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ESSAYS ON ELECTRICITY PRICE MODELING AND FORECASTING 

SUMMARY 

Electricity markets have been privatized since the beginning of 2000s. Due to this 

liberalization, electricity price forecasting has become an essential task for all the 

participants of the electricity markets. Especially day-ahead electricity price forecasts 

are used for many purposes. For example, generation companies can optimize their 

production schedule according to these electricity price forecasts and decrease the loss 

of profits caused by the inaccurate electricity price forecasts. Turkish electricity market 

is not exempt from this change all over the world. As an emerging market, Turkish 

day-ahead electricity market needs to be investigated. 

 

This thesis consists of three essays on electricity price modeling and forecasting. First 

one suggests the usage of factorial ANOVA as a pre-treatment to the Turkish 

electricity price series before applying the forecast methods. Furthermore, it compares 

the statistical time series methods by using the lagged price series. Even though best 

performing methods vary from period to period, SARIMA is chosen as the best method 

among the statistical models, which include Markov regime-switching, SETAR, 

AR(24) and naïve method. In the second article, electricity prices are forecasted by 

various models. In addition to the lagged prices; temperature, forecast demand/supply, 

24th lag of realized demand/supply and the 24th lag of the balancing market prices are 

utilized as the exogenous variables. The main contribution of this paper is that the 

success of the electricity price forecasts increase a lot by using the deep recurrent 

neural networks. This is the first work, which involves recurrent neural networks as 

well as deep learning methods into the electricity price forecasting literature. Third 

paper, which evaluates the financial effect of the inaccurate electricity price forecasts 

on a hydro-based generation company, optimizes the production schedule according 

to nine electricity price forecasts and compare the results with the “best” ex-post actual 

prices case. According to these inaccurate forecasts, generation companies might face 

significant loss of profits. The main finding of this paper is that the best method 

according to the performance evaluation criteria is not necessarily the best method 

according to the financial effect measures. In our example, ANN-LSTM method, 

which is not the best method among the nine methods in terms of the forecast 

performance measures is the best method in terms of the financial effect criteria. 

Another important point to mention is that the hybrid methods, which combine the 

forecasts of various methods, perform best in most of the examined periods. 

 

It is the first study in the Turkish day-ahead electricity market, which looks at the 

electricity price forecasting from such a wide perspective. Moreover, it suggests using 

the factorial ANOVA method as a pre-treatment before forecasting the electricity 

prices. Furthermore, it proposes the deep recurrent neural networks as the best 

forecasting method compared to the shallow recurrent neural networks, artificial 

neural networks and the statistical time series methods. Lastly, it mentions the conflict 
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between the performance evaluation criteria and the financial effect measures. 

Generation companies must take this conflict into account, when they choose the 

forecast methods. 

 

As an ever improving research area, electricity price forecasting needs further research 

in many branches. Lasso or principal component analysis type dimension reduction 

techniques could help to choose the variables. Hybrid methods, both combination of 

the electricity price forecasts from various methods and the simultaneous use of 

different methods as hybrid models could increase the forecast performance. 

Furthermore, energy derivatives pricing will be an important research area in the near 

future, especially due to the development of the intraday markets. Last, but not least, 

all the electricity markets have unique characteristics due to their location, 

development level, renewables share etc. Therefore, applying the models discussed in 

this thesis on other markets at different time periods will give us more robust results. 
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ELEKTRİK FİYATLARININ MODELLENMESİ VE TAHMİNİ ÜZERİNE 

MAKALELER 

ÖZET 

Elektrik piyasaları 2000’lerin başından itibaren ciddi bir değişim içine girmiştir. Daha 

önce devletlere ait olan ve tekel halinde bulunan elektrik emtiası, özelleştirilmiş ve 

rekabete açık bir ortam oluşmuştur. Bu vesileyle, daha önce bu tekeller tarafından 

belirlenen elektrik fiyatları, serbest piyasada belirlenir hale gelmiştir. Türkiye’de 

elektrik piyasası 2000’li yıllarda özelleşmiş ve 2011 Aralık ayında kurulan Gün Öncesi 

Elektrik Piyasası ile elektrik fiyatlarının oluşabileceği bir ortam meydana gelmiştir. 

Bu noktada, elektrik fiyatlarının gerçek fiyatlara en yakın tahmin edilmesi pek çok 

açıdan önem arz etmektedir. Öncelikli olarak bu piyasada teklif veren arz ve talep 

taraflarının mümkün olduğunca doğru ve tutarlı fiyat teklifleri vermeleri 

gerekmektedir. Örneğin, hidroelektrik santralleri üretimlerini elektrik fiyat 

tahminlerine göre optimize etmekte ve gerçekleşen fiyatlardan uzaklaşan elektrik 

tahminleri önemli miktarda zarar etmelerine neden olabilmektedir. Bununla beraber, 

daha doğru şekilde yapılan elektrik tahminleri üretici rantını ortadan kaldıracak olup, 

fiyat daha aşağı seviyede oluşacak ve buradaki farktan kazanç sağlayacak kişiler nihai 

tüketiciyi temsil eden vatandaşlar olacaktır. Elektrik fiyat tahmini ve modellenmesi 

konusu dünya çapında artan bir ilgiye mazhar olmakla beraber, Türkiye piyasasında 

bugüne kadar yapılmış olan çalışmalar hem sayıca hem de kapsam olarak kısıtlı 

kalmaktadır. Bu tezde, yayınlanmış üç makale ile elektrik fiyat modellenmesi ve 

tahmini konusu tartışılacaktır. 

İlk makalede Türkiye Gün Öncesi Elektrik Piyasası’nda istatistiksel yöntemler 

kullanılmak suretiyle elektrik fiyatlarının saatlik olarak tahmin edilmesi konusu 

tartışılmaktadır. Bu bağlamda elektrik fiyatlarının önceki değerleri açıklayıcı 

değişkenler olarak kullanılmıştır. En önemli olarak görülen 1., 24., 48. ve 168. 

gecikmeli değerlere ek olarak 23., 72. ve 336. gecikmeli değerlerin kullanıldığı 

modeller de geliştirilmiştir. Kullanılan istatistiksel yöntemler SARIMA, Markov geçiş 

modelleri, SETAR, AR(24) ve naive metoddur. Türkiye piyasasında fiyatlarda 

bulunan 0’lardan dolayı, finansal enstrümanlarda her zaman kullanılan logaritmik 

getiriyi alma ve seriyi durağan hale getirme işlemi uygulanamamakta ve bu ciddi bir 

sorun yaratmaktadır. Benzer sorun çok sayıda sıfırın bulunduğu İspanya ve negatif 

değerlerin de bulunduğu Almanya piyasaları gibi pek çok piyasada 

gözlemlenmektedir. Bu makalenin getirdiği en önemli yenilik, bu sorunu ortadan 

kaldırmak için bir ön işlem olarak faktöriyel (factorial) ANOVA uygulaması ve seriyi 

bu yolla durağan hale getirmesidir. Buna ek olarak Türkiye piyasasında bu denli 

kapsamlı şekilde istatistiksel yöntemleri karşılaştıran ilk çalışma olan tezde, farklı 

zamanlarda farklı yöntemlerin başarısı görülmekle beraber, genel trend SARIMA 

modelinin Türkiye piyasasında, gözlemlenen zaman diliminde en başarılı model 

olduğudur. 
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İkinci makale ise aynı konuya çok daha kapsamlı bir perspektiften yaklaşmaktadır. İlk 

makalede eksik olan ekzojen değişkenler de makaleye eklenmiş; temel yenilik olarak 

ise istatistiksel modellere ek olarak, yapay sinir ağları ve derin öğrenme metodları da 

işin içine katılmıştır. Yine aynı şekilde Türkiye Gün Öncesi Elektrik Piyasası’nda 

elektrik fiyat tahmini yapmayı hedefleyen bu makalede bir önceki makaledeki 

istatistiksel yöntemler de kullanılmakla beraber, derin yapay sinir ağları, evrişimli sinir 

ağları ve devirli (recurrent) sinir ağları yöntemleri ile de tahminler yapılmaktadır. 

Bununla beraber, bir önceki makalede kullanılan gecikmeli fiyat değerlerine ek olarak; 

sıcaklık, tahmini talep/arz, gerçekleşen talep/arzın 24. gecikmeli değeri ve dengeleme 

piyasası fiyatının 24. gecikmeli değerleri kullanılmıştır. Türkiye piyasasında önceki 

üç seneyi kullanarak 2016 yılının her bir günü için elektrik fiyat tahmini yapan ve 

ortalamaları alarak berk sonuçlara ulaşan bu tezde, öncelikli olarak makina öğrenmesi 

yöntemlerinin istatistiki yöntemlerden anlamlı şekilde daha doğru tahminler yaptığı 

söylenmelidir. Buna ek olarak, zaman serisi problemlerinde daha başarılı olan LSTM 

ve GRU gibi devirli sinir ağları yöntemleri de en başarılı yöntemler olmuştur. Bir diğer 

önemli nokta ise daha fazla katman içeren derin sinir ağlarının, tek katman içeren sinir 

ağlarına göre daha başarılı sonuçlara ulaştığıdır. Bununla beraber, derin devirli sinir 

ağları içinde de GRU’nun LSTM’e göre daha iyi sonuçlar verdiği söylenebilir. Tüm 

bu sonuçların Diebold-Mariano testi ile istatistiksel anlamlılığı da saptanmıştır. 

Açıklayıcı değişkenlerin seçiminde, 1., 24., 48. ve 168. gecikmeli fiyat değerlerinin en 

önemli değişkenler olduğu gözlemlenmekte, ekzojen değişkenlerin ancak hepsi birden 

eklendiğinde endojen değişkenlere göre anlamlı bir tahmin performans başarısı 

üstünlüğüne sahip olduğu görülmektedir. Bu bağlamda, derin devirli sinir ağlarının, 

özellikle derin GRU’nun elektrik fiyat tahmininde kullanılmasını öneren bu çalışma, 

alanında ilk olma özelliğini taşımaktadır. 

Üçüncü makalede ise elektrik fiyat tahminlerindeki yanlışlığın bir hidroelektrik 

santraline olan finansal etkileri tartışılmaktadır. Bu bağlamda, ikinci makalede 

kullanılan tahmin yöntemlerinin en başarılı beş tanesine ek olarak dört adet de bu 

tahminlerin kombinasyonundan oluşturulan hibrit modeller kullanılmıştır. Bu dokuz 

tahmin yöntemine göre hidroelektrik santralinde karışık tamsayılı doğrusal 

programlama yöntemi ile günlük üretim planlaması optimize edilmiştir. Buna göre 

oluşturulan üretim çizelgelerinin finansal etkileri, oluşan gerçek fiyatlara göre yapılan 

üretim çizelgelemesinden elde edilecek maksimum kar ile karşılaştırılmaktadır. Bu 

amaçla, kardan zarar gibi kimi finansal performans ölçütleri kullanılarak her bir tahmin 

modelinin ne kadarlık bir finansal etkiye sebep olduğu değerlendirilmektedir. Bu 

çalışmadaki en temel bulgu, literatür ile de uyumlu şekilde, tahmin performansı 

değerlendirme ölçütlerinden biri olan ortalama mutlak hataya göre en iyi model 

olmayan ANN-LSTM yönteminin, finansal performans ölçütlerine göre en iyi model 

olarak seçilmesi olmuştur. Bu da tahmin performansı ölçütleri ile finansal performans 

ölçütleri arasında bir çelişkiden söz etmeye sebep olmaktadır. Özellikle üretim 

çizelgeleme yapacak elektrik santrallerinin, kullanacakları elektrik fiyat tahmin 

modelini seçerken finansal performans ölçütlerine göre karar vermesi daha yerinde 

olacaktır. Bir diğer önemli bulgu ise hibrit modellerin başarısı olmuştur. Hibrit 

modellerden ANN-LSTM, diğer modellerin önünde birinci gelmekle beraber, diğer 

hibrit modeller de oldukça iyi sonuçlar vermektedir. Hibrit modellerin elektrik fiyat 

tahminininde kullanılmanın yanı sıra, elektrik fiyat tahminlerinin üretim tesisleri 

üzerine finansal etkileri hesaplanırken de değerlendirilmesi önerilmektedir. 

Sonuç olarak, bu tez gelişmekte olan Türkiye Elektrik Piyasası’na geniş bir 

perspektiften bakma imkanı bulmaktadır. İstatistiksel yöntemlerin yanı sıra makina 
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öğrenmesi temelli, yapay sinir ağları yöntemlerini ve çağımızın en önemli 

yeniliklerinden biri olan derin öğrenme yöntemlerini kullanan bu tez, Türkiye Gün 

Öncesi Elektrik Piyasası’nda elektrik fiyat tahmini yapmaktadır. Buna ek olarak, 

elektrik fiyat tahminlerinin önemini ve finansal etkilerini bir hidroelektrik santralini 

örnek alarak izlemekte ve üretimi elektrik fiyat tahminlerine göre optimize etmenin 

finansal etkilerini tartışmaktadır. Bu multidisipliner çalışma, Türkiye piyasasına ışık 

tutmanın ötesinde, global ölçekte de elektrik fiyatlarını durağan hale getirmek için bir 

ön yöntem olarak faktöriyel ANOVA’yı önermekte; buna ek olarak derin öğrenme 

yöntemlerini ve özellikle devirli sinir ağlarını da elektrik fiyat literatürüne 

kazandırmaktadır. 

Sürekli gelişmekte olan bu alanda yeni çalışmalar pek çok daldan ilerleyebilir. 

Öncelikle değişken seçiminde de kullanılan Lasso regresyon ya da temel bileşenler 

analizi gibi yöntemler oldukça ilgi çekici sonuçlar vermektedir. Bizim de bulgularımız 

arasında olduğu gibi hem farklı modellerin sonuçlarını kombine etme ile oluşturulan 

hibrit sonuçlar, hem de farklı yöntemleri bir arada kullanma ile oluşturulan hibrit 

metodlar oldukça başarılı sonuçlara ulaşmaktadır. Buna ek olarak; petrol, doğalgaz 

fiyatları ya da döviz kurları gibi bağımsız değişkenler de özellikle gelişmekte olan 

piyasalarda önemli faktörler olabilir ve başka çalışmalarda değerlendirmeye 

katılmaları önerilir. Bir diğer nokta ise Gün İçi Piyasası’nın gelişmesi ile beraber, o 

alanda da çalışmalara ihtiyaç duyulmaya başlanmasıdır. Buna mukabil, enerjiye dayalı 

türev ürünlerin fiyatlandırılması da enerji finansıyla ilgili çalışılması gereken başka 

önemli bir konu olacaktır. Tüm bunların ötesinde, her bir piyasanın kendine özgü 

özellikler taşıdığı elektrik piyasaları ele alındığında, bu çalışmada önerilen 

yöntemlerin başka ülke piyasalarında, başka zaman dilimlerinde de incelenmesi 

çalışmanın sonuçlarının daha berk bir şekilde ortaya konabilmesine izin verecektir. 
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1.  INTRODUCTION 

In today’s world, electricity has become almost as important as air or water. This 

paramount effect of the electricity is the result of the industrialized and the globalized 

system. If you assume a single-day electricity shut-down throughout a country, you 

can imagine the effects of such a big failure. All the systems are connected to power, 

which shows how essential energy is. Nowadays, the gap between the energy-importer 

and energy-exporter countries widen a lot, in terms of the current deficit. Turkey, as 

an energy-importer country, face with increasing current deficit amounts year by year. 

Therefore, research on the energy topic is especially important for the energy-importer 

and emerging countries such as Turkey. 

Since the beginning of 2000s, state-owned energy companies are started to be 

liberalized all over the world. Turkey was not exempt from this process and most of 

the generation companies as well as the distribution networks are privatized. After this 

process, in December 2011, Energy Exchange Market is established for the day-ahead 

market. Balancing and intraday markets are followed this process. Although it is still 

an immature market, even energy derivatives are traded in Turkey nowadays. Today, 

about 75% of the electricity trade takes place in the bilateral contracts and 

approximately 20% of the trade occurs in the day-ahead market of Turkey. Most of the 

remaining is in the intraday market. At this point, it must be mentioned that the bilateral 

contracts, balancing and intraday markets, as well as energy derivatives take the day-

ahead prices as a reference point. Therefore, modeling and forecasting the day-ahead 

electricity prices has a crucial effect. 

Accurate electricity price forecasting is essential for many parties. First of all, buyers 

and sellers in the day-ahead market directly rely on the electricity price forecasts. They 

must submit their bids in terms of quantity and price for the each hour of the next day. 

Therefore, they need to give their bids precisely to avoid important losses. Secondly, 

in a similar way, balancing and intraday market participants should forecast the 

electricity prices. The advantage is that they have more information, most importantly 

day-ahead prices; and the forecast is for nearer future. Thirdly, bilateral contract parties 
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and companies, which want to hedge by using the energy derivatives, must have 

medium or long-term electricity price forecasts. Fourthly, pumped storage units or 

some flexible companies or factories can schedule their buying behaviour according 

to the electricity price forecasts. Last, but not least, some types of the power plants, 

especially hydro ones, can make their procurement strategy according to the electricity 

price predicitons. With more accurate forecasts, they can decrease the loss of profits, 

which occur due to the self-scheduling by using the inaccurate electricity price 

forecasts. 

Electricity differs from all the other assets, even commodities, due to its unique 

features such as sharp price spikes, high volatility, mean-reverting processes, 

seasonality in various frequencies, non-storability, demand inelasticity and the 

requirement of maintaining the constant balance between the demand and supply sides. 

Due to all these characteristics, forecasting the electricity prices has become not only 

an essential, but also a very challenging task. It takes the attention of the researchers 

from various fields to the electricity price forecasting topic, which makes it a 

multidisciplinary research area. According to state-of-the-art review of Weron (2014), 

there are mainly five ways of electricity price forecasting: Multi-agent models, 

fundamental models, reduced-form methods, statistical models and the computational 

intelligence ones. Additionally, there is an improving research area, which is called 

hybrid models. By hybrid models, two types of combinations are meant. First one is 

the combination of the electricity price forecasts from various models. Second one is 

the simultaneous use of the models in the electricity price forecasting process. 

Although, former one is a less developed research area, hybrid methods are applied 

widely int the latter way, and the results of these hybrid methods are relatively 

successful. Apart from the dimension reduction or seasonality removal type 

applications prior the forecast process, one of the newest topics is the application of 

the deep learning algorithms, especially recurrent neural networks, which are tailor-

made for time-dependent data. 

Although there are some research on the electricity price forecasting in the Turkish 

market, there is still a huge room for improvement. As Turkish market has many 

specific features and shares some common points with the other markets, it needs a 

special treatment. Turkish energy market has a very big share of hydro power by 34.3% 

and wind energy’s share has increased to 7.4%. However, it is still fossil-fuels 
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dominated energy market by 54.2%. Due to the high share of hydro and renewables, 

zero prices are frequently observed in the Turkish day-ahead market similar to the 

Spanish one (Diaz and Planas, 2016). It must be mentioned that if the Turkish day-

ahead market electricity prices were not capped from 0 and 2000 TL/MWh, we could 

have observed negative prices similar to the German market (Keles et al., 2012). 

Turkish electricity market is an evolving market in many ways. First one is the 

establishment of the two nuclear power plants, which will provide the 5-7% of the 

installed capacity. Secondly, solar energy will be included in the grid in the near future. 

Thirdly, subsidies to the wind power companies will end in 2019, which will finish the 

10 years wind energy subsidies era. Fourthly, transactions in the intraday market have 

more than doubled in the last two years. The share of the intraday market is predicted 

to be increased significantly in the near future. Fifthly, global warming has an upside 

effect on the electricity prices. As a country in the Mediterranean coast and very close 

to the Middle East; it affects Turkey more than most of the countries. Last, but not 

least, with the technological improvement and high growth rates, energy demand of 

Turkey follows an increasing trend. Therefore, it is difficult to generalize the results, 

not only to other markets, but also to the long-term future of Turkey. It is one of the 

reasons why continuing research is required to deal with the changes in the market. 

Although works of Hayfavi and Talasli (2014), Kolmek and Navruz (2015), 

Ozyildirim and Beyazit (2014) are highly acknowledged; today, they are a bit outdated 

due to the changes in the market. Furthermore, it is the first work, which provides such 

a wide perspective to the electricity price forecasting in the Turkish day-ahead market. 

This thesis presents three published papers as independent, but strongly connected 

essays in Chapter 2,3 and 4. Chapter 2 has the topic of “Performance of Electricity 

Price Forecasting Models: Evidence from Turkey” (Ugurlu et al., 2018b). This chapter 

discusses the performance of the statistical methods such as SARIMA, SETAR, 

Markov regime-switching, and compares the forecast errors of these methods with the 

benchmark methods’ , naive method (Nogales et al., 2002) and AR(24), forecast errors. 

Among the statistical methods, SARIMA model is chosen as the best performing one 

to forecast the electricity prices in the Turkish day-ahead market. The main 

contribution of this chapter is that the application of the factorial ANOVA as a method 

prior the forecast is a relatively good way of removing the non-stationarity in the data. 

Chapter 3, “Electricity Price Forecasting Using Recurrent Neural Networks” (Ugurlu 
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et al., 2018a) proposes a novel approach to the electricity price forecasting. Although 

machine learning methods such as artificial neural networks, fuzzy logic or support 

vector machines are applied widely, it is the first application of the recurrent neural 

networks. Another novelty is that it applies them as deep recurrent neural networks by 

using 3-layers, which increases the accuracy of the forecasts significantly. This 

research compares machine learning methods LSTM, GRU, ANN and CNN with the 

statistical methods from Chapter 2. Although only endogenous variables are used in 

the previous chapter, Chapter 3 takes four exogenous variables into account, as well: 

Temperature, forecast demand/supply, 24th lag of the realized demand/supply and the 

24th lag of the balancing market prices. This is the first research in the electricity price 

forecasting literature, which states the very successful performances of the recurrent 

neural networks and the deep learning applications. As Chapter 3 was connected to 

Chapter 2, Chapter 4 is strongly connected to the Chapter 3 as well. Chapter 4, “The 

Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-based 

Generation Company” (Ugurlu et al., 2018c), uses the electricity price forecasts from 

Chapter 3. Furthermore, combination of the electricity price forecasts are also 

proposed as hybrid methods, in addition to the forecasts from the previous chapter. 

According to these forecasts and the ex-post actual prices, production schedule of a 

generation company is optimized by using mixed integer linear programming. This 

Price Based Unit Commitment problem is solved for a hydro-based power plant. 

Although electricity is a non-storable commodity, water can be hold in high capacities 

in dams. This allows the hydro power plants to organize their production strategy 

according to the electricity price forecasts for maximizing their profits. Reasonably, 

inaccurate electricity price forecasts could cause huge loss of profits, even to the 

relatively small generation companies. Therefore, accurate electricity price forecasting 

is essential for the hydro power plants. Our findings are in line with the literature 

(Mohammadi-Ivatloo et al., 2011; Mathaba et al., 2014) showing that there is a conflict 

between the electricity price forecasting evaluation methods and the financial effect 

measures. It means that the best method according to forecast method evaluations such 

as MAE is not necessarily the best method according to the financial effect measures 

such as loss of profit. For this reason, the evaluation of the financial effect measures 

and the selection of the methods according to them is essential for the power plants. 

  



5 

 

2.  PERFORMANCE OF ELECTRICITY PRICE FORECASTING MODELS: 

EVIDENCE FROM TURKEY1 

2.1 Introduction 

Electricity differs from all other assets and even commodities due to its idiosyncratic 

properties such as non-storability, demand inelasticity, oligopolistic generation side 

and requirement of maintaining constant balance between demand and supply. 

Therefore, it needs a special effort and unique techniques to model and forecast the 

electricity prices. 

Due to these features, electricity prices have some important characteristics: 

Seasonality, high volatility, sharp price spikes and mean reverting processes (Hayfavi 

and Talasli, 2014). Business activities, weather and industrial production cause intra-

daily, weekly, monthly and annual seasonality, which affect the electricity prices 

dramatically. Non-storability and the requirement of having equilibrium between 

demand and supply sides, cause supply and, more importantly, demand shocks on the 

electricity prices. At low levels of demand, generators supply electricity at low 

marginal costs. However; at higher levels of demand, higher marginal cost generators 

also provide energy to the system, which is the main reason for the price shocks. 

Moreover, on the supply side, plant failures or maintenance and repair activities also 

activate high cost generation plants and are the reason for the price spikes to occur. 

When the reason for the price shock disappears, prices tend to revert back to the long 

term equilibrium level, which is formed mainly by the cost of production (Talasli, 

2012). 

Electricity price forecasting plays a major role in energy companies’ decision making 

mechanisms (Bunn, 2004; Weron, 2006). For example, if the electric utilities 

                                                 

 

1 This chapter is based on the paper “Performance of Electricity Price Forecasting Models: Evidence 

from Turkey”. Ugurlu, U., Tas, O. & Gunduz, U. 2018. Performance of Electricity Price Forecasting 

Models: Evidence from Turkey. Emerging Markets Finance and Trade, 54 (8), 1720-1739.  
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over/under contract beforehand, and sell/buy the remaining amount in the balancing 

market; it might cause significant losses2 to the companies, because it is difficult for 

them to pass the costs to the retail consumers swiftly. Due to the enormous volatility 

of electricity prices compared to other financial assets; companies need to hedge not 

only against volume, but against price movements as well. Therefore, price 

forecasting/modelling is important for all the parties; generators, utility companies or 

large industrial companies. Should they forecast the wholesale prices accurately, they 

can adjust their bidding strategy as well as their production or consumption schedule, 

which will decrease the risk and maximize the profit (Weron, 2014). 

The Turkish Day Ahead Electricity Market is an emerging spot market, where 

generators and utilities submit their bids in hourly time frequency and the hourly 

market clearing price is determined by the Market Financial Settlement Centre. The 

establishment of the Turkish Day Ahead Electricity Market is due to several reasons: 

Firstly, it is an opportunity for the market participants to balance their portfolios in 

addition to bilateral contracts and providing the system operator with a balanced 

system. Secondly, it is used for power trading and balancing activities one day before 

the physical delivery of electricity. A breakthrough happened in September 2015 with 

the establishment of Power Exchange. Turkish Power Exchange operates the day 

ahead and intraday markets, and Borsa Istanbul has the operating right of derivatives 

market in the current situation (Avci-Surucu et al., 2016).  

Turkish Day Ahead Electricity Market has unique features such as all the other 

markets; therefore it needs a special attention. According to Energy Exchange Istanbul 

Report (2016), 34.2% of the installed capacity is hydropower and 7.6% is wind power. 

Although fossil fuels still have the biggest share with 56.3%, the increasing trend is in 

favour of renewables. Governmental subsidies also support the instalment of the new 

wind turbines as well as hydropower plants. Turkish electricity prices are bounded 

                                                 

 
2 It is surely possible that balancing market prices could be lower than the day-ahead market prices, 

however it is the last chance to buy/sell the electricity; and if prices occur in unexpectedly high/low 

levels, it might cause significant losses to the companies. Furthermore, in the Turkish Balancing 

Market, there is a 3% penalty for trading in the balancing market (EPDK, 2017). 
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from 0 and 2000 TL/MWh3 and negative prices4 are not allowed. Many zeros are 

monitored in the prices, especially in the early morning hours. This case is analysed in 

the Spanish market by Diaz and Planas (2016); they state that since 2010 many zeros 

have occurred in contrast to the other markets and they suggest a NATAF 

transformation for the electricity prices for this case, in which getting the logarithmic 

return series is impossible. Uniejewski et al. (2017) compare 16 variance stabilizing 

transformations in 12 markets5 and find most of the transformations are better than the 

logarithmic returns transformation. Their best and most robust model is the probability 

integral transform-based N-PIT6 in terms of Mean Absolute Error (MAE). It must also 

be mentioned that the prices are in a decreasing trend in the Turkish electricity market 

due to technological improvements in the fossil fuels plants, especially in the natural 

gas ones, which have the 22.5% of the installed capacity individually, in addition to 

the increase of the renewables’ share. Another important point is that Turkey has many 

different climates, huge altitude differences, and great temperature variations, intra-

daily and annually. According to the cooling requirement in the summer months and 

the heating requirement in the winter months, prices are quite high. On the other hand, 

price levels in the spring months are relatively low due to the activation of hydropower 

plants with the snowmelt effect. 

Although there are some papers about electricity price forecasting in Turkish 

Electricity market (e.g. Talasli, 2012; Hayfavi and Talasli, 2014; Ozyildirim and 

Beyazit, 2014; Ozozen et al., 2016; Kolmek and Navruz, 2015) and some about the 

comparison of the forecast performances of various models in different markets (e.g. 

Aggarwal et al., 2009; Ziel and Weron, 2016) to our knowledge, this is the first work 

that intersects both areas. This paper will focus on the Turkish Day Ahead Electricity 

Market hourly prices and will use various models, such as Seasonal Autoregressive 

Integrated Moving Average (SARIMA), Threshold Autoregressive (TAR) and the 

variations of Markov regime switching; and will forecast the out-of-sample results by 

                                                 

 
3 Electricity prices in the day-ahead markets are bounded in some markets for preventing big losses. 

See Negahdary and Ware (2016) for Alberta power prices. 
4 Negative prices is an important topic in the electricity prices, especially in the high renewables share 

markets such as Germany. Bublitz et al. (2017), Fanone et al. (2013) and Keles et al. (2012) can give 

more information about the negative prices. 
5 11 of them are European markets and the other one is the GEFCom2014 competition data. 
6 Interestingly, this is the NATAF transformation of Diaz and Planas (2016). Uniejewski et al. (2017) 

mention that Diaz and Planas (2016) call NATAF transformation to the N-PIT transformation, 

misleadingly.  
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using the past prices as a univariate variable. These forecasts will be completed for the 

hours of every 15th day of 2016, for a week of winter and for a week of summer and 

the daily averages of MAE and Root Mean Square Error (RMSE) results will be 

compared for various methods, which will give the opportunity to choose the best 

model. More importantly, this paper applies a factorial Analysis of Variance 

(ANOVA) process to the price series as a pre-whitening method and works with the 

residuals series before transforming back to the price series. This method solves the 

non-stationarity7 problem of the price series and also makes the series more linear, 

which gives a reasonable success chance to the linear forecasting methods. 

Section 2.2 gives a comprehensive literature review, mostly about the time series 

methods in the electricity price forecasting. Section 2.3 is about the methodology, 

which also discusses the models used in the application. Section 2.4 illustrates the 

results in terms of MAE and RMSE for the forecasted days. Section 2.5 concludes and 

mentions some further research ideas. 

2.2 Literature Review 

There are many different ways of electricity price modelling and forecasting. Weron 

(2014) consolidates the methods under 5 main topics: Multi-agent, fundamental, 

reduced-form, statistical and computational intelligence. Multi-agent and fundamental 

models are difficult to apply due to various reasons. Both models require having all 

the data readily available. Multi-agent models are better to apply in small markets with 

relatively small number of players. Parameter rich fundamental models need the “all 

supply information” from generators and then intersect the supply curve with the 

forecasted demand curve to have the amount of demand and the price for the market. 

It is quite difficult to use this method in such a big market like Turkish Day Ahead 

Electricity Market with over 2000 generators and many more companies. 

Computational intelligence doesn’t provide enough information about the working 

mechanisms or the coefficients of the parameters. These methods only use the inputs 

and give the final results. Other models, reduced-form and statistical, could be 

gathered under one topic, as well. However, reduced-form models, jump-diffusions 

and Markov regime-switching, focus more on the price spikes and the statistical 

                                                 

 
7 It is impossible to remove the non-stationarity by taking log returns due to the zeros. 
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models are regression based and use past electricity prices in addition to exogenous 

variables. 

The following papers can be categorized in two groups: Papers about electricity price 

modelling and forecasting in the Turkish electricity market and the papers that 

compare the performance of the models with each other for the specific markets. The 

first group starts with the following paper of Taysi et al. (2015), and the second group 

starts with the very comprehensive comparison of Ziel and Weron (2016). 

Taysi et al. (2015) combine time series statistics with a neural network model in their 

paper for Turkish electricity market. The time series statistics method is SARIMA 

model, a seasonal approach of ARIMA, and the artificial intelligence model is named 

a feed forward neural network. Both methods use historical electricity price data and 

the performance of them is very close to each other with the average error rate of 8.5% 

for weekly frequency forecasting.  

Ozyildirim and Beyazit (2014) forecast and model the electricity prices by radial basis 

function method, which implement a totally new approach to electricity price 

forecasting, in addition to a conventional linear regression technique. Regression 

method takes lagged series of price, time trend, hourly temperature degrees, square of 

temperature degrees and cosine function of time and all the dummy variables for 

seasonality, as independent variables; the dependent variable is the electricity price. 

Moreover, it takes into account the recurring structure of hourly prices and in this 

sense, proposes a radial basis function, which fits to the structure of data. 

Consequently, out of sample performance of radial basis function method slightly 

outperforms the regression method for a specific estimation period.  

Ozozen et al. (2016) has a good starting point by combining seasonal ARIMA and 

artificial neural network (ANN) models and apply it to the Turkish hourly electricity 

prices, therefore it is in the interest area of this thesis. It gives a detailed discussion of 

the Turkish electricity market and the price formation process, which shows the 

authors have a strong understanding of the electricity price market in Turkey. This 

paper applies Box-Jenkins method to split the data into daily and hourly parts, then 

applies SARIMA to both methods and combines the forecasts. Moreover, it takes the 

error terms of this forecast and proposes an ANN model to these forecasts and 

combines both results, which outperforms the only SARIMA forecasts in in-sample 
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and out-of-sample testing. So far, however, they choose the most stable periods for in-

sample and out-of-sample testing, which give them the opportunity to report the best 

Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) results.  

Talasli (2012) models the electricity markets stochastically in her thesis and analyses 

the Turkish electricity market in great detail. The thesis of Talasli (2012) tries to 

capture all the characteristics of the electricity prices such as mean reversion, 

seasonality and the spiky behaviour. Prices are modelled as a summation of 

deterministic function, which captures the seasonality, and multi-factor stochastic 

process, which takes care of spiky behaviour and mean reversion. However, the 

method is mainly based on jump diffusion models; and Markov regime switching 

models have not been used in the thesis. Another important point to mention is that the 

thesis focuses on the daily prices and tries to forecast at a daily frequency. Hayfavi and 

Talasli (2014)’s proposed stochastic multifactor model uses daily spot market 

electricity prices and composes three jump processes which take into account the spiky 

behaviour and mean reversion, and an iterative threshold function, constructed by 

GARCH (1, 1), is used to separate the jumps. The main addition to the thesis (Talasli, 

2012) is that the results are compared with the mean-reverting jump diffusion model 

of Cartea and Figueroa (2005) and Markov regime switching model of Janczura and 

Weron (2010). Although the authors compare the four moments of the three methods 

and evaluate that the multifactor model performs better than the others, their method 

needs further performance evaluation measures. 

Ziel and Weron (2016) conduct an extensive empirical study on electricity price 

forecasting models and compare their performance in different electricity markets. 

They take expert models as benchmarks and combine these 32 multi-parameter 

regression models and compare their performance in 12 power markets. They have an 

important finding that the multivariate modelling approach does not uniformly 

outperform univariate models across all datasets. This paper also strengthens our point 

of view by saying that combining advanced structures or the corresponding forecasts 

from both modelling classes may bring further improvement in the forecast accuracy. 

They also try to analyse variable selection of the best performing models and give an 

opinion about variable selection in their paper. It must be mentioned that they use mean 

absolute error (MAE) as the performance measure and Diebold and Mariano (1995) 

test to compare the performances of the models statistically.  
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Nowotarski et al. (2014) work on the performance of the forecast averaging in 

electricity price forecasting literature. They use seven averaging and one selection 

scheme and perform back-testing in the day-ahead electricity prices of three major 

European and US markets. They indicate that combining the forecasts of individual 

methods helps to make more accurate predictions. However, it is not uniform in all the 

markets and periods. Moreover, not all the averaging methods are as successful as the 

others.  

Janczura and Weron (2010) stress one of the most important features of the electricity 

prices: spikes. It is clear that one of the most convenient methods for modelling the 

spikes is Markov regime-switching models. They try to calibrate and test Markov 

regime-switching models, which are successful in forecast accuracy as well as 

statistical correctness. They find the best models as independent spike 3-regime model 

with time-varying transition probabilities. It allows seasonal spike intensity throughout 

the year as well as consecutive spikes or price drops, which is consistent with 

electricity prices. 

An overview literature review is given in Table 2.1. Some important information about 

the papers, such as methodology, regional scope, time frequency, training data, 

predicted period and time horizon are given in addition to level of forecast accuracy 

and key findings. 
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Table 2.1: An overview literature table. 

Study Methodology 
Regional 

scope 

Training 

Data 

Time 

frequency 

Predicted 

period 

Time 

horizon 
Level of accuracy Key findings 

Keles et al. 

(2016) 
ANN Germany 2008-2012 Hourly 

First 9 months 

of 2013 

1 hour-

ahead 

MAE 4.67 €/MWh, 

RMSE 6.58 €/MWh 

The selected ANN model is compared to other 

models such as SARIMA and forecast error are 

smaller in ANN. It also mentions that ANN requires 

relatively less observations. 

Mandal et al. 

(2005) 
ANN Australia 2000-2002 Half-hourly 2003 

1 and 6 

hour-

ahead 

MAPE 1 hour-ahead 

9.75%, 6 hour-ahead 

20.03% 

MAPE results confirm that the proposed ANN 

models are good tools compared to the other simple 

methods in terms of accuracy and convenience. 

Gonzalez et 

al. (2005) 

Input/Output 

Hidden Markov 
Spain 

January-

June 2001 
Hourly 

July-September 

2001 

1 hour-

ahead 
MAPE 15.83% 

Non-stationary model categorizes the spot prices 

into three fundamental regimes. Different probability 

density functions can be used to evaluate diferent 

risk measures and for the generation of scenario 

trees. This model is like a piecewise dynamic 

regression and the state is chosen by the underlying 

Markov chain automatically. 

Conejo et al. 

(2005a) 

Wavelet 

transformation, 

then ARIMA 

Spain 

2002 

(previous 

48 days) 

Hourly 

4 weeks of 

2002 (different 

seasons) 

24 hour-

ahead 

MAPE; Winter 

4.78%, Spring 5.69%, 

Summer 10.70%, Fall 

11.27% 

Wavelet-ARIMA, which uses the wavelet 

transformation as pre-processing method 

outperforms ARIMA and Naive method. 

Shafie-Khah 

et al. (2011) 

Wavelet 

transformation, 

then Radial 

basis function 

neural network 

Spain 
Previous 

50 days 
Hourly 

4 weeks 

corresponding 

to four seasons 

of 2002 

24 hour-

ahead 

MAPE, ARIMA-

RBFN; February 

4.27%, May 4.58%, 

August 6.76%, 

November 7.35% 

Wavelet-ARIMA is used to analyze the linear part 

and RBFN network worked on the residuals of the 

wavelet-ARIMA. It needs lower number of input 

data and the results of this hybrid method are more 

accurate compared to other methods. 

Ziel et al. 

(2015) 

Time series 

models 

12 

European 

Markets 

Previous 2 

years 

(rolling 

window) 

Hourly 
13.08.2012 to 

12.08.2014 

24 hour-

ahead 

i.e. EPEX.DE&AT 2-

dimensional AR(p) 

MAE 4.59 €/MWh, 

RMSE 7.96 €/MWh 

This study investigates the EXAA day-ahead prices' 

effect on the other electricity day-ahead markets. 

Various time series methods are applied on 12 

different markets; MAE and RMSE results vary 

from market to market. The main finding is that 

using the EXAA prices, which announced before the 

price submission of other markets, help to the 

forecast process. 
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Table 2.1 (continued) : An overview literature table. 

Study Methodology 

Regional 

scope 

Training 

Data 

Time 

frequency 

Predicted 

period 

Time 

horizon Level of accuracy Key findings 

Ziel and 

Steinert 

(2016) 

Fundamental 

model 

Germany 

and 

Austria 

Previous 2 

years 

(rolling 

window) 

Hourly 

01.11.2014 

to 

19.04.2015 

24 hour-

ahead 

MAE 4.35 €/MWh, 

RMSE 6.46 €/MWh 

The model estimates the price as the intersection 

of the sale and purchase curves. This model 

allows to predict extreme and rare price events. 

In addition, it also outperforms most of the 

consisting models. 

Contreras et 

al. (2003) 
ARIMA 

Spain and 

California 

Previous 

months (2-5 

months) in 

2000 

Hourly 

3 weeks 

Spanish and 

1 week 

Californian 

market. 

24 hour-

ahead 

MAPE average for 3 

week, 10% in Spanish 

market and 11% in 

California 

These are very good forecast results compared to 

previous studies. Explanatory vairables are only 

needed when the correlation is high between 

hydro production and price. 

Cuaresma et 

al. (2004) 

Time series 

models 
Germany 

16.06.2000 

to 

31.08.2001 

Hourly 

01.09.2001 

to 

15.10.2001 

168 

hour-

ahead 

Best model is ARMA 

model with jumps 

RMSE 3.99 €/MWh 

and MAE 2.57 €/MWh 

Hour-by-hour modelling strategy improves the 

forecasting abilities of linear univariate time 

series models and inclusion of the simple 

probabilistic approaches could improve the 

forecast ability. 

Weron and 

Misiorek 

(2008) 

12 Time series 

methods 

California 

and Nordic 

05.07.1999- 

02.04.2000 

and 

07.04.2003- 

05.12.2004 

(expanding 

window) 

Hourly 

10 weeks in 

2000 and 4 

weeks in 

2004 

24 hour-

ahead 

One of the best models 

is AR model with a 

smoothed 

nonparametric ML 

estimator; MAE 13.87 

for California, 4.04 for 

Nordpool and 3.22. 

In the California market system load as an 

exogenous variable has a positive effect on the 

forecast accuracy. On the other hand, air 

temperature in the Nordpool data doesn't have 

the same effect. Semiparametric models perform 

quite well, especielly under different market 

conditions. 

Karakatsani 

and Bunn 

(2008) 

Time-varying 

parameter 

models 

UK 

06.06.2011 

to 

01.04.2002 

(expanding 

window) 

Half-hourly 

17.01.2002 

to 

01.04.2002 

24 hour-

ahead 

Various results; i.e. For 

time-varying 

parameters regression 

of 35th period MAE 

1.14, RMSE 1.48 

Price models with fundamentals and their time-

varying effects outperform the various 

alternatives including autoregressive models 

with similar coefficients. 

Bordignon et 

al. (2013) 

Time-varying 

parameter 

models 

UK 

01.04.2005 

to 

31.12.2005 

Half-hourly 

01.01.2006 

to 

30.09.2006 

24 hour-

ahead 

Various results; i.e. For 

period 18, best 

individual model, MAE 

3.82, MAPE 9.05 and 

best combination of 

models, MAE 3.79, 

MAPE 8.86 

The paper forecasts with 5 individual models 

and then combine with the simple average 

combinations. In comparisons combined 

forecasts outperform individual models in 76% 

of the cases, but the finding is not significant in 

most of the cases. 
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2.3 Methodology 

2.3.1 Data 

Hourly price series are obtained from EPIAS8 from 01.01.2013 to 31.12.2016, which 

contains 35064 observations9. It is observed that there are many zeros in the price 

series as well as sharp price spikes, which cause outliers. 

2.3.2 Descriptive statistics 

Electricity prices have different levels of seasonality such as intra-daily, weekly, 

monthly and annually. The most challenging and the most effective impact is due to 

intra-daily seasonality, which causes substantial differences in the prices of various 

hours. Therefore, descriptive statistics according to hours of the day are given in Table 

A.1. It should be mentioned that price levels are relatively low in the night hours10 

from 2-7 and the highest standard deviation also occurs in these hours. Prices for most 

of the hours (21 out of 24) are left skewed and the kurtosis levels are relatively low all 

the hours, however it is shown that there are some zeros in the hours 1-7.  

Before mentioning this problem, Figure 2.1 indicates the intra-daily and weekly 

seasonality. Left panel of the Figure 2.1 shows the distribution of the hourly prices 

(TL/MWh) in 24-hours point of view. Prices tend to be relatively low, mainly due to 

the consumption levels during the night; then increase sharply to 11 and have a global 

maximum at 181.14 TL/MWh. Hereafter, they decrease slightly during lunch break 

and have the second maximum at 14. Although prices decrease smoothly by 21, they 

have another peak at 22 due to the high level of consumption in the households. Right 

panel of the Figure 2.1 illustrates the weekly seasonality in terms of electricity prices 

based on the hours of the week. It shows the change of the prices according to the 168-

hours of the week. Prices on the weekdays11 and Saturday follow a similar pattern up 

until the afternoon of Saturday12, which follows a decreasing trend and have a 

                                                 

 
8 (Url-1) 
9 8760 hours for 2012-2015 and 8784 for 2016. 
10 Numbers given under the hours represent the following hour. For example; 1 represents, 01:00:00-

01:59:59. 
11 “Weekdays” is used for Monday, Tuesday, Wednesday, Thursday, and Friday in this case. 
12 In Turkey, most of the companies work half-day on Saturday and factories work all-day. 
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minimum on Saturday night, which is followed by low price levels on Sunday and 

another minimum on Sunday night. 

 

Figure 2.1 : Left panel:Price distribution of hourly prices (TL/MWh) according to 

the hours of the day. Right panel: Price distribution of hourly prices (TL/MWh) 

according to the hours of the week (based on 168 hours). 

2.3.3 Factorial ANOVA as a pre-whitening method 

Prior to applying the statistical methods on the price series, the Augmented Dickey-

Fuller test is implemented to check the stationarity of the series. The null hypothesis 

of the price series has a unit root, couldn’t be rejected even at 10% significance level13, 

which means that the price series is non-stationary. 

Therefore, logarithmic returns of the series should be taken. However, due to many 

zeros in the series, it is impossible to take the log returns. Even though price series is 

not stationary, estimation and forecast of the models are tried on the level price series, 

however estimations had singular covariance problem. Therefore coefficients were not 

unique and we couldn’t obtain the standard errors, which do not allow us to use these 

coefficients. 

For this reason, a factorial Analysis of Variance (ANOVA) process is applied as a pre-

whitening method to eliminate the deterministic part and have stationary series. 

Factorial ANOVA equation, which is applied to the price series as a pre-whitening 

method could be found below in equation 2.1. 

Yi =  𝑎𝑡 + ∑ bj(Day)j
31
j=1 + ∑ ck(Month)k

12
k=1 + ∑ dl(Year)l

2015
l=2013 +

         ∑ em(Time)m + ∑ fn(Weekday)n + ∑ go(Holiday)o
1
o=0 + 𝜀𝑡

7
n=1

24
m=1        (2.1) 

                                                 

 
13 P-value of the Augmented Dickey-Fuller test is 0.1175. 
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ANOVA equation uses the 3 years data in an expanding window basis and splits the 

price series into deterministic and stochastic part by using the day of the month, month 

of the year, year, hours of the day, day of the week and holiday effects. 

Although factorial ANOVA has some specific features, it is still a special case of the 

multiple linear regression. Firstly, it is a simple and appealing approach of 

understanding the analysis of covariance, which is a quite difficult to understand 

technique in the traditional way. Secondly, it is a relatively easy and straight-forward 

way of handling the unequal sample sizes. According to Howell (2013), last and most 

important one, which is also the reason of our choice, is that the ease of the application 

with the improved performance of the computers. It is the easiest way of applying a 

dummy-type multivariate linear regression. Having said these advantages, the novelty 

in our approach is still present. Most of the papers in literature, such as Ziel and Weron 

(2016), use that type of multivariate linear models; however, to our knowledge, all of 

them use them as direct forecast methods. In our paper, factorial ANOVA (a special 

case of multivariate linear regression) is used as a pre-processing technique before 

performing the forecast models. It also takes all the important variables; such as hours 

of the day, days of the week, months of the year, years and holiday effects; together 

into account14. 

A dependent variable is taken as the price series and the independent variables are 

hours of the week, days of the month, days of the week, months of the year, holiday 

or normal day and the years. Only main effects are used and the interaction effects15 

are not taken into account because of the model’s size. Effects of between-subjects and 

the parameter estimates for 01.01.2013-14.01.2016 can be found in the Table A.2 and 

A.3, respectively. The rationale behind applying factorial ANOVA is that we know 

the independent variables, which we put in the ANOVA process. For example, we 

know that 15.01.2016 is a Friday, normal day, 15th day of the month, 2016, January. 

It is also known, which hour will be forecasted as well. Therefore, it is not needed to 

forecast this deterministic part. Calculations for finding the value of this deterministic 

                                                 

 
14 ANOVA has the assumptions of the independence of the cases, normal distribution of the residuals, 

homoscedasticity and no multicollinearity. It is very difficult to fulfill them, which was the case for us 

even after attempts with various transformations from Uniejewski et al. (2017). It must be kept in 

mind that ANOVA assumptions couldn’t be fulfilled. 
15 Interaction effects are the effects between the independent variables. For example, if day of the 

week have an additional effect via month of the year, it is named as interaction effect. It is a kind of 

combined effect of two or more independent variables. 
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part and the remaining from the price, which is called residuals, are given in Table A.4 

for two different example hours. 

This process is applied for all the values in SPSS 17 for the 26280 observations 

between 01.01.2013-31.12.2015 and the price series transformed to the residuals 

series. A demonstration of the price and the residuals series can be found in Figure 2.2. 

Application of the Augmented Dickey-Fuller (ADF) test proves that the residuals 

series is stationary16 17. 

 

Figure 2.2 : Prices and resids after pre-whitening for 2013-2015. 

2.3.4 Models 

Naive method and AR(24) models are used as benchmark models in the paper. 

SARIMA, TAR18 with less lags (TAR-less), TAR with more lags (TAR-more), 

Markov-2-regime switching with less lags (Markov-2-less), Markov-2-regime 

switching with more lags (Markov-2-more) and Markov-3-regime switching models 

(Markov-3-less and Markov-3-more) are applied to the residuals series. In this section, 

these models will be discussed. 

 

 

                                                 

 
16 P-value of the Augmented Dickey-Fuller test is 0.0000. 
17 Although autocorrelation partial autocorrelation functions of the residuals show that the effect of the 

autocorrelations and partial autocorrelations are decreased in the residuals, according to TBATS 

model (De Livera et al., 2011) seasonality is still in the residuals (stochastic part) for the 24th and 

168th lags. 
18 It is actually a SETAR model, which will be discussed in this section. 
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2.3.4.1 Naïve method 

Naive method as a similar day technique, which is invented by Nogales et al. (2002) 

mentions that the hourly prices of Monday, Saturday and Sunday are the same with 

the previous week’s corresponding hour and day; and Tuesday, Wednesday, Thursday 

and Friday take the previous day’s hourly prices.  

                            Pd,h =  {
Pd−7,h +  εd,h,

Pd−1,h +  εd,h,
   Monday,Saturday,Sunday

 Tuesday,Wednesday,Thursday,Friday
         (2.2) 

According to Nogales et al. (2002) and Conejo et al. (2005a), forecasting procedures, 

which are not calibrated well enough, can’t outperform the naive method reasonably 

often. 

2.3.4.2 AR(24) model 

AR(24) process is included in the application as a second benchmark. It assumes that 

the price series is affected only by the previous day’s same hour prices. AR(24) process 

can be defined as follow:                                                                            

                        Pt = βPt−24 +  εt                                                  (2.3) 

As it is examined in many papers, such as Uniejewski et al. (2016), 24th lag of the 

price series is one of the most important variables in the electricity price forecasting 

literature. Therefore, this method is also selected as a benchmark in addition to the 

naive method. 

2.3.4.3 SARIMA model 

ARMA (p,q) models try to forecast the spot prices by its p past values (autoregressive 

part) and q previous values of the noise (moving average part). ARMA modelling 

approach requires that the time series are stationary and ARMA model, which includes 

the differencing in the formulation is called ARIMA (p,d,q). d is the number of the 

differences of the series to obtain a weak form stationarity. There are many types of 

the ARIMA-type models, but the most important one in electricity pricing due to the 

nature of the prices is seasonal ARIMA, named SARIMA19. In this paper a 

comprehensive triple SARIMA model, which deals with the previous hour’s, previous 

                                                 

 
19 For detailed information about the SARIMA model, see Box and Jenkins (1976). 
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day’s and previous week’s same hours, is used. Below in equation 2.4, single seasonal 

ARMA model is given.  

ϕp(L)ΩP2
(Ls2)(yt − a − bt) = θq(L)ΨQ2

(Ls2)εt                          (2.4) 

yt is the price in period t; a is a constant; b is the coefficient of the linear deterministic 

trend term, εt is a white noise error term; L is the lag operator; and ϕp, ΩP2
, θq, and 

ΨQ2
 are polynomial functions of orders p, P2,q and Q2, respectively (Taylor 2010). 

Single SARIMA model could be used for the intraweek cycle, if it is enough for the 

estimation, but in the high seasonality environment of the electricity prices, generally 

an improved model is required. Therefore, in our case triple SARIMA model is used. 

Triple SARIMA model can be found below in equation 2.5 (Taylor, 2010). 

ϕp(L)ΦP1
(Ls1)ΩP2

(Ls2)ΓP3
(Ls3)(yt − a − bt) = θq(L)ΘQ1

(Ls1)ΨQ2
(Ls2)ΛQ3

(Ls3)εt (2.5)                     

The main difference from the single SARIMA is that there are four more terms, ΦP1
, 

ΓP3
, ΘQ1

, and ΛQ3
 are added to the triple SARIMA model. These are the polynomial 

functions of P1, P3, Q1, and Q3, respectively. These functions enable ARMA modeling 

of the intraday and intrayear cycle. SARIMA model is performed by maximum 

likelihood assuming Gauss-Newton optimization. 

There are double and triple seasonal ARIMA applications in the literature. Some 

double SARIMA applications are Gould et al. (2008), Cancelo et al. (2008), Sunaryo 

et al. (2011) and triple SARIMA application is Taylor (2010). Our model can be shown 

as a triple SARIMA (23,0,23), (1,0,1)1 x (1,0,1)24 x (1,0,1)168. 

2.3.4.4 Threshold autoregressive (TAR) model 

Threshold autoregressive models are the models, which have different regimes 

according to a threshold variable. The difference between these models and the 

Markov-regime switching models is that they have an observable threshold variable. 

On the other hand, the threshold variable is latent in the Markov-regime switching 

models. When the threshold variable is found by the model itself, it is called Self 

Exciting Threshold Auto-Regressive (SETAR) model.  

A time series xt is said to follow a k-regime self exciting TAR (SETAR) model with 

threshold variable xt-d if it satisfies the equation 2.6. 

xt =  ϕ0
(j)

+ ϕ1
(j)

xt−1 + ⋯ +  ϕp
(j)

xt−p + αt
(j)

,    if  γj−1 ≤ xt−d ≤ γj            (2.6) 
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Where k and d are positive integers, j= 1, …, k, γi  are real numbers such that −∞ =

γ0 < γ1 < ⋯  <  γk−1 <  γk =  ∞ , the superscript (j) is used to signify the regime, 

and {at
(j)

} are iid sequences with mean 0 and variance σj
2 and are mutually independent 

for different j. The parameter d is referred to as the delay parameter for different 

regimes. As it can be seen from the equation 2.6, SETAR model is a piecewise linear 

AR model. However, SETAR model is nonlinear provided that k > 1 (Tsay, 2005). 

Thresholds are determined according to sequential Bai-Perron L+1 breaks vs. L test. 

For SETAR model, it is impossible to use a simple iterative scheme to generate 

multiperiod forecasts. Therefore, bootstrap simulation method is used to forecast 24-

step ahead prices. The threshold variable is determined according to first lag values of 

the series (d=1). 1st, 24th, 48th, and 168th lags are used in the estimation of TAR-

more model. 24th and 168th lags are used for the TAR-less model, delay parameter 

stayed same. 

2.3.4.5 Markov regime switching model 

In this paper, 3 different Markov regime switching models are used. Actually, these 

models are Markov-regime switching AR (MS-AR) models. First one is a 2 state 

Markov chain with relatively less lags than the second 2 state model. 1st, 24th, 48th, 

and 168th lags are used in the estimation. Second one is the 2 state MS-AR model with 

the addition of 23rd, and 72nd. Third one is the 3 state MS-AR-less model with the 

same parameters of the first one, 1st, 24th, 48th, and 168th; and the last one is the 3 

state MS-AR-more model with the same parameters of the second one. This is the 

general representation of MS-AR model: 

                                                   yt =  αs +  ∑ ϕs,iyt−i +  ϵt
p
i=1                                     (2.7) 

where st is a two-state discrete Markov chain with S= {1, 2}, or three-state with S{1, 

2, 3} for the last model, and εt ~ i.i.d. N(0, σ2). The estimation of MS-AR models are 

performed by maximum likelihood algorithm expectation-maximization. 

Point forecasting is less complicated compared to the other models such as TAR-type 

models. The h-step forecasts from the MS-AR model are 

ŷt+h|t = P (st+h = 1| yt, … , y0)(αs=1 + ∑ ϕ̂s=1,i yt+h−i
p
i=1 )+ P (st+h =

2| yt, … , y0)(αs=2 +  ∑ ϕ̂s=2,iy t+h−i
p
i=1 )+P (st+h = 3| yt, … , y0)(αs=3 +

                                                               ∑ ϕ̂s=3,i yt+h−i
p
i=1 )                                           (2.8) 
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where P (st+h = i| yt, … , y0) is the ith element of the column vector  Phξt|t. In 

addition, ξt|t represents the filtered probabilities vector, and Ph is the constant 

transition probabilites matrix20 (Ozkan and Yazgan, 2015). Coefficient covariance 

matrix is Hessian, optimization method is BFGS and step method is Marquardt in the 

estimation. 

2.3.5 Application 

Naive method and AR(24) models are used as benchmark models in the paper. 

SARIMA, TAR with less lags (TAR-less), TAR with more lags (TAR-more), Markov-

2-regime switching with less lags (Markov-2-less), Markov-2-regime switching with 

more lags (Markov-2-more) and Markov-3-regime switching models (Markov-3-less 

and Markov-3-more) are applied to the residuals series. In this section, these models 

will be discussed. 

Hourly forecasts of the 15th days of each month in 2016 and the forecast for all the 

hours of the days in a winter week (18-24 January 2016) and in a summer week (4-

10 July 2016) are performed by using the following steps: 

1. Residuals series are obtained by using the hourly data from 01.01.2013 to the 

previous day of the forecast21 day in SPSS 17. 

2. Estimation of the equations22 are done for AR(24), SARIMA, TAR with less 

variables, TAR with more variables, Markov-2-regime switching with less 

variables, Markov-2-regime switching with more variables, Markov-3-regime 

switching with less and Markov-3-regime switching with more variables by 

using these residuals in Eviews 9. 

3. 24-step-ahead out-of-sample forecasts are calculated for the forecast days by 

using the estimations in Eviews 9. 

4. Deterministic part is computed for the forecast day by using the data from 

01.01.2013 to the forecast day in SPSS 17. 

                                                 

 
20 See Hamilton (1994). 
21 Expanding window scheme has been used. The estimation period was from 01.01.2013 to the 

previous day of the forecast day. 
22 Lag selections are done according to autocorrelation – partial autocorrelation functions and all the 

estimations are available upon request. 
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5. These forecast components from part 3 and deterministic components from 

part 4 are added for the forecast day to have the price forecast for the model. 

6. Naive model values are computed for the forecast day by using the price series. 

7. Actual prices are taken from the system. 

8. Absolute errors and square errors are calculated for the 24 hours of the forecast 

day. 

9. Mean absolute errors (MAE) and root mean square errors (RMSE) are 

calculated. 

10. First 9 steps are repeated for 6 models and for all the forecast days. 

11. Averages of MAE and RMSE are calculated for all models. 

2.4 Results 

Electricity differs from all other assets and even commodities due to its idiosyncratic 

properties such as non-storability, demand inelasticity, oligopolistic generation side 

and requirement of maintaining constant balance between demand and supply. 

Therefore, it needs a special effort and unique techniques to model and forecast the 

electricity prices. Forecasts are done on the 15th day of each month and on the all days 

of a winter week and all days of a summer week by using SARIMA, TAR (less), TAR 

(more) Markov-2 (less), Markov-2 (more) and Markov-3 (less) and Markov-3 (more) 

models in addition to benchmark naive and AR(24) models, which were discussed in 

Section 2.2.3. As an example, comparison of the forecasted values for each model and 

the actual values for November 15 are given in Table A.5.  

The main performance evaluation criteria are Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) in the 

electricity price forecasting literature. Although MAPE measures give the opportunity 

to compare the electricity price forecasts from various markets, it is most of the time 

misleading when the actual prices are closer to zero. In these times, MAPE values 

become very large and affect the performance measurement remarkably. On the other 

hand, when electricity prices spike and have very high values, then MAPE values 

become very small. Furthermore, in the markets, which allow negative prices, MAPE 

values get negative numbers and it is difficult to interpret these values (Weron, 2014).  
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Therefore, only MAE and RMSE are used in the performance evaluation of the 

forecasts. Both of them based on the absolute errors (AE), which is AEh =  |Ph − P̂h|. 

This is the difference between the forecasted value and the actual value. MAE is 

computed as the mean of T=24 as a daily MAE.  

MAE =  
1

T
 ∑ |Ph − P̂h|T

h=1                                         (2.9) 

RMSE methods uses the squares of the absolute errors. Second performance evaluation 

method used in this paper is as follows: 

                                         RMSE =  √
1

T
∑ (Ph − P̂h)

2T
h=1                                  (2.10) 

For T=24, RMSE value is obtained. 

MAE and RMSE results are calculated for each of the 15th days of the months. MAE 

results are given in Table 2.2 and RMSE results are given in Table 2.3 in the form of 

heat maps, respectively. Green shows the most successful method and red shows the 

least successful one in the daily basis (line wise). Our results state the difference 

between the methods. There are relatively big differences between the methods for 

each of the days.  

As an example, we can analyse 15th of February; MAE of SARIMA is at least 5.61 

TL/MWh lower than the competitors. It is even less than the half of naive method. We 

can also observe the effect of the day; for example, SARIMA method has MAE of 

7.83 for the 15th of November, in comparison to 38.48 for the 15th of December. 

Although, it is seen that in some days, especially in May, July and August, naive 

method couldn’t be outperformed, in general SARIMA method seems the most 

successful one. The averages of 12 days also support our finding; SARIMA model is 

better than the closest rival by 3.12 TL/MWh. However, second best method is the 

naive method with close differences. A clear success of the SARIMA model can be 

mentioned in 7 of the 12 observations. In other 2 days, it outperforms all the models, 

except naive method.  
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Table 2.2 : MAE results for the models according to the days of each month    

(green most successful, red most unsuccessful). 

MAE Naive AR(24) SARIMA TAR(less) 
TAR 

(more) 

Markov-2 

(less) 

Markov-2 

(more) 

Markov-3 

(less) 

Markov-3 

(more) 

January 28.15 28.76 30.19 27.57 27.51 26.76 27.90 26.32 26.73 

February 48.43 33.88 22.56 29.03 29.79 30.51 28.17 32.27 32.77 

March 29.50 27.11 25.87 21.08 22.05 20.83 22.00 21.52 22.55 

April 18.79 16.13 15.55 18.29 18.12 18.94 20.62 17.72 17.74 

May 19.03 38.37 29.66 34.42 33.13 38.12 33.08 39.05 38.13 

June 37.30 31.88 30.60 37.66 36.28 36.62 35.16 38.03 36.26 

July 5.61 19.61 27.90 29.38 27.75 28.21 26.09 25.25 23.77 

August 19.83 47.85 30.18 42.21 43.84 44.23 44.08 47.53 49.00 

September 39.02 21.07 20.95 24.01 24.01 23.90 22.55 24.39 24.69 

October 26.70 13.79 13.14 15.23 15.75 15.67 14.28 14.68 15.16 

November 11.50 10.89 7.83 11.72 10.70 12.18 11.07 11.05 9.98 

December 46.49 53.48 38.48 44.39 42.77 46.57 46.57 42.48 42.03 

Average 27.53 28.57 24.41 27.92 27.64 28.54 27.63 28.36 28.23 

When it is checked according to RMSE, results are very similar (Table 2.3). SARIMA 

outperforms all the other methods in 5 observations. According to the averages, RMSE 

of SARIMA is lower than the closest rival by 3.22 TL/MWh. The most important 

difference between MAE and RMSE is that the benchmarks are outperformed by all 

the models in terms of RMSE averages. In terms of MAE averages, benchmark naive 

model was the second best after SARIMA model (Table 2.2). 

Table 2.3 : RMSE results for the models according to the days of each month    

(green most successful, red most unsuccessful). 

RMSE Naive AR(24) SARIMA 
TAR 
(less) 

TAR 
(more) 

Markov-2 
(less) 

Markov-2 
(more) 

Markov-3 
(less) 

Markov-3 
(more) 

January 44.79 40.01 40.07 33.87 33.93 32.97 33.44 36.70 36.51 

February 57.83 42.47 30.60 36.73 37.24 38.63 35.69 39.91 39.99 

March 38.39 35.97 37.87 30.48 31.13 30.73 31.20 30.49 31.09 

April 24.79 21.81 21.97 24.08 24.20 24.31 25.61 24.03 24.20 

May 26.43 48.21 36.90 44.64 43.46 49.16 42.25 49.56 48.80 

June 46.06 36.54 35.60 43.65 42.15 42.64 40.90 43.99 42.32 

July 7.55 21.63 30.19 34.18 32.38 32.87 31.23 29.49 28.01 

August 32.65 57.92 40.16 54.67 55.22 55.92 54.99 58.92 59.61 

September 49.14 26.51 28.96 29.73 29.32 30.40 29.35 28.77 28.65 

October 31.52 17.84 15.96 18.79 19.13 18.88 17.33 17.96 18.59 

November 15.43 14.11 10.63 15.42 15.32 15.85 14.18 14.39 14.38 

December 63.27 61.91 49.38 57.12 54.20 58.09 60.76 55.31 53.35 

Average 36.49 35.41 31.52 35.28 34.81 35.87 34.74 35.79 35.46 



25 

In the second part of the application one winter week (18-24 January 2016) and one 

summer week (4-10 July 2016) are examined. Results can be found in Table 2.4 and 

Table 2.5 for the winter week. According to both MAE and RMSE results, SARIMA 

is the best model in the averages; however in the 3 of the 7 days, it is not the best 

performing model. It is observed that benchmark AR(24) model is one of the best 

performing ones, even in the averages. Another interesting finding is that the Markov-

2 less lags model is better than the Markov-2 more lags and Markov-3 models. 

Table 2.4 : MAE results of the models for 18-24 January 2016 (green most 

successful, red most unsuccessful). 

MAE Naive AR(24) SARIMA 
TAR 

(less) 

TAR 

(more) 

Markov-2 

(less) 

Markov-2 

(more) 

Markov-3 

(less) 

Markov-3 

(more) 

18 Jan 32.08 26.69 17.07 28.72 24.54 26.35 21.69 25.41 22.29 

19 Jan 40.12 30.96 34.02 36.30 37.92 30.76 34.19 29.62 32.03 

20 Jan 21.19 17.53 28.58 26.23 33.16 20.48 26.88 23.89 26.71 

21 Jan 21.77 25.83 29.17 25.33 30.74 25.57 27.32 27.93 28.48 

22 Jan 26.07 17.05 15.71 24.52 23.44 18.68 15.79 20.03 17.55 

23 Jan 28.55 18.73 20.63 22.60 24.57 16.20 18.03 20.13 17.69 

24 Jan 52.24 48.68 32.78 49.21 40.53 46.60 44.21 47.57 43.61 

Average 31.72 26.50 25.42 30.42 30.70 26.38 26.87 27.80 26.91 

Table 2.5 : RMSE results of the models for 18-24 January 2016 (green most 

successful, red most unsuccessful). 

RMSE Naive AR(24) SARIMA 
TAR 
(less) 

TAR 
(more) 

Markov-2 
(less) 

Markov-2 
(more) 

Markov-3 
(less) 

Markov-3 
(more) 

18 Jan 45.47 33.56 21.40 37.40 32.24 34.25 29.21 34.83 29.68 

19 Jan 52.83 37.25 40.88 42.99 43.95 38.03 40.72 37.51 38.22 

20 Jan 35.44 26.09 37.92 31.91 39.13 31.48 36.59 32.27 36.34 

21 Jan 30.22 32.23 34.42 31.03 34.92 33.83 33.43 36.47 35.01 

22 Jan 36.14 23.45 22.97 30.17 29.58 25.44 24.04 26.79 25.90 

23 Jan 40.85 22.67 25.39 24.36 27.69 19.47 23.17 22.77 21.15 

24 Jan 61.86 60.04 46.30 61.56 51.92 59.69 56.10 59.98 55.40 

Average 43.26 33.61 32.75 37.06 37.06 34.60 34.75 35.80 34.53 

MAE and RMSE results for 4-10 July 2016 can be found in Table 2.6 and Table 2.7. 

According to the results, SARIMA model is the best in the averages for both models. 

This is consistent with the winter week and the 15th days of the year results. In the 

summer week, second best model is the Markov-2 (more) model, but it is difficult to 

conclude that there is much difference between the Markov models. It is possible to 

mention that TAR model is the second worst after Naive method; and AR(24) 

benchmarks give relatively good results. 
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Table 2.6 : MAE results of the models for 4-10 July 2016 (green most successful, 

red most unsuccessful). 

MAE Naive AR(24) SARIMA 
TAR 

(less) 

TAR 

(more) 

Markov-2 

(less) 

Markov-2 

(more) 

Markov-3 

(less) 

Markov-3 

(more) 

04 Jul 66.62 32.34 34.48 36.48 33.17 28.82 25.74 26.81 26.25 

05 Jul 58.49 58.90 58.05 58.22 57.92 58.88 58.53 60.12 60.00 

06 Jul 65.68 55.25 55.58 69.11 68.38 57.83 59.11 60.23 60.85 

07 Jul 31.07 36.16 35.33 39.89 42.67 36.44 37.26 38.93 38.88 

08 Jul 60.13 46.73 46.80 52.10 52.21 46.31 48.33 45.34 47.74 

09 Jul 33.51 25.49 18.39 31.03 30.48 23.37 20.50 22.19 19.00 

10 Jul 36.10 31.90 22.01 34.93 33.23 25.58 23.53 25.54 22.54 

Average 50.23 40.97 38.66 45.97 45.44 39.60 39.00 39.88 39.33 

Table 2.7 : RMSE results of the models for 4-10 July 2016 (green most 

successful, red most unsuccessful). 

RMSE Naive AR(24) SARIMA 
TAR 
(less) 

TAR 
(more) 

Markov-2 
(less) 

Markov-2 
(more) 

Markov-3 
(less) 

Markov-3 
(more) 

04 Jul 85.60 40.12 44.13 47.20 43.57 39.42 36.45 38.02 37.14 

05 Jul 69.51 64.32 64.57 66.64 66.00 67.36 67.48 69.09 69.17 

06 Jul 82.75 66.06 68.77 81.62 81.18 67.58 68.76 69.82 70.97 

07 Jul 50.28 47.18 40.83 46.58 50.33 43.81 43.96 46.21 46.88 

08 Jul 80.39 57.81 56.37 59.59 60.81 57.19 58.74 56.03 57.89 

09 Jul 52.24 29.00 21.94 34.55 33.49 26.97 24.37 25.79 22.66 

10 Jul 49.10 38.61 26.55 38.62 37.30 30.59 28.32 31.01 27.66 

Average 67.13 49.01 46.17 53.54 53.24 47.56 46.87 48.00 47.48 

Comparing the results with different models is always a difficult issue because of some 

reasons. Mainly, all the markets have their specific features and different to compare 

the results from various markets. Moreover, MAE and RMSE aren’t comparable for 

different markets; and MAPE is very high when prices are close to zero, non-calculable 

when the price is zero, and meaningless when prices are negative. Another problem is 

that all the research are done for different time periods and comparing different time 

periods is impossible due to high level of seasonality. Our paper uses only the lagged 

price series and including exogenous variable could help the situation. Noting all these 

problems, our model will still be compared with the other papers from the Turkish 

Day-Ahead Market. Ozozen et al. (2016) prefer to give their out-of-sample results in 

a calmer period of 02.10.2015 – 06.10.2015. Their SARIMA, MAPE results are 13.8% 

and the hybrid model of SARIMA and ANN achieves the MAPE of 10.2%. When our 

SARIMA model is run for the same period, it has the MAPE of 13.02%, which 

outperforms the results of Ozozen et al. (2016). Ozyildirim and Beyazit (2014) have a 

regression model by adding the temperature as an exogenous variable and has the 

MAE of 8.44 Turkish Lira. In addition, they perform a radial basis function forecast 
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and the results are very close to the linear model, has the MAE of 8.39 Turkish Liras. 

Out-of-sample forecast is done for the period of 01.07.2013 to 30.09.2013. Our 

SARIMA model is used to compare the results; however our MAE results are 13.74 

Turkish Liras in the same period. One of the reasons is that our estimation period 

decreased to 01.01.2013 to 31.06.2016 and the forecast is done for entire out-of-sample 

period. It is assumed that Ozyildirim and Beyazit (2014) forecast hourly by adding the 

available data. In addition, authors have the temperature variable in their model. Taysi 

et al. (2015) have the average MAPE for SARIMA at 9.38% and for ANN at 8.24%, 

for 12 weeks in 12 months from 2013 to 2014. Another work is Kolmek and Navruz 

(2015), which has the ARIMA, MAPE of 15.60% and ANN, MAPE of 14.15% for 

2010. As mentioned, it is difficult to compare with these models. MAPE results are 

not calculated for our application due to zeros and Kolmek and Navruz (2015)’s 

forecast period is even not in our sample. It must be stressed again that our main 

objective is comparing various models in the Turkish Day-Ahead market and 

comparing the success of these models with each other, and the second aim is using 

the well-known and used in different-style approach factorial ANOVA in a different 

aspect such as a pre-whitening method instead of forecasting scheme. Keeping in mind 

that our model doesn’t include any exogenous variable, it was not expected that it 

would outperform the other models. 

2.5 Conclusions 

This paper is important because of two main reasons. Firstly, it is the first study that 

uses the factorial ANOVA as a pre-whitening methodology to the price series. It is 

known, that electricity price series have many features such as seasonality, high 

volatility, sharp price spikes, and mean reverting processes; which make the 

forecasting very difficult. In addition to these features; it is impossible to take 

logarithmic returns to make the series stationary, because of the zeros and the 

negatives23 in the price series. Therefore, a factorial ANOVA process is applied to the 

prices series, which removed the deterministic part. This method removes the 

deterministic part caused by the day of the month, hour, weekday, month, year, holiday 

                                                 

 
23 Turkish Day-Ahead Market doesn’t allow prices to exceed 0 and 2000 TL/MWh, downside and 

upside, respectively. In other markets, such as German EEX, market-makers also allow negative 

prices, which cause forecasting problems as well. 
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effects and makes the data stationary and relatively linear. Although ANOVA is a 

special case of multivariate linear regression and it is used as a forecasting method in 

many papers, this is the first application of factorial ANOVA as a pre-whitening 

method to split the price series into deterministic and stochastic parts. 

According to both MAE and RMSE performance measures, SARIMA model 

outperforms the non-linear TAR and Markov models’ variations. It reveals the second 

advantage of the factorial ANOVA methods’ application. Linear models like SARIMA 

require relatively less mathematical background and computational time in 

comparison to non-linear models. Therefore, applying such a pre-whitening method 

affects the forecast procedure efficiently. 

Secondly; it is the first paper, which compares so many forecast methods by taking 

benchmark naive method (Nogales et al., 2002) and AR(24) into account in the Turkish 

Day-Ahead Electricity Market in hourly basis. Works of Ozyildirim and Beyazit 

(2014), which compares the regression with radial basis function; Ozozen et al. (2016), 

which applies a SARIMA model to hourly electricity prices and an ANN model to the 

residuals; Hayfavi and Talasli (2014), which compares the generated daily jump 

diffusion forecasts with the mean-reverting jump diffusion model of Cartea and 

Figueroa (2005) and the Markov regime switching model of Janczura and Weron 

(2010); Taysi et al. (2015), which compares the weekly forecast performance of 

ARIMA and ANN models; and Kolmek and Navruz (2015), which compares the 

hourly forecast performance of ARIMA and ANN; should not be undervalued. 

However, this is the first paper that comprehensively discusses the performance of 

econometric models such as SARIMA, TAR and Markov regime-switching variations 

in addition to benchmark models, naive method and AR(24). It is hoped that this paper 

would encourage the researchers and practitioners to have various transformations to 

the price series and to compare the forecast performance of different methods and work 

on the emerging Turkish Day-Ahead Market. Regulated Turkish electricity market 

needs more attention with the increasing share of the electricity trade in the Day-Ahead 

Market as well as balancing and intraday markets, in addition to currently improving 

derivatives market. General price levels tend to decrease due to the technological 

improvements and the increasing share of the renewables. Especially dam-type hydro 

power plants were one of the main electricity providers in the Turkish electricity 

market for years, but in the last years there is a huge increase in the wind electricity 
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supply share. Therefore, works on the effect of the renewables in the Turkish 

electricity market would be very interesting.   

It should be mentioned that Turkish day-ahead electricity market is a quite young 

market and the price bidding behaviour is debateable due to the lack of the 

knowledgeable participants. Due to the lack of knowledge, most of the players in this 

market don’t have a better method other than bidding the same prices of the previous 

day24. It can be observed that the same prices occur for the same hours consecutively. 

Especially, in the relatively difficult times with high prices as well as high volatility 

such as summer months25 most of the market players tend to be cautious and give the 

previous day’s prices26. The immaturity of the Turkish day-ahead market causes 

advanced problems in addition to the known difficulties of electricity price forecasting. 

By keeping in mind that Nogales et al. (2002) and Conejo et al. (2005a) mention that 

the models, which are not calibrated well, cannot outperform the naive method; this 

special issue of the Turkish day-ahead should also be covered as a limitation.  

This application is performed in the specific Turkish Day-Ahead Market, for the 

specific timeframe and data frequency, specific estimation and forecast periods, 

specific models and  lag selection. Especially for a commodity like electricity, it 

mustn’t be forgotten that the results are affected by many different factors. Therefore, 

results and outperformance of the SARIMA method must be evaluated under these 

circumstances. 

It must be stressed that the analysis has been applied on the 15th days of the year, a 

randomly selected week in summer and a week in winter, which might cause biases. 

Although, similarly, forecast periods are only a few weeks in most of the papers; 

forecasting all the days of the year and taking the average errors is a better approach. 

Using this approach in further research would give much more robust results. It is also 

a univariate model approach, which does not include any exogenous variable and 

outperforming the other models is not among the aims of the paper. It is just a 

comparison of various methods in the same dataset and the novel usage of the well-

                                                 

 
24 2.88% of the prices are exactly same with the previous day’s prices and 11.01% have less than 1 

TL/MWh difference in 2016, which are quite high levels compared to the other methods’ forecasts. 

For further information, bid structure must be examined. 
25 Due to high levels of air-conditioning usage. 
26 As an example, prices of 15 July, which is analysed in this paper, is given in the Table A.6 with the 

previous day’s prices and absolute errors. 
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known ANOVA approach. This kind of analysis could be performed in mature markets 

to see the difference between mature and immature environments. Additionally; in this 

analysis, a single series of the prices are used to forecast the electricity prices. It can 

be analysed by using 24 hourly series and forecast each and every hour separately. 

Another point is that this study is focused on a single market like most of the other 

studies in the literature. However, a comparative analysis of emerging countries’ 

energy markets could be a nice approach. 
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3.  ELECTRICITY PRICE FORECASTING USING RECURRENT NEURAL 

NETWORKS27 

3.1 Introduction 

Since the liberalization of the electricity markets, electricity price forecasting has 

become an essential task for all the players of the electricity markets for several 

reasons. Energy supply companies, especially dam-type hydroelectric, natural gas, and 

fuel oil power plants could optimize their procurement strategies according to the 

electricity price forecasts. As the share of the regulated electricity markets, such as 

day-ahead and balancing markets, increase day by day, bilateral contracts also take the 

market prices as a benchmark (Keles et al., 2016). Moreover, prices of the energy 

derivatives are also based on electricity price forecasts (Carmona et al., 2013). From 

the demand side, some companies can schedule their operations according to the low-

price zones and operate in these hours or months. Zareipour et al. (2010) stressed the 

importance of the short-term electricity forecasting accuracy. A 1% improvement in 

the mean absolute percentage error (MAPE) would result in about 0.1–0.35% cost 

reductions from short term electricity price forecasting (Uniejewski et al., 2016), 

which results to circa $1.5 million per year for a medium-size utility with a 5 GW peak 

load (Hong, 2015). 

Electricity prices differ from all other assets and even commodities due to its unique 

features such as requirement of having constant balance between the supply and 

demand sides, demand inelasticity, oligopolistic generation side, and non-storability 

(Ugurlu et al., 2018b). These features cause some important characteristics of the 

electricity prices: high volatility, sharp price spikes, mean reverting process, and 

seasonality in different frequencies (Hayfavi and Talasli, 2014). Because of all these 

                                                 

 

27 This chapter is based on the paper “Electricity Price Forecasting Using Recurrent Neural Networks”. 

Ugurlu, U., Oksuz, I. & Tas, O. 2018. Electricity Price Forecasting Using Recurrent Neural Networks. 

Energies, 11 (5), 1255. 
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idiosyncratic features and characteristics, forecasting the electricity prices accurately 

becomes a very challenging task.  

Machine learning models are able to solve very complicated classification and 

regression problems with great success. Recently, deep learning models have become 

the state-of-the-art in speech recognition (Greff et al., 2017), handwriting recognition 

(LeCun et al., 1998) and image classification (Krizhevsky et al., 2012). 

This paper presents a Gated Recurrent Unit (GRU) based method for electricity price 

estimation with the goal of using the valuable time series information fully in a neural 

network architecture. Neural network based methods showed great promise in 

computer vision, speech recognition and natural language processing (Greff et al., 

2017). In particular, Recurrent Neural Networks are capable of faithfully preserving 

the key time-dependent patterns for natural language processing type problems. This 

motivated us to propose a thorough analysis of multiple features for the electricity 

prices estimation using Recurrent Neural Networks (RNNs). In particular, the main 

contributions of this paper are: 

 A multi-layer GRU Recurrent Neural Network setup for estimating electricity 

prices is used. 

 A wide analysis of multiple feature settings for neural networks, Convolutional 

Neural Networks (CNN), Long Short Term Networks (LSTM) and state-of-

the-art statistical methods is performed. 

 Extensive electricity price estimation performance analysis with both daily 

andmonthly comparisons is made. 

 Detailed analysis between the state-of-the-art statistical models and the neural 

network based methods is made. 

3.1.1 Literature review 

Electricity price forecasting literature started to develop in the beginning of the 2000s 

(Szkuta et al., 1999; Bunn, 2000; Contreras et al., 2003; Nogales et al., 2002; 

Shahidehpour et al., 2002; Cuaresma et al., 2004; Bunn, 2004). Following the review 

by Weron (2014), we partition the main methods of electricity price forecasting into 

five groups: multi-agent, fundamental, reduced-form, statistical, and computational 

intelligence models. 
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Multi-agent models simulate the operation of the system and build the price process 

by matching the demand and the supply. The papers by Shafie-Khah et al. (2015) and 

Ziel and Steinert (2016) are very good and recent examples of these type of papers. 

Shafie-Khah et al. (2015) modelled wind power producers, plug-in electricity vehicle 

owners and customers, who participated into demand response programs, as 

independent agents in a small Spanish market. Furthermore, Ziel and Steinert (2016) 

proposed a model for the German European Power Exchange (EPEX) market, which 

considers all the supply and demand information of the system and discusses the 

effects of the changes in supply and demand. 

Fundamental or structural methods discuss the effects of the physical and economic 

factors on the electricity prices. In this part of the literature, variables are modelled and 

predicted independently, often via other methods such as reduced-form, statistical or 

machine learning methods. For example, Howison and Coulon (2009) developed a 

model for electricity spot prices using the stochastic processes of the independent 

variables. Their method also takes the bid stack function of the price drivers and the 

electricity prices into account. In another study, Carmona and Coulon (2014) focused 

on the role of the energy prices and effect of the fundamental factors on the electricity 

prices in a survey about the structural methods. Carmona and Coulon (2014) also 

discussed the superiority of the fundamental models to the reduced-form models. Both 

Carmona et al. (2013) and Füss et al. (2015) constructed fundamental models to 

achieve the final aim of electricity derivatives pricing. 

Reduced-form models mainly consist of two methods: Markov regime-switching and 

jump diffusion. These models are relatively better than structural and statistical models 

in terms of handling spikes. Geman and Roncoroni (2006) used mean-reverting jump 

diffusion (MRJD) model. Their approach captures both trajectory and statistical 

components of the electricity prices. Cartea and Figueroa (2005) and Janczura et al. 

(2013) used more hybrid methods. First, theyed filter out the jumps using a jump 

diffusion model and then they proposed more statistical methods to model the 

remaining, stationary part of the series. Hayfavi and Talasli (2014) applied a hybrid-

jump diffusion model to the Turkish market and compared the results with Carte and 

Figueroa (2005) and Janczura and Weron (2010). Janczura and Weron (2010) 

compared some of the examples in the literature with their own three-regime-switching 

Markov model, which captures both positive and negative spikes, in addition to 
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exhibiting the inverse leverage effect of the electricity spot prices. Furthermore, 

Eichler and Türk (2013) proposed a semi-parametric Markov regime-switching model. 

In their method, model parameters are employed by robust statistical techniques. 

Moreover, it is easier to estimate, and needs less computational time and distributional 

assumptions. Keles et al. (2012) and Bordignon et al. (2013) used jump diffusion and 

Markov regime-switching, respectively, in hybrid works. 

Statistical and computational intelligence are the most common models in the 

electricity price forecasting literature. Statistical models are in great variety from basic 

naive method (Nogales et al., 2002) to very developed methods (Ziel and Weron, 

2018). As Ziel and Weron (2018) discussed, there are univariate and multivariate 

frameworks in the electricity price forecasting. In day-ahead electricity price 

forecasting, players bid the prices and the quantities for the 24 h of the next day. In 

this sense, the first way is to predict all the prices in a univariate framework from a 

single price series as a 24-step-ahead forecast. Forecasting the prices from 24 different 

time series as one-step-ahead forecasts is another option, which is called multivariate 

framework. Weron and Misiorek (2008) applied the univariate framework to the 

Nordic data. Kristiansen (2012) utilized the multivariate framework on the same 

dataset in a follow-up study and argued that using univariate framework increases the 

prediction accuracy. However, it contradicts with the findings of Cuaresma et al. 

(2004), who mentioned that using the multivariate framework presents better 

forecasting results than univariate method. In the same Nordpool market, Raviv et al. 

(2015) have a different point of view. It compares the one-step-ahead daily average 

price forecasts in a univariate framework with the aggregated 24-step-ahead forecasts 

of the hourly prices. From empirical evidence, Raviv et al. (2015) stated that 

multivariate framework has lower out-of-sample errors than the univariate one. 

Nogales et al. (2002), Contreras et al. (2003), and Conejo et al. (2005b) presented some 

substantial examples of the auto-regressive models. Nogales et al. (2002) proposed the 

naive method and, as mentioned by Contreras et al. (2003), Nogales et al. (2002) and 

Conejo et al. (2005b), poorly-calibrated forecasting methods cannot outperform the 

naive method. Although Conejo et al. (2005b) found that Auto-regressive Integrated 

Moving Average (ARIMA) model is worse than the model with exogenous variables 

in the American PJM market, Contreras et al. (2003) stated that adding an exogenous 

variable does not necessarily increase the prediction accuracy. 
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Many types of computational intelligence models are applied in the electricity price 

forecasting literature. Some of the early stage papers were presented by Mandal et al. 

(2006), Catalão et al. (2007) and Zhang and Cheng (2008). Mandal et al. (2006) 

forecasted the electricity loads and prices in the Australian market by applying 

Artificial Neural Network (ANN) model for 1–6 h ahead. MAPE increased from 

9.75% to 20.03% when one-step ahead forecast increased to six-step ahead forecast. 

In another study, Catalao et al. (2007) utilized a three-layered feed-forward neural 

network, which is trained by Levenberg–Marquardt method, and forecasted 168-step-

ahead in the Spanish and Californian markets. Although they gave the results for all 

the seasons of the Spanish market, in the Californian market, results are available only 

for the Spring term. Therefore, it is difficult to compare the results of both markets. 

Differently, Zhang and Cheng (2008) forecasted the daily average prices and required 

only one-step-ahead forecast. In the Nordpool market, a standard error back-

propagation method is used, which is improved by self-adaptive learning rate and 

momentum coefficient algorithms. Results indicate that ANN model outperforms the 

standard ARIMA method. Recent studies by Keles et al. (2016) and Panapakidis and 

Dagoumas (2016) apply mainly ANN methods. Keles et al. (2016) proposed ANN 

models with different variables by utilizing the clustering methods. Their ANN based 

method outperforms the benchmark naive-type models and the Seasonal Auto-

regressive Integrated Moving Average (SARIMA) model. An important contribution 

of this work is the thorough analysis of the forecast accuracy according to the months, 

extreme price levels, and small and extreme price changes. Panapakidis and Dagoumas 

(2016) compared the forecast performances of different ANN models with various 

numbers of variables, layers and neurons. The main approach they applied is the 

clustering of the groups. According to their results, clustering gives 20% better results. 

Amjady et al. (2006) applied fuzzy neural network, Zhao et al. (2008) performed 

support vector machines, Alamaniotis et al. (2015a) used kernel machines and 

Pindoriya et al. (2008) utilized adaptive wavelet-neural network. 

3.1.2 Turkish market 

Electricity markets differ from country to country for several reasons. The main 

difference is the supply share of different production methods. When share of 

renewables, i.e., wind and solar, as well as hydro power plants increase, prices tend to 

decrease. As Diaz and Planas (2016) mentioned, Spanish market has many zeros, 
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which is the minimum price allowed, as well as in the Canadian market (Filipovic et 

al., 2017). Turkish market has the same price floor of 0 and the price cap of 2000 

Turkish Liras/MWh (about 598 Euros/MWh, by the 2016 average exchange rate). 

Furthermore, as Fanone et al. (2013) and Keles et al. (2012) mentioned, many negative 

prices occur due to increased wind share in the German market and it needs special 

attention. Ugurlu et al. (2018b) mentioned some information about the shares of the 

installed capacity in the Turkish market: 34.2% for hydro and 7.6% for wind. In 

addition to the improved technology in the other supply methods, increasing shares of 

hydro and wind trigger the decrease in the Turkish day-ahead market electricity prices, 

which causes many zeros in the price series. These zeros require a special treatment 

and transformation prior the forecasting procedure (Ugurlu et al., 2018b; Diaz and 

Planas, 2016; Uniejewski et al., 2017). Avci-Surucu et al. (2016) and Ozozen et al. 

(2016) gave some information about the working mechanism of the Turkish day-ahead 

market. Day-ahead market is used to balance the electricity requirement one day before 

the physical delivery of the electricity (Ugurlu et al., 2018b). As in many other 

markets, market participants give their bids in terms of quantity and price until 11:00, 

and the price for each hour of the next day is determined by the market maker until 

14:00 according to the intersection of the supply and demand curves. It is aimed to 

meet the required demand with the lowest possible price. 

Turkish day-ahead electricity market has an improving literature. Hayfavi and Talasli 

(2014) reported one of the first works, which proposes a multifactor model and 

compares the model with Cartea and Figueroa (2005) and Janczura and Weron (2010). 

The stochastic model composed of three jump processes outperforms Cartea and 

Figueroa (2005) and Janczura and Weron (2010) according to the comparison of the 

empirical moments and model moments in the daily Turkish data. Kolmek and Navruz 

(2015) compared an artificial neural network (ANN) model with the ARIMA model. 

According to their results, performance of the models differ widely in respect to the 

selected evaluation period. However, overall, ANN model is a little better than the 

ARIMA model. In another work, Ozguner et al. (2017) proposed an ANN model to 

forecast the hourly electricity prices and loads in the Turkish market and compared the 

results with multiple linear regression. Findings of this paper is very similar to Kolmek 

and Navruz (2015); in both papers, ANN model outperforms ARIMA model with a 

small difference. Ozyildirim and Beyazit (2014) compared another machine learning 
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method, radial basis function, with the multiple linear regression. In their work, 

difference between the prediction performance of themodels are negligible. Ozozen et 

al. (2016) adapted a method from the literature to Turkish electricity prices and takes 

the residuals of the SARIMA forecast and puts it into ANN procedure. However; the 

simple model of Ugurlu et al. (2018b), which even does not include an exogenous 

variable, outperforms Ozozen et al. (2016). In our opinion, the reason for the better 

performance is the factorial Analysis of Variance (ANOVA) application of Ugurlu et 

al. (2018b) on the electricity price series prior to forecasting. Although the best model 

varies from period to period, SARIMA is chosen as the best statistical model for the 

Turkish day-ahead market in (Ugurlu et al., 2018b). 

3.1.3 Deep learning 

Neural networks transform into deep neural networks (deep learning) with the addition 

of more layers into the neural network mechanisms. Besides, recurrent neural networks 

such as LSTM and GRU have started to give better results in the time series data, 

which triggered the application of these methods in the electricity price forecasting 

and related literature. RNNs have shown great success in speech recognition, 

handwriting recognition and polyphonic music modelling (Greff et al., 2017). In the 

electricity load forecasting literature, Zheng et al. (2017) applied similar days selection 

and empirical mode decomposition methods in addition to LSTM, and their method 

outperforms many state-of-the-art methods such as support vector regression, ARIMA 

or ANN. Xiaoyun et al. (2016) made wind power forecast by combining principal 

component analysis (PCA) with LSTM. In a solar power forecast research, Gensler et 

al. (2016) applied LSTM method with AutoEncoder and the results show that LSTM 

usage gives much better results than ANN. In another work, Bao et al. (2017) applied 

very similar method to the stock price forecasting and used wavelet transformation, 

stacked AutoEncoders and LSTM. Hosein et al. (2017) made similar findings as the 

superiority of the deep neural networks (various deep neural networks including 

LSTM ones are used) in the power load forecasting, but mentioned the computational 

complexity as a drawback. The only deep neural networks (deep learning) application 

in the day-ahead electricity price forecasting literature was by Lago et al. (2018b), who 

only used a simple multi-layer perceptron with more than single layer and did not 

propose a RNN algorithm such as LSTM or GRU. Another point is that the paper’s 

main research question is the effect of the market integration on the electricity price 
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forecasting in Europe and deep neural network is only used as the forecast model and 

is not compared with any other method. We want to acknowledge two simultaneous 

works that are published after our submission on the same topic (Lago et al., 2018a; 

Kuo and Huang, 2018). Lago et al. (2018a) proposed a framework for deep learning 

applications in the electricity price forecasting and also suggested a benchmark by 

comparing various price forecasting models. Results are threefold: First, machine 

learning models outperform the statistical methods. Second, moving average terms do 

not improve the success of the predictions. Third, hybrid models do not perform better 

than the individual ones. An important point to discuss is that they applied recurrent 

neural networks, LSTM and GRU as well as deep neural networks (DNN). 

Surprisingly, they found that DNN has a better predictive accuracy compared to LSTM 

and GRU. Although the authors had two hypotheses about these results, which are low 

amount of data and different structure of the models, they suggested further research 

about the same topic. Our work differs with these work in the number of features we 

utilized and by proposing deep RNNs in comparison to DNNs. In another very recent 

paper, Kuo and Huang (2018) also proposed CNN and LSTM as deep network 

structures. According to their results, combining CNN and LSTM gives lower errors 

than the individual forecasts, in addition to the state-of-the-art machine learning 

methods. Lago et al. (2018a) used EPEX Belgium hourly data from 2010 to 2016 and, 

Kuo and Huang (2018) utilized U.S. PJM half-hourly data of 2017.  

In this paper, we propose to use RNNs for the time-dependent problem of electricity 

price estimation. To the best of our knowledge, our paper is the first in the electricity 

price forecasting literature to apply deep RNNs, LSTM and GRU. Furthermore, these 

models are compared with simple deep neural networks (multi-layer ANN), single 

layer neural networks and the statistical time series methods. In addition to the lagged 

values of the price series, forecast Demand/Supply (D/S), temperature, realized D/S 

and balancing market prices are used as the exogenous variables. Various 

combinations of these features are selected to measure the effects of the variables. 

Moreover, Diebold–Mariano (DM) test (Diebold and Mariano, 1995) is applied to 

evaluate the statistical significance of the performance difference achieved with all 

different architectures and features.  

The remainder of the paper is structured as follows. Section 3.2 gives information 

about the data. The neural networks based methods are described in Section 3.3 with 
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a particular interest in RNNs. Experimental setup, methods of comparison and 

corresponding results are shared in Section 3.4. We conclude the paper with a detailed 

discussion on the results in Section 3.5. 

3.2 Data 

Turkish Day-ahead Market electricity prices are effected by various types of 

seasonality. Early morning hours (2:00–7:00) have relatively low prices, even some 

zeros. Moreover, there are double peaks in the day, one before and one after the lunch 

time, 11:00 and 14:00, respectively, as visualized in Figure 3.1. In weekly terms, 

Saturday morning prices are as high as the other weekdays, which shows the working 

pattern on Saturday mornings. Furthermore, there are two minimums on Saturday 

night and Sunday night. From a seasonal point of view, both heating and cooling 

requirements cause high prices in winter and summer, respectively. However, due to 

the high share of hydro power plants in the electricity production, prices tend to 

decrease in spring time. An example from the data for each season of 2016 is visualized 

in Figure 3.2. The detailed statistics of the test data from 2016 are illustrated in the 

Appendix B.1. 

 

Figure 3.1 : Left panel: Price distribution of hourly prices (Euro/MWh) according to 

the hours of the day (based on 24 h). Right panel: Price distribution of hourly prices 

(Euro/MWh) according to the hours of the week (based on 168 h). 

Hourly day-ahead electricity prices of the Turkish Day-Ahead Market are obtained 

from 1 January 2013 to 21 December 2016 (EPIAS, 2018). The Turkish Day-Ahead 

Market was established on 1 December 2011. The first 13 months was excluded due 

to the learning-by-doing process, which limited us to start our data from 1 January 

2013. 
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Figure 3.2 : Price time series of sample weeks from each season. 

In neural network applications, the first three years (1 January 2013–31 December 

2015) are used for training and each hour of the next day (1 January 2016) is predicted 

using the 24-step-ahead forecast scheme. This process is repeated using rolling 

window method by moving the window 24 h in every forecast. Training period 

remained as three years and the forecast period as 24-h of the following day. This 

process is repeated for 356 days of 2016. The reason forf not including the last 10 days 

of 2016 in the forecast procedure is the very high prices, which occurred in this term 

due to the natural gas shortage and inactivity of the natural gas power plants. Prices 

increased up to 515 Euro/MWh on 23 December at 14:00, which is approximately 14 

times higher than the average price level.  

In the statistical time series methods, such as Markov, Threshold Auto Regressive 

(TAR) and SARIMA, due to non-stationary nature of the price series and zeros, 

factorial ANOVA (Ugurlu et al., 2018b) transformation was applied and the series split 

into deterministic and stochastic parts. Then, stationary stochastic part was forecasted 

and added to the deterministic part values, which include the hour, weekday, month, 

holiday and year components. This process was repeated in the rolling window scheme 

for 356 days as in the neural network methods. 

Variable selection is a very important topic in the electricity price forecasting. In our 

paper, we have chosen the lagged price values as variables according to auto-
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correlation and partial auto-correlation functions. The chosen lags are also coherent 

with the lagged price series used in the literature. Furthermore, exogenous variables 

are also selected according to the electricity price literature (Uniejewski et al., 2016; 

Bordignon et al., 2013). Due to the high correlation between them and the independent 

variable, forecast D/S, temperature and the 24th lags of realized D/S and balancing 

market price are selected as exogenous variables. One advantage is that the market 

maker (EPIAS) provides forecast D/S before the bids are given into the system for the 

next day. Another variable is temperature, which was taken from the Turkish State 

Meteorological Service as 81 city-based hourly temperatures. Then, annual energy 

consumption for all the cities was taken from Republic of Turkey Energy Market 

Regulatory (EPDK, 2018) and energy consumption-weighted hourly temperatures (T) 

were calculated for every hour. Furthermore, we took the 24th lags of realized D/S and 

balancing market prices into account because both have very high correlation with the 

price series and also used as variables in the literature. In addition to the above 

mentioned exogenous variables, 1, 23, 24, 48, 72, 168 and 336 h lagged prices were 

also utilized as features to estimate the day-ahead prices for the upcoming 24 h. To 

report the results with aforementioned features, we use the symbols stated in Table 

3.1. 

Table 3.1 : Utilized features for electricity price estimation. 

Symbol Feature 

F1 24-h lagged price 

F2 168-h lagged price 

F3 1-h lagged price 

F4 48-h lagged price 

F5 23-h lagged price 

F6 72-h lagged price 

F7 336-h lagged price 

F8 Forecast demand/supply 

F9 Temperature 

F10 Realized demand/supply with 24 h lag 

F11 Balancing market price with 24 h lag 

3.3 Methods 

In this section, we describe the Neural Network architectures we used for electricity 

price estimation. A simple neural network with three input neurons is visualized in 

Figure 3.3. The guiding equation of a neuron can be described as: 
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 𝑌 = 𝑓(∑ (𝑥𝑖𝑤𝑖 + 𝑏𝑖)
𝐼𝑛𝑝𝑢𝑡𝑠
𝑖 )                                      (3.1) 

where w is the weight on each connection to the neuron, b is the bias and x is the input 

of the neuron. f can be described as the activation function to introduce non-linearity 

and, in our experiments, we used Rectified Linear Units (ReLU) (Glorot et al., 2011). 

In Section 3.1, basic neural network structure, Artificial Neural Networks, is defined. 

In Section 3.2, we give a brief definition of Convolutional Neural Networks and their 

application on the time series data for electricity price estimation. Then, we move to 

RNNs in Section 3.3, which is the focal point of our work. In Section 3.3.1, we define 

the LSTM networks and their benefits for time series prediction tasks. Finally, in 

Section 3.3.2, we define the GRUs and their fundamental differences from LSTMs. 

 

Figure 3.3 : Simple neural network. 

3.3.1 Artificial neural networks 

ANN is a basic architecture of a neural network, which consists of layers of neurons 

connected densely (Wasserman, 1988). This type of networks is also known as Multi-

layer Perceptrons (MLP) and they are early examples of the neural networks. We used 

a shallow network with a single layer with 10 neurons and a deeper three-layer 

network, each consisting of 10 neurons, for our experiments. We added a final layer 

to estimate the target values. 

3.3.2 Convolutional neural networks 

Convolutional Neural Networks have been successfully applied to many problems in 

computer vision (Krizhevsky et al., 2012) and medical image analysis (Oksuz et al., 

2018). In our application, the convolutional layers were constructed using one-

dimensional kernels that move through the sequence (unlike images where 2D 

convolutions are used). These kernels act as filters which are being learned during 

training. As in many CNN architectures, the deeper the layers get, the higher the 



43 

number of filters become. We used two convolutional layers and a final fully 

connected layer for prediction. Each convolution is followed by pooling layers to 

reduce the sequence length. 

3.3.3 Recurrent neural networks 

RNNs are networks with loops in them, allowing information to persist. They are used 

to model time-dependent data (Dorffner, 1996). The information is fed to the network 

one by one and the nodes in the network store their state at one time step and use it to 

inform the next time step. Unlike MLP, RNNs use temporal information of the input 

data, which make them more appropriate for time series data. An RNN realizes this 

ability by recurrent connections between the neurons. A general equation for RNN 

hidden state ht given an input sequence x= (x1, x2, . . . , xT) is the following: 

ℎ𝑡 = {
0, 𝑖𝑓 (𝑡 = 0)

𝜑(ℎ𝑡−1, 𝑥𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                      (3.2) 

where 𝜑 is a non-linear function. The update of recurrent hidden state is realized as: 

ℎ𝑡 = 𝑔(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1)                                           (3.3) 

where g is a hyperbolic tangent function. 

In general, this generic setting of RNN without memory cells suffers from vanishing 

gradient problems. In this study, we investigated the performance of two RNNs with 

memory cells for electricity price forecasting, namely, LSTMs and GRUs. 

3.3.3.1 Long short-term memory networks 

LSTM (Hochreiter and Shmidhuber, 1997) is a special type of RNN that is able to deal 

with remembering information for much longer time. In LSTM, each node is used as 

a memory cell that can store other information in contrast to simple neural networks, 

where each node is a single activation function. Specifically, LSTMs have their own 

cell state. Normal RNNs take in their previous hidden state and the current input, and 

output a new hidden state. An LSTM does the same, except it also takes in its old cell 

state and outputs its new cell state 𝑐𝑡
𝑗
 (Vanishing Gradients & LSTMs, 2018). This 

property helps LSTMs to address the vanishing gradients problem from the previous 

time-steps.  
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We visualize the LSTM structure in Figure 3.4 (left panel) to define the guiding 

equations of LSTM. LSTM has three gates: input gate it, forget gate ft and output gate 

ot, as visualized in Figure 3.4 (left panel). Sigmoid function is applied to the inputs st 

and the previous hidden state ht-1. The goal of the LSTM is to generate the current 

hidden state at time t. The hidden state hjt of LSTM unit is defined as: 

ℎ𝑡
𝑗

= 𝑜𝑡
𝑗

tanh(𝑐𝑡
𝑗
)                                               (3.4) 

where 𝑜𝑡
𝑗
 modulates the memory influence on the hidden state. The output gate is 

computed as: 

𝑜𝑡
𝑗

= 𝜎(𝑊0𝑥𝑡 + 𝑈0ℎ𝑡−1 + 𝑉0𝑐𝑡)𝑗     ,  (3.5) 

where 𝜎 is the logistic sigmoid function and 𝑉0 is a diagonal matrix. The memory cell 

𝑐𝑡
𝑗
 is updated partially following the equation 

𝑐𝑡
𝑗

= 𝑓𝑡
𝑗
𝑐𝑡−1

𝑗
+ 𝑖𝑡

𝑗
𝑐̃𝑡

𝑗
       ,                                   (3.6) 

where the memory content is defined by a hyperbolic tangent function: 

𝑐̃𝑡
𝑗

= tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1)𝑗                                    (3.7) 

Forget gate 𝑓𝑡
𝑗
 controls the amount of old memory loss. Instead, input gate 𝑖𝑡

𝑗
 controls 

new memory content that is added to the memory cell. Gates are computed by: 

𝑓𝑡
𝑗

= 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑉𝑓𝑐𝑡−1)𝑗                            (3.8) 

𝑖𝑡
𝑗

= 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑉𝑖𝑐𝑡−1)𝑗                             (3.9) 

 

Figure 3.4 : Illustration of: Left panel: LSTM; and right panel: GRU. Left panel: i, f 

and o are the input, forget and output gates, respectively. c and 𝑐̃ denote the memory 

cell and the new memory cell content. Right panel: r and z are the reset and update 

gates, and h and ℎ̃ are the activation and the candidate activation. (Figure adapted 

from Chung et al. (2014)). 
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LSTM unit is robust compared to traditional RNN, thanks to the control over the 

existing memory via the introduced gates. LSTM is can pass information that is 

captured in early stages and easily keeps memory of this information for long term, 

which enables the opportunity to generate potential long-distance dependencies as 

underlined by Chung et al. (2014). 

3.3.3.2 Gated recurrent units 

A GRU (Cho et al., 2014) has two gates, a reset gate r and an update gate z, as 

visualized in Figure 3.4 (right panel). The update gate defines how much of the 

previous memory to be kept and the reset gate determines how to combine the new 

input with the previous memory. GRUs become equivalent to RNNs, if the reset gates 

are all 1 and update gates all 0. 

Following Chung et al. (2014), we formulated the guiding equations. The activation 

ℎ𝑡
𝑗
 of the GRU at time t is a linear interpolation between the previous activation ℎ𝑡−1

𝑗
 

and the candidate activation ℎ𝑡
𝑗
: 

ℎ𝑡
𝑗

= (1 − 𝑧𝑡
𝑗
)ℎ𝑡−1

𝑗
+ 𝑧𝑡

𝑗
ℎ̃𝑡

𝑗
                                     (3.10) 

where an update gate 𝑧𝑡
𝑗
 is in charge of the content update. The update gate is computed 

by: 

𝑧𝑡
𝑗

= 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1)𝑗                                      (3.11) 

This procedure of taking a linear sum between the existing state and the newly 

computed state is similar to the LSTM unit. Unlike LSTM, GRU does not have any 

control on the state that is exposed, but exposes the whole state each time. 

The candidate activation ℎ̃𝑡
𝑗
 is computed similarly to RNN: 

ℎ̃𝑡
𝑗

= tanh(𝑊𝑥𝑡 + 𝑈(𝑟𝑡 ⊙ ℎ𝑡−1))𝑗                            (3.12) 

Where 𝑟𝑡 is a set of reset gates and ⊙ is an element-wise multiplication.The reset gate 

𝑟𝑡
𝑗
 is computed similarly to the update gate: 

𝑟𝑡
𝑗

= (𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)𝑗                                    (3.13) 

GRUs have the same fundamental idea of gating mechanism to learn long-term 

dependencies compared to LSTM, but there are couple of significant differences. First, 
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GRU has two gates and fewer parameters compared to LSTM. The input and forget 

gates are coupled by an update gate z and the reset gate r is applied directly to the 

previous hidden state in GRUs. In other words, the responsibility of the reset gate in 

an LSTM is divided into both reset gate r and the update gate z. GRUs do not possess 

any internal memory that is different from the exposed hidden state. LSTMs have 

output gates and GRUs do not possess output gates. In addition, in LSTMs, there is a 

second non-linearity applied when computing the output, which is not present in GRUs 

(Implementing a GRU/LSTM RNN with Python and Theano, 2018). 

3.4 Results 

This section offers a qualitative and quantitative analysis of the proposed method, as 

well as comparison of RNNs with respect to state-of-the-art methods, to demonstrate 

its robustness for electricity price estimation. 

Our quantitative analysis consists of comparing our method with others and also 

looking into monthly and weekly performance. In Section 3.4.1, we describe the 

evaluation metrics and then explain the state-of-the-art statistical methods in Section 

3.4.2. We report the quantitative results achieved by all network types with a different 

combination of layers in Section 3.4.3 and evaluate the statistical significance in 

Section 3.4.4. Finally, we mention some implementation details about the neural 

network training and hyper-parameters in Section 3.4.5. 

3.4.1 Evaluation metrics 

In the performance evaluation of the forecasting techniques, Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE) are the most used metrics. Although MAPE gives opportunity to compare the 

electricity price forecasts’ performances from various markets, for the prices around 

zero, it does not give interpretable results. For zeros, MAPE can not be calculated; for 

negative prices, there are negative values, which are meaningless; and for small 

positive prices, MAPE values are very high. In the comparisons, there is not an 

important difference between the MAE and RMSE values, because both are based on 

the absolute errors (Ugurlu et al., 2018b). Therefore, MAE method is used as the 

performance evaluation criterion in this paper. Equation 3.14 shows the MAE formula. 
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𝑀𝐴𝐸 =
1

𝑇
∑ |𝑃𝑖 − 𝑃̂𝑖|

𝑇
𝑖=1                                         (3.14) 

3.4.2 State-of-the-art statistical methods 

Traditionally, Naive method, SARIMA, Markov regime-switching and Self exciting 

threshold auto-regressive regression (SETAR) have been used with great success for 

time series estimation in the electricity price forecasting literature (Ugurlu et al., 

2018b). We compared the robustness of these techniques with the neural network 

architectures. 

3.4.2.1 Naïve method 

One of the most important benchmark techniques in the electricity price forecasting 

literature, naïve method (Nogales et al., 2002), can be found below in equation 3.15. 

According to Nogales et al. (2002) and Conejo et al. (2005b), forecasting methods that 

are poorly calibrated cannot outperform the naive method (Ugurlu et al., 2018b). 

𝑃𝑑,ℎ = {
𝑃𝑑−7,ℎ + 𝜀𝑑,ℎ, 𝑀𝑜𝑛𝑑𝑎𝑦, 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦, 𝑆𝑢𝑛𝑑𝑎𝑦

𝑃𝑑−1,ℎ + 𝜀𝑑,ℎ, 𝑇𝑢𝑒𝑠𝑑𝑎𝑦, 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦, 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦, 𝐹𝑟𝑖𝑑𝑎𝑦
       (3.15) 

Pd,h states the price of the selected day and hour. ed,h stands for the noise term. 

3.4.2.2 Markov regime-switching auto-regressive (MS-AR) model 

As another benchmark method, two-state Markov regime-switching auto regressive 

model (Hamilton, 1989) with the 1st, 24th, 48th and 168th lags of the price series are 

used in the estimation. This method allows the observations to be distributed into 

different states by a latent variable. Equation 3.16 relates the Markov Regime-

Switching Auto Regressive (MS-AR) model. 

                                                   yt =  αs +  ∑ ϕs,iyt−i +  ϵt
p
i=1                                   (3.16) 

where st is a two-state discrete Markov-chain with S = 1,2 and  ϵt ~ i.i.d. N(0, 𝜎2). 

The estimation of the MS-AR model is performed by maximum likelihood algorithm 

(Ugurlu et al., 2018b; Ozkan and Yazgan, 2015). 

3.4.2.3 Self-exciting threshold auto-regressive (SETAR) model 

Threshold auto-regressive (TAR) models are similar to Markov regime-switching 

models in terms of placing the observations into different groups. The main difference 

of the TAR models is that the threshold variable is observable compared to the latent 
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one in the Markov models. TAR models allow to choose the threshold according to an 

exogenous variable. If the threshold variable is selected according to a lagged value of 

the dependent variable, then it is called SETAR model. In equation 3.17, SETAR 

model is given. 

xt =  ϕ0
(j)

+ ϕ1
(j)

xt−1 + ⋯ +  ϕp
(j)

xt−p + αt
(j)

,    if  γj−1 ≤ xt−d ≤ γj         (3.17) 

Where k and d are positive integers, j= 1, …, k; γi  are real numbers such that −∞ =

γ0 < γ1 < ⋯  <  γk−1 <  γk =  ∞ , the superscript (j) is used to signify the regime, 

and αt
(j)

 are i.i.d sequences with mean 0 and variance σj
2 and are mutually independent 

for different j. The parameter d is referred to as the delay parameter for different 

regimes (Ugurlu et al., 2018b; Tsay, 2005). 

As in Markov model, 1st, 24th, 48th and 168th lags of the price series are used in the 

estimation, in addition to the delay parameter, d = 1. 

3.4.2.4 Seasonal auto-regressive integrated moving average (SARIMA) model 

ARIMA is a special kind of regression, which takes the past prices (AR), previous 

values of the noise (MA) and the integration level (I) of the price series into account. 

In SARIMA, seasonal component (S) are also involved in the estimation process. 

Generally, only intra-weekly nature of the series is incorporated as a seasonal 

component, but, in the electricity price series, it is required to deal with the intra-daily 

and intra-yearly seasonality as well. Therefore, triple SARIMA model of Taylor 

(2010) is performed by maximum likelihood assuming Gauss–Newton optimization. 

Equation 3.18 refers to the triple SARIMA model. 

ϕp(Ł)ΦP1
(Łs1)ΩP2

(Łs2)ΓP3
(Łs3)(yt − a − b𝑡) = θq(Ł)ΘQ1

(Łs1)ΨQ2
(Łs2)ΛQ3

(Łs3)εt(3.18) 

yt is the load in period t, a is a constant term, b𝑡 is the coefficient of linear deterministic 

trend term; εt is a white noise error term; Ł is the lag operator; and ϕp, ΦP1
 , ΩP2

 , ΓP3
 

, θq, ΘQ1
 , ΨQ2

 and ΛQ3
 are the polynomial functions of orders p, P1, P2, P3, q, Q1, Q2 

and Q3, respectively (Ugurlu et al., 2018b; Taylor, 2010). 

Our triple SARIMA model can be stated as (1, 0, 1)1x(1, 0, 1)24x(1, 0, 1)168. To comply 

with the other statistical methods, ARMA(48,48) component is also added to this 

model. 
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3.4.3 Quantitative analysis 

In this section, we report the performance analysis of neural networks in comparison 

with the state-of-the-art methods. We also use a different combination of features for 

shallow and deep networks to analyze the prediction accuracy. Finally, we report the 

monthly average results and illustrate the price estimation accuracy of GRU on a 

graph. 

3.4.3.1 Comparison with the state of the art methods 

In our first experimental setup, we use key features of lagged price values 1, 24, 48 

and 168 on all described algorithms to compare the one-layered neural network 

algorithm performance with the state-of-the-art methods. Results in Table 3.2 indicate 

the neural network models’ success compared to the statistical ones. Recurrent neural 

networks, LSTM and GRU are the best methods in this comparison. As a note, naive 

method outperforms two other methods, which is in line with the findings of Contreras 

et al. (2003), Nogales et al. (2002) and Conejo et al. (2005b), mentioning the relatively 

good performance of naive method. 

Table 3.2 : Single-layer 24-step-ahead prediction MAE results comparison of neural 

network based methods with state-of-the-art techniques. 

Features Markov Naive SETAR SARIMA CNN ANN LSTM GRU 

F1-4 8.04 7.95 7.89 7.29 9.82 6.37 5.91 5.71 

3.4.3.2 Shallow network comparisons 

Our first comparison is on shallow network architectures to see the performance of 

each neural network method. We experiment different network architectures using the 

many different combinations of features in Table 3.1 following the findings of the 

literature. Table 3.3 demonstrates the addition of new variables into the single-layer 

neural networks. It should be stated that the addition of 1st and 48th lagged values of 

the price series to the 24th and 168th lags decrease the MAE values, but addition of 

the exogenous variables do have a very little or even negative effect. 
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Table 3.3 : Single-layer 24-step-ahead prediction MAE results. Each network of one 

layer and a final fully connected layer for prediction. CNNs have been implemented 

two convolutional layers stacked together. 

Features CNN ANN LSTM GRU 

F1-2 9.82 8.51 7.79 7.70 

F1-4 8.57 6.37 5.91 5.71 

F1-7 9.47 6.65 6.01 5.64 

F1-8 10.05 8.05 6.22 5.83 

F1-9 10.51 9.27 6.16 5.83 

F1-10 10.64 9.85 6.02 5.58 

F1-11 10.58 9.48 5.93 5.55 

3.4.3.3 Deep network comparisons 

To showcase the performance of deeper networks we concatenate three layers for 

simple ANNs, LSTMs and GRUs. It is evident in Table 3.4 that the GRU still performs 

the best compared to other techniques. The multiple layer structure comes up with an 

additional computational cost and, to find the optimal number of layers, we do a test 

on the algorithms. 

In this deep neural networks comparison, CNN is excluded due to the low 

performance. Addition of the new layers increased the performance in every neural 

networks mechanism. However, the positive effects of the additional variables are still 

very small, which is in line with our findings in the shallow network comparison 

section. 

Table 3.4 : Multi-layer 24-step-ahead prediction MAE results. Each network of 

stacked three layers and a final fully connected layer for prediction. 

Features ANN LSTM GRU 

F1-2 7.63 7.66 5.86 

F1-4 5.66 5.66 5.68 

F1-7 5.59 5.58 5.57 

F1-8 5.84 5.62 5.56 

F1-9 6.08 5.70 5.57 

F1-10 6.29 5.51 5.41 

F1-11 6.20 5.47 5.36 

3.4.3.4 Monthly comparisons 

We also evaluated the monthly performance of each technique, as shown in Figure 3.5. 

The results for each month are generally consistent with the overall average 

performance with some exceptional cases. Results demonstrate the relatively good 

performance of the LSTM and GRU models. Although there are some months that 

single-layer is better than the multi-layer neural networks, in most of the months, deep 

neural networks give much better results. With the exception of Naive method in 
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August and three-layer ANN in October, recurrent neural networks, LSTM and GRU, 

have the best results in every month. 

 

Figure 3.5 : Monthly MAE comparison of all the price estimation methods 

3.4.3.5 Seasonal prediction results 

We illustrate the prediction results of GRU for the sample weeks from each season we 

defined in Section 3.2. Figure 3.6 shows the successful performance of GRU with a 

good match to the original prices. We observe the ability of capturing the spikes, as 

well as the good performance in relatively calmer periods. It is clear that the 

performance of the GRU model is great in the relatively calmer autumn week. 

Moreover, the performance in the summer week, which has a high volatility, gives 

evidence about the spike detection of the model. 

 

Figure 3.6 : Prediction results of GRU for a sample week from each season. 
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3.4.4 Diebold-Mariano tests 

Tables 3.2 – 3.4 provide a ranking of the various methods, but not statistically 

significant conclusions on the performance of the forecasts of one method compared 

to others. To showcase the statistical significance of the performance difference 

between all model variations and features combinations, we use a Diebold–Mariano 

test (Diebold and Mariano, 1995), which takes the correlation structure into account. 

In Figure 3.7, we show the p-values for the Diebold–Mariano tests between neural 

network based methods and the state-of-the-art statistical methods. In Figure 3.8, we 

repeat the same tests for shallow and deep networks using different number of features. 

It tests the forecasts of each pair of transformations against each other and uses a colour 

map to show p-values. The low p-values show statistically significant better 

performance of the methods in X-axis. For example, F1-11 GRU model outperforms 

all the other models significantly in the three-layer networks comparison (Figure 3.8, 

right panel). 

Figure 3.7 demonstrates the successful performance of the neural networks models, 

except CNN, compared to the statistical methods. Especially, good performance of the 

recurrent neural network models, GRU and LSTM, is statistically proven by Diebold–

Mariano test. 

In Figure 3.8 (left panel), single layer networks are compared with each other. F1-10 

GRU and F1-11 GRU are significantly better than all the other models. Performance 

of F1-7 GRU and F1-4 LSTM, which do not include any exogenous variables, should 

also be mentioned. In Figure 3.8 (right panel), in three-layer networks, addition of new 

features has a much more significant effect than the single layer network. F1-11 GRU, 

F1-10 GRU, F1-11 LSTM, and F1-10 LSTM are the best methods among three-layer 

networks. 
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Figure 3.7 : Results of the Diebold-Mariano tests defined by the loss differential 

series as absolute errors in between all investigated parameters for F1-4. The figure 

indicates the statistical significance (green) for which the forecasts of a model on the 

X-axis are significantly better than those of a model on the Y-axis. 

 

Figure 3.8 : Left panel: Single layer networks. Right panel: Three-layer networks. 

Results of the Diebold-Mariano tests defined by the loss differential series as 

absolute errors in between all investigated parameters and used features for different 

number of layers. The figure indicates the statistical significance (green) for which 

the forecasts of a model on the X-axis are significantly better than those of a model 

on the Y-axis. 

3.4.5 Implementation details 

The training of a neural network can be viewed as a combination of two components, 

a loss function or training objective, and an optimization algorithm that minimizes this 

function. In this study, we used the Adam optimizer to minimize the mean absolute 

error loss function. The training ends when the network does not significantly improve 

for a predefined number of epochs (300). 
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During training, a batch-size of three years was used. The momentum of the optimizer 

was set to 0.90 and the learning rate was 0.001. The parameters of the fully-connected, 

convolutional, and recurrent layers were initialized randomly from a zero-mean 

Gaussian distribution. The training continued until no substantial progress was 

observed in the training loss. 

We performed multiple tests to see the performance of different numbers of layers in 

ANN, LSTM and GRU architectures for selecting the optimal number of layers. Figure 

3.9 shows that the optimal results can be achieved using three layers. Additional layers 

increase in the total number of parameters and add to the computational cost without 

achieving a significant gain in the performance. 

 

Figure 3.9 : Performance change when applying different number of layers to ANN, 

LSTM and GRU algorithms. 

3.5 Discussion 

In this paper, we investigate the application of various neural network architectures on 

electricity price forecasting. Our experiments in Table 3.2 highlight that neural 

network based methods produce better results compared to the state-of-the-art 

statistical forecasting methods in the literature such as SARIMA and Markov models. 

We use simple artificial neural networks (ANNs), CNNs, LSTMs and GRUs to 

estimate the electricity prices in the Turkish market. We see that the RNN models, 

namely LSTM and GRU, are able to separate themselves in terms of performance 

compared to CNNs and simple ANNs in Table 3.3. This is because RNN models have 

memory about the previous time steps, which makes them the method of choice for 

time series type problems. They keep a memory of the previous instances effectively, 

which is crucial for estimating electricity prices of the day-ahead market. 
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The deep learning paradigm of stacking multiple layers increases the performance for 

ANNs, LSTM and GRUs, as highlighted in Table 3.3 in comparison with Table 3.4. 

GRUs still give the best performance among all available techniques and we reached 

the best results of 5.36 Euros/MWh MAE using three-layered GRUs. The results show 

good alignment with the prices as illustrated in Figure 3.6. 

Neural networks are data-driven models and their performance heavily depends on the 

availability of the large training data. The limited data are a deteriorating factor for all 

training based methods, but in particular for neural network based methods. We show 

in Figure 3.9 that the performance does not improve after three layers for any of the 

networks due to the limited data. With the availability of further data, we believe the 

overall performance of LSTM and GRU methods will be better. 

Another significant observation is the fact that GRUs perform better than the LSTM 

models. This can explained by the fewer number of parameters that are needed to be 

learned by GRUs. In the literature, Yin et al. (2017) and Chung et al. (2014) compared 

the two models for polyphonic music modelling and speech signal modelling task. 

They showed the better performance of GRU for these tasks. Moreover, GRUs train 

faster due to the fact that they require fewer parameters. 

We see that the key features are lagged price values for estimating the electricity prices, 

which is in line with the findings of Uniejewski et al. (2016). In terms of single layer, 

addition of 1st and 48th lagged values to the 24th and 168th lagged values have an 

important effect. Especially for LSTM single layer using the 1st, 24th, 48th and 168th 

lagged values is as good as using all the variables. For GRU, adding 23rd, 72nd and 

336th lagged values give better results. Addition of exogenous variables have a very 

small effect in LSTM. Although addition of forecast D/S and temperature do not have 

a significant effect in GRU, further addition of 24th lags of realized D/S and balancing 

market price have significant effects. In three-layer networks, results are similar, but 

addition of features help much more to have better results. If we do not use any 

exogenous variables, F1-7 gives better results than F1-4. In three-layer GRU networks, 

addition of all the variables, except temperature, change the performance significantly. 

On the other hand, LSTM F1-7 is only worse than LSTM F1-10 and F1-11, which is 

similar to the single layer results. To conclude, endogenous variables are the most 

important ones and using the 1st, 24th, 48th and 168th lagged prices give relatively 

good results. In most cases, adding one or two exogenous variables does not improve 
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the results, but if we use the lagged values of the other exogenous variables, in addition 

to forecast D/S and temperature, then these models with all the variables significantly 

outperform the models with fewer variables. 

One additional comparison we made was grouping the results in terms of months. It is 

possible to say that the general error levels are lower in autumn and wintermonths 

compared to spring and summer months. In relatively mild weather months of Turkey 

-October, November and December- three-layer GRU networks’ MAE values are 

lower than 4 Euros/MWh. On the other hand, relatively hot weather months of Turkey 

-May, June, and July- have MAE values around 7 Euros/MWh, which is almost double 

of the mild weather months. It must be mentioned that, in most countries, prices during 

summer months are not high compared to the other months, but, as mentioned in 

Section 3.1.2 on the Turkish market, due to the requirement of air conditioning, prices 

during summer months are very close to the winter months prices. We can conclude 

that the MAE values show a similar pattern with the price levels, which demonstrate 

the effect of the seasonality. 

Our results are in line with the main findings of Lago et al. (2018a), Kuo and Huang 

(2018), which is that machine learning models, especially deep neural networks, 

outperform the state-of-the-art statistical models and shallow neural networks. On the 

other hand, in our experiment, deep recurrent neural networks, LSTM and GRU, which 

are tailor-made for time-dependent problems, give lower errors than DNN, which 

contradicts with the results of Lago et al. (2018a). Lago et al. (2018a) made two 

hypotheses about the unexpected superiority of DNN in their paper: first, low amount 

of data; and, second, different structure of the models. Moreover, they underlined the 

necessity of further research. In our opinion, having deep LSTM and GRU, instead of 

shallow LSTM and GRU, causes the conflict between the results. Lago et al. (2018a) 

applied single-layer LSTM and GRU, or apply LSTM and GRU as one layer of the 

hybrid deep neural networks. In our case, there are three layers of LSTM and GRU in 

the experiments. Another possible explanation is the market specifics. Turkish market 

has an increasing share of hydro and renewables in the energy production and the 

market is similar to the Spanish (Diaz and Planas, 2016) and German (Keles et al., 

2016) markets in some aspects. However, as we know that all the markets have unique 

characteristics, generalizability to other markets needs further research. Incredibly fast 

changing nature of the energy markets, especially in the emerging economies, must 
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also be mentioned. Establishment of two nuclear plants in the next five years, inclusion 

of the solar energy into system in near future and expiration of the subsidies for the 

wind power plants in two years will change the dynamics of the Turkish market as 

well. Therefore, further research in Turkish market and in the emerging economies, 

such as Southeast Europe markets (Hryshchuk and Lessmann, 2018) is also required. 

Generalization capability of machine learning models is promising for applying our 

model fordifferent market data. The GRU network architecture can accurately predict 

the electricity prices in the Turkish market. With the availability of the multiple feature 

data for each market, the model can be applied to various markets using domain 

adaptation. However, Aggarwal et al. (2009) underlined the superiority of different 

methods in different markets and combination of multiple methods might be promising 

in these type of problems. We would like to investigate possibility of using hybrid 

models to merge benefits of multiple methods. Zhang (2003) proposed combining 

ARIMA and ANN models to forecast the linear and non-linear components of price 

separately. Chaabanae (2014) developed the Zhang (2003) method and combined auto-

regressive fractionally integrated moving average (ARFIMA) with neural networks 

model. Guo and Zhao (2017) also utilized decomposition, optimization and support 

vector machine techniques in a hybrid work. In another example, Shrivastava and 

Panigrahi (2014) applied a hybrid wavelet extreme learning machine. Moreover, 

Alamaniotis et al. (2015b) combined relevance vector machines and linear regression 

ensemble optimization. These types of hybrid approaches can aid the performance of 

RNNs. 

The uncertainty of the predictions made by the neural network models can be of great 

value to assess their utility. Currently Bayesian based neural networks are used to 

predict the uncertainty of the neural network based predictions (Iwata and 

Ghahramani, 2017). With the developments in machine learning literature, we would 

like to estimate the uncertainty values of GRUs and LSTMs to increase the reliability 

of both methods. Recent work by Hwang et al. (2018) opens the path for fast and 

accurate uncertainty estimations of GRUs (Hwang et al., 2018). 

One avenue of improvement for our method is to investigate the decomposition 

techniques. Related to the hybrid models, Neupane et al. (2017) proposed an ensemble 

prediction method by choosing the algorithm and features among a set of them, which 

give much better forecast results than state-of-the-art techniques. In another work, 
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Hong and Wu (2012) applied principal component analysis (PCA) as a dimension 

reduction method. Ziel (2016) and Ludwig et al. (2015) used Lasso shrinkage method 

for variable selection. Zheng et al. (2017) proposed using empirical mode 

decomposition for decomposing the signal to several intrinsic mode functions (IMFs) 

and residuals. They used these IMFs to train LSTM to forecast short-term load. In the 

future, we would like to include dimension reduction algorithms and investigate their 

contribution to seasonality of the data, in particular in RNN setting. 

In conclusion, this study instigated the utility of neural networks for electricity price 

estimation. Development of new conditions in electricity markets across the world 

brings new challenges. Accurate price estimation is a crucial task for adapting to the 

new market conditions, and machine learning methods are capable of addressing these 

issues with high accuracy. Recurrent Neural Networks set the state-of-the-art in 

addressing time-dependent problems. With this work, we show a detailed analysis on 

RNNs for electricity price forecasting and highlight the superior performance of GRUs 

in comparison to various neural network based methods and state-of-the-art statistical 

techniques. 
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4.  THE FINANCIAL EFFECT OF THE ELECTRICITY PRICE 

FORECASTS’ INACCURACY ON A HYDRO-BASED GENERATION 

COMPANY28 

4.1 Introduction 

Electricity price forecasting has become an essential task since the liberalization of the 

electricity markets. It is integral for all the players in the energy markets, due to several 

reasons. Firstly, both supply and demand sides present their bids in the regulated 

markets according to electricity price forecasts. Secondly, bilateral contracts and 

energy derivatives also use longer term electricity price forecasts as reference points. 

Thirdly, large-in-scale demand side bidders, such as distribution companies, large 

industrial companies or pumped storage units can manage their purchasing behavior 

according to electricity price predictions. Last, but not least, generation companies 

(GenCos), such as hydro, natural gas and fuel oil can schedule their generation and 

bidding behavior according to the day-ahead price forecasts to maximize their profits. 

This paper presents the influence of electricity price forecast accuracy on the profit 

maximization of GenCos. In particular, we use Mixed Integer Linear Programming 

(MILP) to schedule production strategies of a hydro-based power plant to minimize 

the profit loss of the companies. We make use of five individual and four hybrid 

forecast models to schedule the electricity production of the hydro-power plant. The 

main contributions of this paper are particularly: 

 Extensive analysis of the financial influence of electricity price estimation 

inaccuracy; 

                                                 

 

28 This chapter is based on the paper “The Financial Effect of the Electricity Price Forecasts’ Inaccuracy 

on a Hydro-based Generation Company”. Ugurlu, U., Tas, O., Kaya, A. & Oksuz, I. 2018. The Financial 

Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-based Generation Company. Energies, 

11 (8), 2093.  
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 Analysis of statistical methods, Artificial Neural Networks (ANN), Long Short 

Term Memory (LSTM), Gated Recurrent Units (GRU) and hybrid methods for 

electricity price estimation; 

 Use of a hybrid ANN–LSTM method for estimating electricity prices to 

maximize the profit; 

 Detailed statistical analysis between electricity price estimation and profit 

maximization of GenCos. 

4.1.1 Electricity price forecasting 

Electricity price forecasting is an ever-improving research area and many different 

methods are implemented to forecast electricity prices. The review of Weron (2014) 

categorizes electricity price forecasts into five main groups: (1) Multi-agent models, 

(2) fundamental models, (3) reduced-form methods, (4) statistical time-series methods, 

and (5) machine learning models. Generally, the first two groups are more applicable 

to the smaller markets. The first group includes game-theory type models for the 

smaller markets with less numbers of participants. Fundamental models require all 

supply and demand information to intersect both curves to obtain the price. Reduced-

form methods are mainly successful in the price spikes, which are one of the important 

characteristics of electricity prices, and statistical methods include regression-type 

methods from relatively easy naïve methods (Nogales et al., 2002) to complex models 

(Ziel and Weron, 2018). Machine learning methods include several different sub-

categories, such as neural networks, fuzzy logic, support vector machines, etc. A time-

dependent type of neural networks, recurrent neural networks, provide notably 

impressive results nowadays, especially with the addition of more than one layer, 

which is then called a deep neural network (Lago et al., 2018a; Ugurlu et al., 2018a). 

According to Ugurlu et al. (2018a), deep neural networks, especially deep recurrent 

neural networks, such as Long-short Term Memory (LSTM) and Gated Recurrent 

Units (GRU), outperform the statistical time series methods like Seasonal Auto 

Regressive Integrated Moving Average (SARIMA), as well as shallow and deep 

Artificial Neural Networks (ANN). These findings are mainly in line with the results 

of Lago et al. (2018a). Although LSTM and GRU, which are tailor-made for time 

series, are expected to perform better than deep ANN, Lago et al. (2018a) find out that 

deep ANNs are better than deep recurrent neural networks. On the other hand, a 

superiority of Lago et al. (2018a) to Ugurlu et al. (2018a) is that it proposes 27 models 
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and Lago et al. (2018a) can be used as a benchmark in the electricity price forecasting 

literature. Models of Lago et al. (2018a) also contain some deep hybrid methods, which 

motivated us to use the deep hybrid methods. Although current research has had 

promising results in favor of machine learning methods, Lasso regression applications 

(Ziel, 2016; Ludwig et al., 2015), ensemble predictions (Neupane et al., 2017; 

Alamaniotis et al., 2015a; Shrivastava and Panigrahi, 2014), and hybrid works 

(Chaabane, 2014; Hong and Wu, 2012; Keles et al., 2012; Bordignon et al., 2013) also 

have successful results. One important example is the work of Chaabane (2014), which 

combines SARIMA with Auto-Regressive Fractionally Integrated Moving Average 

(ARFIMA). However, as Aggarwal et al. (2009) mentioned, still, none of the methods 

outperform the others regularly and continuously. 

4.1.2 Generator companies’ profit maximization 

There are mainly two problems generation companies need to solve related to 

electricity price forecasting. The first problem is the self-scheduling of the power 

plants, which means the optimization of the production quantities for each hour of the 

next day according to the price forecasts. The second problem is presenting the correct 

price bids related to these quantities. This article will focus on the first problem. The 

purpose of this paper is to propose a Price Based Unit Commitment (PBUC) to a 

hydro-based GenCo according to the price forecasts of various methods, both from 

statistical and machine-learning methods, applied in Ugurlu et al. (2018a). According 

to the price forecasts, a GenCo will procure the production of electricity. It should be 

mentioned here that electricity is a non-storable commodity, whereas water can be 

stored. Thus, hydro GenCos have the opportunity of storing electricity in the shape of 

water, which eases most of the production costs and constraints compared to the other 

types of GenCos, i.e., thermal, wind or solar. In this sense, a self-scheduling 

optimization problem must be solved by using a technique, such as Mixed Integer 

Linear Programming (MILP), Lagrangian relaxation, dynamic programming or 

genetic algorithms (Li and Shahidehpour, 2005). There are two assumptions when 

optimizing the hydro-based GenCo’s self-scheduling (Delarue et al., 2010). The first 

assumption is that the GenCo is a price taker, which means that the price bids the 

GenCo presents do not have a significant effect on the determined market price. In a 

relatively big market, this assumption is easily justified, related to the capacity of the 

GenCo. The second assumption is that all the quantities offered will be accepted and 
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sold. This assumption is also reasonable, considering that most of hydro GenCos, as 

well as solar and wind power plants, give their bids with zero prices and accept the 

clearing price. 

In a pioneer work, Zareipour et al. (2010) measure the economic impact of inaccurate 

electricity price forecasts from the demand side. Two different typical industrial loads, 

process-industry load and municipal water-plant load, are investigated, and the actual 

prices and inaccurate electricity price forecasts for the next 24-h are compared. One of 

the main findings of Zareipour et al. (2010) is that Mean Absolute Percentage Error 

(MAPE) cannot reflect the economic value of improving the forecast accuracy. 

Therefore, other financial indicators should be checked to evaluate the financial effect 

of inaccurate electricity price forecasts. Another point is that the expectation from the 

forecast varies according to the type of customer. For example, the process industry 

needs accurate forecasts with respect to an exact threshold. On the other hand, for the 

water-plant, knowing the general trend of electricity prices over the planning period is 

quite helpful. Another important study, which was published right after Zareipour et 

al. (2010), is Delarue et al. (2010). The main difference of Delarue et al. (2010) from 

Zareipour et al. (2010) is that its point of view is mainly from the supplier side. Another 

distinction is that it uses MILP to solve the PBUC problem. In Delarue et al. (2010), 

four different power-plant types are examined. Combined cycle power-plant and 

pumped storage power plants are affected more by inaccurate forecasts than hydro and 

coal-fired classical thermal power plants, in terms of profit loss. Another interesting 

finding is that if inaccurate forecasts have an upside or downside bias, then profit loss 

gets affected by this bias as well. Downside bias, which means predicting the prices 

lower than the actual ones, cause higher profit losses. Mohammadi-Ivatloo et al. (2011) 

also examine the economic impact of four different price forecasts compared to the 

actual prices for GenCos. Mohammadi-Ivatloo et al. (2011) take a hydro power-plant 

and a thermal power-plant into account. This research proposes two indices to evaluate 

the effect of inaccurate forecasts: The first one is the Economic Loss Index (ELI), 

which is the profit loss of the electricity price forecasting model, in terms of 

percentage, from the actual price profit; the second one is the Price Forecast 

Disadvantage Index (PFDI), which shows the profit loss per energy sold. According 

to the results of Mohammadi-Ivatloo et al. (2011), traditional error measures do not 

always cause significantly high economic losses. This means that a model with lower 
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forecast performance errors could cause higher economic losses than a model with 

higher forecast performance errors, and vice versa. Thus, according to Mohammadi-

Ivatloo et al. (2011), using ELI or PFDI instead of Mean Absolute Error (MAE) or 

MAPE as a financial effect evaluation method would yield less profit loss. In a related 

paper, Mathaba et al. (2014) work on the same topic and propose a method which 

could be used in choosing the best forecast mechanism. According to Mathaba et al. 

(2014), using the Rank Correlation (RC) method instead of Root Mean Square Error 

(RMSE) or MAPE would cause less profit loss. Mathaba et al. (2014) use a coal-

conveying system with storage, which allows the combining of the supply and demand 

sides. Three forecasting methods in the U.S. Pennsylvania-New Jersey-Maryland 

(PJM) market are performed. There are mainly three findings of Mathaba et al. (2014): 

Firstly, RC is a better indicator than RMSE and MAPE in terms of having less profit 

loss; secondly, price volatility, rather than mean price, has a higher effect on the profit 

loss. Therefore, models which take volatility into account could have less profit loss. 

Thirdly, profit loss is very dependent on the responsiveness of the load to electricity 

price changes. Research of Doostmohammadi et al. (2017) proposes a completely 

different evaluation method for the same problem. First of all, it prepares a financial 

loss/gain (FLG) time series by using the real conditions of the electricity market. 

Secondly, they quantize this signal by using the Silhouette criterion and k-means 

clustering technique to simplify the problem. Then, the most informative variables are 

chosen from a feature selection problem by a combined technique. Lastly, by using all 

these methods and extreme learning machine, FLG predictions can be made which 

help the GenCos to optimize their scheduling. This is an interesting work because it 

combines the forecasting procedure with the profit loss calculation mechanism and the 

results show the positive effect of this evaluation. 

To solve the self-scheduling optimization problem of the supplier company, different 

optimization methods are used in the literature. The most common technique is the 

MILP proposed in a pioneer work by Conejo et al. (2002), which introduces a self-

scheduling plan for a hydro producer in a pool-based electricity market. There are eight 

cascaded hydro power plants along a river basin in this system. It is a relatively big 

power plant, in terms of production capacity. Thus, it is difficult to fulfill the 

assumption that the supplier is a price taker and its bids do not change the market price. 

The objective of the optimization is maximizing the profit by selling electricity in the 
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day-ahead market. For each plant, it takes nonlinear and non-concave three-

dimensional relationships between the power produced, water discharged and the head 

of the related reservoir. Start-up costs are definitely in the calculation of profit. Similar 

to common techniques in the literature (Esmaeily et al., 2017; Ahmadi et al., 2012; 

Karami et al., 2013), Conejo et al. (2002) also utilize the IEEE 118-bus test system 

(IEEE, 2018) as the hydro power plant. Applied to the Spanish day-ahead market 

prices in 2001, daily profits are around $600,000, which shows the great capacity of 

the hydro power-plant system. Esmaeily et al. (2017) add some practical constraints, 

such as valve-loading cost, dynamic ramp rate and prohibited operation zones. As in 

Conejo et al. (2002), they take the price forecast errors to understand the price 

uncertainty. They also performs a Lattice Monte Carlo Simulation for the effects of 

spinning and non-spinning reserve prices. Working hours of the hydro power-plant 

correspond to the high price hours in this model, which cause relatively high profits. 

Bisanovic et al. (2008) is another study about the hydro-thermal self-scheduling 

problem in the day-ahead electricity market. As in the previous papers, Bisanovic et 

al. (2008) use MILP, because this optimization method allows one to have non-convex 

and non-linear items as constraints. The difference for Bisanovic et al. (2008) is that it 

takes the long-term bilateral contracts, in addition to the hourly day-ahead electricity 

price forecasts, into account. As another difference, the system in this research is the 

combination of the thermal and hydro power plants. On the other hand, a common 

point with the other papers (Li and Shahidehpour, 2005; Conejo et al., 2002; Esmaeily 

et al., 2017) is that this model also utilizes the piece-wise linear model to represent the 

non-linear functions. Bisanovic et al. (2008) solve the PBUC problem for four different 

types of plants: Thermal, combined cycle, cascaded hydro and pumped storage. This 

paper also utilizes the IEEE 118-bus system and applies mixed integer programming 

(MIP), which is compared with the Lagrangian relaxation (LR) method. Yamin and 

Shahidehpour (2004) utilized transmission congestion and locational marginal prices 

as well as fuel and emission constraints in their model. Shahidepour et al. (2002) give 

a broad overview in the forecasting, scheduling and risk management of power 

systems. With the availability of high memory and greater computational power, MIP 

and MILP type optimization techniques have become state-of-the-art methods for 

PBUC problems. 
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4.1.3 Turkish market 

Although there are some works (Ugurlu et al., 2018a; Hayfavi and Talasli, 2014; 

Ozyildirim and Beyazit, 2014; Ugurlu et al., 2018a) on electricity price forecasting in 

the Turkish electricity market, the financial effect of electricity price forecasts’ 

inaccuracy has not been investigated. Due to the nature of the Turkish market, with 

many zeros similar to the Spanish market (Diaz and Planas, 2016), and an increasing 

renewable share similar to the German market (Keles et al., 2012), the Turkish market 

needs investigation, and can give some insight about the other Southeast Europe 

markets (Hryshchuk and Lessmann, 2018) in addition to Spanish and German markets. 

The Turkish market is an emerging market with very specific features as discussed in 

Ugurlu et al. (2018a), Avci-Surucu et al. (2016) and Ozozen et al. (2016). Mainly due 

to the country’s climate, in the summer months, electricity consumption and the prices 

are almost as high as the winter months. Turkey has an inter-connected grid with 

Greece and Bulgaria, but the share of the import and export electricity never exceeds 

1% of the daily consumption. One of the most important features of the Turkish market 

is the high share of hydro energy of 34.2% and the increasing share of the wind energy 

of 7.6% at the end of 2016, in terms of the installed capacity (EPDK, 2018). Due to 

the snow-melt effect in the spring months and the wind effect in spring and autumn 

months especially, prices tend to decrease in these seasons. Turkish electricity prices 

are limited from 0 to 2000 TL/MWh, which is approximately 562 $/MWh by the 2016 

average exchange rate (Ugurlu et al., 2018a). This rule does not allow the Turkish 

market to have negative prices, which is similar to the Canadian market (Filipovic et 

al., 2017) and the opposite of the German market (Keles et al., 2012; Fanone et al., 

2013). Taking the number of zeros in the Turkish market into account, we can mention 

that it has a negative effect on the market efficiency. However, on the other hand, the 

price cap of approximately 562 $/MWh is very high and has never been reached in the 

short history of the market since December 2011. However, prices tend to have very 

high values, especially in the lack of natural gas for the power plants. In the near future, 

two nuclear power plants will be established as the first attempts of Turkey; solar 

power will be integrated into the grid; wind share still has an increasing trend, but the 

subsidies on the wind power plants will stop in two years. As another point of interest, 

intra-day market and energy derivatives are also developing and in need of research. 

To sum up, there is a rapidly changing and improving environment in this major 
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emerging market, which motivates our work to investigate the specific characteristics 

of this market. Evaluating the effects of electricity price forecasts’ inaccuracy in the 

Turkish Day-Ahead Market and comparing it with the results of the other markets 

could help us to understand the nature of the market better. In addition to this, our 

paper is the first one which takes deep neural networks, especially deep recurrent 

neural networks, as forecast methods to investigate the relationship between the 

forecasts’ inaccuracy and the financial effect caused by this inaccuracy. Moreover, it 

also combines the predicted electricity prices of these models as hybrid methods and 

compares them with the individual counterparts, in terms of profit loss. The remainder 

of the paper will be structured as follows: Section 4.2 describes the dataset and the 

method. In particular, electricity price forecasting, Price Based Unit Commitment 

(PBUC) and the financial effect measures are detailed. In Section 4.3, results are given 

and discussed. Section 4.4 concludes the paper and investigates some further research 

ideas. 

4.2 Data and Methods 

We use data from mainly two sources in our simulations. Firstly, Turkish Day-ahead 

Market electricity prices are taken from EPIAS (2018) between 2013 and 2016. 

Secondly, IEEE 118-bus-system test data (IEEE, 2018) are used in the hydro-based 

GenCo’s self-scheduling. The seasonal average of each hour of the week from the year 

2016 is visualized in Figure 4.1. We have listed the descriptive statistics of the test 

data for each hour of the data in the year 2016 in Table 4.1. 

Firstly, we need to mention the intra-day seasonality of the data. The price average at 

6 am is nearly one-third of the price average of 11 am. Early morning hours have the 

lowest prices with the highest variation. It is especially difficult to forecast these early 

morning prices. Secondly, there are many zeros in the prices, which make the 

preliminary studies of the data difficult. In the statistical methods, to make the data 

stationary, there is a need for transformation. Due to these low prices, it is impossible 

to take the logarithmic returns. Moreover, prices around zero cause biased results in 

the MAPE numbers. Thirdly, the highest price of 2016 is 132.36 $/MWh, which is 

beyond µ + 5σ for 10 am. Figure 4.1 mainly visualizes the intra-year seasonality. 

Although the range is very small in the spring and autumn months, in the summer the 

average daily range of the prices are as high as 70 $/MWh. Figure 4.1c illustrates the 
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average summer prices of 2016. Due to religious holidays, which are not coherent with 

the Europe, prices do not show co-movement in Europe’s and Turkey’s holidays. The 

prices show a sharper decrease on Fridays at lunchtime due to the Friday prayer, which 

can be seen especially in Figure 4.1a. Another difference to the European market is the 

half-day working habit on Saturdays. In Figure 4.1, relatively high prices can be 

observed in the morning hours on Saturdays. Due to the usage of the air-conditioning 

because of the hot climate in the summer months, prices are very high in the day-time. 

On the other hand, prices in the early morning hours are very low. This causes lots of 

spikes, which makes electricity price forecasting especially difficult in the summer 

months. In Figure 4.1b, due to the snow-melt effect, hydro power-plants work in high 

levels and produce relatively low-priced electricity. 

Table 4.1 : Descriptive statistics of the Turkish day-ahead electricity prices 

($/MWh) according to hours of the day. 

Hours Mean 

Std. 

Deviation 

Lower 

Bound 

Upper 

Bound Median 

0 49.27 13.47 0.28 78.42 47.98 

1 41.80 14.99 0.00 78.05 42.84 

2 35.89 15.98 0.00 76.69 37.85 

3 27.40 16.31 0.00 76.13 27.57 

4 25.42 16.55 0.00 76.12 26.27 

5 23.77 15.36 0.00 77.86 25.12 

6 22.65 17.62 0.00 77.94 24.55 

7 34.52 17.54 0.00 78.08 40.27 

8 44.76 17.91 0.00 79.20 48.88 

9 55.74 15.32 0.00 99.83 58.98 

10 59.53 13.93 0.00 132.36 60.40 

11 62.66 13.20 0.32 99.26 51.11 

12 51.64 15.30 0.32 99.26 51.11 

13 54.27 14.18 1.71 99.26 55.14 

14 57.26 14.51 0.36 113.16 59.41 

15 55.13 14.27 0.36 96.14 57.41 

16 54.12 14.34 0.34 96.14 54.23 

17 50.80 15.56 1.70 124.03 50.69 

18 48.85 13.46 0.27 90.88 49.25 

19 49.24 12.15 3.60 81.36 50.66 

20 51.56 9.75 20.52 78.66 52.30 

21 49.16 9.78 17.88 78.61 49.33 

22 46.30 12.58 1.59 78.74 45.26 

23 39.17 14.34 0.00 78.42 40.41 

Firstly, we need to mention the intra-day seasonality of the data. The price average at 

6 am is nearly one-third of the price average of 11 am. Early morning hours have the 
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lowest prices with the highest variation. It is especially difficult to forecast these early 

morning prices. Secondly, there are many zeros in the prices, which make the 

preliminary studies of the data difficult. In the statistical methods, to make the data 

stationary, there is a need for transformation. Due to these low prices, it is impossible 

to take the logarithmic returns. Moreover, prices around zero cause biased results in 

the MAPE numbers. Thirdly, the highest price of 2016 is 132.36 $/MWh, which is 

beyond µ + 5σ for 10 am. Figure 4.1 mainly visualizes the intra-year seasonality. 

Although the range is very small in the spring and autumn months, in the summer the 

average daily range of the prices are as high as 70 $/MWh. Figure 4.1c illustrates the 

average summer prices of 2016. Due to religious holidays, which are not coherent with 

the Europe, prices do not show co-movement in Europe’s and Turkey’s holidays. The 

prices show a sharper decrease on Fridays at lunchtime due to the Friday prayer, which 

can be seen especially in Figure 4.1a. Another difference to the European market is the 

half-day working habit on Saturdays. In Figure 4.1, relatively high prices can be 

observed in the morning hours on Saturdays. Due to the usage of the air-conditioning 

because of the hot climate in the summer months, prices are very high in the day-time. 

On the other hand, prices in the early morning hours are very low. This causes lots of 

spikes, which makes electricity price forecasting especially difficult in the summer 

months. In Figure 4.1b, due to the snow-melt effect, hydro power-plants work in high 

levels and produce relatively low-priced electricity. 

 

Figure 4.1 : Hourly averaged electricity prices for each season of 2016. 
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4.2.1 Electricity price forecasts 

Electricity prices are forecasted for 6 weeks of every season in 2016 by using various 

methods following Ugurlu et al. (2018a). A 3-year rolling window scheme is used for 

the estimation and 24-step ahead hourly forecasts are done by using the endogenous 

variables, which are the 1st, 24th, 48th and 168th lags of the price series. In this way, 

forecasts are done for 2 weeks from all the months of 2016. Five different forecast 

methods, namely the Naïve method, SARIMA, ANN, LSTM, and GRU are utilized in 

this paper. In addition to these models, four different combinations of the best 

performing ANN, LSTM and GRU models’ forecasts are also used to evaluate the 

financial effect of the forecast inaccuracies compared to the “best” ex-post actual 

prices case. This paper uses the models from Ugurlu et al. (2018a); brief descriptions 

of all the models are given below in the related sections. 

4.2.1.1 Naïve method 

The naïve method is a benchmark in the electricity price forecasting literature, which 

takes the previous day’s or previous week’s same hour as the forecast price (Nogales 

et al., 2002). According to Nogales et al. (2002) and Conejo et al. (2005b), 

unsuccessful forecasts cannot outperform this benchmark method. The naïve method 

is described as: 

Pd,h = {
Pd−7,h, 𝜀𝑑,ℎ                                 Monday, Saturday, Sunday

 Pd−1,h,  𝜀𝑑,ℎ          Tuesday, Wednesday, Thursday, Friday
               (4.1) 

Pd,h states the price of the selected day and hour.  𝜀𝑑,ℎ stands for the noise term. 

4.2.1.2 Seasonal auto-regressive integrated moving average  model 

ARIMA is a special kind of regression, which takes the past prices (AR), previous 

values of the noise (MA) and the integration level (I) of the price series into account. 

In SARIMA, a seasonal component (S) is also involved in the estimation process. 

Generally only the intra-weekly nature of the series is incorporated as a seasonal 

component, but in the electricity price series it is required to deal with the intra-day 

and intra-year seasonality as well. Therefore, the triple SARIMA model (Taylor, 2010) 

is performed by maximum likelihood assuming Gauss-Newton optimization. Equation 

4.2 refers to the triple SARIMA model. 

ϕp(Ł)ΦP1
(Łs1)ΩP2

(Łs2)ΓP3
(Łs3)(yt − a − b𝑡) = θq(Ł)ΘQ1

(Łs1)ΨQ2
(Łs2)ΛQ3

(Łs3)εt  (4.2) 
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yt is the load in period t, a is a constant term, b𝑡 is the coefficient of linear deterministic 

trend term; εt is a white noise error term; Ł is the lag operator; and ϕp, ΦP1
 , ΩP2

 , ΓP3
 

, θq, ΘQ1
 , ΨQ2

 and ΛQ3
 are the polynomial functions of orders p, P1, P2, P3, q, Q1, Q2 

and Q3, respectively (Ugurlu et al., 2018b; Taylor, 2010). 

Our triple SARIMA model can be stated as (1, 0, 1)1 x (1, 0, 1)24 x (1, 0, 1)168. To 

comply with the other statistical methods, ARMA (48,48) component is also added to 

this model. 

4.2.1.3 Artificial neural networks 

There is a growing interest in Artificial Neural Networks (ANN) in the electricity price 

forecasting literature (Keles et al., 2016; Mandal et al., 2006; Kolmek and Navruz, 

2015) as well as many other areas. ANN consists of layers of neurons, which are 

connected densely. They are also called Multi-layer Perceptrons (MLP). In this paper, 

we use three-layer ANN, where each layer has 10 neurons and a final layer estimates 

the forecast values. The batch-size is 3-years during training, the learning rate is 0.001, 

the momentum of the optimizer is 0.90 and 300 epochs are used (Ugurlu et al., 2018a). 

4.2.1.4 Long short term memory 

Long short term memory (LSTM) is a type of the recurrent neural networks (RNNs). 

RNNs are the best fit for the time-dependent problems, because they allow the 

information to persist, with their loops-allowing architecture. Due to their nature, 

which allows using the temporal information as the input, RNNs are the best models 

for the time series data. In a unique type of the recurrent neural network, LSTM, each 

node can be used as a memory cell, which can store the information from the other 

cells as well. Therefore, LSTM addresses the vanishing gradients problem of the 

previous time steps. The input, forget and output gates of LSTM control the existing 

memory and take the information from the first moments of the learning process and 

use it much later. This feature gives the opportunity to modeling long-term 

dependencies. The same batch-size, learning rate, momentum of the optimizer and 

epochs with the ANN model are used for the 3-layer LSTM model (Ugurlu et al., 

2018a). 

 

 



71 

4.2.1.5 Gated recurrent units 

Gated recurrent units (GRU) are another type of RNN, which is utilized in time-

dependent problems with considerable success. GRU consists of two gates, namely the 

reset gate and update gate. The update gate determines how much of the previous 

memory will be used and the reset gate decides how to combine the previous memory 

and the new input. The main aim of the GRU is very similar to LSTM, which is taking 

long-term dependencies into account. However, in GRU there are only two gates and 

fewer parameters than LSTM. Instead of having only a reset gate, as in LSTM, in GRU 

there is both a reset gate and update gate. Another difference is that LSTM has output 

gates, but GRU does not have any. In our experiment, we use a 3-layer GRU model 

with the same features of the ANN and the LSTM model (Ugurlu et al., 2018a). 

4.2.1.6 Hybrid models 

We also form 4 different hybrid models by combining the forecasts: 

1. 50% LSTM – 50% GRU 

2. 50% ANN – 50% GRU 

3. 50% ANN – 50% LSTM 

4. 33% ANN – 33% LSTM – 33% GRU 

The combinations are selected according to the best performing models in Ugurlu et 

al. (2018a). We examine the performance of the hybrid models, consisting of neural 

networks, and compare them with the individual model counterparts in terms of the 

financial effect of the forecast inaccuracy. This is the first work, which investigates 

the hybrid models from this point of view. 

4.2.2 Hydro-based power plant 

In order to model the behavior of GenCos, we used IEEE 118-bus-system test data 

(IEEE, 2018). These data are from a hydro-based power plant with eight cascaded 

units, which is a state of the art data set in the literature (Conejo et al., 2002; Esmaeily 

et al., 2017). Although this data give much information about the units, topology, start-

up costs, reservoir levels etc., they are for a massive system, which has the generation 

capacity of approximately double of the biggest hydro power plant in Turkey. 

Therefore, it is impossible to assume that this hydro power plant will work as a price 

taker in the Turkish market without affecting the market prices. For this reason, a 
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modified version of these data are used and only the first two cascaded units are taken 

into account. The goal function, costs and the constraints are given to the model in 

General Algebraic Modeling System (GAMS) software. The PBUC problem is solved 

for the production amounts of each hour of the forecast days by MILP, which allows 

the hydro-power plant to self-schedule. Production amounts for each hour of the day 

are calculated for all the mentioned models: Actual prices, five different models and 

four hybrid models. This process is repeated for the predicted 168 days of 24 weeks. 

Then, the production amounts are multiplied by the ex-post actual prices to calculate 

the revenue. Lastly, costs are subtracted from the revenue and the profits are obtained. 

4.2.2.1 Price based unit commitment according to mixed integer linear 

programming 

In this study, we used a Mixed Integer Linear Programming (MILP) model adapted 

from Conejo et al. (2002) and Esmaeily et al. (2017) to solve the self-scheduling 

problem of the hydro GenCo. Conejo et al. (2002) represented a set of non-concave 

and non-linear performance curves showing the relationship between the reservoir 

head, the water discharged and the power output. They used piece-wise linearization 

to deal with these non-concavities and non-linearities of the performance curves, and 

proposed a mixed integer linear programming model. In this study, we use the same 

mathematical model by adding only one constraint related to maximum spillage 

amount adapted from Esmaeily et al. (2017). The formulation of the mathematical 

model can be found in Appendix C. 

4.2.3 Financial effect of the forecast inaccuracy measures 

Having these production amounts and the related costs gives us the opportunity of 

calculating the actual profits for each model. The accurate prediction of the actual 

prices should translate to maximum profit during the sale of electricity. The difference 

between the profit of the forecast model and profit of the ex-post actual price model is 

called profit loss (Delarue et al., 2010). For choosing the best performing model, Mean 

Absolute Error (MAE) or Mean Absolute Percentage Error (MAPE) are the most 

common methods. We prefer to use MAE instead of MAPE because of the reason that 

MAPE values are biased with the actual electricity price values, which are around zero. 

Previous literature (Mohammadi-Ivatloo et al., 2011; Mathaba et al., 2014) suggest 

that there is a discrepancy between the general forecast model decision methods and 
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the profit loss models. Therefore, Economic Loss Index (ELI) and Price Forecast 

Disadvantage Index (PFDI) (Mohammadi-Ivatloo et al., 2011) are also used to 

measure the financial effect of forecast inaccuracy. These measures are described as 

follows: 

 ELI =  
Profitactual−Profitforecast

|Profitactual|
                                         (4.3)                                          

 PFDI =  
Profitactual−Profitforecast

∑ Et
T
t=1

                                       (4.4)                                  

where, ∑ Et
T
t=1  is the total energy sold in the market, in terms of MWh.  

ELI demonstrates the profit loss as a percentage due to the inaccuracy of the forecast. 

Although it is not the case in our experiment, actual profit can be negative due to the 

ramp-up prices, constraints and limits. Thus, an absolute value of the actual profit is 

used in the denominator. Another point is that negative ELI is also possible due to 

unexpected higher profits of the forecast model than the ex-post actual prices case. 

PFDI is another financial effect measure, which calculates the profit loss per energy 

sold in terms of $/MWh. It must be mentioned that these models do not show the 

accuracy of the forecast, but the financial effect of forecast inaccuracy (Mohammadi-

Ivatloo et al., 2011). 

4.3 Results and Discussion 

In this section, we report the profit loss comparisons in relation to electricity price 

forecast accuracy. In Section 4.3.1 we report profits obtained from all the methods, 

including ex-post actual prices: Profit losses, Economic Loss Index (ELI), Price 

Forecast Disadvantage Index (PFDI) and Mean Absolute Error (MAE) of the forecast 

methods for 24 weeks, two weeks from each month. Then, in Section 4.3.2, we 

compare the seasonal performance of the methods in terms of profit loss. In Section 

4.3.3, we visually show the relationship between MAE and ELI for each hour or the 

day. We also illustrate the energy price profile and production schedule of the power 

plant for an exemplary day. This allows us to measure the inaccurate forecasts’ 

financial effect on the hydro-based power plant. Finally, we evaluate the statistical 

significance in Section 4.3.4 and discuss the impact of the results. 
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4.3.1 Profit loss comparison 

This section demonstrates profit, profit loss, ELI, PFDI and MAE results for the hydro-

based GenCo’s self-scheduling scheme according to various forecast methods, in 

addition to the ex-post day-ahead electricity prices. Table 4.2 gives the results as the 

total of the 24 weeks, six weeks from each season and best results are highlighted in 

the table. According to our results, ANN–LSTM is the best method in terms of 

financial effect measures. Scheduling the GenCo according to ANN–LSTM method 

would cause a profit loss of $216410, 2.20% ELI and 1.1856 PFDI, compared to the 

ex-post actual prices scheduling. On the other hand, ANN is the best-performer by a 

small margin in terms of forecast performance measure MAE. This shows us that the 

forecast performance measures and the financial effect measures are not necessarily 

coherent with each other. Moreover, other hybrid methods ANN–LSTM–GRU and 

LSTM–GRU are the second and third best performing models, respectively, according 

to profit loss. 

Table 4.2 : Results of the hydro-based Genco’s self-scheduling according to various 

forecast methods for 24 weeks. 

24 Weeks Profit Profit loss ELI PFDI MAE 

Actual 9815726 - - - - 

Naïve 9513169 302557 0.0308 1.6576 9.3066 

SARIMA 9576815 238911 0.0243 1.3089 8.3289 

ANN 9594006 221721 0.0226 1.2147 6.3774 

LSTM 9589966 225760 0.0230 1.2369 6.5489 

GRU 9584191 231536 0.0236 1.2685 6.4586 

LSTM-GRU 9596195 219532 0.0224 1.2027 6.4472 

ANN-GRU 9591269 224457 0.0229 1.2297 6.3929 

ANN-LSTM 9599316 216410 0.0220 1.1856 6.3851 

ANN-LSTM-GRU 9597754 217972 0.0222 1.194 6.4018 

4.3.2 Seasonal performance comparison 

Figure 4.2 demonstrates the profit loss of the hydro-based GenCo’s self-scheduling 

scheme according to various forecast methods divided into seasons. We report the 

average results for six weeks of each season. First of all, we investigate the variation 

of the profit loss levels according to the seasons of the year. In the examined period, 

profit loss levels of winter and autumn are relatively small. On the other hand, profit 

losses are very high, especially spring, at the level of $100,000. Although ANN–LSTM 

is the best model only in winter, we observe the stable performance of the hybrid 

models. On the contrary, the performance of the individual models are not very stable. 
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Relatively good performance of LSTM is shadowed by the poor performance in 

winter. 

 

Figure 4.2 : Seasonal profit loss results. 

4.3.3 Energy price profile and production scheduling 

Figure 4.2 demonstrates the profit loss of the hydro-based GenCo’s self-scheduling 

scheme according to various forecast methods divided into seasons. We report the 

average results for six weeks of each season. First of all, we investigate the variation 

of the profit loss levels according to the seasons of the year. In the examined period, 

profit loss levels of winter and autumn are relatively small. On the other hand, profit 

losses are very high, especially spring, at the level of $100,000. Although ANN–LSTM 

is the best model only in winter, we observe the stable performance of the hybrid 

models. On the contrary, the performance of the individual models are not very stable. 

Relatively good performance of LSTM is shadowed by the poor performance in 

winter. 

Figure 4.3 reveals the relationship between MAE and ELI according to the LSTM 

model’s forecasts and the related scheduling of the GenCo. It must be mentioned that 

these values are from the 24 weeks of 2016, and, therefore, they are not continuous 

values. However, they give information about the co-movement of MAE and ELI. 

Although we observe the co-movement of MAE and ELI in general, on the last days, 

MAE levels do not follow the decreasing trend in the ELI numbers. This is further 
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evidence for a difference between the forecast evaluation measures, such as MAE, 

MAPE, RMSE and the financial effect measures, such as profit loss, ELI and PFDI. 

 

Figure 4.3 : MAE and ELI results of the ANN-LSTM model for 24 forecast weeks. 

Figures 4.4 and 4.5 are the graphs for the scheduling and profits of the GenCo on a 

randomly chosen day, 14 November. Figure 4.4 demonstrates the relative success of 

the ANN– LSTM model in the scheduling of the hydro power plant by showing the 

energy prices and power output of both units. It is observed that the power plant does 

not work in the lower price zone during early morning hours, and both units work in 

the maximum capacity in the peak-price hours. Due to the ramp-up costs, first, the 

greater unit, Plant 2, starts to operate, and in the higher demand moments Plant 1 gets 

activated as well. As a negative point, we can mention the 1 h delay in the production 

at 9. Figure 4.5, which shows the profits according to ex-post day-ahead scheduling 

and ANN-LSTM scheduling comparatively, supports this point by showing the profit 

of the ex-post day-ahead scheduling compared to almost no profit of ANN-LSTM 

scheduling at 9. Furthermore, ANN–LSTM scheduling produces more electricity and 

makes a profit in relatively low price levels at 21 and 22. On this day, scheduling 

according to ex-post day-ahead price forecasts resulted in $57223.38 profit compared 

to the LSTM model scheduling, which caused $56097.34 profit. It means $1126.04 

profit loss for the ANN–LSTM model in one day for a relatively small power plant, 

which has only approximately 1089 MW production on this day. 
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Figure 4.4 : Energy price profile and production schedule of Plant 1 and 2 based on 

ANN-LSTM method on 14 November. 

Figure 4.5 : Profit of ANN-LSTM model and ex-post day-ahead prices according to 

the hours of the day on 14 November. 

4.3.4 Diebold-Mariano tests 

The Table 4.2 can be used to provide a ranking of the various methods, however no 

statistically significant conclusions can be drawn on the performance of the forecasts. 

To showcase the statistical significance of the performance difference between all 

model variations, we use a Diebold-Mariano test (Diebold and Mariano, 1995), which 

takes the correlation structure into account. In Figure 4.6a, we show the p-values for 

the Diebold-Mariano tests between hybrid methods, neural networks-based methods 

and the statistical methods for 4032 h of the 24 weeks we investigated. In Figure 4.6b, 
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we show the statistical significance test in between the MAE values and profit losses 

for each method to illustrate the difference between the MAE and profit loss. 

Figure 4.6 : Results of the Diebold-Mariano tests defined by the MAE values and 

profit loss differential series in between different models. The figure indicates the 

statistical significance (green) for which the forecasts of a model on the X-axis are 

significiantly better than those of a model on the Y-axis. The statistical significance 

on the difference between the MAE values does not translate fully into a difference 

in profit loss. 

Figure 4.6a demonstrates the successful performance of the ANN model and the 

ANN–LSTM model, in terms of MAE. However, there is not a significant difference 

between both models and it is not possible to choose one model over another. 

However, according to the profit loss values, ANN-LSTM model significantly 

outperforms all the other models, including ANN. It is evident that forecast 

performance measures, such as MAE and the financial effect measures, such as profit 

loss give different results, in statistically significant terms. 

4.4 Conclusions 

In this paper, we propose self-scheduling schemes according to nine different forecast 

methods by using Mixed Integer Linear Programming for a relatively small hydro-

based GenCo with approximately 1 GWh production per day. Nine forecast schemes 

include a benchmark naive method, a statistical triple SARIMA model, machine 

learning ANN, LSTM and GRU models, in addition to the hybrid methods by the 

combination of the machine learning models. Additionally, we utilized ex-post actual 

prices as the perfect prices to schedule the power plant for optimum performance. This 
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allowed us to calculate the profit loss, ELI, and PFDI as the financial effect measures. 

We also compare the relationship between the financial effect measures and the 

forecast performance evaluation measure, namely MAE. This is the first paper which 

explores the use of hybrid methods from the financial effect of the forecast 

inaccuracies point of view. According to our results, ANN–LSTM model is the best 

performing one in statistically significant terms. Moreover, other hybrid methods 

ANN–LSTM–GRU and LSTM–GRU are the second and third best models, 

respectively. On the other hand, as individual models, ANN performs relatively well, 

but especially naive method, SARIMA and GRU would cause higher losses to the 

generation company. As the literature (Chaabane, 2014; Hong and Wu, 2012) suggest, 

the usage of hybrid works and the combination of the price forecasts (Bordignon et al., 

2013; Nowotarski et al., 2016), we also found out the statistically significant 

superiority of the hybrid ANN–LSTM method. Our findings are also in line with the 

works of Lago et al. (2018a) and Kuo and Huang (2018), which advocate the use of 

hybrid methods in deep learning electricity price forecasting applications. Another 

finding of this paper is that it supports the conflict between the forecast performance 

evaluation measures, such as MAE, and the inaccurate electricity price forecasts’ 

financial effect measures, such as profit loss, ELI, and PFDI. Even though the ANN is 

the best method in terms of MAE, and there is not a statistically significant difference 

between the ANN and ANN–LSTM methods according to the forecast errors; in terms 

of financial effect measures, ANN–LSTM is better than all the other methods, 

including ANN. Although the general trend is the same for MAE and financial effect 

measures, ELI in Figure 4.3, there are some conflicting weeks, which cause this 

discrepancy. Our results support the findings of Zareipour et al. (2010), Mohammadi-

Ivatloo et al. (2011) and Mathaba et al. (2014) in the Canada and U.S. markets on this 

conflict; in a smaller power plant, in a different market and with various new forecast 

methods from Ugurlu et al. (2018a) and the combinations of these forecasts. As Figure 

4.2 illustrates, the seasonality influences financial effect measures. Even though 

LSTM is successful in spring, summer and autumn; the poor performance in winter 

affects the success and reliability of this method. On the other hand, hybrid methods, 

especially ANN-LSTM, give stable and reliable results. For instance, SARIMA model 

shows a very good performance in spring. It could be helpful to change the models 

according to time periods. This is an avenue of improvement for our work. 
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In this paper, we focus on the relation between electricity price forecasting accuracy 

and profit maximization. For a fair comparison between different methods, we do not 

focus on the variable selection and just compare the methods with the same input 

variables. We compared five forecast techniques and four combinations of these 

techniques. In all the models we used the same endogenous variables; 1st, 24th, 48th, 

and 168th lags of the prices to compare the effects of the various models. In Ugurlu et 

al. (2018a), it is observed that machine learning models outperformed the triple 

SARIMA and the other statistical models. In our current experimental setup, statistical 

methods, such as SARIMA, and naive method do not perform well. However, by using 

more complex statistical methods (Ziel and Weron, 2018), different results could be 

obtained. We appreciate the hybrid models (Chaabane, 2014; Hong and Wu, 2012; 

Zhang, 2003), dimension reduction techniques (Ziel, 2016; Ludwig et al., 2015) and 

the automated variable selection works (Uniejewski et al., 2016), which utilize a 

variety of variables and choose the best ones. An obvious further research topic is 

using the available input variables to the the fullest and evaluate the relation between 

electricity price forecast accuracy and profit maximization. This paper opens the path 

for further research on the relation between electricity price prediction accuracy and 

profit maximization. Firstly, hybrid models show impressive potential and can be 

instrumental techniques for profit maximization. Secondly, the best performing 

models vary according to the test period. It could give the opportunity of using 

different models in different periods. Further research on this issue has the potential to 

minimize the profit loss of the suppliers. Thirdly, applying a non-linear programming 

technique for the PBUC could increase the scheduling performance. Lastly, solving 

the same problem for other types of suppliers, more markets and different time periods 

would check the generalizability, robustness and accuracy of these results. 
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5.  CONCLUSIONS 

With the liberalization of the electricity markets, electricity price forecasting has 

become an essential task for all the participants of the electricity markets. Due to this 

requirement, many electricity price forecasting models are developed by using various 

methods from different areas. This thesis focuses on choosing the best performing 

model among the statistical and machine learning methods in the first two papers 

(Ugurlu et al., 2018a, Ugurlu et al., 2018b). The third paper (Ugurlu et al., 2018c), 

which is included as the fourth chapter mainly discusses the financial effect of the 

inaccurate electricity price forecasts on a generation company by using the applied 

models in the previous papers (Ugurlu et al., 2018a, Ugurlu et al., 2018b). This thesis 

takes the Turkish day-ahead market as the research field due to the lack of research in 

this emerging electricity market. Due to its location, high growth rate and young 

population; Turkey has an increasing electricity demand, which is met by the installed 

capacity of over 80 GW per hour in 2017.  

Electricity price forecasting has a paramount effect on the market participants from the 

marketmaker to the end users. Although short-term electricity price forecasts seem to 

affect only the supply side generation companies and the demand side companies, 

which give bids in the day-ahead market; in reality, accurate electricity price forecasts 

give the opportunity of deciding the prices with less consumer or producer surplus to 

the marketmaker. As we take the electricity market as an oligopolistic medium, most 

of the time higher prices occur due to producer surplus. Therefore, having the accurate 

electricity price forecasts would decrease the consumer prices and let the citizens pay 

less for the electricity in longer term. 

There are many different ways of electricity price forecasting and there is still a 

challenge between the electricity price models. Hybrid models, which combine various 

methods, are frequently used to forecast the electricity prices. As Aggarwal et al. 

(2009) suggested, there is still a competition between different methods and we can 

not mention that one model is better than the other one consistently in different time 

periods and markets. However, by the improvements in the technology and the 
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domination of the artificial intelligence and the machine learning in various fields 

nowadays, the usage of machine learning related models (Lago et al., 2018a; Kuo and 

Huang, 2018) started to give better results than the conventional ones. Another 

important topic is the usage of the pre-methods in the electricity price forecasting. Due 

to the non-stationary nature of the electricity prices and the seasonality in many 

different frequencies, electricity prices require pre-treatments before the analysis, 

which increase the success of the electricity price forecasting models significantly 

(Uniejewski et al., 2017; Ziel, 2016). As mentioned, electricity price forecasts affect 

all the participants of the electricity markets. But, the most effected one, by the short-

term electricity price forecasts’ accuracy, is the hydro-based generation companies. 

The main reason of it is that they can make their production strategy according to the 

forecasts, which would cause them the smallest loss of profit. 

This thesis comprises three papers, which are independent, but strongly connected to 

each other, on the electricity price forecasting. The first paper proposes the usage of 

the factorial ANOVA model as a pre-whitening method to the electricity price series 

and suggests that it will turn the non-stationary series to the stationary ones, which is 

a requirement for applying the statistical methods. As discussed in the literature (Diaz 

and Planas, 2016, Keles et al., 2012), electricity prices can take zeros and negative 

values. Thus, taking the log returns, which is the state-of-the-art process to have the 

stationary series, is not applicable for the electricity prices. Therefore, factorial 

ANOVA is suggested as a transformation method to the electricity price series. 

Moreover, this first paper of the thesis compares the statistical electricity price 

forecasting methods such as SARIMA, Markov regime-switching and SETAR, in 

addition to the benchmark naïve method and the AR(24) model. Although best 

performing models vary according to the chosen time of the year, in a relatively robust 

way, SARIMA is chosen as the best performing statistical method in the Turkish day-

ahead market. The main drawback of this paper is that it only uses the lagged price 

series as independent variables. In the second paper, temperature, forecast 

demand/supply, 24th lag of the realized demand/supply and the 24th lag of the balancing 

market prices are added as the exogenous variables. But the main addition in this paper 

is the neural networks models, especially deep recurrent neural networks, LSTM and 

GRU. This paper proposes a new framework to the electricity price forecasting. Deep 

learning methods are used in speech recognition, image processing and natural 
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language processing successfully (Greff et al., 2017), but this is the first paper29 which 

performs the deep learning methods in the electricity price forecasting literature. In a 

similar sense, it is also the first work utilizing recurrent neural networks, which are 

tailor-made for the time series data. Deep recurrent neural networks outperform the 

shallow recurrent neural networks, artificial neural networks, convolutional neural 

networks and statistical time series methods significantly in the Turkish day-ahead 

market data. GRU is the better performing one compared to the LSTM among the 

recurrent neural networks models. Another contribution of this paper is that adding the 

meaningful exogenous variables also increase the performance of the electricity price 

forecasting models. However, adding less important variables do not cause a 

significant improvement. In the meantime, endogenous variables, 1st, 24th, 48th and 

168th, which are the ones used in the first paper, are the most explanatory variables. 

Third paper discusses the financial effect of the inaccurate electricity price forecasts 

on the hydro-based generation company. As, a hydro power plant can organize it’s 

generation schedule according to the electricity price forecasts, accurate electricity 

price forecasts have a major financial effect on the hydro-based generation companies. 

In this sense, the main problem is to decide the best electricity price forecasting model 

for the generation company. In general, the best performing models are chosen 

according to the performance evaluation criteria such as MAE, MAPE or RMSE. 

However, best model, in terms of the financial effect, is not necessarily consistent with 

the performance evaluation criteria (Mohammadi-Ivatloo et al., 2011; Mathaba et al., 

2014). In the Turkish day-ahead market, ANN-LSTM model, which is not the best 

according to MAE, is chosen as the best model in terms of loss of profit. From the 

generation company point of view, forecast models must be evaluated according to the 

financial effect performance measures. This paper also evaluates the combinations of 

the electricity price forecasts as hybrid models, in terms of financial effect. In most of 

the periods, hybrid models are the best performing ones. Therefore, it would be a good 

idea to use different models in different periods by giving chance to the hybrid models, 

as well. 

This thesis is the first study in the Turkish electricity market with such a broad view 

to the electricity price forecasting. Although works of Ozyildirim and Beyazit (2014), 

                                                 

 
29 Lago et al. (2018a) and Kuo and Huang (2018) are the simultanous works on the same topic. 
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Kolmek and Navruz (2015), Hayfavi and Talasli (2014) are acknowledged, this thesis 

gives a wider perspective to the reader about the Turkish electricity market and the 

electricity price forecasting models, which can be used in the Turkish electricity 

market. Moreover, it mentions the financial effect of the inaccurate electricity price 

forecasts on a generation company. Furthermore, it proposes factorial ANOVA as a 

pre-treatment method and deep recurrent neural networks as the electricity price 

forecasting models. According to the results, deep GRU is the best method in the 

forecasting of the Turkish day-ahead electricity prices. Another contribution of the 

thesis is that the generation companies must select the electricity price forecasting 

method according to the financial effect measures for the electricity generation 

scheduling. 

Electricity price forecasting is an ever improving research area. There are many topics, 

which can be discussed in terms of further research. First and foremost, hybrid models, 

both combination of the different models’ forecasts and the combined usage of some 

forecast methods give relatively good results in the literature (Chaabane, 2014; 

Bordignon et al., 2013). Therefore, especially combination of statistical and machine 

learning methods would be tried. In this thesis we used limited number of variables; 

gas and oil prices and exchange rates could help to forecast more accurately. Accessing 

the hourly data for a long term could be challenging in this aspect. It is also much 

better automatizing the variable selection process by using the dimension reduction 

techniques such as Lasso or Principal component analysis (Uniejewski et al., 2016). 

As mentioned, electricity markets differ from country to country according to many 

features such as location, technology usage, temperature, share of renewables etc. 

Therefore, all the markets have different conditions and unique features. A model 

successful in a market is not necessarily successful in another one. Even a model, 

which performs well now, could be outdated in a short while, especially in the 

emerging economies. Furthermore, day-ahead markets, balancing markets and the 

intraday markets have different characteristics and variables. Therefore, working on 

different markets in different time periods is necessary to forecast the electricity prices 

accurately. 

In Turkey, besides balancing market, intraday market also has an increasing volume 

and transaction numbers. High frequency research can be done in the Turkish intraday 

electricity market by using the relevant variables. In the intraday market, 1 hour ahead 
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forecasts are required and more recent data can be used. Another advantage for deep 

learning models is that there are approximately 500000 observations in the last two 

years in the Turkish intraday market. As it is known, higher number of observations 

allow the machine learning models to learn better and forecast more accurately. 

Additionally, financial instruments such as forwards, futures and options can be priced 

according to the intraday and day-ahead prices. This will allow the companies to hedge 

their positions and protect themselves from the sharp price increases and decreases in 

the electricity markets. The developing energy derivatives market of Turkey will also 

need pricing models. Pioneer work of Talasli (2012) was faced the lack of data in the 

Turkish intraday market. Nowadays, with the increasing number of observations, 

energy derivatives pricing would be a very intriguing topic. 
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APPENDIX A : Performance of electricity price forecasting models: Evidence from 

Turkey 

Table A.1 : Descriptive statistics of the Turkish day-ahead electricity prices 

(TL/MWh) according to hours of the day (2013-2015). 

Hours Mean Median 

Std. 

Deviation Minimum Maximum Range Skewness 

Excess 

Kurtosis 

0 151.08 149.74 30.36 10.00 228.08 218.08 -0.42 1.28 

1 135.61 134.99 33.15 0.00 216.60 216.60 -0.70 2.15 

2 118.79 122.00 37.94 0.00 216.26 216.26 -0.57 1.25 

3 106.22 115.01 39.48 0.00 216.24 216.24 -0.56 0.62 

4 103.27 114.91 38.58 0.00 210.77 210.77 -0.68 0.68 

5 103.38 110.49 37.94 0.00 212.99 212.99 -0.54 0.82 

6 107.26 118.99 41.91 0.00 216.64 216.64 -0.64 0.65 

7 129.75 130.01 38.55 0.00 227.79 227.79 -0.96 1.99 

8 161.03 167.65 35.89 10.02 230.96 220.94 -0.86 0.93 

9 175.76 180.00 31.37 31.71 232.95 201.24 -1.06 1.73 

10 178.90 181.91 29.93 30.00 270.00 240.00 -0.96 1.49 

11 181.14 185.00 29.37 44.19 299.76 255.57 -0.89 1.38 

12 170.04 171.99 30.89 40.68 233.92 193.24 -0.43 0.06 

13 174.52 179.84 30.13 39.01 234.70 195.69 -0.60 0.35 

14 176.64 180.00 30.82 38.15 276.00 237.85 -0.66 0.80 

15 172.33 177.99 32.00 33.95 256.01 222.06 -0.55 0.39 

16 170.46 174.85 33.71 24.27 250.00 225.73 -0.58 0.46 

17 164.46 168.33 36.65 16.92 274.93 258.01 -0.55 0.26 

18 159.26 160.00 33.57 19.67 231.58 211.91 -0.38 0.25 

19 157.42 155.02 30.50 29.71 231.24 201.53 -0.15 -0.07 

20 157.39 153.00 28.79 47.69 230.38 182.69 0.03 -0.40 

21 152.51 149.99 29.61 54.78 230.00 175.22 0.11 -0.41 

22 160.57 161.54 28.29 56.51 230.35 173.84 -0.25 -0.31 

23 148.76 148.00 29.66 50.37 230.00 179.63 0.02 -0.12 

Table A.2 : Tests of between-subjects effects for 01.01.2013-14.01.2016 as a result 

of factorial ANOVA. 

Source 

Type III Sum of 

Squares 
df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 2.793E7 74 377474.066 462.398 .000 .563 

Intercept 3.556E7 1 3.556E7 43565.770 .000 .621 

DAY 125320.803 30 4177.360 5.117 .000 .006 

MONTH 4605340.497 11 418667.318 512.859 .000 .175 

YEAR 3213615.910 3 1071205.303 1312.206 .000 .129 

TIME 1.747E7 23 759359.934 930.201 .000 .446 

WEEKDAY 1650976.197 6 275162.699 337.069 .000 .071 

HOLIDAY 1082763.351 1 1082763.351 1326.364 .000 .048 

Error 2.167E7 26541 816.340    

Total 6.521E8 26616     

Corrected Total 4.960E7 26615     
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Table A.3 : Parameter estimates for 01.01.2013-14.01.2016 as a result of factorial 

ANOVA30. 

Parameter B Parameter B Parameter B 

Intercept 83.892 
    

[DAY=1] 7.653 [MONTH=1] -11.294 [TIME=0:00] 2.124 

[DAY=2] 5.976 [MONTH=2] -27.052 [TIME=1:00] -13.645 

[DAY=3] 6.421 [MONTH=3] -44.988 [TIME=2:00] -30.309 

[DAY=4] 4.901 [MONTH=4] -39.616 [TIME=3:00] -42.912 

[DAY=5] 6.692 [MONTH=5] -39.847 [TIME=4:00] -45.792 

[DAY=6] 7.398 [MONTH=6] -34.250 [TIME=5:00] -45.068 

[DAY=7] 9.562 [MONTH=7] -18.316 [TIME=6:00] -41.042 

[DAY=8] 7.709 [MONTH=8] -11.816 [TIME=7:00] -19.277 

[DAY=9] 4.917 [MONTH=9] -14.029 [TIME=8:00] 11.520 

[DAY=10] 7.653 [MONTH=10] -25.592 [TIME=9:00] 26.751 

[DAY=11] 9.838 [MONTH=11] -20.651 [TIME=10:00] 30.638 

[DAY=12] 10.144 [MONTH=12] 0a [TIME=11:00] 33.438 

[DAY=13] 10.549 [YEAR=2013] 29.242 [TIME=12:00] 21.544 

[DAY=14] 8.456 [YEAR=2014] 43.137 [TIME=13:00] 26.223 

[DAY=15] 9.880 [YEAR=2015] 17.175 [TIME=14:00] 28.525 

[DAY=16] 8.089 [YEAR=2016] 0a [TIME=15:00] 24.132 

[DAY=17] 4.159 [WEEKDAY=1] 18.150 [TIME=16:00] 23.075 

[DAY=18] 6.301 [WEEKDAY=2] 24.497 [TIME=17:00] 17.012 

[DAY=19] 7.661 [WEEKDAY=3] 22.610 [TIME=18:00] 11.084 

[DAY=20] 6.815 [WEEKDAY=4] 23.801 [TIME=19:00] 9.340 

[DAY=21] 10.059 [WEEKDAY=5] 22.145 [TIME=20:00] 9.137 

[DAY=22] 7.747 [WEEKDAY=6] 18.051 [TIME=21:00] 4.052 

[DAY=23] 7.684 [WEEKDAY=7] 0a [TIME=22:00] 12.072 

[DAY=24] 5.751 [HOLIDAY=0] 34.263 [TIME=23:00] 0a 

[DAY=25] 3.733 [HOLIDAY=1] 0a 
  

[DAY=26] 3.023 
    

[DAY=27] 7.652 
    

[DAY=28] 8.706 
    

[DAY=29] 9.620 
    

[DAY=30] 7.641 
    

[DAY=31] 0a 
    

 

                                                 

 
30 a. This parameter is set to zero because it is redundant. 
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Table A.4 : Calculation of the deterministic part and the residuals part of the prices. 

Time Price Day of the 

month 
Month Year Hour Weekday Holiday Deterministic Residuals 

01012013 00:00 145 1 1 2013 00:00 2 1 135.89 9.11 

02012013 14:00 184.79 2 1 2013 14:00 3 0 193.17 -8.38 

           

01012013 00:00 

Unstd= Intercept + First Day of the Month + January + 2013 + 00:00 + Tuesday + Holiday 

Unstd= 101.700 +7.076 -11.290 +12.076 +1.811 +24.514 +0 = 135.887 

Residuals= Price-Deterministic Residuals= 145.00 -135.89 = 9.11 
           

02012013 14:00 

Unstd= Intercept + Second Day of the Month + January + 2013 + 14:00 + Wednesday + 

Normal day Unstd= 101.700 + 5.159 -11.290 +12.076 + 28.321 + 22.886 +34.318 

Residuals= Price-Deterministic Residuals= 184.79 -193.17 = -8.38 

Table A.5 : Comparison of the models forecasted prices with each other and the 

actual prices for November 15. 

Hour Price Naive AR(24) SARIMA TAR 

Markov-

2 (less) 

Markov-

2 (more) 

Markov-

3 

0 144.99 144.01 135.23 140.91 135.65 134.01 132.73 133.50 

1 101.99 112.97 120.96 119.97 118.14 116.39 114.06 115.87 

2 91.78 94.99 106.18 106.83 101.95 100.74 98.20 100.29 

3 91.77 75 92.13 88.76 87.92 86.55 80.65 85.96 

4 75 33.49 89.97 79.21 79.47 78.29 76.09 75.68 

5 75 74.99 90.40 85.69 78.78 77.77 75.37 76.20 

6 102 103.92 92.76 106.48 91.70 88.93 88.96 89.59 

7 140.9 145.04 118.78 132.94 122.75 120.48 118.95 123.39 

8 159 140.99 150.29 143.25 141.14 140.92 143.55 142.82 

9 175.11 185.1 170.02 174.65 165.76 164.20 167.11 167.82 

10 185.1 200.77 175.80 182.00 176.08 174.26 177.73 179.59 

11 192.28 205.93 180.22 187.47 183.31 181.63 185.36 187.84 

12 170.13 190.01 163.72 154.62 164.30 164.01 164.81 170.80 

13 158.1 185.1 169.45 165.67 166.23 166.93 167.85 173.29 

14 170.93 199.77 173.47 175.82 171.61 172.48 170.45 179.69 

15 167.45 180.11 168.66 164.77 163.06 165.16 160.77 171.50 

16 158.06 175.11 166.79 164.38 158.86 160.52 154.66 166.30 

17 175.1 175.1 159.41 170.54 155.78 156.17 152.60 162.32 

18 180.1 184.25 153.58 179.66 161.89 160.84 159.09 168.01 

19 175.11 172.95 152.73 178.02 167.10 165.69 164.38 171.62 

20 168.06 175.1 154.62 167.22 170.85 169.71 166.05 174.52 

21 148.99 156.38 149.23 150.25 161.88 161.29 153.37 164.10 

22 114.99 114.99 153.67 142.35 158.51 158.16 150.50 155.57 

23 101.99 114.99 139.44 124.11 137.23 138.69 129.92 134.89 
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Table A.6 : Hourly electricity prices for 14 July 2016, 15 July 2016 and absolute 

errors for the hours of the days. 

Hour 14-Jul-16 15-Jul-16 

Absolute 

error 

0 169.99 188.01 18.02 

1 150.58 159.99 9.41 

2 127.99 145.24 17.25 

3 127.98 127.98 0 

4 127.99 127.98 0.01 

5 89 89 0 

6 0.09 0 0.09 

7 122.4 123.96 1.56 

8 199.67 198.89 0.78 

9 201.82 203.63 1.81 

10 208.88 215.72 6.84 

11 211.26 221.91 10.65 

12 209.59 214.16 4.57 

13 211.58 214.07 2.49 

14 216.45 220.67 4.22 

15 214.81 220.98 6.17 

16 210.98 218.98 8 

17 204.99 202.88 2.11 

18 166.9 169.98 3.08 

19 159.99 156.74 3.25 

20 171.61 179.89 8.28 

21 166.98 177.12 10.14 

22 185 196.01 11.01 

23 159.99 164.99 5 

Average 167.36 172.45 5.61 

 

 

 



102 

APPENDIX B : Electricity price forecasting using recurrent neural networks  

Table B.1 : Descriptive statistics of the Turkish day-ahead electricity prices 

(Euro/MWh) according to hours of the day (2016). 

Hours Mean 

Standard 

Deviation 

Lower 

Bound 

Upper 

Bound Median 

0 45.61 10.34 0.00 70.53 45.38 

1 40.38 11.44 0.00 69.90 40.89 

2 35.25 12.70 0.00 69.73 36.50 

3 30.53 13.53 0.00 69.38 33.33 

4 29.57 13.47 0.00 69.38 33.03 

5 29.22 13.24 0.00 69.72 30.91 

6 29.93 15.00 0.00 69.82 33.34 

7 37.57 13.64 0.00 70.02 39.39 

8 46.85 13.40 0.00 71.54 48.49 

9 52.85 12.08 0.00 211.87 54.55 

10 54.62 12.96 0.00 303.03 55.32 

11 55.96 13.56 0.29 351.27 57.27 

12 50.78 13.02 0.28 303.02 51.51 

13 52.39 12.25 1.55 242.42 53.93 

14 53.79 17.73 0.33 575.75 54.55 

15 52.22 15.60 0.32 454.56 53.03 

16 51.52 13.38 0.31 242.42 51.54 

17 49.54 16.18 1.53 354.41 50.00 

18 47.71 12.69 0.25 235.45 47.27 

19 47.31 10.87 3.15 151.52 46.97 

20 47.78 9.75 14.45 139.41 46.94 

21 46.03 9.46 9.09 90.00 45.45 

22 47.24 10.08 1.35 72.12 47.75 

23 42.95 11.28 0.00 72.12 43.32 
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APPENDIX C : The financial effect of the electricity price forecasts’ inaccuracy on 

a hydro-based generation company  

Set values  

I Plants of the hydro generating company  

T Time periods (hour) {1,.., T} 

K Performance curves {1,..,K} 

L Set of blocks relating to the performance curve {1,.., L} 

Ω𝑖  Upstream reservoirs of plant 𝑖 
Parameters  

M Conversion factor (3.6 x 10-3 Hm3s/m3h) 

λ𝑡 Forecasted price of energy in period t ($/MWh) 

𝑃𝑖  Capacity of plant 𝑖 (MW) 

𝑃0𝑘𝑖  Minimum power output of plant 𝑖 for performance curve 𝑘 (MW). 

𝑆𝑈𝑖 Start-up cost of plant 𝑖 

𝑈𝑖
𝑚𝑖𝑛  Minimum water discharge of plant 𝑖 (m3/s) 

𝑈𝑙𝑖  Maximum water discharge of block 𝑙 of plant 𝑖 (m3/s) 

𝑊𝑖𝑡 Forecasted natural water inflow of the reservoir associated to plant 𝑖 in 

period 𝑡 (Hm3/h) 

𝑋0𝑖 Initial water content of the reservoir associated to plant 𝑖 (Hm3) 

𝑋𝐹𝑖 Final water content of the reservoir associated to plant 𝑖 (Hm3) 

𝑋𝐿𝑖 Lower bound of the water content pertaining to the reservoir of plant 𝑖 
(Hm3) 

𝑋𝑈𝑘𝑖 Upper bound of the water content to the 𝑘th performance curve of plant 𝑖 
(Hm3) 

𝛽𝑙𝑘𝑖  The slope of the lth block of the kth performance curve of plant i (MW/m3/s) 

𝛶𝑖𝑗  Time delay between reservoir of plant 𝑖 and plant 𝑗 (h) 

𝑠𝑖
𝑚𝑎𝑥  Maximum spillage of the reservoir associated to plant 𝑖 (m3/s) 

Decision variables  

𝑑𝑘𝑖𝑡  0/1 variable used for the discretization of the performance curve k  

𝑣𝑖𝑡  0/1 variable which is equal to 1 if plant 𝑖 is on-line in period 𝑡 

𝑦𝑖𝑡 0/1 variable which is equal to 1 if plant 𝑖 is started-up at the beginning of 

period 𝑡 

𝑧𝑖𝑡 0/1 variable which is equal to 1 if plant 𝑖 is shut-down at the beginning of 

period 𝑡 

𝑤𝑙𝑖𝑡  0/1 variable which is equal to 1 if water discharged by plant 𝑖 has exceeded 

block 𝑙 in period 𝑡 

𝑝𝑖𝑡  Power output of plant 𝑖 in period 𝑡 (MW) 

𝑠𝑖𝑡  Spillage of the reservoir associated to plant 𝑖 in period 𝑡 (m3/s) 

𝑢𝑖𝑡 Water discharge of plant 𝑖 in period 𝑡 (m3/s) 

µ𝑙𝑖𝑡  Water discharge of block 𝑙 of plant 𝑖 in period 𝑡 (m3/s) 

𝑥𝑖𝑡  Water content of the reservoir associated to plant 𝑖 in period 𝑡 (Hm3) 

 

The objective function (C.1) maximizes the total profit of the hydro GenCo. In this 

equation, total profit equals to total revenue coming from the sales of the produced 

energy minus total start-up costs of the plants. Constraint sets (C.2)–(C.5) determine 

water volume of the plants according to the performance curves. Each performance 

curve is active at the predetermined intervals of the water volume based on the 

discretization of the non-linear functions. Constraints (C.6) and (C.7) calculate power 

generation of a plant according to the minimum power output associated with active 

performance curve, the total discharged water of the blocks and the power output 



104 

capacity of the plant. Constraint set (C.8) is the water balance equation. The total 

amount of the water content, spillage and discharged water from a plant in a period is 

equal to the total amount of the previous water content, natural water inflow, spillage 

and the discharged water amounts of the upstream reservoirs associated with the plant. 

Constraint set (C.9) determines the discharged water amount of a plant based on water 

discharge of the reservoir blocks and minimum water discharge. Constraint sets 

(C.10)–(C.13) determine the discharged water by the reservoir blocks of a plant. 

Constraint set (C.14) ensures the spillage of a plant does not exceed the maximum 

spillage amount. Constraint sets (C.15) and (C.16) ensure the initial and final amount 

of the water content equals to the predetermined amounts. Constraint set (C.17) is the 

logical statements to arrange the start-up and shut down status of the plants. Constraint 

sets (C.18)–(C.21) show the type of the variables and sign restrictions. 

Mathematical Model 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ λ𝑡

𝑖𝑡

𝑝𝑜𝑖𝑡 − ∑ ∑ SU𝑖

𝑖𝑡

𝑦𝑖𝑡   (C.1) 

s.t.   

𝑥𝑖𝑡 ≤  𝑋𝑈𝑘𝑖𝑑𝑘−1,𝑖𝑡 + ∑ 𝑋𝑈𝑘−1,𝑖

𝐾

𝑘=2

[𝑑𝑘−2,𝑖𝑡 − 𝑑𝑘−1,𝑖𝑡] 
 
∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈  𝐾, ∀𝑡 ∈ 𝑇 

 

(C.2) 

𝑥𝑖𝑡 ≥  𝑋𝑈𝑘−1,𝑖𝑑𝑘−1,𝑖𝑡 + ∑ 𝑋𝑈𝑘−2,𝑖

𝐾

𝑘=3

[𝑑𝑘−2,𝑖𝑡 − 𝑑𝑘−1,𝑖𝑡] 
 
∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 

 

(C.3) 

𝑥𝑖𝑡 ≥  𝑋𝐿𝑖 ∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (C.4) 

𝑑1𝑖𝑡 ≥ 𝑑2𝑖𝑡  ≥ ⋯ ≥ 𝑑𝑘𝑖𝑡  ∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈  𝐾, ∀𝑡 ∈ 𝑇 (C.5) 

𝑝𝑖𝑡 − 𝑃0𝑘𝑖𝑣𝑖𝑡 − ∑ µ𝑙𝑖𝑡

𝑙

𝛽𝑙𝑘𝑖 − 𝑃𝑖[(𝑘 − 1) − ∑ 𝑑𝑘𝑖𝑡

𝑘−1

𝑛=1

+ ∑ 𝑑𝑘𝑖𝑡] ≤ 0

𝐾−1

𝑛=𝑘

 

 
∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈  𝐾, ∀𝑡 ∈ 𝑇 

 

(C.6) 

𝑝𝑖𝑡 − 𝑃0𝑘𝑖𝑣𝑖𝑡 − ∑ µ𝑙𝑖𝑡

𝑙

𝛽𝑙𝑘𝑖 + 𝑃𝑖[(𝑘 − 1) − ∑ 𝑑𝑘𝑖𝑡

𝑘−1

𝑛=1

+ ∑ 𝑑𝑘𝑖𝑡]  ≥ 0

𝐾−1

𝑛=𝑘

 

 
∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈  𝐾, ∀𝑡 ∈ 𝑇 

 

(C.7) 

𝑥𝑖𝑡 = 𝑥𝑖𝑡−1 + 𝑊𝑖𝑡 − 𝑀[𝑢𝑖𝑡 + 𝑠𝑖𝑡] + 𝑀 ∑ [

 𝑖 ∈Ω𝑖

𝑢𝑖,𝑡−𝛶𝑖𝑗

+ 𝑠𝑖,𝑡−𝛶𝑖𝑗
] 

∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇 (C.8) 

𝑢𝑖𝑡 = ∑ µ𝑙𝑖𝑡 + 𝑈𝑖
𝑚𝑖𝑛𝑣𝑖𝑡

𝑙

 ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇 (C.9) 

µ1𝑖𝑡 ≤ 𝑈1𝑖𝑣𝑖𝑡  ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇 (C.10) 

µ1𝑖𝑡 ≥ 𝑈1𝑖𝑤1𝑖𝑡  ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇 (C.11) 

µ𝑙𝑖𝑡 ≤ 𝑈𝑙𝑖𝑤𝑙−1,𝑖𝑡 ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇, , ∀ 𝑙 ∈  𝐿 (C.12) 
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µ𝑙𝑖𝑡 ≥ 𝑈𝑙𝑖𝑤𝑙𝑖𝑡  ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇, ∀ 𝑙 ∈  𝐿 (C.13) 

𝑠𝑖𝑡  ≤ 𝑠𝑖
𝑚𝑎𝑥  ∀ 𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (C.14) 

𝑥𝑖0 = 𝑋0𝑖 ∀ 𝑖 ∈ 𝐼 (C.15) 

𝑥𝑖𝑇 = 𝑋𝐹𝑖 ∀ 𝑖 ∈ 𝐼 (C.16) 

𝑦𝑖𝑡 − 𝑧𝑖𝑡 = 𝑣𝑖𝑡 − 𝑣𝑖,𝑡−1 ∀ 𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (C.17) 

𝑑𝑘𝑖𝑡 , 𝑣𝑖𝑡 , 𝑦𝑖𝑡 , 𝑧𝑖𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (C.18) 

𝑤𝑙𝑖𝑡  ∈ {0,1} ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇, ∀ 𝑙 ∈  𝐿 (C.19) 

𝑝𝑖𝑡 , 𝑠𝑖𝑡 , 𝑢𝑖𝑡 , 𝑥𝑖𝑡 ≥ 0 ∀ 𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (C.20) 

µ𝑙𝑖𝑡 ≥ 0 ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈  𝑇, ∀ 𝑙 ∈  𝐿 (C.21) 
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