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ROBUST DOMINANT POLE PLACEMENT WITH LOW ORDER
CONTROLLERS

SUMMARY

It is clear that the first necessary condition is to provide the stability of a closed-loop
control system. If the closed-loop system is not stable, the frequency or time domain
specifications do not have any meaning. Therefore, there are many studies in the
literature on the calculation of stabilizing controllers both in continuous and discrete
time domain. Computation of all stabilizing controller parameters is an advantage due
to the fact that the controller parameters, which satisfy some closed-loop performance
criteria, are actually a subset of the stabilizing parameter set.

On the other hand, the stabilization of closed-loop system alone is not enough in
many cases. For this reason, the calculation of the controller parameters such that
the closed-loop system satisfies desired performance specifications has an important
place.

In the control system design, the pole placement approach is a widely used and
popular technique to obtain the desired closed-loop performance. Therefore, there
are several controller design studies based on the dominant pole placement approach
in the literature. In order to provide the desired time domain characteristics such as
settling time and overshoot, a pair of dominant poles is assigned to the corresponding
locations. The adopted assumption here is that the remaining poles are located m times
away (m is chosen as 3-5 in general) from this dominant pole pair. Even though the
dominant pole placement is an effective design method, if this assumption is violated
(i.e. the remaining poles are not located far enough from the dominant poles), it leads
to another problem that is the desired performance specifications in the closed-loop are
not guaranteed to be met.

The first main problem studied in this thesis is the design of low order controllers
(such as PI, PID, PI-PD) in continuous-time domain via dominant pole placement
approach to satisfy desired performance criteria in the closed-loop. The mentioned
problem is already solved in the literature and presented in the second chapter. Apart
from the presentation of existing results, for the systems without time-delay, an easier
approach which is based on well-known Routh-Hurwitz method, is also proposed.
For the time-delay systems, dominant pole placement problem is very challenging;
therefore, it is better to use the discrete-time domain representation for such systems.

During the thesis, P, PI, PID and PI-PD type controllers are considered as low order
controllers. However, P controllers are not usually preferred due to steady-state
error in the closed-loop. On the other hand, in case of PI controller usage, it is
possible to assign the dominant pole pair to the desired locations; however, there is
not any parameter left to assign the remaining poles. It may cause the dominant pole
placement approach to fail since the non-dominant poles can be located in the dominant
region. As a result, PID controllers are the mostly considered in the thesis both in
continuous-time domain and discrete-time domain.
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The controller zeros may also be problem if their location is close to the dominant pole
pair. If the conventional PID controller structure is used, there is always a chance that
the controller zeros are located in the dominant region or even in the right half plane (or
outside of the unit circle in z-domain) due to the fact that the dominant pole placement
method considers only poles of the closed-loop system. However, the PI-PD structure
has a significant advantage that the controller zero can be placed arbitrarily; thus, it
helps the transient response of the closed-loop system to be obtained as desired.

In continuous time domain, especially when a higher order system is considered, it
becomes a difficult task to provide dominant pole placement due to the fact that the
remaining poles cannot be always placed far away for chosen performance criteria and
dominance factor (m). Therefore, it is important to know the maximum achievable
dominance factor for a considered system, hence, another problem which is defined
as the calculation of maximum dominance factor with a PID controller shows up.
In the thesis two different approach is proposed to calculate the maximum value of
the dominance factor for all-pole systems and for the systems with open-loop zeros,
respectively.

On the other hand, the dominant pole region in which the dominant poles can be
assigned to satisfy a desired dominance factor can be obtained. It means that the
limitations on dominant pole pair selection such that the dominant pole placement
approach works well can be found. Therefore, a method is proposed to find
the dominant poles region in s-plane to guarantee dominant pole placement with
continuous PI and PID controllers.

In the dominant pole placement approach, it may be a challenge to keep the remaining
poles away from the dominant pole pair with limited parameters. Nevertheless it
is possible to widen the closed-loop performance criteria instead of choosing strict
specifications. This results the dominant pole pair to be located in a specified region
instead of a point, hence, the dominant pole region assignment problem shows up. In
this thesis, solution to the dominant pole region assignment problem is given with the
help of parameter space approach and generalized Nyquist theorem for continuous P,
PI and PID controllers.

It should be noted that most of the installed control systems around the world use older
technology where it is not possible to reduce the sampling time below a certain limit
without making considerable expenses. In addition to this, in some of the new systems
reducing the sampling time comes with a cost, which might not be required due to
marketing reasons. In such situations, direct digital design is required to ensure the
performance of the controller when applied in the digital world.

Even if the controller design can be performed in continuous-time domain and then
discretized by taking sampling time as small as desired, the design in continuous-time
domain is not always straightforward. Especially for the time-delay systems, the
design via dominant pole placement is a challenge due to the fact that there are
infinitely many poles in the closed-loop system. Since the remaining poles can be
located in the dominant pole region, the design process should be carried out carefully
if the considered system has time-delay. Nevertheless, it is possible to take advantage
of the control system design in discrete-time domain so that the number of closed-loop
system poles caused by the time-delay becomes finite when the time delay is a multiple
of the sampling time. It leads the direct digital controller design to be an important
aspect in dominant pole placement method.
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The same problems defined in the continuous-time domain are also considered in
discrete-time domain and solved in the thesis. First of all, the parametrization of the
discrete PI and PID controllers which assign dominant pole pair is completed and after
that in order to assign the remaining poles, two different approaches based on modified
Nyquist theorem and Chebyshev polynomials are proposed. The maximum dominance
factor, in other words, the disc of minimum possible radius in which the non-dominant
poles can be placed in z-plane for a chosen performance criteria is calculated via
Routh-Hurwitz based method with bilinear transformation. Limitation on dominant
pole pair selection in z-plane is also found.

It is also aimed to perform the dominant pole region assignment with discrete P/PI/PID
controllers. The methodology is very similar to the pole region assignment in
continuous-time domain. However, here, it is much easier to design such controllers
for time-delay systems by taking advantage of discrete-time domain. First of all, the
proposed method is explained through P controller again with the help of generalized
Nyquist theorem, then it is extended to design of digital PI and PID controllers via
parameter space approach.

In the control systems, two types of uncertainties can be defined called as unstructured
and structured (or parametric) uncertainties. If the system parameters are not known
exactly but their intervals are known then it is defined as a parametric uncertainty. In
order to analyse the stability of systems with parametric uncertainties, several methods
have already been proposed such as the Kharitonov Theorem, the Edge Theorem, the
Mapping Theorem and the Tsypkin-Polyak loci. In case of a parametric uncertainty, it
is not possible to place closed-loop system poles to the exact locations, but instead it is
expected two of the closed-loop poles to be in desired region such as a disc, a rectangle
etc. and other poles to be far away from the dominant pole region. A robust PID
controller design to provide dominant pole placement in the closed-loop for parametric
uncertain systems is studied for the systems with interval type and affine-linear type
closed-loop characteristic polynomials, respectively.

Due to the natural structure of the considered problem, different stability regions
(D-stability) are required to be considered; therefore, even if the characteristic
polynomial is an interval polynomial, the Kharitonov theorem can not be sufficient
to calculate the desired gain intervals. Instead of using edge polynomials whose
stability or D-stability check requires complex calculations, it is shown that the vertex
polynomials are sufficient to be checked if the considered D-stability region satisfies a
property (decreasing phase property). It is also shown that for most of the important
regions in control engineering, the decreasing phase property is satisfied.

Finally, for the affine-linear type characteristic polynomials, a new method is proposed
which is based on finding the invariant gain intervals which is a lot easier than using
Edge theorem. Thus, it becomes possible to assign the dominant poles to the desired
region in s-plane whereas the remaining poles are also located away from the dominant
pole region under all possible perturbations.

As a conclusion, the main problems related with the dominant pole placement is solved
for low order controllers and both in continuous-time and discrete-time domains.
Derived results are then used to design a robust low order controller via robust
dominant pole placement for the systems with parametric uncertainties.
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DUSUK MERTEBELI KONTROLORLER ILE DAYANIKLI
BASKIN KUTUP ATAMA

OZET

Bir kapali cevrim kontrol sisteminde kararliligin saglanmasimin ilk gerekli kosul
oldugu aciktir. Eger kapali cevrim sistem kararli degilse frekans ya da zaman tanim
bolgesi kriterlerinin de bir 6nemi kalmayacaktir. Bu nedenle, literatiirde kararli kilan
kontrolorlerin hesabina iligkin hem siirekli zaman hem de ayrik zaman domeninde pek
cok calisma yapilmistir. Kararli kilan kontrolorlerin hesabi, kapali cevrimde belirli
performans Ol¢iitlerini saglayan kontrolor kiimesinin aslinda kararli kilan parametre
kiimesinin i¢inde yer almasi nedeniyle bir avantajdir.

Diger taraftan, kapali ¢cevrimin kararli kilinmasi pek ¢ok durumda tek basina yeterli
degildir. Bu nedenle kapali cevrimde istenilen performans olciitlerini saglayacak olan
kontrolor kiimesinin hesabi 6nemli bir yere sahiptir.

Kontrol sistem tasariminda, kutup atama yontemi siklikla kullanilan ve popiiler olan
tekniklerden birisidir. Bu nedenle baskin kutup atama yaklagimini temel alan cesitli
kontrolor tasarim yontemleri literatiirde Onerilmistir. Amaclanan asim, yerlesme
zamani gibi zaman domeni karakteristiklerini saglamak amaciyla baskin kutup ¢ifti
s-tanim bolgesinde ilgili yerlere atanir. Buradaki varsayim diger tiim kutuplarin baskin
kutuplardan m kat (m genellikle 3-5 arasi secilir) uzakta oldugudur. Baskin kutup
atama yOntemi etkili bir yontem olmasina karsin eger bu varsayim gecerli olmaz ise
(yani diger kutuplar baskin kutup ciftinden yeterki kadar uzakta bulunmazsa) kapali
cevrimde amaclanan performans Olgiitlerinin garanti edilememesi gibi bir problem
ortaya cikacaktir.

Bu tezde iizerinde ¢alisilan ilk ana problem diisiik mertebeden (PI, PID, PI-PD gibi)
kontrolorlerin siirekli zaman domeninde baskin kutup atama yaklagimi ile tasarimidir.
Bahsi gecen problem literatiirde hali hazirda ¢6ziilmiis ve tezin ikinci boliimiinde
sunulmugtur. Var olan yontemlerin sunumunun diginda, zaman gecikmesi olmayan
sistemler icin Routh-Hurwitz tabanli daha kolay bir yaklagim da Onerilmistir. Zaman
gecikmesine sahip sistemler icin ise siirekli zamanda baskin kutup atama problemi
oldukg¢a zor olacagindan, bu tarz sistemler icin ayrik zaman yaklagiminin kullanilmasi
daha uygundur.

Diisilk mertebeden kontrolorler olarak tez siiresince P, PI, PID ve PI-PD tipi
kontrolorler ele alinmistir. Ancak, P tipi kontrolorler genellikle kapali cevrimde
stirekli hal hatasina neden olduklarindan pek tercih edilmemektedir. Diger yandan,
PI kontrolor kullanimi durumunda ise kapali ¢cevrimde baskin kutup ciftini atamak
miimkiin iken, geriye kalan kutuplart konumlandiracak bir serbest parametre
kalmamaktadir. Bu da baskin olmayan kutuplarin baskin bolgede konumlanmasina
ve baskin kutup atama yOnteminin basarisiz olmasina neden olabilir. Sonug olarak bu
tezde hem siirekli zamanda hem de ayrik zamanda ¢ogunlukla PID tipi kontroldrler ele
alinmagtir.
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Tasarim sonucunda kontrolor sifirlar1 da eger baskin bolge civarinda konumlanmis
ise problem olabilir. Klasik PID kontrolor yapist kullanilmasi durumunda kontrolor
sifirlarinin baskin bolge icerisinde ve hatta sag yari s-diizleminde (ya da z-diizleminde
birim ¢emberin disinda) konumlanma sansi her zaman bulunmaktadir. Bunun nedeni
de baskin kutup atama yaklagiminin yalmzca kapali ¢evrim kutuplarini dikkate
almasidir. Ancak PI-PD yapisinin, kontrolor sifirinin istenilen sekilde konumlanmasini
sagladigindan, 6nemli bir avantaji bulunmaktadir. Bu da kapali ¢cevrim gegici hal
yanitinin arzulandig: sekilde elde edilmesine yardimci olmaktadir.

Siirekli zaman domeninde, Ozellikle yiiksek mertebeden bir sistem ele alindiginda
baskin kutup atamanin saglanmasi, geriye kalan kutuplarin belirlenen performans
Olciitleri ve baskinlik faktorii (m) i¢in her zaman yeteri kadar uzaga atilamamasi
nedeniyle zor olabilmektedir. Bu nedenle ele alinan sistem i¢in elde edilebilecek
olast maksimum baskinlik faktoriiniin bilinmesi 6onemlidir. Bu da PID kontrolorler ile
maksimum baskinlik faktoriiniin hesab1 problemini giindeme getirmektedir. Bu tezde
maksimum baskinlik faktorii hesabi, sirasiyla agik ¢cevrim transfer fonksiyonu yalnizca
kutuplardan olusan sistemler i¢in ve acik cevrimde sifir1 da olan sistemler i¢in iki farkl
yaklagim iizerinden yapilmistir.

Diger yandan, amaglanan sabit bir baskinlik faktoriinii saglayacak olan ve kapali
cevrim baskin kutuplarinin atanacagi bolgenin bulunmasi da miimkiindiir. Bunun
anlami, baskin kutup atama yaklasiminin diizgiin ¢caligmasi i¢in kapali ¢evrimde baskin
kutup ciftinin secimindeki kisitlamalarin bulunmasidir. Boylece, s-tanim bolgesinde
baskinlig1 garantileyecek olan baskin kutup bolgesinin siirekli PI ve PID kontrolorler
icin elde edilmesi amaciyla bir yontem onerilmistir.

Baskin kutup atama yaklagiminda, geriye kalan kutuplarin baskin kutup ciftinden
uzakta konumlanmasi eldeki kisitll parametre sayisi ile olduk¢a zor olabilmektedir.
Buna ragmen kapal1 ¢evrim performans ol¢iitlerini kesin sabit degerler se¢mek yerine
genigletmek yani belirli degerler arasina almak miimkiindiir. Bu da baskin kutuplarin
bir noktada degil de belirli bir bolgenin icerisinde yer almasi anlamina gelmektedir.
Sonug olarak bu kez de baskin kutup bolgesi atama problemi ortaya ¢ikmaktadir. Bu
tezde baskin kutup bolgesi atama problemine ¢oziim genellestirilmis Nyquist teoremi
ve parametre uzay1 yaklasimlar iizerinden siirekli P, PI ve PID tipi kontrolorler i¢in
verilmistir.

Diinyadaki kontrol sistemlerin ¢ogunlugunda Ornekleme zamaninin Onemli ek
harcamalar yapilmadan belirli limitler altina cekilemeyecegi eski teknolojiler
kullanmaktadir. Bununla birlikte bir takim yeni sistemlerde de drnekleme zamaninin
olabildigince kiigiik yapilmak istenmesi beraberinde maliyeti de getirmektedir. Bu
gibi durumlarda, dijital diinyada gerceklenen kontroloriin performansini garanti altina
almak i¢in dogrudan ayrik kontrolor tasarimi gerekli olmaktadir.

Kontrolor tasarimi siirekli zamanda yapilip daha sonra olabildigince kiigiik bir
ornekleme zamani secilerek ayriklastirilabilse de, siirekli zaman domeninde tasarim
her durumda kolay degildir. Ozellikle zaman gecikmesine sahip sistemlerde kapali
cevrimdeki sonsuz sayida kutup nedeniyle baskin kutup atama yaklasimi ile tasarim
oldukca zor olmaktadir. Baskin kutup cifti disinda kalan kutuplarin baskin bolgede
konumlanma riski yiiksek oldugundan, zaman gecikmeli sistemlerde tasarim dikkatli
bir bi¢imde yiiriitiilmelidir. Ancak, kontrolor tasariminda ayrik zaman domeninin
avantajin1 kullanmak miimkiindiir. Boylece kapali ¢cevrimde 6lii zamandan kaynakli
kutuplar, zaman gecikmesinin kati olacak sekilde bir ornekleme zamani se¢ilmesi ile
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sinirli sayida olacaktir. Bu da dogrudan dijital kontrolor tasarimini baskin kutup atama
problemi icerisinde dnemli bir baglik haline getirmektedir.

Siirekli zaman domeninde tanimlanan problemlerin aynisi bu tez kapsaminda ayrik
zaman domeninde de ele almmis ve c¢oziilmiistir. Ik olarak, baskin kutup
ciftini atayacak olan ayrik PI ve PID kontrolorlerin parametrizasyonu yapilmus,
sonrasinda geriye kalan kutuplarin atanmasi amaciyla, modifiye edilmis Nyquist
yaklasimi ve Chebyshev polinomlar1 yaklagimlart onerilmistir. Maksimum baskinlik
faktoriiniin, diger bir deyisle secilen performans olgiitleri i¢in z-diizleminde baskin
olmayan kutuplarin konumlandirilabilecegi olast en kiiciik yaricaplh diskin bulunmasi
icin bilineer doniisiim yardimiyla Routh-Hurwitz tabanli bir yontem sunulmustur.
Z-diizleminde baskin kutup ciftinin secimindeki kisitlamalar da benzer sekilde
bulunmustur.

Ayrik P/PI/PID tipi kontrolorler ile baskin kutup bolgesi atama problemi de ele
alinmistir. Kullanilan yontem siirekli zaman domenindeki yontem ile benzerdir. Ancak
burada, ayrik zaman domeninin avantajini kullanarak zaman gecikmeli sistemler i¢in
tasarimin yapilmasi daha kolay olmaktadr. Ilk olarak genellestirilmis Nyquist teoremi
yardimuiyla P tipi kontrolorler icin daha sonra parametre uzay1 yaklagimi ile PI ve PID
tipi kontroldrler i¢in 6nerilen yontem agiklanmustir.

Kontrol sistemlerinde yapisal olmayan ve yapisal (parametrik) belirsizlik olmak iizere
iki cesit belirsizlikten s6z etmek miimkiindiir. Eger sistem parametrelerinin degerleri
tam olarak bilinemiyor ancak degistigi aralik biliniyor ise bu parametrik belirsizlik
olarak tanimlanir. Parametrik belirsiz sistemlerin kararlilik analizi icin literatiirde
Kharitonov teoremi, kenar teoremi, haritalama teoremi ve Tsypkin-Polyak egrisi gibi
yontemler bulunmaktadir. Parametrik belirsizlik olmasi durumunda, kapali ¢cevrim
kutuplarimi belirli noktalara atamak miimkiin olmamaktadir. Bunun yerine kapali
cevrim baskin kutuplarinin disk, dikdortgen vs. gibi bir bolgenin igerisinde tutulmast,
diger kutuplarinda olabildigince uzakta konumlanmasi1 amaclanmaktadir. Sirasiyla
aralik ve kaymis dogrusal bicimde kapali ¢evrim karakteristik polinomuna sahip
sistemler icin baskin kutup atamay1 saglayacak olan dayanikli PID kontrol6r tasarimi
tizerinde caligilmustir.

Ele alinan problemin yapis1 geregi, farkli kararlilik bolgelerinin (D-kararlilik)
ele alinmasi gerekmektedir. Bu nedenle, kapali ¢evrim karakteristik polinomu
aralik tipi bile olsa, Kharitonov teoremi amaglanan kazan¢ araliklarinin hesabi
icin yeterli olmamaktadir. Ancak, kararlilik ya da D-kararliligin test edilmesi
kompleks hesaplamalar gerektiren kenar polinomlarinin kullanimi yerine, eger ele
aliman D-kararlilik bolgesi belli bir ozelligi (azalan faz o6zelligi) saghyor ise kose
polinomlarinin kullaniminin yeterli olacagi gosterilmistir. Buna ek olarak, kontrol
mithendisliginde ele alinan 6nemli bolgelerin biiyiikk ¢ogunlugunun da azalan faz
ozelligini sagladig1 belirtilmistir.

Son olarak, kaymis dogrusal tip kapali cevrim karakteristik polinoma sahip olan
sistemler i¢in de de8ismez kazang araliklarinin hesabina dayanan yeni bir yontem
onerilmistir. Onerilen bu yontem kenar teoreminin kullanimindan ¢ok daha kolaydhr.
Boylelikle olas1 tiim belirsizlikler altinda dahi baskin kutuplarin s-diizleminde
amaclanan bolgede tutulurken, diger kalan kutuplarin da baskin kutup bolgesinde
uzakta konumlanmasi miimkiin hale gelmektedir.
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Ozetle, bu tezde diisiik mertebeden kontrolérler kullanilarak baskin kutup atama
ile ilgili temel problemler ele alinmig ve hem siirekli zaman hem de ayrik zaman
domenlerinde ¢oziimler verilmistir. Elde edilen sonuglar daha sonrasinda parametrik
belirsiz sistemler i¢cin dayanikli baskin kutup atama yaklasimi ile dayanikli diisiik
mertebeden kontrolor tasarimi i¢in kullanilmistir.

XXX



1. INTRODUCTION

1.1 Motivation

Dominant pole placement (DPP) is an important problem in the linear control system
design. Since the performance criteria of a closed-loop system are determined by the
dominant poles strongly, the non-dominant poles are desired to be placed far away
from the dominant poles so that the closed-loop system transient response is obtained

as desired.

Even if the arbitrary pole placement can be done with an output feedback controller
with order of at least plant order minus one [1] or using a full state feedback controller
if the system is controllable [2], these approaches have problems in the practical
applications. Using full state feedback controller is not always possible, because of
several physical constraints (e.g. due to states that cannot be measured) and costs more
than the output feedback in general because of the number of measurement elements
used in the system. Moreover, in the industrial applications, low order controllers that
can be implemented via standard technologies are preferred. It is said that, in the
industrial applications, PID type controllers are the most well-known and commonly
used controllers [3]. Therefore, providing guaranteed dominant pole placement using

such controllers became an important subject to examine.

Nowadays, most of the industrial systems are controlled by digital control devices.
However, most of the installed control systems around the world use older technology
where it is not possible to reduce the sampling time below a certain limit without
making considerable expenses. In addition to this, in some of the new systems reducing
the sampling time comes with a cost, which might not be required due to marketing
reasons. In such situations, direct digital design is required to ensure the performance
of the controller when applied in the digital world. Therefore, it is also important
to study on discrete-time low order controllers to perform dominant pole placement;

however, academic studies are limited in this area.



On the other hand, in most of the practical applications, it is not possible to obtain
the perfect model of the system, thus, the model contains uncertain parameters. If the
system parameters are not known exactly but their intervals are known then it is defined
as a parametric uncertainty. It is clear that the consideration of systems with parametric
uncertainty is very important in terms of the dominant pole placement. Although there
exists several methods to deal with the parametric uncertain systems, studies about the
robust dominant pole placement (RDPP) are also limited. Therefore, it is also aimed
to apply existing methods in order to guarantee robust dominant pole placement under

parametric uncertainties.

1.2 Literature Survey

Pole placement approach in control system design is one of the most popular and very
effective design approaches to design feedback controllers for the linear time invariant
(LTT) systems because its design procedure is not complex and closed-loop system
performance is predictable and can be changed easily as desired [4,5]. Moreover, this

approach can be well applied to both continuous and discrete time systems [6].

The performance specifications of a closed-loop system such as settling time,
overshoot, and rise time are determined by the dominant pole locations strongly. In
addition, as it is known from the control theory, for the LTI systems, there are several
formulas proposed to calculate transient response characteristics of a system. In
general, these formulas are based on the second order system approximation; therefore,
more reliable results are obtained if the system satisfies this approximation as much as
possible. For this reason, it is expected for two of the closed-loop system poles to be
in the dominant region and the other poles to be outside of the dominant region. If
the non-dominant poles are not placed far enough from the dominant poles, predicting
the closed-loop system transient response is difficult and satisfying the performance

criteria becomes very challenging in such cases.

For the reasons explained above, dominant pole placement is an important subject
to examine in control theory. In the literature, DPP approach was introduced by
Persson and Astrém [7] and was further explained in [8]. For the systems of first
or second order with short dead time, the presented methods work well. However,

if the higher-order systems are considered, the chosen closed-loop poles may not be
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dominant in reality and usually performance specifications are not met in such cases

since their design method uses simplified models.

For the single input-single output (SISO) linear time invariant systems, all of the
closed-loop system poles can be placed using a full state feedback controller in
complex plane arbitrarily if the system is controllable [2]. If an output feedback
controller is desired to be used, in order to be able to place all of the system poles
arbitrarily, order of the output feedback controller should be at least plant order minus
one [1]. However, using full state feedback controller is not always possible, because
of some physical constraints (e.g. due to states that cannot be measured) and costs more
than the output feedback in general because of the number of measurement elements
used in the system. Moreover, in the industrial applications, controllers that can be
implemented via standard technologies and are of low order are preferred. Consider the
fact that majority of the processes in industry are controlled by PID type controllers due
to their simple structure and acceptable robustness [9, 10]. Because of its importance
in the practical applications and the possibility for improvement, PID type controller
design is still one of the most active research areas in control theory. Therefore, it
is important to provide DPP using low order controllers and especially PI and PID

controllers from the practical point of view.

It is possible to place all of the closed-loop system poles to the desired location
with PID controllers if the system is first or second order due to the degree of
freedom (DOF) of the PID controller [11]. However, if PID controller is used to
control higher order systems, only three of the closed-loop poles can be placed to the
desired locations to satisfy desired performance criteria [12]. The remaining poles can
affect the transient response adversely depending on their locations. For this reason,

guaranteeing the DPP with low order controllers is a difficult task.

Although there are several techniques have already been proposed about the dominant
pole placement with low order controllers [13—15], one of the most recent and
important attempt to design low order controllers to provide DPP for SISO systems
is proposed in 2009 [1]. In that publication, for the systems that are higher-order or
have time delay, dominant pole placement procedure with PID controllers via modified
Nyquist plot and root-locus method has been proposed. The aim was to place dominant

pole pair to the desired locations and to provide the remaining poles to be placed
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“m” times away from these dominant poles. Especially for the systems with time
delay, the pole placement technique includes a risk on dominant poles because of the
possibility for closed-loop dominant poles to lose their meaning caused by the infinite
spectrum of poles [16]. Due to the fact that the conventional pole placement methods
are not generally appropriate for the time delay systems, modified Nyquist plot design
approach works well to guarantee dominance of the closed-loop system poles using
PID controllers. After that Yinya and others contributed to this study by considering
the locations of the closed-loop zeros and by defining another interesting dominant
pole region [17]. The same DPP approach is also applied to place non-dominant poles
“m” times away from the dominant poles for SISO systems by using the first order

compensator [18].

In the above dominant pole placement studies, systems are modeled in continuous
time domain and designed controllers are also expressed in continuous time. Even
if the modified Nyquist plot design is successfully applied and can be used for
time-delay systems, the determination of the number of encirclements is not always
straightforward. Thus, it is possible to take advantage of discrete-time domain
representation during the pole placement procedure. On the other hand, in the
industrial automation systems, processes are usually controlled by computer based
systems such as industrial PCs or PLCs. Since discrete-time control systems become
an important subject to examine as a result of the advancing technology, it also provides
a significant advantage to be able to find the discrete-PID controller parameters which
guarantee DPP. Dincel and Soylemez studied dominant pole placement problem in
discrete time domain and applied the modified Nyquist plot approach to discrete-time
control systems [19]. It is shown that modified Nyquist plot method is still valid
in discrete-time domain and it is possible to find relevant discrete-PID controller

parameters.

Another important problem in dominant pole placement is to find the farthest location
where all of the non-dominant poles can be placed using a low order controller. In the
methods mentioned above, the non-dominant poles are expected to be placed “m” times
away from the dominant poles but the value of the “m” should be specified. Therefore,

the only way to find the maximum value of “m” is to use trial and error approach.

However, Soylemez solved the problem which is estimate of the smallest stabilizable



left-half-plane for all pole plants [20]. After that, with the help of the theorem given
in this publication, Ustoglu and Séylemez proposed a calculation method to find the
most distant location where the non-dominant poles can be placed with a continuous
PID controller at least for all pole systems [11]. In addition to that study, Dincel and
Soylemez solved the same mentioned problem using a different approach [21]. If the
systems consists of open-loop zeroes or in case of a system with parametric uncertainty,
there is not any proposed method yet to this problem in the literature. Furthermore, to
the best of our knowledge, there is not any solution to the same problem for the systems

represented in discrete time domain.

The similar problem can also be stated as to find dominant pole region in order to
guarantee the dominance in the closed-loop with low order controllers (In other words,
the limitations on the dominant pole pair selection if non-dominant poles are desired
to be placed on the left side of a particular line certainly). In this case, the value
of "m" is fixed; however, the dominant pole locations in complex s-plane is to be
determined. Dincel and Soylemez proposed a method based on the well-known Routh
table to find the limitations on dominant pole pair selection so that DPP approach
works well and desired performance specifications are met as accurate as possible in

the closed-loop [22].

In the industrial applications, multiple input-multiple output (MIMO) systems
are encountered especially in the process control applications. In particular,
two input-two output (TITO) processes are frequently encountered multi-variable
processes. Furthermore, it is possible to treat many of the multi-variable processes
which have more than two inputs/outputs as several two by two subsystems [23-25].
Therefore, designing low order controllers for these kinds of systems has also an
important place. In order to control a TITO control system, a decoupler plus a
decentralized PID controller approach are used to design mostly [26—28]. Therefore,
even if the controlled process is not higher order, the resulting model of the process
with decoupler becomes higher order. As a result, the mentioned problems are still
valid during the DPP if low order controllers are used. The proposed design approach
in [1] is also found to be eligible to design low order controllers for TITO systems.
Maghade and Patre applied the guaranteed dominant pole placement approach to

control TITO systems [29]. In their study, the higher-order decoupled subsystems



are reduced into simple dynamics such as first-order plus dead-time or second-order
plus dead-time and the dominant poles are placed at desired locations. As a result, it
can be said that the derived results for SISO systems can also be used for most of the

TITO systems with the help of decoupling approach.

In the control systems, two types of uncertainties can be defined called as unstructured
and structured (or parametric) uncertainties. If the system parameters are not known
exactly but their intervals are known then it is defined as a parametric uncertainty.
In order to analyze the stability of systems with parametric uncertainties, several
methods have already been proposed such as the Kharitonov Theorem, the edge
theorem, the mapping theorem, the Tsypkin-Polyak loci [6, 30, 31] and root locus
approach [32,33]. Although many researchers have been studied and still continue to
study on stabilization of the entire plant using robust low order (especially PID type)
controllers via different techniques [34—39], the robust performance is also important.
However, in most of the robust PID controller design studies and mentioned references,
only the robust stabilization case is considered. For the robust performance, in some
of the studies, the PID controller parameters which satisfy some performance criteria
is obtained from the resulting stabilizing set by using an optimization or just trial-error
approach. There also exists few studies in which the robust performance is satisfied

through the gain and phase margins.

In order to deal with robust performance problem in a systematic way, the existing
robust controller design methods can be combined with the dominant pole placement
approach. If the considered system contains uncertain parameters, it is not possible to
place closed-loop system poles to the desired points. In this case, it is expected two of
the closed-loop poles to be in desired region such as a disc, a rectangle etc. and other

poles to be far away from the dominant pole region.

1.3 Goal and Unique Aspect of the Thesis

Guaranteeing the dominant pole placement is a challenge if low order controllers are
desired to be used. In some of the recent studies, low order controller design methods
are proposed (please note that P, PI, PID and PI-PD type controllers are considered as

low order controllers in this thesis) such that all of the closed-loop non-dominant poles



are located away from the dominant pole pair for SISO systems. However, there still

exists some problems that should be solved.

One of the problems can be stated as to find low order discrete controller sets which
provide dominant pole placement in discrete-time domain, since processes in industry
are usually controlled by computer based systems such as industrial computers or
programmable logic controllers (PLC). Here, it is aimed to propose systematic DPP
methods that can be used especially for time-delay systems. Derived results are also

used for the solution of the problems defined below.

Finding the maximum “m” value which means to calculate the farthest location where
all of the non-dominant poles can be placed in case of a continuous low order controller
usage is also a problem to be solved. Studies in that area are very limited in the
literature and does not cover the systems which have open-loop zeros or parametric
uncertainty. To the best of our knowledge, there is not any solution to the mentioned
problem for the systems represented in discrete time domain. Therefore, in the context

of this thesis, solution to the mentioned problems is given.

Another problem is stated as to find dominant pole region in order to guarantee the
dominance in the closed-loop with low order controllers. In other words, to find
limitations on the dominant pole pair choice if non-dominant poles are desired to be
placed on the left side of a particular line certainly. Obviously, this problem is directly
related with the calculation of farthest location of non-dominant poles, thus, the similar

approach is used for this problem.

In the dominant pole placement approach, it is a challenge to keep the unassigned
poles away from the dominant poles with limited parameters. Sometimes it is required
to widen the closed-loop performance specifications instead of choosing strict criteria.
It is already meaningful for most of the systems to have time domain characteristics
between the minimum and maximum desired values. This results the dominant pole
pair to be located in a specified region instead of a point, hence, the dominant pole
region assignment (DPRA) problem shows up. In this thesis, DPRA problem is also

solved both for continuous and discrete time systems.

For the systems with parametric uncertainty, the closed-loop poles are desired to be

in a region instead of a point; therefore, the selection of robust controller parameters



should be done such that the dominant poles are located in a desired region whereas
the remaining poles are located away from the dominant pole pair even in the worst
case. In the context of this thesis, it is finally aimed to develop a systematic low order

robust controller design method to be able to deal with uncertain parameters.

1.4 Structure of the Thesis

First of all, the motivation, goal of the thesis, unique aspects of the thesis and the

detailed literature survey are given in Chapter 1.

The second chapter, titled as dominant pole placement in continuous-time SISO
systems, starts with the calculation of PI/PID controller set which assigns the dominant
poles to desired locations in complex s-plane. The calculation of controller subset,
which guarantees the non-dominant poles to be away from the dominant pole pair,
is then presented with the help of existing methods from literature. After that the
calculation of the maximum dominance factor with PID controllers is given in Section
2.4. A method is presented for all-pole systems and then a generalized approach is
given for the systems with open-loop zeros. The reverse problem, which is stated
as the finding of dominant pole region in order to guarantee the dominance in the
closed-loop, is then given in Section 2.5 both for PI and PID controllers. Lastly, the
dominant pole region assignment problem is presented and solution to this problem is
given for P, PI and PID controller cases (two different approach is used for PI and PID

controllers).

In the third chapter, the similar dominant pole placement problems are solved in
discrete time domain. Here, the calculation of controller subset, which assign
non-dominant poles, is performed via two different approach named as modified
Nyquist curve and Chebyshev polynomials. The rest of Chapter 3 is organized same
as the previous one. However, only one method is proposed for maximum dominance

factor and dominant pole region assignment in z-plane.

The fourth chapter contains the results for robust PID controller design via dominant
pole placement. Firstly, the preliminaries about well-known robust control theorems
are given in Section 4.1. The types of parametric uncertainties are presented and the

stability tests are given both for interval and affine-linear polynomials. The robust



dominant pole placement (RDPP) problem with PID controllers is then solved both for
interval type characteristic polynomials and affine linear characteristic polynomials,

respectively.

All derived results in this thesis about the (robust) dominant pole placement are
summarized in Chapter 5. Finally, the conclusive remarks and possible future studies

are also given.






2. DOMINANT POLE PLACEMENT IN CONTINUOUS-TIME SISO
SYSTEMS

It is known that the closed-loop poles are strongly responsible for the transient response
of system. Therefore, a pair of dominant poles is assigned to the corresponding
locations in order to provide the desired time domain characteristics such as settling
time and overshoot [31]. Thus, the desired behavior in the closed-loop is obtained
by only assigning two closed-loop poles. However, the adopted assumption here is
that the remaining poles are located far away (3-5 times in general) from the dominant
pole pair. Although the dominant pole placement is an effective design method, if
the assumption is violated (i.e. the remaining poles are not located far enough from
the dominant poles), the desired performance specifications in the closed-loop are not

guaranteed to be met [40].

In this chapter, it is desired to perform dominant pole placement for continuous
single input-single output systems. First of all, the mentioned methods in literature
survey is presented and after that several dominant pole placement approaches for the
systems without time-delay are proposed. Maximum dominance factor calculation
and the limitations of dominant pole pair selection problems are also considered and
solved. Furthermore, the dominant pole region assignment problem with P, PI and PID

controllers is also covered in this section.

2.1 Parametrization of Controller Set Assigns Dominant Poles

Since there are two of the closed-loop poles to be assigned as dominant poles, the DOF
of controller should be greater than or equal to 2. It means that at least 2 parameters
are required to be tuned; therefore, it is possible to consider PI and PID controllers.
For PID controller case, one more parameter remains to change the locations of
non-dominant poles, whereas, there is not any parameter left to deal with non-dominant
poles if PI controller is used. For this reason, the designer should be careful about the

locations of the remaining closed-loop poles after PI controller design.
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2.1.1 Parametrization of PI controllers

Let G(s) and F(s) be the open-loop transfer function of a system and the transfer

function of a controller, respectively.

_ Ng(s)
G(s) = . o 2.1
F(s) = g’; Ei; 2.2)

In order to perform the dominant pole placement, firstly, two of the closed-loop poles
should be placed to the locations of 51, = ¢ & j® in complex s-plane where ¢ < 0.
Here, 0 and @ are determined from the desired performance criteria such as settling

time and overshoot.

Consider a closed-loop system with unit feedback illustrated in Figure 2.1. The

closed-loop system characteristic polynomial can then be obtained as:

P.(s) = D (s)Dg(s) + Nr(s)Ng(s) (2.3)

M?——» F(s)

Figure 2.1 : A closed-loop system with unit feedback.

A 4

o) G,

It is clear that the desired dominant poles are expected to be the roots of the
characteristic polynomial; therefore, they should satisfy the equation given above. One

of the dominant poles can be substituted into (2.3) as follows.
P.(c+jw)=Dr(c+ jo)Dg(c+ jo)+Np(c+ jo)Ng(oc+ jo) =0  (2.4)

The complex equation given above can be solved by decomposing it into its real and

imaginary parts,
(PF,, D61, — D Dy, ) + (NFy NGy — NE NGy, ) = 0 (2.5)

(Drr Dy, + Dr,Dag,) + (NFg NGy, + N, NG, ) =0 (2.6)
where
Ng, =Im{Np(c + jo)}, Ng, = Re {Np(c + jo)}
12



Ng,, =Im{Ng(c+ jw)}, NG, = Re{Ng(c + jo)}
Dp,, =Im{Dr(c + j®)}, Dy, = Re{Dr(c + jw)}
Dg,, =Im{Dg(c + jo)}, DGy, = Re{Dg(c+ jw)}

It is clear that the transfer function of the system is known; therefore, the real
and imaginary parts of the numerator (Ng,,,Ng,,) and denominator (Dg,,,Dg,,) are
known. On the other hand, the real and imaginary parts of the denominator of PI
controller transfer function (Dg,,, DF,,) are also known. The only unknown parameters
are included by the numerator of PI controller. Thus, it is possible to find the unknown

parameters by solving (Ng,,,Nr,,) with the help of (2.5) and (2.6) as follows.

Ng,,Y — Ngg X

Npg, = — 7 2.7
NG, X +Ng,.Y
N, = =G~ 20 (2.8)
Here, the auxiliary polynomials X, Y and Z are defined as below.
X = DFlmDGIm o DFReDGRe (29)
Y = DFReDG[m +DFImDGRe (210)
—_ N2 2
Z=Ng,, +Ng., (2.11)

In addition to this, it is possible to obtain Ng,, and Nf,, for the PI controller as follows.
N, = K; — 0K, (2.12)

N, = 0K, (2.13)

Finally, with the help of above expressions, the PI controller parameters K, and K; are

obtained in terms of the parameters ¢ and @ as follows.

Ne. X +Ng. Y
@:_@“;@e (2.14)

_ Ng,,Y —Ngg X
Z

Ki=

—K,o (2.15)

The parametrization of all PI controllers set, which assigns the dominant pole pair
to the desired locations (sjp = 0 & jw), is completed. However, the remaining
closed-loop poles may be located anywhere (including unstable region) in complex

s-plane as mentioned earlier.
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Example 2.1:

Consider the system with following open-loop transfer function,

_Ne(s) _ 1
Dg(s)  (s+2)2

G(s)

to be controller with a PI controller given below.

- 2

Let us find the PI controller parameters which assign the dominant poles to the points

of 51, = —1+£1.049 in s-plane.

If the required calculations are done,
X=21,Y=-22 7Z=1

are found. Finally, the PI controller parameters are found via (2.14) and (2.15) as
follows.

K,=2.1, Ki=42

The closed-loop system characteristic polynomial with the designed PI controller is
given as follows.

Pe(s) =5 +4s> +6.15+4.2

The roots of the above polynomial is then calculated as follows.
§12 = -1+ 1.049j, §3 = -2

It is seen that the desired dominant poles in s-plane can be assigned using a PI
controller and the parameters of PI controller can easily be calculated via the given

formula.

2.1.2 Parametrization of PID controllers

The parametrization of PID controllers is done in a similar way. However, the

expressions of Ng,, and Nf, should be obtained for PID controller case as follows.
Ng,, = Ki+ 0K, + (6% — 0*)K, (2.16)

NFlm = G)Kp—|—2G(DKd 2.17)
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The PID controller parameters K; and K; are then obtained in terms of the parameter K,
and the location of dominant poles with the help of given expressions in the previous
subsection as follows [40]:

K, SLooy [ MowXNeY !

20 wZ 20
= — K (2.18)
o2—@? —Ng, Y+Ng, X 24 w? b
K; 1 Gim GRe o+
20 7 20

Two of the closed-loop poles are located in the desired locations in complex s-plane
for VK, € R; however, as in PI controller case, the remaining poles can be located
anywhere. Itis required to find the feasible K}, interval in order to assign the unassigned
poles to the non-dominant pole region. Here, due to the PID controller, one more

parameter exists to perform this task.

Please note that for the time-delay systems, parametrization process is the same;
however, since the open-loop transfer function (G(s)) consists of time-delay term
(e, the expressions are found as follows.

(NGg,sin(L®w) — Ng,, cos(L®))Y + (Ng,,cos(Lw) 4+ Ng,, sin(Lw)) X

NFRe = Z

(2.19)

(NG, sin(L®) — Ng,, cos(Lw)) X — (Ngg,cos(L®) + Ng,, sin(Lw))Y

Npg,, = Z

(2.20)

After that the PI or PID controller parameters, which assign the dominant poles to the

desired locations, can be found in a similar way.
Example 2.2:

Consider the fourth order system with following open-loop transfer function,

B Ng(s) B 1
G = Dals) ~ G121 32

to be controller with a PID controller given below.

NF(S) _ KdS2 +Kps+K;

Fls) = Dr(s) s

Let us find the PID controller parameter set which assign the dominant poles to the

points of 51 = —0.54:0.5243 in s-plane.

If the required calculations are done,

X =0.8466, ¥ = —2.3328, Z=1

15



are found. The PID controller parameters (K; and K;) are then found in terms of the

parameter K, via (2.18) as below.
K; = —4.4489+K,, K;=0.7357+0.5249K),

The closed-loop system characteristic polynomial with the designed PID controller is

given as follows.
P.(s) =5 +85* +225° + (19.55 + K,)s* + (9 4+ K, )s + (0.7357 4+ 0.5249K,)

The roots of the above polynomial can be given as follows for various K, values.
s12=—0.5+0.5243/, s34 =—-3.409+£1.271j, s5=—-0.1814 (K, =1)
s12=—0.5+0.5243, s34 =—3.199+£0.6226j, s5 =—0.6029 (K, =75)
s12=—05+0.5243;, s34 =—1.440.8686/, s5=—-4.2 (K,=10)

It is seen that the location of dominant pole pair in s-plane does not depend on the

parameter K),. It only affects the location of the remaining (non-dominant) closed-loop

pole(s) in s-plane.

2.2 Calculation of PID Controller Subset Assigns Non-Dominant Poles

In this section, it is aimed to give the main results of dominant pole placement with PID
controllers which is presented in [1]. In the presented study, the non-dominant poles
are placed away from the dominant pole pair via root-locus method (for the systems

without time-delay) and modified Nyquist curve method (for time-delay systems).

Besides the presentation of existing results, for the systems without time-delay,
an easier method which is based on well-known Routh-Hurwitz stability criterion,
is also given. For the time-delay systems, dominant pole placement problem is
very challenging; therefore, the discrete-time domain representation is used for such

systems and presented in the next part of the thesis.

2.2.1 Design via root-locus method

Root-locus plot shows the variation of the roots of closed-loop system characteristic
polynomial as a system parameter changes. Since only the K, parameter of the PID

controller remains in the characteristic polynomial, it is possible to plot the root-locus
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as the parameter K), varies. Thus, it is possible to find the critical value of K, such that

the non-dominant poles are located away from the dominant poles.

Consider the closed-loop system characteristic polynomial in terms of the parameter

K. The characteristic polynomial can be rewritten as follows
P.(s,K,) =1+K,G(s) =0 (2.21)

where G(s) is an auxiliary open-loop transfer function to plot the root-locus. It is now
possible to determine the critical K, value by inspecting the root-locus plot. After that

K, and K; parameters can be calculated and PID controller design is completed.
Example 2.3:

Consider the fourth order system given in the previous example. The closed-loop
system characteristic polynomial is found as follows.

P.(s,K,) = 5% + 85 4225 + (19.55 + K, )s* 4 (9 + K, )s + (0.7357 + 0.5249K,)

It is possible to re-write the polynomial as below.

s> +5+0.5249 0
5%+ 85 +225% 4+ 19.5552 + 95+ 0.7357

P.(s,K,) =1+K),

The root-locus plot is drawn for

&(s) 5% +540.5249
S) =
59 + 854 +2253 +19.5552 + 95+ 0.7357

for the positive values of K, and illustrated in Figure 2.2.

Let us desire the dominance factor m = 2 which means that non-dominant poles are
desired to be 2 times away from the dominant pole pair. In this case, the feasible gain

interval is found as follow via root-locus plot.
K, € (7.0735,20.9738)

If the K, parameter of the PID controller is chosen from the feasible interval, the
remaining poles are located on the left side of the line s = —1 as desired. Let us

choose K, = 10 then the closed-loop poles are calculated as follows.
s12=—0.5+0.5243;
s34 = —1.4+£0.8686)
s5=—4.2
17
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[ Dominant
Poles
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Figure 2.2 : Root locus plot of the auxiliary transfer function (Example 2.3).

Closed-loop pole distribution is shown in Figure 2.3. It can be seen that the remaining

poles are located in the non-dominant pole region whereas the dominant poles are

assigned to the desired locations in s-plane.

Im (jw)

1.0

® 05

-Re (o)
0—0.5}

=10

Figure 2.3 : Closed-loop poles with designed PID controller (Example 2.3).

The designed PID controller for this example is given as follows.

_ 5.9855%+10s+5.551

F(s)

S
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Finally, closed-loop transient response is illustrated in Figure 2.4.

1.2 T T T T T T T T T

0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Figure 2.4 : Unit step response of the system with PID controller (Example 2.3).

2.2.2 Design via Routh-Hurwitz method

Even if the root-locus plot shows many useful information graphically, in most
cases, calculation of the critical gain values via root-locus (magnitude condition) is
not straightforward. However, the feasible gain interval can also be calculated via
Routh-Hurwitz method for the polynomial which is constructed by the remaining

poles.

Let the closed-loop characteristic polynomial be divided into its dominant and

non-dominant part as follows.
P.(s,K,) = (s> + 28 @us + @F) P (s, K}y (2.22)

Here P, (s,K)) is called as a residue polynomial and its roots are desired to be inside
the non-dominant region. It is now possible to find the feasible K), interval in which
the roots of the polynomial P,(s,K,,) are located on the left side of the s = mo line. In
order to check the relative stability, a minor modification over the residue polynomial

is required and it can be done by transformation given below.
T s+ (s+mo) (2.23)

Thus, the feasible gain interval can be found via Routh table over the modified reside
polynomial P.(s 4+ mo,K)).
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Example 2.4:

Consider again the same example in which the controller is designed via root-locus

plot.
. NG(S> . 1
O Do) " G

Here, it is aimed to find the same feasible interval via Routh-Hurwitz method.

The closed-loop system characteristic polynomial was found as follows.
P.(s,K,) = s° + 85" +225> + (19.55 + K, )s* + (9 + K, )s + (0.7357 + 0.5249K,)

It is possible to re-write the polynomial as below. The first part is constructed by the
dominant pole pair and the second part is constructed by the unassigned (remaining)

poles.
P.(s,Kp) = (s> +54+0.5249) (s + 75 + 14.4755 + K, +1.4015)
If the transformation given by (2.23) is used over the residue polynomial,
P.(s—1,K,) = s° +4s* +3.4755 + K, — 7.0735

is obtained. The Routh table can now be created using the modified polynomial above

and it is possible to find the same result as

K, € (7.0735,20.9738)
from the first column of the Routh table.
53 1 3.475

52 4 K, —7.0735

st | 5.24345-0.25K,,

s K,—7.0735

It is seen that the Routh-Hurwitz method is simpler when compared to the root-locus
approach and works well even for the higher order characteristic polynomials.
However, it is worth to mention that this method is not also able to cover the systems

with time-delay.
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2.2.3 Design via modified Nyquist plot method

In the reference [1], the modified Nyquist plot method is also proposed since the
root-locus method does not work for time-delay systems. Here, it is aimed to use

the Nyquist stability criterion in order to find the feasible gain intervals.

Consider the equation (2.21) which is rewritten form of the closed-loop system
characteristic polynomial. Suppose that G(s) is a single-valued function with finite
number of poles in s-plane. If an arbitrary Nyquist path (I'r), which does not cross
over the poles or zeros of G(s), is chosen in s-plane then the Nyquist stability criterion
says that the I'z contour in G(s)-plane encircle the origin N = Z — P times where Z is
the number of zeros and P is the number of poles of G(s) inside the Nyquist path I'z
in s-plane.

If the open-loop system has time-delay term e —*F

then the auxiliary transfer function
is given in the following form.

~ PN(S,K)
Gs) = 5 ey
PD(Sva7e )

Therefore, it becomes impossible to apply Nyquist method directly since the

(2.24)

denominator of G(s) becomes a quasi-polynomial. However, it is possible to re-arrange

the auxiliary transfer function as follows.
G(s) =1+ Go(s) =1+ Gy(s)e ™t =0 (2.25)

Here, it becomes possible to find the number of poles of G(s) through the transfer

function of Gy(s) via another Nyquist plot with the help of following equality.
PG =2, = Ng, + Pg, (2.26)

Thus by applying Nyquist theorem twice, the stabilizing K}, intervals can be calculated.
However, instead of stabilizing gain interval, the feasible gain interval is searched. It
requires Nyquist path to be modified in order to solve the dominant pole placement

problem.

Let us modify the Nyquist path in s-plane as illustrated in Figure 2.5. In this case, it is
desired dominant poles to be inside I'r whereas the remaining poles are located on the
left side of the line s = mo. It means that the gain interval, which causes the number
of encirclements to be

Ng=2-P; (2.27)



becomes a feasible interval for the mentioned problem.

Im
1.0
—— 19
0.5}
.. ~mo
-1.0 -05
-05}
0

Figure 2.5 : Modification of the Nyquist path in s-plane.

Example 2.5:

Consider the following time-delay system given in [1].

69 =5 —I—ls L
It is desired closed-loop transient response to have maximum of 10% overshoot with
15 seconds of settling time. On the other hand, the remaining poles are desired to be
m = 3 times away from the dominant poles. The corresponding dominant pole pair is
then given as 51 = —0.275£0.375. It is possible to find the parametrization of PID

controller using the previously presented method as follows.
Ky =7.776+1.817K,, K;=1.877+0.3937K,

If the obtained parameters are substituted into characteristic equation, the following

can be found.

3 1.817s% 4 5 +0.3937
I+ KpG(s) = 1+K) O T553 + (e01547.776)5% + 01555+ 1.877 0

It is required to re-construct the expression of G(s) as given in (2.25). In this case, we

have
7.776s* +1.877 4,

s(s2+s+5)

The number of poles of G(s), which is outside of the desired region, can now be

1+G0(S):1—|— =0

found via the transfer function of Go(s) with the help of (2.26). The modified Nyquist
22



plot of Gy(s) is illustrated in Figure 2.6. It is seen that there is one anti-clockwise
encirclement, on the other hand, the number of poles outside of the desired region is

found to be 3 by inspecting the denominator.

Re

Figure 2.6 : Modified Nyquist plot of the Gy (s) (Example 2.5).

As aresult,

PG:NGO+PG0:_1+3:2

In this case, the modified Nyquist plot of G(s) should have zero encirclements

according to (2.27). Let us draw the modified Nyquist plot of G(s) as follows.

Im

“* Re

-0.4 0.4

Figure 2.7 : Modified Nyquist plot of the G(s) (Example 2.5).
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The critical K, limits can be seen from the figure and found as follows.
K, € (—4.322,3.505)

If K, = 1 is chosen from the obtained feasible interval, the designed PID controller is

given as

9.5935% +5+2.271

F(s) :

and the closed-loop transient response is depicted in Figure 2.8.
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Figure 2.8 : Closed-loop transient response with designed PID controller (Example
2.5).

In this section, the guaranteed dominant pole placement method with PID controllers
studied in [1] is presented. It is possible to say that the proposed method works well
even for time-delay systems. However, it is seen that dealing with time-delay systems
in terms of dominant pole placement is a challenging task. Even if the proposed method
provides dominant pole placement, the calculation of feasible gain intervals can be
difficult via Nyquist plot. Especially, calculation of the Pg through (2.26) may not be

straightforward for all systems.

In the presented PID controller design, only the closed-loop system poles are
considered; however, PID controller zeros also affects the transient response. If the
zeros are ignored during or after design process, the closed-loop response can be

obtained much more different than expected.

For the reasons mentioned above, for the time-delay systems, another effective PID

controller design method based on dominant pole placement in discrete-time domain
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is presented in the next chapter of the thesis. In addition, in order to be able to
consider the adverse effects of PID controller zeros, a simple solution (PI-PD controller

structure) is proposed in the next section.

2.3 Continuous PI-PD Controller Design In Dominant Pole Placement

As mentioned earlier, providing the dominant pole configuration itself is not enough
due to the fact that the closed-loop transient response is also affected by zeros. It
is highly possible that at least one of the PID controller zeros can be located in the
dominant region or even in the right half s-plane. In this case, the desired closed-loop
performance specifications are not met, thus, the dominant pole placement approach

loses its advantage.

RELS Fo(s) | o) )y

Feo(s) [€—

Figure 2.9 : The structure of continuous PI-PD controller.

A solution to the mention problem is the implementation of designed PID controller
in PI-PD structure which is given in Figure 2.9. In this configuration, PI controller is
located on the forward path (outer loop) and PD controller is located on the feedback

path (inner loop).
K pis + K;
s

Fpi(s) = (2.28)

Fpp(s) = Kpq +Kys (2.29)
If the closed-loop system characteristic polynomials with PID and PI-PD controllers
are examined with the same K; and K; parameters, it is seen that as long as the equality

Ky = Kpi+Kpq (2.30)

is satisfied, the characteristic polynomials have the same roots. It means that if
the designed PID controller is implemented in PI-PD form, the closed-loop system

pole configuration remains the same. However, the PI-PD structure brings only
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one real zero in the closed-loop which is two zeros in classical PID controller case.
Furthermore, it is possible to place this zero arbitrarily in complex s-plane as follows
by just adjusting the K),; parameter. The advantages of PI-PD controller is studied and
presented in literature [41-44].

K;

§=—— 2.31
K, (2.31)

Since the PI-PD block diagram is simple to construct, such implementation is not a
challenge from the practical point of view. Thus, it can easily be used in the practical
applications. Therefore, the designed PID controllers can be implemented as PI-PD

controller during simulation studies.

2.4 Calculation of the Maximum Dominance Factor with PID Controller

It is known that in the dominant pole placement approach, if the non-dominant poles
are not placed far enough from the dominant pole pair, predicting the closed-loop
system transient response is difficult and satisfying the performance criteria becomes
very challenging. Therefore, finding the maximum “m” value which means to calculate
the farthest location in s-plane, where all of the unassigned poles can be placed, is an

important problem to be solved.

In this section, the calculation of maximum dominance factor (m) with PID Controllers
is investigated. The mentioned problem is firstly solved for all pole systems (i.e.
systems without any zeros) after that a solution to the systems with open-loop zeros is

proposed.

2.4.1 Estimate of the maximum dominance factor for all-pole systems

Consider a SISO LTI system which is expressed by the following transfer function.

G(s) = K (2.32)

s a,_ " - Fas+ag

If the PID controller is written depending on the parameter K, as proposed earlier, then

the closed-loop system characteristic polynomial becomes
P.(s) =s"" fa, 15"+t ars’ + fo(Kp)st + f1(Kp)s+ fo(Kp) (2.33)

However, it is known that the obtained characteristic polynomial consists of the

dominant poles which are determined using the performance criteria of the closed-loop
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response.

P.(5,Kp) = (s> + 28 us + @2 )P (s5,K}p) (2.34)

Therefore, it can easily be shown that the expression (2.34) can be reduced to the
polynomial of order n — 1 which is constructed by the non-dominant closed-loop poles
as below.

Po(s,Kp) =" £ 8, 25" 24+ Si5 4+ 80(K)) (2.35)

Our main problem, which is stated as how far non-dominant poles can be located away
from the dominant poles, is now converted to another problem. This new problem is to
find the smallest value of ¢ such that the polynomial P,(s+ o, Kp) is stabilizable with
the parameter K),. In other words, the left most possible location where all poles of the

(2.35) can be placed in s-domain using the K, parameter.

Here, it has a significant importance that the PID controller parameter K, appears only
in the s coefficient of the obtained polynomial P,(s). Hence, it is possible to use the
solution given in [20] for the problem mentioned above. Summary of the preliminaries

and the theorem is given as follows.
Preliminaries: Consider the following characteristic polynomial,
P(s) =s"+ta,_ 1"+ as+k (2.36)

Let us define the polynomials P,,(s) = P™(s)/m! (form=1,2,...,n— 1) where P"(s)
denotes the m'”* derivative of the polynomial P.(s). Define A,y = max; m (lr(,-m)) such

that A,; ) are the real roots of the polynomials By (s).

Let us define also the polynomials Py, (s) (form =1,2,...,n— 1) as below,

Pyi(s) = P,—1(s) (2.37)
Pia(s) = | 7 i (s) 113:28 (2.38)
P,_1(s) Py-3(s) B,_5(s)
Pa(s)=| 1 Puals) Puals) (2.39)
0 Pnfl(s) Pn,3(s)
In more general form,
Pun(s) = |H | (2.40)

Here, H,, is the m'" Hurwitz matrix for the polynomial P(s) with coefficients a;
replaced by the polynomials P;(s) and k = 0. Lastly, define the maximum of the real

roots of polynomials Py, (s) as Apmax-
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Theorem (Soylemez, 2006): For such polynomial given in (2.36) it is shown that the

inequality Aypax < 6 < Apmar holds [20].

It is now possible to find the left most possible non-dominant pole locations. Even
if the theorem gives an interval, actually as stated in remarks section of the theorem,
exact results can be found if the order of the polynomial P(s) is lower than 5. If the
polynomial is second or third order polynomial then 6 = A,ax = Apmar and if the

polynomial is fourth order polynomial then 6 = A4y

For our defined problem, it corresponds the order of the polynomial given in (2.34) to
be lower than 7. Therefore, we are able to find the exact ¢ value for the systems with
the order up to 5 by using the given theorem. Another important observation is also
stated that the interval provided by the theorem is usually a tight interval and A, is

often equal to ©.
Example 2.6:

Consider a fourth order process with the transfer function,

1
6% = GF PG +ap

In the closed-loop, it is expected the system to have maximum 8% overshoot and

less than 3s rise time. The related closed-loop dominant poles are 51, = —0.4849 &
j0.6031. Since the dominant poles are known, it is possible to obtain the PID controller

parameters depending on the parameter K, using (2.18) as follows [45].
K; =2.604+0.6175K,, K; = —15.39+1.031K,,
After the necessary calculations, the residue polynomial P, (s, K),) is found as below,
Pi(s) = s° + 11.035% 4+ 34.704s + (4.3485 + 1.031K ,)

In order to find the smallest value of ¢ such that the polynomial P,(s+ o) is stabilizable
with the parameter K, the theorem given above is used. The polynomials P,,(s) are

calculated as follows.

Py (s) = 3s% +22.06s + 34.704
Py(s) =3s+11.03
The maximum real root is found to be A4 = —2.2802. After that the polynomials
Py (s) are found as follows
Pyi(s) =Py (s) =35+ 11.03
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P (s) :' P 21(S> PI(ES) ‘:9s3—|—99.2718s2—|—347.443s+382.793

with the maximum real root of Ay, = —2.2802. Since the order of the polynomial
P,(s) is found to be 3, Apqy is found to be equal to the Ay, as expected (from the

given theorem).

Finally, it is possible to claim that for this system, it is possible to place non-dominant

poles with the PID controller

—2.28018  —2.2802

_ _ ~ 4.7024
Mmax o “043d9 70

times away from the dominant poles for the chosen performance criteria in the

closed-loop.

Using a numerical approach and by investigating the variation curve of the unassigned
poles with the parameter K, in the closed-loop, which is given in Figure 2.10, it can be

concluded that the obtained ¢ value is correct.

0=-2.2802 I
4t

Figure 2.10 : Variation curve of the unassigned closed-loop poles (Example 2.6).

Let us calculate the K, parameter of the PID controller for the maximum dominance

factor.

P(s=—2.2802) =0 — K, =28.405

In this case, the designed PID controller is given as follows.

20.145
F(s) =28.405+ ——+13.9s
s
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The closed-loop poles are calculated as follows with designed PID controller and are
also illustrated in Figure 2.11.

512 = —0.4849 +0.6031;

53 = —2.2802
54 = —6.4698
Im (jw)
10/
°
0.5-
* ... ... e ... IRe(o)
-7 -6 -5 -4 -3 |-2 -1 I
-0.5¢
)
-1.0-

Figure 2.11 : The closed-loop poles with designed PID controller (Example 2.6).

If the designed PID controller is implemented in PI-PD structure with the following PI

and PD controllers,
20.145

S

Fp[(s) =2.518 +
Fpp(s) =25.887 +13.9s

which assign the controller zero to the point of s = —8 in s-plane, the closed-loop
system transient response is obtained as in Figure 2.12. It is seen that the rise time
of system is around 2.85 seconds with 7% overshoot due to the fact that the dominant
poles are assigned to the desired locations in s-plane and the closed-loop system has
high enough dominance factor (m = 4.7). The control signal for the closed-loop is also
depicted in Figure 2.13. It can be said that the control signal is smooth and in limits

for the considered system.
Example 2.7:

Consider a higher order system with the following open-loop transfer function.

10
(52425 +4) (s> +85+20)(s+4)%(s+6)

30

G(s) =




1.2

0.8 [

y(t)

0.6

04

0.2 -

10

15 20
Time (s)

25

Figure 2.12 : The transient response of the system (Example 2.6)
40

30

u(t)

20

10

15 20
Time (s)

25

Figure 2.13 : The control signal for designed PI-PD controller (Example 2.6).

Closed-loop performance criteria are chosen as 5% overshoot and 6 seconds settling

time. In this case, closed-loop dominant poles are found to be 51 » = —0.6667 &= j0.699.

PID controller parameters depending on the parameter K, are given as below [21].
K; =237.944+40.7K),

K;=—57.437+0.75K,

The closed-loop system characteristic polynomial, in terms of the parameter K, is then
given as follows.

P.(5,K)) = s° 4+ 2457 +2445° 4 13685 4-4608s* +-9568s°

+(11457.6 +7.5K,,)s* 4 (7680 + 10K ,)s + (2379.44 + 7K},)
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The residue polynomial can be given as below if polynomial long division is

performed.

P(s,K,) = s +22.6666s° +212.843s* + 1063.04s> 4+-2991.935

+4586.64s + (2550.06 4+ 7.5K),)

The polynomials P,,(s) are then calculated through the above polynomial as follows.
Pi(s) = 65° + 113.33s* +851.37s> + 3189.13s> + 5983.87s + 4586.64

Py(s) = 1557 +226.67s> + 1277.06s* + 3189.135 +2991.93
Ps(s) = 205 4 226.67s> + 851.37s + 1063.04
Py(s) = 155 +113.335+212.84
P5(s) = 65 +22.667

The maximum real root of the above polynomials is calculated as A, = —3.4915.

After that the polynomials Py, (s) are calculated via the expressions given below.

PhZ(S): ‘ 1 P3(S) ‘
P4(S) PQ(S) 0
Pu(s)=| 1  Ps(s) Pi(s)
P4(S) Pz(s)
Py(s) Py(s) O 0
Poa(s) = 1 P(s) P(s) O
hé 0 P4(S) P2(S) 0
0 1 P3 (S) P1 (S)
Ps(s) Pi(s) Pi(s) O 0
1 Ps) P(s) O 0
Pis(s)=| 0  Ps(s) Ps(s) Pi(s) O
0 1 P4(S) PZ(S) 0
0 0 P5 (S) P3 (S) P1 (S)
The maximum real root of the polynomials P, (s) is found to be Ay, = —2.185.

Therefore it is possible to conclude that non-dominant poles can be placed with the
PID controller

(—2.185 ~ —3.4915)

= ~ 3077 ~ 5.237
m —0.6667
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times away from the dominant pole pair. It means that there exists a PID controller that
assigns the remaining poles 3.277 times away from the dominant pole pair; however,

it is not possible to place them more than 5.237 times away from the dominant poles.

For this example, it is possible to show that A, = —2.185 is actually equal to o as

stated in the theorem via numerical approach as in Figure 2.14.

\J \/"""

y T msaos| Peass|T T

0=-3.4915 0=-2.185

-’\\

—4t

Figure 2.14 : Variation curve of the non-dominant poles (Example 2.7).

The K, parameter of the PID controller is found as K, = 59.42 for Ay = —2.185.
The designed PID controller is then obtained as below.

279.52

S

F(s) =59.42+ —12.877s

The closed-loop poles are calculated as
512 = —0.6667+0.699;
s34=—2.185+£1.7j
s56=—4.815£2.102j
s7=—2.185

sg = —6.482
with the designed PID controller and are illustrated in the Figure 2.15. As it is seen,
the maximum dominance factor is satisfied and the non-dominant poles are located on

the left side of the line s = —2.185.

Similar to the previous example, if the designed PID controller is implemented in

PI-PD structure such that the controller zero is assigned to the point of s = —6 in
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Figure 2.15 : The closed-loop poles with designed PID controller (Example 2.7).

s-plane, we have following PI and PD controllers.

279.52

S

Fp](S) = 46.586 +

Fpp(s) = 12.834 — 12.877s

In this case, the closed-loop system transient response is obtained as in Figure 2.16.
It is again seen that the system settles to its final value in around 7.5 seconds with
4.3% overshoot which are very close to the desired performance specifications in the

closed-loop.

1-2 T T T T

1t o ———

0.8 | 7

y(t)

0.6 [ 7

0.4 7

0 1 1 1 1
0 5 10 15 20 25

Time (s)

Figure 2.16 : The transient response of the system (Example 2.7).
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The control signal is given in Figure 2.17 for the designed PI-PD controller. It can be
said that the control signal is low (according to the open-loop gain) and smooth which

is important during the real-time implementation.

1000 T T T .

800

600

u(t)

400

200

0 1 1 1 1
0 5 10 15 20 25

Time (s)

Figure 2.17 : The control signal for designed PI-PD controller (Example 2.7).

2.4.2 Solution to maximum dominance factor problem for the systems with

open-loop zeros

In this section, the problem of how far unassigned poles can be located away from the
dominant poles with continuous PID controllers is solved. Hence, the previous study

is extended to the systems with open-loop zeros.

The first part, which is stated as to express PID controller parameters in terms of the
dominant pole locations in s-plane, is the same as previous section. Main problem is
stated in the previous part as finding the smallest value of ¢ such that the polynomial
P,(s+ o) is stabilizable. Since it is desired unassigned poles to be located "m" times
away from the dominant pole pair, it also means that the polynomial P,(s 4+ &) should
be Hurwitz. It is known that Routh-Hurwitz stability criterion is a frequently used
method to check the stability of polynomials. Therefore, Routh-Hurwitz method can
be used to check the stability of this polynomial. If the inequalities are written from the
first column of Routh table and are then simplified, the region in K, —m plane which
satisfies all of these conditions can be found. Thus, it is possible to find the maximum

value of the dominance factor, graphically.
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As Routh-Hurwitz stability criterion is used to find the maximum value, the proposed
method is valid for all transfer functions even for the ones consist of open-loop zeros.
Here, the only possible problem may be the order of the system since it directly affects
the complexity of the set of nonlinear equations which are written from the Routh table.
However, if the order of system is high enough, it is also possible to use the griding

approach over the parameter ¢ or K, in order to find the maximum dominance factor
(Mpnax)-

Example 2.8:

First of all, let us consider the same transfer function given in Example 2.6 with the

open-loop transfer function of

1
(s+1)%(s+5)?

G(s) =

Here it is aimed to show that the method works both for the systems with or without

open-loop zeros.

The residue polynomial constructed by the unassigned poles are given as follows.
P.(s) = s> 4 11.035% 4+ 34.704s + (4.3485 + 1.031K,,)

If the polynomial P,(s 4+ mo) is created, we have,
P(s—0.4849m,K,)) = —4.217 — K, + 16.32m — 2.5152m* 4 0.1106m>

+ (—33.656 4 10.374m — 0.684m*)s 4 (—10.6971 + 1.41077m)s* — 0.9698s>
It is now possible to use the Routh-Hurwitz stability criterion and find the inequalities
from the first column of Routh table. If the conditions are written and the region in
K, —m plane which satisfies all of these conditions are found, results are obtained as
in Figure 2.18.

—10.697+1.4108m < 0

—0.6081(—414.912 4 1.1305K,, + 166.26m — 22.74Tm? +m?)
—7.58245+m

(—4.2172 - K, +16.3198m — 2.5152m? —|—0.11057m3) <0

<0

It is clear from the figure that maximum dominance factor is m = 4.7 as found earlier,

if the dominant poles are desired to be chosen as 51, = —0.4849 4+-0.6031 .

As long as the value of the controller parameter K, is chosen from the obtained

feasible interval for a desired dominance factor (m), dominant pole placement works
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Figure 2.18 : Possible m values and corresponding K, values (Example 2.8).

well. Therefore, the choice of K;, parameter can be done by considering the additional
requirements such as the locations of closed-loop zeros or the magnitude of the control

signal.
Example 2.9:

Suppose that the following transfer function to be controlled by a PID controller is

given. ,
(57 +8s5+17)
W= e a)

It is aimed to find the maximum dominance factor when the dominant poles are
calculated as

s10=—-0.8x0.15

from the requirements on transient response. The modified residue polynomial P, (s +

mo) is found as follows.
P(s—0.8m,K,) = —2939.6 — 2150.88K,, 4 3290.78m -+ 809.74K ,m — 1056.1m*
—80.974K,m* +103.64m> + (—4113.47 — 1012.18K, +2640.27m
+202.43K,m — 388.67m*)s + (—1650.16 — 126.523K , + 485.84m)s* — 202.43s>

In a similar way, if the conditions from the first column of Routh table are written and

simplified, the following figure is obtained in K, —m plane.
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Figure 2.19 : Possible m values and corresponding K, values (Example 2.9).

The maximum dominance factor can be found as m,,, = 5.182 for the desired
dominant pole pair. Let us choose the K, = 12.4 which satisfies the maximum
dominance factor, then the closed-loop poles are calculated as below.
s12=—0.8%+0.1;
s34 =—4.146£1.426j
s5 = —17.609
It is also possible to illustrate the dominant and non-dominant closed-loop poles as in

Figure 2.20.

2.5 Limitations on the Dominant Pole Pair Selection

In this section, it is aimed to find the limitations on the selection of dominant pole pair
with the help of the method used in the previous section (Routh-Hurwitz method) so
that dominant pole placement approach works well and desired performance criteria
are met as accurately as possible in the closed-loop. In other words, it is desired to
find the dominant poles region in s-plane to guarantee dominant pole placement with
continuous PI and PID controllers. First of all, the region determination method is
explained through the PI controller and then it is extended to the PID controller case

in a similar way.
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Figure 2.20 : Closed-loop poles in s-plane for K, = 12.4 (Example 2.9).

2.5.1 PI controller case

In order to find the limitations of dominant pole pair selection, PI controller parameters
are required to be expressed in terms of the dominant pole locations which is already
done and given with (2.14) and (2.15). After that it is expected to find (o, ®) region
in complex s-plane in which the guaranteed dominant pole placement can successfully

be done for a specified dominance factor (m).

It is already mentioned in previous section that it is desired unassigned poles to
be located “m” times away from the dominant pole pair and hence the polynomial
P:(s +mo) should be Hurwitz. Therefore, all of the (o, ) pairs which stabilizes the
polynomial P,(s+ mac) constitute a solution to the considered problem [22]. Note that

the dominance factor is known and constant here.

Here, it is again possible to use Routh-Hurwitz stability criterion to find the dominant
pole region. In order to solve this problem, the polynomial P.(s) is used again;
however, this time the parameters ¢ and @ are unknown but the dominance factor
(m) is known. For that reason, the polynomial consists of the parameters ¢ and @ as

given in (2.41).
Po(s,0,0) =8,_1(0,0)s" ' +---+8(0,0)s+ &(0,0) (2.41)

Therefore, the inequalities, which are written from the first column of Routh table,

define regions in (0, ®) plane (actually in complex s-plane). Intersections of all these
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regions (if it is not an empty set) give the dominant pole region in which dominant pole

placement is guaranteed for the desired "m" value.
Example 2.10:

Consider a fourth order system with one left half plane zero which is expressed by the
following transfer function [22].

4(s+4)
(s2+2s+2)(s+1)2

G(s) =

In the closed-loop, it is expected non-dominant poles to be "m" times away from the
dominant pole pair with PI controller. First of all, parameters of the PI controller

should be found as below.

(62 4+ 0?)(22+560 +550% +2406° +36* — (—206% +80 +9)®* — 0?)

K; =
’ 4(16+80 + 02+ w?)
_ —4-240—4506%—-390° — 160* —26° + (1662 + 250 + 11)0* + 200"
P 2(16+80 + 6% + 0?)

It is now possible construct the polynomial P,(s, o, ®) as follows,
Po(s,0,0) = 135 + 15" + 15+ 10
where
73 = (16480 + 62 + ?)
P = (64 + 646 +2002 +206° + 40> + 26 0?)
71 = (1124 1846 + 11967 + 3207 +30* — 90° 4+ 26° 0> — @*)
% = (88 4+ 2240 422002 +966° + 120* — 360* — 320 0° + 86% 0 — 40*)

The polynomial P,(s+mac) can be calculated for the different values of "m" and the
conditions on ¢ and @ can be determined with the help of the first column of Routh
table. After that the region in s-domain, which is intersection of all these conditions,
can be drawn with the help of any software that provides symbolic calculations such

as Mathematica.

The dominant poles regions with PI controller are found for m = 3,...,8 and are

illustrated in Figure 2.21.

It can easily be seen from the figure that if non-dominant (unassigned) poles are desired

to be placed further away from the dominant poles, the region in which dominant
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Figure 2.21 : Dominant poles region with PI controller for different m values
(Example 2.10).

poles can be assigned shrinks. It actually shows us the limitations on the closed-loop
performance specifications for a desired dominance factor when a PI controller is used

to control the system.

For instance, if the desired dominance factor is given as m = 4 and the dominant pole
pair is chosen as 512 = —0.26 £0.26 (one of the limit value in the region) then the PI

controller is found as follows.

F(s)

The closed-loop poles of the system with the designed PI controller is illustrated in

Figure 2.22.

~0.00668(s +3.705)
S

2.5.2 PID controller case

Calculation of the limitation on dominant poles selection is similar for PID controller
case. After the parameters of PID controller are obtained in terms of the location of
dominant pole pair, it is possible to find (o, ®) region in s-plane where dominant pole
placement for a specified “m” value is provided. However, in this case, the polynomial
constructed by the unassigned closed-loop poles also depends on the parameter K,
in addition to the parameters ¢ and @. Thus, the residue polynomial is given in the

following form.

P.(s,0,0,K,) = 8,_1(0,,K,)s" '+ + 8 (0,0,K,)s + 8(0,0,K,) (2.42)
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Figure 2.22 : Closed-loop poles with PI controller for m = 4 (Example 2.10).

It is again possible to use Routh-Hurwitz criterion to find the conditions on (o, ) pair.
Here, the intersection of resulting inequalities, which are written from the Routh table
for the polynomial of unassigned poles P,(s+ mo), define a region in 3 dimensional
0 — @ — K, plane. Thus, it is possible to see the region in which dominant poles are
placed for a desired "m" value, graphically. The corresponding K, interval can also be

found for a chosen (o, ®) pair.
Example 2.11:

Consider a sixth order process given below [22].

1
G(s) =
S Py P P
Parameters of the PID controller are found as below,
2 2
o+
K; = %(—KP —225+7990% 488807 + 3816 +720° + 50° + 799w*

+888cw” +2540%0* — 56*w* — 1270* — 120 0* — 962 0* + %)

1
Ki=—5_(K,+225+ 13800 4239767 +17760° + 6356* + 1086° + 76°)

1
— %(—79%}2 —177600° — 127062 ®° — 3600° w?> — 356* w* — ©°

— 1270* —108c0* —216°%0%)

After that the polynomial P(s,0,®,K,) which is constructed by the unassigned

closed-loop poles is found as follows,

P.(s5,0,0,K,) = 155° +1s* + 15> + 05+ s+
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where
Y5 =20
Y4 = 360 + 402
73 = (2540 + 7262 4 66° — 20 0?)
7 = (8880 + 50802 + 1080° + 86 — 3600* — 862 0?)
71 = (15980 4 17766% + 7626° + 1446* 4 106° — 2540 0°
— 14462 0* —200° w* + 200*)
% = (=225 — Kp+7996° 4 8886° + 3816* + 7206° + 56° 4+ 799 w?
+ 8880w 4+ 25462 0° — 50%0° — 1270 — 720 0* — 96° 00* + ©°)

As performed in the PI controller design, the polynomial P,(s+mo) can be calculated
for any selected m value and the conditions on ¢ and @ can be determined using the
Routh table. Since the resulting conditions are also depends on the parameter K,
a region in 3 dimensional o-w-K), space will be obtained for K, € (—oo,4c0). For

instance, if m = 3 is chosen then the dominant pole region is shown in Figure 2.23. It

is also possible to find this region for different m values.

-0.4 Re (0)
1.0 202

0.0

Im (jw) 0.0

Figure 2.23 : Dominant poles region for PID controller case (Example 2.11).

For instance, if K, = 140 is chosen by inspecting the above figure then the limitations
on the dominant pole pair is illustrated in Figure 2.24. As long as the (o, ®) pair
is taken from this obtained region, the dominance factor m = 3 is guaranteed for the

chosen K, value.
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Figure 2.24 : Dominant poles region in s-plane for K, = 140 (Example 2.11).

Let us choose the dominant pole pair as s; = —0.4 £0.33j which is one of the limit

values in the above figure. In this case, the PID controller is found as follows.

78.45

F(s) =140+
S

+87.13s

On the other hand, the closed-loop poles with the designed PID controller are given in

Figure 2.25.

~1.0F

Figure 2.25 : The closed-loop poles in s-plane for K, = 140 (Example 2.11).

It is seen that the limitations on dominant pole placement are found successfully when

the dominance factor is predetermined.
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Note that it is not always possible to place non-dominant poles "m" times away from
the dominant pole pair using a lower order controller especially higher order systems
are considered. For this reason, (0, ®) pair which satisfies the inequalities written
from the first column of Routh table might be an empty set for a selected “m” value.
In this case, sometimes changing the desired dominance factor may work to obtain a

solution.

2.6 Dominant Pole Region Assignment in Continuous-Time Domain

In the dominant pole placement approach, the degree of freedom for the PID controllers
is enough to assign dominant poles; however, it may be a challenge to keep the
remaining poles away from the dominant pole pair with only one remaining parameter
(e.g. K)). Furthermore, there is no parameter left to assign the remaining poles in case
of the PI controller. Nevertheless it is possible to widen the closed-loop performance
criteria instead of choosing strict specifications. Thus, it may become possible to find
the controller parameters and the dominant pole placement is performed. It is already
meaningful for most of the systems to have time domain characteristics between the
minimum and maximum desired values. This results the dominant pole pair to be
located in a specified region instead of a point, hence, the dominant pole region

assignment (DPRA) problem shows up.

2.6.1 P controller case

If P controller is used to control a system, it is better to desire only one performance
criterion. One of the proper choices can be settling time criterion to be satisfied in
the closed-loop with a P type controller. In this case, the closed-loop dominant pole
pair should be located in a region bounded by the lines 5| = Oy, and s = Oy In
the s-plane and remaining poles should be located on the left side of a particular line

s3 = 0,. The desired pole configuration in the closed-loop is illustrated in Figure 2.26.

The characteristic polynomial of a closed-loop control system with unity feedback is
given as follows.

P.(s)=1+4+F(s5)G(s) =0 (2.43)
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Figure 2.26 : The desired pole configuration with P controller.
If P controller is used,
) = 1+K,28) g (2.44)
s) = r = .
. "D(s)

can be written. Let dominant poles be 51 » = 6 £ j® where G € [Gyin, Omax] and @ € R.
It is clear that equation (2.44) should be satisfied by the dominant pole pair. For the

open-loop transfer function G(s), let s be replaced by o + j,

. NRe + ]Nlm
Go+jo)= ——— 2.45
( + / ) DRe + lem ( )

where
Dy =Im[D(6 + j©)],Dge = Re[D(0 + jo)]
N = Im[N(G+ja))]7NRe = Re[N(G—I—j(D)]
If (2.45) is re-arranged,

(NReDRe +NlmD1m) + j(NImDRe - NReDIm)
Dy, +Dj,,

G(o+jo) = (2.46)

and by defining
X((D) = NReDRe +NImDIm

Y(O)) - NImDRe _NReDIm
Z(®) = Dg, + Dj,,
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it is possible to write the following equality.

X(0) Y(o)
®

G(o+jo)= Z(0) +jZ(a))

(2.47)

Here, the critical frequencies (®;"), which cause roots to cross s = o line in complex

s-plane, can be calculated using (2.48).
Y(o
Im[G(o+ jo)] = (—a)) =0 (2.48)

After that the intersection points (x;) of Nyquist curve and real axis can be found with
the help of following expression (®* = 0 and ®* = o are also added to the critical

frequencies as necessary).
_ X(o)

L i 2.49

" 2 =
It is now possible to calculate the gain intervals with the help of Nyquist theorem.
These intervals can be found by %; € (—%i, _x+r1> such that x; < x;.1 fori=1,2,...

and the union of these intervals, in which number of the closed-loop system poles (i)
located on the right side of the line s = o are found to be as desired, gives the feasible

interval. The final gain interval is calculated as below.
n
KelJ.x% (2.50)
j=1

Here, it is expected dominant poles to be located between the lines s; = Oy, and
§2 = Opax in the s-plane and remaining poles to be located on the left side of the
s3 = 04. Therefore, the proposed calculation method should be applied three times
for G| = G(Opin + jo) such that u = 0, G, = G(Opax + j®) and G3 = G(0, + jO)
such that u = 2. As aresult, the feasible interval of controller parameter K, to provide

dominant pole placement is found as follows.

3
K, K, (2.51)
j=1

If the resulting set is found to be an empty set (K, = 0), it means that there is not any P
controller which satisfies the configuration given in Figure 2.26 for the desired values

of Gyin, Omax and oy.
Example 2.12:

For the system whose transfer function is given as,

Gls) = (s> +4s+16)(s+8)
© (54+0.9)(s+2)(s+3)(s+4)(s+6)
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it is desired to find the P controller set such that 6,,,;, = 0.8, G;ax = 1.333 and 0, = 3.1

so the dominance factor is m = 3.1/1.333 = 2.33 in the worst case.

For Gi(®) = G(—0.8+ jow) we have,
X () =2549.11 — 9275.420° +392.070* — 37.720° — ©®
Y (o) = 2.8(3436.340 — 1078.07w° 4+ 51.820° + ")

Z(®) = (0.16 + ©?)(1.96 + ©*)(5.76 + @*)(11.56 + ©*)(29.16 4+ »?)

The critical frequencies (@), intersection points (x;), number of the poles (#;), which
are located on the right side of the line s = —0.8 and corresponding gain intervals are

given in Table 2.1. Resulting gain interval is found as follows.
K € (—0.0454,1.4922) | J (30.1678,0)

If the same procedure is applied for G,(®) and G3(®), we obtain the gain intervals

as below and the important values (®;, x;, u;) are given in Table 2.2 and Table 2.3,

respectively.
K> € (0.0722,42.1)
K3 € (0.009758,37.623)
Table 2.1 : Calculated gain intervals for G| (®)

;' X; U; y4

0 22.028 1 —0.0454 > £} > —oo
1.419 —0.67 0 1.4922 > J#5 > —0.0454
3914 —0.0331 2 30.1678 > J#3 > 1.4922

oo 0 0 0o > 74 > 30.1678

Finally, the P controller set, which satisfies the desired pole configuration in the

closed-loop, is given as follows.
3 —
K, € ﬂKj € (0.0722,1.4922) U (30.1678,37.623)
j=1

For instance, if K, = 35 is chosen to control the given system, the closed-loop poles in
s-plane is given in Figure 2.27.
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Table 2.2 : Calculated gain intervals for G, ()

o Xj u; i

0 —13.846 1 0.0722 > 8] > —oo
4.19 —0.02375 2 42.1 > o > 0.0722

Table 2.3 : Calculated gain intervals for G3(®)

(1);< X u; Jlf/,

0 —102.48 3 0.00976 > %] > —oo
5.134 —0.0266 2 37.623 > J#5 > 0.00976

oo 0 4 o0 > 3 > 37.623

Please, however, note that it is not always possible to satisfy such configuration with a

P controller for all systems. In most cases, the intersection of the gain intervals may be

an empty set so it may be required to change desired pole regions both for the dominant

and non-dominant poles. A pre-made root-locus analysis can help to the determination

of the limits.

Im (jw)

Figure 2.27 : The closed-loop poles with designed P controller (Example 2.12).

On the other hand, the variation of dominance factor is also illustrated in Figure 2.28

when K), parameter takes value from the obtained feasible interval.
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Figure 2.28 : Variation of the dominance factor by K, (Example 2.12).

2.6.2 PI and PID controller cases

If the system is controlled by a PI or PID controller, it is possible to assign two of the
closed-loop poles to the desired locations of 51> = 0 &= j® in s-plane. However, it is
useful to desire the closed-loop poles to be assigned in a specific region instead of a
single point. It may also increase the chance of obtaining higher dominance factor in

terms of the dominant pole placement.

Dominant pole region assignment problem is solved via parameter space approach and
2 different method is proposed to assign non-dominant poles. In the first method,
the remaining poles are desired to be "m" times away from the dominant poles in
the closed-loop. It means that the location of non-dominant poles are written in
terms of the dominant poles such as ©,,, = moc so the desired dominance factor is
guaranteed. However, in the second method, the non-dominant poles are desired to be
located on the left side of a constant line such as o;,,, = a. It is worth to note that the

computational complexity of the first proposed method is higher than the second one.

Since the proposed approach is similar for both PI and PID controllers, they are given
together in this section. For PI controller case, the desired dominant pole region in
s-plane is transferred to the K, — K; parameter space and after that the border in s-plane
for non-dominant poles is transferred. For PID controller case, the same procedure is
done for K; — K; parameter space and then it is repeated for different values of K, with

the help of griding approach.
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2.6.2.1 Method 1: Constant Dominance Factor

For a PI controller, it is given that the K, and K; parameters are calculated in terms of

the parameters ¢ and @ as follows.

NG, X +Ngp Y
K,(0,0) = ——%= 7 Cike (2.52)

Ng, Y —Ngo X
Ki(o,0) = ——2m ~ G’ _K,(0,0)0 (2.53)

Consider the following region, in which the dominant pole pair is desired to be placed,

— ; - +
91:{ s=0+jo | ceR,weR } (2.54)

Omin < O < Omax; Opin < O < Opgyx
It is possible to map the & region to the PI controller parameter space by plotting the

functions K,(o, ) and K;(o, w) for the given intervals of ¢ and o.

It is worth to note that the dominant pole region can also be bounded by the
different performance specifications such as settling time, damping ratio ({) or natural
frequency (w,). Therefore, the parametrization given by (2.52) and (2.53) can also
be obtained in terms of the other parameters, for instance, by substituting s, =
—fw, + jo, \/1—7@2 in the characteristic polynomial for the following region,
_@zz{ s=—botjon/1-8 | € 0, ERT } (2.55)

Cmin S C S Cmax, O min S Wy S Onmax

orsjp=0% j% \/1 — {2 for the region given below.

gsz{s:cij%ﬂyoeR‘,CeR+} 256
Gnin < & < Gnaxs Omin < O < Opax

It is clear that two of the closed-loop poles are located in the desired region as long
as (K,,K;) pair is chosen from the obtained controller parameter space; however, it
is required to find the sub-region in which the remaining closed-loop poles are also

located "m" times away from the dominant pole pair.
9 ={seC|Re(s) <mo, c€R ,meR"} (2.57)

Here, the subset of PI controller parameters such that the remaining poles are located
on the left side of a line s = mo can be found through the residue polynomial. It leads
to the relative stabilization problem for the polynomial P, (s, o, ®); however, it is easily

converted to the stability problem over the polynomial P,(s+mo,0, ®).
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In order to solve the mentioned stability problem above, the polynomial P,(jQ +
mo,0,®) can be decomposed into its real and imaginary parts and then solved for
(Q,0) by equating both parts to zero for Y@* € [@yin, Omax]. Since solving these
equations for every @* in the interval is not practical, it is possible to use gridding
approach over the parameter @ in order to obtain the solution. After that for the
resulting values of 6* € [Opin, Omax), it is possible to map the achieved (o, ®*) pairs
into the parameter space of PI controller with the help of (2.52) and (2.53). Thus,
the root boundaries in K, — K; plane are found. As a final step, number of the roots,
which are located on the right side of the line s = mo in the resulting regions, can be

calculated and the desired parameter region is obtained [40].
Example 2.13 (PI Controller):

Consider a fourth order system with the following transfer function.

s—2

G0) = T R 27 52 1305 £ 28

It is desired to control the given system with a PI controller such that the closed-loop
system has damping ratio of 0.6266 < { < 0.826 and the natural frequency of 0.484 <
@, < 0.798. For the desired performance specifications, the dominant pole region in

s-plane is illustrated in Figure 2.29.

Im (jw)
1.0
L L L L L L L L L L L L L L L L L L Re (O.)
12 -10 -08 -06 -04 -02 ,
~05"
~10-

Figure 2.29 : The desired dominant pole region in s-plane (Example 2.13).
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First of all, the PI controller parameters (K,,K;) are expressed in terms of the

parameters { and @, as follows.

139
Ky({, @) = —125+ T oy 102507 +958 @, + (10— 408 @? + (—4¢ + 88 ]
n . n
1112(1
KiGon) = 278+ L2 S 147,502 - 20061+ (-1+40)of
n n

It is now possible to map the desired region into parameters space for @, €
[@nmins Onmay) a0d € € [Cnin, Cmax]. If the parametric plot is drawn in the K, — K;
plane, Figure 2.30 is obtained.

Ki

P S S Y T S S S S B Kp
i 25 3.0 35 4.0 45

—18"
_20F"

-22

_24t

-2.6

—28t

Figure 2.30 : The corresponding region in parameter space (Example 2.13).

As long as the PI controller parameters are chosen inside the obtained region, it is
guaranteed that dominant poles are assigned to the desired region in s-plane. However,
it is also expected the remaining poles to be located away from the dominant pole pair

if possible.

Let the remaining poles to be located on the left side of s = —3{ @, line that means
the dominance factor to be m = 3 for the closed-loop system. Here, the polynomial
P,(s,{,m,) should be obtained through the closed-loop characteristic polynomial as
follows.

P.(s,&,@,) = (s* + 28 @ps + @) P (s, &, @)
The polynomial P.(s,,®,) = P.(s — 3 @,,{,®,) should then be found in order to

convert the relative stabilization problem to the stability problem as below.

ﬁr(*ga §,0,) = 57 +ﬁ252 +Bis+Po
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where

556
4+4{w, + 0

Bi =27.5— 64w, + (—1+43(H) w?

By = —95+ — 42500, 4 (2411280 + (3 -578%) 0}

Br=8—-11{w,

Let us substitute s = jQ and decompose the polynomial P,(s, {, ,) into the real and

imaginary parts. The root boundaries are found by solving

Re (P(jQ. 8" 0,)) =0

~ = (!);; € [wnminvwnmax]
Im(P(jQ,* @,) ) =0

for a fixed §* € [nin, Gmax] using the gridding approach. Finally, the achieved ({*, ;)
pairs are mapped into the PI controller parameter space. Figure 2.31 shows the
sub-regions and the number of poles (&) located on the right side of the line s = -3¢ @,
in those regions. PI controller design process is completed by choosing a (K, K;) pair
from the sub-region where 6 = 0. Note that only a real root boundary (RRB) exists in
this example [40].

=16—

-18}
-20}
< -22f

-24

-26¢

—2.87‘““““““““““““7
2.0 25 3.0 35 4.0 4.5

Kp

Figure 2.31 : The resulting sub-regions to ensure dominant pole placement (Example
2.13).

Let us choose the PI controller parameters as K, = 4.1 and K; = —2.2 from the feasible
region where 0 = 0. In this case, the closed-loop poles are given in Figure 2.32. It is
seen that dominant poles are assigned in the desired pole region and the remaining

poles are located 3 times away from the dominant pole pair.
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Figure 2.32 : The closed-loop poles with designed PI controller (Example 2.13).

Example 2.14 (PID Controller):

Consider the high order system with the following open-loop transfer function.

10
4 (52425 +4)(s2 485 +20) (s +4)*(s+6)

The closed-loop dominant pole region, which is illustrated in Figure 2.33, is bounded

by £ €10.69,0.826] and ¢ € [0.6,0.9]
Im (jw)
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-10

Figure 2.33 : The desired dominant pole region in s-plane (Example 2.14).

Here, the same procedure is used as in the previous example; however, since the

controller to be designed is a PID controller, the desired region is mapped into 2D
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parameters space (Kj, Ky) for a fixed K, = k),. The final region in 3D space can then be

obtained by gridding the K, parameter.

For instance, Figure 2.34 shows the regions which are mapped from the s-plane for
different values of the K, parameter to the K; — K; parameter space. It is also possible

to illustrate these regions as a 3D graphic (Figure 2.35).

300+
280+

260+

Ki

240+

220+

200 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1
-40 -20 0 20 40 60
Kd

Figure 2.34 : The corresponding regions in K; — K; plane (Example 2.14).

300

Ki
250

200

Figure 2.35 : The corresponding regions in 3D parameter space (Example 2.14).

Let the remaining poles to be located on the left side of the line s = 30 that means the

dominance factor to be m = 3 again for the closed-loop system. After the polynomial
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P(s, ¢, 0,k,) = P.(s+30,{,0,k;) is obtained, the root boundaries can be found by
equating the real and imaginary parts of the polynomial P,(j<Q, ¢, o,k},) to zero. The
next step is to map the achieved ({*,o*) pairs into the K; — K; plane. Figure 2.36

shows the sub-regions in parameter plane for K, = 50.

2807 — — — e
270 1

260 1

Ki

250 1

240" 1

230" 1

-20 0 20 40
Kd

Figure 2.36 : Sub-regions divided by the root boundaries (Example 2.14).

It is seen from the figure that two root boundaries (a real root boundary and a complex
root boundary) divide the parameter space into 4 sub-regions. The sub-region where
0 = 0 constitutes a solution to our problem. The same calculations are done for K, €

[30,80] and the regions are obtained as a 3D figure as follows.

-50 Kd

Figure 2.37 : PID controller parameter space and sub-regions (Example 2.14).
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The closed-loop pole spread of the system with designed PID controller is given
in Figure 2.38. It is seen that the dominant pole region assignment is performed

successfully through the proposed method [40].

Im (jo)
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Figure 2.38 : The closed-loop poles with designed PID controller (Example 2.14).

2.6.2.2 Method 2: Constant Relative Stability Border

It is mentioned that the previously proposed method guarantees the desired dominance
factor; however, it may bring computational complexity if the system order is high. In
such cases, the non-dominant poles can be placed on the left side of a constant line

s = a instead of a varying line s = mo.

First of all, the desired dominant pole region is mapped into the K, — K; (for PI
controller) or K; — K; (for PID controller) plane via the presented method in previous
sub-section. After that the real and complex root boundaries should be calculated,
respectively. Let the closed-loop system characteristic polynomial be donated as P, (s).
For the real root boundary,

P (s=a,K,,K;)=0 (2.58)
Pepyp (S =a,K, = k;7Ki7Kd) =0 (2.59)

should be found for PI and PID controller, respectively, and the corresponding line
in parameter space (K, — K; or K; — K; for a fixed K}) should be drawn. For the

complex root boundary, this time the following equations should be solved for (K, K;)
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or (Ky4,K;) for a fixed K, and then should be drawn in parameter space for Q € R.

Re[P.,, (s = jQ+a,K, K;))]=0
(2.60)
Im[P.,, (s = jQ4+a,K,,K;)] =0

Re [P

CPID

(s =jQ+a,K, =k K;,K;)| =0
(2.61)

Im [Pepypy (s = jQ+a,K, =k, K, Kg)| =0
For a PI controller, the procedure is completed by choosing (K, K;) pair from the
obtained feasible interval where 6 = 0. For a PID controller these regions are drawn

as 3D plot for different values of the parameter K, and the feasible (K,, K;, K;) values

are chosen to finalize the design.
Example 2.15:

Let us explain the design procedure through the same transfer function with the

previous example.
=0
G(s) =
()= a1 85 12757 13051 28
The same dominant pole region is desired (§ € [0.69,0.826] and o € [0.6,0.9]) for the

dominant pole pair; however, it is desired the non-dominant poles to be on the left side

of the line s = —2 with a PID controller.

The characteristic polynomial with PID controller can be calculated and the real and
complex root boundaries can be found. If the K; and K; parameters are calculated via

(2.61) for K, = 50, we have the following expressions.

—134 — 16Q2 + 4% — 4Q°

4= 20
© 4584 — 70Q2% + 32Q* + 60Q° — 6Q3
i =
20

For the real root boundary, the equation given below is obtained.
PC(S = —2,Kp = SO,Ki,Kd) =0 = 5K;+20K; —1012=0

If these boundaries are drawn, it is possible to obtain the regions and the number of

poles (0) located on the right side of the line s = —2 as in Figure 2.39.

It is seen from the figure that a different region is obtained since the non-dominant
poles are desired to be on the left side of a line s = —2. Here, the constant dominance
factor is not guaranteed and depends on the selection of (K, K;) pair. If the plots are

drawn for different values of the parameter K, the following figure is obtained.
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Figure 2.39 : Obtained regions divided by the root boundaries (Example 2.15)

200

Figure 2.40 : 3D parameter space and the obtained sub-regions (Example 2.15)

Let us choose the controller parameters as K, = 50,K; = —10,K; = 257 from the
feasible region. The closed-loop poles are illustrated in Figure 2.41 with designed PID
controller. Here, the dominance factor is found to be m = 2.667 which is lower than

the previously obtained value.

In this sub-section, PI and PID controller design method via the dominant pole region
assignment approach is proposed in order to assign two of the closed-loop poles in a
desired region. Furthermore, the remaining poles are located away from the assigned

dominant pole pair. First of all, parametrization of the PI/PID controllers is done and
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Figure 2.41 : The closed-loop poles with designed PID controller (Example 2.15).

desired dominant pole region is mapped into the controller parameter space. After that
the sub-region in which the unassigned poles are located away from the dominant poles

is found by calculating the root boundaries.

Note that it is not always possible to place remaining poles away from the dominant
pole region especially the order of considered system is too high due to the fact
that PI/PID controllers can assign only limited number of poles in the closed-loop.
Therefore, if the resulting parameter space does not contain a sub-region where 6 = 0,
the design process should be repeated by changing the performance specifications

and/or the dominance factor.
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3. DOMINANT POLE PLACEMENT IN DISCRETE-TIME SISO SYSTEMS

In this chapter, it is aimed to perform dominant pole placement for discrete-time
single input-single output systems. It is known that, the pole placement approach is a
widely used and popular technique to obtain the desired closed-loop performance [46].
Although the dominant pole placement approach is presented for continuous-time
systems, this chapter mainly focuses on time-delay systems to solve the dominant pole
placement problem. In the literature, guaranteed dominant pole placement is already
proposed [1] for the systems with or without time-delay and also presented in the
second section of this thesis. However, with the proposed method (based on modified
Nyquist curve), it can be seen that the calculation of feasible gain intervals is difficult

due to infinite number of poles caused by time-delay.

On the other hand, as a result of the advancing technology, discrete-time control
systems become an important subject to examine. Especially in the industrial
automation systems, processes are usually controlled by digital control systems such
as industrial PCs or PLCs. Therefore, it provides significant advantage to find the

discrete-PID controller parameters which guarantee dominant pole placement.

Even if the controller design can be performed in continuous-time domain and then
discretized by taking sampling time as small as desired, most of the installed control
systems around the world use older technology where it is not possible to reduce the
sampling time below a certain limit without making considerable expenses. In addition
to this, in some of the new systems reducing the sampling time comes with a cost,
which might not be required due to marketing reasons. In such situations, direct digital
design is required to ensure the performance of the controller when applied in the

digital world.

First of all, the parametrization of Pl and PID controllers are given similar to the
continuous-time case. After that the controller subset which guarantees the dominant
pole placement is found via two different approach based on modified Nyquist curve

in z-plane and Chebyshev polynomials, respectively. The similar problems such as
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calculation of maximum dominance factor, performance limitations in the closed-loop
and dominant pole region assignment in z-plane are also solved and presented in the

following sub-sections.

3.1 Parametrization of Digital PI and PID Controllers To Assign Dominant Poles
Consider the closed-loop control system with arbitrary order discrete transfer function
G(z) given with (3.1)

NG (2)  Bu™+Bu12" "4+ Biz+ Po
D¢ (2) 017 4 oz o

G(z)= ,m<n (3.1)

and a digital PI or PID controllers whose transfer functions are given in (3.2) and (3.3),

respectively.
_ Nelz)  (Kp+Ki)z—K,
Clz) = D) e-1 (3.2)
_ Ne(z)  (Kp+Ki+Kg)2? — (Kp+2Kq)z+ Ky
C(z) = Do) Y (3.3)

For this control system, the closed-loop system characteristic polynomial is given as
follows.

P:(z) = Dc(2)Dg(z) + Ne(2)Ng(2) (3.4)

Performance specifications in the closed-loop are strongly determined by the dominant
pole locations if the remaining poles are assumed to be located far away from the
dominant pole pair. Let dominant poles to be z; » = 0, & j®, for a chosen performance
criteria. If the dominant pole locations are substituted into (3.4), the following equality

is obtained.
P.(2) = Dc(0;+ jw,)Dg(o; + jw,) + Nc (o, + jo.)Ng(o; + ja,) =0 (3.5)

The complex equation given above can be solved by decomposing it into its real and

imaginary parts,
(Dc;,, D6y, = Dy Dy, ) + (N, NGy — NewNeg, ) = 0 (3.6)

(Dcg.Day,, + Dcy, Dag,) + (Neg Nay,, + NeyNag, ) = 0 (3.7)
where
Ng,,, = Im [Nc(o,+ jo,)], Ncy, = Re [Nc(o;+ jo,)]
NG, = Im[Ng(0:+ j@.)], NG, = Re[Ng(0: + jo.)]
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Dc,,, =1Im [Dc(o, + ja)], D¢y, = Re [Dc(o, + jo,)]
DGIm = Im [DG<GZ+](DZ)] ? DGRe = Re [DG(GZ +.]wZ)]

It is assumed that the discrete transfer function of the system is known; therefore, the
real and imaginary parts of the numerator (Ng,,,Ng,,) and denominator (Dg,,,Dg,,)
are known. On the other hand, the real and imaginary parts of the denominator of
discrete PI/PID controller transfer function (Dcy,,Dc,,,) are also known. The only
unknown parameters are included by the numerator of discrete PI/PID controller. It
is possible to find those unknown parameters by solving (Nc,,,Nc,,,) with the help of

(3.6) and (3.7) as follows.

Ny, = — 7 (3.8)
N, X+ Ng, Y
Ng,, = ——22 ; b (3.9)
Here, X, Y and Z are defined as below.
X = Dc,,Dg,, —Dcp,Dcp, (3.10)
Y = DCReDGIm + DCImDGRe (3.11)
Z=Ng, +Ng, (3.12)
For a digital PI controller given in (3.2), it can be shown that,
NCRe = Re [((KP + Ki)Z - KP) |Z:O-z+ja)z:|
(3.13)
=K,(—1+o0;)+ Ko,
NCIm = Re [((KP + K;)Z - KP) |Z:Gz+jwzi|
(3.14)

= (Kp +Ki)wz

Thus, the PI controller parameters are obtained as follows.

K 1 & _ NGREX_NGIm Y
14 _ @,
O3 R S | Qe v 519

For the digital PID controller given in (3.3), it is possible to write,

Ney, = Re [(Kp + Ki+ Kg)22 — (K +2K2)z + Ka)|e=0. 1 jo.| 516
=Ky((—1+0,)* — 0?) + Kp(—0, + 62 — 0?) + Ki(0? — 0?)

Ne,, = Im [((Kp + Ki+ Ka)Z* — (Kp +2Ka) 2+ Ka) =0+ jo. | G17)
=K (20, -2)w,+K,(20; — 1)w. + K;(20,0;)
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Finally, PID controller parameters K; and K; can be obtained in terms of the parameter

K, by solving (3.8) and (3.9) with the help of (3.16) and (3.17) as follows.

2
K (=140;) *wzz (2—20))w, _NGImX+NGReY
d ) _— A A 7
K; —0; +0; 20,0, _ NG, Y —Neg X

A A z (3.18)
< 1+ —1=% > K
. —o,+62+0? p
o;
" ororar ) 2
where
A=-2w,(0? + & —0;) (3.19)

It is clear that the obtained controller parameter set, which defines a line in
3-dimensional parameter space (K,,K;, K ), places the two of the closed-loop system

poles (i.e. dominant poles) to the points of z = 0, & j@, in z-plane.

P (K,,Ki,Kg) ER? | 210 =0, £ jo, 71 €C
= k=3,....n+2, YK, R

(3.20)
Thus, the parametrization of the PI and PID controllers that assign the dominant poles
is completed. It is also important to note that the given formula is valid for all linear

time invariant systems with or without a time delay that is a multiple of the sampling

time.

However, it is also desired to find the subset of the controller parameters which place
the remaining poles in a disc with specified radius so that dominant pole placement
can be done successfully. Hence, the desired performance criteria in the closed-loop

are achieved as accurately as possible.

3.2 Calculation of Digital PID Controller Subset Assigns Non-Dominant Poles

In this section, similar to the continuous PID controller case, it is aimed to find
the digital PID controller subset which assigns the non-dominant poles inside a disc
of radius " centered at the origin in z-plane where r = \/W and m is the
dominance factor (it is usually enough to choose m around 3-5) so that the dominant

pole placement in discrete-time domain is performed.

P { (Kp,Ki,Kq) €R? | 212 = 0, % joog, |z| < |z12]" }

meR", k=3,....n+2,VK, € [Kp,... Kppr] CR (3.21)

There are two different approaches proposed in this thesis to calculate the K, parameter
of PID controller. First design method is based on the modified discrete Nyquist plot
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as proposed for continuous time case and the second design method is based on the

Chebyshev polynomials.

3.2.1 Design via modified discrete Nyquist plot

After the PID controller is written depending on the parameter K), it is possible to
apply the well-known Nyquist plot method. It is also important to remark that the this

procedure is valid for all G(z) systems regardless of the time delay.

In order to use the Nyquist method, the controller parameter K, must be separated
from the equation. For this purpose, the closed-loop system characteristic polynomial

can be written in following form.
P(2) =1+K,G(z) =0 (3.22)

After that the modified Nyquist plot through the expression G(r"e/") can be drawn and

with the help of Nyquist stability criterion, the feasible gain intervals can be calculated.

The Nyquist path, which covers the whole z-plane outside of the unit circle (i.e.

instability region), is given as in Figure 3.1. In Nyquist stability analysis, it is expected

jor
e ——— _H__\\.‘\
Ve
/ / 7/ Ny \
J/ ,i/ \ \
{ — 1! L 1 | S (T
I]] r[\ v‘l| J 7Yz
\ \ /,’ /
\ N e J_/
\. 7 /
\\ /"’/ y,
\\"‘\H _v,,.,/"/(

Figure 3.1 : Nyquist path in z-plane.

to find the number of the unstable closed-loop system poles by just checking the
number of unstable open-loop system poles and the number of the encirclements of the

Nyquist plot around a critical point. However, here it is aimed to design a controller
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to guarantee the dominant pole placement. For this reason, it is required to modify the
Nyquist plot so that the Nyquist path encloses the circle which is located away from
the dominant poles instead of the unit circle. If the distance between the determined
closed-loop dominant poles and the origin is r then the Nyquist path should enclose

the circle whose radius is r”* (m is usually 3-5) as given in Figure 3.2. Since two of the

Figure 3.2 : Modified nyquist path in z-plane.

closed-loop system poles should be in the dominant region, the value of Z should be
two. In addition, from the open-loop system transfer function, the number of open-loop
poles which are outside of the circle of radius " (P) is also known. Therefore, if the
formula

N=2-P (3.23)

is used, it is possible to find the number of encirclements to guarantee dominant pole

placement.
Example 3.1:

Consider the following first order process with time delay.

1
G — —0.3s
() =177¢

The corresponding discrete-time transfer function with zero order hold can be obtained

by taking the sampling time as 0.1 seconds as below.

0.09516
Gz)= D
@) 23(z—0.9048)
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In the closed-loop, it is desired to control the given process with 5% overshoot and
6 seconds settling time. Corresponding closed-loop poles in z-domain are given as
follows.

212 = 0.933240.0654 = 0.9355¢0-07/

The PID controller parameters K; and K; can be calculated in terms of the parameter
K, as given below.

Ky = —3.103+7.5383K,

K; = 0.0493+0.0752K,
After that it is possible to find the closed-loop system characteristic polynomial and to

obtain the new transfer function by separating the parameter K, as mentioned in (3.22).

6(z) = 0.8195(z> — 1.8664z 4+ 0.87514)
Y T 26 1.9048425 +0.904842% — 0.29122 + 059132z — 0.2957

The magnitude of the dominants poles is r = 0.9355 and if m is chosen as 5,
non-dominant poles should be inside the circle of radius " = (0.9355)° = 0.7165.
In order to find the required encirclements using (3.23), number of the poles of G(z),
which are located in the dominant region, have to be found. If required calculations
are done, all poles of G(z) are found to be in the dominant region so P = 6 and the

required number of the encirclements is found as N = —4.

Im
10}

-10+

Figure 3.3 : Modified Nyquist plot of the given system (Example 3.1).

The Nyquist plot of G(r"e/Y) is drawn and the interval in real axis which satisfies

N = —4 is found. Figure 3.3 shows the modified Nyquist plot of the considered system.
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In the above figure, the red line represents the interval in which the number of the
encirclements is found to be N = —4. After that it is easy to find the feasible K, value
range since the intersection points of the real axis and Nyquist plot is found. Therefore,

-1 -1
—5.7937" —1.3937

K, € ( ) = (0.1726,0.7175)

is obtained. If the K, parameter of the digital PID controller is chosen from the
obtained interval, the closed-loop dominant poles are assigned to the dominant region
and the remaining poles are located in the non-dominant region. Figure 3.4 shows the

variation of non-dominant poles in the closed-loop.

Figure 3.4 : Variation of the non-dominant poles in z-plane (Example 3.1).

If the parameter K, = 0.55 is chosen, the designed discrete PID controller is given as

follows.

1.67877% —2.626z+1.038
C(z) =
z2(z—1)

Figure 3.5 shows the closed-loop pole configuration in z-plane with the designed

controller. The closed-loop transient response is illustrated in Figure 3.6 and the

control signal is given in Figure 3.7.

It is seen from the figures that the closed-loop system settles to its final value in 5.8
seconds with 5.6% overshoot. The obtained performance criteria in the closed-loop are
found to be very close to the desired ones. The small difference between the expected

and obtained performance specifications is caused by the controller zeros. On the other
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Figure 3.5 : Closed-loop poles with designed controller in z-plane (Example 3.1).

hand, the control signal is found to be smooth and in the proper limits; however, the

derivative kick phenomenon is observed at the beginning.

Due to the reasons given above, in order to eliminate the adverse effect of the
closed-loop (controller) zeros and the derivative kick phenomenon, the designed
discrete PID controller should be implemented in PI-PD structure as mentioned in
the previous part of the thesis. Thus, the dominant pole placement in z-plane is

successfully performed.

1-2 T T T T T T T T T

0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Figure 3.6 : Transient response of the closed-loop system (Example 3.1).
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Figure 3.7 : The control signal in the closed-loop (Example 3.1).
Example 3.2:

Consider a high order system with time-delay and one left half plane zero which is
given with the following open-loop transfer function.

s+3 o
Gls) = (s+1)2(s—|—4)2e ’

The corresponding discrete transfer function is obtained as follows by taking sampling
time as 0.4 seconds.

6(2) = 0.005562> 4+ 0.009967z% — 0.00213z — 0.000415

T (24— 1.74423 +1.03122 — 0.2361z+0.01832)

It is desired to control the given system in the closed-loop with 5% overshoot and
14 seconds settling time.

Corresponding closed-loop poles in z-domain are then
calculated as below.

712 =0.88564+0.1067 = 0.89210-12J

The K; and K; parameters of the PID controller is found as follows in terms of the
parameter K.

K; = —5.6144.424K,
Ki=0.2+0.1361K,

The closed-loop system characteristic polynomial can be found and the parameter K,

is separated from the equation as in (3.22). Using the same procedure in previous
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example, 5 poles of G(z) are found to be in the dominant region (P = 5) and the
required number of the encirclements is then found as N = —3 for the dominance

factor m = 3.

If the modified Nyquist plot of G(r"e/) is drawn as in Figure 3.8, the intersection
points of real axis and Nyquist curve is calculated and the gain interval which satisfies

N = —3 i1s found.

Re

-1.0

Figure 3.8 : Modified Nyquist plot of the given system (Example 3.2).

The resulting feasible gain interval is calculated as follows.

—1 —1
—0.62854" —0.55133

K, € ( ) = (1.591,1.8138)

As it is seen the obtained interval is a tight one; therefore, note that it is not always
possible to find such a K, range depending on the determined performance criteria and
dominance factor. In some cases, in order to guarantee dominant pole placement for

desired m value, it may be required to change the performance criteria.

If K, = 1.6 is selected, the discrete PID controller is given as below.

_ 3.4867° —4.5363z+1.4682
B z2(z—1)

C(z)

The locations of closed-loop dominant and non-dominant poles are illustrated in
Figure 3.9. It can easily be seen that the dominant pole pair is assigned to the
desired location, whereas, the remaining poles are located inside the disc of radius

P =0.8923 =0.7097.
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Figure 3.9 : Poles of the given system in the closed-loop (Example 3.2).

Figure 3.10 shows the closed-loop transient response of the system with the designed

PID controller. The closed-loop control signal is also illustrated in Figure 3.11.

1-2 T T T T T T T

0 1 | 1 | 1 Il Il
0 5 10 15 20 25 30 35 40

Time (s)

Figure 3.10 : Transient response of the closed-loop system (Example 3.2).

The closed-loop system settles to its final value in 15.7 seconds with 5.2% overshoot.
Although there is a slight difference, the closed-loop performance criteria are again

close to the desired ones. If the PI-PD structure is used, in this case zeros of the
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Figure 3.11 : The control signal in the closed-loop (Example 3.2).

controller do not have any adverse effects on transient response, thus, the performance

specifications are obtained as expected.

3.2.2 Design via Chebyshev polynomials approach

It is possible to obtain the Chebyshev representation of a discrete-time control system
with the help of first and second kinds of Chebyshev polynomials. Thus, the stabilizing
gains can be found by just solving sets of linear inequalities. The parametrization of
the stabilizing gains, which is based on a generalization of Hermite-Biehler theorem,
has already been given in [47]. However, the proposed method requires sign analysis
which is exponentially increasing as the order of the system increase. Therefore, in this
thesis, the Schur stabilization problem is solved through the Chebyshev polynomials
with the help of an easier procedure based on the well-known Nyquist stability criterion

as studied in [48].

Consider the closed-loop system characteristic polynomial with a discrete PID
controller given with (3.4). This polynomial can be separated into two polynomials,

which are constructed by dominant poles and the remaining poles, as follows.

P.(2,Kp) = (&2 = 20,24 (07 + 07))Pr(z,K)) (3.24)
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P.(z,K}) is a residue polynomial whose roots are desired to be placed in a disc of
radius 7" as mentioned earlier. Here, it is possible to use the Chebyshev polynomials

in order to calculate the stabilizing gains for the polynomial P, (r"'z,K,).

Consider the closed-loop control system with a constant gain (C(z) =K,). The

characteristic polynomial of the closed-loop system is given as follows.
Pe(2) = 14+ K,G(2) = ap?" +ap 17" +--- +arz+ag (3.25)

In order to find the interval of K, in which all roots of the polynomial P.(z) are located

inside the unit circle, it is required to determine the unit circle image of the polynomial
P.(2).
{PC (2): z=e, 0<0 < 27:} (3.26)

However, it is sufficient to determine the image of upper half of the unit circle since
the coefficients (;) of the polynomial P.(z) are real, P.(e/%) and P.(e/9) are complex

conjugate numbers. Therefore, it is possible to write,
{PC ) z=e® 0<6< Jr} (3.27)
Since
2. ,io = cos(kB) + jsin(k8) (3.28)
the following can be written
P. <ej9> = a,e’™? —I—an,lej(”_])e +--+ael® +ag

= (ancos(nB)+---+ap) +j(apsin(n) +- - -+ alsin(G)Z (3.29)

.

-~

R(6) 1(6)
=R(0)+,I(0)

sin(kO)
sin(0)

It is possible to write cos(k6) and as polynomials in cos(0) with the help of

0
Chebyshev polynomials. Let t = —cos(60). Then, it is clear that ¢ varies from —1 to

+1 as 0 varies from 0 to &. We have,

72 e/% = cos(0)+ jsin(0) = —t + j\/1—12 (3.30)

sin(0) = /1 —cos?(0) (3.31)

The first kind of Chebyshev polynomials is defined as below for ¢ € [—1,+1].

since

cx (t) =cos(kB), k=1,2,3,... (3.32)
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The second kind of Chebyshev polynomials is also defined as follows for ¢t € [—1,+1].

_ sin(k)

=——7, k=1,2,3,... .
() =Giigy =123 (3.33)

It can be shown that

1 dck(t)
1)=—-—
) =—174

and the Chebyshev polynomials satisfy the recursive relation given below [49].

(3.34)

1 (1) = —tep (8) — (1 —12) k() (3.35)

Table 3.1 : The first and second kind of Chebyshev polynomials.

k ci(t) si(t)

1 —t 1

2 262 —1 —2t

3 —443 43t 41> — 1

4 84 — 82 + 1 — 813 + 4t

5 —16¢° 42013 — 5¢ 16t* — 1262 + 1

Table 3.1 shows the first five of the first and second kind of Chebyshev polynomials
obtained with the help of (3.32) and (3.33). If the equations (3.32) and (3.33) are

substituted into (3.29) then

(. J/

P (ej6> ’t:—cos(@) = [ancy (t) + -+ +aicy (t) + ao
R(1)

(3.36)
+jV1—12 [ansy () + -+ +ays (l‘)l
(1)
P(t)=R(t)+ j\V1—-12T(¢t) (3.37)

Here, P,.(¢) is called the Chebyshev representation of the polynomial P.(z).

It is now possible to find all stabilizing gains for P.(z) via Chebyshev polynomials.

The characteristic polynomial can also be written as follows.
P.(z) =D(z) +K,N(z) (3.38)

The Chebyshev representations of the polynomials N(z) and D(z) are respectively

given as follows.

N () ——cote) = R (04 1V T2 Ti () (.39
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D () ooy = Ro () + VT2 T () (.40

If those equations are substituted into the numerator and denominator of G(z) then

_N(@) _Rvt)+jvV1-1*Ty()
D(t)  Rp(1)+jvV1—12Tp (1)

When the numerator and denominator of the above equation is multiplied by the

(3.41)

complex conjugate of the denominator, we have

G(Z‘) _RN (Z‘)RD(Z‘) -+ (1 —tz) Ty (l‘) TD(Z‘)
T RO A0 a2
TR Ty (t) — Ry (t) Tp(t)
I T (1-P)1E0)
G(f) = Re{G(t)} +jIm{G(1)} (3.43)

The Nyquist criterion can now be applied to the obtained system. For this purpose,
Im{G(t)} =0 (3.44)

should be solved. After that if the real roots of the above equation t* € [—1,+1] are
substituted into the real part of the G(z), this gives the intersections of the Nyquist plot
with the real axis. Hence, the gain intervals, in which the number of unstable poles is
the same, can be obtained as follows.
1
-, i=1,2,...
Re{G (1)}

The set of stabilizing gains (K),) can finally be found as the union of the gain intervals

T = (3.45)

(; where i = 1,...,q) in which the number of unstable poles is zero.

q
K,e A (3.46)
i=1

Example 3.3:

Consider the same system in Example 3.1 whose discrete-time transfer function is

given as follows.
0.09516

23(z2—0.9048)

If the closed-loop system characteristic polynomial is found and divided into its

G(z) =

dominant and non-dominant parts, we have,

Po(z,K,) = z* —0.0383572° —0.0419647% — 0.044755z — 0.337374 4-0.819662K,
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It is desired the roots of the above polynomial be inside the disc of radius " =
(0.9355)% = 0.7165. Hence the stabilizing gains can be calculated via Chebyshev
polynomials through the polynomial
P.(r"z,K,) = 0.263597z* — 0.01411062> — 0.021545z% — 0.0320687
+(—0.33737440.819662K),)

The Chebyshev representations of the N(z) and D(z) are obtained using the

corresponding first and second kinds of the Chebyshev polynomials as below.

Rp (1) =2.10878* +0.0564431> — 2.15187¢> — 0.0102647 — 0.052232
Tp (t) = —2.108781> — 0.05644261% + 1.09748¢ —0.0179574

Ry (1) =0.81966

Ty (t) =0

The Chebyshev representation G(f) can be constructed by substituting the above
expressions into (3.42). After separating the real and imaginary parts of the obtained

expression, the real roots (*) of (3.44) such that t* € [—1,+1] is calculated as follows.
7 =[—1,-0.74282,0.69967,0.016385, 1]

The gain intervals J#; are then found with the help of (3.45). As a final step, the
stabilizing gain interval is found by checking the number of unstable poles (u;) in

these intervals and given in Table 3.2.

Table 3.2 : Gain intervals and corresponding unstable root counts.

U G

4 0.059956 > 7| > —oo

3 0.064633 > %, > 0.059956
1 0.172633 > 73 > 0.064633
0 0.717538 > %4 > 0.17263
2 0.74794 > 5 > 0.7175
4 o0 > Hg > 0.74794

It is seen from the table that the stabilizing gain interval is found to be

K, € (0.17263,0.717538)
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which is the same result obtained via modified Nyquist method in the previous

subsection.

In the modified Nyquist method, calculation of the intersection points of Nyquist curve
and real axis may be challenging as the order of the system increases. However,
it can be said that the calculation of gain intervals with the help of the Chebyshev
polynomials approach is more straightforward process and can easily be handled with

a computer software such as Mathematica.

3.3 Digital PI-PD Controller Design In Dominant Pole Placement

3.3.1 PI-PD controller structure in discrete-time domain

In this section, it is aimed to explain the necessity and advantages of the PI-PD
controller structure in discrete-time domain. The block diagram related to PI-PD
controller is given in Figure 3.12. Here, PD controller is placed on the feedback path

in the inner loop and PI controller is placed on the forward path in the outer loop.

R(2) - Cri(2) G@) —,

Crp(2) [

Figure 3.12 : The structure of PI-PD controller.

In comparison to classical PID controller structure, the given 2-DOF controller
structure has some important advantages. One of the advantages is that it is possible to
locate the PI-PD controller zero anywhere in z-plane as desired. Thus, the adverse
effect of the controller zeros in the closed-loop (especially appearing in the PID
controller case) is eliminated by the PI-PD controller structure. On the other hand, it is
also possible to use this zero to eliminate one of the closed-loop real pole (undesirably)
located the in dominant region. Another advantage is that the transient response of the
closed-loop system does not have derivative kick phenomenon due to the fact that PD

controller is placed on the feedback path.
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Although the PI-PD controller has advantages over classical PID controller, the
controller design for 2-DOF structure may not be a straightforward process.
Nevertheless, it can be shown that there is a relation between the classical PID
controller structure and PI-PD controller structure. Thus, it is possible to carry out
the design process through PID controller structure and then to convert the obtained

controller parameters to the PI-PD controller parameters.

Let
G(z) = Ng (2) _ Binz™ + Bu—12" "+ -+ Biz+ Bo
Dq (2) o 1 gzt o

be an arbitrary order discrete-time transfer function of the system to be controlled. If

,m<n (3.47)

the considered system has time-delay, denominator of the transfer function will consist

of the corresponding poles located at z = 0 in z-domain.

Let us consider the closed-loop control scheme for PI-PD controller given in Figure

3.12 where the digital PD controller is given as

z—1
Cpp (z) = Kpa + KdT (3.48)
and the digital PI controller is given as
Z
CP[ (Z) = Kpi + Klz——l (349)

The closed-loop system characteristic polynomial for this control scheme can be

expressed as below.

P:(z) =K4Ng (z) — (Dg (2) + (2Ka + Kpa + Kpi) NG (2)) z (3.50)
+ (D¢ (2) + (Kpa + Kpi + Ki+ Kq) NG (2)) z |

Let us also consider the closed-loop control scheme for classical PID controller with
unit feedback, where the digital PID controller is expressed as follows.

_ Nc(z)  (Kp+Ki+Kg)Z>— (Kp+2Kq)z+ Ky

C(Z)_Dc(Z) B z(z—1)

(3.51)

The closed-loop system characteristic equation for the given block diagram is then

expressed as follows.

Pe(z) =K4Ng (z) — (Dg (z) + (2K4 + Kp) NG (2)) 2

(3.52)
+(Dg (2) + (Kp + Ki + Ka) Ni (2)) 2
Comparing (3.50) and (3.52), it is clear that as long as the equality
Kpd"‘Kpi :Kp (3.53)
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is satisfied, the location of the closed-loop system poles are the same; therefore,
the transformation between the PID and PI-PD controllers can easily be done.
Furthermore, in the classical PID controller structure, it is generally not possible to
place the controller zeros as desired and this can cause undesired behaviour in the
closed-loop transient response if the controller zeros are located in the dominant region
or even outside of the unit circle in z-plane. However, if the PI-PD controller is used,
the controller places two zeros, one zero to the point of z = 0 and the other zero to the

point of
Ki +K, pi

in z-plane and it is possible to choose its location arbitrarily as mentioned earlier by

Z (3.54)

adjusting the K,,; parameter.

For the reasons mentioned above, the digital PI-PD controller design problem is solved

by converting it to the digital PID controller design problem in this thesis.

3.3.2 Procedures of the discrete PI-PD controller design

In this section, it is aimed to present the summary of the algorithm to design a discrete
PI-PD controller using the given information in the previous sections. In order to
design a discrete PI-PD controller using the proposed method, the following steps are

followed.

Step 1: Determine the dominant pole pair (z; » = 0, + j®;) in z-domain with the help

of desired closed-loop performance criteria.

Step 2: Obtain the digital PID controller parameters K; and K; in terms of the

parameter K, using (3.18).

Step 3: Write the closed-loop system characteristic polynomial in terms of the
parameter K, by substituting the digital PID controller parameters found in

the previous step.

Step 4: Obtain the residue polynomial P.(z,K),), which is constructed by the

unassigned closed-loop system poles, as in (3.24).

Step 5: Determine the dominance factor (m) and calculate the radius of the disc (r")

in which the remaining poles are desired to be assigned.
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Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:

Obtain the polynomial P, (#"'z,K),) so that the relative stabilization problem

can be converted to the stability problem.

Collect the terms multiplied by K, together and obtain the N(z) and D(z) as in
(3.38).

Find the Chebyshev representations of the polynomials N(z) and D(z) using

the corresponding first and second kinds of the Chebyshev polynomials.
Construct G(¢) with the help of (3.42).

Find the real roots (+*) of (3.44) such that r* € [—1,+1] and calculate the gain

intervals .#; using (3.45).

The set of stabilizing gains (K},) is found as the union of the gain intervals
(), in which the number of poles located outside of the desired disc, is zero

(u=0).

Choose any K, from the stabilizing gain interval and find the PID controller

by calculating K; and K; parameters using (3.18).

Finalize the PI-PD controller design by choosing a proper K,; value such that

the controller zero is located inside the disc of radius .

If the K, interval is empty for u = 0 but a solution exists for u = 1, then choose
a proper Kj,; value such that the real pole located outside of the disc of radius
r™ is cancelled by the controller zero and finalize the PI-PD controller design.
However, this approach can be considered if and only if the real pole is located

in stable region and not very close to the unit disc.

If the solution set is found to be empty for both cases mentioned above, repeat

the design procedure for different m value and/or performance specifications.

Example 3.4 (Simulation Study For PI-PD Design):

In order to demonstrate the proposed design method through a simulation study, the

temperature control of crude oil in a fluidized catalytic cracking unit, which is studied

by Zou and Lie [43], is considered. Moreover, the proposed method is compared
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with the existing PID controller design methods in literature such as Ziegler-Nichols,

Internal Model Control (IMC) and H.. control as also performed in [43].
Consider the following first order plus dead time (FOPDT) model of the process.

G (S) K —Ls 1 672.53

BTN s+ 1)

Discrete transfer function of the system by taking the sample time as t; = 0.25 seconds

is given as follows.
0.060587

T 2-0.939413°
Let the closed-loop system time domain characteristics be desired as 11 seconds of
settling time with 0.5% overshoot. Corresponding dominant pole pair in z-plane is

calculated as below.
212 = Oz + jo, = 0.91177 £ j0.0492

Parametrization of the discrete PID controllers which assign dominant poles are done
as follows.

K; = 0.06539K, — 0.001963
K, = 5.3431K, —3.31962

The closed-loop system characteristic polynomial with PID controller with the above

parameters is given as follows.
P.(z,K,) = (2% — 1.82355+0.83375) P(z,K),)

where P,(z,K),) is the 11" order polynomial constructed by the remaining poles. The
unassigned poles are desired to be assigned in a disc of radius r = 0.7613 that means
the dominance factor to be m = 3. In this case, the polynomial P, (0.7613z,K)) is
constructed and the relative stability problem is converted to the stability problem.
In order to solve this problem, Chebyshev polynomials approach is used as proposed

earlier.
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The Chebyshev representations of the N(z) and D(z) are obtained using the

corresponding first and second kinds of the Chebyshev polynomials as below.

Rp (1) =—50.928:'1 —3.8795310 4 142.523/° + 8.31218¢°
—144.6t" — 6.2031° +64.1027¢° + 1.86138:* — 11.5815¢°
—0.195673¢> +0.588615¢ —0.2211

Tp (r) =50.982¢10 4-3.879531° — 117.032¢% — 6.37241+”
+92.4579¢% 4+ 3.5017¢° — 29.3164r* — 0.6645961°
+3.15751¢2 4 0.054359 — 0.073327

Ry (1) =0.388271

Tn (l) =0

It is now possible to construct the Chebyshev representation G(¢) by substituting
the above expressions into (3.42). After separating the real and imaginary parts of
the obtained expression, the real roots (1*) of (3.44) such that t* € [—1,+1] can be
calculated, thus, the gain intervals .#; can be found. As a final step, the stabilizing gain
interval is found by checking the number of unstable poles (u;) in these intervals and

given in Table 3.3.

Table 3.3 : Obtained Gain intervals and unstable root counts.

Ui Hi Ui Hi

11 0.43679 > %) > —co 3 0.70328 > 77 > 0.66397
9 0.43906 > %, > 0.43679 5 0.70862 > #g > 0.70328
7 0.44552 > ¢35 > 0.43906 7 0.71031 > %5 > 0.70862
5 0.4649 > 7, > 0.44552 9 0.71075 > #10 > 0.71031
3 0.56825 > 5 > 0.4649 10 0.96719 > 711 > 0.71075
1 0.66397 > g > 0.56825 11 oo > J#1p > 0.96719

It is seen from the table that there is not any solution for # = 0 which means that for the
chosen performance criteria and m value, it is not possible to place all the remaining
poles inside the disc of radius » = 0.7613. However, there exists a solution for u = 1,
thus, 10 of 11 closed-loop poles can be assigned away from the dominant region and

the remaining real pole can be cancelled using the PI-PD controller zero. For this case
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study, it can be shown that the remaining real pole is located in the stable region and

not very close to the unit circle.

The parameter K), is chosen from the interval of K, € (0.56825,0.66397) and the PID
controller design is completed. For K, = 0.65, the parameters of PID controller are
found as K; = 0.0405 and K; = 0.1534. The digital PI and PD controllers are then

given as follows.

Cpi (z) = Kpi+ 0.0405Z_L1

-1
Cpp (z) = (0.65—K) 1+0.1534° -
Z

The proper choice of the parameter K,; is made as K,; = 0.6835 by adjusting the
location of controller zero as mentioned above. The closed-loop pole zero map in

z-plane with digital PI-PD controller is depicted in Figure 3.13.

Im

Figure 3.13 : Pole-zero map of the closed-loop system with PI-PD controller.

As mentioned earlier, it is also aimed to show the performance of the proposed
controller over the controllers tuned by Ziegler-Nichols method, IMC method and H..

method.

1 1
—K. (1 T, .
C(s) ( e ds) T (3.55)

For the PID controller structure given by (3.55), the controller parameters are given as

follows for the Ziegler-Nichols method.

B 1.27

L
— 1 =2LT; = =,Tr = .
KLal s 4d 27f O (356)

K.
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The formula for the IMC method for the same controller structure is also given below.

7+40.5L T
K=———T=1+05LT; = Tr=0 3.57
K77 R A Fary (3:57)
For the H., method, the PID tuning formula is given by (3.58).
T; 7L A2
Ke=——t T =1+405LT=—Tj=——— 3.58
K(2A +0.5L) + 47 o T 22 405L (3.58)

Table 3.4 shows the calculated controller parameters for the considered system.

Table 3.4 : Controller parameters.

Parameters Z-N Method IMC Method H.. Method
K. 1.92 1.3125 1.3698
T; 5 5.25 5.25
1, 1.25 0.9524 0.9524
Ty 0 0 0.435
A — 2.75 1.2912

The simulation studies show that the closed-loop system has 0.5% overshoot and
settles to its final value in 11.85 seconds with proposed PI-PD controller. The
closed-loop transient response of the system is shown in Figure 3.14 with the proposed
PI-PD, Z-N PID, IMC PID and H.. PID controllers. In addition, the disturbance
rejection performances are also shown in the simulation studies by adding an input
disturbance with amplitude of —0.5 at the time ¢ = 100 seconds. The control signals
of the considered controllers are also depicted in Figure 3.15. Finally, some of the

closed-loop performance criteria and the control signal norms are given in Table 3.5.

It is obvious from the figures that the PID controller tuned by Z-N method causes high
overshoot and very oscillatory closed-loop response. The control signal has high initial
value and also undesired oscillations which is not acceptable for most of the systems.
On the other hand, the performance of IMC and H.. PID controllers are better than the
Z-N PID; however, the oscillatory response still exists and H. PID has around 5.3%
overshoot which may not be suitable for many systems. The initial values of control

signals are also high (especially for IMC) as said for the Z-N PID controller.

Compared with the other methods, the transient response of the proposed method is

very smooth and has nearly zero overshoot with acceptable settling time. Moreover, the
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Figure 3.14 : Closed-loop responses of the compared controllers.
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Figure 3.15 : Control signals of the compared controllers.

control signal is also low and very smooth which has a significant importance during
the implementation in a real environment. It is worth to note that the performance
specifications are very close to the desired ones, and the controller found by the
proposed method forms a better alternative especially when overshoot is not required
and/or there exist restrictions on the control signal. A possible disadvantage of the
proposed method is having a slower initial response (rise time) in comparison to the

other methods. This results in poorer ISE performance as can be observed in Table 3.5.
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Table 3.5 : Closed-loop performance criteria and control signal norms for nominal

system.
t,ls] | os[%] |2 4]]oo ISE
Z-N Method 18.92 45.6 19.07 19.2 3.104
IMC Method 11.6 0 18.34 13.81 3.318
H., Method 12.45 53 18.11 2.485 3.626
PI-PD Method 11.85 0.5 17.85 1.5 5.183

The robustness of the designed controller is also an important aspect due to the
fact that it is not possible to obtain the perfect mathematical model of a system.
In case of parametric uncertainties, it is important for a controller to perform an
acceptable closed-loop performance. For this reason, the considered controllers are
also compared by taking parametric uncertainties into account. All the parameters
of the FOPDT system (K, T and L) are changed +20% in magnitude simultaneously
and the closed-loop system responses are given in the Figure 3.16-Figure 3.19. In
addition, the worst values of settling time, overshoot and control signal norms under
parametric uncertainties are given in Table 3.6 (Z-N PID is not included due to the

unstable response in the worst case).

) 444

y(t)

\ oA ‘ \
3 r r r r M “ ot [ ‘ | ‘ r |l
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 3.16 : Z-N PID controller under parametric uncertainties.
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Figure 3.17 : IMC PID controller under parametric uncertainties.
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Figure 3.18 : H.. PID controller under parametric uncertainties.

200

Table 3.6 : Settling time, overshoot and control signal norms in the worst case.

ts [s] os [%] ||uel|2 || t4]|oo ISE
IMC Method 23.37 45.8 21.74 13.81 4.295
H., Method 36.75 50.36 21.61 2.485 4914
PI-PD Method 26.91 14.82 21.26 1.763 6.485
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Figure 3.19 : Proposed PI-PD controller under parametric uncertainties.

It is seen that the PID controller tuned via Z-N method could not tolerate the parametric
uncertainties and became unstable for some values of the system parameters. Thus, it
is not possible to use this controller if there is a chance that the parameters of system
changes +£20% in magnitude. The performance of IMC and H.. PID controllers under
parametric uncertainties is certainly better than Z-N method; however, the closed-loop
responses have very high overshoot values (around 50% in the worst case). The
closed-loop transient response with proposed controller is still smooth, has always
less than 15% overshoot even in the worst case and the disturbance rejection is also
acceptable. Therefore, it is clear that the performance of proposed PI-PD controller is

the best in terms of robustness.
Example 3.5 (Real-Time Implementation For PI-PD Design):

In this example, it is aimed to show the applicability of proposed PI-PD controller
design in a real environment. For this purpose, a fan and plate laboratory system, which
is illustrated in Figure 3.20, is considered. In this laboratory set, it is desired to control
the position of metal plate, which hangs in the air, in a specific reference position. The
movement of plate is provided by the air stream which is produced by a fan controlled
via an asynchronous motor. The asynchronous motor is driven by SINAMICS G110
industrial driver and Beckhoff CX9000 PLC is used as a main controller unit. The

output of the system (plate angle) is measured by a potentiometer element.
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Figure 3.20 : Fan & plate laboratory system.

Linear model of the system is obtained as a second order plus time delay (SOPTD) via

system identification as below.

14.877 -
G i . S
()= 532005 4513

The open-loop step response of the system is given in Figure 3.21. The discrete transfer

function of the system is obtained by taking sampling time as #; = 0.05 seconds as

follows.
@) = 0.016546 +0.017457z
Y= 0.85206 — 1.7348z + 22°
70
60 -
£ o f
2
© a0+ -
30~ -
20 r r r r r r r r r
5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10
Time (s)

Figure 3.21 : Open-loop response of the fan and plate laboratory system.

92



It is desired to place the dominant poles to the points of
210 =0;+ jo, = 0.9+ j0.0947

which means that 5% overshoot and 2 seconds of settling time in the closed-loop. It
is now possible to find the PID controller parameter set (K, K;, K;) which assigns the

dominant poles as follows.
K; =0.26248 +0.11707K,,
Ky =3.63563 +5.04544K,,

The next step is to find the interval of K, such that the remaining poles are located
inside a disc of radius r = 0.7788 in z-plane. The closed-loop system characteristic

polynomial and the residue polynomial are found as below.

P.(z,Kp) = (22 — 1.8+ 0.819) P(z,K),)

P.(z,K,) =2 —0.9352° +0.08537° 4 0.067z* +0.05072° + 0.03647

+(0.0921 +0.1076K,)z +0.07347 + 0.102K,,

Here, the Chebyshev polynomials approach can be used after the polynomial
P.(r'""z,K},) is obtained so that the pole assignment problem is converted to the stability
problem. After that if the polynomial P, (r"z,K),) is re-arranged as given in (3.38), the
Chevbyshev representation of the N(z) and D(z) can be obtained using the first and

second kind of Chebyshev polynomials as follows.
Rp (1) = 0.2846 + 1.095¢ — 3.907¢> — 9.34r> + 10.21¢* + 19.075¢° — 6.675¢° — 11.12¢7

Tp (1) = —0.108 + 1.306¢ 4 3.9741> — 6.872¢> — 13.5141* +6.675> + 11.12¢°
Ry (t) = 0.102 — 0.0838¢
Ty (1) = 0.0838

The next step is to construct G(¢) with the help of (3.42) and to calculate its real and
imaginary parts. After that it is possible to find the real roots (¢*) of (3.44) such that

t* € [—1,41] and to calculate the gain intervals .%; using (3.45) as below.
7 ={-1,-0.914,—-0.808,—0.297,0.217,0.673,0.939, 1}
H;={—11.154,-3.262,—1.191,—1.106,—0.812,0.849,4.01,21.08 }

93



Table 3.7 : Gain intervals and corresponding unstable root counts.

u; Hi u; H;

7 —11.154 > 2] > —oo 2 0.849 > g > —0.812
5 —3.262 > Jt, > —11.154 4 4.01 > o7 > 0.849
3 —1.191 > 3 > —3.262 6 21.08 > g > 4.01

1 —1.106 > ¢4 > —1.191 7 oo > 9 >21.08

0 —0.812 > J#5 > —1.106

The stabilizing K), range is then found by calculating the unstable root count (;) in the

obtained gain intervals. The resulting gain interval is found as follows.

K, € (—1.106,—0.812)

As long as the K, parameter is selected in the obtained interval, non-dominant poles
are assigned in a disc with radius r = 0.7788. Therefore, the proper choice can be
done by observing the control signal or the location of the zeros. If K, = —0.82 is
chosen, the PID controller parameters are given as K; = 0.1665 and K; = —0.5016.
The resulting discrete-PID controller is expressed as below.

z—1

Clz) = —0.82+0.166si1 —0.5016
— Z

Firstly, the designed digital PID controller is analyzed before the calculation of
corresponding digital PI-PD controller. The pole-zero map of the closed-loop control
system with the designed PID controller in z-domain is given in Figure 3.22. As it is
seen from the figure, the dominant poles are assigned to the desired locations as the
remaining poles are located inside the disc with the radius of r = 0.7788 in z-plane.
However, the closed-loop system has one zero outside of the unit circle; therefore, an

inverse response is expected to be observed in the step response of closed-loop system.

The closed-loop system transient response with the designed discrete PID controller is
illustrated in Figure 3.23. In the figure, both simulation (carried out through Simulink)
and real-time data for fan and plate system are shown. The real-time data shows that the
system settles to its final value in around 2.5 seconds with 7% overshoot. The obtained
closed-loop system performance criteria are close to the desired ones; however, the

inverse response is an undesired phenomenon.
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Figure 3.22 : Pole-zero map of the closed-loop system with PID controller in

z-domain.
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Figure 3.23 : Step response of the closed-loop system with the digital PID controller.

Now, the digital PI-PD controller structure is constructed with the help of designed
digital PID controller parameters. In this example, a solution exists for u = 0; therefore,
the controller design can be finalized by choosing the K),; parameter such that the
closed-loop system zero is assigned away from the dominant pole region. Thus, the

inverse response caused by the PID controller zero is also eliminated.
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For instance, the location of zero is calculated as z = 0.231 for K,; = 0.05. In this case,

the PI and PD controllers are given as follows.

Cpi(z) = 0.0540. 1665%
Z_

1
Cpp (z) = —0.87 — 0.501627

such that

Ky =Kpi+Kpg = —0.82

Im

" Re

®
=Y

[ »
- -
emamme

Figure 3.24 : Pole-zero map of the closed-loop system with PI-PD controller in
z-domain.

The pole-zero map of the closed-loop control system with the proposed digital PI-PD
controller in z-plane is given in Figure 3.24. The locations of closed-loop system poles

are the same as expected; however, the controller zeros located inside the unit circle

and away from the dominant region.

The step response of closed-loop system is also depicted in Figure 3.25. Here, both
simulation and real-time data for the fan and plate system are given again. It is seen
from the figure that the system settles to its final value in around 2.3 seconds with 5%
overshoot. Moreover, in this case, the inverse response phenomenon does not occur as

expected from the proposed digital PI-PD controller.
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Figure 3.25 : Step response of the closed-loop system with the proposed PI-PD
controller.

Note that the proposed design method relies on the placement of dominant pole pair
to the desired points and the remaining poles m times away from the dominant poles.
However, it is not always possible to place the non-dominant poles as desired for the
chosen performance specifications and m value. Therefore, if the resulting controller
set is found to be empty then the given design process should be repeated for different
m value and/or performance criteria until obtaining a non-empty controller parameter

set. This can be stated as a drawback of proposed design method.

In many real world applications, overshoot is not required or only a very small
overshoot is allowed. It is shown through examples that the proposed method can
be used for such applications by choosing the dominant pole locations to provide a

critically damped response.

3.4 Calculation of the Maximum Dominance Factor with Digital PID Controller

It is clear that the dominance factor (m) has an important place on transient response
of the system. In general, it is possible to say that the closed-loop system acts closer
to the desired behaviour as the dominance factor increases due to the fact that the
effect of the remaining poles on system response becomes negligible. However, it is
obvious that it is very hard task to place all the remaining poles inside a disc with a

very small radius just using a gain (K),). Consequently, during the controller design, it
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can cause the resulting controller set to become an empty set, if the dominance factor
is chosen too high. For this reason, here, it is aimed to find the maximum achievable
dominance factor, in other words, the disc with smallest possible radius in z-plane for

which dominant pole assignment is possible.

Consider the polynomial P,(z,7,K,) which is constructed by unassigned closed-loop
poles where the parameter 7 is given as 7 = (\/W)m In order to find the
minimum value of the 7, it is possible to use different approaches. Routh-Hurwitz
method is the first method to be used with the help of bilinear transformation given as
follows.

T — (3.59)

w—1
If the Routh table is created from the polynomial given in (3.60),

P (w7, Kp) = o (7, Kp) wr + a1 (F Kp) W 4o+ o (7, K ) (3.60)

it is possible to say that the inequalities

o (7,Kp) >0, og_1 (7,Kp) >0,

— Ol (7, Kp) O3 (}7, Kp) + 01 (7, Kp) Ol_» (f,Kp) <0 (361)
1 (f,Kp) ,
or
(073 (f’, Kp) <0, o (f,Kp) <0,
— Ol (f,Kp> O3 (7’, Kp) + o (f,Kp) 02 (f,Kp) (3.62)

- <0, ...
O —1 (F,Kp)

define a region in two dimensional 7 — K}, plane. The stabilizing region is then obtained
as an intersection of all these inequalities. Thus, the minimum value of the radius can
be obtained, or for a chosen 7 value, the interval of the parameter K, can be found

graphically.

If the inequalities from the Routh table are found to be too complex (i.e. the order of
the system is too high) then the gridding approach may be used over the parameter 7.
After that either Routh-Hurwitz method or Chebyshev polynomials approach can be

used to find the stabilizing K, range.
Example 3.6:

Consider again the same system presented in Example 3.1 which has the following

open-loop discrete-time transfer function.

0.09516
Gz)= D
@) 23(z—0.9048)
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If the closed-loop system characteristic polynomial is found in terms of the parameter
K, for the same desired performance criteria, and the residue polynomial is calculated

we have,
P(z, Kp) =7 —0.0383577° — 0.0419647> — 0.0447557 — 0.337374 + 0.819662K,

It is desired to place the roots of the above polynomial inside the disc of minimum
possible radius 7. The modified polynomial is then obtained as below.
Pi(z,7,K,) = i*z* — 0.0383577 2% — 0.0419647°> — 0.04475577
+(—0.337374 4 0.819662K),)
Here, the above polynomial can be transformed into continuous-time stability plane
using (3.59) and Routh table can be created. Finally the inequalities written from the
first column of the table define a region which is illustrated in Figure 3.26 in 7 — K,

plane.

z 0 \

Figure 3.26 : The obtained region in 7 — K, plane (Example 3.6).

After the calculations, the minimum value of the radius is found as 7 = 0.365 which

means that the maximum value of the dominance factor be
" =1(0.9355)" =0.365 — m=15.11

The value of the parameter K, for the maximum dominance factor can be found via
Routh table or from the obtained figure graphically as below.
K, =0.4189
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The designed digital PID controller is then given as follows.

1
C(z) = 0.4189 + 0.0808% 100555~
Z— Z

Figure 3.27 shows the closed-loop poles of the considered system with the designed
controller. It is seen that all of the non-dominant poles are located inside the disc of

radius 7 = 0.365 as expected.

Im

Figure 3.27 : The poles of the system in the closed-loop (Example 3.6).

Example 3.7:

Consider the discrete transfer function of the fan and plate laboratory system.

Go)— 0016546 400174572
Y= B2 —1.7348210.85206)

The closed-loop system characteristic polynomial can then be found in terms of the
parameter K, for the desired performance criteria (2 seconds of settling time, 5%
overshoot), and the residue polynomial can be calculated as follows.

P.(z,K,) = 2/ —0.935072% +0.085262° +0.06695z* +0.05069z>

+0.0364132% + (0.092082 +-0. 10758K,)z+0.073474 +0.101965K,,
It is again desired to place the roots of the above polynomial inside the disc of
minimum possible radius 7. The modified polynomial can be obtained and transformed
into continuous-time stability plane using bilinear transformation. As a final step, the
inequalities written from the first column of the Routh table define a region in 7 — K,

plane. Figure 3.28 shows the obtained region via Mathematica.
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Figure 3.28 : The obtained region in 7 — K}, plane (Example 3.7).

If the required calculations are done, the minimum value of the radius is found as
7=0.7385 which means that the maximum value of the dominance factor be m = 3.03.
The value of the controller parameter K, for this dominance factor can be found via

Routh table or from the above figure graphically as follows.
K, = —0.948

The designed digital PID controller is given as follows.

—1.9439572 +3.242887 — 1.14744
C(z) =
z2(z—1)

Figure 3.29 shows the closed-loop poles of the considered system with the designed
PID controller. It is seen that the non-dominant poles are located inside the disc of

radius 7 = 0.7385 as desired.

3.5 Limitations on the Dominant Poles Selection in Z-Plane

In the previous section, it is aimed to find the controller parameters such that two of
the closed-loop system poles are assigned to desired locations and rest of the poles
are located inside a disc with smallest possible radius in z-domain. It means that the
performance specifications in the closed-loop poles are known; however, the maximum

dominance factor (m,,,,) is desired to be found.
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Figure 3.29 : The poles of the system in the closed-loop (Example 3.7).

In this part of thesis, the inverse problem is expected to be solved. If the dominance
factor or the radius of disc in which non-dominant poles are assigned is predetermined,
the question “What is the limitations on closed-loop performance criteria with discrete
PI or PID controllers designed via dominant pole placement?” becomes an important
subject to examine. This problem is more meaningful since it is generally enough for
the dominance factor to be between 3 and 5 (i.e. predetermined). In order to satisfy
this dominance factor, the closed-loop dominant poles should be located in a particular
region in z-domain, otherwise, it may not be possible to assign the remaining pole

inside the disc with desired radius.

3.5.1 PI controller case

Consider the open-loop discrete transfer function given with (3.1) and a discrete PI
controller given with (3.2). The parametrization of the discrete PI controller is already
given in (3.15). If those parameters are substituted into the characteristic equation, it
is again possible to obtain the polynomial which is constructed by unassigned poles in

terms of the o, and @, as below.

P.(z,0;,0;) = (z2 —20,z+ (Gzz + a)zz)) P, (z,0;,0,) (3.63)
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After the polynomial P,(r"z,0;,®,) is found for a desired dominance factor, as in
the previous section, Routh-Hurwitz method can be used with the help of bilinear
transformation in order to find the dominant pole region in 6, — @, plane (actually in
z-plane). This region is obtained by drawing the intersection of the regions defined
by the inequalities written from the first column of the Routh table. Thus, closed-loop

performance limitations with discrete PI controller is found.
Example 3.8:

Consider the following system which is desired to be controlled with a digital PI

controller.
B 0.001769 +0.04917

602 = = 3(;=0.94908)

It is desired to assign non-dominant poles m = 5 times away from the dominant pole

pair. In this case, the closed-loop performance limitations can be found using the

proposed method.

Let dominant pole pair be z;» = 0; + jo, then for m = 5 the discrete PI controller
parameters (K, (o, ®;),Ki(0;,®;)) can be obtained in terms of the location of
dominant pole pair by solving (3.15). After that the polynomial P, (z, 0, ®;) can be

constructed as below.
P (2,05, @) = 52+ 867 + 812+ &

where
& = —0.1352562 +0.10816% 4-0.036720, — 0.0360% 4 (0.00246 — 0.145640?2) o,
+(0.0266 +0.07206 ) o2
81 = 0.00123 —3.68207 + 307 +0.94778w? — w? + (0.06333 — 3.97w7%)0,
+(0.6721 +20?) o7
8 = —0.00253 — 1949102 + (—0.13785 — 1.804960;, + 207 +20?) 0,

8 = 0.0013+0.072060; + 07 + o

If the following transformation is used for r = (Gzz + wzz)S/ 2
1
Tz +
w—1

and the Routh table is created, then the regions, which are drawn with the help of the

inequalities, can be given as in Figure 3.30.
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Figure 3.30 : Regions obtained from the first column of Routh table (Example 3.8).

If the intersection of these inequalities are found and the stability region in z-domain
2 2
o, +w; <1

is also considered, the region in which the dominant pole pair can be assigned is found

as follows.

1.0
05

0.0

jo,

-0.5

_1-0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 L L L 1
0.0 0.2 0.4 0.6 0.8 10

0

Figure 3.31 : Dominant poles region in z-plane with PI controller (Example 3.8).
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As a result, if non-dominant poles are desired to be placed 5 times away from the
dominant pole pair with a discrete PI controller, there is a limitation on dominant pole

pair selection and this limitation can be seen from the Figure 3.31.

Let dominant poles be chosen as
712 = 0.88 £ j0.07

from the obtained region in z-plane. In this case, the discrete PI controller can be found

as below.
2.7272z—2.4835

z—1

Gpi(z) =

The closed-loop pole map is given in Figure 3.32 and the closed-loop unit step response

is given in Figure 3.33.

Figure 3.32 : Closed-loop poles with designed PI controller (Example 3.8).

3.5.2 PID controller case

If the limitations on dominant pole pair selection is desired to find for discrete PID
controller case, the same procedure can be followed. The polynomial which is
constructed by unassigned poles does not only depends the parameters o, and @, but
also the parameter K),. Therefore, the inequalities written from the first column of the
Routh table for the polynomial P, (r"'z, 0, @;,K},) defines a region in 3-dimensional
0, — ®, — K}, plane. For a particular K, value, the solution of the problem is simplified

to 2-dimensional region in z-plane as in PI controller case.
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Figure 3.33 : Transient response with designed PI controller in closed-loop (Example
3.8).
Example 3.9:

Let us consider the same system which is used in PI controller case.

0.001769 +0.0491z
(@) = —57—
z2(z2—0.94908)

It is again desired to assign non-dominant poles m = 5 times away from the dominant
pole pair. The closed-loop performance limitations with discrete PID controller can be

found by following the same procedure in previous example.

Let dominant pole pair be z1» = 0; + j®, and the dominance factor be m = 5.
The discrete PID controller parameters (K;(o;, @;,K,),K4(0;,®;,K,)) can again be
obtained in terms of the location of dominant poles via (3.18). However, in discrete
PID controller case the inequalities from the first column of the Routh table also
depends on the controller parameter K,, as mentioned earlier. Thus, the region is

obtained in (o, — ®; — K},) 3-dimensional space.

After the closed-loop system characteristic polynomial is obtained in terms of the
parameters o;,®, and K, the modified polynomial can be obtained for r = (O'Z2 +
(022)’"/ 2. It is then possible to create the Routh table and obtain the inequalities from
the first column. If required calculations are done via Mathematica, which allows

symbolic calculations, the obtained region is depicted in Figure 3.34.
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Figure 3.34 : Dominant poles region with PID controller (Example 3.9).

It is possible to see the limitations on dominant pole pair selection from the obtained
figure if the dominance factor is desired to be chosen as m = 5. For instance, let us

obtain the region in z-plane for K, = 1 as in Figure 3.35.

1.0F ]

-1.0-

0.6 0.7 0.8 0.9 1.0

Oz

Figure 3.35 : Dominant poles region in z-plane for K, = 1 (Example 3.9).

Let dominant poles be chosen as

212 = 0.925 £ j0.05
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from the obtained region in z-plane for K, = 1. The designed discrete PID controller

can be given as follows.

—2.458857%2 +6.10772z — 3.55386

Gpip(z) = =1

Finally, the closed-loop poles are illustrated in Figure 3.36 and the closed-loop

transient response is given in Figure 3.37.

Im

Figure 3.36
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Figure 3.37 : Transient response with designed PID controller in closed-loop
(Example 3.9).
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Please note that both for discrete PI and PID controller case, limitations are found
through closed-loop poles. Thus, the locations of closed-loop zeroes can affect the
transient response as can be seen from the examples. Therefore, as proposed earlier,
the PI-PD controller structure can be used to eliminate this adverse effect at least for

the PID controller case.

3.6 Dominant Pole Region Assignment in Discrete-Time Domain

In this section, it is aimed to perform the dominant pole region assignment (DPRA)
with discrete P/PI/PID controllers as performed in continuous-time domain in the
previous chapter. The methodology is very similar to the DPRA in continuous-time
domain; however, here, it is easier to design such controllers for time-delay systems
by taking advantage of discrete-time domain. First of all, the proposed method is
explained through P controller and then it is extended to design PI and PID controllers

via DPRA.

3.6.1 P controller case

In general, P controller is not useful to control a system due to the fact that it is
not always possible to achieve desired performance criteria since there is only one
parameter to be tuned. On the other hand, steady state error is observed because there
is no integral term. However, the DPRA problem for PI and PID controllers is similar

to the method used for the P controller.

In the dominant pole region assignment, it is aimed to assign two of the closed-loop
in the desired region whereas the remaining poles are also desired to be located in a

region away from the dominant region.

Let (3.64) be the characteristic polynomial of a closed-loop control system with P

controller

P(z) = 1+KP% =0 (3.64)

and z = f(7) be one of the boundary function of D-region in which dominant poles are
desired to be assigned. For the open-loop transfer function G(z), the following can be

written,
. NRe + jNim

G(f(y)= Dre & iDin (3.65)
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where

Dy =1Im [D(f(’}/))] yDge = Re [D(f(Y)H

Nim =Im[N(f(¥))],Nre = Re [N (£(7))]
Let us rearrange the expression (3.65) as follows.

(NreDRe + NimDim) + j(NimDge — NreDim)
Dg,+Dj,

G(f(y) = (3.66)

and by defining
X(Y) — NReDRe +NImDIm

Y (Y) = NimDge — NreDim
Z(}’) :DIZ?e +D%m

it is possible to write following equality,

Guw»:§%+§%§ 3.67)

Here, the critical frequencies ("), which cause roots to cross the boundary z = f(7y) in

complex z-plane, can be calculated using (3.68).

Immumnzggzo G 63)

After that the intersection points (x;) of Nyquist curve and real axis can be found with

the help of following expression.

X(r)
xi=Re[G(f(y))] = =% (3.69)

= RG] =55
It is now possible to calculate the gain intervals with the help of Nyquist theorem. The
gain intervals can be found by J%; € <—%, _x++1) such that x; < x;4; fori=1,2,...

and the union of these intervals, in which number of the closed-loop system poles ()
located outside of dominant pole region becomes as desired, gives the final interval as
follows.

K e |J% (3.70)
j=1

Please note that this procedure should be repeated for each boundary of the desired
D-region in z-plane. As aresults, the interval of the controller parameter K, to provide
DPRA is found as follows. .
K, € (K, (3.71)
j=1

110



If the resulting set is found to be an empty set, it means that there is not any P controller

which assign the closed-loop poles to the desired regions.
Example 3.10:

The open-loop transfer function of a first order plus dead time (FOPDT) system is

given as follows.

|-
G — a8
() =177¢

The discrete transfer function by taking sampling time as 0.1s is found as below.

0.09516
G2) = 5 90a837°

In the closed-loop, it is aimed design a P controller such that the dominant poles
are assigned in the region between the discs of radius 0.8 and 0.9. Moreover, the

non-dominant poles are desired to be located inside the disc of radius 0.6.

The boundaries can be given as follows.

fi() =0.9¢, fo(y) = 0.8¢”7, f3(¥) = 0.6¢’" | y € [0,27]
For the first boundary, the root count outside of the corresponding disc should be 0
whereas for the other boundaries, it should be 2.

If the expressions G (y) are obtained for every desired root boundaries and the proposed
method is applied, the critical frequencies are found for the considered boundaries as

follows.

Table 3.8 : Critical frequencies calculated for G (y),G2(y) and G3(7).

0| 0 |03457 | 1.0462 | 1.7448 | 2.4432 | 3.1416
Im[Gy(y)] =0 | 0 | 02468 | 1.0229 | 1.7337 | 2.4385 | 3.1416
0 0 |09652|1.7064 | 2.4267 | 3.1416 | -

It is now possible to find the intersection points of Nyquist plot and real axis. After that

the gain intervals and corresponding anti-D-stable root counts can be found as follows.

As a result, the P controller gain should be selected from the interval of
3
K, € [ K; € (1.008, 1.568)
j=1
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Table 3.9 : Gain intervals and unstable root counts for G;(y).

U; Hi uj H;
5 —11.69 > £ > —oo 2 9.53> 5 >2.14
3 —6.216 > 5 > —11.69 4 12.443 > Jt5 > 9.53
1 0.0334 > J#3 > —6.216 5 o > Jf7 > 12.443
0 2.14 > %4 > 0.0334

Table 3.10 : Gain intervals and unstable root counts for G,(7y).
Uu; i uj H;
5 —6.89 > 1 > —oo 2 5.601 > %5 > 1.008
3 —3.613 > % > —6.89 4 7.338 > 6 > 5.601
1 0.451 > 753 > —3.613 5 oo > 7 > 7.338
0 1.008 > 74 > 0.451

Table 3.11 : Gain intervals and unstable root counts for G3(7).
U; Hi Ui K
5 —1.925 > 1 > —oo 2 1.568 > J74 > 0.415
3 —1.02 > % > —1.925 4 2.049 > 5 > 1.568
1 0.415> 3 > —1.02 5 o0 > K >2.04

It means that if the K}, is chosen within the obtained feasible gain interval, the desired
closed-loop pole configuration is guaranteed to be satisfied in z-domain. If K, = 1.567
is chosen which is one of the limit values, the closed-loop poles in z-domain calculated

as below and are given in Figure 3.38.
212 = 0.81575 £ j0.262
734 = —0.08112 £ j0.5944
z5 = —0.56443

It can be seen from the figure that the dominant poles are assigned to the desired
dominant pole region in z-domain and the remaining poles are located in the desired

non-dominant pole region.
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Figure 3.38 : Closed-loop poles with P controller (Example 3.10).

3.6.2 PI and PID controller cases

For the design of discrete PI controller, first of all, the parameters K, and K; should be
written in terms of the boundary function ( /(7)) parameter y for the desired dominant
pole region. After that these boundaries should be transferred to the PI controller
parameter space one by one. It gives the PI controller parameter set such that the
dominant pole pair is assigned into the dominant region. However, the remaining poles
should also be located inside the desired non-dominant pole region which is generally
given as below.

P ={zeC| [ <r<1,reR"} (3.72)

If these boundaries are also transferred to the parameter space, then the 2 dimensional
K, — K; plane is divided into several regions. The region in which the unassigned poles
are located inside the desired non-dominant region gives the solution set (unless it is

an empty set).

The discrete PID controller design via dominant pole region assignment is almost same
as the design of discrete PI controller. However, in this case, the controller parameter
K, = k;, is fixed and the boundaries are obtained in 2 dimensional K; — K; plane.
Finally by gridding the K, parameter, whole set of PID controllers which perform
the DPRA is obtained.
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Example 3.11:

Consider the open-loop transfer function of a system given below.

62 = 0.01655+0.017467 _s
YT 21734824 0.8521°

Let dominant poles be inside an elliptic region given by the boundary function,

where

a=0.5,b=025c=05

which actually limits the damping ratio in z-plane and also in the region between the

discs whose boundary functions are

f(r) =0.95¢77, f3(y) = 0.85¢7"

The remaining poles are also desired to be inside of the disc of radius r = 0.72. Figure

3.39 shows the desired dominant and non-dominant poles region in z-plane.

Im

0.5 0

Figure 3.39 : Desired dominant and non-dominant poles region (Example 3.11).
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The closed-loop system characteristic polynomial with discrete PID controller can be

found as follows.
P:(z) =0.01655K; + (—0.015635K; — 0.01655K),)z

+(—0.01837K, +0.01655K; — 0.00091K, )z>
+(0.01746K, +0.01746K; +0.01746K )7’

—0.852062° +2.586977 —2.73487° + 7
Here, the four edges of the dominant pole region (Figure 3.40) can then be substituted
into characteristic polynomial through the boundary functions given above and the
parameter K; and K, can be obtained in terms of y for a fixed K, = kj,. After that the
corresponding boundaries can be found in K; — K; plane with the help of frequency
sweeping between y € [y, y*].

Im
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-0.05

Figure 3.40 : Boundaries of the desired dominant pole region (Example 3.11).

Let us choose the parameter K, = —0.82. In this case, for the first dominant pole
region boundary, it is possible to solve the following complex equation and obtain the

parameters K; and K; in terms of 7.

Re (P (0.5+0.125¢777 +0.375¢/7)) =0
e (P ‘ N0 — . k)

Im (P (0.5+0.125¢777 +0.375¢/7) )

After that for y € [0.4826, 0.853] (which can easily be obtained), it is possible to draw

the corresponding boundary in K; — K; parameter space. If the explained procedure is
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done for all boundaries both for dominant and non-dominant pole regions, the regions

in parameter space is obtained as in Figure 3.41.

0.5 v T
0.4

0.3
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0.0 \

-0.17

-0.2 : : ‘

-2 0 2 4 6 8
Kd
Figure 3.41 : Corresponding sub-regions in parameter space for K, = —0.82

(Example 3.11).

The grey region constitute a solution to the defined problem. In other words, if the
PID controller parameters are chosen from the obtained region, two of the closed-loop
poles are assigned into the desired dominant region whereas the remaining poles are

located inside the disc of radius 0.72.

Let the discrete PID controller parameters be
K,=-082, K;=—1.1, K;=0.17

The closed-loop poles in complex z-plane is then obtained as follows.

Here, it is again possible to use the discrete PI-PD controller structure to avoid the

adverse effects of controller zeros as necessary.

Note that similar to the continuous-time domain case, the remaining poles can not
always be located away from the dominant pole region especially if the order of
considered system is too high. Since PI/PID controllers can assign only limited number

of poles in the closed-loop, the resulting solution set in parameter space may be an
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Figure 3.42 : Closed-loop poles in z-domain with discrete PID controller (Example
3.11).

empty set. Therefore, if there is not any sub-region that satisfies the desired pole

configuration, the design process should be repeated by changing the performance

criteria and/or dominance factor.
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4. ROBUST DOMINANT POLE PLACEMENT WITH PID CONTROLLERS
FOR PARAMETRIC UNCERTAIN SYSTEMS

For most of the real applications, the linear models of the physical systems can not
be obtained precisely due to the fact that inaccurate description of the characteristics
of system elements, torn-and-worn effects on the system components, hysteresis
and non-linearities, changes in the operation points and other unmodelled/neglected
dynamics, thus, the model contains uncertain parameters [50, 51]. If the system
parameters are not known exactly but their intervals are known then it is defined as
a parametric uncertainty. In order to analyse the stability of systems with parametric
uncertainties, there are well-known methods such as the Kharitonov theorem, the edge

theorem, the mapping theorem and the Tsypkin-Polyak loci [6,30,31].

Design of robust PID type controllers for uncertain parameter systems has an important
place. Many researchers have been studied and still continue to study on stabilization
of the entire plant using robust PID type controllers via different techniques [34—39].
Although the robust stability of a closed-loop system is the most important criterion,
the robust performance is also important. However, in most of the robust PID controller
design studies and mentioned references in this paper, only the robust stabilization case
is considered. For the robust performance, in some of the studies, the PID controller
parameters which satisfy some performance criteria is obtained from the resulting
stabilizing set by using an optimization or just trial-error approach. There also exists
few studies in which the robust performance is satisfied through the gain and phase

margins.

It is clear that a robust PID controller design method, which directly handles the robust
performance problem, is required. Here, one of the first approaches that come to
mind for the mentioned problem is pole placement approach. It is known that the
pole placement approach is one of the most popular technique to design feedback
controllers [46]. Here, it is aimed to consider even the higher order system as a second

order system by assigning the non-dominant poles away from the dominant pole pair
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which directly affects the desired time domain characteristics such as settling time and
overshoot. If the robust PID controller design is combined with the dominant pole
placement approach, it becomes possible to consider robust performance problem in a

systematic way.

In this chapter, a robust PID controller design method is proposed for the parametric
uncertain systems via dominant pole placement approach. Here, it is desired two of the
closed-loop poles to be assigned in a desired region, whereas, the remaining poles are
located away from the dominant pole pair. Thus, it is aimed to achieve the desired
closed-loop response under all possible perturbations. The robust PID controller
design method is firstly given for the interval type characteristic polynomials with
the help of vertex results. After that the proposed method is generalized to cover the
affine-linear type characteristic polynomials. The method is based on the well-known
robust stability theorems and the generalized Nyquist theorem. The resulting PID
controller is then implemented in PI-PD controller structure in order to eliminate
the adverse effects of the zeros in the closed-loop. Success of the proposed design
methods are demonstrated on example transfer functions through simulation studies.
It is shown that the designed robust controllers satisfy the desired pole configuration
in the closed-loop and the closed-loop performance criteria are met even in the worst

case.

4.1 Preliminaries

4.1.1 Interval polynomials and Kharitonov theorem

Consider a real polynomial family P associated with a linear time-invariant system

containing uncertain parameters as below

P(s,0) = {p(s,q) = Zn‘, 0i(q)s' | q € Q} , 0n(q) #0, Vg€ Q (4.1)
i=0

where

T

a=[q a1 - qm | (4.2)

is the vector of uncertain parameters whose bounds are given as ¢; € [q; , q;“] Ifitis

assumed that the coefficients o;(g) are affine functions of g, then it is possible to write
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the following.
p(s,q) = po(s)+Y_ qi pi(s) (4.3)
i=1

For convenience let us denote,

p=(po(s),p1(5),-- -, Pm(s)) (4.4)

Here if p = (po(s), 1,s,...,s") is considered, in this case a real interval polynomial
is obtained. Note that for an interval polynomial, each uncertain coefficient is

independent of all other coefficients.

The robust stability of an interval polynomial family can be checked by the Kharitonov

theorem, which is given by Kharitonov in 1979 [52].

Theorem (Kharitonov): The interval polynomial family

P(s,0) ={p(s,9) =qo+qis+---+qns" | g€ 0}, . >0 (4.5)

is robustly stable if and only if the following polynomials are stable:

pTT(s) =qf +q; 5+, T+ a3 +qfst+ ...
pr(s) =qg +qis+ay s tqss +aist+ .. o
pH(s) =gy +ai s+ a3t a3 a5t + '
() =qy +qrs+tar sl st
The polynomials given with (4.6) are called as Kharitonov polynomials.
Let the test set be given as follows
={¢7. 47" .q g} 4.7)
where
9 =la 0 92 4 4G -]
g =g a1 92 45 45 -]
(4.8)
q " =la a6 9 -]
q =lg a1 4 95 94 -]

If the degree of uncertain polynomial is less than six, it is not required the check all of

the Kharitonov polynomials as the following theorem states.

Theorem (Anderson, Jury, Mansour): For an interval polynomial given with (4.5) the

testing sets are given as follows.
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Or={q"",q"",qt,q "} for n>5
Or={q"",q"",q "} for n=>5
Or={q",q7"} for n=4
Or={q""} for n=3

4.9

For n =2 and n =1 the condition g;” > 0 is necessary and sufficient. The proof of

theorem can be given with the help of the Mikhailov stability conditions.

4.1.2 Affine linear polynomials and edge theorem

Let us consider the following polynomial family with affine coefficients.

P(s,0) = {p(&q) :p0(5)+i4i pi(s) | qi € [q,-‘,qﬂ} (4.10)
i=1

Here, the coefficients depend on the uncertain parameter vector g linearly.

If all parameters g; take their minimum or maximum value then the corresponding
polynomial is named as a vertex polynomial. If only one of the parameters varies
between its minimum and maximum value whereas the remaining parameters take
their minimum or maximum value, then this polynomial family is called an edge

polynomial.

An edge with the end points p;(s) and p.(s) can be expressed as follows.

P(s,Q) ={(1=q)ps(s) +q pc(s) [ ¢ € [0, 1]} (4.11)

Stability of the affine linear polynomials is given by edge theorem [53].

Edge Theorem: The polynomial family given by (4.10) is robustly stable if and only

if the edge polynomials are stable.

Consider an edge with the end points p,(s) and p.(s). In order to check the stability
of an edge polynomial, the Bialas theorem can be used. The Bialas theorem states that

an edge polynomial given by (4.11) is stable if and only if

e py(s) is stable.
e p.(0)>0
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: -1 . . :
e The matrix (H%_,) H¢_, has no nonpositive real eigenvalues where H; (i =

n—1

1, 2, ..., n—1) are Hurwitz matrices.

The edge theorem reduces the robustness analysis of an affine linear polynomial family
to a finite set of one-dimensional tests. The number of vertices is given as 2" for n
uncertain parameters. From each vertex n edges start; therefore the number of edges
is given with n.2" [6]. The following table gives the number of vertices and edges for

different number of uncertain parameters.

Table 4.1 : The number of vertices and edges.

n Vertices Edges
1 2 1

2 4 4

3 8 12
4 16 32

5 32 80

It is seen from the table that the number of edges increases drastically as the number
of uncertain parameter increases. Moreover, in order to check the stability of the edge
polynomials, as mentioned earlier, some matrix operations (inversion, multiplication)
should be performed. Due to the fact that the considered problem consists of
unknown (controller) parameters, those calculations may be a difficult task to perform.
Therefore, another method that is more efficient than Edge theorem may be found for

the robust controller design if possible.

4.1.3 D-stability and Kharitonov regions

The robust stability of interval and affine linear polynomials is considered so far. In

the stability problem, the open left half plane
C™ ={se€C|Re[s] <0} (4.12)

is considered. If all roots of the polynomial are contained in the above region, the

polynomial is said to be stable. However, in the control system design, stability itself
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is not sufficient. Roots of the closed-loop system characteristic polynomial are desired

to be located in special regions.

In the dominant pole placement, it is required two of the closed-loop poles are desired
to be placed in a particular region in complex plane whereas the rest of poles are
expected to be placed away from the dominant pole pair. For this reason, the other

stability regions should be considered.

D-Stability: For a given polynomial family P and the stability region D in the complex
plane, the polynomial family P is said to be D-stable if and only if the roots of every

polynomial in P is contained in D.

Consider an uncertain interval polynomial given by (4.5) and a shifted region in s-plane
given as follows.

9 ={se€C|Re[s]<—0,0>0} CcC™ (4.13)

The given problem can be converted to the stability problem through the polynomial
p(s,q) = p(s — o,q). If this transformation is performed, the resulting polynomial is
no longer an interval polynomial but instead an affine linear polynomial. Thus, the
edge theorem should be used to check the stability instead of the Kharitonov theorem.
However, if the considered D-region in s-plane is a Kharitonov region, the D-stability

of the vertex polynomials

n
Vp= {p(s,q) 2 p(s,q) =po(s)+ Y ais', gi € {q;, qf}} (4.14)
i=0
implies the D-stability of the whole polynomial family P [54]. Thus, it is possible
to use vertex polynomials, which is a lot easier than the edge polynomials, in order
to check the D-stability or to find the controller parameter that D-stabilizes the

polynomial family.

Decreasing Phase Property: For a stability region D C C and the polynomial vector
p in (4.4), p is said to hold the decreasing phase property if for an arbitrary n'”
order D-stable polynomial f(s) and 1 <i<m, arg <’}’(—(ss))> is monotonously decreasing
except at p;(s) = 0 when s traverses on dD (i.e. boundary of the D-region) in the

counter-clockwise direction [55].

Theorem (Kharitonov Region): The region D is a Kharitonov region with respect to

p if p holds the decreasing phase property.
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There are several Kharitonov regions in the literature which are presented as below.

The details can be found in [55].

Any (rotated) open-half plane,

2, ={se€C: s=0+jo | at+bo+cw <0, a,b,ceR} (4.15)
is a Kharitonov region with respect to p in (4.4) for any po(s) if pi(s),i=1,...,m are
anti-D-stable.

Any open circular region,

.@22{S€C:Sz€4—pej9, 0<p<r, 0<6<2r, cec} (4.16)
is a Kharitonov region with respect to p in (4.4) for any po(s) if pi(s), i =1,...,m are
anti-D-stable.

Any open parabolic region,
Py = {s €C: s=0+jo | (a0 —(bo)?>1, 6<0, ab> o} 4.17)

is also a Kharitonov region with respect to p = (po(s), 1,s,...,s") for any po(s) of n'"

order.

Theorem: Suppose that the regions D and D, are Kharitonov regions, then D N D,

is also a Kharitonov region [54].

The above theorem is very important because the design specifications are generally
more than one and this causes the dominant pole region to be intersection of different
regions. If these regions satisfy the properties of Kharitonov region then their

intersection becomes a Kharitonov region as well.

4.2 Robust Dominant Pole Placement for the Systems with Interval Characteris-

tic Polynomial

For the systems with parametric uncertainty, the closed-loop poles are desired to be in
a region instead of a point. Therefore, the selection of robust K, parameter should be
done such that the dominant poles are located in a desired region whereas the remaining

poles are also desired to be located away from the dominant pole pair.
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Here, it is desired to give the procedure of the robust PID controller design for interval

type characteristic polynomials.

4.2.1 Procedures of the design method for interval polynomials

Consider a continuous-time PID controller and an uncertain plant given as follows.

G(s,q) = Nols)_ (4.18)

Dqg(s,q)
Note that Dg(s,q) is an interval type polynomial. First of all, it is required to
determine the closed-loop performance specifications for the nominal system Go(s).
After that the PID controller parameters K; and K; should be found in terms of the
parameter K, as proposed earlier via (2.18). Thus, it becomes possible to obtain the
closed-loop system characteristic polynomial in terms of the uncertain parameters and

the controller parameter K, as follows.

P.(s,q,K,) = 5"+ fu_1(¢,K,)s" ' +---+ fo(q,K}) (4.19)

The characteristic equation is clearly an interval polynomial due to the considered
system class. Therefore, if a Kharitonov region is considered as the dominant pole

region, it is possible to use vertex results on controller design.

Let the corresponding vertex polynomials be Py (s,K,) then the following can be

written.
N,'(S)
Py (s,K,) =1+K,—= =0 (4.20)
( P) 14 Di( S)
——
G,‘(S)
It is now possible to substitute the boundaries of D-region so that the intersection points

of Nyquist curve with real axis are found and the corresponding gain intervals can be

calculated.
& . NiRe+jNilm
Gilf(@)) = Dige + jDitm @21
where
Diy = Im[Di(f(®))],Dige = Re [Di(f(®))]
Nigm = Im[N;(f(®))];Nige = Re [Ni(f(®))]
If (4.21) is rearranged,
Gl(f((l))) _ (NiReDiRe + NilmDiIm) + j(]vilmDiRe B NiReDiIm> (422)

Di},+Dij,
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and by defining
Xl(w) - NiReDiRe +Ni1mDi1m

Yl(w) = NilmDiRe - ]viReDilm
Zi(®) = Dige +Dif,y
it is possible to write the following equality,

Xi(w)  Yi(0)
Z(@) 7o)

Gi(f(w)) = (4.23)

Here, the critical frequencies for every vertex polynomials (a)i"}-), which cause the roots
to cross the boundary (dD) in s-plane, can be calculating with the help of following

equation.
Yi(w) _
Zl(a)) 4

The intersection points (x;;) of Nyquist curve and real axis can then be found with

(4.24)

the help of following expression (0" = 0 and @* = oo are also added to the critical
frequencies as necessary).
Xi(o;)

ij
. 4.25

After that all gain intervals, in which the number of poles (u) outside of the considered
D-region is the same, are calculated with the help of generalized Nyquist theorem as

follows

1 1
%je - = , j:1,2,... (426)
Xij o Xi(j+1)

such that x;; < x;(;11). For each vertex polynomials, the final interval for a desired u

value is found as follows,

Kie|JA; (4.27)

The interval of the controller parameter (K),) is found as the union of all gain intervals
calculated for each vertex polynomials.

Zm
K, €Ki (4.28)

i=1
where m is the number of uncertain parameters. If there are more than one boundary,
then this procedure is repeated for each boundary function f(®) and the intersection
of the all obtained K, sets is found. This gives the final feasible interval of the PID

controller parameter K.
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4.2.2 Case studies for interval polynomials
Example 4.1:

Consider an uncertain system given as follows.

B 1
- S3+6]2S2+C]1S+q0

G(s)

where qo € [2, 4], g1 € [6, 8] and ¢ € [4.6, 5.4]. The open-loop pole spread of the

above system in s-plane is illustrated in Figure 4.1.

o L
1 | | | . : : ) : s ‘ Re

Figure 4.1 : Open-loop pole spread of the uncertain system (Example 4.1).

In the closed-loop, 8 seconds of settling time and 5% overshoot is desired from the
nominal system. Furthermore, the closed-loop dominant poles are expected to be in
the D-region given as follows

91 ={s € C|Rels| < —01, 01 >0}

D, ={s € C|Re[s| > —0p, 0, >0}

D=D9ND
where o1 = 0.35, 6, = 0.65 under all possible perturbations. It can be said that the
given rectangular region (Figure 4.2) is a Kharitonov region due to the fact that it is the

intersection of the Kharitonov regions as given above. The remaining poles are also

desired to be 2.5 times away from the dominant pole pair in the worst case.
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Figure 4.2 : The desired D-Region for dominant poles in s-plane (Example 4.1).

The corresponding vertex polynomials are found as below.

Py, (5,K)) = s* +4.65% + (K, +4.425) s> + (K, +2) s + (0.525K,, + 0.4726)
Py, (5,Kp) = s +4.65° 4+ (K, +6.425) s> + (K, +2) s + (0.525K, + 0.4726)
Py, (s,Kp) = s* +4.65° + (K, +4.425) 5> + (K, +4) s + (0.525K , 4 0.4726)
Py, (s,K,) = s* +4.65° + (K, +6.425) s> + (K, +4) s + (0.525K, 4 0.4726)
Py, (5,Kp) = s* +5.45% + (K, +4.425) s> + (K, +2) s+ (0.525K,, + 0.4726)
Py (5,Kp) = s +5.45° + (K, +6.425) s* + (K, +2) s + (0.525K, + 0.4726)
Py, (5,Kp) = s* +5.45% + (K, +4.425) s> + (K, +4) s + (0.525K , 4 0.4726)
Py (5,K,) = s* +5.45° + (K, +6.425) s> + (K, +4) s+ (0.525K , +0.4726)

The critical frequencies (@), intersection points (x;), anti-D-stable root counts (u;) and
corresponding gain intervals should be calculated for each vertex polynomial given
above with the help of the explained procedure. For instance, Table 4.2, 4.3 and 4.4
show @7, x;, u and JZ; of the first vertex polynomial for the boundary of s = —oj,
s = —0p and s = — 03, respectively. The gain intervals are then obtained as below.

K € (2.3989, )

K> € (0.143,00)

K3 € (2.5042, )

The final K, interval for the first vertex polynomial is then found as follows.
3 —
Kpi € () Kj € (2.5042,c0)

j=1
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Table 4.2 : Gain intervals of the first vertex polynomial for s = — 0.

o/ Xi uj Hi

0 2.2458 1 —0.5216 > £ > —oo
0.28771 1.9173 3 —0.4453 > %1, > —0.5216
0.59713 —0.4169 2 2.3989 > J#13 > —0.4453

oo 0 0 oo > 14 > 2.3989
Table 4.3 : Gain intervals of the first vertex polynomial for s = — 0.

o} Xi u; Hi

0 —6.99 3 0.143 > J#11 > —oo

oo 0 2 oo > H1p >0.143
Table 4.4 : Gain intervals of the first vertex polynomial for s = —03.

o} Xi u; Hi

0 —0.3993 3 2.5042 > 2 > —oo

oo 0 2 0o > 1y > 2.5042

If the same calculations are done for each vertex polynomials, then the resulting K),

interval is found as below.

8
Kp € (\Kpi € (11.0857,00)

i=1
If K, = 11.5 is chosen, the PID controller is obtained as follows. The closed-loop pole

spread with designed robust PID controller is also given in Figure 4.3.

_9.9255% +11.55+6.509
N

F(s)

It is possible to implement the obtained robust PID controller in PI-PD structure to
eliminate adverse effects of the controller zeros. For K,; = 2.5 the closed-loop zero
is located at s = —2.604 which is away from the dominant poles region. In this case,

designed PI-PD controllers are given as follows.

6.509
Fpi(s) =25+ — Fpa(s) =9+9.925s
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Figure 4.3 : Closed-loop pole spread of the system with robust PID controller
(Example 4.1).

The closed-loop transient response with the robust PI-PD controller given above is
depicted in Figure 4.4 under all possible perturbations. Disturbance rejection can also
be seen from the figure since an input disturbance D(s) = —% is applied at t = 20

seconds.

1-2 T T T T T

0 1 1 1 1 1
0 5 10 15 20 25 30

Time (s)

Figure 4.4 : Closed-loop transient response under all possible perturbations
(Example 4.1).
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For a chosen controller parameter, the perturbation limits of the uncertain parameters
can also be found one by one. This is done by choosing the related uncertain parameter
as a free parameter and calculating its minimum and maximum limits such that the
robustness of the PID controller is not affected with the help of vertex polynomials

constructed by the remaining uncertain parameters.
For this particular example and for the designed PID controller, the minimum and
maximum limits of the uncertain parameters are found as below.

qo € [0.5813, 4.1073]

q1 € [5.9025, 10.3578]

q> € [4.438, 5.5412]

Therefore, as long as only one of the uncertain parameters varies in limits, the
robustness of the closed-loop system in terms of the dominant pole placement will

not be affected.
Example 4.2:

Consider an uncertain system given with the following transfer function.

1
s 41083 + gas? +q15+ qo

G(s)

where go € [38,42], q1 € [54,58] and ¢» € [36,40]. The open-loop pole spread of the

system in s-plane is given in Figure 4.5.

For the nominal system, it is desired that the transient response has 8 seconds of settling
time with 5% overshoot in the closed-loop. Furthermore, the complex dominant poles
are expected to be in the D-region given below with 6 = 0.55, @ = 0.55 and r = 0.12

under all possible perturbations.
PD.={seC:ls—c|<rc=0+jo, ®>r, c R}

D=9.UD,

Note that it is possible to show that the defined disc region is a Kharitonov region with

the help of following theorem.

Theorem: The disc region given above is a Kharitonov region with respect to

p=(po(s),1,s,...,s")
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Figure 4.5 : Open-loop pole spread of the uncertain system (Example 4.2).

for any po(s) if the condition

r 2r 1
- <=
20w=r) r+vVol+w? 2

holds [56].

Proof: If the aforementioned region is a Kharitonov region, the decreasing phase
property should be satisfied. Let f(s) be any n" order D-stable polynomial. From
the decreasing phase theorem, it is enough to show that arg (p;(s)/f(s)) for 1 <i<m

is monotonously decreasing when s traverses on dD.

Let also f(s) = (s —s1)(s —57) which is a D-stable polynomial. In order to verify that
the arg (p;(s)) —arg (f(s)) is monotonously decreasing, it is sufficient to show that the

following inequality holds according to Figure 4.6.

dos (d¢1 d¢2>
de de de
max min

For the ¢; angle, since the derivative is always positive, it is required to find the
minimum phase increase. It is also clear from the Figure that the minimum phase

increase is found to be on the boundaries of D as below.
. (dor) 1
min ( o ) -
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Figure 4.6 : Decreasing phase condition on dD (Example 4.2).

jw

¥ Re

Figure 4.7 : Minimum phase increase of ¢; (Example 4.2).

For the ¢ angle, the derivative can take negative values, thus, the maximum phase

decrease should be found. Figure 4.8 shows the point where the maximum phase

dg,\ r
—max ( 4o ) ~ 20—

Finally, for the ¢3 angle, the maximum of the derivative should be found. It is seen

decrease occurs.

from the Figure 4.9 that the maximum phase increase is calculated as follows.

max d¢3 = r
do ) r+lo+jo
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Figure 4.8 : Maximum phase decrease of ¢, (Example 4.2).

0'+jd

» Re

Figure 4.9 : Minimum phase increase of ¢3 (Example 4.2).

As a result,
r 1 r

22— < ==
r+lo+jol 2 2(w®-—r)
should be satisfied.
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In the example, the dominant poles should also satisfy less than 8% overshoot even in
the worst case. Finally, the remaining (non-dominant) poles are desired to be on the
left side of the line oy = —1.5. The final desired dominant pole region is depicted in

Figure 4.10.

06!

0.4

0.2

L L L L 1 L L L 1 L L L 1 L L L 7Re
-08 -06 -04 -02 i

-0.2

—0.4f

-0.6

Figure 4.10 : Desired dominant pole region in s-plane (Example 4.2).

The PID controller parameters K; and K; can be calculated for the nominal system in

terms of the parameter K, as follows.
K; =13.15+0.525K,
K;=2.252+K,

The closed-loop system characteristic polynomial with calculated PID parameters is

given as follows.
P.(s,q,Kp) = s° + 10s* + q25° 4 (q1 +2.252 + K,
+(q0+Kp)s+ (13.15+0.525K,,)
Here, it is seen that there are three different boundary functions which are given as
fi(@) = (—0.5540.555) +0.12¢/®
o) =—-15+jo
f3(

)= 12433

e

+ jo
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The proposed design procedure should be repeated for each desired boundary

functions, respectively.

Let us calculate the vertex polynomials as follows.

Py, (s) = 5° +10s* + 365> 4 (56.252 + K, )s* + (38 + K, )s + (13.15+0.525K )
Py, (s) = 5° +10s* + 405> 4 (56.252 + K, )s* + (38 + K, )s + (13.15+0.525K )
Py, (s) = 5° +10s* +365% 4 (60.252 + K}, )s* + (38 + K, )s + (13.15+0.525K )
Py,(s) = s° + 10s* +40s” + (60.252 4+ K}, )s* + (38 + K, )s + (13.15 4+ 0.525K )
Py (s) = 5° +10s* + 365> 4 (56.252 + K,,)s* + (42 + K, )s + (13.15+0.525K )
Py, (s) = 5° +10s* + 405> 4 (56.252 +- K, )s* + (42 + K, )s + (13.15+0.525K )
Py, (s) = s° + 10s* + 3657 + (60.252 4+ K}, )s* + (42 + K, )s + (13.15 4+ 0.525K )
Py (s) = 5° +10s* + 405> 4- (60.252 +- K}, )s* + (42 + K, )s + (13.15+0.525K )

It is now possible to follow the given design procedure in the previous section. If
the vertex polynomials are re-written as in (4.20) and the boundary functions are
substituted, then the intersection points of Nyquist curve and real axis can be found.
By inspecting the obtained gain intervals, it is possible to find the feasible region in
which the number of poles (u) outside of the desired region can be calculated. If the

required calculations are done, the feasible gain intervals are given as in Table 4.5.

Table 4.5 : Invariant gain intervals and the anti-D-stable root counts.

Feasible Interval Anti-D-Stable Roots
f1(®) H < —36.977 |J 19.126 < ¢ u=0
(o) 11.962 < % < 21.798 u=72
f3 (o) H < —18.484 |J 16.686 < % u=20

The final interval is then found as K, € (19.126,21.798) in which all boundary
conditions are satisfied. If the K, parameter is chosen from the obtained feasible
interval, the dominant poles are located in the desired D-region, whereas, the remaining
poles are located in the non-dominant region under parametric uncertainties. For

K, = 20, the PID controller is given as below.

23.65
F(s) =204 == +22.25s
S
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Figure 4.11 shows the closed-loop pole spread with robust PID controller and Figure

4.12 shows a closer look to the dominant pole region.

"
MW 2r

1

T Re
_1

W\M -2}

Ll

Figure 4.11 : The closed-loop pole spread with designed PID controller (Example
4.2).
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Figure 4.12 : A closer look to the pole spread in dominant region (Example 4.2).
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In order to eliminate the adverse effect of the PID controller zeros as mentioned
earlier, the PID controller should be implemented in PI-PD structure. Thus, the robust
dominant pole placement can be performed successfully. If the PI-PD structure is used,
then by choosing the parameter K,; = 3, the controller zero is placed to the point of

s = —7.88 in s-plane. For this case, the PI and PD controllers are given as follows.
23.65
Fpi(s) =3+ ——, Fpy(s) = 17+22.25s
s

Figure 4.13 shows the step response of the closed-loop system with designed robust
PI-PD controller. Disturbance rejection performance is also tested by applying an input

disturbance D(s) = —4 /s at the time of # = 25 during the simulation study.

1.2 T T T T T T T T T

0 1 | | | | 1 1 1 |
0 5 10 15 20 25 30 35 40 45 50

Time (s)

Figure 4.13 : Closed-loop transient response under all possible perturbations
(Example 4.2).

It can be concluded that the robust dominant pole placement problem for the systems
which have interval type characteristic polynomials with PID controller is solved with
the help of proposed method. The given procedure is straightforward and can easily
be followed by any software that provides a symbolic algebra environment. It is
shown that with the resulting robust controller, the dominant pole pair is assigned to
the desired region and the remaining poles are located away from the dominant pole
pair under all possible perturbations. Moreover, the desired closed-loop performance

specifications are also met as accurate as possible by using the PI-PD structure.
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4.3 Robust Dominant Pole Placement for the Systems with Affine-Linear

Characteristic Polynomial

The solution of the robust pole placement problem for affine linear characteristic
polynomials is similar to the interval case; however, it is required to use the edge
polynomials instead of the vertex polynomials. In this case, the characteristic
polynomial consists of one more parameter (A) in addition to the uncertain parameters

and the controller parameter K),.

4.3.1 Procedures of the design method for affine-linear polynomials

Consider a PID controller and an uncertain plant given as follows.

G(s,q) = Nls.q) (4.29)

Dqg(s,q)
Here Ng(s,q) and Dg(s,q) are interval or affine linear type polynomials. Since the
vertex results do not guarantee the robustness of controller due to the considered
system class, the edge polynomials should be taken into account. Let the edge
polynomials constructed from the closed-loop system characteristic polynomial be

expressed as follows.

PEi(SvKP) = (1 _1>PV]( 7KP) +APVk(S7KP) (4.30)

where Py, (s,K)) and Py, (s,K)) are two related vertex polynomials. It is required to
satisfy the two roots of the characteristic polynomial to be in a specified D-region
and the remaining roots to be away from this pole pair under all possible parameter

changes.

Let us re-write the edge polynomials as follows.

Ni(s, A
Pg,(s,K,) = 1+K,,D_Ei /13 ~0 (4.31)
l I

Gi(s.A)

It is again possible to use the generalized Nyquist theorem as given in previous
subsection. Thus, the critical frequencies (a)j}-), which cause the roots to cross the

boundary (dD) in s-plane, are calculated using the same formula proposed earlier.

Im[Gi(f(@),A)] = % —0 (4.32)
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The roots of the equation given above should be found such that @ (A) € R in the
interval of 0 < QLZ-; <AL QLJ < 1. The intersection points (x,- ; (l)) of Nyquist curve
and real axis is then be found using the following equality (w* = 0 and ®* = oo are

also added to the critical frequencies as necessary).

xi() = Re [Gil F(of) 4] = 1@ A) 433)
L - 1 ij/» _ZI(COI*],)L) .
After that all gain intervals, in which anti-D-stable root count (u) is the same, are again

calculated with the help of the generalized Nyquist theorem.

1 1

Hii(A) e | — ,— , J=1,2,... (4.34)
Y ( xij(A) xi(j+1)(7t)>

However, unlike the constant coefficient polynomials, the intersection points (x;;(4))

of Nyquist curve and real axis vary with the parameter A € [0, 1]; therefore, the gain

intervals (.%;;) also vary depending on the parameter A. In order to guarantee the

robust dominant pole placement, it is required to find the invariant gain intervals (i.e.

the anti-D-stable root count does not change with the parameter A).

The upper and lower limits of the varying gain intervals for each obtained /(1) are
calculated by finding the minimum and maximum of the expression ;#}L) over the
ij

parameter A as follows.

, —1 , —1

i = _min (——ms) = _min - (4.35)
Ay <A<k xij(A) Aj <A<k \ Re [G,-(f(a);‘j),x)]

Hijae = . max_ ( )= max (4.36)

ry=a<ad Xij(A)" g <a<al \ Re [Gi(f(wf;‘):l)}
The varying gain intervals for an edge polynomial is then found as the union of the
obtained intervals for each w;}(?t). Thus, the invariant gain intervals are then found as

follows.

K; € (—o0, 4-00)\ (U (%jmin,%jw)> (4.37)

j=1
The next step is to find the feasible interval (i.e. the anti-D-stable root count is found

to be as desired) such that (K, C K;) by calculating the roots of the considered edge

polynomial for each invariant gain interval by taking an arbitrary point.
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As a final step, if these calculations are performed for every edge polynomial (total of

m.2™~1), the interval of parameter K, is found as below.

m.2m !
K,e () Ky (4.38)
i=1

Note that if there are more than one desired boundary, then this procedure is repeated
for each boundary function f(®) and the intersection of the all obtained K, sets is

found. It gives the final interval of the PID controller parameter K),.

4.3.2 Case studies for affine-linear polynomials
Example 4.3:

Firstly, let us start with a simple example (only one uncertain parameter) to
demonstrate the proposed method. Consider the closed-loop control system of a

railway vehicle given in Figure 4.14.

Kb‘

ref ’

Wy + K, I.q_; + A~ 1 Wiy
Fy(s Fi(s P K >
> ) 2O B6) | — t —»(T >

A

qs e

Figure 4.14 : A closed-loop control system (Example 4.3).

In the block diagram, F;(s) is the PID controller, which is aimed to be designed via
robust dominant pole placement. The transfer function of the inner block is given as

follows.

Gls) 3914(s 4 561.4)
I3+ (1457.4J +0.057)s% + (778057J + 18450)s + 44022.5

It is known that the parameter J changes (due to the change of the vehicle mass) in
the interval of [133.6,204.7] with nominal value of 169.15 kg.m?. In the closed-loop
loop, it is desired the vehicle speed to have settling time between 13 and 17 seconds

(15 seconds nominal) and overshoot at most 2% (1% nominal).

The PID controller parameters (K; and K;) which assign the dominant poles to the

corresponding locations are found as follows for the nominal system (Gy(s)) via
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dominant pole placement as follows.
K; = 0.0038 - 0.1954K,,
K4 = —59.863 +1.875K,

The closed-loop characteristic polynomial with the obtained controller parameters is

then found as below.
P.(s,J,Kp) = Js* + (7339K,, + 1457.4J —234311)s’ + (4123890K , + 778038
—131519000)s* + (2198080K), +44036.3)s +429321K), 4 8357.2
It is seen that the given characteristic polynomial is an affine linear polynomial with

only one uncertain parameter. Therefore, there is only one edge polynomial, which is

given below, to be considered.
Pe(s,Kp) = (1 —A)Py,(s,K,) + APy, (s5,K))

where
Py, (s,K,) = 133.65* + (7339K,, — 39599.7)s° 4 (4123890K, — 27572600)s*
+ (2198080K , +44036.3)s +429321K, + 8357.2

and

Py, (5,K,) = 204.7s* + (7339K , + 64023.1)s 4 (4123890K , + 27746000)s”

+ (2198080K), +44036.3)s +429321K,, + 8357.2

It is now possible to construct G; (f(®),A) with the help of the boundaries of desired

D-region which is illustrated in Figure 4.15.

In this example, 3 boundaries which are ¢ = —0.235, 0 = —0.308 and o0 =
—®/0.8031 should be considered for the dominant pole region. There is one more
boundary should be considered such that the remaining poles are located 5 times
away from the dominant poles in the worst case (i.e. 0 = —1.54). Therefore, the
explained design process should be repeated for all boundaries (s; = jo — 0.235,
52 = jo —0.308, 53 = j® — ggo37 and s4 = jo — 1.54) and the intersection of the

all obtained K, intervals should be considered (unless it is an empty set).

If the design process is carried out by a computer software (such as Mathematica)

which allows to perform symbolic calculations, the following feasible gain intervals
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Figure 4.15 : Desired dominant pole region in s-plane (Example 4.3).

are found for the given boundaries, respectively.

| € (49.801,00)

» €

(

2 & (50.006,0)
(54.779,00)
(

Kl
K2
K3
K3 € (9.607, )

One of the invariant gain intervals and feasible interval which is related to the boundary
o = —0.235 is depicted in Figure 4.16 as an example.
kp

60

40

20 —
e ‘

-20}

-40

-60 u=1

Figure 4.16 : Variation of the gain intervals and invariant regions for 6 = —0.235
(Example 4.3).
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For the boundaries ¢ = —0.235 and 6 = —®/0.8031 the anti-D-stable root count

should be 0 and for all of the remaining boundaries, the number of anti-D-stable roots

should be 2.

Table 4.6 : Gain intervals and anti-D-stable root counts for o = —0.235.

Anti-D-Stable Roots

Feasible Interval

1

—49.838 > k), > —oo

0

o0 >k, > 49.801

Table 4.7 : Gain intervals and anti-D-stable root counts for o = —0.308.

Anti-D-Stable Roots

Feasible Interval

3

—50.042 > k}, > —oo

2

oo >k}, > 50.006

Table 4.8 : Gain intervals and anti-D-stable root counts for c = —®/0.8031.

Anti-D-Stable Roots

Feasible Interval

1 —54.818 > k), > —oo
0 o0 >k}, > 54.779
Table 4.9 : Gain intervals and anti-D-stable root counts for c = —1.54.

Anti-D-Stable Roots

Feasible Interval

3 —9.637 > kj, > —oo

2 00 >k, > 9.607

As aresult, the interval of the K, parameter is found as follows.

4
K, € (K} €(54.779,)
j=1

As long as the choice of K, parameter is done in the obtained value range, it

is guaranteed that the dominant pole pair is located in the desired region and the
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non-dominant poles are located on the left side of the line 6 = —1.54 under all possible

perturbations.

If the parameter K, = 55 is chosen, the PID controller is given as follows.

10.75
Fpip (S) =55+ +43.26s
S

Im

10

05r

L L L L | L L L | L L L L | L L L L | L L L | Re

-25 -2.0 —H15 -1.0 -05 L
_05k
~10!

Figure 4.17 : Pole spread of the closed-loop system with PID controller (Example
4.3).

\
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Figure 4.18 : Closed-loop pole spread in the dominant pole region (Example 4.3).

Figure 4.17 and 4.18 show the closed-loop pole spread of the system with proposed

robust PID controller. It is seen that the closed-loop poles remain in the desired region
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under all possible changes of the parameter J and the rest of the poles are already too

far away.

In this application, it can be shown that it is not possible to satisfy desired closed-loop
performance criteria with designed PID controller. Although the dominant pole
placement is performed successfully, the closed-loop controller zeroes are located in
the dominant region. In order to eliminate the adverse effect of the controller zeroes,
PI-PD structure which is introduced in the previous parts of the thesis can be used to

implement the designed PID controller.

10.75
FP](S) =14+ S

FPD(S) =54+4+43.26s

The closed-loop step response of the perturbed system with above PI-PD controller is

given in Figure 4.19.

60

0 ———

40 /

30

Speed (km/h)

20

10

0 5 10 15 20 25 30 35 40 45 50
Time (S)

Figure 4.19 : Closed-loop transient response under all possible perturbations
(Example 4.3).

In the closed-loop, it can be seen that the vehicle speed satisfies the desired
performance specifications under all possible perturbations. Thus, it can be concluded
that the proposed robust controller design method works well for the systems have
affine-linear type characteristic polynomial. In the next example, a system with more
uncertain parameters is considered and also compared with the other methods from the

literature to show the success of the proposed method.
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Example 4.4:

Let us consider a continuous stirred tank reactor with a multiple-model presentation
studied by Ge [57], Toscano [58] and Goncalves [59]. If the stable operating range is
considered, it is possible to obtain the open-loop transfer function as follows
9
G(s)=5——""—
(5 s2+q15+4qo

where g € [5.862,22.19], ¢1 € [0.01248,9.251] and ¢, € [0.03707,0.04612].

In the closed-loop transient response, 1 second of settling time with 0.5% overshoot
is desired for the nominal system. Thus, the dominant poles are calculated as 51, =
—4+2.3718; and K; and K; parameters of the PID controller is obtained in terms of

K, as below.

Ki = —493.55+2.7032K,,
Ky = 58.103+0.125K,

The closed-loop system characteristic polynomial with PID controller is then given as

follows.
P.(s,q,K,) = 5> + (q1 +58.103¢2 +0.125¢,K ;) s>
+ (g0 + q2K)s + (2.7032¢2K,, — 493.55¢>)

Under all possible perturbations, the dominant poles are desired to be inside the region
bounded by the lines 07 = —3 and 0, = —6 which means settling time to be between
0.667 and 1.333 seconds. On the other hand, the maximum allowable overshoot is
determined to be 2% in the worst case. The desired dominant pole region in complex
s-plane is illustrated in Figure 4.20. Finally the remaining poles are desired to be 3
times away from the dominant pole region in the worst case which means on the left

side of the line o5 = —18.

For this problem, it is seen that there are four different boundary functions which
are given as f1(®) = =3+ jo, fo(®) = =6+ jo, f3(®) = 5505 +jo and fi(®) =
—18 + jw; therefore, the given design procedure should be repeated for all desired

boundary functions, respectively.

It is now possible to construct the edge polynomials through the closed-loop system
characteristic polynomial. After that for each edge polynomials and the boundary

functions, the expressions G;(f(®),A) are obtained, the critical frequencies (@5(1))
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Figure 4.20 : Desired dominant pole region in s-plane (Example 4.4).

are calculated in terms of A and the intersection points of Nyquist curve and real axis
(x;j(A)) are obtained, respectively. The next step is to find the upper and lower limits
of the varying gain intervals so that the invariant gain intervals can be calculated via

(4.37).

For instance, Figure 4.21 shows the varying and invariant gain intervals and the
anti-D-stable roots counts for one of the edge polynomial with boundary function
of fi(w). Since the first root boundary, the desired anti-D-stable root count is zero

(u=0), the feasible K, interval can easily be determined.

kp
4000
L u=0 (invariant)
2000+ u(d) (varying)
L L L L L L L L L L L L L L L L (anarla\nt)\ A
u=3 0.2 0.4 0.6 0.8 1.0
—ZOOOj u(d) (varying)
— 4000 u=1 (invariant)

Figure 4.21 : An example of invariant regions and gain intervals (Example 4.4).
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Details of the calculations are not given in order to improve the readability due to the
complex structure of equations. However, the proposed method can be applied step by

step in a symbolic algebra environment and the results are obtained.

If the required calculations are completed, the invariant gain intervals and the
anti-D-stable root counts for each boundary function is obtained as in Table 4.10. It can
be read from the table that since all the roots are desired to be left side of the boundaries
fi(w) and f4(w), the feasible intervals are obtained for u = 0. However, two of the
closed-loop poles (dominant poles) are desired to be left side of the boundaries f>(®)

and f3(w); therefore, the feasible intervals are obtained for u = 2.

Table 4.10 : Invariant gain intervals and the anti-D-stable root counts for stable range.

Gain Intervals Anti-D-Stable Roots

—oo < K < —2951.92 u=1

fi(o)
4669.06 < A < oo u=0
—oo < JH < —3170.76 u=23

L(o)
6506.2 < H < oo u=2
—oo < K < —6522.19 u=1

3 (o)
74762 < H < oo u=~0
—oo < JH < 1796.59 u=23

fa(@)
5951.03 < # < oo u=2

As long as the K;, parameter of PID controller is chosen from the interval of K, €
(7476.2,00), it is guaranteed that the dominant poles are placed in the desired region
whereas the remaining poles are located 3 times away from the dominant region under
all possible perturbations. It is then possible to obtain the K; and K,; parameters. The

designed PID controller is given as below for K, = 7500.
19780.2

F(s) =7500+
s

+995.6s

The closed-loop system pole spread is given in Figure 4.22. It is seen from the figure
that the dominant poles are located inside the desired D-region and the remaining
poles are located on the left side of ¢ = —18 line. It is possible to say that robust

PID controller design via the dominant pole placement is performed successfully in
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terms of the closed-loop poles. However, note that the closed-loop zeros are found to
be located in the dominant region with this PID controller; therefore, the transient
response of the system can not satisfy the requirements. In this case, the PI-PD

implementation of PID controller should be considered as mentioned earlier.

Im

-30 =25 =20 -15 -10 -5

-6l

Figure 4.22 : Closed-loop pole spread for stable case in complex s-plane (Example
4.4).

Let us implement the designed robust PID controller as given in Figure 2.9. As long
as the equality
Kpi +Kpq = 7500

is satisfied, the closed-loop pole spread does not change; however, the number of
controller zeros become one (instead of two) and it is possible to locate it in the
non-dominant region. The PI and PD controllers are then given as follows for

K,; = 800 which assigns the closed-loop zero to the point of s = —24.72 in s-plane.

19780.2
Fpi(s) = 800+ —= =25, Fy(s) = 6700+ 995.65

In order to demonstrate the success of the proposed method, it is compared with the
several PID controllers from the literature which are also designed for the considered
system. Table 4.11 shows the parameters of proposed PID controllers in terms of time

constants.
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Table 4.11 : PID controller parameters for stable range.

Parameters Ge et al. Toscano Goncalves et al. Proposed
K, 516.6 698.1 12713.0 7500.0
T; 0.6749 0.6197 0.4289 0.3792
T, 0.2784 0.5259 0.1149 0.1327

The closed-loop transient responses with given PID controllers are depicted in Figure
4.23. It can be said that the closed-loop response with proposed controller is smooth,
satisfies the desired performance specifications and has an acceptable disturbance
rejection under all possible perturbations (see Table 4.12). The transient responses
of the controllers proposed by Ge et al. [57] and Toscano [58] change much under
parametric uncertainties. Furthermore, these controllers have noticeable overshoot
in the closed-loop which is not desired in most of the practical applications. The
controller proposed by Goncalves et al. [59] has clearly better and more robust transient
response; however, it still has around 15% overshoot in the worst case. On the other
hand, the disturbance rejection with PID controllers proposed by Ge et al. and Toscano

is not acceptable for most of the practical systems.

Ge, 2002 Toscano, 2005
15
1
ES ES
05
13 13 13 13 13 0 13 E 13 13 13
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Goncalves, 2008 Proposed Method
15 - 15
1 {\~ 1 e
ES ES [
05 05
0 13 13 I3 13 13 0 I3 E 13 13 k
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Figure 4.23 : Comparison of the controllers for the stable range (Example 4.4).
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Table 4.12 : Performance criteria and control signal norms in the worst case (stable

range).
ts [s] os [%] [ull2 ]/
Ge et al. 4.655 16.92 2801.0 14897.0
Toscano 3.492 7.706 3737.6 37410.0
Goncalves et al. 1.241 15.29 3204.3 12720.0
Proposed Method 1.247 2.102 2803.2 1183.6

The variation of control signals is given in Figure 4.24 and the signal characteristics
are shown in Table 4.12. It is seen that the control signals applied by the other methods
have high initial values which is not desired in the industrial applications due to the
practical applicability; however, control signal of the proposed controller is low and
smooth. It can be concluded that the proposed robust PID controller (implemented in

PI-PD structure) has the best response.

Ge, 2002 Toscano, 2005
4000 4000
2000
2000
; f 50 '
0
-2000
-2000 -4000
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Goncalves, 2008 Proposed Method
4000 2000
2000 1000
R =1
0
-2000
-1000
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Figure 4.24 : Control signals of the compared controllers for the stable range
(Example 4.4).

In the references [57] and [59] the unstable region is also considered. In this case,
the uncertain parameters are given as go € [—2.252,4.996), g; € [—2.647,—0.405] and

g2 € [0.016,0.036]. For the same performance specifications (1s settling time with
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0.5% overshoot), the PID controller parameters are calculated as follows.
K; = —2105.7+2.7032K,
K4 =269.01+0.125K,

The closed-loop system characteristic polynomial with PID controller is also given as

below.
P.(s,q,K,) = 5° + (q1 +269.01¢2 +0.125¢,K ;) s>
+ (g0 + q2Kp)s + (2.7032¢92K,, — 2105.7¢5)

Let us consider the same dominant pole region in complex s-plane which is illustrated
in Figure 4.20. If the proposed method is followed, it is possible to obtain the gain

intervals and anti-D-stable root counts for unstable case as in Table 4.13.

Table 4.13 : Invariant gain intervals and the anti-D-stable root counts for unstable

range.
Gain Intervals Anti-D-Stable Roots
—oo < J < —3650.01 u=1
fi(w)
4585.78 < A < oo u=0
—oo < JH < —1287.54 u=23
H()
11583.9 < # < u=2
—oo < K < —6758.49 u=1
f3(o) 1465.52 < ¥ < 1534.09 u=2
8113.79 < X < u=0
—oo < K < 3152.96 u=3
fi(@)
134375 < H < oo u=2

Here, if the K, parameter is chosen from the interval of K, € (13437.5, ), it is again
guaranteed that the dominant pole pair is placed in the desired region whereas the
non-dominant poles are located 3 times away from the dominant region. For K, =

14000, the PID controller is given as follows.

35738.5
s

F(s) = 14000 + +2019s

Figure 4.25 shows the closed-loop pole spread with designed robust controller. It is

possible to say that the dominant poles are located inside the desired D-region and
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Figure 4.25 : Closed-loop pole spread for unstable case in complex s-plane (Example
4.4).

the non-dominant poles are located on the left side of 0 = —18 line. Thus, in the

closed-loop, the desired performance criteria are met under all possible perturbations.

The designed PID controller is then implemented in PI-PD form as follows for K,,; =

1400 which assigns the closed-loop zero to the point of s = —25.52 in s-plane.

35738.5

Fyi(s) = 1400 + , Fpa(s) = 12600+2019s

In the Table 4.14, the proposed PID controller parameters, which are found for unstable

range, are given in terms of time constants.

Table 4.14 : PID controller parameters for unstable range.

Parameters Ge et al. Goncalves et al. Proposed
K, 804.6 13625.0 14000.0
T; 1.3249 0.4438 0.3917
1y 0.393 0.1285 0.1442

The closed-loop transient responses of the controllers are also given in Figure 4.26.

The controller proposed by Ge et al. has very large overshoot and unacceptable
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disturbance rejection in the closed-loop under parametric uncertainties. Although the
PID controller proposed by Goncalves et al. has better alternative to be used, it again
has around 18% overshoot in the worst case. However, the transient response with the
proposed PID controller has less overshoot, good disturbance rejection and satisfies

the desired performance specifications as it is seen from the Table 4.15.

Ge, 2002

Goncalves, 2008

2 15
L f\
= s
0.5
0 L b b ! !
0 2 4 6 8 10
Time (s) Time (s)
Proposed Method
15 ™ r
1k N
S
05
0 L b ! b !
0 2 4 6 8 10

Time (s)

Figure 4.26 : Comparison of the controllers for the unstable range (Example 4.4).

Table 4.15 : Performance criteria and control signal norms in the worst case (unstable

range).
ts [s] os [%] ]2 [ ul]oo
Ge et al. 5.087 86.92 3011.8 32426.0
Goncalves et al. 1.253 18.18 3029.7 13640.0
Proposed Method 0.969 1.024 1953.5 1563.6

It is also possible to comment on the control signals which is illustrated in Figure 4.27.
It is again seen that the control signal of the PID controllers proposed by Ge et al. and
Goncalves et al. again have high initial values, whereas control signal with proposed

PI-PD controller is smooth and low when compared to the other methods.

In this chapter, a robust PID controller design is given for the systems with parametric

uncertainties via dominant pole placement approach. Two of the closed-loop poles are
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Figure 4.27 : Control signals of the compared controllers for the unstable range
(Example 4.4).

assigned in a desired region in complex s-plane and the remaining poles are located
away from the dominant pole region. It is shown that with the help of proposed
approach, it is possible to handle the design problem for interval and affine-linear
characteristic polynomials. Since the obtained robust controller is a set of controllers,

it allows designer to consider more criteria such as the specifications on control signal.

It should be noted that the proposed method is based on the dominant pole placement
approach. However, satisfying the dominant pole configuration is not always possible
for the desired D-region. Therefore, if the resulting controller set is empty, the
design procedure should be repeated for the boundary functions both for dominant
and non-dominant poles as necessary. This is the only drawback of proposed design

method.
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S. CONCLUSION

In this thesis, various methods are proposed to design low order controllers via
dominant pole placement approach. Parametrization formulations are given for PI
and PID controllers which assign the dominant poles in continuous-time domain.
In order to assign the remaining poles, three different methods based on root-locus
plot, modified Nyquist plot and Routh-Hurwitz stability criterion are presented. Since
the PID controller zeros are also affect the transient response, PI-PD structure is
proposed to eliminate the adverse effects of the controller zeros. The derivative
kick phenomenon in the closed-loop is also solved with the help of this structure.
Therefore, in the simulation studies, the results are mostly given for the PI-PD
implementation of the resulting PID controller. Maximum achievable dominance
factor in continuous-time domain is also calculated with the help of proposed
Routh-Hurwitz based approach for the systems with or without open-loop zeros. The
similar problem, which is stated as the limitations on the dominant pole pair selection
with PI and PID controllers, is also solved via the same approach. Thus, the designer
becomes aware of the performance limitations in the closed-loop if the controller is
designed via dominant pole placement approach. In the second chapter, the final study
consists of the solution to the dominant pole region assignment problem. Here, for
a P controller design, generalized Nyquist theorem based approach is proposed and
for the PI/PID controllers, a parameter space approach is used to solve the mentioned

problem.

It is also desired to solve the problems related with the dominant pole placement with
discrete P/PI/PID controllers and the similar steps are followed in the third chapter.
Parametrization of the digital PI and PID controllers are given after that the remaining
poles are assigned into the disc of desired radius with the help of two different
approaches named as modified Nyquist curve and Chebyshev polynomials. As in
continuous-time case, the digital PI-PD controller structure is also investigated and

advantages are mentioned. The complete digital PI-PD controller design process is
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given and the success of proposed method is shown both with simulation studies and a
real-time implementation. Calculation of the disc with minimum possible radius (same
as the calculation of maximum dominance factor) is also studied with discrete PID
controllers. Performance limitations are also obtained similar to the continuous-time
case for PI and PID type controllers, respectively. The solution to the dominant pole
region assignment problem is given for a P controller via generalized Nyquist theorem
based approach and for the PI/PID controllers via parameter space approach. It is
shown that it is possible to satisfy desired pole configuration in discrete-time domain

with the help of proposed method.

It is worth to note that the proposed design methods rely on the placement of dominant
pole pair to the desired points and the remaining poles m times away from the dominant
poles. However, it is not always possible to place the unassigned poles as desired
for the chosen performance specifications and dominance factor. Therefore, if the
resulting controller set is found to be empty then the given design process should be
repeated for different m value and/or performance criteria until obtaining a non-empty

controller parameter set.

For practical systems, it is not possible to obtain the perfect mathematical
model because of the unmodelled dynamics, environmental changes, neglected
non-linearities, parameter variations due to torn and worn effects. For this reason, the
system may contain uncertain parameters whose intervals are known. In this thesis,
interval type and affine-linear type uncertainties are considered and corresponding
stability analysis methods are presented. After that since different stability regions are
considered, D-stability concept and Kharitonov regions are explained and necessary
theorems are given. After the preliminaries part, solution to the robust dominant pole
placement problem with continuous PID controller is proposed with the help of vertex
polynomials and Kharitonov regions. In case of the parametric uncertainties, it is
not possible to place closed-loop system poles to the exact locations, but instead in
a defined D-region. It is shown that it is enough to check the D-stability of vertex
polynomials via Nyquist stability criterion if the closed-loop system characteristic
polynomial with PID controller is an interval type polynomial. The proposed design
method is then demonstrated on example uncertain transfer functions for different

D-regions. The closed-loop pole spreads and the transient responses are also given
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and success of the method is proven. The same procedure is followed for the
affine-linear type characteristic polynomials with PID controller. Instead of using the
bialas theorem for edge polynomials, a new method is proposed which is a lot easier
to check the D-stability of the affine linear characteristic polynomial. The method
relies on the Nyquist stability criterion and the calculation of invariant gain intervals
concept. Thus, the robust PID controller design for such systems are also completed
via robust dominant pole placement. Here, the success of the method is demonstrated
via simulation studies and also compared with the other robust PID controller design

methods from literature.

Even if it is not considered in the thesis, designing low order controllers for two
input—two output (TITO) processes via dominant pole placement is also possible.
In order to control a TITO system, a decoupler plus decentralized PID controller is
eligible to be considered. As a result, it can be said that the derived results for SISO
systems can also be used for most of the TITO systems with the help of decoupling

approach.

It is possible to design robust PID controllers for uncertain time-delay systems with the
help of discrete-time domain representation. The robust design methods proposed in
chapter four can also be used for such systems with the help of bilinear transformation.
However, it is also possible to propose similar methods for direct design of robust
digital PID controllers as a future work. On the other hand, it might also be possible

to extend the dominant pole placement methods to the fractional order systems.
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