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A BRAIN-INSPIRED COGNITIVE ARCHITECTURE FOR
DEVELOPMENTAL AND SOCIAL HUMAN-ROBOT INTERACTION

SUMMARY

In this study, a novel cognitive architecture is proposed to realize computational model
of limbic system and cognitive perceptual system inspired by human brain activity,
which improves the interaction between human and robot, based on joint attention
during the experiments. Using human-robot interaction (HRI), this brain-inspired
framework can become a suitable solution for problems related to establishing and
maintaining the joint attention.

After the presentation of the problem, literature survey, statement of hypotheses and
research questions in chapter 1, some background material about the methods used
throughout the thesis is described in chapter 2. Some candidate methods including
spiking neural networks, neural mass and dynamic neural fields are investigated. The
neural mass model deals with dynamics of neuron population. Population dynamics
reflects responses as mean firing rates of population including spiking neurons. The
dynamic neural field deals with field dynamics. In field dynamics, the neural activity
behaves like wave packets which travel along the neural field. Computational
mechanisms are mainly placed on bio-physical plausible neural structures with
different dynamics. Also, different learning and adaptation algorithms are applied to
the regions of computational models in the background of proposed cognitive
perception system.

In chapter 3, the computational framework realizes perceptual cognition skills via
thalamus and sensory cortices with multi-modal stimuli so that it provides to help
achieving of recognition and modelling perceptual attention tasks for a humanoid robot
which can easily communicate with its environment. In chapter 4, computational
models of the proposed limbic system including the amygdala, hippocampus, and basal
ganglia modules realize some cognitive processes such as emotional responses,
episodic memory formation, and selection of appropriate behavioural responses,
respectively. Using this system in the humanoid robot, success rates and response
times of preschool children are evaluated so that attention deficiencies of them can be
diagnosed and improved during the proposed interaction gameplay.

Experimental evaluation and verification tests have been performed to observe and
control the physical and cognitive processes of the robot in a developed software
framework embodied humanoid robot platform. Several interaction scenarios are
implemented to monitor and evaluate the performance of computational model in the
system architecture. Finally, results of the methodology used in this study are
comprehensively compared with the different models for discussion of relative
superiority with respect to each other. According to the findings, the proposed
computational brain inspired cognitive architecture is effective in the successful
establishment of the joint attention task between the humanoid robot and the human.
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GELISIMSEL VE SOSYAL INSAN-ROBOT ETKILESIMI ICIN BEYIN
ESINLI BILISSEL MIMARI

OZET

Bu calismada, insan beyin aktivitelerinden ilham alarak, insan ve robot arasinda
misterek dikkat tabanli etkilesimi gelistiren limbik sistem ve biligsel algi sistem
hesapsal mimarilerinin gergeklestirilmesi amaglanmistir. Bu iki sistem calismanin
temelini olugturan hesapsal genel yapinin alt mimarileridir. Frontal, temporal, parietal,
gorsel korteks (occipital), beyin kokii, beyincik ve omurilik gibi genel yapilardan
olusan insan beyni olduk¢a karmasik bir biyolojik bilgisayar oldugundan tezin
kapsam1 sadece limbik sistem, gorsel korteks, temporal ve parietal loblarla
siirlandirilmigtir. Ayrica insan robot etkilesiminin kullanilmasiyla, bu beyin esinli
mimari miisterek dikkatin kurulmasi ve siirdiiriilmesi ile ilgili problemler i¢in uygun
bir ¢dziim olabilir. Insan robot etkilesimi arastirmalarinda insan hareket ve
davraniglarina en ¢ok benzerligi bulunan insansi bir robot tercih edilmistir. Giris
kisminda c¢aligmanin amaglarinin vurgulanmasimin ardindan tezin kapsamindaki
geemis caligmalara iliskin genis literatiir taramast yapilmistir. Ek olarak ¢alisma ile
ilgili zorluklar ve problemler analiz edilmistir. Tezin performansinin degerlendirilmesi
i¢in aragtirma sorular1 ve hipotezler belirlenmistir. Tezin literature yaptig1 katkilar ve
getirdigi yenilikler detayli olarak ele alinmustir. {1k kismin sonunda tezin organizasyon
plan1 verilmistir.

Ikinci bdliimde, tezde kullanilangesitli ydntemlere yonelik bazi1 6n bilgiler verilmistir.
Tezde o6nerilen islemsel limbik sistem mimarisinin alt yapisini olusturan hesapsal
model dogrusal olmayan, dinamik ¢ok kipli davranislar sergiler. Diirtiisel sinir aglart,
sinirsel kiitle ve dinamik sinirsel alanlar1 igeren bir takim aday metodlar bu baglamda
incelenmigstir. Bunlara iligkin simulasyon c¢iktilar1 sunulmustur. Sinirsel kiitle sinir
hiicre populasyon davranigini ele alir. Populasyon dinamigi diirtiisel sinir hiicreleri
barindiran sinir hiicresi populasyonunun ortalama ateslenme orani olarak tepkileri
yansitir. Dinamik sinirsel alan diirtiisel sinir hiicrelerinin dinamik alan davranigini ele
alir. Alan dinamiginde, bir sinirsel aktivite sinirsel alan boyunca dolasan dalga
parcalart gibi davranir. Hesapsal mekanizmalar degisik dinamikleri igerisinde
barindiran biyo-fiziksel sinir yapilari model alir. Ek olarak insan beyni ile ilgili
anatomik yapilar tanitilmistir. Sonrasinda makina 6grenmesi prensipleri ile ilgili temel
bilgi verilmistir. Tezin uygulama ve deneylerinde kullanilmas1 amaciyla deneysel
platform olarak diisiiniilen insanst robot yazilimsal ve donanimsal Ozellikleri
bakimindan detayl1 olarak tanitilmistir.

Uciincii boliimde insan beynindeki talamus, gorsel korteks, parietal ve temporal lob
kisimlarin1 kapsayan biligsel algi sistemi modellenmistir. Bu sistemin kapsamindaki
biligsel fonksiyonlar bir insansi robot i¢in gergeklenmistir. Bu boliimde insanla robot
arasi etkilesim sirasinda insanin biligsel algi mekanizmasindan yola ¢ikilarak, ortak
dikkatin modellenmesi ve tespit edilmesi amaglamaktadir. Talamus robotun
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sensorlerinden gelen (eklem enkoderlerinden gelen bilgi, mikrofondan gelen ses
sinyali ve kameradan gelen gorsel veri) bilgilerin ilk olarak isleme tabi tutuldugu
mekanizmadir. Bu kisimda ¢esitli 6n islemler icra edilir. Daha sonra gorsel kortekste
goriintii ¢esitli filtrelerden gegirilir. Ek olarak blob analizi ile nesneler tespit edilerek,
nesnelere iliskin ilgi bolgeleri saptanir. Bu noktada temporal lob modiiliine veri
transferi i¢in nesnelere iligkin renk ve sekilleriyle alakali 6z nitelik ¢ikartim siirecleri
yiriitiillerek 6zellik vektorleri bulunur. Diger taraftan parietal loba veri transferi igin
nesnelerin uzaysal konumlari bulunur. Temporal algi modiiliinde, talamusta
hesaplanan ses Oznitelik vektorii yardimiyla saklt Markov modeli kullanilarak ses
tanima gorevi icra edilir. Bu modiilde nesnelere iliskin renk ve sekil tanima i¢in k-en
yakin komsuluk, destek vektor makinasi, naive Bayes, karar agaci, yapay sinir ag1 (¢ok
katmanli algilayici) kullanilmistir. Ek olarak derin 6grenme metodu olarak evrisimsel
sinir ag1 uygulanmistir. Uzaysal algi mekanizmasi olarak parietal modiilde gorsel
olarak yeri tespit edilen nesnelerin robot kolu tarafindan gosterilmesini 6grenmek
amaciyla regresyon modelleri kullanilir. Sonuglar1 karsilagtirmak amaci ile destek
vektor makinasi, karar agaci, dogrusal olmayan regresyon ve ¢ok katmanli algilayici
modelleri kullanilmistir.  Sonrasinda temporal ve parietal (uzaysal algi)
merkezlerinden gelen verilerle ortak dikkatin belirlenmesi saglanmistir. Elde edilen
bulgular robotun biligsel algi mekanizmasinin uzaysal ve uzaysal olmayan (temporal)
alg1 basarimlarinin oldukca yiiksek oldugunu gostermektedir. Ornegin uzaysal algi
mekanizmasi i¢in diisiiniilen regresyon modelleri %93 ortalama basar1 yakalamistir.
Temporal (uzaysal olmayan) algi mekanizmalarinda renk ve sekil tanima igin
kullanilan smiflandirma modelleri renk tanima i¢in ortalama %94, sekil tanima igin
ortalama % 95 basarim degerleri saglamistir. Ek olarak ses tanimadaki hata orani %12
ve insansi robotun eliyle nesneyi isaret ederek gostermesindeki hata payr %14
olmustur.

Dérdiincii boliimde, ¢evresiyle kolaylikla iletisim kurabilecek bir insansi robot igin
duygu, amisal bellek ve dikkatin modellenmesi gibi bilissel goérevlerin
gergeklestirilmesi amaciyla hesapsal limbik sistem mimarisi gelistirilmistir. Olaylarin
(vapilan hareket ve mimikler) bagsarim orani prefrontal korteksin basitlestirilmis bir
hesapsal modeli i¢inde olusan ¢alisma bellegi tarafindan degerlendirilir. Bu 6nerilen
yapida, limbik sistemin kisimlar1i olan amidala, hipokampus ve basal-ganglia
modiillerini igeren hesapsal modeller ger¢ceklenmeye ¢alisilir. Amidala modiilii algisal
modiilden iletilen 6znitelik verisine dayanarak duygusal ifadeleri tespit eder. Ayni
sekilde algisal modiilden iletilen 6znitelik verisi yardimiyla hipokampus modiilii
insan-robot arasindaki etkilesimsel olaylari anisal bellek olusumu ile kayit altina alir.
Duygusal aktiviteler ve anisal bellekten gelen veriler uygun davranigsal tepkilerin
secimi gibi biligsel siirecler i¢in basal-ganglia modiiliine aktarilir. Basal-ganglia
¢ikigindan aktarilan veriler insansi robotun servo motorlarina iletilir. Robot insandan
gelen tepkileri gdzlemler. Bu tepkilerin hizi ve dogrulugu robotun insan davranislarini
analiz etmesinde etkilidir. Bu kisimdaki deneylerde elde edilen sonuglara gore dinamik
sinirsel alanlarin, sinirsel kiitle modeline gore daha iyi sonug verdigi goriilmistiir. Ek
olarak insans1 robotla yapilan deneylerde, Ogretmenle yapilan deneylerle
karsilastirildiginda normal ¢ocuklarin olusturdugu grup ve dikkat eksikligi ¢eken
cocuklarin oldugu grup arasindaki farkin azaldig1 gézlemlenmistir.

Degisik 6grenme ve uyarlama algoritmalar1 bu Onerilen mimari i¢indeki hesapsal
modellere uygulanir. Bir insansi robotun fiziksel ve biligsel siireglerinin
gozlemlenebildigi ve kontrol edilebildigi deneysel degerlendirme ve dogrulama
testleri bu insansi robot platformu i¢cinde bulunan gelismis sistem mimarisi tarafindan
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yiritiiliir. Sistem mimarisinin galisabilmesi i¢in yazilim gelistirme ortamina ek olarak
bazi temel kiitiiphanelere ihtiya¢ vardir. Insans1 robotun kendi yazilim gelistirme
paketi, ses ve gOriintii verilerinin alinabilmesi i¢in ek yazilimsal destek paketleri ve
kiitiiphaneleri buna 6rnek olarak verilebilir.

Hesapsal modeli barindiran sistem mimarisinin performansini degerlendirmek ve
izlemek i¢in insanla robot arasinda uygulama olarak ¢esitli etkilesim senaryolar1 icra
edilmistir. Sonuclarin degerlendirmesinde istatistiksel analizlerle sistem basarimi
irdelenmistir. Ek olarak, bu tez ¢alismasi i¢inde kullanilan metodolojilerin sonuglari
birbirlerine karsi iliskisel tstilinliiklerini tartismak i¢in degisik modellerle ayrintili
olarak karsilagtirllmistir. Ayrica insanla ilgili deneyler, konusunda uzman psikolog
denetiminde gergeklestirilmistir.
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1. INTRODUCTION

People having disabilities, infants, elders and patients need better communication
abilities to interact with their environment. There are many accessory robotic
equipment, which have developed in recent years so that life standards of these people
are increased. Due to their bipedal structure and physical capabilities, humanoid robots
are very compatible to interact with human nature [1].

Like personal assistants, humanoid robots are interacting with humans in different
ways. Today, autonomous humanoid robots are widely used in entertainment,
education, research, home services, nursing jobs rather than jobs in industrial facilities
to perform deterministic, repetitive tasks. In daily life, humanoid robots can help in
these social areas while they are undertaking assistive support and rehabilitation tasks

for nursing or care working services [2].

Humanoid robots enhanced with embodied cognitive abilities can be used to assist
disabled individuals struggling to interact with their social environment by guiding
their accessibility and communication [3]. It is also anticipated that they will take on
more duties in future. Recent advancements in paradigms of artificial intelligence and
cognitive neuroscience can contribute to evolution of their technologies[4]. Currently,
humanoid robots are able to response to perceptual stimuli, simultaneously perform
complex decision-making and recursive task processing transactions (e.g.,
autonomously planning behaviour selection and execution). In the following decades,
it is expected that modern artificial intelligence (Al) architectures developed for
autonomous humanoid robots will be based on brain-inspired transactions, which will
constitute the principles of cognitive science and neuroscience in the future. As a
software framework of the future, the computational approximation of human brain
should exhibit features of higher cognitive abilities such as deliberative planning,
meta-reasoning, re-organizing, linguistic capabilities, consciousness and self-

awareness.



Humanoid robots used in social areas need some human like extraordinary cognitive
skills such as reasoning, decision making, problem solving. In order to realize them,
these embodied skills should organize very complex behaviour patterns rather than
performing more deterministic or repetitive tasks [5]. It is a quite challenging issue
that high level cognitive skills including imitation of emotional responses, attention
modulation, learning plasticity, modelling of environmental awareness (e.g. robot’s
world model or model of human(s) interacting with robot), organizing associative
memory models should be achieved. Under uncertain states and conflicting requests,
when the software framework of a computational cognitive model for humanoid robots
able to cope with multi-objective and goal-directed action-selection problems is
developed, deficiencies in coordination between multi-modal perceptual stimuli

increase these problems.

In the future, humanoid robots competing with human intelligence may socially
interact and collaborate in every social area behaving like a part of the humanity so

that they increase life standards of the society.

1.1 Purpose of Thesis

In the nature, cognitive and mental skills could be biologically realized via some
cortical and cerebral lobes in the human brain [6]. Some cortical and cerebral lobes or
zones are responsible from cognitive functions. Therefore, to achieve these goals, it is
essential to investigate the biological nature of cognitive systems and to develop
computational equivalents of them from artificial intelligence infrastructure viewpoint
of a humanoid robot. In order to realize that, the main purpose of this study intends to
construct a suitable large-scale computational Al framework of cognitive model for a
humanoid robot imitating human psychology (e.g. consciousness, awareness,
attention, behaviours, emotional expressions) and intelligence (e.g. reasoning,
perception, problem solving, communication, inference, planning, learning), to exhibit

similar functions of the human brain [6].

Beyond the classical Al paradigms and approaches, this idea covers functional
modelling of some cerebral regions (e.g. cerebellum, midbrain, limbic system,
prefrontal cortex, motor cortex, visual cortex, temporal and parietal lobes) inspired
from anatomical structure of the human brain. The characteristics of computational

infrastructure which includes different mathematical models and algorithms could



exhibit some properties of stochastic and nonlinear dynamics (e.g., chaotic behaviours,
multi-modal or strange attractors, chattering) [6].

To achieve goals of the thesis, concepts and scopes related to the thesis include
theoretical modelling, simulating and testing of the developed system architecture for
the humanoid robot. Due to high-level computational costs, in addition to a humanoid
robot platform, a high performance computer system as a host is employed for
implementation rather than directly embedding the cognitive architecture into a

humanoid robot platform.

1.2 Literature Review

In recent years, works about computational cognitive architectures developed for
human-robot interaction with humanoid robots have rapidly increased and they will be
expected to rise as one of the emergent issues in the future [4]. Up to now, there are
several instances, which can count as significant qualification. Chronologically, they
can be investigated by dividing into several sub-generations which include
biologically inspired cognitive architectures, behaviour based and artificial emotion
driven Al frameworks [5]. As a reverse engineering perspective of Al, the state of the
art paradigms like nature inspired methodologies which have been developed in the
last 20-30 years can shed light to developing a future artificial mind of humanoid
robots to achieve better multi modal and dynamic human-robot interaction for
developmental social robotics. In addition, combinations of these studies are discussed
for developing alternative hybrid solutions into structure of large-scale central nervous

system.

Recently, computational cognitive architectures have been developed for human-robot
interaction (HRI) with humanoid robots to solve behaviour-planning problems. Such
projects are rapidly increasing, and they are expected to continue to expand as an

emergent technology in the future.

Some very good examples of computational architecture based on dynamic neural
fields (DNF) were presented in the works [7] and [8]. In [7], Y. Sandamirskaya
establishes the relationship between DFT and soft winner take all (WTA) networks to
integrate DFT mechanisms shown in figure 1.1. It is possible to realize some properties

such as the stabilization of working memory, the coupling of sensory systems onto



motor dynamics, intentionality, and autonomous learning through these computational

structures.
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Figure 1.1 : Dynamic neural field architecture for sensory-motor mapping [7].

Richter et al. [8] proposed an autonomous neural dynamics framework in 2014.
Representation and transformation of spatial perception are provided by neural
activation fields. An architecture of dynamic nodes establish interaction to transfer
information between perceptual fields. Cognitive skills like attentional selection of
individual objects in a scene, location mapping of an object-centred reference frame,
and evaluation of matches to relative spatial terms are realized with these
computational mechanisms[8]. The nodes organize discrete time processing steps
sequentially. These steps arise from instabilities in continuous time neural dynamics.
In these studies, DNFs are introduced as a suitable domain for modelling embodied

cognition.

Duran et al. conducted a promising study on DNF utilizing a reinforcement learning
method for HRI in 2011 [9]. In this work, tasks of a humanoid robot are modelled as
submodules (elementary behaviour (EB) model) and the reinforcement learning
procedure teaches a policy of behavioural switching between them. Using the NAO
humanoid robot platform, they propose a mathematical formulation to incorporate
these modules. This study (Figure 1.2) is a good instance of the successful execution

and learning of dynamic sequences. Through comparison of two reinforcement



learning methods applied to sequence generation, results are presented for both

simulation and implementation.
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Figure 1.2 : Dynamic neural field utilizing a reinforcement learning [9].

Furthermore, an emotional biologically inspired cognitive architecture (eBICA) based
on mental schemas was published in 2013 [10]. This study (Figure 1.3), describes a
complete architecture for representation and processing of emotional expressions in a
cognitive framework, called ‘‘emotional biologically inspired cognitive architecture’’
(eBICA) since human-like artificial emotional intelligence is important for adaptation
of future robots with the human society. Emotional responses were simulated
synthetically to all cognitive representations and processes by modifying the main
building blocks of the prototype architectures [10]. Additionally, emotional
modulation for behaviour processing performs clustering of the emotional states in the
arousal-valence domain. Control patterns of appraisals and semantic spaces giving
values to appraisals can represent social emotions, that the major components are
appraisals related to attributes with schemas and mental states, moral schemas. In
Samsonovich’s study, the major components are schemas and mental states, with
moral schemas embodied into appraisals as attributes[10]. The patterns of social
emotions and semantic spaces are represented and controlled by these appraisals. In
an experiment involving human subjects and virtual agents, results of proposed
principles are tested based on a simple paradigm in a virtual world. It is shown that
eBICA with moral schema can easily manipulate human behaviour through the

selected approach. The framework could be useful for collaboration of virtual partners



with humans, self-regulated learning of virtual agents, and realization of reasonable

emotional intelligence.
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Figure 1.3 : Emotional Biologically inspired Cognitive Architecture [10].

Proposed principles are tested in a simulation with human subjects and virtual agents,
based on a basic approach in artificial environment [10]. The eBICA can account for
human behaviour in the chosen approach with moral schemas. The model shows
clustering of social emotions and allows the emotions via novel mathematical
description. A unique architecture is proposed for implementation of believable
emotional intelligence in artefacts, necessary for emotionally informed behaviour,
collaboration of virtual partners with humans, and self-regulated learning of artificial

agents [10].

A recent study on design principles underlying the mind, brain, and body nexus
(MBBN) published in 2012, authored by Paul F.M.J. Verschure[11] was a brain

inspired cognitive architecture composed of several computational blocks.
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Figure 1.4 : NeuroDAC Architecture [11].

The fact that the brain maintains stability between an embodied agent and its
environment through action is ensured via neural modelling of the Distributed
Adaptive Control (DAC) [11]. DAC (Figure 1.4) presumes that the brain should
answer four fundamental questions called as H4W problem (e.g., why, what, where,
when) while the brain is sustaining stability between an embodied agent and its
environment through action. The DAC theory is proposed as a robot based neural
architecture composed of two complementary structures including layers and
columns[11]. The DAC theory organized in two complementary structures (layers and
columns) is described as a computational neuro-cognitive architecture for a robot. The
reactive, adaptive and contextual layers define developmental stages of the
architecture[11]. The columnar structures, including the processing of states of the
world, the self, and the generation of action, describe functional parts of the
architecture. In examples of application scenarios, hypotheses related to the work are
validated using humanoid and mobile robots, neurorehabilitation and the large-scale

interactive space combines the general perspective of DAC’s explanation of MBBN.



In 2012, Sengor et al. presented a robot model based on cortico-striato-thalamic
circuits, by developing a computational model of the basal ganglia for a mobile robot
[12]. The main purpose of this work is to show the potential use of robot models for
implementing intelligent systems to inspire new approaches and techniques. This work
(Figure 1.5) includes a reward-based computational mechanism shedding light on
biological explanation of animal action selection processes[12]. For implementation

of goal-directed behaviour, a Khepera Il mobile robot was used.
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Figure 1.5 : The architecture of the model realizing goaldirected behaviour [12].

Navarro et al. investigated a neurocomputational model (Figure 1.6) of auditory-cue
fear acquisition in 2012. It reveals the principles of fear conditioning and the essentials
for developing adaptive, self-protective systems [13]. In order to develop adaptive self-
protective systems, sensory-motor processing is a very essential aspect for
understanding fear learning. This hybrid approach is efficient for exciting stimulus and
learning the temporal relationship between auditory sensory cues. Detailed study of
the computational mechanisms based on neural circuits in the brain supports the

development of safer robots and better understanding of fear processing[13]. The



hybrid approach could achieve learning the temporal relationship between auditory
sensory cues and an aversive or appetitive stimulus. A neural network simulation was

considered to evaluate the model and it was implemented on a robotic platform [13].
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Figure 1.6 : A neurocomputational model of auditory-cue fear acquisition [13].

Richter et al. developed a dynamic neural field model inspired by human cognition in
2012 [14]. This study (Figure 1.7) provides a computational dynamic model of
sensory-motor systems and realizes an action-selection procedure by coupling the
dynamics between them. For behavioural organization, the theory of elementary
behaviours (EBs) is a key component producing specific task sequences in this study.
According to behaviour constraints and perceptual information, some behaviours like
grasping and pointing can be executed by EBs’” embodied dynamic neural field model.
This adaptive system, including the individual sensory-motor components (EBS),

yields flexible task sequences[14].
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Figure 1.7 : Elementary Behaviour (EB) [14].

In 2011, Schoner et al.[15] proposed a model using DNF for scene representation. This
approach (Figure 1.8) assists in the modelling of spatial cognition in humanoid robots.
Their architecture, which generates scene representations, has been achieved via
controlling gaze and visual attention, estimating saliences, tracking objects, and
reading them into working memory. In order to process spatial information and
sensory-motor structures, different dimensional DNFs are required to couple among

perception and motor systems.
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Figure 1.8 : DNF for scene representation [15].

Another important study (Figure 1.9) presented by Erlhagen et al. is a neurocognitive
architecture embodying dynamic neural fields for HRI scenario in 2010 [16-19]. Their

computational model, which integrates contextual cues, shared task knowledge and

10



predicted outcomes of the human motor behaviour, allows an assistant robot to display
pro-active and anticipatory behaviour for non-verbal HRI experiments. Task relevant
information about action means, action goals and context is encoded into different
subpopulations in the form of self-sustained activation patterns[16-19]. A coupled
system of dynamic neural fields representing a distributed network with specific
functionalities performs the coordination of actions and goals with the human.
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Figure 1.9 : Pro-Active Neuro Cognitive Architecture [16].

Sauser et al. [20] presented a biologically inspired approach to multimodal integration
and decision-making in the human-robot interaction studies. A dynamic neural field
based framework was developed so that cooperative and competitive interactions were
provided by sensorimotor representations. Using this computational model, the human
imitation abilities, social interactions are likely to be linked with fundamental abilities

of human.

In addition, computational cognitive architectures have been developed to solve
perceptual and environmental modelling problems for humanoid robots. The number
of projects are rapidly increasing, and they are expected to rise as an emergent issue in
the future. Francesco Rea conducted a promising study on visual perception and
attention model for a humanoid robot in 2012 [21]. Furthermore, as a cognitive

architecture, the brain inspired emotion recognition framework was first published as

11



a novel study on the design principles underlying the Gabor filter based feature
extraction of a human face and recognition of emotional expressions by a recurrent
neural network in 2006 [22].

1.3 Description of Related Work and Problem Statement

Autonomous humanoid robots are widely used in various platforms such as health care
(rehabilitation), education and domestic areas. However, their application in social
areas requires an embodied computational framework incorporating highly developed
cognitive skills [2]. Although the human brain naturally performs all these cognitive
skills within own entity, robots come across severe difficulties due to world model and
task uncertainties. It is a quite challenging issue that high level cognitive skills which
are able to respond multi-modal perceptual stimuli can provide some properties having
environmental awareness, ability to recognize patterns and develop a model of
attention [6]. Due to deficiencies in coordination between multi-modal stimuli,
modelling of the robot’s perceptual environment (e.g. spatial world model or
behavioural model of human(s) interacting with robot) is one of the biggest problems
[23]. Therefore, major challenges in this thesis study can be divided into several sub-
topics such as perceptual processing, emotional appraisal, action-selection task,
episodic, procedural and working memory formations. In addition, interaction quality
between human and the robot is shaped with robot’s high-level cognitive abilities such

as awareness and attention modelling.

For application domain, attracting and maintaining the attention of children are great
challenges from the perspective of human-robot interaction (HRI) studies [3]. The
interaction levels of children, which should be investigated through turn-taking
interaction gameplay scenarios with a humanoid robot, vary depending on the attention
model type [24]. Moreover, some conditions severely hinder their realization using
HRI in socially shared environments. In hopes of resolving this issue, the proposed
computational framework would enable humanoid robots to increase interaction-based
attention in preschool children, such that a robot may be used as an educational or

rehabilitative assistant [4].

12



1.4 Research Questions and Hypothesis

Testing criteria including rate of success, time of activity, number of trials, errors,
reinforcements (e.g., rewards or punishments), and computational or optimization
costs can be proposed to evaluate internal states of the proposed computational
framework to observe the performance of interaction between a humanoid robot and
the human subject [25-45]. Neuromorphologic adaptation and learning statistics of the
humanoid robot’s artificial brain model (computational framework) can be added to

these measures as internal indicators (hidden variables).
Possible research questions (RQs) related to thesis can be offered as follows:

RQ 1: How would social interaction based on joint attention be established between
a humanoid robot and human so that the robot may be used as an educational or

rehabilitation assistant?

RQ 2: How does the humanoid robot achieve human like perceptual cognition, which
evaluates spatio-temporal awareness that investigates correlation between pattern
recognition skills, semantic memory development and selective attention model with

competitive focuses under multi-modal stimuli?

RQ 3: How can the diagnosis of preschool children’s (ADHD or normal group) current
and past status related to interaction levels based on attention via the robot’s emotional
activations (or expressions) and episodic memory be retrieved by its computational

framework?

RQ 4: How can attention deficiencies of preschool children be improved (or reco-
vered) through optimal action sequences generated by the robot’s behaviour selection

mechanism?

Definition 1: Focused attention corresponds to an individual’s ability to respond

discretely to specific perception stimuli [24, 27].

Definition 2: Observation times of continuous and repetitive interaction behaviours
are effectors of sustained attention. Sustained attention is defined as the ability to
maintain a stable cognitive activity while these behaviours are being processed [24,
27].

13



Definition 3: The term joint attention corresponds to an individual’s ability to
establish a communicational link with the other (human or robot) in domain of

attention.

Definition 4: The ability to explore and resolve all perceptual relations, while the
individual interacts with environment and the other, is expressed as perceptual

awareness.

According to these definitions, the focused attention level is related to recognition
errors and response times of the gestures perceived. Focused attention level can be
extracted from the emotional state of the humanoid robot. The sustained attention level
of an individual corresponds to the maximum duration without reducing interaction
performance. The interaction performance score can be evaluated by success rate (or
frequency) in the sequence of events (gestures to be perceived) for a short time window
(At). Focused and sustained attention levels are merged to represent a unified (or
general) attention measurement indicator. We put forward a statement that general
(unified) attention level related to interaction performance is measured by a computed
reward related to reinforcement learning of the action selection progress. Thus,
preschool children’s interaction performance can be easily diagnosed from changes in
attention level between the past and present during the experiments. If the change of
improvement level in the general (unified) attention level is greater than zero,
interaction based on attention is effectively achieved in preschool children using HRI.
Hence, we intend to show that the current status and change of improvement level can
provide an action sequence (or policy) such that the change of improvement level is

greater than zero.
The following hypothesis can be tested depending on the research questions:

Hypothesis 1: If the response times and recognition errors of the stimuli decrease
monotonically, the computed reward related to emotional state increases and
interaction based on focused attention increases between the humanoid robot and

preschool children.

Hypothesis 2: If the success rate (or frequency) in the sequence of events (perceived
gestures) within a short time window (At) increases, the interaction performance score
increases, and interaction based on sustained attention increases between humanoid

robot and preschool children.
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In the literature, presented standard solutions have not thoroughly grappled with these
problems. When investigating from the computational intelligence, computer science
and engineering viewpoint, standard deterministic behaviour selection mechanisms
with ordinary supervised or reinforcement learning algorithms have not achieved the
expected goals. Especially, computational modelling of human’s cognitive skills with
biological plausible artificial neural mechanisms (e.g. networks of spiking neurons,
dynamic neural fields and neural mass models) concepts are still uncovered

philosophical facts for the robotics.

On the other hand, the proposed novel solution could be a suitable candidate for
verifying the hypotheses that humanoid robot embodied computational cognitive
framework could improve the attention-based interaction of preschool children. In
addition, the network of spiking neurons helps to realize adaptive and emergent
behaviours by neural mass models including population dynamics. This phenomenon,
which is also supported by field-like dynamics (e.g. dynamic neural fields), can be
embodied in cognitive architecture of the humanoid robot. Proposed novel neural
structure can encode spatio-temporal relations or features of the dynamic interaction
between robot and child. Episodic memory formation which can store past events (e.g.
interaction history) involves measuring or detection of attention level of child during
interaction. To improve a child’s attention, humanoid robot’s emotional activity giving
rewards for optimal action selection is a key element so that attention level of
preschool child can be boosted via parallel task processing in neural structure of action
selection mechanism while it is slightly diminishing. Therefore, the presently proposed
computational limbic system framework, realizing neuromorphologic plasticity
(adaptation), may provide a novel solution to ADHD issues. For verification, the
described hypotheses are tested via scenarios supported by turn-taking interaction

gameplays for preschool children.

1.5 Contribution and Statement of Novelty

In the current study, we propose a brain-inspired computational framework of
embodied cognitive functions for a humanoid robot, to improve the human robot
interaction based on joint attention. Therefore, it is essential to investigate the

biological nature of cognitive systems from the viewpoint of a humanoid robot.
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In chapter 3, a computational perception system inspired by human brain’s sensory
regions is developed for a humanoid robot that can easily communicate with its
environment. According to research questions (RQ 1 and RQ 2) depicted in section
1.4, this study investigates joint attention, perceptual awareness and spatio-temporal

perceptual cognition for the human-robot interaction.

In chapter 4, the other major aim of the study that covers research questions (RQ 3 and
RQ 4) and hypotheses (H1 and H2) depicted in section 1.4 seeks to build
computational limbic system including the modelling of emotional responses and
formation of episodic memory. In addition, the proposed system involves an action-
selection mechanism based on a reward-based learning procedure. This is achieved by
combining different heuristics with machine learning techniques to obtain solutions to
a range of problems. The proposed cognitive architecture employs a DNF model based
on field dynamics of a biologically plausible neural structure (e.g., cortical tissue). The
effectiveness of the model is compared with a neural mass model utilizing the

population dynamics of biological neurons.

1.6 Organization of the Thesis

The thesis is structured as follows: section 2 provides preliminary background
information about the methods and computational tools used in the study; section 3
provides detailed information about the proposed computational perception system
introducing visual cortex, temporal and parietal cortices with revealing experimental
results; section 4 lays out the design principles of the proposed computational limbic
system architecture that produces emotional responses, episodic memory, and
motivational effects on the behaviour selection mechanism with performance
evaluation analysis; finally, section 5 provides a discussion of conclusions that can be
drawn from the current findings in the context of previous research, and presents

several possibilities for future research.
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2. BACKGROUND

In this chapter, reference studies are presented to build a theoretical basis of the study
carried out in this thesis. These studies are listed under three main topics. In order to
implement a bio-inspired design in the solution, the first topic provides some
anatomical evidence and basic biophysical knowledge. The second topic introduces
preliminary mathematical models and some numerical methods that are used in
computational mechanisms of the architecture. Finally, last topic depicts information
about learning algorithms so that neuromorphological adaptation and neural plasticity

are realized in components of the architecture.

2.1 Biophysical and Anatomical Evidence

In nature, cognitive functions are controlled by cortical regions and limbic system in
the human brain [6]. The limbic system including the amygdala, hypothalamus,
hippocampus, and basal-ganglia; regulates the behavioural and cognitive abilities of
humans [6]. While basal-ganglia selects a behaviour (e.g. sequence of actions),
emotional responses produced in amygdala give reinforcement effect to it. As the past
events, hippocampal activities related to formation of episodic (e.g. long-term)

memory may contribute to realizing these processes.

Anatomical structure of cerebral cortex includes two main cortical structures called as
frontal and posterior parts. Cognitive functions related to perception skills are involved
in posterior part of the cerebral cortex [46-58]. This region is divided into three sub-
regions called as occipital, parietal and temporal lobes. Occipital lobe which resides in
regions of primary visual cortex realizes post feature extraction on visual stimuli.
Temporal lobe involves in pattern recognition on visual and auditory stimuli. Parietal
lobe which accepts visual and somatosensory stimuli is responsible from spatial
perception [23, 46, 59-71].
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Figure 2.1 : Human brain cortical zones [6].

Cognitive functions related to reasoning, planning and working memory skills are
involved in prefrontal cortex which is a part of frontal lobe of the cerebral cortex. This
region is divided into four sub-cortical areas including dorsolateral, ventrolateral,
anterior and medial prefrontal regions. Dorsolateral and ventrolateral prefrontal
cortices realize spatial and temporal reasoning tasks respectively. Anterior prefrontal
cortex (or Brodmann Area 10) performs emotional reasoning tasks. Medial prefrontal
cortex including orbitofrontal cortex involves in working memory and meta-cognition
[46].

2.2 Mathematical Background for Computational Design

In this section, background information of computational mechanisms in a
computational neural tissue with multiple dynamics is briefly introduced. Our
proposed structure for each component (region of limbic system) is based on three
computational domains. The dynamics used in this structure are listed as spiking

neurons, neural mass (e.g. neural population) and dynamic neural field.

Unification of these dynamics with soft computing techniques provides a
computational neural tissue which realizes cognitive skills of specific limbic system

regions such as basal-ganglia, amygdala, hypothalamus and hippocampus.
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2.2.1 Spiking Neurons and Networks

Due to the nature of the human brain, utilizing neural computing approaches is more
likely coherent with purpose of the thesis. Different types of distributed computing
cells (artificial neurons) are studied to construct a computational framework of a huge
nervous system for robots. Classical artificial neural networks usually employ
McCulloch-Pitts [72] neuron model for solution of engineering problems whereas
mathematical models of biologically plausible computational neurons like spiking
neural models (e.g., Integrate & Fire, Hodgin-Huxley, Izhikevich models) [73, 74] are
also available. In 2003, Izhikevich model emerging from Hodgin-Huxley model has
been introduced which can effectively represent most of the behaviours of neural

activation.

From the two models (Izhikevich and Hodgkin-Huxley), different spiking behaviours
can be observed such as tonic spiking, phasic spiking, tonic bursting, phasic bursting,
spike latency, subthreshold oscillations, resonator, integrator, rebound spike/burst,

inhibition-induced spiking/bursting.
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Figure 2.2 : Spiking neural activities observed from Izhikevich model.

19



Neural cells can be represented as nonlinear circuits with a capacitor acting like an
integrator. In addition to this, stochastic and chaotic behaviours like dynamic
attractions are taken into consideration [73, 74]. The conductance-based models can

be generally expressed by

dav;
CGe= D OubE V) + Lo 2.1)

Where I, represents the external input current. Also, V; depicts the j** neuron’s
membrane potential, with a capacitance coefficient C. Potential E; indicates reversal
potentials related to their ion channels. Their conductance parameters g; and reversal
potentials E; help to generate ion currents through gate variables ¢; , which are

computed by ordinary differential equations.

lion = Zgiqbi(a- —V) = Iyg g ¥ loa— 1 2.2)
Ina = gnam*h(V; — Ena) (2.3)

Iy = gxen* (V; — Ex) (2.4)

Iea = 9ca(Vj — Eca) (2.5)

The current term [;,,, represents ion channels and external input currents respectively.
Different ion channels Iy,, Ik, Icq, I, Show sodium, potasium, calcium and leakage
currents. Their conductance parameters gna, 9k, Jce and reversal potentials
Ena Ex, Ecq help to generate ion currents via p = {n, m, h} gate variables which is
computed by the following differential equation [73].

d
d—f = (1 - p)a,(V)) +p. B (V) (2.6)
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Figure 2.3 : Spiking neural activity observed from Hodgkin-Huxley model [73].

In figure 2.3, variations of membrane potentials and fired spikes are shown. Due to the
computational complexity of conductance-based models, the Izhikevich model [74],
which is more basic and efficient, is preferred in developing generic neural tissue

(structure). It is composed of two simple differential equations.

dv; 2

—L = 0,041 + 5V + 140 — u+ [y 2.7)
du
E = a(bV} - u) (28)

where V; is the membrane potential of the jt" neuron and u is the recovery variable.
External currents including synaptic input are applied to I,.,;. However there is a

certain spike threshold, which causes V; to reset to a potential level.

iij =>30mV

Thean:c; u=u+d;

Also the recovery variable u is updated by this thresholding process. The system
parameters are expressed as a, b, ¢, and d, so that different spike behaviours in the

cortical region neurons can be obtained.
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Figure 2.4 : Membrane potential of a specific neuron and its dynamic behavior
(phase portrait).

The cell’s updated equation, familiar and compatible to the Hudgkin-Huxley and the
Izhikevich models, is based on the conductance model depicted in the equation (2.19).
Thus, the model can exhibit some complex nonlinear system behaviors including
bifurcation, phasing, chattering, tonic, bursting, integrator/resonator, periodic
oscillator, inhibitation, and adaptive spiking [74]. A circuit-based model
representation requires additional parameters. Extension of the two models can be

realized by modifying the external input current I, , to include Iy, Igpp, and Iseoc.
loxe = [syn + [app + Istoc (29)

The term I,,,, defines interconnection currents between neurons. The current I, is

produced by external stimuli. As a bias or disturbance current, Iy, iS a stochastic

noise current generated by a function of the Wiener process.

Iy = — Zwijg,-(t)(a -7 (2.10)

Lopp = — Zk: Wiej G () (Ex — Vi) (2.11)

The weight matrix W;; defines interconnectional strengths between neurons and the
matrix wy; depicts input strenghts of the network coming from external stimuli. The
conductance vectors g;(t), gx(t) are defined as gating variables of inter-neurons and

input to the network respectively. Potentials E;, E}, indicate reversal potentials related

to inter-neurons and input flow.
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e (1-Y)a (2.12)

T

g < GO +1,  if 10 < fraeeht (2.13)

The parameters are setas 7 = 10 ms and . (t) € [0, 1].

2.2.2 Neural Masses (Population Dynamics)

The space or cloud of spiking neurons is driven by firing rate models of a neural
population. Besides main neuron pool, there can be some kinds of sub-populations
called excitatory and inhibitory populations. The general form of neural population
density can be interpreted by Jansen-Rit’s neural mass model equations [75]. There is
a very close relationship between the signal relay from population density of a neural
mass and electroencephalography (EEG) activity [76].

i = He'iEeXp (— E) t=>0 (2.14)

T T

The termh®® is the impulse response function, depending on the excitator (h¢) and
inhibitor (k') in the neural population. Parameters 7, H are time constant and the
amplitude of the impulse response function respectively. The exogenous term | is the
mean ensemble firing rate of the presynaptic excitatory input which is passed into the

computational model of the neural mass.
yi= h*®@UWy) +1) (2.15)
Y. = KQf(WThy) (2.16)

The connection matrices We*¢ and W ™" define excitatory and inhibitory weights of
the computational model of the neural mass. The special operator ® stands for a

convolution integral.
(F@)(® = [ f@gt—ndr= [ £t -g(@ar 2.17)
0 0

1
fG) = 1T7e= (2.18)
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The function f is a sigmoidal activation function. Post-synaptic output response mean
potential y is produced by pre-synaptic excitatory and inhibitory mean potentials y; ,

as shown in equation (2.19).

y= h*®f(y1 = ¥2) (2.19)

The equation (2.19) gives general formulation of a neural mass (neural population)
response as time varying mean synaptic potentials. Also this equation, representing
overall neural activation of a neural population, can be rewritten in a lumped form.
The corresponding second order differential equation is:

. ot t . t?

y=H_fOr—y)—-2-y-3v (2.20)
The signal, which stimulates a neural mass, is generated by contribution of mean

(synaptic density) rate coding, including firing latencies (delays) and spiking counts.

0.0z | —

001 | —

' ' ' ' '
a 20 40 50 a0 100 120

Figure 2.5 : The time varying avarage mean synaptic potential of the neural
population.

In figure 2.5, activation of a neural population is presented as average mean synaptic
potentials. The signal which stimulates a neural mass is generated by contribution of
mean (synaptic density) rate coding including firing latencies (delays) and spiking

counts of a neural population.
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Figure 2.6 : The time varying avarage mean synaptic potential of the neural
population.

2.2.3 Dynamic Neural Fields
Dynamic neural field (DNF) theory is based on Amari equations [77], which visualize
mental activities similar to functional magnetic resonance imaging (fMRI). DNF

involves in field or wave like neural activity rather than a circuit based simple neural
network architecture.
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Figure 2.7 : Activities of the neural field.

d
EUi(x, t) = =U;(x,t) + f Wi(O.f(Ui(x —4t— r))dl+ f Si(x,y).14(y, )dy + h (2.21)

where £ = x — x' is a spatial distance from the mean of cortical field. A weight matrix
w; (), which is a function of the spatial information distance, includes connection
strengths of the synaptic activation inside the field U;(x,t). The function f is a
sigmoidal activation function. The parameter h corresponds to the bias. External
effects can be realized in the exogenous connection matrix S;(x,y) and exogenous

input field activity I;(y, t).

—IZ/Z.JEXC

- Winh-e_fz/z-ﬂiznh (222)

Wi(o = Wexc- €

Si(x,y) =s;. e~ (N?/20] (2.23)

where w,,. and w;,,;, are excitation and inhibition strengths, respectively. As parallel
and distributed computing blocks, the field dynamics of the computational neural
tissue improves the model employing biophysical, meaningful spiking neuron

populations and neural masses.
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Figure 2.8 : Excitation and inhibitation effects on activities of the neural field.
2.3 Unifying Neural Dynamics

Neural approaches are often used in robotic research. Naturally, computational
modelling of cognitive and mental processes in the human brain, for application in
humanoid robots, requires high-density neural structures. Assembling small groups of
cellular computing units (e.g., neurons) produces larger complex structures (e.g.,
cortical regions). Their connection topologies allow brain activities with chaotic
dynamic characteristics to be computationally reproduced for artificial brain
frameworks. Therefore, higher-order neural structures, cortical field networks, are
considered as the generic building blocks of computational architecture.
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Figure 2.9 : Specialization of generic neural structure to cortical regions.

Each region of the proposed framework for humanoid robot is composed of
computational neural models including multiple dynamics such as neuron, mass
(population) and field domains. Every neuron, which has continuous membrane
potentials in the space of the neuron cloud, produces different type spike patterns. Then
population dynamics driven by neural mass equation provide information flow in the
computational neural tissue. The proposed model, employing a group of computational
neural tissues, exhibits certain stochastic and nonlinear dynamic properties; including
chaotic behaviours, multimodal or strange attractors, and chattering. As parallel and
distributed computing blocks, the field dynamics of the computational neural tissue
improves the model, which employs biophysically meaningful spiking neuron

populations and neural masses.

The computational mechanism used in the proposed brain-inspired cognitive
architecture is influenced by field dynamics of the neural model. Additionally,
population dynamics of the artificial neurons is investigated in this architecture for
comparison purposes. In this study, we only concentrate on specific modules (e.g.
feature extraction, cognitive perception, amygdala, hippocampus and basal-ganglia) of
the general architecture. To reduce complexity, the effects of some modules are

ignored or simplified.

28



2.4 Learning Algorithms and Neural Plasticity

The first meaningful explanation of learning algorithms was proposed by Donald O.
Hebb in 1949 [78]. The Hebbian learning paradigm takes into consideration synaptic
strengths (weights) between the neurons. In biological systems, neurons exhibit
spiking patterns, where higher-level structure representation of the computational
neural dynamics (e.g., neural field, neural mass and neural spikes) propagates
population activity signals (e.g., EEG) and wave packets travelling in the cortical sheet
(e.g., neural field). The relationship between the pre- and postsynaptic activities are
involved in synaptic adaptation and neural plasticity. Weight updating is realized
according to Hebbian plasticity. In addition, the firing rate of the population activities
can be affected by the weight modification rule. Then we write the generalized learning

rule for Aw;; as:

oE
J J / aa),} (224)
where term E is a cost function. The effect of learning rate a(t) as an optimization

factor is to determine convergence speed during the training process.

The basal ganglia is associated with procedural memory for the action selection
mechanism [46]. According to reinforcement learning procedure, emotional model
changes emotional states [6]. The major benefit of reinforcement learning [79] is that
the agent has a goal-directed nature which acquires rewards from interaction with its
environment. The update term is obtained by temporal difference equation.

Pseudo Algorithm: Reinforcement Learning [79]
initialize value, weight and reward
foreach iteration
calculate temporal difference (TD) = reward + discount x posterior value — prior
value
dw = computing weight modification ( TD )

posterior weight = update synaptic weight (prior weight, dw)
until convergence occurs
end

The hippocampus has remarkable functions for semantic and episodic memories,
which are classified as declarative and long-term memory. The neural activation in the

hippocampus involves in unsupervised Hebbian learning [46]. To realize adaptation
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(or neural plasticity), the self-organizing map algorithm might be associated to
learning progress in the hippocampus. The self-organizing map algorithm [80], which
is updated utilizing unsupervised learning, allows to cluster memory patterns
according to the familiarity of memory activations.
Unsupervised Learning Algorithm: Self-Organizing Map [80]
initialize network (map)
foreach iteration

locate input pattern into map

calculate the best matching unit (bmu) as winner = input pattern — prior weight

determine range of effectiveness (Radius of neigborhood)

if distance(neuron - winner) < range

dw = computing weight modification (winner)
posterior weight = update synaptic weight (prior weight, dw)
endif

until convergence occurs
end

2.5 Experimental Setup

In this study, the main experiment platform is a Bioloid humanoid robot of Robotis
(Figure 2.10) [81]. Bioloid is composed of 18 smart servo actuators (AX-12A), several
peripheral body sensors (e.g. IR transmitters, 2 axis gyro, proximity sensor for distance
measurement) and a main controller CM530 containing Arm Cortex based CPU,
external 1/0 ports. In order to perform visual and audio based perceptual processes,
humanoid robot is supported with Microsoft’s Xbox Kinect RGB-D camera mounted

head as an additional sensory equipment [82].
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Figure 2.10 : Humanoid robot partner: Bioloid with Kinect mounted head.

Computational workload of system architecture is hosted in a laptop PC. Brief
specifications of PC include quadcore intel i7 cpu @3,9 Ghz with 8 MB cache, 32 GB
DDR3 ram @1600 MHz, 4GB graphics card and 1 TB 7200 rpm HDD storage. In
order to control, connections to humanoid robot can be realized by Bluetooth or USB
ports. We mostly preferred USB connection in the experiments.

2.6 Software Infastructure

The computational limbic system framework for a humanoid robot was modelled,
simulated, and tested in Matlab [83] programming environment. There is a software
development kit (SDK) for bioloid robot platform. For communication between
hardware of humanoid robot and SDK, firmware of bioloid robot platform is updated
before the experiments. The developed program is supported by a graphical user
interface (GUI) in a window-based format. Due to the large-scale synaptic
transactions, the processes to be performed are parallelized using the parallel
programming toolbox. For faster computation, all matrix operations were realized

utilizing GPU array-based acceleration on sparsed matrices.
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Figure 2.11 : Captured skeletons for gesture detection and recognition.
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3. COMPUTATIONAL COGNITIVE PERCEPTION SYSTEM

3.1 Motivation

Humans have powerful communication abilities to interact with their social
environment. However, people having attention disorders (also including children,
elders, patients and people having disabilities) need more assistive social cues during
social interaction. There are many social robot platforms which are widely used in
recent years so that life standards of these people are increased. To achieve better social
interaction between human and robot, neurocognitive models, which are capable of
continuously learning present adaptive solutions for developmental and social robotics
can be employed. In daily life, as a personal assistant related to educational and
rehabilitation purposes, humanoid robots with embodied cognitive skills can be used
to support individuals struggling to interact with their social environment[1, 5]. In
order to realize them, the humanoid robot should have a human like perception system
which requires spatio-temporal cognitive perception skills to interpret human’s
behavioural activity and establish joint attention with human in a shared workspace.
The purpose of this study is to establish social interaction based on perceptual

awareness and joint attention between human and robot.

3.2 Evaluation of the Work and the Methods

To model social environment, a humanoid robot should evaluate its perceptual
cognition. However, problems in coordination between multi-modal perceptual stimuli
complicates the modelling of the robot’s spatial environment and human’s behavioural
activities during interaction with the robot. Also perceptual cognition of the robot is
shaped with its attention model as a high level cognitive ability. From the viewpoint
of developmental and social robotics, establishing environmental awareness, which is
extracted from robot’s attention model may be a great challenge to realize efficient

social interaction between human and robot.
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In this section, background information related to the study is elaboratively introduced.
Our proposed solution including a cognitive perception system for a humanoid robot,
provides a computational framework, inspired from posterior part of cerebral cortex in
the human brain. Therefore, biophysical and anatomical structure should be presented
briefly. Then computational methods to be used are introduced in detail. In our
proposed system architecture, several machine learning method shave been employed
such as naive Bayes, k-nearest neighbours (k-NN), decision tree, support vector
machine (SVM), feedforward neural network (multi-layer perceptron (MLP)) and
convolutional neural network (CNN or ConvNet). Comparison of these methods
depicts the effectiveness of the computational cognitive perception system, which

realizes related perceptual cognitive skills for a humanoid robot.

Naive Bayes is a basic machine learning method which classifies the problem samples
(vectors of feature values) and assigns them to the class labels [84]. Although there
exist a family of algorithms based on a common principle, there is not a unique
algorithm for training such classifiers. Generally, naive Bayes classifiers are trained
very efficiently via a supervised learning approach. For some kind of probability
models in the naive Bayes classifier algorithms, parameter estimation mechanism uses
the method of maximum likelihood in many practical applications [85]. The k-nearest
neighbours (k-NN) model is a non-parametric algorithm, which is utilized for
classification and regression in pattern recognition applications [86]. The source data
of the algorithm contains the k closest training samples in the feature space [87]. For
classification case, an instance to be assigned to a class as an output is labelled by the
most vote of its k nearest neighbours. In case of regression applications, the output is
calculated such that the property value is the average of the values of its k nearest
neighbors. Decision tree provides a decision making mechanism organized as a tree-
like structured model of decisions and it includes prospective outcomes, costs and
utility values [88]. General form of the algorithm consists of many conditional control
statements. Decision trees are widely utilized not only for classification problems but
also for regression problems in various machine learning applications. As a decision
support system, specific implementation cases may be decision analysis, operations
research or strategic planning [89]. Usually, these algorithms are trained via the
supervised learning approach. As a useful machine learning tool, the support vector

machine (SVM) is a supervised learning methodology. SVM analyses a set of training
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sample data including categorical labels and the feature vectors associated with these
labels so that the training algorithm generates a model used for classification and
regression analysis [90]. Trained model which seperates groups of sample data
identifies the given new sample data and assigns the categorical label associated with
this data. In addition, SVM algorithm can be customized using with kernel functions
such as linear or nonlinear [91].The convolutional neural networks (CNN, or ConvNet)
are considered as a sub-branch of deep learning method under the machine learning
algorithms. Working principle of ConvNet is based on biological processes which are
involved in the visual cortex in the human brain [92]. ConvNet consists of several
cascaded layers. Actually, it deals with two main parts such as feature learning layers
and classification layers. ConvNet may include many feature learning layers which are
stacked form of [convolution layer, ReLU, max pooling layer]. Classification layers
include sub-layers such as fully connected layer and soft max layer. Usually, ConvNets
are trained by stochastic gradient descent (SDG) algorithm which is a supervised

learning method [93].

In this study, three-tupled (human, robot and environmental model) fold relation of
social interaction is investigated through proposed scenarios in the light of research
questions 1 and 2 in section 1.4. In order to verify hypotheses, some performance
measures like convergence of optimization costs, success rates, response times of
focusing, rate of motivation level, recognition performances (e.g. number of trials,
learning errors) are investigated as testing criteria related to problems of perceptual
awareness and joint attention during the interaction between human, robot and
environment shown in figure 3.1. Neuromorphologic adaptation and learning statistics
of the humanoid robot’s artificial brain model added to these criteria as auxiliary
indicators [27].

Cognitive Map of Interaction
Between Human and Robot

AN

Directly

CEAP AN

(E-R) (E-H)

Figure 3.1 : Cognitive map of social interaction between human and robot.

Indirectly
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Proposed novel structure could encode spatio-temporal relations or features of the
dynamic interaction between robot and world model. To improve a robot’s world
model, its attention model extracted from high level perceptual processing is a key
element for measuring or detection of spatio-temporal awareness level of robot during
interaction with its environment [27]. Therefore, the presently proposed computational
cognitive perception system, realizing neuromorphologic plasticity (adaptation), may
provide a novel solution to environmental awareness and attention modelling issues

for a humanoid robot [94].

3.3 Computational Framework of Cognitive Perception System

In our proposed cognitive framework (Figure 3.2), the perception accepting multi-
modal input data streams (e.g. visual, auditory and somatosensory) is one of the most
critical functions. In this section, the computational framework of brain inspired
cognitive perception system is described so that it composes of the perceptual model
of the robot interacting with environment and humans [6, 46]. This architecture related
to cognitive perception is composed of two major cortical regions, namely thalamus
and sensory cortex which are in posterior part of the cerebral cortex. Also these cortical
regions have their own specialized sub computational modules for visual perception,
auditory perception and somatosensory (body) perception. Before cognitive perception
processes, some feature extraction tasks realizing segmentation, edge detection and
filtering (i.e. Gabor filter [95]) are performed as data pre-processing activities. After
these preliminary progress are completed, higher level cognitive modelling is realized
by perceptual awareness and attention modelling for a humanoid robot so that social
interaction skills such as human-like communication between robots and humans are
established [69].

Perceptual cognition mechanism includes abilities such as spatial cognition and
temporal cognition. The spatial cognition deals with environmental (workspace)
awareness which involves spatial encoding (e.g. locations, orientations, distances and
movements) of the objects. The temporal cognition deals with mid-level abstraction
processes which involves temporal or non-spatial encoding (e.g. colour, shape) of the

objects, recognition of the patterns (e.g. objects, faces, spoken words).
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For this framework, various learning paradigms correspond to perceptual cognition.
Unsupervised learning methods are utilized for clustering of the feature data in sensory
cortex regions while processes related to recognition require supervised learning

algorithms to classify patterns.

Our proposed algorithm gives a general outline for the proposed computational
architecture. According to order of data flow, the life cycle of generic algorithm
proceeds in four main stages. These are pre-processing (thalamus module), early-
perception (sensory cortex), processing (cognitive perception) and post-processing

respectively.

3.3.1 Thalamacortical Data Propagation for Feature Extraction

In order to propagate the sensory information, thalamus module allows data
representation, pre-processing, segmentation, and feature extraction tasks through its
computational model. This module captures raw information stream coming from all
sensor equipment of the humanoid robot. Audio and visual sensory input data are
coming from Microsoft Xbox’s Kinect sensor, RGB-D camera including motorized
pivot and multichannel microphone array. There are three output channels including
visual, auditory and joint position sensors of servo motors that feature data

broadcasted from the computational model of thalamus [94].

The computational model of thalamus using RGB-D sensor (Kinect) generates spatial
coordinates of human face from segmented RGB and depth images to calculate
human’s head direction. As visual pre-processing, colour map is obtained by hue
saturation value (HSV) conversion. Using the microphone array of Kinect, speech data
are acquired from audio stream by a linear prediction filter (LPC) method. Also joint
position encoder values of servo motors in the humanoid robot, are transformed to

joint angle values via linear scaling [94].

Finally, all frames of process data stream produced in thalamus model are relayed to
sensory regions of cortex (e.g. occipital, parietal and temporal). Contextually, pre-
processed visual data are transmitted to occipital regions in the computational
framework of sensory cortex. The somatosensory data of humanoid robot’s body are

transmitted to parietal regions.
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3.3.2 Sensory Cortex

The broadcasted data (extracted features) coming from thalamus module are processed
by different sub-regions in computational sensory cortex model including visual
cortex, parietal and temporal lobe. The main responsibilities of sensory cortex
including recognition, classification/clustering, sensorial data fusion and interpretation
require several different learning activities (e.g. supervised, unsupervised) [46, 96].
Recognition tasks include supervised learning methodologies. Generalization,
classification and clustering tasks are usually driven by unsupervised learning
procedures. Therefore, unique computational model of sensory cortex is explored to

realize design criteria.

3.3.2.1 Visual Cortex

Pre-processed visual data coming from thalamus module are relayed to primary visual
cortices in the occipital lobe. Occipital lobe (visual cortex model) is composed of some
sub-cortical regions called as primary visual cortices. These visual cortices involved
in visual information processing are labelled by V1, V2, V3, V4, PO, MT. Visual data
with pre-extracted features coming from thalamus are encoded for transmission to
primary visual cortices. The computational model of visual cortex located in occipital
lobe generates and initializes several different visual maps. In these regions high order

feature extraction tasks are executed.

To Parietal Region
(Dorsal stream)

; To Parietal Lobe

(Spatial Perception)
Visual Cortex

To Temporal Region T
Thalamus (Ventral stream) Thalamms

LGN) (Input)

To Temporal Lobe
(Temporal Perception)

=

Figure 3.3 : Occipital Lobe in human brain and computational visual cortex.

For example, V1 generates primary visual map. The region V2 applies specific visual
masks responsible for visual information relay, which provides detection of region of
interests (ROIs). In addition, V3 is sensitive to visual orientation. And main function
of region V3 is to project visual information data to V4, PO and MT areas [46]. Some
layered structure parts of computational visual cortex are stacked form of several

cascaded operations. First of all, a threshold function is applied on colour map image
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to acquire binary image. Then, the objects in the scene are detected using blob analysis.
As a next operation, valid objects are determined in a region of interest.

Using visual perception pipeline (Figure 3.3), deep (detailed) visual features related to
object detection in the scene are extracted in visual cortex model. So background
isolation from the scene is realized and the number of objects in the scene can be
determined. This information extracted from visual perception pipeline are transferred
to posterior parts (V4, PO, MT) in computational visual cortex model. Then processed
visual data are decomposed into spatio-temporal visual maps. Spatial features of visual
data are propagated to parietal cortex. The area PO transmits some physical domain
features such as locations (x) of objects. Temporal features of visual data are
propagated to temporal cortex by regions V4. The region V4 involves in detection of
color and shapes of objects [46]. According to projected 2D coordinates of the objects
from 3D locations, Rol of the objects are calculated and binary masks within own
RoI’s are obtained for recognition (shape detection) of the objects in computational
model of temporal lobe. Also, in order to obtain colours of the objects, colour saliency
feature maps are generated by colour channels.

3.3.2.2 Computational Model of Parietal Lobe for Spatial Perception

In the human brain, the parietal lobe (or parietal cortex regions) is responsible for
spatial perception and sensory data association via incoming data from different
perceptual environments (e.g. visual, tactile or somatosensory (body)). For example,
coordination between hand and eye can be realized by cortical regions of Parietal lobe
[46]. Also body or tactile information (e.g. roughness or smoothness, forces or torques
with accelerations, pressure) coming from skin can be processed by somatosensory
cortex in the parietal lobe.

In order to realize spatial perception (Figure 3.4) for a humanoid robot, the major task
of computational parietal cortex model in the cognitive perception framework is to
associate and map perceptual information to movement based behaviours. In this
module, processing of spatial domain is carried out including determination of physical
measures (e.g., locations, distances, orientations and motions) of objects computed via
perceptual data coming from robot’s visual features. In addition to this, human’s hand

pointing or gaze direction are obtained and utilized in learning of the cognitive skills
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(e.g., motor coordination: object tracking, imitation of human’s movements) related to

spatial perception.
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Figure 3.4 : Computational model of the Spatial perception.

Then hand pointing angle (r) with respect to horizontal plane is obtained by forward
kinematic model. Head direction angle (h) can be calculated according to head pose
estimation using the face positions. x* and x] denote visual locations of the objects
from the viewpoints of human and robot respectively. Among the feature vector x°
related to horizontal locations of the objects, target value x; is chosen by the
parameters i“S which are represented as object’s indexes of color and shape coming
from the computational model of temporal lobe. For spatial cognition, a computational
model learns visual locations of the objects from given robot’s hand pointing (r) and
human’s social cue such as hand pointing or gaze direction (h), the spatial relationships
between visual saliences and robot’s motion space. Learning mechanism of this model
is considered as feedforward (MLP) neural network which has 1 hidden layer with 10
neurons. It executes simple regression task related to object pointing and tracking task.
For comparison purpose, several methods such as SVM, decision tree, nonlinear

regression are utilized.

3.3.2.3 Computational Model of Temporal Lobe for Non-Spatial Perception

The computational model of temporal region is a part of the brain inspired cognitive
perception framework. This model is responsible for non-spatial and temporal

perception. It includes the models related to visual and auditory perception.

Visual memory and pattern recognition processes are realized by cortical regions

(TEO/TE) located in visual perception part of brain’s temporal lobe [46].
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Computational model of this cortical regions employing two learning mechanisms is
sensitive to colour and shape features of visual information coming from V4 region of
occipital lobe via ventral data stream. This visual data stream is seeded into visual
regions (TEO/TE) of temporal lobe. For learning mechanisms of this model, firstly,
they are considered as feedforward (MLP) neural network which has 1 hidden layer
with 10 neurons. W, ; are weight matrices and b, ;are bias vectors. The input vector x¢
includes [r, g, b] values for color recognition, and x* contains [Ax, Ay, Ax/Ay]values
for shape recognition.Ax represents the width of the object. Ay depicts the height of
the object. Ax/Ay provides the aspect ratio height-width.

y;f; = f(Wesx® + bys) (3.2)

Upper indices (c,s) of the x“° vectors represent colour and shape feature data
respectively (Figure 3.5). Feature vectors x* related to shape and color of the objects
are chosen by the parameter i” (Figure 3.5), which is coming from the computational
model of parietal lobe. This neural network is trained by stochastic gradient descent
(SGD) with momentum. So classification (shape, colour) of the objects is realized for
the recognition task. In addition, several methods such as SVM, decision tree, kNN,

naive Bayes and CNN are utilized for comparison purpose.
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Figure 3.5 : Computational model of the temporal lobe.

Temporal lobe is one of the major regions for auditory processing. The computational
model of auditory cortex in this region is involved in speech recognition. For speech
recognition, according to audio feature information (LPC vectors) coming from
thalamus, tokenized spoken words are recognized by hidden markov models [97]. In

the test stage, output of the system are returned as tokenized words (labels) with their
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recognition probability. The parameter ys, is used as the target data for training of the

proposed neural networks.

Ysp = speechnet(f); (3.2)

In the interaction experiments, events recorded as binary true or false responses are
represented by a sequence as the variable TF in a temporal memory fragment.
it (yrz == Ysp )
TF, =1,
else

TF, =0;
end

3.3.3 Attention Modelling

Establishing joint (or shared) attention between human and robot is based on two
domains. One of the domains is the attention model related to human side. The other
domain is the attention model related to robot side. These attention models measure
their own focuses (e.g. human’s or Robot’s focuses). The human’s and the robot’s
focused attention models are associated by selective attention model in the
computational cognitive perception framework of the humanoid robot. According to a
social signal as selective cue, perceived by human’s attention model, the robot’s
attention model focuses on an object or an event with priority of the selected focus.

Xt = x5 — xj (3.3)

x! and x? denote visual locations of the objects from the viewpoints of human and
robot respectively. So the tracking error (the pointing error) are observed as x since
spatial perceptual model learns visual locations of the objects from given robot’s hand

pointing (r) and human’s social cue such as hand pointing or gaze direction (h).

_ TR
At

t

Pe,s (3.4)

For a defined time window (At), performance values pg, pf of the event sequence
related to temporal perception are computed according to demonstation and observer

phases respectively.
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3.4 Implementation

Some implementation procedures related to the proposed solution are considered. The
problem description requires an experimental setup for implementing an interaction

scenario between human, robot platform and environment.

3.4.1 The Experiments

In conducted experiments, the experiment scene consists of several objects which are
located on a platform (e.g. small table) as shown in figure 3.6. In the spatial workspace
of robot (Figure 3.7), the objects have different features (e.g. size, shape, colour,
material, location, etc.). In addition to them, humanoid robot and human are presented
as face-to-face. Also, the small table, which includes the objects, resides between

human and the robot.

Table Gaze direction

N
Objects—eo D 0 \A i Hand pointing
*
£

N Voice Comm.

CRobot D=

Figure 3.6 : Experimental setup.

Humanoid robot platform accepts audio, visual and a set of its joint information. Audio
input is appraised as speech commands. Visual inputs are regarded as gaze direction
and skeletal information of human for hand pointing. Also another visual source is
reserved for saliences (e.g. ID, colour, location) for object or gesture recognition. The

internal inputs related to robot’s body are joint angles, gyro and proximity information.

Figure 3.7 : Objects and their binary masks.
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Humanoid robot platform can execute some gestural behaviours like hand pointing as
output actions (or motor commands). Due to physical constraints, gaze behaviour of
the robot is only performed by tilt angle movement of robot’s head (pivot motor in
Kinect sensor). In addition to that, the robot can give speech commands. According to
purposes of the study, flow of the main experiment scenario can be described as
follows:

A humanoid robot and a human participant play an interaction task. In the training
session, the humanoid robot shows an object in the experiment table by hand pointing.
Meanwhile it requests that the human instructor says the colour and the shape of the
object. So the saliences to be focused are learned by the humanoid robot. As a test
session, the human subject asks the colour of an object pointed by hand or gaze
direction of him. It is expected that the humanoid robot is forced to focus on the object

and say its colour according to human’s social cue.

3.4.2 The Scenario

In test scenario (Figure 3.8) of this study, humanoid robot executes a sequence of
behaviours generated by its computational neurocognitive architecture. This system is
able to classify, recognize and model the objects according to their special
characteristic features. Spatial perception is performed for environmental (workspace)
awareness of the robot while temporal perception is employed to identify the objects
in the robot’s workspace. To emerge perceptual cognition, some turn-taking
(sequential) interaction tasks and focusing practices on the objects are performed
(Figure 3.7).
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Figure 3.8 : Scenario flow.

The humanoid robot stores the interaction history. The interaction history is recorded
into a database. At the end of the experiments, the interaction data are analysed.
Performance of cognitive perception and contribution of the neuro-cognitive

architecture embodied in the humanoid robot are eleboratively discussed.

3.5 Experimental Results and Performance Evaluation Results

The computational perceptual system framework for a humanoid robot is modelled,
simulated, and tested in a Matlab programming environment. There is a software
development kit (SDK) for bioloid robot platform. For communication between
hardware of humanoid robot and SDK, firmware of bioloid robot platform was updated
before the experiments.

In the proposed experiment scene (Figure 3.9), three objects are scattered in the
workspace of the robot. The objects including Lego blocks are perceived by cognitive
perception system according to their features (e.g. shape, colour). During the
experiment, the robot collects these features and constructs datasets.
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Figure 3.9 : a) Color dataset, b) Binary masks for shape detection.

At the first stage, data capturing and preparation processes are performed for all types
of stimuli by thalamus. Then primary visual cortex realizes additional feature
extraction tasks. These tasks are acquiring colour map and detecting blobs from the
binary images. The colour map derived from rgb images provides a domain for colour
extraction of the objects. It uses hue, saturation, and value (HSV) instead of red, green
and blue (RGB) format. As preprocessing tasks, segmented images as binary masks
shown in figure 3.8.b help to obtain region of interests (ROIs). Also some standard
procedures like normalization, thresholding and gray level images converted from

RGB are performed in this region.

Y (m)

L . L . .
0 5 10 15 20 25 30
Time

Figure 3.10 : a) Gaze direction, b) Point cloud of the objects.

The visual information from the viewpoint of the robot, is shown in figure 3.10. Robots
vision system including Kinect sensor as a RGB-D camera provides both RGB and
depth images. By infrared scanning of depth sensor, depth images are made of spatial

point cloud (set) in the 3D meshed lattice as a work space of the robot.
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Best Validation Performance is 85.0891 at epoch 7
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Figure 3.11 : a) Validation performance, b) Error histogram.
Training performance and error histogram of neural network for object pointing (or
tracking) task related to spatial perception are presented in figure 3.11. For this task,
122 samples are used, where 85 of them are the chosen for the training dataset. From
the rest of 37 samples, 19 samples are used as validation and 18 samples are used as
test datasets. According to scaled error histogram in figure 3.11.b, training, validating
and test errors which are depicted as blue, green and red bars are 0,0157, 0,0167 and
0,042 respectively. I In addition, convergence occurred in approximately 7th epoch for
training, validation and testing.
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Figure 3.12 : Regression outputs.

Regression results related to neural network model using mean square error function
are shown in figure 3.12. According to these results, with small tracking error, the
robot can track the pointed objects and learn the points of the objects where are located

in. Momentum update parameter is 0,001 and minimum gradient performance
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parameter is 0,0000001. In addition, the results related to SVM, nonlinear regression

and decision tree models are presented in table 3.2 for comparison purpose.
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Figure 3.13 : Training performances of color and shape recognition.

Neural network training performance and error histogram of color and shape
recognition task related to temporal perception are presented in figure 3.13. For color
recognition, training, validating and test errors which are represented as blue, green
and red bars are 0,023, 0,056 and 0,001 respectively. For shape recognition, training,
validating and test errors are 0,036, 0,001 and 0,056 respectively. Cross entropy
performance function is preferred in both model. Minimum gradient is 1le-6. Sigma
determining change in weight for second derivative approximation is 5e-5 and lambda
which is a parameter for regulating the indefiniteness of the Hessian is 5e-7.
Convergence related to training of the colour recognition occurred in 54th epoch and

convergence related to training of the shape recognition occurred in 24th epoch.

During the experiment, while feature vectors are collected, responses of a human

subject are stored as target vectors. For this task, 122 samples are used and 86 of them
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are the training dataset. From the rest of 36 samples, 18 samples are used for validation
and 18 samples are used for test datasets. Then these constructed datasets are used for
training for colour and shape recognition of the objects. In the test case, robot

recognizes colour and shape of an object according to given human’s social cue.
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Figure 3.14 : a) Color detection results, b) Shape detection results.

Recognition results of neural network are presented by confusion matrices and receiver
operating characteristic (ROC) plot in figure 3.14. The results related to figure 3.11-
14 show the efficiency associated with research question 1 (RQ1). In addition, the
results related to SVM, kNN, naive Bayes, CNN and decision tree models are

presented in table 3.1 for comparison purpose.
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Figure 3.15 : Learning statistics of the recognition processes.

The performance of the recognition process which are associated with research
question 2 (RQ2) are presented in figure 3.15.a. Figure indicates the performance of
the recognition process. Spatial perception performance is observed in figure 3.15.b.
According to given selective stimuli, objects in workspace of the robot are recognized
by temporal lobe of the cognitive perception system. In addition, recognized objects
as a focus are labelled. Temporal focus includes attributions like colour and shape of

the object.

Table 3.1 : Comparison of the classification models.

Model Classification  Colour recognition  Shape recognition

No. Models
1 SVM %94 %93
2 KNN %92 %95
3 Decision Tree %92 %95
4 Naive Bayes %95 %94
5 MLP %97 %96
6 CNN %99 %98

In table 3.1, different classification models were compared for colour and shape
recognition. It can be observed that although all results were close each other,

convolutional neural network gave the best result.

Table 3.2 : Comparison of the regression models.

Model Regression Models Pointing or

No. Tracking Task
1 SVM %94
2 Decision Tree %92
3 Nonlinear regression %95
4 MLP %98

o1



Several regression models were compared for pointing or tracking task (Table 3.2).
According to results, the best result was achieved via feedforward neural network
(MLP). In addition, errors related to speech recognition and object pointing task of the

human subject were obtained as %12 and %14 respectively.
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4. COMPUTATIONAL LIMBIC SYSTEM SUB-ARCHITECTURE

4.1 Motivation

From a reverse-engineering perspective, it is essential to construct a suitable
computational intelligence infrastructure for a humanoid robot [94]. The proposed
framework (Figure 4.1), inspired by the limbic system in the human brain, is a
computational cognitive architecture including the hippocampus, basal ganglia,
hypothalamus, and amygdala [6]. It allows regulation and monitoring of behaviour and
cognitive processes in humanoid robots, realizing a variety of cognitive functions:
generation of emotional expression, behaviour switching, motivation, and long-term
memory (LTM) [6]. This section deals with the research questions (RQ3 and RQ4)
and evaluates the hypotheses (H1 and H2) depicted in the section 1.4.

4.2 Computational Framework of Limbic System

In this study, there are three main contributions to the literature. The first one is that
the computational approximation of the cortical regions in the human brain is
developed in a software framework [94]. Cognitive functions, which process
emotional responses, form episodic memory, and select the appropriate behavioural
action sequences are separately modelled for each component (region) of it. Secondly,
in order to realize these functions, we propose a novel approach, employing a
computational neural tissue, which has multiple dynamics. The dynamics used in this
structure include spiking neurons, neural mass (e.g. neural population) and dynamic
neural field. This is achieved by combining them with soft computing techniques in
accordance with different requirements of the limbic system modules (e.g. basal-
ganglia, amygdala, hypothalamus and hippocampus). Finally, utilizing the
reinforcement learning-based adaptation (plasticity) procedure, the synaptic strengths
(weights) of episodic memory in the hippocampus are updated through the emotional
reward activation, in the amygdala, and the working memory, in the prefrontal cortex,

during the action selection processes in the basal ganglia [94].
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Figure 4.1 : Brain-inspired neuro-cognitive arctitecture (Limbic System) [94].

In order to improve a child’s attention, a humanoid robot’s emotional activity giving
rewards for optimal action selection allows to boost the attention level of preschool
child with ADHD via an action selection mechanism [46]. Also, reinforcement
learning methods train and update the weights of procedural memory, a kind of
memory related to action selection (or execution) skills, through emotional reward
activations allowing the adaptation policy of the framework to be realized. Therefore,
the presently proposed computational limbic system framework may provide a novel
solution to ADHD issues including low level focusing, learning difficulties [94].
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4.2.1 Cognitive Perception

In this section, cognitive perception system is described since it constructs the
perceptual model of the robot interacting with humans [6]. This part of the architecture
related to cognitive perception is composed of two major cortical regions namely
thalamus and sensory cortex [94]. Also, these cognitive modules have their own
specialized perceptual functionalities. Before cognitive perception processes, some
feature extraction tasks realizing segmentation, edge detection and filtering are

performed as data pre-processing activities [6].
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Figure 4.2 : Acqusition of the sensory stimuli (Auditory and Visual).

Sensory information is acquired through all sensors of the humanoid robot. The robot’s
sensory (input) resources are adapted to record vision, auditory, and somatosensory
information (e.g., body sensors like gyro, joint position encoders, IR, etc.). Audio and
visual sensory input data (Figure 4.2) come from Microsoft Xbox’s Kinect sensor, an
RGB-D camera with motorized pivot, and a multichannel microphone array. These
hardware specifications and experimental setup are explained in further subsections.
There are three output channels (visual, auditory and somatosensory) that feature data

are broadcasted from the computational model of thalamus [94].
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Figure 4.3 : Acqusition of the sensory stimuliin the robot’s perception environment.
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In order to propagate the sensory information, the thalamus module allows data
representation, pre-processing, segmentation, and feature extraction tasks through its
computational model (Figure 4.4). This module accepts a raw sensory information
stream [6]. Some data preprocessing tasks have been applied on this raw data stream;
such as noise cancellation, normalization, and dimension reduction. The
computational model of thalamus using an RGB-D sensor (Kinect) generates spatial
joint coordinates of human skeletal structure from segmented RGB and depth images,
and the coordinates are projected onto a two dimensional plane. Then it performs
coordinate/angle conversion. Also visual pre-processing is performed by multiscale
linear filtering so that brightness, colours, shapes and distances of objects can be
extracted for visual processing. Using the microphone array of Kinect, speech data can
be acquired from audio stream by a method like linear prediction filter (LPC) or
Fourier transform. The other sensory feature extraction tasks related to the body of
humanoid robot, can be performed by utilizing body sensory equipments. Finally, all
frames of process data stream produced in thalamus model are relayed to sensory

regions of cortex[94].
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Figure 4.4 : Feature Extraction and Cognitive Perception Pipeline.

After this stage, the cognitive perception module evaluates likelihoods of postural
gestures using projected skeletal coordinates. A possible gesture having the maximum
of the likelihoods is selected as a recognized gesture [94]. Cognitive perception
functions perform several tasks including feature extraction and pattern recognition.

These properties play an important role in modelling of the perceptual attention.

4.2.2 Amygdala for Emotion Modeling

The computational model of the amygdala module (Figure 4.5) plays a major role in
the processing of emotional memory and responses of the emotions [6, 94]. It is
composed of several sub-nuclei, which employ accessory basal nucleus (AB), lateral
nucleus (LN), basal nucleus (BN), and central nucleus (CN) [46, 98]. Output terms are
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forwarded to the hippocampal regions, the basal ganglia, the hypothalamus, the
brainstem components (midbrain, medulla, VTA etc.), and the associative regions
(prefrontal/orbitofrontal cortices). Input terms are directed toward the sensory cortices,
the thalamus, the entorhinal cortex of the hippocampus, and the frontal lobe areas (e.g.,

prefrontal/orbitofrontal cortex).
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Figure 4.5 : Architectural formulation of Amygdala module.

Particularly, the amygdala operates as a reward generator providing emotional

responses to the other cerebral and cortical regions [98].
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Figure 4.6 : Representation of emotions in 2D and 3D domain [99, 100].

Mathematically, artificial emotions can be expressed in the analytical domain as shown
in figure 4.6. The progress of appraisal or emotional feature extraction generates a

tuple (arousal (A), valance (V)) computed by equations (4.1) and (4.2) [99]. Value
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likelihood related to recognized gesture stems from the perception stage and ., is

the response time of the recognized gesture.
A=2.tanh(1/t,es,) — 1 (4.1)
V = 2.tanh(10/likelihood,,s,) — 1 (4.2)

Extracted data can be formulated in stimulus activation I4,,(x, t), which is of a two
dimensional Gaussian form, wherex = (4,V) € R%. Emotional responses and
expressions released by the dynamic neural field Uy, (x,t) of the amygdala (Figure
4.7), using this reinforcement influence [79] on the association between sensory and

motor systems, are composed of long-term memory stored in the weights.
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Figure 4.7 : Computational model of amygdala for emotional response generation.

ad
JA—A2+ (1-V)? (4.3)

rewgm =

The reinforcement reward can be computed by equation (4.3). Additionally, the term
ad is an optional parameter to allow adrenaline modulation to fine tune the
reinforcement learning progress. Emotional memory is stored in the weight matrix in
the computational model of the amygdala [6]. In this memory, emotional activation

may be increased or diminished according to learning progress.

4.2.3 Hippocampus

The hippocampus module is the major component of the emotion-imitating and brain-
inspired cognitive architecture [94]. It is composed of several computational sub-
nuclei models, including entorhinal cortex (EC), dentate gyrus (DG), subiculum (Sub),
CAl, and CA3 [46, 98, 101]. The nonlinear dynamic nature of the hippocampus
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includes stochastic and chaotic behaviours, such as dynamic strange attractors. Long-
term declarative and associative memory formation stored in the synaptic weights of
hippocampus is operated through convergence to some specific equilibrium points or
limit cycles [6, 94].

Am/LN
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T

BN AC
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An/BN

Figure 4.8 : Neural circuit structure of Hippocampus.

Every node contains its own neural population, which has different characteristics and
information processing procedure (Figure 4.8). The training session is mostly
proceeded in DG, whereas recalling activities are realized in CA3/CAl. The EC
regions are responsible for interaction with other regions, like the neocortex and the
parahippocampal region [46, 101].

The hippocampus also contributes to other cognitive skills, such as spatial navigation,
self-awareness, and consciousness, by assisting other critical cerebral and cortical
regions, like the frontal lobe (e.g., prefrontal/orbitofrontal cortex) and the sensory-
motor areas[98, 101]. The computational nature of the hippocampus does not only
enable episodic memory function, which is a type of declerative long-term (LTM)
memory, but also semantic memory, which assigns meaning (description) to objects
or events. The internal dynamics of the hippocampus represent firing rate activities of
subneural populations having EEG like signal density [46].

A fragment of the memory in the hippocampus is composed of several cognitive
activities. As declarative memory, episodic memory formation, which can store past

events (e.g. interaction history), involves measurement or detection of the attention
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level of a human during interaction. Influences of the working memory (WM) in the
prefrontal cortex affect the hippocampal activities primarily [46]. The working
memory, as a short-term memory, describes a workspace storing short-term past,
current, and future (predictive) events or navigational spaces. The computational
equivalent of the hippocampus is responsible for establishing bridges between the
working memory (short-term) and the formation of episodic memory (declarative and
long-term). Furthermore, emotional state transactions involving feelings in the
Brodmann area (BA10) of the prefrontal cortex and emotional responses of the
amygdala pass to the hippocampal memory, so that moods can be modelled and
observed in the longer-term emotional state [5]. Figure 4.9 explains effectiveness of

the different emotional processing levels and their activation times.

T T T
—<— Feelings (Prefrontal Cortex)
—#—— Emotions (Amygdala)
—— Moods (Hippocampus)

Activation Levels

40 50 60 70 80
time (minute)

Figure 4.9 : Long-Term Potentiation (LTP) over emotional processing.

Output terms are expressed as striatum of the basal ganglia, the frontal lobe areas (e.g.,
prefrontal/orbitofrontal cortex) and the basal nucleus in the amygdala. Input terms are
directed to the sensory cortices, thalamus, lateral nucleus of the amygdala, frontal lobe

areas (e.g., prefrontal/orbitofrontal cortex) [46].

Working memory (WM) is represented by the sequence of events within a given time
window (At) as a fragment of the memory. Events recorded as binary true or false
responses are stored in the variable TF in the interaction; thus enabling the
computation of interaction performance scores p(t) for the defined short-time span,
and feeding episodic memory[94]. A fragment of the memory in the hippocampus is
composed of several types of information including perceptual observations (e.g.
recognized gestures), assigned tasks, emotional states and executed actions[94].

YiLTF,

p(t) = AL

(4.4)
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Iyc(x, t) = A.exp(— e

) (4.5)

Hippocampal stimulus is formed along its feature space (x) as a Gaussian function
whose amplitude and variance are arousal (A) and valence (V) values of emotional
states, respectively. The memory field in the computational hippocampus module can
be formulated in its dynamic neural field Uy.(x,t). This neural field Uy (x,t) =
{ Upe(x,to = tsem), Une(x, tsem = tiem) } Can be divided into two time periods of
memory: short- and long-term memory. Short-term memory (STM) is expressed as
neural field Uy, (x, t) with its own time period t: ty = t,. Similarily, the long-term
memory (LTM) storing past interaction data (e.g. field activations related to realized
events) is considered as neural field U, (x, t) with a larger time period t: tgpm = tiom-
Time indices t,, tgm, and t;,,indicate initial, short-term and long-term times

respectively[94].
Ustm(x' t) = UHc(xr tO i tstm) (46)

Uiem (x, 1) = Upe (X, togm = tiem) (47)

The unsupervised learning procedure in the proposed computational hippocampus
model is applied to the short-term memory field U, (x,t) which is a part of the
hippocampal neural field Uy.(x,t). The self-organizing map (SOM) algorithm [80],
as a type of unsupervised learning procedure, provides clustering of the map (neural
field U, (x, t)), after which the learned memory pattern is passed into the neural field

Uem (x, t) Of long-term memory (Figure 4.10).
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Figure 4.10 : Computational model of hippocampus for episodic memory.
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Recalling and forgetting functions corresponding to neural activities of excitation and
inhibition, respectively, are realized in the LTM neural field U;,, (x, t). The proposed

cost function is given by:

JO) = uc(x,t) = Uy (x, DI (4.8)

In order to produce these phenomena, computational model of the hippocampus
executes an optimization process, which minimizes the objective cost function. The
objective cost function deals with different pattern features capturing best/worst

memories and best/worst fitting memory pattern with WM[94].
Upesp(x,t) = max Uper (, £) (4.9)
epiresp (t) = argmax Uresp (x’ t) (410)

Response of the computational hippocampus model is retrieved from dynamic neural
field Uy, (x, t) of the episodic (LTM) memory. For this operation, projection of the
field Uy (x, t) is used in equation (4.9) with respect to time (t) such that the score of
the interaction history (episodic) performance epi,.,(t) can be computed by equation

(4.10) for the long-time span memory in the computational hippocampus model [94].
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4.2.4 Basal Ganglia For Action Selection

As a part of limbic system in the human brain, the basal ganglia (Figure 4.11) is
strongly connected with the cerebral cortex regions such as the thalamacortical, the
sensory-motor cortices, the frontal lobe areas (e.g., prefrontal/orbitofrontal
cortex), and other brain areas [6, 46]. It is composed of a group of nuclei, including
substantia nigra, striatum, subthalamic nucleus, globus pallidus external/internal with
their short acronomies SNr, SNc, Str (D1 and D2), STN, Gpi, Gpe, respectively[46,
102].

From Snc to D1 and from Snc to D2 provide two major pathways, a direct and an
indirect. As a reinforcement component of the basal ganglia, the substantia nigra
compacta is a neural sub-nucleus which excites D1, while inhibiting D2 [46, 102]. The
region subthalamic nucleus is a main excitatory area, which receives direct state
information on motor commands. The neural population region Gpe responsible for
inhibiting Stn and Gpi is involved mostly in performing action-selection tasks through
region Snr[12].

There are two output command signals (BS, Th) and four input signal sources (BN,
AC, MC, Sub). Output terms BS, Th indicate brainstem components (midbrain,
medula, VTA etc.) and thalamus. Input terms show basal nucleus (BN) from amygdala,
associative cortex (AC) from prefrontal/orbitofrontal cortex, motor cortex (MC),

subiculum (Sub) from hippocampus [46, 102].
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Figure 4.11 : Neural architecture of Basal Ganglia Module.

An example of spiking pattern, which belongs to neurons in regions of the basal
ganglia, is shown in left-top of figure 4.12. With each time frame, firing rates of
population activity can change as shown in left-bottom of the figure. Densities of firing
rates, which belong to neurons in regions of the basal ganglia, are depicted in right-top
of the figure. Right-bottom plot shows membrane potentials of the neurons in basal

ganglia.
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Figure 4.12 : Stochastic neural dynamics in Basal Ganglia.

The basal ganglia is involved in several cognitive skills: voluntary motor control,

procedural learning related to routine behaviours or repetitive (habitual) movements
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[12]. More specifically, the basal ganglia exert an inhibitory or excitatory influence on
a number of motor systems. Releasing inhibition (excitation) allows a motor system to
be activated. Thus, the basal ganglia is primarily responsible for behaviour adaptation
patterns (action selection sequences) [102]. The computational basal ganglia model
(Figure 4.13), utilizing a reinforcement learning technique [79], provides an optimal
motor plan (policy) or action sequence supported by emotional rewards from the

amygdala and episodic input on past interactions from the hippocampus [94].
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Reward p— ® el (DNF) Ufs,t)
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‘ ’
7 Reward Reinforcement Action Command
Episodic Memory epit)| Computation [ Learning Sequence
Response 7 bg
dopamine modulation
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Figure 4.13 : Computational model of basal-ganglia for action selection.

In the computational model of the basal-ganglia, the stimulus activation Igz;(x,t) isa
two dimensional gaussian form, wherex = (p,rew,,,) € R%. This activation feeds
into the dynamic neural field Ug; (x, t) of the basal-ganglia. The field Ug (x, t) allows
determination of internal states for action selection. In experiments, we proposed four

states according to regions x = (x4, x,) of the field Ug; (x, t).

S1, x, =2 and x, = 0,75
_ ) sa, x; <2 and x, = 0,75
Sbg = fog (1, %2) = s3, x,=2and x, <0,75 (4.11)

S4, x, <2 and x, < 0,75

In order to extract the states s,, over Ups(x,t), the borders of the regions are
determined by the mapping function f;,,. The numerical values for the equations
(4.11), (4.12) are experimentally chosen in trial and error fashion[94]. Dynamic neural
field Ug; (x, t) of the computational basal-ganglia model is trained via reinforcement
learning [79].

dp
\/(4 - reWam)z + (1'5 - epiresp)z

Tew,y =

(4.12)
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The reinforcement reward can be computed by equation (4.12). Additionally, the term
dp is an optional parameter so that dopamine modulation can tune the learning
progress. Reinforcement learning process modifies procedural (related to action-
selection skills) memory which is stored in the weight matrix [94].

a, Spg = S1

a,, Spg = (52 01 s3) and x; < —x,
as, Spg = (52 01 s3) and x; > —x, (4.13)

Apg = fog(x1,%2) = j

S4, Shg = Sa
A set of pre-defined actions act = {a; =[“clapping”, “’salute”], a, =[“arm shake”,
“head shake”], az =[ “opening two arm”], a, =[“hide face”, “look to ground”]} is
produced by the motor cortex module. Action-selection logic utilizes the states s, of

basal-ganglia to make a suitable decision as feedback action [94].

4.2.5 Motor Cortex

As a module of frontal lobe sub-architecture, computational model of Motor Cortex
module (Figure 4.14) which is a part of general computational brain inspired and
emotion imitated cognitive framework, is responsible for the planning, control, and
execution of voluntary movements [6]. The motor cortex module is composed of
several main parts including primary motor cortex, premotor cortex, the

supplementary motor area, posterior parietal cortex [46].
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Thalamus —[Perceptual Datal W i

Sensory .y, Contextual Info || Motion Planning Engine Limbic
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|
[Task Access Permussion|

T.

Association Cortex

Figure 4.14 : Motor Cortex model.

The primary motor cortex providing access permission to motor commands is the
major contributor to emerging neural impulses that pass down to the brain stem
through spinal cord and control the execution of movement [46]. The premotor cortex
involves in movement, the sensory guidance and direct control of movement. Many
different task primitives generate complex behaviours in the premotor cortex. The

supplementary motor area (SMA) provides the internally generated planning of
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sequential movement. This sub-module working as motion planning engine, includes
a unique algorithm, which constitutes a probabilistic dynamic programming
methodology. The posterior parietal cortex (PPC) is responsible for constructing
mapping between multisensory information into motor commands. In addition, PPC
includes task descriptions and perceptual data. It has large-scale connections with
prefrontal regions and sensory regions like visual, auditory and somatosensory for
perceptual association. Motor Cortex module has also a part of procedural memory
involved in motor skills. Motor Cortex accepts feature data from sensory cortex and
thalamacortical areas. Particular motor systems (e.g. body control, arms, legs and
head/face) are modelled as cortical maps in the Motor Cortex.

4.3 Implementation

Certain preliminary concepts about the robot’s perceptual environment, its motor
(action) environment, world modelling, and its internal dynamics must be defined in
order to explain the applied scenario. Some observed perceptual states are derived by
events and perceptual items (e.g., face, skeleton), and they are detected, recognized,
tracked, and localized for attention modelling. In the sample scenario, the robot’s task
planning workload can be performed in different stages [103]. Some tasks consist of
basic structures, whereas others are more complex, including more than one
observation and/or action state. The robot’s observations may include perceptions,
such as detected face or skeleton to capture movements. Then these movements can
be identified as labels of the gestures for recognition progress in the cognitive
perception modules. Actions of the robot including gestures are produced in the motor

cortex module and transferred to motor commands.

The emotion- and motivation-based control paradigm, driven by computational limbic
system architecture, regulates behaviour and monitors task performance enabling the
robot to reach optimal goal states. This methodology can be integrated into predefined
scenarios. In the experiments, a robot and child play several interaction games. These
games are realized in turn-taking form for testing the hypotheses. According to the
level of preschool children, interaction games are chosen as “peek-a-boo”, “just
imitate”, “getting to learn our body”, and “stand-up, sit-down”. In the “peek-a-boo”
game, the robot introduces an environment to the child for orientation. Moreover, an

imitation game “Just imitate” is considered to measure response times and accuracy of
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the performed gestures. In “getting to learn our body”, the robot intends the child to
show some parts of its body and vice versa. The last game considered in this study is
“stand-up, sit-down” which requires giving spontaneous commands from robot to
child. Observation states are linked to motor (action) commands by internal tasks,

which humanoid robot reaches through optimal goal state procedures.

Table 4.1 : Internalstates in the scenarios.

Event Action Emotional Responses Episodic Memory
No. Sequence
1 clapping, Happy,Relaxed,Excited Happy,Making

salute Small Errors

2 hiding face  Sad,Depressed,Anger  Sad,Making Large

Errors
3 look to Fatigued, Calm Passive, Low Time
ground Performance
4 clapping Stressed, Excited Active, High Time
Performance

For example, if the robot does not recognize an expected gesture, the emotional state
of the robot goes through “unpleasant” (or “sad”). Its emotional state slightly becomes
“unpleasant” (or “sad”), if its recognition error is increasing. In addition, if the speed
of the performed gestures is slowing as the robot is in the emotional state “unpleasant”,
the robot gets to the emotional state “depression” (inhabitation state)”. If the response
time is decreasing as the robot is in the emotional state “unpleasant”, the robots get to

the emotional state “anger”.

Moreover, if the robot recognizes an expected gesture, the emotional state of the robot
goes through “pleasant” (or “happy”). Its emotional state slightly becomes “pleasant”
(or “happy”™), if its recognition error is decreasing. In addition, if the speed of the
performed gestures is increasing as the robot is in the emotional state “pleasant”, the
robot gets to the emotional state “excited” (“excitation” state)”. If the response times
Is increasing as the robot is in the emotional state “pleasant”, the robots get to the

emotional state “relaxed”.
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4.3.1 The Experiments

Participants of the experiments are chosen from the group of preschool children with
ages between three and five years. Size of the group is sixteen. The group includes 10
children with normal attention level. The others are diagnosed as ADHD. In addition

to this, a teacher, psychologist and the researcher have participated to experiments.
According to these conditions, two main experiments are conducted.

Experiment 1: In the first experiment, robot and normal group children play several
interaction games. Before this stage, teacher and robot perform the interaction games
sequentially. In this case, role of teacher is active (demonstrator), and humanoid robot
is passive (observer). The humanoid robot records this interaction including some
indicators (e.g. gesture errors and time delay of the responses) of the events. In the
other case, humanoid robot is active (demonstrator), and a child who belongs to normal
group is passive (observer). While it is executing turn-taking interaction games,
optimal action sequences are realized as feedback, which have been learned from

previous stage.

Experiment 2: The humanoid robot and group of children diagnosed as ADHD play
several interaction games in the second experiment. As before, teacher and robot
perform the interaction games sequentially. In this case, role of teacher is active
(demonstrator), and humanoid robot is passive (observer). The humanoid robot records
this interaction including some indicators (e.g. gesture errors and time delay of the
responses) of the events. In the other case, humanoid robot is active (demonstrator),
and a child who belongs to normal group is passive (observer). While it is executing
turn-taking interaction games, optimal action sequences which have been learned from

previous stage are applied as feedback.

At the end of the experiments, robot reports learning and interaction statistics. Under
supervision of a psychologist, levels of rehabilitation and contribution of the neuro-
cognitive architecture embodied in the humanoid robot are eleboratively discussed.

4.3.2 The Scenario

In the interaction scenario, the humanoid robot performs several gestures (Figure 4.15)

according to the executed task (game) [94]. For the “stand-up, sit-down” game, there
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are two gestures of the humanoid. For the game “getting to learn our body”, the
humanoid robot displays gestures labelled as “show your chest”, “show your head”
and “show your leg” in the figure 4.15.(a)(b)(c). During the game “imitation”, the
humanoid robot performs some gestures (e.g. “arms up” gesture in the figure 4.15.(d))

to be realized by the child [94].

(©) (d)

Figure 4.15 : Gestures of the humanoid : a) “body”, b) “head”, c¢) “leg”, d) “arms

up”.
In figure 4.16, snapshots of a basic “peck-a-boo” activity are presented during
laboratory tests [94]. The humanoid robot’s vision system accepts visual data from the
Kinect sensor. Then visual data, including RGB and depth images, are transferred to

the thalamus module. In the thalamus module, some preprocessing tasks like feature
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extraction are executed allowing the humanoid robot to detect a face. When the robot
iIs hiding its face, it can not detect any face. On the other hand, if a human does not

hide his/her face, the humanoid robot can easily detect a human face.

Figure 4.16 : Snapshots from the experiment.

Participants in the experiments are chosen from the group of preschool children aged
between four and six years. Size of the group is sixteen. The group includes 10 children
with normal attention levels, while the other six are diagnosed ADHD. In addition, a
teacher, a psychologist and the researcher participated in the experiments. During the
experiments (Figure 4.17 and Figure 4.18), preschool children play the simple games
with respect to the sequential flow of the interaction scenario [94]. While the children
are playing the games, the humanoid robot evaluates its emotional states and episodic
memory inferring the attention (e.g. focused, sustained) levels of the children from
interaction performance. Then, the process of action-selection are executed according

to emotional and episodic memory activations [94].
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Figure 4.18 : Experiment 2.
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4.4 Experimental Results and Performance Evaluation

Emotional states produced by activities of the neural field are represented in figure
4.19. Accordingly, there are two emotional states with different levels of activity in
the cortical space. An emotional state located in parametric position [0.6 0.6] of the

cortical region corresponds to the emotional label “excited.”

field u activation field u activation

-1 0.6 0.2 02 0.6 1

Figure 4.19 : Representation of emotional states by activities of the neural field.

The other emotional state, which is a lower-field activity, is located in the parametric
position [-0.5 -0.4] of the cortical region, and it is expressed by an emotional label
“depressed” (or inhibited). Larger-field activities are represented by dominant
emotional expressions. Moreover, wider field activities are denoted as higher-

emotional attention involving a larger neuron population.
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Figure 4.20 : Variations of emotional field activity.

An emotional response is shown as a wave packet, in figure 4.20. According to this,
field activity related to an emotional state starts from a point [0.89 —0.38], labelled
as “depressed” and travels through a point [0.82 0.82], labelled as “excited”. In each
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field activity, rewards are continuously computed via adrenalin and dopaminergic

gain.
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Figure 4.21 : Variations of emotional reward.

The emotional reward (rew,,,) is computed by equation (4.3) and variations of it are
observed for each event. This metric corresponds to focused attention of the preschool
children. Thus, if the emotional reward is increased, the interaction level based on the
children’s focused attention is increased according to hypothesis (H1). In figure 4.21,
the blue line indicates experiment 1 and the red line indicates experiment 2.
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Figure 4.22 : Episodic memory representation generated by neural field activations
of Hippocampus.
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Observed events or executed tasks as episodic memory fragments (e.g. fired wavelets)
generated by activities of the neural field are represented in figure 4.22. Accordingly,
three wavelets with different levels of field activity are produced in the hippocampal
memory space [94]. The episodic memory formation in the hippocampus is presented
in figure 4.23. As a neural field, the feature space (horizontal axis in figure 4.23) of
episodic memory passed from working memory corresponds to a scale indicating from

low performance to high [94].
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———————————————————————————————————————————————————————————————————————————————————————————————————————————

activation / input / output

feature space

Field Activations of Episodic Memory Formation in Hippocampus

Short-Term
Memaory (STM)

w
=

=
=

Long-Term
Memory (LTM)

]
=
=

na
wh
=

time (back from current step)
o
=

300
10 20 30 40 50 60 70 80 90 100

feature space

Figure 4.23 : Neural field activations of episodic memory formation in
hippocampus.

The interaction performance p(t) in WM and episodic response epi,.s,(t) in LTM
are computed by equations (4.4), (4.10) respectively. These metrics observed for each
event are related to sustained attention of the preschool children. Thus, if the success
rate (or frequency) in the sequence of events (gestures to be perceived) for LTM is
increasing monotonically, the interaction performance score is increased and
interaction based on sustained attention is increased between the humanoid robot and
preschool children according to hypothesis (H2). Also it is observed that differences
between p(t) and epi,.s, (t) in experiment 2 are greater than the ones in experiment
1. In figure 4.24, the top plot indicates experiment 1 and the bottom plot indicates

experiment 2.
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Figure 4.24 : Interaction performances observed from the neural field activations of
episodic memory.

In the experiments, some turn-taking interaction games are sequentially performed
(e.g., peek-a-boo, just imitate, getting to learn our body and stand-up, sit-down)
between a humanoid robot and preschool children. Referring to the analysed
hypotheses (e.g., H1, H2), the focused and sustained attentions of preschool children
are tested under supervision. In the tables below, indicators for performance evaluation
are average response time and ability score for a performed activity. The ability scores
are computed as “achieved activity / total activity in a task”. The hypothesis H1, related
to sustained attention, corresponds to achieved activity. The hypothesis H2, related to

focused attention, corresponds to durations of the activity responses [94].
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Table 4.2 : Activities with human expert.

Event Interaction Activity Log Activity Log (Children)
No. (Task) (Teacher) Normal ADHD
1 Peek-a-Boo 10 times - 1.2 sec 8/10 - 1,4 sec 5/10 - 1,7 sec

2 Stand-Up, 10 times - 1,8 sec 7/10 — 2,0 sec 6/10 — 2,4 sec
Sit-Down

3 Just Imitate 10 times - 2,6 sec 6/10 — 2,8 sec 4/10 — 3,6 sec
Getting to

learn our
body

10 times - 3,4 sec 5/10 — 4,1 sec 3/10 - 5,4 sec

The performance scores in the activities are presented in tables 4.2 and 4.3.
Accordingly, human activity logs are examined for the two groups, the normal group
and the group of Attention Deficit Hyperactivity Disorder (ADHD). These
experiments are conducted separately, not only with the humanoid robot but also with
a human expert (e.g. supervisor or teacher) for comparative purposes. In table 6.1, the
human expert has performed an interaction game play including basic tasks with the
tasks being repeated several times. Meanwhile average response times were recorded.
Accordingly, the preschool children as experiment groups realize tasks based on given
commands from the human expert. The normal group of children are more successful
with respect to the children suffering from ADHD. Also a one-way ANOVA test was
performed on the four common tasks to highlight the differences between the normal
and ADHD groups. The result of the ANOVA test showed that the variances in normal
and ADHD groups had a significant effect (F = 6.47, p = 0.0075 with p < 0.05).

Table 4.3 : Activities with humanoid robot.

Event Interaction Activity Log Activity Log (Children)
No. (Task) (Teacher) Normal ADHD

1 Peek-a-Boo 10 times - N/A 9/10 - 2,0 sec 7/10 — 2,1 sec

2 Stand-Up, 10 times - N/A 8/10 — 2,2 sec 6/10 — 2,4 sec
Sit-Down

3 Just Imitate 10 times - N/A 6/10 — 3,5 sec 5/10 — 3,9 sec

4 COUINGTO hiines NJA 610 -40sec  4/10 - 4.4 sec
learn our

body
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In table 4.3, as before, the humanoid robot has performed an interaction game play
including basic tasks. Average response times were recorded while these tasks were
repeated several times. The preschool children experiment group including the normal
group of children and children suffering from ADHD realize tasks according to given
commands from the human expert. The correspondent levels of the children’s
interaction based on attention across both groups appeared to be better than the
previous experiment. The same statistical analysis was performed with an ANOVA
test to examine the activities with the robot. The result showed that it also had a
significant effect on activities with robot of the four common tasks (F = 10.91, p =
0.001 with p < 0.05).

In order to verify proposed hypotheses, a statistical analysis is performed on both
groups for all tasks. Also a paired sample t test was performed on the four common
tasks for all children in the normal group. The variances of achieved activity between
human and robot had a significant effect (t = 3.94, p = 0.0153 with p < 0.05). Also the
variances of response times between human and robot had a significant effect (t = 2.62,
p = 0.0275 with p < 0.05). Therefore, the result of tests showed that hypothesis 1 and
hypothesis 2 are verified for the normal group. The same statistical analysis was
performed with a paired sample t test on the four common tasks for all children in the
ADHD group. The variances of achieved activity between human and robot had a
significant effect (t = 2.49, p = 0.0258 with p < 0.05). Also the variances of response
times between human and robot had a significant effect (t = 6.47, p = 0.0211 with p <
0.05). Therefore, the result of tests showed that hypothesis 1 and hypothesis 2 are
verified for the ADHD group.
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Figure 4.25 : Action selection rewards and executed reward actions.

According to the hypothesized scenarios, the learning process of the action-selection
is performed using the reward mechanism described in equation (4.12), producing the
optimal sequence of motor commands in the basal ganglia [94]. While the basal
ganglia is operating action-selection tasks via the reinforcement learning procedure
with a reward coming from amygdala, various action-selection sequences are observed
in the experiments. During the experiments, reinforcement learning activities that
shape procedural (a memory related to action selection skills) memory in the
computational model of the basal ganglia and executed reward actions are presented
in figure 4.25. The bottom plot of the figure corresponds to action indices {a; =4,

a, =3, a3 =2, a, =1}.
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Table 4.4 : Training performance comparisons.

Computational Amygdala Hippocampus  Basal-ganglia
Neural Model . . .
(Reinforcement (Unsupervised (Reinforcement
Learning) Learning) Learning)
Dynamic Neural % 76,21 % 63,89 % 72,53
Field
Neural Mass % 71,03 % 56,42 % 68,47
Model

Performance comparisons of computational mechanisms used in the architecture are
presented in table 4.4. These comparisons are performed in different modules
(amygdala, hippocampus and basal-ganglia) through various learning approaches. For
the amygdala and basal-ganglia modules, reinforcement learning performances of two
computational mechanisms (dynamic neural field and neural mass model) are
observed while unsupervised learning performances are observed for the hippocampus

model of the architecture[94].

Table 4.5 : Comparision of rehabilitation rates.

Human Expert  Humanoid Robot

(Teacher) (Brain-Inspired
Neuro-Cognitive
Architecture)

Normal Group 2,52 2,47
ADHD Group 1,37 1,71

The rehabilitation rates of the attention deficit hyperactivity disorder (ADHD) problem
are recorded in the confusion matrix for the humanoid robot’s cognitive architecture.
The values in table 4.5 correspond to the mean performance scores in table 4.2and
table 4.3. They were computed by a formulation: sum of achieved activities / sum of
response times in the columns normal group and ADHD. Accordingly, increased rates
show the success level of the rehabilitation progress. If interaction between the
humanoid robot and normal group children is investigated, it is shown that there is
little performance gap with respect to children suffering from ADHD, while the

performance gap of interaction with the human expert is greater [94].

80



5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Pratical Applications and Impact

In this thesis study, the major impact is to construct a computational framework for a
humanoid robot which can be employed in the assistive and rehabilitation case studies
involving primarily social, developmental and physical interaction (e.g. motion
disabilities) [94]. For rehabilitation studies, deliberative decision making processes
and ability to perform complex behaviour sequences are required [6]. In addition,
associative learning abilities and emotional expressions could be helpful for these

application purposes.

According to the interaction between robot and human, various different scenarios can
be implemented where the robot has a special role such as a personal assistant or
therapist [94]. In terms of application areas, utilizing “humanoid robots embodied
computational brain inspired neuro-cognitive architecture” will be realized in some
pilot studies such as households, schools, hospitals and other rehabilitation centers.
This thesis provides major contributions to HRI studies such as brain inspired
computational modelling of the cognitive perception system and the limbic system for
a humanoid robot. Our proposed computational architecture handles interaction
problems based on the joint attention task. Within this thesis a spatio-temporal
cognitive perception system inspired by brain’s perceptual mechanism for a humanoid
robot, is developed and presented in chapter 3. A computational limbic system
realizing emotion and episodic memory based control is constructed and realized in
the chapter 4. In addition, an action selection mechanism is modelled for this

architecture.

Dynamical interactions between human and autonomous humanoid robots with
computational brain inspired cognitive architecture are investigated and analysed from
the viewpoint of contribution to society and scientific development [94]. Records of
the responses acting on subjects (humans) to the humanoid robots are stored in a

database. Finally, results of scientific discoveries are reported with detailed discussion.
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5.2 Discussion

The proposed “interaction based on joint attention tasks using a humanoid robot
platform with brain-inspired neuro-cognitive architecture” is a novel approach to the
best of our knowledge. As a computational framework, the proposed system consists

of two sub-architecture named limbic system and cognitive perception system.

In the presented thesis, the computational model of a human brain’s limbic system and
perceptual system embodied in a humanoid robot are tested. The robot undertakes
multiple objective task planning problems under predefined interaction scenarios until
it reaches the optimal goal state. This robot control architecture is based on the
neuromorphic foundations of the behaviour selection mechanism, which are driven by
emotion and episodic memory. The new computational framework is embedded into a
humanoid robot platform the Bioloid robot. In addition, a reinforcement learning-
based adaptation procedure is applied on the separate regions of the computational
limbic system (e.g., basal ganglia, hippocampus, and amygdala) to train behaviour
selection procedures. Emotional responses and behavioural transition events are
perceived during simulation. The cognitive perception system which cognitively
process perceptual responses, forming environmental awareness, and allowing
perceptual behaviours (e.g. focused attention) is a framework of overall neuromorphic
cognitive architecture employing a group of computational models. Dynamic neural
field model utilized in the limbic system provides an efficient computational
mechanism to represent the cognitive activities of the humanoid robot. Additionally, a
neural mass model is utilized as a comparative method employing population
dynamics of artificial neurons instead of field dynamics of the neural system. There is
little resultant difference in training scores. According to results of performance
comparison, the dynamic neural field model is slightly more effective than the neural

mass model.

This architecture presents an approximate computational solution which is based on
the perceptual regions in human brain. The system is composed of several cortical
regions including thalamus, sensory cortex (e.g. occipital lobe (visual cortex),
temporal lobe (auditory cortex), parietal lobe (somatosensory cortex)). As a function
of temporal lobe, recognition processes are realized by supervised learning

methodology using extracted feature data of stimuli under the supervision of semantic
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memory. Parietal lobe is responsible from constructing environmental model and
interpreting spatial awareness for a humanoid robot. Also the system has its own
attention mechanism which can be called as perceptual attention. According to the data
coming from input stream (thalamus) and supervision data coming from semantic and
episodic (long-term) memory, sensory cortex executes cognitive perception tasks by
its computational model. In our proposed system architecture, several machine
learning method shave been employed such as naive Bayes, k-nearest neighbours (k-
NN), decision tree, support vector machine (SVM), feedforward neural network
(multi-layer perceptron (MLP)) and convolutional neural network (CNN or ConvNet).
Comparison of these methods depicts the effectiveness of the computational cognitive
perception system, which realizes related perceptual cognitive skills for a humanoid

robot.

The interaction scenario is tested in a MATLAB environment. In this work, current
task requests, released from the working memory, and past task requests, released from
the episodic memory in the hippocampus, indicate that according to the produced
emotional response, a behavioural reward is applied to select the optimal action
commands. Thus, the attention-based interaction activities of the participants

increased.

5.3 Verification

Two main experiments were performed to verify the cognitive perception system and
related research questions, RQ1 and RQ2 in chapter 3. RQ1 was verified since social
interaction based on joint attention was established between a humanoid robot and
human so that the robot may be used as an educational or rehabilitation assistant. The
humanoid robot achieved human like perceptual cognition, which evaluates spatio-
temporal awareness that investigates correlation between pattern recognition skills,
semantic memory development and selective attention model with competitive focuses

under multi-modal stimuli. So RQ2 was also verified.

In chapter 4, two main experiments were performed to verify the above proposed
architecture and related hypotheses, H1 and H2. While one experiment dealt with a
group of normal children, the other dealt with children suffering from ADHD. As a

result, that sustained attention is observed via increased interaction scores without
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response times of the activities increasing, verifies that sustained attention increased
(H2). It is also observed that, the response times decreased as the interaction scores
increased, verifying that focused attention increased (H1). Additionally, during the
experiments, differences in interaction scores and time performances were gradually
decreased between the normal and ADHD groups. The presented architecture can be
further improved in the future by integrating cognitive perception with brain 1/O
interface architecture. The results were also verified with one-way ANOVA and paired
sample t tests [94]. Experimental results related to constructing perceptual
infrastructure for a robot show that perceptual skills including recognition and

environmental modelling are realized.

5.4 Future Works

In future studies, other interaction disorders that are out of the scope of this study will
be investigated using HRI. From the viewpoint of computational infrastructure,
improvement in the cognitive functions in the cortical regions (e.g. basal-ganglia,
amygdala, hippocampus and hypothalamus) of brain-inspired architecture is expected.
In addition, computational methods for additional tuning parameters (e.g. dopamine
and adrenaline) will be detailed. The presented architecture can be further improved
in the future, by integrating approximate models of the other cortical regions of brain
inspired architecture. As viewpoint of computational infrastructure, cognitive

functions in the cortical regions of brain inspired architecture will be improved.
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APPENDICES

APPENDIX A:
Pseudo Code of the Program Code;

Robot Initialization
Starting Parameters

Loop_start
Reuest = Scenario_Menager()
a = Task _Assign(Request)
Action_Perform(a)

While (until gesture performed)
Stream = Thalamus () // Data Acqusition
// Obtain recognized gesture (Rec_Gest), Gesture Error (Gest_Err)
[Rec_Gest, Gest_Err] = Sensory_cortex (Stream)

IF (Rec_Gest == a)
Calculate Response_time
Robot say (“Correct”)

Perf = True

Else
Robot _say (“Incorrect”)
Perf = False

End_IF

End_while

(A, V, Reward, Emotion_state) = Emotion_model (Response_time, Gest_Err)
(Ep_mem) = Episodicmemory_model ( A, V, Perf)

act = Actionselection_model (Ep_mem, Reward, Emotion_state)

Online_Datavisualization ()
Loop_end

Terminate_program ()
Release_memory ()
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