height due to the increase in the fluid shear stress. The time variation of
the red cell deformation and its movement are also provided in Figure 4.6 for the
same channel heights. The cytoplasmic fluid within the red cell moves with a constant

velocity when the steady state is reached and the velocity profile around the red cell is
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Figure 4.4 : Final positions/deformations at t = 60ms with computed u—velocity
component contours and velocity profiles at several different locations
for a single red cell in a channel with a height of 15.6um [a], 11.7um [b]
and 10um [c] on mesh M3.
no longer parabolic, indicating a blunt velocity profile [20]. The blunt velocity profile

with a relatively high velocity close to the vessel wall increases the flow resistance in

the capillary due to the existence of the red blood cell.

Rigid and sickle cells have a larger constant velocity region in the blunt velocity profile

and the flow resistance is further increased. This effect is particularly important for the
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Figure 4.5 : Velocity profiles at x = 40.0um and the location corresponding to
maximum red cell diameter at 1 = 60ms in a channel with a height of

15.6um [a], 11.7um [b] and 10um [c] on mesh M3.
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Figure 4.6 : Single red blood cell. Red blood cell positions/deformations at several
different time levels for a channel height of 15.6um [a], 11.7um [b] and
10um [c] on mesh M3.

array of the red blood cells in a capillary, where the red cells cause an increase in
the shear rate on the capillary wall. The resistance becomes more severe for rather
narrow capillaries. This phenomenon introduces non-Newtonian effects in capillaries
even though the blood plasma itself is generally accepted as a Newtonian fluid. The

pressure field within the red cell is also constant at the steady state in addition to the

constant velocity value.

The red cell indicates a complex shape deformation in which the biconcave discoid
shape changes to a parachute-like shape, which is convex in the front and concave at the
rear. This deformation allows that the RBC successfully traverses through the capillary
with the diameter smaller than that of undeformed RBC in microcirculation. The red
cell deformations at several different time levels are superimposed on each other and
the comparison is shown in Figure 4.7-[a]. The deformation of the red blood cell from

the biconcave discoid shape to a parachute-like shape can be seen more clearly. In
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Figure 4.7 : Comparison of red blood cell deformations at several different time
levels (At = Sms) for a channel height of 15.6um [a] and comparison of
final cell geometry with results for several different channel heights at
t = 60ms [b] on mesh M3.
addition, the red cell translational velocity is found out to be reduced with the decrease

in the channel height as seen in Figure 4.7-[b]. For the present cases, the solutions are

found out to be symmetric according to the horizontal symmetry line.

4.3 Multiple Red Blood Cells in a Channel with a Height of 15.6um

Another important parameter for the hemorheology is the hematocrit ratio, which is
the volume percentage of the red blood cells. This parameter is also related to the red
cell spacing. The numerical calculations are carried out with five and nine red cells
in a capillary channel with a height of 15.6um. The red cell spacing for the five cells
case is set to 15.6um, meanwhile the spacing between the red cells is set to 7.8 um
for the nine cells case. The final red cell deformations and the computed u—velocity
component contours within the capillary are shown in Figure 4.8. For the present array
of the red cells, the blunt velocity profiles around the red cells become more apparent.
For the increase in the hematocrit ratio, the deformation and displacement of red blood
cells are observed to be less compared to those of the single red cell case. The distance
between the initial and final cells seems to be increased for the nine cells case compared
to that of the five cells case. This indicates a slight increase in the cell spacing with the

increase in the hematocrit ratio (a sort of diffusion effect).
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Figure 4.8 : Final positions/deformations at t = 60ms with computed u—velocity
component contours for 5 cells [a] and 9 cells [b] in a channel with a
height of 15.6tm on mesh M3.

Shi et al. [63] also observed the same behavior in three-dimensions for the leading and
trailing red cells and the authors contributed this behavior to short range hydrodynamic
interactions, which leads to a larger deformation for the leading red cell and hence a
higher translational velocity. The blunt velocity profile is more apparent not only on the
red cell itself but also in the region between the red cells. This effect increases the flow
resistance due to relatively high velocity close to the vessel wall. The wall vorticity
divided by the wall vorticity for the planar Poiseuille flow is shown in Figure 4.9-[a] for
the five and nine cell cases. As noted in Xiong and Zhang [64], the variation in the wall
vorticity magnitude decreases as the cell hematocrit ratio is increased. The mean value
of the wall vorticity is also increased as opposed to the work of Xiong and Zhang [64],
where the authors imposed a constant pressure difference rather than a constant inflow
velocity. Finally, the pressure values along the capillary channel symmetry line are also
provided for different hematocrit ratios and capillary channel heights in Figure 4.9-[b].
The present hematocrit ratios for the channel height of 15.6um have a slight effect
on the pressure. There are several constant pressure regions for the cytoplasmic fluid,
which is in accord with the constant velocity observed within the cells. There are also
large constant pressure regions between the red cells in the case of nine cells. On the
other hand, the channel width has a significant effect on the pressure variation along

the symmetry line.
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Figure 4.9 : Comparison of wall vorticity divided by the wall vorticity of planar
Poiseuille flow for five and nine cells for a channel height of 15.6um [a]
and comparison of fluid pressure along the capillary channel symmetry
line for different hematocrit ratios and capillary channel heights [b] at
t = 60ms on mesh M3.
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5. THREE-DIMENSIONAL NUMERICAL RESULTS

The numerical simulations have been also carried out in three-dimensions by varying
capillary tube diameter and red cell spacing. The diameter of the capillary tube is
initially set to 15.6um. The three-dimensional successive meshes are generated with
DISTENE MeshGems-Hexa algorithm based on the octree method by halving the
mesh size function as mentioned before. The computational coarse mesh with 93,840
nodes and 88,331 hexahedral elements (1,064,685 DOF) is shown in Figure 5.1 in

three-dimensions and the details of the meshes are provided in Table 5.1. The physical

Table 5.1 : Computational meshes used for simulation of red blood cell for a channel
height of 15.6um.

Solid Node Element
Mesh layers Ahyi,  Ahpge | number number DOF
M1 4 0.25 1 93,840 88,331 1,064,685

M2 8 0.125 0.5 551,392 532,979 6,113,249
M3 16 0.0625 0.25 | 3,847,608 3,776,461 42,085,229

boundary conditions and the material properties are taken from the previous section.
The capillary tube spans between +70um, where the red cell is initially located

at the origin. The maximum velocity for the paraboloid inlet profile is again set

to 0.01um/ s in order to be consistent with the two-dimensional simulations. The

p 28 -26 -24 -22 -20 18 16 -14 12 10 8 6 -4 -2 0

x [um]
Figure 5.1 : Partial view of computational three-dimensional coarse mesh M1 with
93,840 nodes and 88,331 hexahedral elements for a single red blood cell

in a capillary tube with a diameter of 15.6um.
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Red blood cell positions/deformations with computed u—velocity
component contours at z = 0 plane at ¢t = 60ms for a capillary tube
diameter of 15.6um [a], 11.7um [b] and 10um [c] on mesh MI.

calculations are started from the rest and the time step is set to 100us. The capillary

tube diameters are further reduced to 11.7um and then 10um in order to see the effect

of the increased fluid shear stress on the red cell deformation in three-dimensions.

The computed contours of u—velocity component on z = 0 plane and the velocity

profile around the red cell are provided in Figure 5.2 at t = 60ms for different capillary

tube diameters. As the tube diameter decreases, the red cell deforms more due to
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Figure 5.3 : Velocity profiles at x = 30.0um and the location corresponding to

maximum red cell diameter at t = 60ms in a channel with a height of
15.6um [a], 11.7um [b] and 10um [c] on mesh M1.
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Figure 5.4 : Red blood cell positions/deformations at several different time levels for

a single red blood cell in a capillary tube with a diameter of 15.6um [a],

11.7um [b] and 10um [c] on mesh M1.

the increased fluid shear stress. Velocity profile at x = 30.0um and the location
corresponding to maximum red cell diameter at t = 60ms in a channel with height
of 15.6um [a], 11.7um [b] and 10um [c] are shown in Figure 5.3. The graphics proves
that the red cells move with a constant velocity at the steady state condition. In case of
three dimensions, the blunt velocity profile around the red cell is also more apparent. In
addition, the red cell translational velocity is also found out to be significantly reduced
with the decrease in the tube diameter as seen in the graphics. The time variations
of the red cell deformation and its movement at several different time levels are
provided in Figure 5.4 on z = O plane. The three-dimensional views of the same time
levels are also provided in Figure 5.5. The numerical simulations indicate a complex
shape deformation in which the biconcave discoid shape changes to a parachute-like
shape as in two-dimensions. Surprisingly, as the capillary tube diameter is reduced

to 11.7um and 10um, the red cell undergoes a cupcake shaped buckling instability
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Figure 5.5 : Red blood cell positions/deformations at several different time levels for
a single red blood cell in a capillary tube with a diameter of 15.6um [a],

11.7um [b] and 10um [c] on mesh MI1.
in three-dimensions due to the compressive elastic tension forces along the red cell

membrane surface and the resulting red cell geometry is no longer axisymmetric but

three-dimensional.

To the best of our knowledge, the present cupcake shaped buckling instability in small
capillary tubes has not been noticed in three-dimensional simulations in the literature
(see, for example, [4,5]). One possibility may be the lack of sufficient initial random
disturbances, which leads to a buckling instability due to the amplification of these
random disturbances. This is particularly important for spectral type approaches as
in Zhao et al. [4]. The second possibility is that Skalak et al. [42] law applied to the
spherical capsule buckling produces a wider stability interval than the neo-Hooken law
due to its strain hardening nature [48]. The present Saint Venant-Kirchhoff constitutive
law does not show strain hardening property in the case of the compression of a body to
zero volume, where the stress approaches zero instead of infinity. The main reason for

such behavior is the lack of rank-one convexity [65] which implies non-polyconvexity
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and the physically incorrect behavior of the stored energy function. Therefore, the
existence of the underlying boundary value problem is not guaranteed at large strains
[66]. However, the Saint Venant-Kirchhoff model can be applied successfully in the
small strain-large displacement regime (such as beams and shells) which is in accord
with the three-dimensional solid shell elements used for the RBC membrane. The third
possibility is that the present bending stiffness value is relatively lower compared
to the values used in the classical membrane models. Another possibility is that the
wavenumber in the azimuthal direction may increase significantly with the decrease in
the membrane thickness and the required mesh resolution may be underestimated in
this direction. This high wavenumber could be seen in the experiment work of Hu et
al. [44] for a spherical fluid-filled capsule undergoing a buckling instability as it passes
through a circular tube with a diameter less than that of the capsule. In the literature, the
buckling behavior of red cells has been observed only in the case of a red cell passing
through a very narrow neck [4] and a red cell in simple shear flow [23] as well as at
the cell-cell interface for the aggregation of red blood cells [43]. The similar formation
of the rib-like buckling features are observed experimentally in Figure 6-D of Lee and
Fung [67], where the authors modelled the deformation of a red blood cell in a capillary
vessel by using flexible thin-walled rubber models suspended in a circular tube filled
with a silicone fluid. The rubber models were also fluid-filled and geometrically similar
to human red blood cell. Furthermore, the present cupcake shaped buckling instability
is quite similar to the buckling of a half spherical shell subjected to an external pressure

as seen in Lai and Liu [68].

The red cell deformations at several different time levels are superimposed on each
other for a tube diameter of 15.6m and the comparison is shown in Figure 5.6-[a]. The
deformation of the red blood cell from the biconcave discoid shape to a parachute-like
shape can be seen more clearly. The transition to parachute shape decreases the
flow resistance. However, no buckling instability is observed for the tube diameter
of 15.6um. The change in the red cell deformation is increased with the decrease
in the capillary tube diameter. The red cell translational velocity is also found out
to be significantly reduced with the decrease in the tube diameter as seen in Figure
5.6-|b]. In addition, as the tube diameter is decreased, the red cell membrane deforms

more. However, this deformation is less compared to the decrease in the tube diameter.
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Therefore, the red cell location corresponds to the slower moving plasma, which leads
to a lower velocity even though the average velocity is same within the capillary
tube in all cases. The three-dimensional numerical results also indicate that there is a
significant decrease in the red cell deformation as seen in Figure 5.7 compared to that
of the two-dimensional simulation. The significant decrease in the red cell deformation
in three-dimensions is attributed to the three-dimensional red cell geometry, which
can support larger structural loads. The smaller deformation in three-dimensions leads
to a lower translational velocity for the red cell due to its position corresponding to
the slower moving part of the plasma within the capillary tube, which leads to a
larger constant velocity region in the blunt velocity profile. In addition, the average
velocity within the capillary tube is 0.5U,,4, in three-dimensions rather than 0.6U ux
in two-dimensions. The average red cell membrane velocities are computed to be
0.00093um/us in two-dimensions and 0.00084um/us in three dimensions at t =
60ms for a channel height/capillary tube diameter of 15.6um. These velocity values
are significantly higher than the average plasma velocities, which are in accord with
the experimental observation of Fahraeus [15]. In the literature, Fahraeus also observed
that the red blood cells tend to accumulate at the higher velocity region of the flow field

in a microvessel and their transit time through a tube is shorter on average than that of
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Figure 5.6 : Time-variation of red blood cell deformations at z = 0 plane at several
different time levels (At = 10ms) [a], comparison of final cell geometry
at t = 60ms for several different tube diameters [b] on mesh M1.
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Figure 5.7 : Comparison of deformations in two- and three-dimensions at ¢ = 60ms
for a channel height/tube diameter of 15.6um [c] on mesh M1.
the plasma leading to a lower hematocrit ratio within the capillary tube compared to

the hematocrit of the fluid exiting the tube, which is known as the Fahraeus effect [15].

The minimum thickness of the red cell 77 is also significantly increased in
three-dimensions for the tube diameter of 10um. In order to demonstrate the exact
mass conservation property of the present FSI algorithm, the initial discrete volume of
the cytoplasmic fluid is computed on mesh M1 for a capillary tube diameter of 10um
and its value is 85.256393560716617um?>. The final discrete volume at ¢ = 60ms is
calculated to be 85.256393560834127 /.Lm3. Therefore, the exact mass conservation can
be achieved at machine precision (11 digits) keeping in mind that the solver tolerance
to proceed to next time step is set to 1 x 10710, The spatial convergence of the cupcake
shaped membrane buckling instability is provided in Figure 5.8 for a capillary tube
diameter of 10um on meshes M1 to M3. The buckling instability forms thin rib-like
features and the deformation is not axisymmetric but three-dimensional. The number of
thin rib-like features is 12 on mesh M1 and these structures are uniformly distributed in
the azimuthal direction. The number of these structures is increased to 14 on mesh M2
and the structures show slight uneven distribution in the azimuthal direction probably
depending on the initial disturbances. The number of the thin rib-like features is further
increased to 17 on mesh M3 indicating relatively high wavenumber similar to that of

the spherical fluid-filled capsules in Hu et al. [44].
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In this case, there are 47,342 quadrilateral elements on the red cell membrane
outer/inner surface in order to resolve the wavenumber of the buckling instability,
which leads to a relatively large FSI simulation with 29,090,781 DOF. The spherical
fluid-filled capsule deformed in axisymmetric elongational flow also indicates the
similar buckling instability [48]. However, the buckling on the red cell membrane
leads to relatively more complex instability due to its initial biconcave discoid shape
compared to that of the oblate spheroidal capsule [23]. The experimental work of Risso
et al. [45] indicates that the spherical capsules in a circular tube with the blockage
ratios and the capillary numbers close to the present values leads to a relatively
simple buckling, where the trailing end buckles inward with the leading pole moving
away from the centre. Actually, this simple behavior is more similar to the outward
buckling of the red cell membrane leading part rather than the formation of the rib-like
features. The present wavenumber of the buckling instability is even higher during
the initial formation of the buckling with more uniform distribution and the rib-like
features tend to merge with the increased deformation, forming larger structures as
seen in Figure 5.9. Therefore, the post-buckling behavior of the red cell membrane
is highly unstable and non-linear, which is in accord with the observations related to
the spherical capsules [44]. The buckling instability is observed to happen where the
membrane is subjected to the compressive stress as seen from the pressure contours

in Figure 5.10. The wall shear stress vectors and their streamtraces are also provided

[a] [b]
Figure 5.10 : Front [a] and back [b] views of wall shear stress vectors and their
streamtraces along with pressure contours for a capillary tube diameter
of 10.0um at t = 60ms on mesh M1.
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in the same figure and the streamtraces indicate separation lines at the front and the
back of the red cell. These separation lines can be easily seen if the streamlines are
drawn with respect to the red cell held stationary while the tube moves to the left.
The initial orientation of the red blood cell is also an important factor, which defines
the final deformed shape [27]. The effect of the initial red cell orientation to the final
deformation is investigated when the symmetry axis of the red cell lies parallel to
the flow direction as shown in Figure 5.11. The calculation indicates a completely
different red cell deformation, which is in accord with the Figure 14 of Hashemi and
Rahnama [27]. For the present red cell orientation, the red cell moves faster, since its
location corresponds to the higher velocity region of the plasma within the capillary

tube.

The three dimensional simulations are also carried out for five and nine cells in order
to investigate the effect of the cell spacing (hematocrit) in three-dimensions as well as
the cell-cell interactions. The red cell spacing for the five cells case is set to 15.6um,
meanwhile the spacing between the red cells is set to 7.8um for nine cells case.
The computational mesh for the nine cell case leads to 557,080 nodes and 543,495
hexahedral elements leading to 6,185,417 DOF. The computed red cell deformations
at t = 60ms are shown in Figure 5.12 for a capillary tube diameter of 15.6um. The red
cells move with a constant velocity at the steady state and the blunt velocity profile
is more profound for the array of the red cells, which introduces an increase in the
apparent viscosity compared that of the plasma, causing non-Newtonian effects in
capillaries. The blunt velocity region is larger compared to that of the two dimensional
case, since the red cells deform less in three-dimensions. The deformation of the

leading red cell is observed to be larger compared to the other cells and its velocity
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Figure 5.11 : Effect of initial orientation on red cell positions/deformations at several
different time levels for a single red blood cell in a capillary tube with a
diameter of 10um [c] on mesh M1.
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Figure 5.12 : Effects of hematocrit density using five red cells [a] and nine red cells
[b] on u—velocity on z = 0 plane and deformations for a capillary tube
diameter of 15.6um at ¢t = 60ms on mesh M1.
is slightly higher. The single red cell in a capillary moves slightly faster compared to

the nine-cells.

It is rather difficult to validate the present results due to the fact that the numerical
results in the literature are obtained using different membrane constitutive laws (e.g.,
[42]), where the membrane thickness is zero. Nevertheless, the numerical validation
case used in Pozrikidis [13], Zhao et al. [4] and Shi et al. [5] has been carried out for a
periodic array of red cells in a narrow capillary tube. For this benchmark problem,
the capillary tube diameter is set to 9.024um and the distance L between the red
cells is equal to 5.64um. The mean inlet velocity is taken to be 0.3525mm/s, the
membrane overall shear modulus ph is 4.2 x 107°N/m and the plasma dynamic
viscosity is 1.2 x 10~3kg/ms. The membrane thickness is set to 50nm as before. The
convective and time derivative parts of the incompressible Navier-Stokes equation are
neglected in order to be consistent with the Stokes solution of Zhao et al. [4]. The
capillary number based on the mean inlet velocity is computed to be 0.1007. The
periodic boundary conditions between the inlet and outlet are imposed for the velocity
vector u(x,y,z) =u(x+L,y,z), the displacement vector d(x,y,z) =d(x+L,y,z) and the
pressure p(x,y,z) = p(x+L,y,z) + Ap, where the pressure jump value Ap is computed

implicitly from the imposed average mass flow rate [69].
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Figure 5.13 : Comparison of thre[e—]dimensional red cell membrane geometry[ ]
corresponding to maximum indentation [a] and protrusion [b] with the
results of Zhao et al. [4] and Shi et al. [5] for a capillary tube diameter
of 9.024um at t = 60ms.
The initial mesh M1 generated with DISTENE MeshGems-Hexa algorithm consists of
50,880 nodes and 47,615 elements. The numerical simulation for the present capillary
tube diameter leads to the membrane buckling instability and the comparisons of the
computed red cell geometry corresponding to the maximum indentation and protrusion
at t = 60ms are provided in Figure 5.13. The overall red cell deformation is similar
to the results of Zhao et al. [4] and Shi et al. [S]. The deformation index, which
is defined as the maximum red cell length divided by its maximum diameter [5], is
calculated to be 0.645. Although the present deformation index is slightly lower due to
the protrusion region on the membrane surface as seen in Figure 5.13-[b], the average
deformation is increased due the membrane buckling, which leads to an increase in the
red cell thickness 77. The deformed red cell membrane is also observed to be slightly
thinner in the front (44nm) and thicker in the back (49nm), which is not considered
in the classical membrane models. The deformation index for a single red cell in a
long capillary tube (140um) with the same diameter is computed to be 0.717, which
is relatively in a better agreement with the experimental results of Tsukada et al. [70].
In the present numerical simulations, we have noted that the buckling instability is
delayed significantly on partially axisymmetric meshes. A new partially axisymmetric
mesh M1 with 67,361 nodes and 64,640 elements is created by using CUBIT mesh
generation environment [71] and the solid mesh vertices corresponding to the buckling

region are computed by uniformly sweeping the grid points in the azimuthal direction.
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a b
Figure 5.14 : Effect of computati([)n]al mesh to development of buckling for[a]
capillary tube diameter of 9.024um at t = 40ms: Initial unstructured
mesh M1 [a] and partially axisymmetric mesh M1 [b].
The developments of the three-dimensional red cell membrane buckling instabilities
on both computational meshes are provided in Figure 5.14 at ¢t = 40ms. The buckling
instability on the partially axisymmetric mesh M1 is not apparent at t = 40ms and
it takes relatively longer to reach the final buckled shape. The larger deformation on
the initial unstructured mesh M1 leads to a lower flow resistance and a slghtly higher
red cell translational velocity. However, we can not create a fully axisymmetric mesh,
since it requires to use prismatic elements corresponding to the polar singularity along
the x—axis, which is not supported with the current algorithm. Therefore, the lack of
sufficient small random initial disturbances or the lack of the numerical simulation time
may be the reason why the early numerical results did not observe the present buckling
instability. Nevertheless, this still should be confirmed by using other constitutive
laws in three-dimensions. In the present simulations, the red cell membrane thickness
is also increased to 100nm, which is the maximum red cell blood cell membrane
thickness [29], in order to increase the membrane bending stiffness (8 times) while
keeping the membrane shear modules i, the same. Although this also doubles the
membrane overall shear modulus, the simulation shows that the red cell membrane

buckling still persists.
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6. CONCLUSION

The parallel fully coupled (monolithic) fluid-structure interaction approach [35,36] has
been applied to investigate the deformation of red blood cells in capillaries, where cell
deformability has significant effects on blood rheology. The present numerical method
in fluid domain is based on Arbitrary Lagrangian-Eulerian (ALE) formulation with
the stable arrangement of primitive variables [50], meanwhile the classical Galerkin
finite element formulation in a Lagrangian frame is used in the solid domain. The
numerical method employs conformal hexahedral elements at the fluid-solid interface
in order to accurately resolve the sharp gradients at the interface. In addition, the local
and global geometric conservation laws (DGCL) [37] are satisfied at discrete level
and the compatible kinematic boundary condition [36] is enforced at the interface
between the solid and fluid domains in order to conserve the mass of the cytoplasmic
fluid within the red cell at machine precision. Furthermore, the new projection type
approximate block preconditioner is proposed and the parallel algebraic multigrid
solver BoomerAMG is used for the scaled discrete Laplacian provided by the HYPRE
library [40] which we access through the PETSc library [41]. Three important physical
parameters for the blood flow are simulated and analyzed: (i) the effect of capillary
diameter, (ii) the effect of red cell membrane thickness and (iii) the effect of red
cell spacing (hematocrit). The capillary diameter is found out to be particularly
important for the flow pressure gradient as well as the deformation of red blood cells.
The results also show that the cell deformation decreases with increasing hematocrit
density, which is also shown to play a significant role for velocity field. In the
present simulations, the three dimensional red cell membrane, which is at the order
of 40 — 50nm [59], is modelled using the three-dimensional solid shell elements rather
than the two-dimensional membrane elements with zero thickness and the numerical
simulations indicate significant thinning of the red cell membrane in the leading/front
part for large shear values, which is ignored in the classical membrane models. The
thickness effects are particulary important to model bending moments and transverse

shear forces in order to predict the post-buckling behavior [44]. The calculations also
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show a complex shape deformation in which the biconcave discoid shape changes
to a parachute-like shape which is in accord with the early results in the literature.
In addition, the red cells in small capillaries undergo a cupcake shaped buckling
instability forming thin rib-like features in three-dimensions due to the compressive
elastic tension forces along the membrane surface and the resulting red cell geometry
is no longer axisymmetric but three-dimensional. The wavenumber of the instability
in the azimuthal direction is also relatively high and it is computationally challenging
to resolve. To our best knowledge, the cupcake shaped buckling instability in small
capillaries has not been noted in the literature. The present buckling mechanism may
further ramifications to reduce the flow resistance in the microcirculation and alter
the oxygenation of surrounding tissues in small capillaries due to its larger surface
area next to the endothelium. Although we employ the simplest type of hyperelastic
material model, the present numerical simulations revealed the most of the properties
encountered in blood flows in a microcirculation. In the future, we will consider more
realistic solid red cell membrane models as in the work of Kloppel and Wall [31].
In addition, the numerical algorithm requires local remeshing capability in the fluid

domain for more complex deformations and cell-cell interactions.
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