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KIRMIZI KAN HÜCRELERİ İÇİN ÜÇ BOYUTLU
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Tez Danışmanı: Prof. Dr. Mehmet ŞAHİN
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Istanbul Technical University

Jury Members : Asst. Prof. Dr. Bayram ÇELİK ..............................
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THREE DIMENSIONAL SIMULATION OF
FLUID STRUCTURE INTERACTIONS FOR

RED BLOOD CELLS

SUMMARY

Red blood cells, also called erythrocytes, can be defined as nucleus-free deformable
liquid capsules enclosed by a biological membrane that is nearly incompressible and
exhibits a viscoelastic response to shearing and bending deformation. The mechanical
properties of red cells strongly influence the rheological behavior of blood and
introduce non-Newtonian effects. A number of human diseases such as hypertension,
malaria, sickle cell anemia and diabetes mellitus leads to change in the mechanical
properties of red blood cells and reduction in deformability, which increase in
microvascular flow resistance and a decrease in cellular oxygen delivery.

A parallel fully-coupled (monolithic) fluid-structure interaction (FSI) algorithm has
been applied to the deformation of red blood cells (RBCs) in capillaries, where cell
deformability has significant effects on blood rheology. In the present FSI algorithm,
fluid domain is discretized using the side-centered unstructured finite volume method
based on Arbitrary Lagrangian-Eulerian (ALE) formulation, meanwhile solid domain
is discretized with the classical Galerkin finite element formulation for the Saint
Venant-Kirchhoff material in a Lagrangian frame. In addition, the compatible
kinematic boundary condition is enforced at the interface between the solid and fluid
domains in order to satisfy the global discrete geometric conservation law (DGCL),
which is important in order to conserve the mass of cytoplasmic fluid within the
red cell at machine precision. In order to solve the resulting large-scale algebraic
linear systems in a fully coupled (monolithic) manner, a new matrix factorization is
introduced similar to that of the projection method and the parallel algebraic multigrid
solver BoomerAMG is used for the scaled discrete Laplacian provided by the HYPRE
library which we access through the PETSc library.

Three important physical parameters for the blood flow are simulated and analyzed: (i)
the effect of capillary diameter, (ii) the effect of red cell membrane thickness and (iii)
the effect of red cell spacing (hematocrit). The capillary diameter is found out to be
particularly important not only for the pressure gradient but also for the deformation of
red blood cells. The numerical calculations also indicate a complex shape deformation
in which biconcave discoid shape changes to a parachute-like shape which is in accord
with the early results in the literature. Furthermore, the parachute-like cell shape in
small capillaries undergoes a cupcake shaped buckling instability, which has not been
observed in the literature. The instability forms thin rib-like features and the red cell
deformation is not axisymmetric but three-dimensional.
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KIRMIZI KAN HÜCRELERİ İÇİN ÜÇ BOYUTLU
AKIŞKAN YAPI ETKİLEŞİMİ SİMÜLASYONU

ÖZET

Kan reolojisi, kanın akış özelliklerini ve kan içindeki elemanların deformasyon
davranışlarını ele alır. Kanın reolojik özellikleri, dokuların beslenmesinde ve atıkların
bu dokulardan uzaklaştırılmasında hayati rol oynamaktadır. Çünkü kan, besin
maddeleri ve oksijen gibi gerekli maddeleri hücreye taşırken karbon dioksit, amonyak
gibi metabolik atıkları hücreden uzaklaştırır. Buna ek olarak, kanın reolojik özellikleri
bağışıklık sisteminde ve vücut sıcaklığının sabit tutulmasında büyük etkilere sahiptir.
Kan esas olarak plazma (çoğunlukla suda çözünmüş çeşitli proteinler, glikoz,
pıhtılaşma faktörleri, elektrolitler, hormonlar, atık ürünler, vb.), kırmızı kan hücreleri
(RBCs), beyaz kan hücreleri (WBCs) ve trombositlerden oluşur. Bu çalışma esas
olarak, kırmızı kan hücreleri üzerine yapılmıştır.

Kırmızı kan hücreleri, biyolojik zarla çevrilmiş, neredeyse sıkıştırılamaz olmakla
birlikte kesme ve bükülme deformasyonlarına karşı viskoelastik tepki veren, deforme
olabilen, çekirdeksiz, sıvı dolu bir kapsül olarak düşünülebilir. Yetişkin sağlıklı bir
insan vücudunda, kırmızı kan hücreleri genellikle 8µm çaplı ve 2µm kalınlıklı esnek
her iki yüzü içbükey diskler halinde şekil almaktadır. Kırmızı kan hücresinin zar
yapısı bir çok katmanın bir araya gelmesiyle oluşur. Kalınlığı yaklaşık 5nm olan
dış lipit çift katmanının elastisitesi, zarın sertliğini etkileyen en önemli faktördür
[6]. Kırmızı hücre zar yapısı, dış strese maruz kaldığında kendi çapının yarısı
veya daha küçük çapa sahip kılcal damarlardan geçmesine imkan tanıyabilecek
kadar büyük deformasyonları kaldırabilecek kabiliyete sahiptir. Normal kırmızı kan
hücresinin yüzey alanının hacime oranı, aynı hacimdeki bir küreye göre %40
oranında daha yüksektir [7]. Kırmızı kan hücrelerinin difüzyon yüzeyinin artması
sayesinde, dokuların beslenmesinde ve atıkların bu dokulardan uzaklaştırılmasındaki
hayati rolünde küreden daha verimli olmasını sağlar. Kan içindeki asılı kırmızı kan
hücrelerinin hacim fraksiyonu olarak tanımlanan hematokrit, normal insan kanında
%40 ila %45 arasında değişir. Bu oran cinsiyet, yaş ve spor yapma alışkanlıklarına
bağlı olarak değişim göstermektedir.

Diğer bütün kan elamanlarının yanı sıra kırmızı kan hücrelerin mekanik özellikleri,
kanın reolojik davranışını büyük ölçüde etkiler ve Newtonyen olmayan etkileri
beraberinde getirir. Öte yandan, beyaz kan hücreleri kanda hacimce sadece yaklaşık
1/600 oranında bulunurlar ve içindeki akışkanın viskozitesi, kanın viskozitesinden
binlerce kez daha büyüktür. Bunun sonucu olarak, aynı akış altındaki kırmızı kan
hücreleri kadar deforme olamazlar [8].

Hipertansiyon, sıtma, orak hücre anemisi/hastalığı ve şeker hastalığı gibi bir
takım hastalıklar, kırmızı kan hücrelerinin mekanik özelliklerinde değişiklikler
oluşturur ve deforme edilebilirliğinin azalmasına neden olur. Kırmızı kan hücrelerinin
deformabilitesindeki azalma, mikrovasküler akış direncinde belirgin bir artışa ve
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hücresel oksijen alış verişinde ve doku beslenmesinde ciddi derecede azalmaya,
mikrosirkülasyonda da bozulmaya neden olur. Bu nedenle, kılcal damardaki kırmızı
kan hücrelerini ve onu çevreleyen plazmanın hareket ve deformasyonunu anlamak
ilgili hastalıklarla mücadelede değerli bilgiler sağlayabilir.

Büyük damarlardaki kan genellikle sıkıştırılamaz, homojen ve Newtonyen olduğu
düşünülür, çünkü kırmızı kan hücrelerinin akış esanasında ne kümelenme ne de
deformasyona yetecek kadar zamana sahip olmadığı varsayılmaktadır. Öte yandan,
kılcal damar içindeki kan akışı, viskozitesi hematokrit ve kayma oranıyla değişen,
homojen ve Newtonyen olmayan bir sıvı olarak modellenmektedir.

Çeşitli akış durumlarındaki kırmızı kan hücresi davranışlarını belirlemek için teorik,
deneysel ve sayısal çalışmalar, uzun süredir ilgi gören, aktif bir araştırma alanıdır.
Secomb [9], yağlama teorisine dayanan dar kılcal damarlarda kırmızı hücre hareketi
için teorik bir model önermiştir ve deneysel verilerle iyi bir uyum içinde olan
dar tüplerdeki görünür viskozite değerlerini tahmin etmiştir. Eggleton ve Popel [7]
ve Peskin [10] tarafından önerilen daldırılmış sınır yöntemini (immersed boundary
method) damar içi akışa adapte ederek, RBC’ler için zar-sıvı akış etkileşimlerinin
üç boyutlu simülasyonlar sunmuştur. Liu et al. [11], daldırılmış sonlu elemanlar
yöntemini (IFEM) protein moleküllerinin dinamikleriyle birleştirerek kan hücrelerinin
kümelenmesini ve bu davranışın kan reolojisi üzerindeki etkilerini araştırmıştır.
Hücre zarının hem kesme hem de bükülme sertliğini hesaba katabilmek için,
kırmızı kan hücresi üç boyutlu katı elemanlarla modellenmiştir. Daha sonraki bir
çalışma da, Liu and Liu [12], üç boyutlu olarak, mikro ve kılcal damarlar içinde
bulunan RBC’lerde meydana gelen büyük deformasyonu incelemek için, daldırılmış
(immersed) sonlu elemanlar yöntemini çözüm ağsız (meshfree) yöntemlerle birleştirip
doğrusal olmayan katı maddeler için uygulamışlardır. Yazarlar, RBC rouleau’nun
farklı kesme oranlarında ayrıştırılmasını incelemeye çalışmışlardır.

Sonlu zar kalınlığına sahip kırmızı kan hücrelerinde akış yapı etkileşimiyle iglili
sınırlı sayıda çalışma mevcuttur. Oysa ki, akışkan yapı etkileşimi (FSI) literatürdeki
çoklu fizik problemleri içinden sıklıkla başvurulan modelleme tekniklerinden birisidir.
FSI, akışkan ile bu akışkanın çevrelediği veya içerisinde bulunduğu katı yapıyla olan
etkileşimi konu alır. Kırmızı kan hücreleri de FSI’nın inceleme konuları arasında yer
alabilir. Çünkü kan hücresinin zarı dışarıdan kan plazması ve içeriden hemoglobin
olmak üzere iki akışkan yapıyla etkileşim içindedir.

Bu çalışmada, problemin akışkan bölgesi için daimi olmayan; sıkıştırılamaz
Navier-Stokes denklemi, Keyfi Lagrangian-Eulerian (ALE) formülasyonuna dayanan,
kenar merkezli (side-centered) yapısal olmayan sonlu hacimler yöntemiyle ayrık-
laştırılmıştır. Yapısal alanıysa, Lagrangian çerçevesinde Saint Venant-Kirchhoff
malzeme modeli için klasik Galerkin sonlu element yöntemi ile ayrıklaştırılmaktadır.
Klasik bölünmüş (patitioned) yaklaşımlar, Drichlet sınır koşuluyla çevrelenmiş
akışkanın FSI iterasyonları sırasında akışkanın sıkıştırılamazlığını sağlayamamaktadır.
Bahsi geçen bu problem kan hücresinin sınır koşullarını çevreleyen sistemlerde de
görlülür. Bu nedenle, tam bağlaşık akışkan-yapı etkileşim algoritması gerekmektedir.
Mevcut çalışmada, akışkan ve yapı alanının çözümü tam bağlaşık bir yaklaşıma
dayanmaktadır. Bu sayede kılcal damar içerisindeki kırmızı kan hücresinin defor-
masyonunun sayısal simülasyonu için, akışkan ve yapı denklemleri tek bir denklem
sistemi olacak şekilde şeklillendirilip, çözüm her adımda tam bağlaşık olarak elde
edilmektedir. Mevcut yaklaşım aynı zamanda global ayrık geometrik karunum yasası

xxvi



(global discrete geometric conservation law (DGCL)) sağlamak için katı ve akışkan
alanlar arasındaki ara yüzeyde uyumlu bir kinematik sınır koşulu sağlar. Bu sayede,
kırmızı kan hücresi içindeki sıvı (hemoglobin) kütlesi simülasyon boyunca makine
hassasiyetinde korunur.

Çalışma kapsamında kan akışı için üç önemli fiziksel parametre simüle ve analiz
edilecektir: (i) kılcal damar çapının etkisi, (ii) kırmızı hücre zar kalınlığının etkisi
ve (iii) kırmızı hücre aralığının (hematokrit) etkisi. Kılcal damar çapının, sadece
basınç gradyanı için değil, aynı zamanda kırmızı kan hücrelerinin deformasyonu
için özellikle önemli olduğu bulunmuştur. Sayısal hesaplamalar, biconcave diskoid
şeklinin, literatürdeki sonuçlara uygun olarak paraşüt benzeri bir şekle dönüştüğünü
de göstermiştir. Buna ek olarak, küçük kılcal damarlardaki paraşüt benzeri hücre şekli,
literatürde gözlemlenmemiş bir cupcake şekillinde bükülme (buckling) kararsızlığına
maruz kaldığı gözlemlenmektedir. Kararsızlık, kırmızı kan hücresi etrafında düşük
dalga boylu deformasyonlar oluşturur ve kırmızı hücre deformasyonu, aksisimetrik
değil, üç boyutludur.

Bu tezin geri kalanı şu sırayla düzenlenmiştir: Bölüm 1, motivasyon ve detaylı
literatür taramasını kapsamaktadır. Bölüm 2, mevcut FSI algoritmasının yeni ve tam
bağlaşık (monolitik) iteratif yöntemi ile birlikte kısa bir açıklama sunmaktadır. Bölüm
3’te, kırmızı kan hücresinin geometrisi ve fiziksel parametreleri verilmiştir. Ayrıca,
problemin sınır koşulları bu bölümde verilmektedir. Bölüm 4 ve 5’de sırasıyla iki ve
üç boyutlu analiz sonuçları yer almaktadır. Mevcut çalışmanın çıkarımlarına bölüm
6’da değinilmiştir.
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1. INTRODUCTION

1.1 Purpose of Thesis

Hemorheology, also called as blood rheology, deals with the flow properties of blood as

well as the deformation behavior of its formed elements. The rheological properties of

blood play a vital role for appropriate tissue perfusion, since blood delivers necessary

substances such as nutrients and oxygen to the cells and transports metabolic waste

products such as carbon dioxide, ammonia, etc. away from those same cells. In

addition, these rheological properties have major effects on the immune system. The

blood mainly contains plasma, which is composed of mostly water with a variety of

dissolved proteins, glucose, clotting factors, electrolytes, hormones, waste products,

etc., and living cells, which are red blood cells (RBCs) (or erythrocytes), white blood

cells (WBCs) (or leukocytes), and platelets (or thrombocytes) as illustrated in Figure

1.1.

Figure 1.1 : Ilustration of red blood cells (RBCs) (or erythrocytes), white blood cells
(WBCs) (or leukocytes), and platelets (or thrombocytes).

The red blood cells can be considered as a deformable, nucleus-free fluid-filled capsule

enclosed by a biological membrane, that is nearly incompressible and exhibits a

viscoelastic response to shearing and bending deformation. A mature human red blood
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cell normally takes the form of flexible biconcave disc, which is approximately about

8µm in diameter and 2µm in thickness. The red cell membrane is composed of several

layers and the stiffness of the membrane is mainly dominated by the elasticity of the

outer lipid bilayer, which has approximately 5nm thickness [6]. The red cell membrane

structures have the ability to undergo remarkably large deformations when subjected to

external stresses, which allow them to pass through capillaries with half the diameter

of the RBC or less. The surface area to volume ratio of the normal RBC cell is 40%

greater than that of a sphere with the same volume [7]. The hematocrit, which is defined

as the volume fraction of the suspended red blood cells inside blood, varies between

40 to 45% for normal human blood. Therefore, the mechanical properties of red cells

strongly influence the rheological behavior of blood and introduce non-Newtonian

effects. Apparent viscosity of blood as a function of shear rates and hematocrit effects

on blood as a function of shear rates are given in Figure 1.2 [1]. On the other hand, the

white blood cells occupy only about 1/600th of blood by volume and have an internal

viscosity thousands times larger than the viscosity of blood, and thus do not deform as

much as the red blood cells under the same flow conditions [8].

Figure 1.2 : Apparent viscosity of blood as a function of shear rates [a] and
hematocrit effects on blood as a function of shear rates [b].

In a number of human diseases such as hypertension, malaria, sickle cell

anemia/disease and diabetes mellitus, variations in the mechanical properties of red

blood cells occur and cause reduced deformability. A decrease in red cell deformability

causes a significant increase in microvascular flow resistance and a decrease in cellular

oxygen delivery and tissue oxygenation, an impairment of microcirculation. Therefore,

it is of great importance to understand the motion and deformation of the RBCs and
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the surrounding plasma in capillaries, which may provide valuable knowledge in the

fight against the relevant diseases.

1.2 Literature Review

Theoretical, experimental and numerical studies to determine the red cell behaviors in

various flow situations have been a longstanding and active area of research. Figure

1.3 [2] shows that human red blood cells whose flow directions are from left to

right, flowing in glass tubes with approximate diameters of 4.5µm (top), 7µm (center)

and 15µm m (bottom), respectively. Secomb [9] proposed a theoretical model for

red cell motion in narrow capillaries based on lubrication theory and predicted the

values of apparent viscosity in narrow tubes, which are in good agreement with

experimental data. Pozrikidis [13] employed the boundary integral method for the

axisymmetric motion of a periodic array of red cells with arbitrary cell separations

and tube diameters in the context of the Stokes flow and the nearly incompressible and

elastic behavior of the cell membrane with respect to shearing and bending deformation

is taken into consideration. Eggleton and Popel [7] adapted the immersed boundary

method proposed by Peskin [10] and presented the three-dimensional simulations of

membrane-fluid flow interactions for RBCs. Liu et al. [11] coupled the immersed

finite element method (IFEM) with protein molecular dynamics to investigate the

behaviors of RBC aggregates and their effects on the blood rheology. To account

for both membrane shear and bending stiffness, RBC membrane is modelled with

three-dimensional solid elements. In a later study, Liu and Liu [12] combined the

Figure 1.3 : Human red blood cells flowing in glass tubes.
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immersed finite element method with meshfree methods for nonlinear solids to handle

the large deformation of RBCs within micro and capillary vessels in three-dimensions.

The authors attempted to study the disaggregation of an RBC rouleau at different shear

rates. Zhang et al. [14] developed a lattice Boltzmann algorithm to simulate the RBC

behavior in shear and channel flows. The immersed boundary method is employed

to incorporate the fluid-membrane interactions. The phenomena of microscopic blood

flows, such as cell-free layers, blunt velocity profiles, and the Fåhraeus effect [15]

have also been reproduced. In another study, Zhang et al. [16] considered the RBC

membrane mechanics, plasma/cytoplasm viscosity difference, intercellular interaction,

and the hydrodynamic viscous forces in their two-dimensional numerical simulations.

Le et al. [17] developed an implicit immersed boundary method for the incompressible

Navier-Stokes equations capable of handling three-dimensional membrane-fluid flow

interactions and applied the numerical algorithm to simulate the large deformation of

human RBCs subjected to direct stretching by optical tweezers. Hosseini and Feng [18]

presented a two-dimensional particle-based model for the red blood cells and the cell

membrane is replaced by a set of discrete particles connected by nonlinear springs.

The cytoplasm and the external liquid are discretized by particles as in standard

smoothed particle hydrodynamics (SPH) solution of the Navier-Stokes equations. The

numerical approach were extended to three-dimensions in Hosseini and Feng [19] and

applied to the steady-state cell stretching of a healthy or malaria-infected RBCs by

optical tweezers. Zhao et al. [4] presented a spectral element based boundary integral

method for the Stokes flow and investigated the interactions of large numbers of

blood cells as encountered in blood flows in the microcirculation. Wang and Xing

[20] studied the dynamics of the axisymmetric, pressure driven motion of RBCs in

capillaries using the immersed boundary method and recreated several important in

vivo hemodynamic and hemorheological properties of microscopic blood flow, such

as parachute shape of the cells, blunt velocity profile, and the Fåhraeus effect. Ye et

al. [21] presented a particle level set method in conjunction with a modified SIMPLER

algorithm on a fixed staggered Cartesian mesh in order to investigate the effects of

RBC diameter, elastic modulus, bending stiffness of RBC membrane, initial flow

velocity as well as plasma/cytoplasm density and viscosity ratios. In a later work, Ye

et al. [22] developed a three-dimensional computational model using the dissipative

particle dynamics (DPD) method in conjunction with a Morse potential to account
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cell-cell interactions. Huang et al. [23] proposed an improved penalty immersed

boundary method (pIBM) for the simulation of the flow-induced deformation of

three-dimensional elastic capsules, including biconcave capsule as a model of RBC,

and the numerical simulations indicated the formation of buckling in a linear shear

flow. Reasor Jr et al. [24] implemented a spectrin-link (SL) red blood cell membrane

method coupled with a lattice Boltzmann method to construct a computationally

efficient numerical algorithm for the simulation of realistic suspensions of RBCs.

Freund [25] employed boundary integral model to simulate the passage of a blood

cell through a particularly narrow geometry motivated by the human spleen and

observed several distinct behaviors based on flow rates and cytosol viscosities. Shi

et al. [5] combined the numerical technique derived from the lattice Boltzmann

method and the distributed Lagrange multiplier/fictitious domain method with a

mesoscopic membrane model in order to study hydrodynamic interactions between

RBCs. Chivuka et al. [26] simulated deformation of a biconcave red blood cell

in a fully developed Poiseuille flow through a capillary using the NURBS-based

isogeometric analysis combined with the immersed boundary method proposed by

Peskin [10]. Hashemi and Rahnama [27] proposed a three-dimensional hybrid method,

combining lattice Boltzmann method for plasma flow, finite element method for RBC

membrane analysis, and immersed boundary method for their interaction. The effect

of membrane deformability, its initial orientation, velocity, and flow pressure gradient

are investigated. More recently, Balogh and Bagchi [28] have presented a large-scale

computational methodology based on the immersed boundary methods for modeling

cellular-scale blood flow in complex geometries. We refer to the review articles by

Freund [29] and Jua et al. [30] on the further details of the numerical algorithms.

Figure 1.4 : Mathematical FSI domain.
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In contrast to the above studies, there are very limited works on the fluid-structure

interaction (FSI) of red blood cells based on body conformal meshes with a finite

membrane thickness. The FSI problem can be basically defined as the interaction

between surrounding fluid and deformable solid structure, as seen in Figure 1.4 [3].

The main working areas of FSI is aeroelastic phenomena which contain as flutter,

buffeting and divergence, design of offshore structures, structural effect of strong

wind on bridges and tall buildings, flow induced vibrations in heat exchangers tubes,

explosions or high-velocity impacts, large class of acoustic problems. FSI is also a

preferred aspect for biomechanic which include blood flow in vessel, deformation

of blood cell or animal locomotion. As mentioned before, the use of FSI algorithm

for the deformation of red blood cells is limited. To the best of our knowledge, only

Klöppel and Wall [31] employed the fluid-structure interaction algorithm with finite

thickness solid shell elements in three-dimensions for the red cell membrane and

investigated the mechanical behavior of human red blood cell filled with a Newtonian

fluid in optical tweezers. The main reason is that the classical partitioned (segregated)

approaches can not satisfy the incompressibility constraint of the fluid during standard

alternating FSI iterations when the fluid domain is entirely enclosed by all Dirichlet

boundary conditions as pointed out by Küttler et al. [32]. This is also the case for

the incompressible cytoplasmic fluid within the solid red cell membrane since the

incompressible fluid boundary condition for the cytoplasmic fluid is not necessarily

compatible during alternating FSI iterations (
∮

Γ
n · udS 6= 0) and the segregated

divergence-free fluid solver will fail to converge. In addition, the explicit partitioned

methods generally employs fixed point (Picard type) iterations and the standard fixed

point iterations may diverge in the presence of strong fluid-structure coupling due to

the high fluid/structure density ratio, similar to that of the cytoplasmic fluid to RBC

membrane, which causes the so-called artificial added mass effect [33]. Therefore, a

fully coupled (monolithic) FSI algorithm has to be employed for these balloon-type

problems. There is also problem with high aspect ratio of the three-dimensional solid

shell elements employed within relatively thin lipid bilayer (5nm), which leads to a

very bad condition number [34]. The high aspect ratio computational domains such

as long capillaries also adversely affect the convergence of iterative method. These

numerical difficulties poses significant challenges for the FSI algorithms based on

body conformal meshes with a finite membrane thickness. In the current paper, we
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employ the monolithic FSI algorithm proposed in Eken and Sahin [35, 36] with a

new preconditioner in order to simulate the flow-induced deformation and transport

of the red blood cells in blood plasma flowing through small capillaries. In the present

approach, the fluid domain is discretized using the stable side-centered unstructured

finite volume method based on Arbitrary Lagrangian-Eulerian (ALE) formulation,

meanwhile the solid domain is discretized with the classical Galerkin finite element

formulation for the Saint Venant-Kirchhoff material in a Lagrangian frame. The

method employs conformal hexahedral elements at the fluid-solid interface in order

to accurately resolve sharp gradients. In addition, the local and global geometric

conservation laws (DGCL) [37] are satisfied at discrete level and the compatible

kinematic boundary condition is applied at the fluid-solid interface [36], which

leads to the conservation of cytoplasmic fluid mass at machine precision. In the

current paper, the resulting large-scale algebraic linear systems are solved in a fully

coupled (monolithic) manner using the FGMRES(m) Krylov iterative method [38]

preconditioned with a matrix factorization similar to that of the projection method [39]

for the whole system and the parallel algebraic multigrid solver BoomerAMG is used

for the scaled discrete Laplacian provided by the HYPRE library [40] which we

access through the PETSc library [41]. The present new block preconditioner may

be considered as the extension of the classical projection method [39] to FSI problems.

In order to better understand the phenomenon associated with the blood flow in small

capillaries, the above monolithic FSI algorithm has been employed to investigate the

transport and deformation of red cells in small capillaries, with the main focus on

gaining a greater insight into the influences of those cells to the plasma flow. As far

as our knowledge, the three-dimensional mechanical behaviors of red blood cells in

capillaries have not been investigated using a FSI algorithm based on body conformal

meshes with a finite membrane thickness. In the literature, the simulations of RBCs

indicate that the bending stiffness must be included [7] in order to simulate more

complex red cell deformations, since it plays an important role in the mechanical

behavior of RBCs, especially at the locations with sharp changes in curvature [21]. The

present FSI approach with a finite membrane thickness naturally leads to the bending

rigidity and it does not require complex local curvature calculations (e.g., [42]). In

order to better analyse the blood flow in small capillaries, the numerical simulations
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conducted in this paper include parametric studies on the effects of capillary diameter,

red cell membrane thickness, and red cell spacing (hematocrit). The calculations

indicate that the biconcave discoid shape in large capillaries changes to a parachute-like

shape, which is in accord with the early experimental and numerical results in the

literature. However, the numerical simulations for small capillaries illustrate that the

parachute-like cell shape undergoes a cupcake shaped buckling instability due to

the compressive elastic tension forces along the membrane surface, which has not

been noted in the literature. The buckling instability forms thin rib-like features and

the membrane deformation is no longer axisymmetric but three-dimensional. In the

literature, the buckling behavior of red cells has been observed only in the case of

a red cell passing through a very narrow neck [4] and a red cell in a simple shear

flow [23] as well as at cell-cell interface for the aggregation of red blood cells [43]

and the present cupcake shaped buckled red cell geometry is completely new. The

similar buckling instability is also observed for a spherical fluid-filled capsule as it

passes through a circular tube with a diameter less than that of the capsule [44].

However, the spherical capsules in a circular tube with the blockage ratios and capillary

numbers close to the present values do not indicate any rib-like features and only the

trailing end buckles inward [45]. The spherical capsules is a simple shear also indicates

buckling behavior [23, 46–49], where the spherical capsule initially deforms into a

nearly ellipsoidal shape with an inclination angle and then buckles around the equator.

However, the buckling on the red cell membrane is relatively more complex due to

its initial biconcave discoid shape compared to that of the oblate spheroidal capsule.

As pointed out by Huang et al. [23], the buckling of a spherical fluid-filled capsule in

a simple shear indicate that the buckling on the surface of a biconcave capsule leads

more wrinkles and complex deformations as compared to those of the oblate spheroidal

case. In addition, the buckling instability in a simple shear is observed to occurs near

the equator of the capsule for small shear rates but near the tips for large shear rates.

1.3 Outline

The remainder of this thesis is organized as follow: chapter 2 provides a brief

description of the present FSI algorithm along with the new fully coupled (monolithic)

iterative method. Geometry and physical parameter of red blood cell is described in
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chapter 3. In addition, the physical boundary conditions are given in this section.

In chapter 4 and 5, the FSI algorithm has been initially validated by performing

spatial and temporal converge studies for a single cell in a narrow capillary and then

employed to analyse (i) the effect of capillary diameter, (ii) the effect of red cell

membrane thickness, and (iii) the effect of the red cell spacing (hematocrit) in two-

and three-dimensions. The three-dimensional cupcake shaped buckling instability in

small capillaries is discussed in detail. The final conclusions of the present work are

provided in chapter 6.
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2. GOVERNING EQUATIONS

2.1 Fluid Equations

The integral form of the incompressible Navier-Stokes equations for an arbitrary

moving control volume Ω(t) with boundary ∂Ω(t) can be written in the Cartesian

coordinate system in dimensional form as follows: the momentum equation

ρ f
∂

∂ t

∫
Ω

udV +ρ f

∮
∂Ω

[n · (u− ẋ)]udS =
∮

∂Ω

σ f ndS (2.1)

the continuity equation

−
∮

∂Ω

n ·udS = 0 (2.2)

In here, V is the control volume, S is the control volume surface area, n is the outward

normal vector, ρ f is the constant fluid density, u is the local fluid velocity vector, ẋ

is the grid velocity, and σ f is the fluid stress tensor. The constitutive relation for an

incompressible Newtonian fluid is given by

σ f =−pI+µ f (∇u+∇u>) (2.3)

where p is the fluid pressure and µ f is the fluid dynamic viscosity.

2.2 Solid Equations

The balance of the linear momentum equation in the Lagrangian framework, where the

material derivative becomes a partial derivative with respect to time, can be written as

ρs
∂ 2d
∂ t2 = ∇σs (2.4)

where ρs is the spatial density, d is the displacement vector, and σs is the Cauchy stress

tensor defined using the following constitutive law for the Saint Venant-Kirchhoff

material

S = JF−1
σsF−> (2.5)

F = (I+∇d) (2.6)
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E =
1
2
(F>F− I) (2.7)

S = λstrace(E)I+2µsE (2.8)

Π = FS (2.9)

where S is the second Piola-Kirchhoff stress tensor, F is the deformation gradient

tensor, J = det(F) is the deformation gradient determinant, E is the Green-Lagrange

strain tensor, Π is the non-symmetric first Piola-Kirchhoff stress tensor, and λs and

µs are the material Lamé’s constants. These Lamé’s values can be computed from the

material Young’s modulus E and the Poisson ratio ν as λs = Eν/(1+ν)(1−2ν) and

µs = E/2(1+ν). Then, the equation of motion with respect to the initial configuration

is given by

ρ0
∂ 2d
∂ t2 = ∇0 ·Π> (2.10)

where ρ0 is the solid material density per unit undeformed volume and ∇0 indicates

the gradient with respect to the reference (undeformed) configuration.

2.3 Interface Conditions

Interface conditions require two main conditions across the fluid-structure interface

at all times. These are the kinematic and the dynamic continuity conditions. The

kinematic boundary condition on the common fluid-structure interface is driven by

continuity of the velocity.

u = ḋ (2.11)

The dynamic condition holds for surface traction vector at the common fluid-structure

interface.

σsns =−σ f n f (2.12)

where σs is the Cauchy stress tensor of the solid domain and σ f is the fluid stress tensor

in the case of an incompressible Newtonian fluid.

2.4 Fully Coupled Solver

The spatial and temporal discretization of the governing equations along with the

interface conditions are provided in Eken and Sahin [35, 36] in detail. In the present

FSI algorithm, the fluid domain is discretized using the side-centered unstructured
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finite volume method based on Arbitrary Lagrangian-Eulerian (ALE) formulation

[50], meanwhile the solid domain is discretized with the classical Galerkin finite

element formulation for the Saint Venant-Kirchhoff material in a Lagrangian frame.

The time integration method for the solid domain is based on the Newmark type

generalized−α method while the second-order backward difference (BDF2) is used

in the fluid domain. The compatible kinematic boundary condition [36] is applied at

the interface between the solid and fluid domains in order to satisfy the global discrete

geometric conservation law (DGCL) [37], which leads to the mass conservation of

the cytoplasmic fluid within the red cell at machine precision. The resulting system

of nonlinear algebraic equations can be given in the following block structure form

including the velocity, displacement and pressure unknowns: Auu Aud Aup
Adu Add Ad p
Apu 0 0

 un+1

∆dn+1

pn+1

=

 d1
d2
0

 (2.13)

In here, the first row of blocks corresponds to the fluid momentum equations

and the kinematic boundary conditions. The first column is due to the fluid

convection-diffusion and time derivation parts, the second column is due to the

ALE mesh motion and the last column is due to the pressure gradient. The second

row represents the fluid mesh deformation equations, the solid momentum equations

and the FSI dynamic boundary conditions. The last row is due to the fluid mass

conservation. However, it is rather difficult to construct robust preconditioners due to

the presence of the zero-block diagonal resulting from the divergence-free constraint.

For the first preconditioner, an upper triangular right preconditioner matrix, which

results in a scaled discrete Laplacian instead of a zero block in the original system,

is used. Then, the modified system becomes: Auu Aud Aup
Adu Add Ad p
Apu 0 0

 I 0 Aup
0 ∆t 0
0 0 I

 qn+1

rn+1

pn+1

=

 Auu ∆tAud Auu Aup +Aup
Adu ∆tAdd Adu Aup +Ad p
Apu 0 Apu Aup

 qn+1

rn+1

pn+1

=

 d1
d2
0

 (2.14)

where qn+1 = un+1 − Aup pn+1 and rn+1 = ∆dn+1/∆t. The second term rn+1

corresponds to the nodal velocity vector for the mesh motion and it is comparable

(same order) with the fluid velocity. The multiplication with ∆t helps to reduce
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large non-zero entries in the off-diagonal block Aud due to the 1/∆t term resulting

from the mesh motion for a better preconditioning. Then, a one-level restricted

additive Schwarz preconditioner with a block-incomplete factorization within each

partitioned sub-domain is utilized. The implementation of the preconditioned Krylov

subspace algorithm, matrix-matrix multiplication, and the restricted additive Schwarz

preconditioner are carried out using the PETSc [41] software package developed

at the Argonne National Laboratories. The second preconditioner is based on a

block factorization. In the literature, the block parallel preconditioners for the

coupled linearized FSI system have been extensively studied. Heil [51] proposed

a block factorization based on neglecting the fluid-solid or solid-fluid interaction

blocks. Deparis et al. [52] used a similar preconditioner based on dropping the

block associated with the transpose of the kinematic coupling condition. In these

approaches, the two-way coupling between the fluid and solid domains is ignored at the

preconditioning level. This is improved in the block preconditioner proposed by Langer

and Yang [53] based on the complete LDU factorization of the coupled system matrix,

where L, D and U matrices are approximated using the sub-block matrices. The present

approach is motivated by the relatively simple LDU factorization of the projection

method [39] assuming that the time step is small and the viscous (not pressure) forces

can be neglected. Then, the preconditioner matrix P1 can be approximated as

P1 =

 I Aud Aup
0 I Ad p

Apu 0 0

=

 I 0 0
0 I 0

Apu −ApuAud I

 I 0 0
0 I 0
0 0 Spp

 I Aud Aup
0 I Ad p
0 0 I

(2.15)

where Spp = −ApuAup +ApuAudAd p. The exact inverse of the first and third matrices

can be easily computed since the matrices are triangular. Then P−1
1 can be computed

as

P−1
1 =

 I −Aud AudAd p−Aup
0 I −Ad p
0 0 I

 I 0 0
0 I 0
0 0 S−1

pp

 I 0 0
0 I 0
−Apu ApuAud 1

 (2.16)

For the second matrix, the matrix inverse S−1
pp is approximated by employing two

steps of the parallel algebraic multigrid solver BoomerAMG provided by the HYPRE

library [40], which we access through the PETSc library [41]. The coarsening scheme

is set to the Parallel Modified Independent Set (PMIS) algorithm [54] within the

BoomerAMG library in order to reduce the complexity. The implementation of the

preconditioning operation is carried out by using the PCSHELL option provided
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within the PETSc library. Then the right preconditioned system of algebraic equation

is solved using the Flexible Generalized Conjugate Residual Method-FGMRES(m)

proposed by Saad [38], since it allows the variations within the preconditioner between

iterations. In here, ApuAudAd p term of the Spp matrix should not be neglected, since the

eigenvalue analysis of the ApuAup matrix indicates that one of its eigenvalues is zero

(the number is actually equal to the number of RBCs) due to the decoupling of the

pressure fields between the inner cytoplasmic fluid and the exterior plasma fluid. The

present second preconditioner can be further improved by employing the following

block factorization.

P−1
2 =

 I Aud Aup
0 I Sd p

Apu 0 0

−1 I 0 0
0 Sdd 0
0 0 I

−1 I 0 0
Adu I 0
0 0 I

−1

=

 I Aud Aup
Adu Add Ad p
Apu 0 0

−1

(2.17)

where Sd p = A−1
dd Ad p and Sdd = Add −AduAud . In here, the Sd p term is approximated

as Sd p = diag(Add)
−1Ad p, where diag(Add) represents the diagonal entries of the Add

matrix. The above first matrix is factorized using the same approach in the equation

2.15 and it is approximated by employing one step of the parallel algebraic multigrid

solver BoomerAMG. The PCFIELDSPLIT preconditioner within the PETSc library

is used for the second matrix to implement the block preconditioner for the Sdd

matrix corresponding the each components of the displacement vector and the parallel

algebraic multigrid solver BoomerAMG is also used for the each diagonal blocks.

The eigenspectrum analysis of the Sdd indicates that the −AduAud term should not be

neglected since the Add matrix for the solid equations with zero Dirichlet boundary

condition leads to a singular system (six zero eigenvalues in three-dimensions for

a single RBC) in the case of a zero solid density due to the rigid body modes

corresponding to translations and rotations [55]. Although the solid density is not

zero and the mass matrix shifts these zero eigenvalues, their values are still relatively

small. The −AduAud term improves these eigenvalues and the zero solid density can

also be used. Therefore, the present block preconditioners are carefully constructed

for the blocks corresponding to both the nodal displacement vector and the pressure

not to lead to a singular system, which may cause convergence issues. Although the

BoomerAMG solver with the near null spaces corresponding to the translational and

rotational rigid modes can be directly used for the solid displacement equations [55],

it is not as effective as the above block preconditioning. In the current paper, we

employ the second preconditioner for the three-dimensional simulations, since the first
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preconditioner with ILU(0) and ILU(1) fails to converge for large aspect ratio domains.

The calculations also indicate that the convergence rate of the second preconditioner

is not significantly affected by the computational domain aspect ratio, such as RBCs

in long capillaries. For the both preconditioned iterative methods, the block matrices

and the right hand side corresponding to the momentum and displacement equations

are scaled using the matrix diagonal entries, meanwhile the absolute row sum value is

used for the continuity equation. The computational domain is decomposed into a set

of partitions using the METIS library [56].
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3. DESCRIPTION OF THE PROBLEM

In this section, geometry and physical parameter of red blood cell is described. In

addition, the physical boundary conditions are given in this section.

3.1 Red Blood Cell Geometry

The geometry of the red blood cell is provided in Figure 3.1 and the outer surface of

the red blood cell is defined as [57, 58]

T (r) =±
√

1− (r/R0)2
[
C0 +C1(r/R0)

2 +C2(r/R0)
4] (3.1)

where T (r) is the thickness of RBC in the x−direction as a function of the distance

r =
√

y2 + z2, and R0 is the initial radius of RBC. We assume that R0 = 3.9µm,

C0 = 0.81µm, C1 = 7.83µm and C2 = −4.39µm. The minimum thickness is T1 =

0.81µm and the maximum thickness is T2 = 2.4µm. The diameter of the red blood

cell is D = 7.8µm. The red cell membrane spans approximately 40–50 nm in thickness

[59, 60] and the present inner surface of the red blood cell is created with an inward

Figure 3.1 : Geometry of red blood cell.
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thickness of h = 0.05µm (50nm). The physical parameters of the red blood cell and

fluid plasma are tabulated in Table 3.1. The experimental value of the Young’s modulus

for the whole membrane is approximately 4.4kPa (4.4pg/µs2µm) for a healthy red

blood cell [6]. However, the membrane is composed of several layers and the stiffness

of the membrane is mainly dominated by the elasticity of the outer lipid bilayer, which

has a 5nm thickness [6]. However, numerically it is not possible to reach an adequate

mesh resolution to resolve the lipid bilayer due to the bad condition number of solid

shell elements with high aspect ratio in three-dimensions [34]. The theory of plates

and shells indicates that the flexural/bending rigidity (Eh3/12(1−ν2)) is proportional

to the cubic power of the wall thickness, meanwhile the extensional rigidity (Eh) is

proportional to the first power of the wall thickness [61]. When the wall thickness h

is relatively very small, the extensional rigidity dominates the behavior of a thin shell.

The flexural rigidity is only important where there are sharp changes in curvature.

Therefore, the present Young’s modulus is reduced by a factor of 10 in order to

compensate the current membrane thickness of 50nm. This approximation leads to the

overall shear modulus value of µsh = 7.586× 10−6N/m, which is relatively close to

the experimental upper value 6×10−6N/m in Yoon et al. [60] as well as the numerical

value of 4.2×10−6N/m in both Pozrikidis [13] and Zhao et al. [4]. The present 50nm

membrane thickness is also comparable with the work of Klöppel and Wall [31], where

the red blood cell membrane is modelled as 40nm inner layer and 20nm outer lipid

bilayer for a realistic mechanical behavior of human erythrocytes.

3.2 Boundary Conditions

The physical problem with the boundary conditions is illustrated in Figure 3.2 for a

single red blood cell in a capillary. The fluid boundary conditions are set to the no-slip

Table 3.1 : Physical parameters for red blood cell and fluid plasma (pg : picogram).

Density, ρ f [pg/µm3] 1.025
Fluid Dynamic viscosity, µ f [pg/µmµs] 1.1

Maximum inflow velocity, Umax [µm/µs] 0.001
Density, ρs [pg/µm3] 1.098

Structure Poison ratio, νs − 0.45
Elasticity module, E [pg/µmµs2] 4.4
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∂v
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[
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]
v = 0
w = 0

dx = 0
dy = 0
dz = 0

dx = 0
dy = 0
dz = 0 u = v = w = 0

∂dx
∂n = dy = dz = 0

Figure 3.2 : Physical boundary conditions for a single red blood cell in a capillary
tube.

boundary condition on the solid walls, the Dirichlet (paraboloid profile) velocity at the

inlet, and the natural (traction-free) boundary condition at the outlet. Meanwhile, the

displacement boundary conditions on the inlet and outlet are fixed to the zero Dirichlet

condition. The displacement boundary conditions on the capillary wall are set to the

homogeneous Neumann condition for the x−direction and the zero Dirichlet condition

for the remaining y− and z−directions. The Neumann boundary condition ensures that

the vertices on the capillary wall slide in the x−direction as the solid red blood cell

membrane moves with the plasma flow. The mesh deformation algorithm within the

fluid domain is based on the solution of the linear elasticity equations with modified

coefficients [62]. The above kinematic and dynamic interface conditions are imposed at

the fluid-solid interface corresponding to the inner and outer surfaces of the red blood

cell membrane. It should be noted that there is no Dirichlet boundary condition for the

solid red cell membrane and it is free to move and rotate due to the applied fluid forces

on the interface. The present numerical calculations are started impulsively from the

rest and solved in a time-accurate manner by marching in time with a fixed time step.
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4. TWO-DIMENSIONAL NUMERICAL RESULTS

The first numerical simulations correspond to the two-dimensional simulation of a

single red blood cells in a capillary. The height of the capillary channel is set to

15.6µm which is equal to two times of diameter of red blood cell. Single red blood

cell in a channel with height of 15.6µm can be considered as benchmark case for this

work. Spatial and temporal convergence are worked on this case. In addition, effect of

different membrane thickness is also worked in a channel with height of 15.6µm.

The calculations are carried out on three different meshes: coarse mesh M1, medium

mesh M2 and fine mesh M3. The successive meshes are generated with DISTENE

MeshGems-Hexa algorithm in three-dimensions based on the octree method by halving

mesh size function. The initial meshes are created for a zero red cell membrane

thickness. Then the radial basis function (RBF) based mesh deformation algorithm [50]

is used to create the three-dimensional solid hexahedral elements with several layers by

moving the vertices on the red cell membrane surface inwards with the distance equal

to the solid membrane thickness. These conformal unstructured all-hexahedral meshes

are used both two- and three-dimensional calculations. However, the slices on the z= 0

plane are extracted for the two-dimensional simulations as shown in Figure 4.1. The

number of solid layers indicates the number of quadrilateral elements in the normal

direction for the solid membrane. There are 4, 8 and 16 layers of solid quadrilateral

elements on meshes M1 to M3, respectively, for the red blood cell membrane. The

maximum aspect ratio of solid elements is set to 20. ∆hmin and ∆hmax represents the

minimum and maximum mash sizes, respectively. Coarse mesh M1 has 4,088 nodes

and 3,923 elements, medium mesh M2 has 13,920 nodes and 13,611 elements and fine

mesh M3 has 51,752 nodes and 51,139 elements for a channel with height of 15.6µm.

The details of the two-dimensional meshes are provided in Table 4.1.

The physical boundary conditions are set to no-slip boundary conditions on the

solid walls, the Dirichlet (parabolic profile) velocity at the inlet and the natural

(traction-free) boundary condition at the outlet. The maximum inlet velocity Umax
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is set to 0.001µm/µs. The capillary channel spans between ±70µm where the

initial undeformed red cell is located at the origin. The calculations are started from

the rest and the time step is set to 100µs. The non-dimensional Reynolds number

(Re = ρ fUmaxD/µ f ) is computed to be 0.007268 based on the plasma density ρ f , the

maximum inlet velocity Umax, the red cell diameter D and the plasma dynamic viscosity

µ f . The non-dimensional capillary number (Ca = µ fUmax/µsh) is obtained to be 0.145

based on the shear modulus µs, the maximum inlet velocity Umax, the fluid dynamic

viscosity µ f and the membrane thickness h. Although the internal (cytoplasmic) fluid

is assumed to be the same as the exterior suspending fluid (plasma), it does not effect

the final red blood cell shape since the final cytoplasmic fluid has a constant velocity.

However, this difference is important for white blood cells due to high viscosity

difference [8]. For the solid membrane, Young’s modulus is taken to be 4.4 kPa or

4.4 pg/µs2µm for a healthy red blood cell from previous experiments [6]. Although

the membrane of RBC composed of several layer, the stiffness of RBC membranes

is mainly dominated by the elasticity of the lipid bilayer which has approximately 5

nm thickness [6]. However, it is not possible reach this mesh resolution due to the

resulting bad conditioned system for high aspect ratio solid elements. Therefore, the

present Young’s modulus is reduced by a factor of 10 in order to compensate the

present membrane thickness of 50nm for the same membrane shear modulus value

µh as well as the same Ca number.

4.1 Convergence Studies

The initial numerical calculations are used to establish the spatial and temporal

convergence of the present numerical method. For this purpose, the single red cell

simulations are carried on meshes M1−M3 with a time step of 100µs and the final

red cell deformations at t = 60ms are compared with each other in Figure 4.2-[a].

Table 4.1 : Computational meshes used for simulation of red blood cell for a channel
height of 15.6µm.

Solid Node Element
Mesh layers ∆hmin ∆hmax number number DOF
M1 4 0.25 1 4,088 3,923 26,319
M2 8 0.125 0.5 13,920 13,611 89,215
M3 16 0.0625 0.25 51,752 51,139 330,471
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[a] [b] [c]

Figure 4.1 : Computational two-dimensional coarse mesh M1 [a], medium mesh M2
[b] and fine mesh M3 [c] for a single red blood cell in a channel with a

height of 15.6µm.

[a] [b]

Figure 4.2 : Spatial convergence with ∆t = 100µs [a] and temporal convergence on
mesh M2 [b] for a single red blood cell in a channel with a height of

15.6µm at t = 60ms.

The numerical results indicate that the results on meshes M2 and M3 are very similar

to each other. Although the red cell shape on M1 is also very similar to others, it

moves slightly slower. The reason is that we impose the analytic value of the velocity

magnitude at the edge/face vertices at the inlet, which leads to a slightly lower average

velocity throughout the capillary channel, since the mesh is relatively coarse at the

inlet. The temporal convergence of numerical results is also investigated on mesh M2

at t = 60ms by using ∆t = 50µs and ∆t = 100µs as shown in Figure 4.2-[b]. The

comparison of the numerical results indicates that the results are indistinguishable from

one another.

In addition to the spatial and temporal convergence studies, a convergence analysis is

also carried out by changing the red cell membrane thickness as shown in Figure 4.3.
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[a] [b]

Figure 4.3 : Effect of different membrane thickness h using same shear modulus µs
[a] and same membrane shear modulus µsh [b] to final red cell geometry
at t = 60ms in a channel with a height of 15.6µm at t = 60ms on mesh

M3.

As the red cell membrane thickness decreases for a constant shear modulus µs, the both

flexural rigidity and extensional rigidity decrease and the red cell deforms more as seen

in Figure 4.3-[a]. On the other hand, if the membrane thickness decreases for a constant

overall shear modulus µsh, the extensional rigidity stays constant while flexural rigidity

decreases with the decrease in the thickness of the red cell membrane. When the wall

thickness h is relatively very small, the extensional rigidity dominates the behavior of

a red cell and the convergence of the deformed red cell membrane geometry can be

seen in Figure 4.3-[b]. As it may be seen, the deformed geometries with the membrane

thickness of h = 50nm and h = 25nm at t = 60ms are almost identical.

4.2 Single Red Blood Cell in a Channel with Different Height

In order to demonstrate the importance of the fluid shear stress on the red cell

deformation, the capillary channel heights are further reduced to 11.7µm and then

10µm. The final deformed red cell geometries at t = 60ms are provided in Figure 4.4

along with the computed contours of the u−velocity component within the capillary

channel. The red cell deformation seems to be increased significantly with the decrease

in channel height due to the increase in the fluid shear stress. The time variation of

the red cell deformation and its movement are also provided in Figure 4.6 for the

same channel heights. The cytoplasmic fluid within the red cell moves with a constant

velocity when the steady state is reached and the velocity profile around the red cell is
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[a]

[b]

[c]
Figure 4.4 : Final positions/deformations at t = 60ms with computed u−velocity

component contours and velocity profiles at several different locations
for a single red cell in a channel with a height of 15.6µm [a], 11.7µm [b]

and 10µm [c] on mesh M3.

no longer parabolic, indicating a blunt velocity profile [20]. The blunt velocity profile

with a relatively high velocity close to the vessel wall increases the flow resistance in

the capillary due to the existence of the red blood cell.

Rigid and sickle cells have a larger constant velocity region in the blunt velocity profile

and the flow resistance is further increased. This effect is particularly important for the

[a] [b] [c]

Figure 4.5 : Velocity profiles at x = 40.0µm and the location corresponding to
maximum red cell diameter at t = 60ms in a channel with a height of

15.6µm [a], 11.7µm [b] and 10µm [c] on mesh M3.
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[a]

[b]

[c]
Figure 4.6 : Single red blood cell. Red blood cell positions/deformations at several

different time levels for a channel height of 15.6µm [a], 11.7µm [b] and
10µm [c] on mesh M3.

array of the red blood cells in a capillary, where the red cells cause an increase in

the shear rate on the capillary wall. The resistance becomes more severe for rather

narrow capillaries. This phenomenon introduces non-Newtonian effects in capillaries

even though the blood plasma itself is generally accepted as a Newtonian fluid. The

pressure field within the red cell is also constant at the steady state in addition to the

constant velocity value.

The red cell indicates a complex shape deformation in which the biconcave discoid

shape changes to a parachute-like shape, which is convex in the front and concave at the

rear. This deformation allows that the RBC successfully traverses through the capillary

with the diameter smaller than that of undeformed RBC in microcirculation. The red

cell deformations at several different time levels are superimposed on each other and

the comparison is shown in Figure 4.7-[a]. The deformation of the red blood cell from

the biconcave discoid shape to a parachute-like shape can be seen more clearly. In
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[a] [b]
Figure 4.7 : Comparison of red blood cell deformations at several different time

levels (∆t = 5ms) for a channel height of 15.6µm [a] and comparison of
final cell geometry with results for several different channel heights at

t = 60ms [b] on mesh M3.

addition, the red cell translational velocity is found out to be reduced with the decrease

in the channel height as seen in Figure 4.7-[b]. For the present cases, the solutions are

found out to be symmetric according to the horizontal symmetry line.

4.3 Multiple Red Blood Cells in a Channel with a Height of 15.6µm

Another important parameter for the hemorheology is the hematocrit ratio, which is

the volume percentage of the red blood cells. This parameter is also related to the red

cell spacing. The numerical calculations are carried out with five and nine red cells

in a capillary channel with a height of 15.6µm. The red cell spacing for the five cells

case is set to 15.6µm, meanwhile the spacing between the red cells is set to 7.8µm

for the nine cells case. The final red cell deformations and the computed u−velocity

component contours within the capillary are shown in Figure 4.8. For the present array

of the red cells, the blunt velocity profiles around the red cells become more apparent.

For the increase in the hematocrit ratio, the deformation and displacement of red blood

cells are observed to be less compared to those of the single red cell case. The distance

between the initial and final cells seems to be increased for the nine cells case compared

to that of the five cells case. This indicates a slight increase in the cell spacing with the

increase in the hematocrit ratio (a sort of diffusion effect).
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[a]

[b]

Figure 4.8 : Final positions/deformations at t = 60ms with computed u−velocity
component contours for 5 cells [a] and 9 cells [b] in a channel with a

height of 15.6µm on mesh M3.

Shi et al. [63] also observed the same behavior in three-dimensions for the leading and

trailing red cells and the authors contributed this behavior to short range hydrodynamic

interactions, which leads to a larger deformation for the leading red cell and hence a

higher translational velocity. The blunt velocity profile is more apparent not only on the

red cell itself but also in the region between the red cells. This effect increases the flow

resistance due to relatively high velocity close to the vessel wall. The wall vorticity

divided by the wall vorticity for the planar Poiseuille flow is shown in Figure 4.9-[a] for

the five and nine cell cases. As noted in Xiong and Zhang [64], the variation in the wall

vorticity magnitude decreases as the cell hematocrit ratio is increased. The mean value

of the wall vorticity is also increased as opposed to the work of Xiong and Zhang [64],

where the authors imposed a constant pressure difference rather than a constant inflow

velocity. Finally, the pressure values along the capillary channel symmetry line are also

provided for different hematocrit ratios and capillary channel heights in Figure 4.9-[b].

The present hematocrit ratios for the channel height of 15.6µm have a slight effect

on the pressure. There are several constant pressure regions for the cytoplasmic fluid,

which is in accord with the constant velocity observed within the cells. There are also

large constant pressure regions between the red cells in the case of nine cells. On the

other hand, the channel width has a significant effect on the pressure variation along

the symmetry line.
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[a]

[b]

Figure 4.9 : Comparison of wall vorticity divided by the wall vorticity of planar
Poiseuille flow for five and nine cells for a channel height of 15.6µm [a]
and comparison of fluid pressure along the capillary channel symmetry
line for different hematocrit ratios and capillary channel heights [b] at

t = 60ms on mesh M3.
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5. THREE-DIMENSIONAL NUMERICAL RESULTS

The numerical simulations have been also carried out in three-dimensions by varying

capillary tube diameter and red cell spacing. The diameter of the capillary tube is

initially set to 15.6µm. The three-dimensional successive meshes are generated with

DISTENE MeshGems-Hexa algorithm based on the octree method by halving the

mesh size function as mentioned before. The computational coarse mesh with 93,840

nodes and 88,331 hexahedral elements (1,064,685 DOF) is shown in Figure 5.1 in

three-dimensions and the details of the meshes are provided in Table 5.1. The physical

Table 5.1 : Computational meshes used for simulation of red blood cell for a channel
height of 15.6µm.

Solid Node Element
Mesh layers ∆hmin ∆hmax number number DOF
M1 4 0.25 1 93,840 88,331 1,064,685
M2 8 0.125 0.5 551,392 532,979 6,113,249
M3 16 0.0625 0.25 3,847,608 3,776,461 42,085,229

boundary conditions and the material properties are taken from the previous section.

The capillary tube spans between ±70µm, where the red cell is initially located

at the origin. The maximum velocity for the paraboloid inlet profile is again set

to 0.01µm/µs in order to be consistent with the two-dimensional simulations. The

Figure 5.1 : Partial view of computational three-dimensional coarse mesh M1 with
93,840 nodes and 88,331 hexahedral elements for a single red blood cell

in a capillary tube with a diameter of 15.6µm.
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[a]

[b]

[c]
Figure 5.2 : Red blood cell positions/deformations with computed u−velocity

component contours at z = 0 plane at t = 60ms for a capillary tube
diameter of 15.6µm [a], 11.7µm [b] and 10µm [c] on mesh M1.

calculations are started from the rest and the time step is set to 100µs. The capillary

tube diameters are further reduced to 11.7µm and then 10µm in order to see the effect

of the increased fluid shear stress on the red cell deformation in three-dimensions.

The computed contours of u−velocity component on z = 0 plane and the velocity

profile around the red cell are provided in Figure 5.2 at t = 60ms for different capillary

tube diameters. As the tube diameter decreases, the red cell deforms more due to

[a] [b] [c]

Figure 5.3 : Velocity profiles at x = 30.0µm and the location corresponding to
maximum red cell diameter at t = 60ms in a channel with a height of

15.6µm [a], 11.7µm [b] and 10µm [c] on mesh M1.
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[a]

[b]

[c]
Figure 5.4 : Red blood cell positions/deformations at several different time levels for

a single red blood cell in a capillary tube with a diameter of 15.6µm [a],
11.7µm [b] and 10µm [c] on mesh M1.

the increased fluid shear stress. Velocity profile at x = 30.0µm and the location

corresponding to maximum red cell diameter at t = 60ms in a channel with height

of 15.6µm [a], 11.7µm [b] and 10µm [c] are shown in Figure 5.3. The graphics proves

that the red cells move with a constant velocity at the steady state condition. In case of

three dimensions, the blunt velocity profile around the red cell is also more apparent. In

addition, the red cell translational velocity is also found out to be significantly reduced

with the decrease in the tube diameter as seen in the graphics. The time variations

of the red cell deformation and its movement at several different time levels are

provided in Figure 5.4 on z = 0 plane. The three-dimensional views of the same time

levels are also provided in Figure 5.5. The numerical simulations indicate a complex

shape deformation in which the biconcave discoid shape changes to a parachute-like

shape as in two-dimensions. Surprisingly, as the capillary tube diameter is reduced

to 11.7µm and 10µm, the red cell undergoes a cupcake shaped buckling instability
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[a]

[b]

[c]
Figure 5.5 : Red blood cell positions/deformations at several different time levels for

a single red blood cell in a capillary tube with a diameter of 15.6µm [a],
11.7µm [b] and 10µm [c] on mesh M1.

in three-dimensions due to the compressive elastic tension forces along the red cell

membrane surface and the resulting red cell geometry is no longer axisymmetric but

three-dimensional.

To the best of our knowledge, the present cupcake shaped buckling instability in small

capillary tubes has not been noticed in three-dimensional simulations in the literature

(see, for example, [4, 5]). One possibility may be the lack of sufficient initial random

disturbances, which leads to a buckling instability due to the amplification of these

random disturbances. This is particularly important for spectral type approaches as

in Zhao et al. [4]. The second possibility is that Skalak et al. [42] law applied to the

spherical capsule buckling produces a wider stability interval than the neo-Hooken law

due to its strain hardening nature [48]. The present Saint Venant-Kirchhoff constitutive

law does not show strain hardening property in the case of the compression of a body to

zero volume, where the stress approaches zero instead of infinity. The main reason for

such behavior is the lack of rank-one convexity [65] which implies non-polyconvexity
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and the physically incorrect behavior of the stored energy function. Therefore, the

existence of the underlying boundary value problem is not guaranteed at large strains

[66]. However, the Saint Venant-Kirchhoff model can be applied successfully in the

small strain-large displacement regime (such as beams and shells) which is in accord

with the three-dimensional solid shell elements used for the RBC membrane. The third

possibility is that the present bending stiffness value is relatively lower compared

to the values used in the classical membrane models. Another possibility is that the

wavenumber in the azimuthal direction may increase significantly with the decrease in

the membrane thickness and the required mesh resolution may be underestimated in

this direction. This high wavenumber could be seen in the experiment work of Hu et

al. [44] for a spherical fluid-filled capsule undergoing a buckling instability as it passes

through a circular tube with a diameter less than that of the capsule. In the literature, the

buckling behavior of red cells has been observed only in the case of a red cell passing

through a very narrow neck [4] and a red cell in simple shear flow [23] as well as at

the cell-cell interface for the aggregation of red blood cells [43]. The similar formation

of the rib-like buckling features are observed experimentally in Figure 6-D of Lee and

Fung [67], where the authors modelled the deformation of a red blood cell in a capillary

vessel by using flexible thin-walled rubber models suspended in a circular tube filled

with a silicone fluid. The rubber models were also fluid-filled and geometrically similar

to human red blood cell. Furthermore, the present cupcake shaped buckling instability

is quite similar to the buckling of a half spherical shell subjected to an external pressure

as seen in Lai and Liu [68].

The red cell deformations at several different time levels are superimposed on each

other for a tube diameter of 15.6µm and the comparison is shown in Figure 5.6-[a]. The

deformation of the red blood cell from the biconcave discoid shape to a parachute-like

shape can be seen more clearly. The transition to parachute shape decreases the

flow resistance. However, no buckling instability is observed for the tube diameter

of 15.6µm. The change in the red cell deformation is increased with the decrease

in the capillary tube diameter. The red cell translational velocity is also found out

to be significantly reduced with the decrease in the tube diameter as seen in Figure

5.6-[b]. In addition, as the tube diameter is decreased, the red cell membrane deforms

more. However, this deformation is less compared to the decrease in the tube diameter.
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Therefore, the red cell location corresponds to the slower moving plasma, which leads

to a lower velocity even though the average velocity is same within the capillary

tube in all cases. The three-dimensional numerical results also indicate that there is a

significant decrease in the red cell deformation as seen in Figure 5.7 compared to that

of the two-dimensional simulation. The significant decrease in the red cell deformation

in three-dimensions is attributed to the three-dimensional red cell geometry, which

can support larger structural loads. The smaller deformation in three-dimensions leads

to a lower translational velocity for the red cell due to its position corresponding to

the slower moving part of the plasma within the capillary tube, which leads to a

larger constant velocity region in the blunt velocity profile. In addition, the average

velocity within the capillary tube is 0.5Umax in three-dimensions rather than 0.6̄Umax

in two-dimensions. The average red cell membrane velocities are computed to be

0.00093µm/µs in two-dimensions and 0.00084µm/µs in three dimensions at t =

60ms for a channel height/capillary tube diameter of 15.6µm. These velocity values

are significantly higher than the average plasma velocities, which are in accord with

the experimental observation of Fåhraeus [15]. In the literature, Fåhraeus also observed

that the red blood cells tend to accumulate at the higher velocity region of the flow field

in a microvessel and their transit time through a tube is shorter on average than that of

[a] [b]

Figure 5.6 : Time-variation of red blood cell deformations at z = 0 plane at several
different time levels (∆t = 10ms) [a], comparison of final cell geometry

at t = 60ms for several different tube diameters [b] on mesh M1.
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Figure 5.7 : Comparison of deformations in two- and three-dimensions at t = 60ms
for a channel height/tube diameter of 15.6µm [c] on mesh M1.

the plasma leading to a lower hematocrit ratio within the capillary tube compared to

the hematocrit of the fluid exiting the tube, which is known as the Fåhraeus effect [15].

The minimum thickness of the red cell T1 is also significantly increased in

three-dimensions for the tube diameter of 10µm. In order to demonstrate the exact

mass conservation property of the present FSI algorithm, the initial discrete volume of

the cytoplasmic fluid is computed on mesh M1 for a capillary tube diameter of 10µm

and its value is 85.256393560716617µm3. The final discrete volume at t = 60ms is

calculated to be 85.256393560834127µm3. Therefore, the exact mass conservation can

be achieved at machine precision (11 digits) keeping in mind that the solver tolerance

to proceed to next time step is set to 1×10−10. The spatial convergence of the cupcake

shaped membrane buckling instability is provided in Figure 5.8 for a capillary tube

diameter of 10µm on meshes M1 to M3. The buckling instability forms thin rib-like

features and the deformation is not axisymmetric but three-dimensional. The number of

thin rib-like features is 12 on mesh M1 and these structures are uniformly distributed in

the azimuthal direction. The number of these structures is increased to 14 on mesh M2

and the structures show slight uneven distribution in the azimuthal direction probably

depending on the initial disturbances. The number of the thin rib-like features is further

increased to 17 on mesh M3 indicating relatively high wavenumber similar to that of

the spherical fluid-filled capsules in Hu et al. [44].
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In this case, there are 47,342 quadrilateral elements on the red cell membrane

outer/inner surface in order to resolve the wavenumber of the buckling instability,

which leads to a relatively large FSI simulation with 29,090,781 DOF. The spherical

fluid-filled capsule deformed in axisymmetric elongational flow also indicates the

similar buckling instability [48]. However, the buckling on the red cell membrane

leads to relatively more complex instability due to its initial biconcave discoid shape

compared to that of the oblate spheroidal capsule [23]. The experimental work of Risso

et al. [45] indicates that the spherical capsules in a circular tube with the blockage

ratios and the capillary numbers close to the present values leads to a relatively

simple buckling, where the trailing end buckles inward with the leading pole moving

away from the centre. Actually, this simple behavior is more similar to the outward

buckling of the red cell membrane leading part rather than the formation of the rib-like

features. The present wavenumber of the buckling instability is even higher during

the initial formation of the buckling with more uniform distribution and the rib-like

features tend to merge with the increased deformation, forming larger structures as

seen in Figure 5.9. Therefore, the post-buckling behavior of the red cell membrane

is highly unstable and non-linear, which is in accord with the observations related to

the spherical capsules [44]. The buckling instability is observed to happen where the

membrane is subjected to the compressive stress as seen from the pressure contours

in Figure 5.10. The wall shear stress vectors and their streamtraces are also provided

[a] [b]

Figure 5.10 : Front [a] and back [b] views of wall shear stress vectors and their
streamtraces along with pressure contours for a capillary tube diameter

of 10.0µm at t = 60ms on mesh M1.
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in the same figure and the streamtraces indicate separation lines at the front and the

back of the red cell. These separation lines can be easily seen if the streamlines are

drawn with respect to the red cell held stationary while the tube moves to the left.

The initial orientation of the red blood cell is also an important factor, which defines

the final deformed shape [27]. The effect of the initial red cell orientation to the final

deformation is investigated when the symmetry axis of the red cell lies parallel to

the flow direction as shown in Figure 5.11. The calculation indicates a completely

different red cell deformation, which is in accord with the Figure 14 of Hashemi and

Rahnama [27]. For the present red cell orientation, the red cell moves faster, since its

location corresponds to the higher velocity region of the plasma within the capillary

tube.

The three dimensional simulations are also carried out for five and nine cells in order

to investigate the effect of the cell spacing (hematocrit) in three-dimensions as well as

the cell-cell interactions. The red cell spacing for the five cells case is set to 15.6µm,

meanwhile the spacing between the red cells is set to 7.8µm for nine cells case.

The computational mesh for the nine cell case leads to 557,080 nodes and 543,495

hexahedral elements leading to 6,185,417 DOF. The computed red cell deformations

at t = 60ms are shown in Figure 5.12 for a capillary tube diameter of 15.6µm. The red

cells move with a constant velocity at the steady state and the blunt velocity profile

is more profound for the array of the red cells, which introduces an increase in the

apparent viscosity compared that of the plasma, causing non-Newtonian effects in

capillaries. The blunt velocity region is larger compared to that of the two dimensional

case, since the red cells deform less in three-dimensions. The deformation of the

leading red cell is observed to be larger compared to the other cells and its velocity

[a]
Figure 5.11 : Effect of initial orientation on red cell positions/deformations at several

different time levels for a single red blood cell in a capillary tube with a
diameter of 10µm [c] on mesh M1.
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[a]

[b]
Figure 5.12 : Effects of hematocrit density using five red cells [a] and nine red cells

[b] on u−velocity on z = 0 plane and deformations for a capillary tube
diameter of 15.6µm at t = 60ms on mesh M1.

is slightly higher. The single red cell in a capillary moves slightly faster compared to

the nine-cells.

It is rather difficult to validate the present results due to the fact that the numerical

results in the literature are obtained using different membrane constitutive laws (e.g.,

[42]), where the membrane thickness is zero. Nevertheless, the numerical validation

case used in Pozrikidis [13], Zhao et al. [4] and Shi et al. [5] has been carried out for a

periodic array of red cells in a narrow capillary tube. For this benchmark problem,

the capillary tube diameter is set to 9.024µm and the distance L between the red

cells is equal to 5.64µm. The mean inlet velocity is taken to be 0.3525mm/s, the

membrane overall shear modulus µsh is 4.2× 10−6N/m and the plasma dynamic

viscosity is 1.2× 10−3kg/ms. The membrane thickness is set to 50nm as before. The

convective and time derivative parts of the incompressible Navier-Stokes equation are

neglected in order to be consistent with the Stokes solution of Zhao et al. [4]. The

capillary number based on the mean inlet velocity is computed to be 0.1007. The

periodic boundary conditions between the inlet and outlet are imposed for the velocity

vector u(x,y,z)= u(x+L,y,z), the displacement vector d(x,y,z)= d(x+L,y,z) and the

pressure p(x,y,z) = p(x+L,y,z)+∆p, where the pressure jump value ∆p is computed

implicitly from the imposed average mass flow rate [69].
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[a] [b]
Figure 5.13 : Comparison of three-dimensional red cell membrane geometry

corresponding to maximum indentation [a] and protrusion [b] with the
results of Zhao et al. [4] and Shi et al. [5] for a capillary tube diameter

of 9.024µm at t = 60ms.

The initial mesh M1 generated with DISTENE MeshGems-Hexa algorithm consists of

50,880 nodes and 47,615 elements. The numerical simulation for the present capillary

tube diameter leads to the membrane buckling instability and the comparisons of the

computed red cell geometry corresponding to the maximum indentation and protrusion

at t = 60ms are provided in Figure 5.13. The overall red cell deformation is similar

to the results of Zhao et al. [4] and Shi et al. [5]. The deformation index, which

is defined as the maximum red cell length divided by its maximum diameter [5], is

calculated to be 0.645. Although the present deformation index is slightly lower due to

the protrusion region on the membrane surface as seen in Figure 5.13-[b], the average

deformation is increased due the membrane buckling, which leads to an increase in the

red cell thickness T1. The deformed red cell membrane is also observed to be slightly

thinner in the front (44nm) and thicker in the back (49nm), which is not considered

in the classical membrane models. The deformation index for a single red cell in a

long capillary tube (140µm) with the same diameter is computed to be 0.717, which

is relatively in a better agreement with the experimental results of Tsukada et al. [70].

In the present numerical simulations, we have noted that the buckling instability is

delayed significantly on partially axisymmetric meshes. A new partially axisymmetric

mesh M1 with 67,361 nodes and 64,640 elements is created by using CUBIT mesh

generation environment [71] and the solid mesh vertices corresponding to the buckling

region are computed by uniformly sweeping the grid points in the azimuthal direction.
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[a] [b]
Figure 5.14 : Effect of computational mesh to development of buckling for a

capillary tube diameter of 9.024µm at t = 40ms: Initial unstructured
mesh M1 [a] and partially axisymmetric mesh M1 [b].

The developments of the three-dimensional red cell membrane buckling instabilities

on both computational meshes are provided in Figure 5.14 at t = 40ms. The buckling

instability on the partially axisymmetric mesh M1 is not apparent at t = 40ms and

it takes relatively longer to reach the final buckled shape. The larger deformation on

the initial unstructured mesh M1 leads to a lower flow resistance and a slghtly higher

red cell translational velocity. However, we can not create a fully axisymmetric mesh,

since it requires to use prismatic elements corresponding to the polar singularity along

the x−axis, which is not supported with the current algorithm. Therefore, the lack of

sufficient small random initial disturbances or the lack of the numerical simulation time

may be the reason why the early numerical results did not observe the present buckling

instability. Nevertheless, this still should be confirmed by using other constitutive

laws in three-dimensions. In the present simulations, the red cell membrane thickness

is also increased to 100nm, which is the maximum red cell blood cell membrane

thickness [29], in order to increase the membrane bending stiffness (8 times) while

keeping the membrane shear modules µs the same. Although this also doubles the

membrane overall shear modulus, the simulation shows that the red cell membrane

buckling still persists.
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6. CONCLUSION

The parallel fully coupled (monolithic) fluid-structure interaction approach [35,36] has

been applied to investigate the deformation of red blood cells in capillaries, where cell

deformability has significant effects on blood rheology. The present numerical method

in fluid domain is based on Arbitrary Lagrangian-Eulerian (ALE) formulation with

the stable arrangement of primitive variables [50], meanwhile the classical Galerkin

finite element formulation in a Lagrangian frame is used in the solid domain. The

numerical method employs conformal hexahedral elements at the fluid-solid interface

in order to accurately resolve the sharp gradients at the interface. In addition, the local

and global geometric conservation laws (DGCL) [37] are satisfied at discrete level

and the compatible kinematic boundary condition [36] is enforced at the interface

between the solid and fluid domains in order to conserve the mass of the cytoplasmic

fluid within the red cell at machine precision. Furthermore, the new projection type

approximate block preconditioner is proposed and the parallel algebraic multigrid

solver BoomerAMG is used for the scaled discrete Laplacian provided by the HYPRE

library [40] which we access through the PETSc library [41]. Three important physical

parameters for the blood flow are simulated and analyzed: (i) the effect of capillary

diameter, (ii) the effect of red cell membrane thickness and (iii) the effect of red

cell spacing (hematocrit). The capillary diameter is found out to be particularly

important for the flow pressure gradient as well as the deformation of red blood cells.

The results also show that the cell deformation decreases with increasing hematocrit

density, which is also shown to play a significant role for velocity field. In the

present simulations, the three dimensional red cell membrane, which is at the order

of 40−50nm [59], is modelled using the three-dimensional solid shell elements rather

than the two-dimensional membrane elements with zero thickness and the numerical

simulations indicate significant thinning of the red cell membrane in the leading/front

part for large shear values, which is ignored in the classical membrane models. The

thickness effects are particulary important to model bending moments and transverse

shear forces in order to predict the post-buckling behavior [44]. The calculations also

45



show a complex shape deformation in which the biconcave discoid shape changes

to a parachute-like shape which is in accord with the early results in the literature.

In addition, the red cells in small capillaries undergo a cupcake shaped buckling

instability forming thin rib-like features in three-dimensions due to the compressive

elastic tension forces along the membrane surface and the resulting red cell geometry

is no longer axisymmetric but three-dimensional. The wavenumber of the instability

in the azimuthal direction is also relatively high and it is computationally challenging

to resolve. To our best knowledge, the cupcake shaped buckling instability in small

capillaries has not been noted in the literature. The present buckling mechanism may

further ramifications to reduce the flow resistance in the microcirculation and alter

the oxygenation of surrounding tissues in small capillaries due to its larger surface

area next to the endothelium. Although we employ the simplest type of hyperelastic

material model, the present numerical simulations revealed the most of the properties

encountered in blood flows in a microcirculation. In the future, we will consider more

realistic solid red cell membrane models as in the work of Klöppel and Wall [31].

In addition, the numerical algorithm requires local remeshing capability in the fluid

domain for more complex deformations and cell-cell interactions.
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