

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DEVELOPMENT OF SIDE CHANNEL ANALYSIS ENVIRONMENT
USING SIMULATION DATA OF SYSTEM-ON-CHIP PROCESSORS

M.Sc. THESIS

Yasin Fırat KULA

Department of Electronics and Communication Engineering

Electronics Engineering Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DEVELOPMENT OF SIDE CHANNEL ANALYSIS ENVIRONMENT
USING SIMULATION DATA OF SYSTEM-ON-CHIP PROCESSORS

M.Sc. THESIS

Yasin Fırat KULA
(504161226)

Department of Electronics and Communication Engineering

Electronics Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın

JUNE 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

KIRMIK ÜSTÜ SİSTEM İŞLEMCİLERİNİN BENZETİM
VERİLERİ İLE YAN KANAL ANALİZİ ORTAMI GELİŞTİRİLMESİ

YÜKSEK LİSANS TEZİ

Yasin Fırat KULA
(504161226)

Ėlektronik ve Haberleşme Mühendisliği Anabilim Dalı

Elektronik Mühendisliği Programı

Tez Danışmanı: Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın

HAZİRAN 2019

Yasin Fırat KULA, a M.Sc. student of ITU Graduate School of Science Engineer-
ing and Technology 504161226 successfully defended the thesis entitled “DEVELOP-
MENT OF SIDE CHANNEL ANALYSIS ENVIRONMENT USING SIMULATION
DATA OF SYSTEM-ON-CHIP PROCESSORS”, which he/she prepared after fulfill-
ing the requirements specified in the associated legislations, before the jury whose
signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın
Istanbul Technical University

Jury Members : Prof. Dr. Güneş Karabulut Kurt
Istanbul Technical University

Asst. Prof. Dr. Tuba Ayhan
MEF University

..............................

Date of Submission : 30 April 2019
Date of Defense : 21 June 2019

v

vi

To my dear family,

vii

viii

FOREWORD

First of all, I present great thanks to my project advisor Assoc. Prof. Dr. Sıddıka
Berna Örs Yalçın for her invaluable information and infinite support in the course of
the thesis, also for endearing research to me yet again.

Further thanks to Dr. Tuba Ayhan and Levent Aksoy, for thier support and provided
insight during my postgraduate program.

Lastly, I present my eternal gratitude to my parents and my sister, who have always
been with me from the beginning to the present, and bringing me where I am now.

June 2019 Yasin Fırat KULA

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
SYMBOLS... xv
LIST OF TABLES ..xvii
LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET ...xxiii
1. INTRODUCTION .. 1
2. PULPINO PLATFORM... 5

2.1 General Information ... 5
2.2 PULPino Working Environment... 7

2.2.1 Prerequests for the environment ... 9
2.2.2 Setting up the environment... 13
2.2.3 Behavioral simulation... 15
2.2.4 Adding custom applications ... 18
2.2.5 Building FPGA related content .. 19
2.2.6 Potential problems and solutions.. 20

3. POST-IMPLEMENTATION SIMULATION AND DYNAMIC POWER
ESTIMATION ON PULPINO... 23

3.1 Preparing for Post-Implementation .. 23
3.1.1 First testbench... 23
3.1.2 Editing the boot ROM .. 25

3.2 Post-Implementation Simulation with Official PULPino Testbench.............. 26
3.3 Post-Implementation Average Dynamic Power Estimation 29

3.3.1 SAIF files and VCD files.. 30
3.3.2 Average dynamic power consumption estimation with SAIF 31

4. MOMENTARY POWER CONSUMPTION PROFILE GENERATION 33
4.1 Generating Momentary Power Consumption Profiles using VCD................. 33
4.2 Processing the Value Dump Files ... 35
4.3 Momentary Power Consumption Profile of an Advanced Encryption

Standart Algorithm ... 39
4.3.1 Overview of Advanced Encryption Standart .. 39
4.3.2 Masking Advanced Encryption Standart .. 42

5. DIFFERANTIAL POWER ANALYSIS USING MOMENTARY POWER
CONSUMPTION PROFILES ... 45

5.1 Differantial Power Analysis ... 45

xi

5.2 Test Attacks and Results... 47
5.2.1 Attack on Initial XOR Stage... 47
5.2.2 Attack on Initial SubBytes Stage.. 49

5.2.2.1 Results on standart AES .. 50
5.2.2.2 Results on byte-Masked AES .. 51

6. CONCLUSION ... 53
REFERENCES.. 55
APPENDICES... 59

APPENDIX A.1 ... 60
APPENDIX A.2 ... 61
APPENDIX A.3 ... 63
APPENDIX A.4 ... 66
APPENDIX A.5 ... 67

CURRICULUM VITAE... 69

xii

ABBREVIATIONS

NIST : National Institute of Standarts and Technology
AES : Advanced Encryption Standart
DES : Data Encryption Standart
TDES : Triple Data Encryption Standart
DPA : Differantial Power Analysis
HDL : Hardware Description Language
RISC : Reduced Instruction Set Computer
PULP : Parallel Ultra-Low Power
IoT : Internet of Things
RAM : Random Access Memory
ROM : Read Only Memory
SPI : Serial Peripheral Interface
FPGA : Field Programmable Gate Array
GUI : Graphical User Interface
RTL : Register-Level Transfer
IP : Intellectual Property
UART : Universal Asynchronous Receiver-Transmitter
SSH : Secure Shell
SAIF : Switching Activity Interchange File
VCD : Value Change Dump
UUT : Unit Under Test
ALU : Arithmetic Logic Unit
XOR : Exclusive Or
GPIO : General Purpose Input/Output

xiii

xiv

SYMBOLS

Ci : Capacitance of line i
fi : Switching frequency of line i
Vi : Voltage swing on line i
P : Dynamic power consumption
k : Number of clock pulses taken
n : Number of tests performed
Pij : Switching number per clock cycle matrix
Pavg : Average switching number matrix
S : Switching weight matrix

xv

xvi

LIST OF TABLES

Page

Table 3.1 : Post-implementation resource usage of PULPino on Artix-7
Development Board. ... 23

Table 3.2 : Structural properties of used benchmarks. .. 31
Table 3.3 : Simulation times and run times for different becnhmarks (25 MHz

clock)... 32
Table 3.4 : Average power consumption results obtained by Vivado, using

SAIF files. ... 32

xvii

xviii

LIST OF FIGURES

Page

Figure 2.1 : The PULP Project family [1]... 5
Figure 2.2 : The RI5CY core top level schematic [2]. .. 6
Figure 2.3 : The zero-risc core top level schematic [2]... 6
Figure 2.4 : The PULPino Platform top level schematic [2]................................. 7
Figure 2.5 : The build flow of the PULPino environment [3]. 8
Figure 2.6 : Example of a correctly edited .bashrc file. .. 10
Figure 2.7 : Terminal output for a succesful IP update. .. 14
Figure 2.8 : Expected terminal output after a succesful environment build.......... 15
Figure 2.9 : Terminal output when all the PULPino RTL is succesfully compiled. 16
Figure 2.10: Output of the helloworld program in ModelSim. 17
Figure 2.11: Example definitions in a CMake recognition file used in an

encryption application... 19
Figure 2.12: Top module of PULPino ZedBoard Implementation [3]................... 20
Figure 2.13: Correctly edited “vsim.tcl“ to solve C compiler issue....................... 21
Figure 3.1 : Structure of first testbench... 24
Figure 3.2 : PULPino memory map [2]. ... 25
Figure 3.3 : The modelsim.ini file with added Xilinx libraries............................. 26
Figure 3.4 : Contents of an example simulation folder. .. 28
Figure 4.1 : A cut view from a tabular value dump file belonging to PULPino

simulation.. 36
Figure 4.2 : Momentary switching profile for arithmetic logic unit. 37
Figure 4.3 : Momentary switching profile for core registers. 38
Figure 4.4 : Momentary switching profile of ALU (zoomed)............................... 38
Figure 4.5 : Momentary switching profile of core registers (zoomed). 38
Figure 4.6 : Block schematic of a 128-bit AES algorithm [4]. 40
Figure 4.7 : The SubByte operation [4]. ... 41
Figure 4.8 : The Shift Rows operation [4]. ... 41
Figure 4.9 : Operating of Mix Columns [4]. ... 41
Figure 4.10: Momentary power consumption profile of entire AES encryption

stage for one message. .. 42
Figure 4.11: Overview of basic masking [5].. 43
Figure 5.1 : Swtching activity profile of AES initial XOR operation for one

message, with respect to clock pulses... 46
Figure 5.2 : Initial XOR attack results for plaintext numbers of 100,200 and

300... 48
Figure 5.3 : Initial XOR attack result for 4000 plaintext trials. 49
Figure 5.4 : Initial SubByte attack result for 2000 plaintext trials........................ 50

xix

Figure 5.5 : Correlation profiles of possible key values for different number
of plaintexts... 51

Figure 5.6 : Initial SubByte attack result for 2000 plaintext trials........................ 52
Figure 5.7 : Correlation profiles of possible key values for different number

of plaintexts... 52

xx

DEVELOPMENT OF SIDE CHANNEL ANALYSIS ENVIRONMENT
USING SIMULATION DATA OF SYSTEM-ON-CHIP PROCESSORS

SUMMARY

In the current era, with the drastic development in electronics, computer and
communication technologies; the concept of digitalization became a part of daily
life. This concept brought quite a lot improvements on data transferring and data
communication, in terms of easiness and speed. This also brought forth the concern
of data safety during the process. Cryptology, which is defined as the discipline of
data integrity nowadays, steps in to cope with this problem. In this manner, cryptology
offers ways to encrypt and protect the transferred and stored data.

Developed encryption algorithms are desired to be standartized worldwide. For
example, a standart belonging The National Institute of Technology and Standarts
of United States of America (NIST), the Advanced Encryption Standart (AES) is a
good living example of this, employing an algorithm originally named Rjindael. AES
replaced their precesors, Data Encryption Standart and Triple Data Encryption Standart
in 1999, offering better security and performance, and it is still in use.

Softcore processors are yet another topic that has a large popularity in embedded
system applications in the latest years. Their aspect that stands out is their
flexibility, coming mostly from being open source and editable designs. Black box
microprocessor based products may not perform ideally for all application areas, and
creating a custom design just for a specific application may not be cost effective.
Hence, open source mentality is adapted to the hardware section to cope with the
flexibility issues. Designers release their product openly and allow users to examine
and edit them. This lets users to use whatever sections of design is needed or expand
the design according to their application areas. Users can also contribute to the process
by reporting bugs or offering valid extensions.

In the scope of this thesis, the two aforementioned concepts are planned to be used
together. A softcore processor system is chosen and data for Differantial Power
Analysis (DPA) on AES is planned to be taken using this model. The claim is to
show that real time power consumption measurements are not required necessarily,
simulation level switching information can also be used instead. Verifying this
would allow to test an algorithm against side channel attacks during simulation stage,
without needing a realization. This would also remove the time consuming real time
measurement stage.In this manner, this work showed that the claim is valid and it is
possible to obtain acceptable results for DPA during simulation stage. Along with
this, a softcore processor system was used to generate inputs; to obtain a working
experience with open source systems and to be a further referemce for our research.

During the course of work, open source softcore processor system named PULPino
was used . First part of the work explains this design in detail, and shows how to use
it’s working environment, to be a reference for further works.

xxi

It is firstly thought to make post-implementation simuations for PULPino to get
more close to real test results for DPA. Implementation of PULPino is done for
Artix-7 device in Xilinx Vivado. The resulting post-implementation model is used
in ModelSim tool, along with PULPino testbench and simulations are performed for
various benchmarks. In the next step, obtaining average dynamic power consumption
and momentary switching profile generation is discussed. Some average dynamic
power consumption estimations are done as an extra, for various bechmarks. Then,
momentary switching activities are recorded for behavioral and post implementation
simulations of different benchmarks. Post-implementation outputs being unefficiently
large led to behavioral model activity dumps to be used. The expectation was to see
that behavioral switching activity would be stil sufficient to explict important areas of
execution.

Since none of the freely available tools that is tried offered a momentary power
consumption graphic output, MATLAB codes to performs this task are written from
scratch. The power consumption profile technique is tried on several benchmarks and
AES encryption and it is observed that they provide the critical section information on
the profiles as expected. Then, using a large number of different plain text messages
AES application is simulated and outputs are used for DPA and correlation analysis.
Results of correlation analysis allows to find the exact value of the key section that is
used, or provides a shrinked estimation groups for the key. Both of these means that
the algorithm can be cracked, and proves the offered technique is valid.

xxii

KIRMIK ÜSTÜ SİSTEM İŞLEMCİLERİNİN BENZETİM
VERİLERİ İLE YAN KANAL ANALİZİ ORTAMI GELİŞTİRİLMESİ

ÖZET

Günümüzde elektronik, bilgisayar ve haberleşme teknolojilerinin hızla gelişmesiyle
insanların yaşamına girmiş olan "dijitalleşme" kavramı, verinin işlenmesi ve taşınması
açısından birçok avantaj getirmiştir. Dijital ortamda veri çok hızlı ve kolay bir
şekilde taşınabilmektedir. Fakat bu kolaylık, bilginin elektronik olarak taşınması
ve saklanması sırasında verinin güvenliği ile ilgili endişe de doğurmuştur. Bu
sorunun çözümü için, eski tarihlerden beri çeşitli biçimlerde varlığını sürdüren
kriptoloji bilimi öne çıkmaktadır. Varlığının ilk dönemlerde kriptoloji tabiri, şifre
üretme işini çağrıştırırken günümüzde kriptografi ve kriptanaliz alt disiplinleri ile
veri bütünlüğünün korunması problemine yoğunlaşan bir bilim dalı durumundadır.
Kriptoloji, verinin bir uçtan diğerine taşınması sırasında güvenliği sağlamak için çeşitli
şifreleme, saklama ve analiz yöntemleri ve algoritmaları önerir.

Geliştirilen şifreleme algoritmaları ülkeler tarafından standartlaştırılmaktadır.
Amerika’nın Ulusal Standartlar ve Teknoloji Enstitüsü’ne (NIST) ait standartlardan
olan Gelişmiş Şifreleme Standartı (AES) genel ismi altındaki Rjindael algoritması
bunun güncel bir örneğidir. Bundan önce Veri Şifreleme Standartı (Data Encryption
Standart - DES) algoritması NIST tarafından 1977 yılında standart olarak
tanınmıştı. DES algoritmasının kırılmasının ardından yerini bu algoritmanın iteratif
çalıştırılmasını içeren Üçlü Veri İşleme Standartı (Triple Data Encryption Standart
- TDES) almıştır. Zaman içinde TDES’in de güvenilirliğini yitirmesiyle NIST yeni
bir şifreleme standartı arayacağını duyurmuştur. Bu sebeple 1997 yılında AES ismi
altında kullanılmak üzere seçilmek için alogritma arandığı çağrısında bulunmuştur.
Bunun sonucunda kriptoloji ile uğraşan kişilerce toplamda 15 algoritma gönderildi
ve bunlardan beş tanesi 1999 yılında finalist olarak belirlendi. Bu algoritmaların
performans, hız, uygulama kolaylığı, güvenlik, yazılım ve donanıma uyarlanabilme
kolaylığı gibi etkenler açısından incelenmesi sonucunda Rjindael algoritması standart
olarak seçilmiştir. Bu algoritma yukarıda belirtilen parametreler açısından da TDES’i
geride bırakmaktaydı. Böylece AES, kendisinden önce kullanılmakta olan TDES
standartının yerine geçmiştir ve halen kullanılmaktadır.

Son yıllarda gömülü sistem gerçeklemelerinde pöpülerliği oldukça artan bir diğer
kavram da gerçeklenebilir işlemcilerdir. Bu işlemciler yine açık olarak sunulan
daraltılmış komut kümelerinin gerçeklemelerinden ortaya çıkmaktadır. Öne çıkan
en büyük özellikleri, açık kaynak kodlu ve değiştirilebilir olmalarından kaynaklanan
esneklikleridir. Mikroişlemci ve mikrodenetleyici gibi bileşenler çok amaçlı kullanıma
göre tasarlanmaktadır, fakat bu tasarımlar her uygulama alanı için alan veya
performans bakımından en ideal sonucu vermeyebilir. Üretici firmalara özel kullanım
için tasarımlar ürettirmek de maliyet açısından verimsiz olduğundan uygun bir
yaklaşım olmamaktadır. Bu tür sorunları aşmak adına öncelikle yazılım dünyasında
popülerleşmiş bir kavram olan açık kaynak kodlu tasarım düşüncesi de donanım

xxiii

dünyasına uyarlanmaya başlanmıştır. Bununla birlikte, içeriği üretici firmalar
tarafından gizli tutulan kapalı kutu tasarımlar yerine kaynak kodları açık olan
gerçeklenebilir işlemciler kavramı öne çıkmıştır. Bu durum kullanıcılara kendi
uygulama alanlarına göre tasarımın gereken bölümlerini kullanma, değiştirme, hatta
yapacakları hata tespitleri veya eklentiler ile de geliştirme sürecine katkı sağlayabilme
imkanı vermektedir.

Bu tez kapsamında, yukarıda anlatılan bu iki güncel kavramı birden içeren çalışmalar
yapılması hedeflenmiştir. Seçilen bir gerçeklenebilir işlemcili sistem üzerinde AES
algoritmasının gerçeklenip farksal güç analizi kullanılarak yan kanal saldırılarına karşı
direncinin sınanması amaçlanmıştır. Farksal güç analizi için gerekenler arasında
bir sistemin gerçeklenmiş hali üzerinde çok sayıda gerçek zamanlı güç ölçümlerinin
alınması vardır. Bu süreç ise oldukça vakit almakta olup ayrıca da tasarımın
bir gerçeklemesinin yapılmış olmasını gerektirmektedir. Bu çalışmada bu işlemin
henüz tasarım benzetim aşamasındayken dahi fonksiyonel benzetim kullanılarak ve
anlık işaret değişimi çizgesi çıkarılarak yapılabileceği gösterilmiştir. Bu çalışma
hem gerçek güç ölçümünde harcanan zaman, hem de tasarımın gerçeklemesinden
gelecek olan maliyet kaybının da önüne geçerek daha verimli bir biçimde farksal
güç analizi girdileri üretilerek bir şifreleme algoritmasının kırılabilme durumunu
gösterir niteliktedir. Bununla birlikte gerçeklenebilir işlemcili sistem test birimi olarak
kullanılmış ve bu alanda bir çalışma tecrübesi elde edilmiş; ayrıca ileride bu konu
üzerine yapılacak çalışmalar için bir yol açılmıştır.

Çalışmalar sürecinde ilk olarak bu gerçeklenebilir işlemci gerçeklemelerinden birini
içeren açık kaynak kodlu bir mikrodenetleyici sistemi olan PULPino incelenmiştir.
Bu sistem, ETH Zürich gömülü sistem ekibi tarafından geliştirilmiş paralel düşük
güç tükteten platformlar projesi olan PULP girişiminin bir üyesidir. Sistemin
diğer aile üyelerinden ayrılan özelliği küçük ve kompakt olmasıdır, bu sebeple
de eğitsel çalışmalar için çok uygundur. Çalışmanın ilk bölümünde bu tasarım
detaylıca tanıtılmıştır. Ayrıca tasarım ile birlikte sunulan otomatikleştirilmiş çalışma
ortamının kullanımı da anlatılmıştır. Bu ortamın içinde tasarımın simulasyonun
yapılması, doğrudan FPGA içine yüklenerek çalıştırılması gibi süreçler bulunmaktadır.
Çalışma ortamının bazı belirli araç sürümleri ve işletim sistemini gerektirmesi
nedeniyle, gerçeklenebilir işlemcilerle çalışmaya yeni başlayacak, özellikle yeterli
donanım ve yazılım alt yapısı olmayan kişilerce kullanımı zor ve alışması zaman
alan bir süreç olabilmektedir. Bu nedenle bu çalışma ortamının kurulması,
çalıştırılması, yeni otomatikleştirilmiş özellikler eklenmesi gibi konular da ilk bölümde
detaylıca ele alınmıştır. Bununla birlikte, çalışma ortamının kurulumunda ve
kullanımında karşılaşabilecek sorunlar ve gerekebilecek araçlar da belirtilmiş ve
bunlarla karşılaşılması durumunda nasıl bir çözüm uygulanabileceği de anlatılmıştır.
Böylece bu bölümün çalışmalarını PULP ailesi ile yapacak kişiler için bir kılavuz
görevi görmesi hedeflenmiştir.

Farksal güç analizi için girdi üretmek adına AES’nin PULPino’da çalıştırılması için
öncelikle gerçek dünyada güç ölçümü yapmaya yakınlık olması açısından PULPino
tasarımının bir FPGA kartında gerçeklenmiş simülasyon modelinin kullanılması
düşünülmüştür. Bunun için PULPnio çalışma ortamındaki RTL kodları ile Xilinx
Vivado aracında Artix-7 kartı için bu model üretilmiştir. Bu model için, PULPino
çekirdeğini tek başına kullanarak, bazı test programlarının önyükleme hafızası içine
atılan uygulama makine kodu ile çalıştırılması denenmiştir. Bu çalışma şekli, PULPino

xxiv

işlemcisine eklenen bazı komut uzatmalarındaki bir tasarım hatasından dolayı başarılı
olamadığı görülmüştür. Bahsi geçen hatanın başka çalışmalarda da raporlandığı
yapılan incelemelerde görülmüştür. Bunun üzerine bu model, çalışma ortamı içindeki
benzetim test modelinde kullanılmış olan ModelSim aracına aktarılmıştır. Böylece
bu test ortamı kullanılarak gerçekleme sonrası benzetimler birkaç farklı test kodu için
yapılmıştır.

Sonraki adımda, gerçekleme sonrası benzetimlerden işaret değişim aktivitesi elde
ederek güç tahmini yapma yöntemleri incelenmiştir. Bunun için kullanılabilecek
SAIF ve VCD uzantılı iki döküm dosyası türü bulunmaktadır. SAIF dosyaları
tüm benzetim için toplamsal işaret değişimi bilgisini vermektedir. Bu dosyaların
boyutları küçük olmakta fakat anlık işaret değişimi hakkında bilgi sunmamaktadır.
Ek olarak bu dosyalarla Vivado aracında nasıl güç tüketimi tahmini yapılacağı
gösterilmiş ve farklı test kodları için ortalama güç tüketimi tahminleri alınmıştır.
Ardından, işaret değişimlerini anlık olarak tutan VCD dosyaları benzetim sırasında
üretilmiştir. Gerçekleme sonrası benzetim modeli, verilen tasarımın FPGA kartına
ait temel öğeleri içerecek şekilde modellenmiş halini içermektedir. Genel durumda
bu temel birimlerden yüzlercesi tasarımdaki bir bloğu ifade etmektedir. Bu sebeple,
tasarımdaki içsel işaretlerin ve giriş çıkışların sayısı katlanmaktadır. Bu durumun
VCD dosyalarında çok sayıda işaret tutulduğundan dosya boyutlarında aşırı büyümeye
sebep olduğu görülmüştür. Bu sebeple son olarak, gerçekleme sonrası benzetim
yerine işlevsel model simulasyonu üzerinden işaret değişimi alma yoluna gidilmiştir.
Buradaki beklenti, güç tüketimi çizgesinin yine de sistem üzerinde yapılacak bir
işlemin önemli noktalarını gösterecek şekilde oluşacağı olmuştur.

Denenmiş olan ücretsiz güç tüketimi tahmini araçlarından hiçbiri anlık güç tüketimi
bilgisi sunmadığından, bu işi yapacak bir kod MATLAB ortamında yazılmıştır. Yazılan
kod, kendisine girdi olarak verilen işaret dökümü dosyasını işlemekte, daha sonra
toplam işaret değişimlerini zamana bağlı olarak çizmekte ve bunlara ait sayısal
değerleri tutmaktadır. Bu güç tüketimi tahmini çizgesi ile anlık güç tüketimi
kestirme yöntemi çeşitli test uygulamaları ve AES ile denenmiş ve gerçekten de,
uygulamalardan görülmesi beklendiği şekilde bir çizge oluştuğu gözlemlenmiştir.
Ardından AES için çok sayıda farklı giriş mesajı verilerek yapılan benzetimler
sonucunda elde edilen çizgeler farksal güç analizinde kullanılmıştır. Çizge üretimi,
çözümlenmesi ve farksal güç analizi için gerekli tüm kodlar yazılmıştır. Ardından,
üretilen girdiler ve tahmin edilen model kullanılarak korelasyon analizi yardımıyla
AES anahtarı elde edilmeye çalışılmıştır. Korelasyon analizi sonucunda elde edilen
korelasyon değerlerine göre anahtar bölümünün direkt olarak elde edilmesi veya
anahtar bölümü tahmini kümesinin daraltılması amaçlanmıştır. Bu iki durumun
görülmesi algoritmanın kırıldığını da gösteriyor olacaktır. Bunun için yapılan ölçümler
ve sonuçlar sunularak, önerilen yöntemin geçerliliği gösterilmiştir.

xxv

xxvi

1. INTRODUCTION

Cryptology is a mathematical science discipline which changed its form within years,

from being creating cyphers to studying information integrity and became even

more important in modern era, due to digitalization. History of encryption spans

to the middle of 14th century, though digital cryptography concept first officialised

with an article presented in 1945 [6]. Afterwards, with the exceptional increase of

digitalization in daily life, data safety also became a major concern for both designers

and consumers. In the hardware realisation level of encryption algorithms, this concern

is portrayed as the resistance of a design to the potential encryption cracking attacks;

which gives away the very key used in an encryption algorithm.

Another very popular aspect of the modern years is to compose an open-source

assemblage for both software and hardware products. Softcore processors [7] employs

a identical type of approach to processor designing mentality; from openly introducing

the instruction set architectures to providing actual Hardware Description Language

(HDL) [8] level of the processor to users. The importance of this non black-box type

approach is that it allows the users to examine, modify and extend an architecture and

the corresponding hardware for specific needs. Befittingly, these custom instruction

sets are designed in a manner that it easily allows further addition of new custom

instructions. Henceforth, it could be stated that this type of architectures use the

Reduced Instruction Set Computer (RISC) [9] concept. The RISC-V [10] architecture

stands out as one of the highly common modern reduced instruction sets. In

time, many processors have been developed that implement RISC-V instruction set

architecture [11,12]. Moreover, an ample amount of studies can be found in literature,

which demonstrates the performances of some applications for different RISC-V

processors [13–15].

As per the remarks made above, the works in this thesis combines softcore processor

employing system-on-chip and encryption safety conecpts together. First aim of the

thesis is to employ an in demand open source system-on-chip desing and perform Field

1

Programmable Gate Array (FPGA) realisation based post-implementation dynamic

power comsumption analysis and automating the process for further use. Since the

power consumption estimation for FPGA designs are highly tool reliant and possibly

requiring to adapt the official designing and testing flows offered by the developers of

the system-on-chip in question or requires users to come up with their own work flow

from scratch; a time consuming adaptation period apprears in the studies. This thesis

offers a guide for performing post-implementation for the used RISC-V architecture

employing system, to be utilized for further studies.

The second aim of the thesis is to offer a methodology for resistance tests for various

encryption alogrithms. It is shown that real time power consumption of an hardware

can give away the vital information regarding encryption [16], even with the noise

and the inclusion of power consumption of unrelevant hardware sections are taken into

account [17]. However, works are done using on-chip real time power consumption

measurements, hence it requires an already fabricated hardware to test its side-channel

attack [18] resistance. This thesis aims to offer a simulation stage level side-chanell

attack resistance test methodology, so that a designer will be able to test his/her

hardware or algorithm in behavioral simulation stages without being have to implement

it first.

Second chapter of the thesis introduces the softcore processor employing system used

during the process of works in thesis and explains the usage and build flow of the

system in-depth, to be a reference for further studies. It also states various errors and

solutions that could be encountered by future students.

Third chapter denotes the first leg of the work, which is creating and automizing the

flow for performing a post-implementation simulation on the given softcore processor

system. This part also shows how to create a custom task flow that is out of boundaries

of the developer environment rules.

Chapter four explains the presented method to portray a digital circuit’s momentary

power consumption profile and demonstrates a number of graphical results, showing if

the produced profiles are applicable on giving a viable idea on power consumption.

2

Fifth chapter explains the method for undergoing correlation analysis and includes the

experiment results for regular and masked encryption, also discusses the results of key

prediction when the resistance tests are done in simulation stage.

3

4

2. PULPINO PLATFORM

During the course of this work, simulation based tests are performed using a softcore

processor employing system-on-chip platform. In this chapter, the overview of the

platform that is used will be given along with the detailed information on the usage of

it’s working environment.

2.1 General Information

PULP (Parallel Ultra-Low Power) Platform project is one of the many popular

RISC-V based innovatives that diverses itself according to the number of used

cores, and implicitly the System-on-Chip size. The project offers a group of open

source low-power solutions for working areas like Internet of Things (IoT) [19],

neural networks and microcontroller apllications. It’s main aspect is possessing low

power consumption, and it does so employing near threshold computing; which

achieves this by avoiding to make the device entering the strong inversion, applying

performance compensation using parallel computing and managing a device’s static

power consumption in an excessive manner [20].

PULP family (it’s illustration is given in Figure 2.1) also has single-core devices,

PULPino Platform [3] is one of the members in this family. Here, "-ino" was used as

Figure 2.1 : The PULP Project family [1].

5

a diminutive suffix to imply smaller size of the device. The aim for this smaller scale

design is to present a more compact and simple platform for some application areas,

especially in IoT practices. This platform uses a modified version of PULP RISC-V

instruction set architecture and is able to utilize various processor architectures that

can support this instruction set. Currently, PULPino release offers readily available

implementations for RI5CY [21] and zero-risc [22] cores. Top schemtaics of these

cores are given in Figure 2.2 and Figure 2.3 respectively.

On the other hand, PULPino Platform offers a high number of peripherals that offers

versatility during usage and testing stages. Below is a close-up list of the components

included in the platform:

• A selectable single-core processor

• An optional Floating Point Unit

• Single-port data and instruction Random Access Memories (RAM)

• A boot Read-only Memory (ROM)

• Advanced Xtensible Interface interconnections for coordination between core and

peripherals

• Timer and Event Unit, for power management

Figure 2.2 : The RI5CY core top level schematic [2].

Figure 2.3 : The zero-risc core top level schematic [2].

6

• An Serial Peripheral Interface (SPI) [23] module

• Advanced debugger that allows access to memory map using JTAG

It is very important to state that all these components are open source, and allows

others to change the hardware, add their own blocks and subtract defaultly available

components. In fact, PULPino peripheral bus contains empty areas specificaly ment

for the users to add their custom peripherals [2]. However, it is very likely that some

adjustments have to be made on the system behaviour providing the user doing radical

changes on the architecture.

Figure 2.4 presents the top level schematic of PULPino Platform.

2.2 PULPino Working Environment

Being an open-source platform, related HDL codes of the PULPino Platform can be

freely accessed by users. Along with this, all the first party content related to PULPino

platform is also completely made available to users, in form of a buildable Linux-based

[24] working environment [25]. The build flow belonging to this environment is given

in 2.5 Using this working environment;

• All the HDL code related to PULPino system can be examined and modified.

• Using the simple command set offered by the environment, the design could be

compiled, prepared and behaviorally simulated using ModelSim [26] and Verilator

[27] habitats.

Figure 2.4 : The PULPino Platform top level schematic [2].

7

Figure 2.5 : The build flow of the PULPino environment [3].

• C/C++ programs could be prepared and compiled with the help of a custom

instruction set toolchain. The environment also contains different C/C++

applications ready to be compiled and run on the platform.

• A Xilinx Vivado [28] project can be automatically generated to implement the

platform on Field Programmable Gate Arrays (FPGA).

• PULPino system can be directly realized on a Xilinx ZedBoard [29] device, using

automated working environment commands.

Apart from this, the working environment does not offer automatization for any other

type of FPGA devices bar the aforementioned one. Moreover, simulation scripts are

limited to perform behavioral simulation only, requiring the users to generate their own

processes to perform post-implementation analysis and any sub-analysizes related to

implementation (e.g post-implementation power consumption estimations). Another

important thing to note is that the PULPino environment’s building and scripting

processes is only completely supported under Linux based operating systems.

The working environment is highly automized and requires specific adjustments and

tool versions to be fully utilized. Therefore, a general Linux and scripting knowledge

is essential to fully benefit the environment. Works on this thesis are performed on a

Linux Mint 17.3 [30] 64-bit operating system; using Xilinx Vivado 2015.1 and 2018.2

revisions and ModelSim SE 10.4 and PE 10.2 versions. It is also highly recommended

8

that to ensure the Linux based operating system that is planned to be used is up to

date. It should be noted that all the codes, scripts and programs given in this thesis are

written or executed within the specified operating system and tool vesions, and are not

guarantied to work on different operating system distros and tool versions.

2.2.1 Prerequests for the environment

PULPino working environment is strictly dependent on certain tools and software

versions to properly executed. Most of these requirements are already presented in the

depository readme files however, depending on the used operating system, users might

still need to obtain various software that are not explicitly explained by the environment

authors. Below, required tools and software for using the working environment are

listed along with their reason for usage. Also, we included the missing software that

was neccesary to work with the environment within the operating system verison used

on this thesis, for further reference.

It is also strongly recommended to keep the operating system and it’s installer

repositories up to date before starting to setup the PULPino working environment and

it’s components. The terminal codes below performs these tasks. It should be noted

that this process could take quite long time for newly-installed systems.

sudo apt update sudo apt upgrade

Requirements that are included in working environment documentation:

• CMake: The PULPino environment uses a CMake based file management system

handle making and building processes. Source package of the program can be

downloaded from its homepage [31]. Then, users should extract the archive

wherever they want the installation should stay. Archive can be extracted using;

tar -xvzf <archivename>.tar.gz

Afterwards, users should go into the extracted directory and run the following

commands;

./bootstrap make make install

Then the users should find the bin folder generated inside their installation directory

(ex. <installationfolder>/cmake-3.13.0-rc2/bin). and add this bin directory to

9

the system’s PATH variable. Manually adding to the PATH variable is not

recommended since this requires the user to add the variable each time the user

opens a new terminal. To make the location permanently stay at the PATH variable;

.profile file or .bashrc file located on /home directory must be edited. Users could

have need to enable show hidden files option in their system to see this file. If none

of these files are readily available on the home directory, users could just create

them on their own.

The general command for adding something to the PATH variable is given below,

and this command should be copied into either ".bashrc" or ".profile" file.

$PATH = PATH:<pathtoadd>

It is advised to do this for each step requiring to add something to system’s PATH

variable. PATH variable contains the search locations of executable files that will be

directly recognised by the system, without being need to specify the exact location

of corresponding executable file. Figure 2.6 shows an example of an edited .bashrc

file.

• ModelSim: All the scripts in the environment that handles compiling and simulation

are written specifically for ModelSim tool. If a user aims to use readily available

compile and simulation chain, using ModelSim is a neccesity; otherwise, scripts

must be written from scratch depending on the compiling and simulating habitat.

ModelSim offers freely available versions for educational purposes.

The ModelSim folder that contains the executables should be added

to the system’s PATH variable, These files will be contained in

“<path_to_modelsim>/modelsim_ase/linuxaloem“ directory.

Figure 2.6 : Example of a correctly edited .bashrc file.

10

• ri5cy-toolchain [32]: A RISC toolchain handles compiling, linking and building

process of C/C++ codes for a RISC based processor architecture. With another

way of saying, it carries over the entire process of converting a text based higher

level code to RISC compatible machine code. Because of this, whenever a

new instruction is customly added to the standart RISC-V instruction set, the

corresponding toolchain must be edited to make it understand this new instruction

as well. Since RI5CY core of PULPino uses some custom instructions, it uses a

specially modified version of a standart RISC-V toolchain. This modified toolchain

contains extensions that support modified RI5CY core instructions.

Firstly, the toolchain requires some packages to be present in an operating system.

These packages must be installed with the following command:

sudo apt-get install autoconf automake autotools-dev

curl libmpc-dev libmpfr-dev libgmp-dev gawk

build-essential bison flex texinfo gperf libtool

patchutils bc zlib1g-dev

Afterwards, toolchain repository must be downloaded with:

git clone https://github.com/pulp-platform/ri5cy_gnu_toolchain

Then, users should enter the ri5cy-gnu-toolchain folder, and while inside this folder,

type “make“ in the terminal to start building process of the toolchain. It should

be noted that this process may take a while. After the building is complete, a

”ri5cy_gnu_toolchain/install/bin” must be present in the directory. This bin folder

must be added to the PATH variable of the system.

Various tools that might be required and not stated in the working environment

documentation are as follows:

• tcsh: This shell environment is used in some of the file generation processes. The

terminal command below can be used to directly install this software.

sudo apt-get install tcsh

• git: This applicaton will be used to download various repositories within command

lines and scripts. Following terminal command installs this application:

sudo apt-get git

11

• ia32-libs ve g++multilib libraries: If ModelSim would be run in 32-bit mode (the

case in the working environment scripts) under a 64-bit operating system, these

libraries must be installed. Otherwise, related working environment scripts have to

be modified. For the aforementioned Linux version, the following commands could

be used to install the libraries:

sudo dpkg add architecture i386 sudo apt-get update

sudo apt-get install ia32-libs sudo apt-get install

g++multilib

• Python2.7 [33], pip and yaml packages: Pulpino main folder has some scripts

depending Python2 and yaml packages.

Firstly, following commands installs python2.7, and pip for python2 and python3;

sudo apt install python2.7 python-pip

sudo apt install python3-pip

Afterwards, to install yaml packages system-wide;

sudo apt-get install python-yaml

• Vivado 2015.1: If the PULPino design is planning to be tested on an FPGA, or an

automatically generated HDL project is desired to be used; preciselly this version

of Xilinx Vivado must be used, due to the scripts are only being compatible with

this version. After generating all of the required outputs, a more recent version of

Vivado could be used.

Vivado is freely available for users and can be downloaded on Xilinx servers (It

should be searched inside archived downloads section, since this is an outdated

version). After the downlad and installation is completed, commands below must

be run on terminal before executing the Vivado user interface:

source <installation_path>/Xilinx/SDK/2015.1/settings64.sh

source <installation_path>/Xilinx/Vivado/2015.1/settings64.sh

Following these, typing the commands below in the terminal will execute Vivado in

Graphical User Interface (GUI) mode:

cd /vivado

vivado &

12

• Vivado 2018: The project generated in 2015.1 version could be opened in the most

recent Vivado versions. Since 2015.1 version being outdated, it does not support

some SystemVerilog [34] structures used in the design, hence the official testbench

for PULPino cannot be used in this habitat. Moreover, recent versions of Vivado,

despite being able to support the aforementioned SystemVerilog structs, was still

observed to be stuck during compilation process. To workaround this problem

without doing in-depth search to entire HDL library of the design to pinpoint

the problem, users can just generate the post-implementation model of design

in Vivado and then import it to ModelSim for post-implementation simulation

(PULPino environment only offers behavioral simulation automation on ModelSim

or Verilator).

2.2.2 Setting up the environment

After all the required software installed, the system is ready to use the PULPino

working environment. PULPino is presented in a GitHub repository [25] and can be

downloaded using the terminal command;

git clone https://github.com/pulp-platform/pulpino

This will download the “pulpino“ folder to the current directory. This folder is the main

directory for any PULPino related work. However, this folder comes in an incomplete

state. PULPino uses various different packages from other GitHub repositories. The

files asociated with this repositories will not come with PULPino installation itself,

and must be downloaded using a Python script named “update-ips.py“ inside pulpino

main folder. Following commands will execute this script to download extra files from

the required repositories.

cd pulpino

./update-ips.py

If the script finishes it’s run successfully, a success message similiar to the one in Figure

2.7 will be seen. Moreover, “pulpino/ips“ folder will now have the Register-Transfer

Level (RTL) files of the Intellectual Properties (IP) used within PULPino.

In the next step, a build folder will be generated to hold a working session for users.

This can be done inside the ”pulpino/sw” folder. This folder houses the C/C++

13

Figure 2.7 : Terminal output for a succesful IP update.

applications and codes to be run on the PULPino, and contains building scripts for

bringing together a working folder for simulations and application running. There are

four readily available building scripts inside this folder:

• cmake_configure.riscv.gcc.sh: Build a PULPino environment that uses RI5CY as

it’s core.

• cmake_configure.riscvfloat.gcc.sh: Build a PULPino environment that uses RI5CY

as it’s core, which also contains an extra Floating Point Unit.

• cmake_configure.zeroriscy.gcc.sh: Build a PULPino environment that uses

zeroriscy as it’s core.

• cmake_configure.microriscy.gcc.sh: Build a PULPino environment that uses

microrisc as it’s core.

These scripts automatically assumes that the user will have a folder named “build“

inside the “sw“ folder (pulpino/sw/build) and it is being run within this folder.

Therefore, in order to use the scirpts without making any changes, one should create

an empty folder named “build“ inside their “pulpino/sw“ folder and copy the building

script that is desired to be used in this folder. During this thesis, PULPino with RI5CY

core is used without a Floating Point Unit.

After copying into the empty build folder, the script should be run in terminal with;

./script_name.sh

14

If the build is successful, a terminal output similiar to the one seen in Figure 2.8 will

be printed. Now the PULPino is readily built to be used with ModelSim.

2.2.3 Behavioral simulation

The official release of the PULPino offers behavioral simulation on ModelSim.

Automated version of these simulations offers running various C/C++ programs

directly on the system. The C/C++ program is first converted into machine code via

the customized RI5CY toolchain. Afterwards, various stimuli files are generated to

be used inside the simulation testbench. There are two readily available methods for

injecting the machine code inside the PULPino Platform;

• Preloading the instruction and data memories: Automatically generated machine

code and program data are copied into PULPino instruction and data RAM’s during

the simulation runtime. The stimuli are read from text files.

• Loading with SPI: Instructions and program data are fetched in simulation runtime

from the SPI module located within the PULPino. SPI stimuli is taken from a text

file.

After the execution, all signal data can be observed by the users within ModelSim

interface. This includes memories and peripherals inside PULPino.

Before beginning the program execution simulations, the PULPino design must be

compiled for ModelSim. This process is automated and can be done by typing,

make vcompile

Figure 2.8 : Expected terminal output after a succesful environment build.

15

while inside the “pulpino/sw/build“ folder. This command compiles the RTL found in

directories “pulpino/rtl“ , “pulpino/ips“ and “pulpino/tb“. These folders actually holds

the source HDL code of the PULPino platform, it’s peripherals and the ModelSim

testbench, and can be freely edited, examined or added into. It should be noted that

the codes must be recompiled with the previously given terminal command, for the

changes to be appear in ModelSim simulation.

When the compilation of the RTL codes are succesful, the terminal message given

in Figure 2.9 must appear at the end. Warnings related to unsupported assertion

statements and compiler calls can be ignored, as these will be simply not implemented

during the compilation and won’t cause execution faults.

In order to execute the already available C programs that is contained in official

PULPino working environment, the folder “pulpino/sw/apps“ must be observed firstly.

Folders in this directory has related C/C++ codes to be compiled on custom RI5CY

toolchain. To compile the codes and generate a ModelSim environment for the

simulation, related make rules have to be invoked while inside “pulpino/sw/build“

folder. application names can be checked from CMake list files or double tapping

tab button after writing “make“ to the terminal.

For example, a text output program is located at “pulpino/sw/apps/helloworld“ folder.

To compile, generate stimuli files and create ModelSim simulation environment;

make helloworld

Figure 2.9 : Terminal output when all the PULPino RTL is succesfully compiled.

16

command must be executed in “pulpino/sw/build“ directory. When successful, this

creates a special simulation folder inside “pulpino/sw/build/apps“ directory, named

“helloworld“. This folder will have ModelSim configuration files to be used for

simulation, stimuli files related to the compiled C code, tracer output and stdout folder

for Universal Asynchronous Receiver-transmitter (UART) outputs. Afterwards, while

still in the “pulpino/sw/build“ folder,

make helloworld.vsim

command can be used to automatically start the ModelSim behavioral sim-

ulation. This command automatically switches to the previously generated

“pulpino/sw/build/apps/hellworld“ directory and invokes ModelSim simulation there,

so that the stimuli files can be used which were generated from the C codes.

After the execution, this program will generate a “Hello World“ string and send it

over UART module. Data sent from the UART will also appear in the command

line of ModelSim. The executed behavioral simulation after calling helloworld.vsim

command can be seen at Figure 2.10.

Figure 2.10 : Output of the helloworld program in ModelSim.

17

2.2.4 Adding custom applications

Inside the PULPino working environment, custom C programs can be included into the

automation system to be ran on PULPino from ModelSim, similiarly to the helloworld

example given at Section 2.2.3. Procedure for adding a custom application is given

below, step by step:

1. Related codes must be copied into a user-created folder inside the directry

“pulpino/sw/apps“. Name of the newly created folder is also user determined (ex.

“pulpino/sw/apps/new_app“).

2. A file that is exactly named “CMakeLists.txt“ must be created in this newly created

application folder. This file shall hold the names of C source files to be used

and PULPino related header file includes, if any are used. This file lets the

applciation to be recognized by automated CMake structures. One example of

this file is presented at Figure 2.11. Here, CMAKE_SOURCE_DIR variable is

automatically defined inside PULPino environment and it points to “pulpino/sw“

directory. Other directories inside the include definition are actually located within

working environment and can be examined and edited by users. These files include

PULPino platform related definitions and functions, like peripheral control.

3. Newly created application should be introduced to the build flow. This can be done

by editing the file named “CMakeLists.txt“ inside “pulpino/sw/apps“ directory. At

the end of this file, the following line should be added:

add_subdirectory(new_app)

where “new_app“ denotes the name of the newly created application folder.

4. Finally, name of the newly created application folder can be used within build

directory (ex. make new_app, make new_app.vsim). Compilation, simuation

stimuli and ModelSim environment will then generated just like any other program

within the app folder, for this newly created application; provided the correct

terminal commands are typed.

18

2.2.5 Building FPGA related content

PULPino environment provides the process that uploads the design in ZedBoard

platform. By using this process; users can generate a sythesisable HDL project of

PULPino, generate a netlist based implementation project for ZedBoard, create stand

alone Verilog HDL [35] netlists of the design and generate a customized embedded

Linux envrionment to be loaded on a memory card, to be inserted on ZedBoard to run

translated C applications.

Currently, the only two ways to run aforementioned C applications are either

pre-loading their compiled versions on the memory card or sending them over to

ZedBoard via Secure Shell (SSH) [36] protocol. The working environment provides

automation to send executable code over SSH.

PULPino working environment houses a folder named fpga; and this folder has

all FPGA related building rules for PULPino, from generating Vivado projects to

automatically loading the design on ZedBoard. In order to build all the contents

of this folder, the terminal command “make all“ must be run while in the folder

“pulpino/fpga“. After the execution, all the content will be available within subfolders

inside this directory. Namely, “fpga/sw“ will have FPGA realisation make rules

and related programs, like the boot loader and custom embedded Linux operating

system image to be run on a ZedBoard SD card. Folders “fpga/rtl“ and “fpga/ips“

contains some extra HDL blocks used specifically for FPGA implementation. The

folder “fpga/pulpino“ has the pre-synthesised Vivado project for the PULPino, and

“fpga/pulpemu“ has the ready to be emulated project and it is directly used for

generating bitstreams for ZedBoard emulation. Figure 2.12 shows the top level

Figure 2.11 : Example definitions in a CMake recognition file used in an encryption
application.

19

Figure 2.12 : Top module of PULPino ZedBoard Implementation [3].

schematic of this emulation project. The users can export and use the pre-synthesised

Vivado project for thier own purposes.

2.2.6 Potential problems and solutions

During the operations within the working environment it is quite possible to encounter

various errors, since the environment is highly automised and depending on strict

software versions. Below, possible errors that could be encounter are listed along with

their solutions. Incompatibility errors encounder in the process of the thesis are also

included in this list.

1. When trying to compile a C-Code within the environment, if users receive error

messages regarding unrecognised objects and failed compiling, they must be sure

to have ia32libs and g++multilib libraries in the system (Refer to Section 2.2.1).

2. Errors stating that some commands are not found indicates that either the program

that contains the command is not installed, or executable files of this program is not

in the PATH variable of the system (Refer to CMake requirement in Section 2.2.1).

3. During compilation or execution with ModelSim steps, if user receivers an error

regarding using a 64-bit system, all the “-64” flags inside the ModelSim execution

and compilation scripts must be deleted. These are;

• All the files under “/pulpino/vsim/tcl_files” directory

20

Figure 2.13 : Correctly edited “vsim.tcl“ to solve C compiler issue.

• “/pulpino/vsim/vcompile/rtl/vcompile_tb.sh”

• “/pulpino/sw/apps/CMakeSim.txt”

4. During the execution of ModelSim, if an error regarding “/vsim_autocompile.so”

object not being found, it means ModelSim cannot find the right C compiler. Inside

the “pulpino/vsim/tcl_files/config/vsim.tcl” script, the “–dpicpppath” option must

be added at the end of the line starting with “$VSIM_FLAGS”, to point ModelSim

to the correct compiler path. Generally in Linux based systems, the C compiler is

located at “/usr/bin” folder. Correctly edited example of this script during the thesis

can be seen at Figure 2.13.

5. When building the FPGA related files in the environment, a build failure may be

encountered during the processes that builds u-boot program; unless the Vivado

SDK setting scripts are sourced before starting the build process.

source /opt/Xilinx/SDK/2015.1/settings64.sh && source

/opt/Xilinx/Vivado/2015.1/settings64.sh

6. During the build process of embedded Linux environment for the Zedboard

implementation, an error related to gmake might be encountered. This problem

can be bypassed by making a symbolic link from the make command executable:

sudo ln -s /usr/bin/make /usr/bin/gmake

21

22

3. POST-IMPLEMENTATION SIMULATION AND DYNAMIC POWER
ESTIMATION ON PULPINO

This chapter examines the post-implementation simulation and dynamic power con-

sumption estimation concepts done with PULPino platform. The post-implementation

simulattion was chosen at the first steps of the work, due to being the closest simulation

to the actual FPGA implementation.

3.1 Preparing for Post-Implementation

The goal belonging to this part of the work, is to simulate PULPino platform

on other FPGA boards that does not utilize build-in processor support (the offical

working environment only offers a realization on ZedBoard, which contains a built-in

processor), then getting the post-implementation power consumption estimation results

for various applications. After undergoing the working environment setting and HDL

project generation steps stated in , synthesis and implementation processes are done for

a different device. For the implementation process, Artix-7 Development Board [37]

(xc7a200tfbg676-2 device) and Vivado 2018.2 was used. The resource usage of the

implementation is given in Table 3.1.

3.1.1 First testbench

First attempt to perform a post-implementation simulation on PULPino was to try

and import the official testbench came with PULPino working environment to Vivado

Table 3.1 : Post-implementation resource usage of PULPino on Artix-7 Development
Board.

Resource Name Used Amount Total Amount Percentage Used
FF 9883 267600 3.69

LUT 15647 133800 11.69
I/O 143 400 35.75

BRAM 16 365 4.38
DSP48 6 740 0.81
BUFG 3 32 9.38

23

2015 and execute the process there. It is done so by adding the testbench related

RTL files into the project as simulation sources. However, during the compilation

steps of the testbench, it was seen that Vivado 2015, being an outdated release of the

software, did not support most of the vital SystemVerilog structures coded inside the

testbench RTL. For this reason; as the second attemp, the project was imported to

Vivado version 2018.2, which was the latest version during that leg of the study. This

version recognized the required SystemVerilog structures, yet the simulation still could

not be started due to the simulator getting stuck in the elaboration step, without any

log report to contract the scope of the problem.

Following this problem, it was decided to just extract the RISC core from the system

and simulate it as standalone. PULPino core region has a boot ROM to be firstly

executed when the fetching signal is received, and there exist a register bank inside

the RI5CY core that can be examined during simulation. Herewith, the compiled

application code was planned to be inserted in this boot ROM. Simulation was planned

to be ended when the ”isboot” signal inside the desing becomes low, which indicates

the executoion of the boot ROM code has been finished.

A simple testbench is written in the light of the given information above. The only parts

used regarding the system in this testbench are the core region and the fundamental

clock, reset and fetch signals. Signals related to peripherals that does not affect the

running of the core region are not connected for simplicity. A visualization of this

testbench can be seen at Figure 3.1.

Figure 3.1 : Structure of first testbench.

24

3.1.2 Editing the boot ROM

Changing the contents of the boot ROM can be done with the commands proffered

within PULPino build environment. This process uses the application folder, with

the exact destionation “pulpino/sw/apps/boot‘_code“. The C file “boot_code.c“ in this

folder conatins the code to be written in boot ROM. Users need to copy thier own code

inside this file and then compile it with the command:

make boot_code.install

from the terminal when accessed within “pulpino/sw/build“ folder. This turns the

related C code to machine code, prepares a new boot ROM RTL file containing this

machine code and switches it with the boot code RTL inside “‘pulpino/rtl“. It is

advised to backup the original boot code, since this boot code is used to run the

standart processes within PULPino environment. The new boot ROM RTL will also be

within the folder “pulpino/sw/build/apps/boot_code/boot“.If neccesary, more address

space can be allocated for boot ROM from PULPino memory map, which can be

changed from the top level PULPino SystemVerilog file [2]. Figure 3.2 shows the

aforementioned memory map.

As benchmark applications for the system, some applications from The Worst-Case

Execution Time Project [38] group was chosen to be executed on the processor, to

perform runtime test and generate switching activity outputs. These benchmarks are

discoursed in Section 3.3.2.

This testbench was also failed to work properly. It is observed that during some

conditions, newly added hardware loop extensions added in the RI5CY custom

extensions [21] and causes the hardware to enter infinite loops and stalling the

processor. It is later found that this problem was also detected by another study [15],

Figure 3.2 : PULPino memory map [2].

25

which aimed to verify PULPino. Since this was the case with bechmarks prepared

for the boot ROM compiling options, it was finally decided that cancelling to work in

Vivado environment and instead, exporting the post-implementation model to in order

to be able to work with the official ModelSim PULPino testbench, this time compiling

the benchmarks for the instruction RAM.

3.2 Post-Implementation Simulation with Official PULPino Testbench

Performing a post-implementation simulation in ModelSim requires a number of extra

preperations. Being only a simulation tool, ModelSim does not offer FPGA device

primitive based implementation models for written HDL codes. It depends on other

tools to create the commercial FPGA device equivalents of a complete design, which

being HDL netlists of circuits, in terms of FPGA primitives. These primitives are

vendor dependant and are available from the corresponding design software to be

compiled as exportable simulation libraries.

Aforementioned primitive simulation libraries of Xilinx for ModelSim can be

generated from Vivado GUI, from Tools->Compile Simulation Libraries tab in toolbar

menu. Libraries will be created in the user specified location and then need to be

defined to ModelSim before using in a simulation. This is done by editing the

”modelsim.ini” file inside it’s installation directory. Xilinx library names and their

specific paths must be added in this file accordingly. The edited .ini file that used

during the studies in the thesis is given as an example in Figure 3.3, with the enframed

entries being the Xilinx library definitions.

Figure 3.3 : The modelsim.ini file with added Xilinx libraries.

26

For the next step, the post-implementation netlist model of the circuit is created within

a single file in Verilog HDL format, using Vivado command line. For this work, the

command below is used;

write_verilog -force -mode timesim pulpino_impl.v

where pulpino_impl denotes the user specified file name, option “-mode timesim“

tells the program to generate post implementation timing simulation model, and

-force option rewrites the file if it exists in the directory. A destination can also

be specified for the generated file (It will be generated in the project root directory

by default). Then, it is exported out of the project to be compiled in ModelSim for

post-implementation simulation.

As the testbench of the simulation, the standart built-in PULPino testbench can be used.

In the testbench file, memory loading technique is chosen to be SPI loading. Preloading

method needs to access the individual memory blocks in the design. However, in order

to increase performance, FPGA specific RTL of PULPino uses Xilinx pre-built RAM

IPs, instead of the RAM RTL regularly used in PULPino working environment; which

is not suitable for FPGA implementations. Because of the black-box design of Xilinx

IPs, memory blocks of a Xilinx RAM cannot be referred directly in testbench code.

While preload method tries to directly refer the RAM cells, SPI load refers them via

addresing so it is suitable to be used with Xilinx RAMs. Downside of this method is

that it undergoes within the simulation run, hence slows down the overall simulation

runtime.

Since the post-implementation simulation flow does not exactly follow the build

rules automatically implemented in PULPino working environment, meaning it is a

custom flow, there exists some significant differences in the procedure. To initiate and

automize the post-implementation simulation, To begin with, folder is created that will

hold post-implementation simulation related material. Contents of an example custom

simulation folder can be seen at Figure 3.4. The simulation folder should essentially

include:

• slm_files: This folder should hold stimulus files to be used in simulation. Since

stimuli will be loaded with SPI, folder must include “tcdm_bank0.slm“ and

27

Figure 3.4 : Contents of an example simulation folder.

“spi_stim.txt“ files. These files will be automatically generated in related build/apps

folder of the related application.

• Symbolic link to “work“ folder: A symbolic link of the folder “pulpino/vsim/work“

must be included in this file. This folder holds the compiled version of the PULPino

testbench and it is automatically generated in the aforementioned directory.

• modelsim.ini: This file will specify which simulation libraries will potentially be

included in the work flow. This folder can just be a copy of the modelsim.ini file

located at the ModelSim installation directory. Otherwise, it has to include the

Xilinx libraries to be used.

• Post-implementation netlist model: This file will be compiled before simulaton

starts, and will be the unit under test of the simulation testbench. In this example, it

is a Verilog file named “pulpino_impl.v“.

• Automation script: This file contains the console commands that needed to be typed

for start and complete the simulation flow. In ModelSim, these script can be written

into text files with .do extensions, to be used with ModelSim’s “do“ command.

To start the simulation proces; firstly, ModelSim tool must be invoked within this

custom folder. Secondly, the netlist model must be compiled using the command:

vlog name_of_file.v

This will compile the model into the working library folder. Then the simulation screen

will be invoked using the command below:

28

vsim tb -L simprims_ver work.glbl -dpicpppath

/usr/bin/gcc

Here, “tb“ is the name of the testbench, “-L simprims_ver“ indicates that simprims_ver

Xilinx library will be used during simulation (contains simulation primitives for design

written in Verilog), “work.glbl“ is a global definiton file contained within netlist file

and should be added into work library after netlist compilation. Lastly, -dpicpppath

option specifies the correct location of system’s C compiler. Finally, the simulation is

executed using:

run -all

This command runs the simulation until a finishing statement is encountered in the

testbench.

An automation script for the process is also written for automatization. The script

in question can be observed in Appendix A.1 and includes the explained commands

above collectively, with some optional commands.

3.3 Post-Implementation Average Dynamic Power Estimation

Following the successful execution of post-implementation simulation for given

benchmarks, the dynamic power consumption estimation phase of the work was

initiated. The post implementation model here will provide internal signal level

change information that produced from a close approximate model of on-FPGA

implementation execution of the device. On a digital circuit, one of the determining

factors of dynamic power consumption is the load capacitance charges and discharges.

Assuming that Ci, fi, Vi respectively representing load capacitance value for a line i

,switching frequency of the line i and the value of the voltage swing in the design; a

dynamic power consumption relation is given as;

P = ∑
i

Ci fiVi
2 (3.1)

As stated above, a post-implementation simulation will provide a close to real signal

level change activity, and this shall further provdie the switching frequency information

for equation 3.1. Vi is a device dependant parameter and it is constant when the same

29

FPGA device is used. The line capacitance values will be provided by the libraries

used within implementation tool that produced the post-implementation model.

3.3.1 SAIF files and VCD files

Accurate dynamic power consumption estimation of a design essentially needs circuit

switching activity information as its input, and there are two general file formats for

containing these activity profiles. One of them being Switching Activity Interchange

Files (SAIF) [39]; which holds the information like total switching amounts of design

signals, total time a signal spent at high/low value and total glitches. Second technique

is generating Value Change Dump (VCD) files [35]. These files hold values of each

specified circuit signal for each clock cycle of simulation; but does not outright provide

information about total switching values. These activity files can act as inputs to readily

available power consumption estimation tools of current digital design softwares.

If a comparison between these two activity file types should be made, some vital

differences could be seen. SAIF files, being containing switching information for

the total simulation time scale; can only be used in average power consumption

estimation. On the other hand, their file size is considerably small (around couple

hundred megabytes for all signals was observed during this work). VCD files present

time by time signal values; so it requires more computing time to calculate average

power consumption, but it is also possible to make some observations on momentary

power consumption. In terms of file size however, since its size expected to be linearly

increased with time, they might become extremely large for long simulations (files

as large as tens of gigabytes were produced during this work), making processing

these files unproductive and problematic. Because of this, most of the modern tools

discarded VCD for using in average power consumption estimations. For example,

Vivado power estimator no longer supports VCD files to be used as inputs, only

accepting SAIF files. Albeit, it is still necessary to work with dump files if momentary

power consumption behaviour should desired to be examined.

During this work, both file types were used for different power analyses. SAIF files

were used to get average power consumption estimations for different becnhmarks,

30

VCD files were used for drawing a momentary power consumption profile for

processor during the execution of machine codes (Refer to Chapter 4).

3.3.2 Average dynamic power consumption estimation with SAIF

As mentioned in Section 3.1.2, due to being unable to succesfully compile the testing

environment on Vivado, design files were exported to the ModelSim to be used together

with official PULPino testbench. In ModelSim SE versions, there exists a command

group named “power” for generating SAIF files of a given design. To create a

SAIF output from a simulation, firstly the command below must be added before the

simulation run statement:

power add -in -inout -internal -out -r /testbench/uut/*

This command starts the switching recording input signals (-in), output signals (-out),

inout signals (-inout) and internal signals (-internal) for all submodules of the Unit

Under Test (UUT) of the testbench. After the -r option the hierarchical name of the

design should be entered, with “*“ meaning to include all submodules below UUT’s

hierarchy. Then the run statement should be followed by:

power report -all -bsaif test.saif

This will result in printing out the specified switching activity in a SAIF file named

“test.saif“. The file then can be used as input for a desired power estimation tool that

support it.

Below, the summary of steps for preparing and running a program in PULPino for a

SAIF-using power consumption estimation within simulation environment are given

as follows:

1. Firstly, three bechmarks that are written in C language were compiled for

RI5CY processor via RI5CY toolchain; namely compress (data compression) [40],

crc (cyclic redundancy check) [41] and edn (finite impulse response filter

Table 3.2 : Structural properties of used benchmarks.

Benchmark Size (Bytes) Nested Loops Arrays Bit Operations
compress 13411 Yes Yes No

edn 10563 Yes Yes Yes
crc 5168 No Yes Yes

31

Table 3.3 : Simulation times and run times for different becnhmarks (25 MHz clock).

Benchmark Run Time Simulation Time
compress ≈ 40 min 4.39 ms

edn ≈ 85 min 4.93 ms
crc ≈ 65 min 4.06 ms

Table 3.4 : Average power consumption results obtained by Vivado, using SAIF files.

Benchmark Average Dynamic Power
compress 0.010 W

edn 0.006 W
crc 0.007 W

calculations) [42]. Structural properties of these benchmarks are given at Table

3.2.

2. SPI stimuli of these compiled codes were generated in PULPino working

environment, using file building scripts.

3. During the ModelSim post-implementation simulation, each of these stimuli was

sent via an SPI simulation model block to the instruction RAM of PULPino and the

simulation was run until the code execution was completed.

4. ModelSim-generated SAIF files were moved back to Vivado again; to act as input

files for Xilinx power estimation tool.

For each benchmark run, different SAIF files are given as simulation activity input,

along with PULPino post implementation model. Then the Xilinx power estimation

tool produces an output, that can be a text report or a graphical report, which includes

both average static power consumption and average dynamic power consumption

estimations. Since the static power depends on the FPGA device itself, thus being

same for all benchmarks, it is deducted from the results and only the dynamic power

is taken in consideration. Obtained average dynamic power consumption results are

presented in Table 3.4. The timing results are also given in Table 3.3. It should be

noted that the timing results also includes the part when the stimulus being transferred

over SPI module, causing run times to be longer than expected. On the other hand,

sending via SPI part was not included in SAIF files.

32

4. MOMENTARY POWER CONSUMPTION PROFILE GENERATION

The load capacitance value in digital circuit depends on line lengths and fan-out.

When trying to generate momentary power consumption profile from VCD files,

the design’s mapping and routing information could be used in conjunction with

switching activities. However, this will only affect the resolution of actual power

consumption values and it requires more computing time during generating momentary

power consumption profile. Since the concern to observe sudden changes in power

consumption becomes not entirely necessary, and post-implementation VCD files

become ineffectively large; it was decided to just use the information of behavioral

simulation switching activity dump. Post-implementation activity files being far larger

than behavioral files is the naturally expected result of actual FPGA primitive models

replacing the written HDL (which what actually happens during mapping stage of

implementation), which greatly increases the total number of internal signals. Due to

the same reason, post-implementation simulation run times became longer as well.

Main reason for getting a momentary power consumption profile is to use it for

differential power analysis [16] on the implementations of cryptographic algorithms

during early design stages. With the acquired information, it is aimed to test the

behaviour of a cryptography algorithm implementation against side channel attacks

during early simulation stages of hardware designing process.

4.1 Generating Momentary Power Consumption Profiles using VCD

Since SAIF files only provide information for summative switching activity, this file

type is not suitable for sourcing information on instantaneous switching activity. Thus;

VCD files can be used instead, which gives a signal’s value for each clock cycle for

the duration of a simulation.

At first, the process of generating the VCD files were performed with the same steps

stated in 3.3.2, using the Verilog HDL system functions “dumpvars” and “dumpfile”.

These statements must be added to the correspoding sections of the design testbench.

33

However, this method is discarded since the VCD file sizes were unpractically large;

even so when selective dumping had been performed by only dumping the values of

specific parts of the core. Due to these problems, it was decided to use behavioral

simulation for generating momentary power consumption profile. This will result

in discarding the actual path length and fan-out effect on the power consumption

estimation.

By using the VCD file produced from behavioral simulation, it is assumed that all

the load capacitances of all the lines given in Equation 3.1 are constant and roughly

the same. It is obvious that the power supply voltage Vi in Equation 3.1 is the same

for all lines in the same FPGA device. Hence, in order to calculate dynamic power

consumption in Eq. 1, we only use swithcing activity. We claim that momentarily

power consumption information obtained in this way will be sufficient for DPA on

implementation of cryptographic algorithms, since the main concern is not the actual

value of power consumption, but the behaviour of the temporal switching activity.

Behavioral simulation is performed on ModelSim again as explained in Chapter 2,

while recording switching activity in the desired parts of the simulation. Using

behavioral analysis indeed shrinked the output file size; but still only some portions

of the core, Arithmetic Logic Unit (ALU) and core register blocks, dumped to achieve

an acceptible VCD file size.

VCD files are generated using the tabular list format of ModelSim (.lst files), for easier

parsing in MATLAB [43]. This type of value dumping does not require the usage

of Verilog dumpfile system functions. In order to initiate list dumping, the command

below can be included in the related .do file:

add list -r /tb/top_i/core_region_i/CORE/RISCV_CORE/* run

-all

In this statement “add list“ opens up a new list, “-r hierarchical_element_name“

indicates that the specified element will be added to the list along

with all it’s internal signals. In the example, the element name

“/tb/top_i/core_region_i/CORE/RISCV_CORE/*“ points to the entire core region of

PULPino, while the “*“ symbol denotes that all submodules under RISCV_CORE

module will be included in the scope. To sum up, this statement adds all the specified

34

signals, along with their submodules and all of their internal signals, to a newly

created list.

After completing the simulation the list can be extracted to a text based .lst file with

the command below:

write list -window .main_pane.list.interior.cs.body

destination_dir/list1.lst

The “write list command“ saves the value change dump stored in the list file to a

tabular file with the name specified in “destination_dir/list1.lst“. The file name is user

determined. The “-window object_name“ option shows that the list to be written is

a windowed list named “object_name“ ; “.main‘_pane.list.interior.cs.body“ for this

example where “list“ word in the object indicator holds the name of the windowed list.

A screen view of how these saved tabular list files look like can be seen at Figure 4.1.

Leftmost column holds the meaningful time values of simulation, while the other

columns show the levels of specified signals in that moment. In this figure, only a

cut set of the list is given due to list being too large, since there are too many signals

added to the list to be recorded.

4.2 Processing the Value Dump Files

To extract data from VCD files, we wrote a MATLAB script for reading VCD files

which first parses the switching information in the files, then compares the value

changes of each recorded signal whenever a value-level change happens in the circuit.

This script is given in Appendix A.2.

The script first imports the text based dump files and takes the parts that states current

times and actual list of signal values for that given time. Time values and the signal

value list are seperately stored in two matrices. The script then compares the value

differences of the adjacent rows of signal value list matrix, gets the sum of the value

changes found in comparison between two rows and stores them to their related time

index.

35

Fi
gu

re
4.

1
:A

cu
tv

ie
w

fr
om

a
ta

bu
la

rv
al

ue
du

m
p

fil
e

be
lo

ng
in

g
to

PU
L

Pi
no

si
m

ul
at

io
n.

Using the script, total switching for each moment of the simulation is calculated and

plotted. Finally obtained momentary power consumption profiles of PULPino ALU

and core registers for each benchmark can be seen at Figures 4.2 and 4.3, with thier

zoomed verisons given at Figures 4.4 and 4.5.

When the results of two different power analyses are compared, it could be seen that

according to Figure 4.2, compress operation caused more hectic and higher amount

of switching compared to the other benchmarks, while crc showing mostly consistent

switching behaviour with averagely lesser in amount than it was in compress. Sudden

rises in switching amounts are much more sparse compared to other benchmarks, and

the maximum swtiching amount observed in unit time is also lower. Although it may

not be completely accurate to compare a momentary approximate graphical result with

an average power consumption estimation of just some vital sections of the system,

in a sense this interpretations are apparently overlapping with the results in Table 3.4,

where Pcompress > Pcrc > Pedn was obtained. Similiar observations can also be made for

core register switching profiles given in Figure 4.5.

After seeing that the VCD processing script produces outputs that are expected in

terms of shape, activities regarding the main encryption algorithm that will be the

main test unit are taken and examined in the next section.

Figure 4.2 : Momentary switching profile for arithmetic logic unit.

37

Figure 4.3 : Momentary switching profile for core registers.

Figure 4.4 : Momentary switching profile of ALU (zoomed).

Figure 4.5 : Momentary switching profile of core registers (zoomed).

38

4.3 Momentary Power Consumption Profile of an Advanced Encryption Standart

Algorithm

4.3.1 Overview of Advanced Encryption Standart

As the purpose of creating power consumption profile is to use them in DPA analysis

of implementations of cryptographic algortihms, an AES [44] algorithm was also

executed on PULPino in ModelSim environment.

The AES algorithm is an encryption standart specified by the United States’ NIST.

The original name of the algorithm was called Rijndael, a combination of the names of

it’s founders [45], and it’s the chosen algorithm for AES among the fifteen algorithm

purposals.

The Rijndael algorithm selected for AES has three adoptations depending it’s key size;

being either 128, 192 or 256 bits. A 128 bit one is used during this work.

The AES algorithm contains four fundamental operations in it’s rounds; named

Subbytes, shift rows, mix columns and adding round key. In one round these operations

are performed once, in the given order. A 128 bit AES operation consists of ten rounds.

A general schematic of 128 bit AES is given in Figure 4.6.

At the beginning of the algorithm, a plain text is stored as a matrix in the form given in

Figure 4.6, where each element represents a byte of the plain text. A subbyte operation

seen at the start of a round, replaces the bytes given as input using a matrix called

S-Box [44]. This is also a reversible operation. An illustration of this stage can be seen

in Figure 4.7.

Outputs produced from subbytes operation then processed in shift rows block. This

block circularly shifts each row by a specific amount. First row stays as it is, second

row is shifted by one; and for all other rows, the elements are shifted by one deficient

of their row index number, such as two shifts by third row and three shifts for fourth

row. Figure 4.8 illustrates this operation.

Thirdly, the mix columns operation is applied. This operation takes four byte inputs

column by column and applies a specific reversible linear transformation to produce

it’s output [44]. The way of its operation is portrayed at Figure 4.9.

39

Figure 4.6 : Block schematic of a 128-bit AES algorithm [4].

40

Figure 4.7 : The SubByte operation [4].

Figure 4.8 : The Shift Rows operation [4].

Figure 4.9 : Operating of Mix Columns [4].

41

Figure 4.10 : Momentary power consumption profile of entire AES encryption stage
for one message.

As the last operation of a round, processed 4x4 matrix is added with a stage sub key,

which is generated by a scheduling process in the Rijndael algorithm [44]. These sub

keys are shown by K’s in Figure 4.6. The addition is performed by bitwise exclusive

or (XOR) operations.

As for the AES implementation in C, the specially arragned AES encryption algorithm

within PULPino working environment was modified and used. This algortihm can

be seen in Appendix A.3. Steps explained in Section 3.3.2 are repeated and VCD

files are generated and momentary power consumption profiles are plotted as a simple

demostration. As stated, the AES encryption is consisted of ten rounds. In Figure 4.10,

the ten rounds of the AES encryption are clearly visible by the sudden peak groups,

further solidifying our claim that still being able to distinguish the abrupt changes in the

power consumption activity, even for a behavioral simulation with capacitance values

taken as constant.

4.3.2 Masking Advanced Encryption Standart

Even though AES appears to be resistant to common cryptanalysis techniques, some

hardware realisations of it can be open against DPA attacks [5]. Thought behind

the attacks is predicting the sections of the key used within algorithm operations via

various side effects. The protection mechanism comes from the idea of altering this

42

Figure 4.11 : Overview of basic masking [5].

vital information used inside algorithm functions. Performing this altering procedure

is named as masking.

The basic principle is to add a randomly generated mask value to the plaintext before

the first stage, then remove this mask to get the actual encrypted result. In order to

negate the mask value effect, mask modification and unmasking blocks are employed

to keep track the required operations. A portrayal of this basic mentality is given in

Figure 4.11.

The AES consists of linear and nonlinear functions. Since the result of linear

functions taking input of masked plaintexts will be the sum of the same functions

when mask value and plaintext value given as input, unmasking these functions are

straightforward. These linear functions include the round key addition, MixColumns

and ShiftRows operations. The nonlinear function is the SubBytes operation, and

more advanced approaches are required to unmask this process. One approach given

in [46] is used to demonstrate the protection provided against the side-channel attack

we perform in this work.

43

44

5. DIFFERANTIAL POWER ANALYSIS USING MOMENTARY POWER
CONSUMPTION PROFILES

The penultimate chapter of the thesis examines the simulation based side channel

analysis environment we offer. The main concepts are explained, details regarding

the environment are given and the analysis results are presented.

5.1 Differantial Power Analysis

Differantial Power Analysis is an attack that can extract vital information form a

device’s real-time power consumption measurements [16]. First, a large number of

runtime measurements are taken from a working device. Secondly, some models

are predicted and a power consumption estimtation is made from these, to be used

in conjunction with the real time results. Then the result are compared and thier

correlation is checked. At the end, according to the analysis, a guess on the vital

algorithm information is tried to be extracted [17]. In this section, a method to do a

similiar attack during the course of simulation stage of a design is explained.

A total switching number per clock cycle matrix Pi j given in Equation 5.1 is

constructed for n test messages, where each operation takes up k clock cycles of time

in total, also i and j denoting the i’th clock cycle for j’th test input. Afterwards, an

average switching number matrix Pavg is obtained by taking average of the elements

of each individual row. This provides an average switching count for each test case.

Pavg is a vital element in correlation analysis since this will be reference vector that

contains information about device’s switch activity.

Pi j =



p1,1 p1,2 p1,3 p1,k
p2,1

p3,1
...

...
...

...
pn,1 pn,k


,Pavg =


pavg1

...

...
pavgn

 (5.1)

45

Script extension to create these matrices are given in Appendix A.4. Figure 5.1 shows

the initial XOR operation of AES for one message, with respect to clock pulses.

Figure 5.1 : Swtching activity profile of AES initial XOR operation for one message,
with respect to clock pulses.

The section of the AES algorithm that the attack is performed (the section with the

recorded switching activity) then emulated in MATLAB. Using this emulation, all

possible values that one byte of the key can take are consecuently given here as input,

along with the messages to be used in AES simulation. The bit differences of the input

message and the processed output message then compared. With this comparison, total

number of 0 to 1 transitions are counted for each message and the results are recorded

in a switching weight matrix named S (Equation 5.2). A byte consists of eight bits,

hence it has 28 possible values. Thus, the size of this newly created matrix will be

n-by-256, where n represents the total number of test messages, just as before.

S =



s1,1 s1,2 s1,3 s1,256
s2,1

s3,1
...

...
...

...
sn,1 sn,256


(5.2)

In the final step, correlation analysis is performed among the matrix Pavg and each

column of matrix S one by one. Resulting correlation coefficients are stored and the

46

one with the highest value should correspond to the correct value of the wanted key

byte. Repetitions for other key bytes then could be applied for obtaining remaining

AES key bytes.

5.2 Test Attacks and Results

Testing schemes for this work involves applying side channel attacks on the standart

and masked AES designs, for a large number of individual plain text inputs. First type

of attack will include the main input section of the algorithm, where the raw form of the

plain text is added with the first sub key of the process. In another perspective, this also

means attacking on the initial XOR operation in the encryption process. A second type

of attack is performed on the S-box output of the first round, which is the first S-box

operation that is performed in the algorithm. This operation remotely uses the result

of the first XOR operation output of algorithm block. In fact, this attack is performed

initial sub-byte block of the algorithm, which contains S-box transformation.

Since the dump file sizes for entire simulation takes up quite large space even for one

plain text input, final outputs become massive and grow unpractical when trying to

hold activity records for thousands of test messages. For this reason, certain parts of

the AES operation is better to be taken for size reduction. Though, it is very difficult

to predict at which time the operation we want to record power of will be executed.

Although, this problem is solved by using a triggering signal during the simulation

when writing the value changes to a list. One of the idle output pins on PULPino is

set in C code just before the section that is being attack starts executing. A script was

written so when this signal is set, the recording to VCD file starts. After the execution

of the related part is finished, the same pin is set to zero, indicating the simulator to

halt dumping switching activity.

5.2.1 Attack on Initial XOR Stage

For our first testing attack case, an attack to the first byte of the first XOR operation

is planned to be performed, as per the side channel attack usage. In the AES C code,

just before the operations in question is performed, we set a specific unused pin on

the PULPino General Purpose Input and Output (GPIO) pin set. This pin being on

high value will trigger the value change dump within the simulation. Right after the

47

code statement that peforms the operation that is desired to be power measured, the

same GPIO pin will be reset to stop recording. This will allow to exactly record the

one byte XOR operation section of the simulation for each individual plain text input.

Since we are only recording certain parts of the simulation, the switching dump list

will have sudden jumps in the time column, with each jump indicating the start of the

power recording of a new message. Our parsing script contains a section that detect

these jumps, then seperates and stores each message’s power recording. This part of

the script can be seen at Appendix A.5.

First byte of the key that is used in the algorithm is arbitrarily set to hexadecimal A0,

which is 160 in decimal. As per the procedure presented at Section 5.1, predicted

switching activity numbers for each possible key values is obtained, using the XOR

operation among the targeted key byte and corresponding plaintext byte as expected

model. For various numbers of different plaintexts, correlation value by guessed

key value graphics are obtained. It is observed that for this attack, the correlation

profile settles even for relatively small number of plaintexts, only difference being

the diminishing correlation value as the number of plaintexts increases. The order

of correlation magnitude is also observed to be consistent for dominant peak values,

where key value decimal 96 (hexadecimal 60) being the highest correlated prediction.

Figure 5.2 shows the correlation value by key guess value for 100,200 and 300

plaintexts, and portrays the described situation. Figure 5.3 presents the correlation

profile for 4000 plaintexts, and still does not provide a drastical difference from Figure

Figure 5.2 : Initial XOR attack results for plaintext numbers of 100,200 and 300.

48

Figure 5.3 : Initial XOR attack result for 4000 plaintext trials.

5.2’s profiles or a distinctive peak value. For 4000 plaintexts, the key guess with the

largest correlation value is still hexadecimal 60; while the correlation value for the real

key, hexadecimal A0, is the guess with tenth largest correlation value.

Results show that using this attack, correct key could not be guessed; however, having

a consistent correlation profile with a periodic profile shape suggests that the setup

works correct, but enough randomness cannot be provided from just an XOR operation

to distinguish a correct guess. In the C implementation, result of the input plaintext is

overwritten by the XOR output, therefore the total number of non-zero bits in the other

operand, key guesses in this case, directly determines the number of changes that will

occur at the XOR’s output. This means that the number of switches will be directly

determined by the Hamming weight of the key guess number that is used. This supports

the distinct correlation profile and unsuccesfulness of guessing the correct key. This

result neccesitated to find an attack on an operation block with a much more district

domain and range matching relation.

5.2.2 Attack on Initial SubBytes Stage

Following the failure of correct key prediction with the initial XOR attack, a more

comprehensive attack is defined, which covers a larger portion of the encryption

and uses two chained blocks as it’s model. The attack is performed on the first

round’s SubByte block, specifically the output of the non-linear S-box operation. This

operation is realised in C code as a look-up table, which will not be directly related

49

to the Hamming weigth of the operand. Until coming up to this output, the XOR

operation described in Section 5.2.1 is performed first, then the result of the S-box

input that is generated from the XOR result of the first key byte is used to get the

S-box output. Hence, the predicted model will be using this two operations in the

correlation calculations. Also, the simulation scripts and C codes will be extended to

include the value change activity of this portion of the executions in VCD files.

5.2.2.1 Results on standart AES

To perform the attack on the S-box output of the encryption, a total of 2000 executions

are performed on the processor, and the correlation analysis is performed with a model

overlapping with the initial XOR and S-box operations. The most significant byte of

the key is set to decimal 160 again, similiarly the previous attack. Figure 5.4 shows that

after 2000 plaintext trials, the correct key is predicted by the program. Furthermore, a

correlation profile by the number of plaintext graph is obtained in Figure 5.5.

This figure contains 256 different plots, each representing a different key value between

0 and 255. The plot associated with the correct key 160 is given in red, and it can be

seen that after around 200 plaintexts, the correct key value is clearly distinguishable.

Figure 5.4 : Initial SubByte attack result for 2000 plaintext trials.

50

Figure 5.5 : Correlation profiles of possible key values for different number of
plaintexts.

This satisfies the expectations of using a higher complexity operation to lessen

patterns between domain-range match-ups and making the correct key correlation

distinguishable.

5.2.2.2 Results on byte-Masked AES

After succesfully obtaining the most significant key byte, same attack procedure is

applied on a masked AES implementation to demonstrate the side channel attack

protection provided by the masked realisation. As the masked algorithm, the

byte-masked implementation described in [46] is used in C language. As for the

testing arrangements, a setup similiar to the standart AES test is used. For the predicted

model, first XOR and first SubByte blocks of standart AES are used. Maximum 2000

plaintexts are given to the program and correlation values are plotted. Figure 5.6 shows

the correlation by key guess value, and it can observed that there are no uniquely

distinguishable peak or a pattern in the profile. Moreover, Figure 5.7 shows the key

guess correlation profiles by the number of plaintexts shows diminishing correlation

values for all key guess correlation plots. The correct key byte which is shown in red

is expressing a continious non-distinguishable profile for the entire figure, satisfying

the expectations.

51

Figure 5.6 : Initial SubByte attack result for 2000 plaintext trials.

Figure 5.7 : Correlation profiles of possible key values for different number of
plaintexts.

52

6. CONCLUSION

During the course of this work, a simpler simulation stage based side channel attack

resistance test was offered that is analogous to DPA, using just the simulation switching

activity of a digital design, and it is demonstrated on a softcore processor system. To

this end, at first, a RISC-V implementation named PULPino was introduced and its

software and working envorinment usage is explained. Then, post-implementation

simulation and power consumotion estimation flows are added to PULPino’s working

environment. On the way, hardships of adding and generalizing out of the frame

custom flows for a softcore processor’s standart work flow are observed. Afterwards,

power estimation methods are discussed and several of these approaches are tested on

our simulation based resistance test. It is observed that taking entire post-simulation

switching activity to consideration becomes unefficient. Next, the offered resistance

test methodology is explained with some examples. Then it is shown that even with

just keeping track of number of switchings in a system during behavioral simulation

was sufficient to succesfully obtaining the key or narrowing the guesses required to

crack.

In the end, way to work with an open source softcore processor system was

experienced, and steps to these are explained in a user manual like manner to be a

reference for further studies. These steps included tasks expanding from setting up the

processor to showing . Also the main hypothesis was showed on one of these softcore

processor systems, which is being able to successfuly guess the key values of an AES

alogrithm during simulation stage of the design; without even being need to undergo a

complete power estimation step. Codes to perform this resistance test are also does not

depend on any third party power estimation tool. Furthermore, since the simulation

environment is noise-free, it certainly indicates if a design is resistant to side channel

attacks or not, since performing this with real time measurements will include noise

and parasitics and will be harder to crack in actual implementation.

53

Future work includes generation of a common implementation flow and a parametric

testbench environment standart for various open source processor employing systems.

This will lead to being able to test and compare various softcore processor

implementations on the same setting, while also reducing the adaptation and

specific realisation environment learning steps of the related work. Test models

for various peripherals or blocks can also be made for inter-compatibility, like a

generalized RAM block to replace black box IP’s used for FPGA implementation

stage. On the cryptography side, several blocksare though to be offered for efficient

side-channel attack and DPA protection, and comparisons for these blocks can be

made. Perfromance comparisons of cryptographic designs may also be made on

various open source processor systems. Finally, current open source instruction

set architectures can be extended to be efficient on cryptographic applciations, and

their realizations could be demonstrated either on FPGA or as an application-specific

integrated circuit.

54

REFERENCES

[1] PULP Platform, https://pulp-platform.org/, online accessed:
20.04.2019.

[2] Traber, A. and Gautschi, M., (2017). PULPino Datasheet, Integrated Systems
Lab, ETH Zurich, Switzerland.

[3] Zaruba, F., Stucki, S., Pullini, A., Haugou, G., Flamand, E., Gürkaynak, F.K.
and Benini, L. (2016). PULPino: A small single-core RISC-V SoC, 3rd
RISC Workshop, Oracle Conference Center, Redwood Shores.

[4] Kayış, H., (2006), AES Uygulamasının FPGA Gerçeklemelerine Karşı Güç
Analizi Saldırısı.

[5] Pramstaller, N., Oswald, E. and Mangard, S. (2019). A Masked AES ASIC
Implementation.

[6] Shannon, C.E. (1945). A mathematical theory of cryptography, Bell Telephone
Labs report.

[7] Nade1, J.B. and Sarwadnya, R.V. (2015). The Soft Core Processors: A Review,
International Journal of Innovative Research In Electrical, Electronics,
Instrumentation and Control Engineering, pp.197–203.

[8] Chinedu, O.K., Genevera, E.C. and Akinyele, O.O. (2011). Hardware
description language (HDL): An efficient approach to device independent
designs for VLSI market segments, 3rd IEEE International Conference on
Adaptive Science and Technology (ICAST 2011), pp.262–267.

[9] Stallings, W. (1988). Reduced instruction set computer architecture, Proceedings
of the IEEE, 76(1), 38–55.

[10] Waterman, A. and Arsanovic, K., (2017). RISC-V Instruction Set Manual:
Volume 1, EECS Department, University of California, Berkeley.

[11] Asanović, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio,
C., Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., Karandikar, S.,
Keller, B., Kim, D., Koenig, J., Lee, Y., Love, E., Maas, M., Magyar, A.,
Mao, H., Moreto, M., Ou, A., Patterson, D.A., Richards, B., Schmidt,
C., Twigg, S., Vo, H. and Waterman, A. (2016). The Rocket Chip
Generator, Technical ReportUCB/EECS-2016-17, EECS Department,
University of California, Berkeley, http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-17.html.

55

[12] VectorBlox, (2013), ORCA-FPGA optimized RISC-V, https:
//riscv.org/wp-content/uploads/2016/01/
Wed1200-2016-01-05-VectorBlox-ORCA-RISC-V-DEMO.
pdf, online; accessed 13.01.2019.

[13] Li, L. and Gautschi, M. (2017). Approximate DIV and SQRT Instructions fort
he RISC-V ISA:An Efficiency vs Accuracy Analysis, 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pp.1–8.

[14] Zimmer, B., Lee, Y., Puggelli, A., Kwak, J., Jevtic, R., Keller, B., Bailey, S.,
Blagojevic, M., Chiu, P., Le, H., Chen, P., Sutardja, N., Avizienis, R.,
Waterman, A., Richards, B., Flatresse, P., Alon, E., Asanovic, K. and
Nikolic, B. (2015). A RISC-V vector processor with tightly-integrated
switched-capacitor DC-DC converters in 28nm FDSOI, Symposium
on VLSI Circuits (VLSI Circuits), Kyoto, Japan, pp.C316–C317, doi:
10.1109/VLSIC.2015.7231305.

[15] Choudhury1, S.R., Thiruvathodi, S., Seetharaman, V., Cockrell, M.,
Michelson, J. and Redgrave, J., (2017), Verifying PULPino RISCY Core
for a Google Accelerator with STING.

[16] Kocher, P., Jaffe, J. and Jun, B. (1999). Differential Power Analysis, Springer.

[17] Ors, S.B., Gurkaynak, F., Oswald, E. and Preneel, B. (2004). Power-analysis
attack on an ASIC AES implementation, International Conference on
Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004., volume 2, pp.546–552.

[18] Mangard, S., Oswald, E. and Popp, T. (2007). Power Analysis Attacks: Revealing
the Secrets of Smart Cards, Advances in Information Security, Springer.

[19] Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S. and Boyle,
D., (2014). IoT Reference Architecture, pp.199–223.

[20] Rossi, D., Conti, F., Marongiu, A., Pullini, A., Loi, I., Gautschi, M., Tagliavini,
G., Capotondi, A., Flatresse, P. and Benini, L. (2015). PULP: A parallel
ultra low power platform for next generation IoT applications, 2015 IEEE
Hot Chips 27 Symposium (HCS), pp.1–39.

[21] Traber, A., Gautschi, M. and Schiavone, S.D., (2017). The RI5CY User
Manual, Micrel Lab and Multitherman Lab, University of Bologna, Italy
& Integrated Systems Lab, ETHZ Zurich, Switzerland.

[22] ZeroRisc, https://github.com/pulp-platform/zero-riscy, on-
line accessed: 20.04.2019.

[23] Russell, J. and Cohn, R. (2012). Serial Peripheral Interface Bus, Bookvika.

[24] Raffo, D., (2018). Linux Quick Reference Guide, 6th edition.

[25] PULPino, https://github.com/pulp-platform/pulpino, online;
accessed 06.02.2019.

56

[26] Mentor Graphics, ModelSim, https://www.mentor.com/company/
higher_ed/modelsim-student-edition, online; accessed
06.02.2019.

[27] Veripool, Verilator, https://www.veripool.org/projects/
verilator/wiki, online; accessed 06.02.2019.

[28] Xilinx, Vivado, https://www.xilinx.com/products/
design-tools/vivado.html, online; accessed 06.02.2019.

[29] AVNET, (2017), ZedBoard Getting Started Guide, http://zedboard.
org/sites/default/files/documentations/
GS-AES-Z7EV-7Z020-G-V7-1.pdf, Online; accessed 29.03.2019.

[30] Linux Mint, https://www.mathworks.com/products/matlab.
html?s_tid=hp_products_matlab, online; accessed 22.02.2019.

[31] CMake, https://cmake.org/, online accessed: 16.04.2019.

[32] RI5CY Toolchain, https://github.com/pulp-platform/ri5cy_
gnu_toolchain, online; accessed 06.02.2019.

[33] Python2.7, https://www.python.org/download/releases/2.7/,
online accessed: 20.04.2019.

[34] Accellera, (2004). SystemVerilog 3.1a Language Reference Manual.

[35] Std-1364-2001 (2001). IEEE Standard Verilog Hardware Description Language,
IEEE.

[36] VanDyke Software Inc., (2008). An Overview of the Secure Shell (SSH).

[37] Xilinx, (2015). AC701 Evaluation Board for the Artix-7 FPGA.

[38] WCET, http://www.mrtc.mdh.se/projects/wcet/benchmark.
html, online; accessed 06.02.2019.

[39] Chadha, R. and Bhasker, J. (2013). An ASIC Low Power Primer: Analysis,
Techniques and Specification, Springer.

[40] Sarwar, S.M. and Koretsky, R.M. (2017). UNIX: The Textbook, Third Edition,
Chapman and Hall.

[41] Matloff, N. (2001). Cyclic Redundancy Checking.

[42] Lami, H. (1979). Analog and Digital Filters - Design and Realization, Prentice
Hall.

[43] MathWorks, MATLAB, online; accessed 28-February-2019.

[44] Information Technology Laboratory (National Institute of Standards and
Technology) (2001). Announcing the Advanced Encryption Standard
(AES).

[45] Daor, J., Daemen, J. and Rijmen, V. (1999). AES Proposal: Rijndael.

57

[46] Yao, Y., Yang, M., Patrick, C., Yuce, B. and Schaumont, P. (2018).
Fault-assisted side-channel analysis of masked implementations, 2018
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pp.57–64.

58

APPENDICES

APPENDIX A.1 : Post Implementation Run Script
APPENDIX A.2 : Switch Activity Parser and Counter
APPENDIX A.3 : AES Algorithm Used
APPENDIX A.4 : Switch Matrix Generation Script
APPENDIX A.5 : Script to Detect Message Seperations

59

APPENDIX A.1

60

APPENDIX A.2

61

62

APPENDIX A.3

63

64

65

APPENDIX A.4

66

APPENDIX A.5

67

68

CURRICULUM VITAE

Name Surname: Yasin Fırat Kula

Place and Date of Birth: Çorlu/Tekirdağ - 28.10.1993

E-Mail: kulay@itu.edu.tr

EDUCATION:

• B.Sc.: 2016, Istanbul Technical University, Electrical and Electronics Faculty,
Electronics and Communications Engineering Deparment

• M.Sc.: 2019, Istanbul Technical University, Graduate School of Science
Engineering and Technology , Electronics Department

PROFESSIONAL EXPERIENCE AND REWARDS:

• Working as Research Assistant in Istanbul Technical University Electronics and
Communications Department since 2017

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Kula F., Ors B., 2019. Average Power Consumption Estimation and Momentary
Power Consumption Profile Generation of a Softcore Processor. Seventh
International Conference on Digital Information Processing and Communications
(ICDIPC), p. 41-46. May 2-4, 2019 Trabzon, Turkey.

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Ayhan T., Kula F., Altun M., 2017. A Power Efficient System Design Methodology
Employing Approximate Arithmetic Units. IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2017 Bochum, Germany.

• Kula F., Ayhan T., Altun M., 2018. FPGA Üzerinde Yaklaşık FIR Süzgeç Tasarımı.
Sinyal İşleme Uygulamaları Kurultayı (SIU), 2018 İzmir, Turkey.

69

