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DEVELOPMENT OF SIDE CHANNEL ANALYSIS ENVIRONMENT
USING SIMULATION DATA OF SYSTEM-ON-CHIP PROCESSORS

SUMMARY

In the current era, with the drastic development in electronics, computer and
communication technologies; the concept of digitalization became a part of daily
life. This concept brought quite a lot improvements on data transferring and data
communication, in terms of easiness and speed. This also brought forth the concern
of data safety during the process. Cryptology, which is defined as the discipline of
data integrity nowadays, steps in to cope with this problem. In this manner, cryptology
offers ways to encrypt and protect the transferred and stored data.

Developed encryption algorithms are desired to be standartized worldwide. For
example, a standart belonging The National Institute of Technology and Standarts
of United States of America (NIST), the Advanced Encryption Standart (AES) is a
good living example of this, employing an algorithm originally named Rjindael. AES
replaced their precesors, Data Encryption Standart and Triple Data Encryption Standart
in 1999, offering better security and performance, and it is still in use.

Softcore processors are yet another topic that has a large popularity in embedded
system applications in the latest years. Their aspect that stands out is their
flexibility, coming mostly from being open source and editable designs. Black box
microprocessor based products may not perform ideally for all application areas, and
creating a custom design just for a specific application may not be cost effective.
Hence, open source mentality is adapted to the hardware section to cope with the
flexibility issues. Designers release their product openly and allow users to examine
and edit them. This lets users to use whatever sections of design is needed or expand
the design according to their application areas. Users can also contribute to the process
by reporting bugs or offering valid extensions.

In the scope of this thesis, the two aforementioned concepts are planned to be used
together. A softcore processor system is chosen and data for Differantial Power
Analysis (DPA) on AES is planned to be taken using this model. The claim is to
show that real time power consumption measurements are not required necessarily,
simulation level switching information can also be used instead. Verifying this
would allow to test an algorithm against side channel attacks during simulation stage,
without needing a realization. This would also remove the time consuming real time
measurement stage.In this manner, this work showed that the claim is valid and it is
possible to obtain acceptable results for DPA during simulation stage. Along with
this, a softcore processor system was used to generate inputs; to obtain a working
experience with open source systems and to be a further referemce for our research.

During the course of work, open source softcore processor system named PULPino
was used . First part of the work explains this design in detail, and shows how to use
it’s working environment, to be a reference for further works.
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It is firstly thought to make post-implementation simuations for PULPino to get
more close to real test results for DPA. Implementation of PULPino is done for
Artix-7 device in Xilinx Vivado. The resulting post-implementation model is used
in ModelSim tool, along with PULPino testbench and simulations are performed for
various benchmarks. In the next step, obtaining average dynamic power consumption
and momentary switching profile generation is discussed. Some average dynamic
power consumption estimations are done as an extra, for various bechmarks. Then,
momentary switching activities are recorded for behavioral and post implementation
simulations of different benchmarks. Post-implementation outputs being unefficiently
large led to behavioral model activity dumps to be used. The expectation was to see
that behavioral switching activity would be stil sufficient to explict important areas of
execution.

Since none of the freely available tools that is tried offered a momentary power
consumption graphic output, MATLAB codes to performs this task are written from
scratch. The power consumption profile technique is tried on several benchmarks and
AES encryption and it is observed that they provide the critical section information on
the profiles as expected. Then, using a large number of different plain text messages
AES application is simulated and outputs are used for DPA and correlation analysis.
Results of correlation analysis allows to find the exact value of the key section that is
used, or provides a shrinked estimation groups for the key. Both of these means that
the algorithm can be cracked, and proves the offered technique is valid.
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KIRMIK USTU SISTEM ISLEMCILERININ BENZETIM
VERILERI ILE YAN KANAL ANALIZi ORTAMI GELISTIRILMESI

OZET

Giiniimiizde elektronik, bilgisayar ve haberlesme teknolojilerinin hizla gelismesiyle
insanlarin yasamina girmis olan "dijitallesme" kavrami, verinin islenmesi ve taginmasi
acisindan bircok avantaj getirmistir. Dijital ortamda veri ¢ok hizli ve kolay bir
sekilde taginabilmektedir. Fakat bu kolaylik, bilginin elektronik olarak tasinmasi
ve saklanmasi sirasinda verinin giivenligi ile ilgili endise de dogurmustur. Bu
sorunun ¢oziimil i¢in, eski tarihlerden beri cesitli bicimlerde varligini siirdiiren
kriptoloji bilimi 6ne ¢ikmaktadir. Varliginin ilk donemlerde kriptoloji tabiri, sifre
tiretme isini cagristirirken giiniimiizde kriptografi ve kriptanaliz alt disiplinleri ile
veri biitlinliigliniin korunmasi problemine yogunlasan bir bilim dali durumundadir.
Kriptoloji, verinin bir ugtan digerine tasinmasi sirasinda giivenligi saglamak i¢in cesitli
sifreleme, saklama ve analiz yontemleri ve algoritmalar1 6nerir.

Gelistirilen sifreleme algoritmalar1 ilkeler tarafindan standartlastirilmaktadir.
Amerika’nin Ulusal Standartlar ve Teknoloji Enstitiisii'ne (NIST) ait standartlardan
olan Geligsmis Sifreleme Standarti (AES) genel ismi altindaki Rjindael algoritmasi
bunun giincel bir 6rnegidir. Bundan once Veri Sifreleme Standarti (Data Encryption
Standart - DES) algoritmasi NIST tarafindan 1977 yilinda standart olarak
taninmistt. DES algoritmasinin kirilmasinin ardindan yerini bu algoritmanin iteratif
calistiriimasini igeren Uglii Veri Isleme Standarti (Triple Data Encryption Standart
- TDES) almistir. Zaman icinde TDES’in de giivenilirligini yitirmesiyle NIST yeni
bir sifreleme standart1 arayacagini duyurmustur. Bu sebeple 1997 yilinda AES ismi
altinda kullanilmak iizere secilmek i¢in alogritma arandigi cagrisinda bulunmustur.
Bunun sonucunda kriptoloji ile ugrasan kisilerce toplamda 15 algoritma gonderildi
ve bunlardan bes tanesi 1999 yilinda finalist olarak belirlendi. Bu algoritmalarin
performans, hiz, uygulama kolayligi, giivenlik, yazilim ve donanima uyarlanabilme
kolaylig1 gibi etkenler agisindan incelenmesi sonucunda Rjindael algoritmasi standart
olarak sec¢ilmistir. Bu algoritma yukarida belirtilen parametreler agcisindan da TDES’i
geride birakmaktaydi. Boylece AES, kendisinden once kullanilmakta olan TDES
standartinin yerine ge¢mistir ve halen kullanilmaktadir.

Son yillarda gomiilii sistem gerceklemelerinde popiilerligi oldukg¢a artan bir diger
kavram da gerceklenebilir islemcilerdir. Bu islemciler yine acik olarak sunulan
daraltilmis komut kiimelerinin gergeklemelerinden ortaya ¢ikmaktadir. One ¢ikan
en biiyiik ozellikleri, agik kaynak kodlu ve degistirilebilir olmalarindan kaynaklanan
esneklikleridir. Mikroislemci ve mikrodenetleyici gibi bilesenler cok amach kullanima
gore tasarlanmaktadir, fakat bu tasarimlar her uygulama alani i¢in alan veya
performans bakimindan en ideal sonucu vermeyebilir. Uretici firmalara 6zel kullanim
icin tasarimlar {irettirmek de maliyet acisindan verimsiz oldugundan uygun bir
yaklasim olmamaktadir. Bu tiir sorunlar1 agmak adina oncelikle yazilim diinyasinda
popiilerlesmis bir kavram olan acik kaynak kodlu tasarim diisiincesi de donanim
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diinyasina uyarlanmaya baglanmistir.  Bununla birlikte, icerigi iiretici firmalar
tarafindan gizli tutulan kapali kutu tasarimlar yerine kaynak kodlari agik olan
gerceklenebilir islemciler kavrami 6ne c¢ikmigstir.  Bu durum kullanicilara kendi
uygulama alanlarina gore tasarimin gereken boliimlerini kullanma, degistirme, hatta
yapacaklar1 hata tespitleri veya eklentiler ile de gelistirme siirecine katki saglayabilme
imkani vermektedir.

Bu tez kapsaminda, yukarida anlatilan bu iki giincel kavrami birden iceren caligmalar
yapilmasi hedeflenmistir. Secilen bir gerceklenebilir islemcili sistem iizerinde AES
algoritmasinin gerceklenip farksal gii¢ analizi kullanilarak yan kanal saldirilarina karsi
direncinin sinanmasi amaclanmistir. Farksal giic analizi i¢in gerekenler arasinda
bir sistemin gerceklenmis hali iizerinde ¢ok sayida gercek zamanli gii¢c dl¢iimlerinin
alinmas: vardir. Bu siire¢ ise oldukca vakit almakta olup ayrica da tasarimin
bir ger¢eklemesinin yapilmig olmasini gerektirmektedir. Bu ¢alismada bu islemin
heniiz tasarim benzetim asamasindayken dahi fonksiyonel benzetim kullanilarak ve
anlik isaret degisimi cizgesi c¢ikarilarak yapilabilecegi gosterilmistir. Bu calisma
hem gercek giic Ol¢timiinde harcanan zaman, hem de tasarimin gerceklemesinden
gelecek olan maliyet kaybinin da Oniine gecerek daha verimli bir bi¢cimde farksal
giic analizi girdileri iiretilerek bir sifreleme algoritmasinin kirilabilme durumunu
gosterir niteliktedir. Bununla birlikte ger¢eklenebilir islemcili sistem test birimi olarak
kullanilmis ve bu alanda bir ¢alisma tecriibesi elde edilmis; ayrica ileride bu konu
lizerine yapilacak calismalar i¢in bir yol acilmastir.

Caligmalar siirecinde ilk olarak bu gerceklenebilir islemci gerceklemelerinden birini
iceren agik kaynak kodlu bir mikrodenetleyici sistemi olan PULPino incelenmistir.
Bu sistem, ETH Ziirich gomiilii sistem ekibi tarafindan gelistirilmis paralel diisiik
gii¢ tiikteten platformlar projesi olan PULP girisiminin bir iiyesidir.  Sistemin
diger aile iiyelerinden ayrilan ozelligi kiiciik ve kompakt olmasidir, bu sebeple
de egitsel calismalar icin ¢ok uygundur. Calismanin ilk boliimiinde bu tasarim
detaylica tanitilmigtir. Ayrica tasarim ile birlikte sunulan otomatiklestirilmis ¢alisma
ortaminin kullanimi da anlatilmistir. Bu ortamin ig¢inde tasarimin simulasyonun
yapilmasi, dogrudan FPGA i¢ine yiiklenerek calistirilmasi gibi siirecler bulunmaktadir.
Calisma ortaminin bazi belirli ara¢ siirlimleri ve igletim sistemini gerektirmesi
nedeniyle, gerceklenebilir islemcilerle calismaya yeni baglayacak, 6zellikle yeterli
donanim ve yazilim alt yapist olmayan kisilerce kullanimi1 zor ve aligmasi zaman
alan bir siirec olabilmektedir.  Bu nedenle bu c¢alisma ortaminin kurulmasi,
calistirilmasi, yeni otomatiklestirilmis 6zellikler eklenmesi gibi konular da ilk boliimde
detaylica ele alinmugtir.  Bununla birlikte, calisma ortaminin kurulumunda ve
kullannminda karsilagabilecek sorunlar ve gerekebilecek araclar da belirtilmis ve
bunlarla karsilasilmas1 durumunda nasil bir ¢oziim uygulanabilecegi de anlatilmigtir.
Boylece bu boliimiin caligmalarini PULP ailesi ile yapacak kisiler i¢in bir kilavuz
gorevi gormesi hedeflenmistir.

Farksal gii¢ analizi icin girdi tiretmek adina AES’nin PULPino’da calistirilmasi ic¢in
oncelikle gercek diinyada gii¢c dl¢iimii yapmaya yakinlik olmast agisindan PULPino
tasariminin bir FPGA kartinda gergceklenmis simiilasyon modelinin kullanilmasi
diistiniilmiistiir. Bunun icin PULPnio ¢alisma ortamindaki RTL kodlar ile Xilinx
Vivado aracinda Artix-7 kartt i¢in bu model iiretilmistir. Bu model i¢in, PULPino
cekirdegini tek basina kullanarak, bazi test programlarinin 6nyiikleme hafizasi icine
atilan uygulama makine kodu ile ¢alistirilmasi denenmistir. Bu ¢alisma sekli, PULPino
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islemcisine eklenen baz1 komut uzatmalarindaki bir tasarim hatasindan dolay1 bagarili
olamadig1 goriilmiistiir. Bahsi gecen hatanin bagka calismalarda da raporlandig
yapilan incelemelerde goriilmiistiir. Bunun {izerine bu model, calisma ortami i¢indeki
benzetim test modelinde kullanilmis olan ModelSim aracina aktarilmistir. Bdoylece
bu test ortami kullanilarak gercekleme sonrasi benzetimler birkag¢ farkl test kodu i¢in
yapilmastir.

Sonraki adimda, gercekleme sonrasi benzetimlerden isaret degisim aktivitesi elde
ederek gilic tahmini yapma yontemleri incelenmistir. Bunun i¢in kullanilabilecek
SAIF ve VCD uzantili iki dokiim dosyasi tiirli bulunmaktadir. SAIF dosyalari
tim benzetim i¢in toplamsal isaret degisimi bilgisini vermektedir. Bu dosyalarin
boyutlar kiiciik olmakta fakat anlik isaret degisimi hakkinda bilgi sunmamaktadir.
Ek olarak bu dosyalarla Vivado aracinda nasil gii¢ tiikketimi tahmini yapilacagi
gosterilmis ve farkli test kodlar icin ortalama gii¢ tiikketimi tahminleri alinmustir.
Ardindan, isaret de8isimlerini anlik olarak tutan VCD dosyalar1 benzetim sirasinda
tiretilmigtir. Gergekleme sonrasi benzetim modeli, verilen tasarimin FPGA kartina
ait temel O8eleri icerecek sekilde modellenmis halini icermektedir. Genel durumda
bu temel birimlerden yiizlercesi tasarimdaki bir blogu ifade etmektedir. Bu sebeple,
tasarimdaki igsel isaretlerin ve giris ¢ikislarin sayis1 katlanmaktadir. Bu durumun
VCD dosyalarinda ¢ok sayida isaret tutuldugundan dosya boyutlarinda asir1 biiylimeye
sebep oldugu goriilmiistiir. Bu sebeple son olarak, gercekleme sonrasi benzetim
yerine iglevsel model simulasyonu iizerinden isaret degisimi alma yoluna gidilmistir.
Buradaki beklenti, gii¢ tiiketimi ¢izgesinin yine de sistem iizerinde yapilacak bir
islemin 6nemli noktalarin1 gosterecek sekilde olusacagi olmustur.

Denenmis olan iicretsiz gii¢ tiikketimi tahmini araclarindan higbiri anlik gii¢ tiiketimi
bilgisi sunmadigindan, bu isi yapacak bir kod MATLAB ortaminda yazilmistir. Yazilan
kod, kendisine girdi olarak verilen isaret dokiimii dosyasini islemekte, daha sonra
toplam isaret degisimlerini zamana baglh olarak cizmekte ve bunlara ait sayisal
degerleri tutmaktadir. Bu gii¢ tiiketimi tahmini cizgesi ile anlik gii¢ tiiketimi
kestirme yontemi gesitli test uygulamalar1 ve AES ile denenmis ve gercekten de,
uygulamalardan goriilmesi beklendigi sekilde bir ¢izge olustugu gozlemlenmistir.
Ardindan AES i¢in ¢ok sayida farkli giris mesaj1 verilerek yapilan benzetimler
sonucunda elde edilen ¢izgeler farksal gii¢ analizinde kullanilmistir. Cizge tiretimi,
coziimlenmesi ve farksal gii¢ analizi i¢in gerekli tiim kodlar yazilmistir. Ardindan,
tiretilen girdiler ve tahmin edilen model kullanilarak korelasyon analizi yardimiyla
AES anahtar1 elde edilmeye calisilmistir. Korelasyon analizi sonucunda elde edilen
korelasyon degerlerine gore anahtar boliimiiniin direkt olarak elde edilmesi veya
anahtar boliimii tahmini kiimesinin daraltilmasi amag¢lanmistir. Bu iki durumun
goriilmesi algoritmanin kirildigini da gosteriyor olacaktir. Bunun i¢in yapilan dl¢timler
ve sonuclar sunularak, onerilen yontemin gecerliligi gosterilmistir.
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1. INTRODUCTION

Cryptology is a mathematical science discipline which changed its form within years,
from being creating cyphers to studying information integrity and became even
more important in modern era, due to digitalization. History of encryption spans
to the middle of 14th century, though digital cryptography concept first officialised
with an article presented in 1945 [6]. Afterwards, with the exceptional increase of
digitalization in daily life, data safety also became a major concern for both designers
and consumers. In the hardware realisation level of encryption algorithms, this concern
is portrayed as the resistance of a design to the potential encryption cracking attacks;

which gives away the very key used in an encryption algorithm.

Another very popular aspect of the modern years is to compose an open-source
assemblage for both software and hardware products. Softcore processors [7] employs
a identical type of approach to processor designing mentality; from openly introducing
the instruction set architectures to providing actual Hardware Description Language
(HDL) [8] level of the processor to users. The importance of this non black-box type
approach is that it allows the users to examine, modify and extend an architecture and
the corresponding hardware for specific needs. Befittingly, these custom instruction
sets are designed in a manner that it easily allows further addition of new custom
instructions. Henceforth, it could be stated that this type of architectures use the
Reduced Instruction Set Computer (RISC) [9] concept. The RISC-V [10] architecture
stands out as one of the highly common modern reduced instruction sets. In
time, many processors have been developed that implement RISC-V instruction set
architecture [11, 12]. Moreover, an ample amount of studies can be found in literature,
which demonstrates the performances of some applications for different RISC-V

processors [13—15].

As per the remarks made above, the works in this thesis combines softcore processor
employing system-on-chip and encryption safety conecpts together. First aim of the

thesis is to employ an in demand open source system-on-chip desing and perform Field



Programmable Gate Array (FPGA) realisation based post-implementation dynamic
power comsumption analysis and automating the process for further use. Since the
power consumption estimation for FPGA designs are highly tool reliant and possibly
requiring to adapt the official designing and testing flows offered by the developers of
the system-on-chip in question or requires users to come up with their own work flow
from scratch; a time consuming adaptation period apprears in the studies. This thesis
offers a guide for performing post-implementation for the used RISC-V architecture

employing system, to be utilized for further studies.

The second aim of the thesis is to offer a methodology for resistance tests for various
encryption alogrithms. It is shown that real time power consumption of an hardware
can give away the vital information regarding encryption [16], even with the noise
and the inclusion of power consumption of unrelevant hardware sections are taken into
account [17]. However, works are done using on-chip real time power consumption
measurements, hence it requires an already fabricated hardware to test its side-channel
attack [18] resistance. This thesis aims to offer a simulation stage level side-chanell
attack resistance test methodology, so that a designer will be able to test his/her
hardware or algorithm in behavioral simulation stages without being have to implement

it first.

Second chapter of the thesis introduces the softcore processor employing system used
during the process of works in thesis and explains the usage and build flow of the
system in-depth, to be a reference for further studies. It also states various errors and

solutions that could be encountered by future students.

Third chapter denotes the first leg of the work, which is creating and automizing the
flow for performing a post-implementation simulation on the given softcore processor
system. This part also shows how to create a custom task flow that is out of boundaries

of the developer environment rules.

Chapter four explains the presented method to portray a digital circuit’s momentary
power consumption profile and demonstrates a number of graphical results, showing if

the produced profiles are applicable on giving a viable idea on power consumption.



Fifth chapter explains the method for undergoing correlation analysis and includes the
experiment results for regular and masked encryption, also discusses the results of key

prediction when the resistance tests are done in simulation stage.






2. PULPINO PLATFORM

During the course of this work, simulation based tests are performed using a softcore
processor employing system-on-chip platform. In this chapter, the overview of the
platform that is used will be given along with the detailed information on the usage of

it’s working environment.

2.1 General Information

PULP (Parallel Ultra-Low Power) Platform project is one of the many popular
RISC-V based innovatives that diverses itself according to the number of used
cores, and implicitly the System-on-Chip size. The project offers a group of open
source low-power solutions for working areas like Internet of Things (IoT) [19],
neural networks and microcontroller apllications. It’s main aspect is possessing low
power consumption, and it does so employing near threshold computing; which
achieves this by avoiding to make the device entering the strong inversion, applying
performance compensation using parallel computing and managing a device’s static

power consumption in an excessive manner [20].

PULP family (it’s illustration is given in Figure 2.1) also has single-core devices,

PULPino Platform [3] is one of the members in this family. Here, "-ino" was used as

RISC-V Cores Peripherals Interconnect
RI5CY | Micro | Zero | Ariane |§ JTAG m Logarithmic interconnect
T |
U = | m  12S | APB- Peripheral Bus
m m AXl4 — Interconnect
Platforms

o0 Ojoood
m@ | sercr— ol
‘ pf EEE AT OOm

Single Core E Multi-core E
* PULPino * Fulmine Multi-cluster
* PULPissimo +  Mr. Wolf + Hero
-~ 10
10" HPC

Accelerators

Figure 2.1 : The PULP Project family [1].
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a diminutive suffix to imply smaller size of the device. The aim for this smaller scale
design is to present a more compact and simple platform for some application areas,
especially in IoT practices. This platform uses a modified version of PULP RISC-V
instruction set architecture and is able to utilize various processor architectures that
can support this instruction set. Currently, PULPino release offers readily available
implementations for RISCY [21] and zero-risc [22] cores. Top schemtaics of these

cores are given in Figure 2.2 and Figure 2.3 respectively.

On the other hand, PULPino Platform offers a high number of peripherals that offers
versatility during usage and testing stages. Below is a close-up list of the components

included in the platform:

A selectable single-core processor

An optional Floating Point Unit

Single-port data and instruction Random Access Memories (RAM)

A boot Read-only Memory (ROM)

Advanced Xtensible Interface interconnections for coordination between core and

peripherals

Timer and Event Unit, for power management

RISC-V core ).

rdata

EX
\WB
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Debug Unit,
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Figure 2.3 : The zero-risc core top level schematic [2].
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e An Serial Peripheral Interface (SPI) [23] module

e Advanced debugger that allows access to memory map using JTAG

It is very important to state that all these components are open source, and allows
others to change the hardware, add their own blocks and subtract defaultly available
components. In fact, PULPino peripheral bus contains empty areas specificaly ment
for the users to add their custom peripherals [2]. However, it is very likely that some
adjustments have to be made on the system behaviour providing the user doing radical

changes on the architecture.

Figure 2.4 presents the top level schematic of PULPino Platform.

2.2 PULPino Working Environment

Being an open-source platform, related HDL codes of the PULPino Platform can be
freely accessed by users. Along with this, all the first party content related to PULPino
platform is also completely made available to users, in form of a buildable Linux-based
[24] working environment [25]. The build flow belonging to this environment is given

in 2.5 Using this working environment;

e All the HDL code related to PULPino system can be examined and modified.

e Using the simple command set offered by the environment, the design could be
compiled, prepared and behaviorally simulated using ModelSim [26] and Verilator

[27] habitats.

| o | ooy

'y 4 J
A Y A A 1 I
GPIO UART c SPI SPI JTAG

Figure 2.4 : The PULPino Platform top level schematic [2].
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Figure 2.5 : The build flow of the PULPino environment [3].

e C/C++ programs could be prepared and compiled with the help of a custom
instruction set toolchain. The environment also contains different C/C++

applications ready to be compiled and run on the platform.

e A Xilinx Vivado [28] project can be automatically generated to implement the

platform on Field Programmable Gate Arrays (FPGA).

e PULPino system can be directly realized on a Xilinx ZedBoard [29] device, using

automated working environment commands.

Apart from this, the working environment does not offer automatization for any other
type of FPGA devices bar the aforementioned one. Moreover, simulation scripts are
limited to perform behavioral simulation only, requiring the users to generate their own
processes to perform post-implementation analysis and any sub-analysizes related to
implementation (e.g post-implementation power consumption estimations). Another
important thing to note is that the PULPino environment’s building and scripting

processes is only completely supported under Linux based operating systems.

The working environment is highly automized and requires specific adjustments and
tool versions to be fully utilized. Therefore, a general Linux and scripting knowledge
is essential to fully benefit the environment. Works on this thesis are performed on a
Linux Mint 17.3 [30] 64-bit operating system; using Xilinx Vivado 2015.1 and 2018.2

revisions and ModelSim SE 10.4 and PE 10.2 versions. It is also highly recommended
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that to ensure the Linux based operating system that is planned to be used is up to
date. It should be noted that all the codes, scripts and programs given in this thesis are
written or executed within the specified operating system and tool vesions, and are not

guarantied to work on different operating system distros and tool versions.

2.2.1 Prerequests for the environment

PULPino working environment is strictly dependent on certain tools and software
versions to properly executed. Most of these requirements are already presented in the
depository readme files however, depending on the used operating system, users might
still need to obtain various software that are not explicitly explained by the environment
authors. Below, required tools and software for using the working environment are
listed along with their reason for usage. Also, we included the missing software that
was neccesary to work with the environment within the operating system verison used

on this thesis, for further reference.

It is also strongly recommended to keep the operating system and it’s installer
repositories up to date before starting to setup the PULPino working environment and
it’s components. The terminal codes below performs these tasks. It should be noted

that this process could take quite long time for newly-installed systems.
sudo apt update sudo apt upgrade

Requirements that are included in working environment documentation:

e CMake: The PULPino environment uses a CMake based file management system
handle making and building processes. Source package of the program can be
downloaded from its homepage [31]. Then, users should extract the archive

wherever they want the installation should stay. Archive can be extracted using;
tar —-xvzf <archivename>.tar.gz

Afterwards, users should go into the extracted directory and run the following

commands;
./bootstrap make make install

Then the users should find the bin folder generated inside their installation directory

(ex. <installationfolder>/cmake-3.13.0-rc2/bin). and add this bin directory to



the system’s PATH variable. Manually adding to the PATH variable is not
recommended since this requires the user to add the variable each time the user
opens a new terminal. To make the location permanently stay at the PATH variable;
.profile file or .bashrc file located on /home directory must be edited. Users could
have need to enable show hidden files option in their system to see this file. If none
of these files are readily available on the home directory, users could just create

them on their own.

The general command for adding something to the PATH variable is given below,

and this command should be copied into either ".bashrc" or ".profile" file.
SPATH = PATH:<pathtoadd>

It is advised to do this for each step requiring to add something to system’s PATH
variable. PATH variable contains the search locations of executable files that will be
directly recognised by the system, without being need to specify the exact location
of corresponding executable file. Figure 2.6 shows an example of an edited .bashrc

file.

ModelSim: All the scripts in the environment that handles compiling and simulation
are written specifically for ModelSim tool. If a user aims to use readily available
compile and simulation chain, using ModelSim is a neccesity; otherwise, scripts
must be written from scratch depending on the compiling and simulating habitat.

ModelSim offers freely available versions for educational purposes.

The ModelSim folder that contains the executables should be added
to the system’s PATH variable, These files will be contained in

“<path_to_modelsim>/modelsim_ase/linuxaloem* directory.

*.bashrc (~) - gedit
File Edit View Search Tools Documents Help

£ iDopen ~ D; save (@ | Undo ﬂ Q Q

=] *.bashrc x

Figure 2.6 : Example of a correctly edited .bashrc file.
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e ri5Scy-toolchain [32]: A RISC toolchain handles compiling, linking and building
process of C/C++ codes for a RISC based processor architecture. With another
way of saying, it carries over the entire process of converting a text based higher
level code to RISC compatible machine code. Because of this, whenever a
new instruction is customly added to the standart RISC-V instruction set, the
corresponding toolchain must be edited to make it understand this new instruction
as well. Since RISCY core of PULPino uses some custom instructions, it uses a
specially modified version of a standart RISC-V toolchain. This modified toolchain

contains extensions that support modified RISCY core instructions.

Firstly, the toolchain requires some packages to be present in an operating system.

These packages must be installed with the following command:

sudo apt-get install autoconf automake autotools-dev
curl libmpc-dev libmpfr-dev libgmp-dev gawk
build-essential bison flex texinfo gperf libtool

patchutils bc zliblg-dev
Afterwards, toolchain repository must be downloaded with:
git clone https://github.com/pulp-platform/ri5cy_gnu_toolchain

Then, users should enter the ri5cy-gnu-toolchain folder, and while inside this folder,
type “make* in the terminal to start building process of the toolchain. It should
be noted that this process may take a while. After the building is complete, a
’riScy_gnu_toolchain/install/bin” must be present in the directory. This bin folder

must be added to the PATH variable of the system.

Various tools that might be required and not stated in the working environment

documentation are as follows:

e tcsh: This shell environment is used in some of the file generation processes. The

terminal command below can be used to directly install this software.
sudo apt-get install tcsh
e git: This applicaton will be used to download various repositories within command
lines and scripts. Following terminal command installs this application:
sudo apt-get git
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e ia32-libs ve g++multilib libraries: If ModelSim would be run in 32-bit mode (the
case in the working environment scripts) under a 64-bit operating system, these
libraries must be installed. Otherwise, related working environment scripts have to
be modified. For the aforementioned Linux version, the following commands could

be used to install the libraries:

sudo dpkg add architecture 1386 sudo apt-get update
sudo apt—-get install ia32-1libs sudo apt—-get install
gt+multilib

e Python2.7 [33], pip and yaml packages: Pulpino main folder has some scripts
depending Python2 and yaml packages.

Firstly, following commands installs python2.7, and pip for python2 and python3;
sudo apt install python2.7 python-pip

sudo apt install python3-pip

Afterwards, to install yaml packages system-wide;

sudo apt-get install python-yaml

e Vivado 2015.1: If the PULPino design is planning to be tested on an FPGA, or an
automatically generated HDL project is desired to be used; preciselly this version
of Xilinx Vivado must be used, due to the scripts are only being compatible with
this version. After generating all of the required outputs, a more recent version of

Vivado could be used.

Vivado is freely available for users and can be downloaded on Xilinx servers (It
should be searched inside archived downloads section, since this is an outdated
version). After the downlad and installation is completed, commands below must

be run on terminal before executing the Vivado user interface:

source <installation_path>/Xilinx/SDK/2015.1/settings64.sh

source <installation_path>/Xilinx/Vivado/2015.1/settings64.sh

Following these, typing the commands below in the terminal will execute Vivado in

Graphical User Interface (GUI) mode:

cd /vivado

vivado &
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e Vivado 2018: The project generated in 2015.1 version could be opened in the most
recent Vivado versions. Since 2015.1 version being outdated, it does not support
some SystemVerilog [34] structures used in the design, hence the official testbench
for PULPino cannot be used in this habitat. Moreover, recent versions of Vivado,
despite being able to support the aforementioned SystemVerilog structs, was still
observed to be stuck during compilation process. To workaround this problem
without doing in-depth search to entire HDL library of the design to pinpoint
the problem, users can just generate the post-implementation model of design
in Vivado and then import it to ModelSim for post-implementation simulation
(PULPino environment only offers behavioral simulation automation on ModelSim

or Verilator).

2.2.2 Setting up the environment

After all the required software installed, the system is ready to use the PULPino
working environment. PULPino is presented in a GitHub repository [25] and can be

downloaded using the terminal command;
git clone https://github.com/pulp-platform/pulpino

This will download the “pulpino* folder to the current directory. This folder is the main
directory for any PULPino related work. However, this folder comes in an incomplete
state. PULPino uses various different packages from other GitHub repositories. The
files asociated with this repositories will not come with PULPino installation itself,
and must be downloaded using a Python script named “update-ips.py* inside pulpino
main folder. Following commands will execute this script to download extra files from

the required repositories.
cd pulpino
./update-ips.py

If the script finishes it’s run successfully, a success message similiar to the one in Figure
2.7 will be seen. Moreover, “pulpino/ips* folder will now have the Register-Transfer

Level (RTL) files of the Intellectual Properties (IP) used within PULPino.

In the next step, a build folder will be generated to hold a working session for users.

This can be done inside the “pulpino/sw” folder. This folder houses the C/C++
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Terminal - + X
File Edit View Search Terminal Help

hdl/fpu_fmac/booth_selector.sv
hdl/fpu_fmac/fmac.sv
hdl/fpu_fmac/fpu_norm_fmac.sv
hdl/fpu_fmac/pp_generation.sv
hdl/fpu_fmac/preprocess_fmac.sv
hdl/fpu_fmac/wallace.sv

lready on 'pulpinovl’

Your branch is up-to-date with 'origin/pulpinovl’.

lready up-to-date.

Enumerating o 20, done.

: Counting objects: 10 /20), done.

: Compressing objects: 10@% (5/5), done.

: Total 23 (delta 15), reused 19 (delta 15), pack-reused 3
Unpacking objects: 100% (23/23), done.
From https://github.com/pulp-platform/IPApproX

16db853. .6268903 master -> origin/master

lready on 'verilator'
Your branch is up-to-date with 'origin/verilator’.
Generated ts for IPs!

Figure 2.7 : Terminal output for a succesful IP update.

applications and codes to be run on the PULPino, and contains building scripts for
bringing together a working folder for simulations and application running. There are

four readily available building scripts inside this folder:

e cmake_configure.riscv.gcc.sh: Build a PULPino environment that uses RISCY as

it’s core.

e cmake_configure.riscvfloat.gcc.sh: Build a PULPino environment that uses RISCY

as it’s core, which also contains an extra Floating Point Unit.

e cmake_configure.zeroriscy.gcc.sh:  Build a PULPino environment that uses

zeroriscy as it’s core.

e cmake_configure.microriscy.gcc.sh:  Build a PULPino environment that uses

microrisc as it’s core.

These scripts automatically assumes that the user will have a folder named “build*
inside the “sw* folder (pulpino/sw/build) and it is being run within this folder.
Therefore, in order to use the scirpts without making any changes, one should create
an empty folder named “build* inside their “pulpino/sw* folder and copy the building
script that is desired to be used in this folder. During this thesis, PULPino with RISCY

core is used without a Floating Point Unit.
After copying into the empty build folder, the script should be run in terminal with;

./script_name.sh
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If the build is successful, a terminal output similiar to the one seen in Figure 2.8 will

be printed. Now the PULPino is readily built to be used with ModelSim.

2.2.3 Behavioral simulation

The official release of the PULPino offers behavioral simulation on ModelSim.
Automated version of these simulations offers running various C/C++ programs
directly on the system. The C/C++ program is first converted into machine code via
the customized RISCY toolchain. Afterwards, various stimuli files are generated to
be used inside the simulation testbench. There are two readily available methods for

injecting the machine code inside the PULPino Platform;

e Preloading the instruction and data memories: Automatically generated machine
code and program data are copied into PULPino instruction and data RAM’s during

the simulation runtime. The stimuli are read from text files.

e Loading with SPI: Instructions and program data are fetched in simulation runtime
from the SPI module located within the PULPino. SPI stimuli is taken from a text
file.

After the execution, all signal data can be observed by the users within ModelSim

interface. This includes memories and peripherals inside PULPino.

Before beginning the program execution simulations, the PULPino design must be

compiled for ModelSim. This process is automated and can be done by typing,

make vcompile

Terminal - + X

File Edit View Search Terminal Help
firat@firat-System-Product-Name ./cmake_con
figure.riscv.gcc.sh
System is unknown to cmake, create:
Platform/Linux-CXX to use this system, please send your config file to cmake@www
.cmake.org so it can be added to cmake
Your CMakeCache.txt file was copied to CopyOfCMakeCache.txt. Please send that fi
le to cmake@www.cmake.org.

-- GCC_MARCH= IMXpulpv2

-- USE_ZERO_RISCY= B

-- RISCY RV32F= @

- ZERO RV32M= @

-- ZERO_RV32E= ©

- PL_NETLIST=
- Configuring done
- Generating done
- Build files have been written to: /home/firat/Desktop/PULPINO/pulpino/sw/buil

d
firat@firat-System-Product-Name 1

Figure 2.8 : Expected terminal output after a succesful environment build.
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while inside the “pulpino/sw/build* folder. This command compiles the RTL found in
directories “pulpino/rtl* , “pulpino/ips* and “pulpino/tb*. These folders actually holds
the source HDL code of the PULPino platform, it’s peripherals and the ModelSim
testbench, and can be freely edited, examined or added into. It should be noted that
the codes must be recompiled with the previously given terminal command, for the

changes to be appear in ModelSim simulation.

When the compilation of the RTL codes are succesful, the terminal message given
in Figure 2.9 must appear at the end. Warnings related to unsupported assertion
statements and compiler calls can be ignored, as these will be simply not implemented

during the compilation and won’t cause execution faults.

In order to execute the already available C programs that is contained in official
PULPino working environment, the folder “pulpino/sw/apps‘ must be observed firstly.
Folders in this directory has related C/C++ codes to be compiled on custom RISCY
toolchain. To compile the codes and generate a ModelSim environment for the
simulation, related make rules have to be invoked while inside ‘“pulpino/sw/build*
folder. application names can be checked from CMake list files or double tapping

tab button after writing “make* to the terminal.

For example, a text output program is located at “pulpino/sw/apps/helloworld* folder.

To compile, generate stimuli files and create ModelSim simulation environment;
make helloworld

Terminal - + X

File Edit View Search Terminal Help

Compiling for RISCV core

** Warning: /home/firat/Desktop/pulpino-fresh/pulpine/vsim/..//rtl/random stalls
.sv(72): (vlog-2186) SystemVerilog testbench feature

(randomization, coverage or assertion) detected in the design.

hese features are only supported in Questasim.

** Warning: /home/firat/Desktop/pulpino-fresh/pulpino/vsim/..//rtl/random_stalls
.sv(116): (vlog-2186) SystemVerilog testbench feature

(randomization, coverage or assertion) detected in the design.

hese features are only supported in Questasim.

Built target vcompile

Figure 2.9 : Terminal output when all the PULPino RTL is succesfully compiled.
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command must be executed in “pulpino/sw/build** directory. When successful, this
creates a special simulation folder inside “pulpino/sw/build/apps® directory, named
“helloworld“. This folder will have ModelSim configuration files to be used for
simulation, stimuli files related to the compiled C code, tracer output and stdout folder
for Universal Asynchronous Receiver-transmitter (UART) outputs. Afterwards, while

still in the “pulpino/sw/build* folder,
make helloworld.vsim

command can be used to automatically start the ModelSim behavioral sim-
ulation.  This command automatically switches to the previously generated
“pulpino/sw/build/apps/hellworld“ directory and invokes ModelSim simulation there,

so that the stimuli files can be used which were generated from the C codes.

After the execution, this program will generate a “Hello World* string and send it
over UART module. Data sent from the UART will also appear in the command
line of ModelSim. The executed behavioral simulation after calling helloworld.vsim

command can be seen at Figure 2.10.
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Figure 2.10 : Output of the helloworld program in ModelSim.
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2.2.4 Adding custom applications

Inside the PULPino working environment, custom C programs can be included into the
automation system to be ran on PULPino from ModelSim, similiarly to the helloworld
example given at Section 2.2.3. Procedure for adding a custom application is given

below, step by step:

1. Related codes must be copied into a user-created folder inside the directry
“pulpino/sw/apps‘. Name of the newly created folder is also user determined (ex.

“pulpino/sw/apps/new_app* ).

2. A file that is exactly named “CMakeLists.txt* must be created in this newly created
application folder. This file shall hold the names of C source files to be used
and PULPino related header file includes, if any are used. This file lets the
applciation to be recognized by automated CMake structures. One example of
this file is presented at Figure 2.11. Here, CMAKE_SOURCE_DIR variable is
automatically defined inside PULPino environment and it points to “pulpino/sw*
directory. Other directories inside the include definition are actually located within
working environment and can be examined and edited by users. These files include

PULPino platform related definitions and functions, like peripheral control.

3. Newly created application should be introduced to the build flow. This can be done
by editing the file named “CMakeLists.txt* inside “pulpino/sw/apps‘ directory. At
the end of this file, the following line should be added:

add_subdirectory (new_app)
where “new_app* denotes the name of the newly created application folder.

4. Finally, name of the newly created application folder can be used within build
directory (ex. make new_app, make new_app.vsim). Compilation, simuation
stimuli and ModelSim environment will then generated just like any other program

within the app folder, for this newly created application; provided the correct

terminal commands are typed.
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2.2.5 Building FPGA related content

PULPino environment provides the process that uploads the design in ZedBoard
platform. By using this process; users can generate a sythesisable HDL project of
PULPino, generate a netlist based implementation project for ZedBoard, create stand
alone Verilog HDL [35] netlists of the design and generate a customized embedded
Linux envrionment to be loaded on a memory card, to be inserted on ZedBoard to run

translated C applications.

Currently, the only two ways to run aforementioned C applications are either
pre-loading their compiled versions on the memory card or sending them over to
ZedBoard via Secure Shell (SSH) [36] protocol. The working environment provides

automation to send executable code over SSH.

PULPino working environment houses a folder named fpga; and this folder has
all FPGA related building rules for PULPino, from generating Vivado projects to
automatically loading the design on ZedBoard. In order to build all the contents
of this folder, the terminal command “make all“ must be run while in the folder
“pulpino/fpga‘. After the execution, all the content will be available within subfolders
inside this directory. Namely, “fpga/sw* will have FPGA realisation make rules
and related programs, like the boot loader and custom embedded Linux operating
system image to be run on a ZedBoard SD card. Folders “fpga/rtl* and “fpga/ips*
contains some extra HDL blocks used specifically for FPGA implementation. The
folder “fpga/pulpino* has the pre-synthesised Vivado project for the PULPino, and
“fpga/pulpemu’ has the ready to be emulated project and it is directly used for

generating bitstreams for ZedBoard emulation. Figure 2.12 shows the top level

=| CMakelists.txt  *

nch_lib/inc

)

set(SOURCES aes.c aes test.c common.h)
add application(aes "${SOURCES}")

Figure 2.11 : Example definitions in a CMake recognition file used in an encryption
application.
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Figure 2.12 : Top module of PULPino ZedBoard Implementation [3].

schematic of this emulation project. The users can export and use the pre-synthesised

Vivado project for thier own purposes.

2.2.6 Potential problems and solutions

During the operations within the working environment it is quite possible to encounter
various errors, since the environment is highly automised and depending on strict
software versions. Below, possible errors that could be encounter are listed along with

their solutions. Incompatibility errors encounder in the process of the thesis are also

included in this list.

1. When trying to compile a C-Code within the environment, if users receive error
messages regarding unrecognised objects and failed compiling, they must be sure

to have ia32libs and g++multilib libraries in the system (Refer to Section 2.2.1).

2. Errors stating that some commands are not found indicates that either the program
that contains the command is not installed, or executable files of this program is not

in the PATH variable of the system (Refer to CMake requirement in Section 2.2.1).

3. During compilation or execution with ModelSim steps, if user receivers an error

regarding using a 64-bit system, all the “-64” flags inside the ModelSim execution

and compilation scripts must be deleted. These are;

e All the files under “/pulpino/vsim/tcl_files” directory
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(=] *vsim.tcl x

source tcl files/config/vsim ips.tcl

eval $cmd

proc run_and exit {} {

Figure 2.13 : Correctly edited “vsim.tcl* to solve C compiler issue.

e “/pulpino/vsim/vcompile/rtl/vcompile_tb.sh”

e “/pulpino/sw/apps/CMakeSim.txt”

4. During the execution of ModelSim, if an error regarding ““/vsim_autocompile.so”
object not being found, it means ModelSim cannot find the right C compiler. Inside
the “pulpino/vsim/tcl_files/config/vsim.tcl” script, the “—dpicpppath” option must
be added at the end of the line starting with “$VSIM_FLAGS”, to point ModelSim
to the correct compiler path. Generally in Linux based systems, the C compiler is
located at “/usr/bin” folder. Correctly edited example of this script during the thesis

can be seen at Figure 2.13.

5. When building the FPGA related files in the environment, a build failure may be
encountered during the processes that builds u-boot program; unless the Vivado

SDK setting scripts are sourced before starting the build process.
source /opt/Xilinx/SDK/2015.1/settings64.sh && source

/opt/Xilinx/Vivado/2015.1/settings64.sh

6. During the build process of embedded Linux environment for the Zedboard
implementation, an error related to gmake might be encountered. This problem

can be bypassed by making a symbolic link from the make command executable:

sudo 1ln -s /usr/bin/make /usr/bin/gmake
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3. POST-IMPLEMENTATION SIMULATION AND DYNAMIC POWER
ESTIMATION ON PULPINO

This chapter examines the post-implementation simulation and dynamic power con-
sumption estimation concepts done with PULPino platform. The post-implementation
simulattion was chosen at the first steps of the work, due to being the closest simulation

to the actual FPGA implementation.

3.1 Preparing for Post-Implementation

The goal belonging to this part of the work, is to simulate PULPino platform
on other FPGA boards that does not utilize build-in processor support (the offical
working environment only offers a realization on ZedBoard, which contains a built-in
processor), then getting the post-implementation power consumption estimation results
for various applications. After undergoing the working environment setting and HDL
project generation steps stated in , synthesis and implementation processes are done for
a different device. For the implementation process, Artix-7 Development Board [37]
(xc7a200ttbg676-2 device) and Vivado 2018.2 was used. The resource usage of the

implementation is given in Table 3.1.

3.1.1 First testbench

First attempt to perform a post-implementation simulation on PULPino was to try

and import the official testbench came with PULPino working environment to Vivado

Table 3.1 : Post-implementation resource usage of PULPino on Artix-7 Development

Board.
Resource Name Used Amount Total Amount Percentage Used

FF 9883 267600 3.69

LUT 15647 133800 11.69

/0 143 400 35.75
BRAM 16 365 4.38
DSP48 6 740 0.81
BUFG 3 32 9.38
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2015 and execute the process there. It is done so by adding the testbench related
RTL files into the project as simulation sources. However, during the compilation
steps of the testbench, it was seen that Vivado 2015, being an outdated release of the
software, did not support most of the vital SystemVerilog structures coded inside the
testbench RTL. For this reason; as the second attemp, the project was imported to
Vivado version 2018.2, which was the latest version during that leg of the study. This
version recognized the required SystemVerilog structures, yet the simulation still could
not be started due to the simulator getting stuck in the elaboration step, without any

log report to contract the scope of the problem.

Following this problem, it was decided to just extract the RISC core from the system
and simulate it as standalone. PULPino core region has a boot ROM to be firstly
executed when the fetching signal is received, and there exist a register bank inside
the RISCY core that can be examined during simulation. Herewith, the compiled
application code was planned to be inserted in this boot ROM. Simulation was planned
to be ended when the isboot” signal inside the desing becomes low, which indicates

the executoion of the boot ROM code has been finished.

A simple testbench is written in the light of the given information above. The only parts
used regarding the system in this testbench are the core region and the fundamental
clock, reset and fetch signals. Signals related to peripherals that does not affect the
running of the core region are not connected for simplicity. A visualization of this

testbench can be seen at Figure 3.1.

reset
: IR

CORE

T fetch_enable

Data
RAM

data

=
o
2
S
&

Figure 3.1 : Structure of first testbench.
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3.1.2 Editing the boot ROM

Changing the contents of the boot ROM can be done with the commands proffered
within PULPino build environment. This process uses the application folder, with
the exact destionation “pulpino/sw/apps/boot‘_code*. The C file “boot_code.c* in this
folder conatins the code to be written in boot ROM. Users need to copy thier own code

inside this file and then compile it with the command:
make boot_code.install

from the terminal when accessed within “pulpino/sw/build* folder. This turns the
related C code to machine code, prepares a new boot ROM RTL file containing this
machine code and switches it with the boot code RTL inside “‘pulpino/rtl*. It is
advised to backup the original boot code, since this boot code is used to run the
standart processes within PULPino environment. The new boot ROM RTL will also be
within the folder “pulpino/sw/build/apps/boot_code/boot“.If neccesary, more address
space can be allocated for boot ROM from PULPino memory map, which can be
changed from the top level PULPino SystemVerilog file [2]. Figure 3.2 shows the

aforementioned memory map.

As benchmark applications for the system, some applications from The Worst-Case
Execution Time Project [38] group was chosen to be executed on the processor, to
perform runtime test and generate switching activity outputs. These benchmarks are

discoursed in Section 3.3.2.

This testbench was also failed to work properly. It is observed that during some
conditions, newly added hardware loop extensions added in the RISCY custom
extensions [21] and causes the hardware to enter infinite loops and stalling the

processor. It is later found that this problem was also detected by another study [15],

0x0000 0000
32kB RAM ’ Instruction Memory 0x1A10 0000

0x1A10 1000

UART

0x0000 8000 GPIO

0x1A10 2000 SPI Master

Boot ROM (/o) 0x1410 3000 Timer

0x0008 0000
512B ROM

0x0008 0200

0x1A10 4000 Event/Interrupt Unit Peripherals

0x1A10 5000 2¢

0x0010 0000
0x1A10 6000 FLL
Data Memory

32kB RAM 0x1A10 7000 SoC' Control

0x1A11 0000

0x0010 8000 Debug Port

Figure 3.2 : PULPino memory map [2].
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which aimed to verify PULPino. Since this was the case with bechmarks prepared
for the boot ROM compiling options, it was finally decided that cancelling to work in
Vivado environment and instead, exporting the post-implementation model to in order
to be able to work with the official ModelSim PULPino testbench, this time compiling

the benchmarks for the instruction RAM.

3.2 Post-Implementation Simulation with Official PULPino Testbench

Performing a post-implementation simulation in ModelSim requires a number of extra
preperations. Being only a simulation tool, ModelSim does not offer FPGA device
primitive based implementation models for written HDL codes. It depends on other
tools to create the commercial FPGA device equivalents of a complete design, which
being HDL netlists of circuits, in terms of FPGA primitives. These primitives are
vendor dependant and are available from the corresponding design software to be

compiled as exportable simulation libraries.

Aforementioned primitive simulation libraries of Xilinx for ModelSim can be
generated from Vivado GUI, from Tools->Compile Simulation Libraries tab in toolbar
menu. Libraries will be created in the user specified location and then need to be
defined to ModelSim before using in a simulation. This is done by editing the
”modelsim.ini” file inside it’s installation directory. Xilinx library names and their
specific paths must be added in this file accordingly. The edited .ini file that used
during the studies in the thesis is given as an example in Figure 3.3, with the enframed

entries being the Xilinx library definitions.

modelsim.ini x

ssi = $MODEL_TECH/../altera/vhdl/cyclonelfgx_hssi
‘vrlcnemﬂ) hip = $MODEL_TECH/../altera/vhdl/cyclonel0gx_hip

$MODEL_TECH/../altera/verilog/altera_mf
DEL_TECH/../altera/verilog/altera
= $MODEL_TECH/../altera/verilog/altera_lnsim
$MODEL_TECH/ . ./altera/verilog/226model
er = $MODEL_TECH/../altera/verilog/226model
MODEL_TECH/ . ./altera/verilog/sgate
MODEL_TECH/ . . /altera/verilog/twentynm
$MODEL_TECH/ . . /altera/verilog/twentynm_hssi
r = $MODEL_TECH/../altera/verilog/twentynm hip
r = $MODEL_TECH/../altera/verilog/fourteennm
= $MODEL_TECH/../altera/verilog/fourteennm ctl
= $MDDEL TECH/ . ./altera/verilog/cyclonelfgx
= $MODEL_TECH/../altera/verilog/cyclonel@gx_hssi
= $MODEL_TECH/../altera/verilog/cyclonel@gx_hip

pt/mtelFPGA pro/ /modelsim_ase/xl1bs/secureip
/modelsim_ase/xlibs/unisim
/modelsim_ase/xlibs/unimacro
t/intelFPGA_pro/1.0/modelsim ase/xLibs/unifast
_ve /opt/intelFPGA_pro/ /modelsim_ase/xlibs/unisims_ver
unimacro = /opt/intelFPGA_pro/19.0/modelsim ase/xlibs/unimacro_ver
/opt/intelFPGA_pro/1% 0/modelsim ase/xlibs/unifast ver
simprims ver = /opt/intelFPGA pro/1%. o/modelsim ase/xlibs/simprims ver

Figure 3.3 : The modelsim.ini file with added Xilinx libraries.
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For the next step, the post-implementation netlist model of the circuit is created within
a single file in Verilog HDL format, using Vivado command line. For this work, the

command below is used;

write_verilog —-force -mode timesim pulpino_impl.v

<

where pulpino_impl denotes the user specified file name, option “-mode timesim*
tells the program to generate post implementation timing simulation model, and
-force option rewrites the file if it exists in the directory. A destination can also
be specified for the generated file (It will be generated in the project root directory
by default). Then, it is exported out of the project to be compiled in ModelSim for

post-implementation simulation.

As the testbench of the simulation, the standart built-in PULPino testbench can be used.
In the testbench file, memory loading technique is chosen to be SPI loading. Preloading
method needs to access the individual memory blocks in the design. However, in order
to increase performance, FPGA specific RTL of PULPino uses Xilinx pre-built RAM
IPs, instead of the RAM RTL regularly used in PULPino working environment; which
is not suitable for FPGA implementations. Because of the black-box design of Xilinx
IPs, memory blocks of a Xilinx RAM cannot be referred directly in testbench code.
While preload method tries to directly refer the RAM cells, SPI load refers them via
addresing so it is suitable to be used with Xilinx RAMs. Downside of this method is
that it undergoes within the simulation run, hence slows down the overall simulation

runtime.

Since the post-implementation simulation flow does not exactly follow the build
rules automatically implemented in PULPino working environment, meaning it is a
custom flow, there exists some significant differences in the procedure. To initiate and
automize the post-implementation simulation, To begin with, folder is created that will
hold post-implementation simulation related material. Contents of an example custom
simulation folder can be seen at Figure 3.4. The simulation folder should essentially

include:

e slm_files: This folder should hold stimulus files to be used in simulation. Since

stimuli will be loaded with SPI, folder must include “tcdm_bankO.slm*“ and
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Figure 3.4 : Contents of an example simulation folder.

“spi_stim.txt* files. These files will be automatically generated in related build/apps

folder of the related application.

Symbolic link to “work* folder: A symbolic link of the folder “pulpino/vsim/work*
must be included in this file. This folder holds the compiled version of the PULPino

testbench and it is automatically generated in the aforementioned directory.

modelsim.ini: This file will specify which simulation libraries will potentially be
included in the work flow. This folder can just be a copy of the modelsim.ini file
located at the ModelSim installation directory. Otherwise, it has to include the

Xilinx libraries to be used.

Post-implementation netlist model: This file will be compiled before simulaton
starts, and will be the unit under test of the simulation testbench. In this example, it

is a Verilog file named “pulpino_impl.v*.

Automation script: This file contains the console commands that needed to be typed
for start and complete the simulation flow. In ModelSim, these script can be written

into text files with .do extensions, to be used with ModelSim’s “do‘ command.

To start the simulation proces; firstly, ModelSim tool must be invoked within this

custom folder. Secondly, the netlist model must be compiled using the command:

vlog name_of_file.v

This will compile the model into the working library folder. Then the simulation screen

will be invoked using the command below:
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vsim tb -L simprims_ver work.glbl -dpicpppath

/usr/bin/gcc

Here, “tb* is the name of the testbench, “-L simprims_ver* indicates that simprims_ver
Xilinx library will be used during simulation (contains simulation primitives for design
written in Verilog), “work.glbl“ is a global definiton file contained within netlist file
and should be added into work library after netlist compilation. Lastly, -dpicpppath
option specifies the correct location of system’s C compiler. Finally, the simulation is

executed using:
run —-all

This command runs the simulation until a finishing statement is encountered in the

testbench.

An automation script for the process is also written for automatization. The script
in question can be observed in Appendix A.l and includes the explained commands

above collectively, with some optional commands.

3.3 Post-Implementation Average Dynamic Power Estimation

Following the successful execution of post-implementation simulation for given
benchmarks, the dynamic power consumption estimation phase of the work was
initiated. The post implementation model here will provide internal signal level
change information that produced from a close approximate model of on-FPGA
implementation execution of the device. On a digital circuit, one of the determining
factors of dynamic power consumption is the load capacitance charges and discharges.
Assuming that C;, f;, V; respectively representing load capacitance value for a line i
,switching frequency of the line i and the value of the voltage swing in the design; a

dynamic power consumption relation is given as;

P=Y GfVi 3.1)

As stated above, a post-implementation simulation will provide a close to real signal
level change activity, and this shall further provdie the switching frequency information

for equation 3.1. V; is a device dependant parameter and it is constant when the same
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FPGA device is used. The line capacitance values will be provided by the libraries

used within implementation tool that produced the post-implementation model.

3.3.1 SAIF files and VCD files

Accurate dynamic power consumption estimation of a design essentially needs circuit
switching activity information as its input, and there are two general file formats for
containing these activity profiles. One of them being Switching Activity Interchange
Files (SAIF) [39]; which holds the information like total switching amounts of design
signals, total time a signal spent at high/low value and total glitches. Second technique
is generating Value Change Dump (VCD) files [35]. These files hold values of each
specified circuit signal for each clock cycle of simulation; but does not outright provide
information about total switching values. These activity files can act as inputs to readily

available power consumption estimation tools of current digital design softwares.

If a comparison between these two activity file types should be made, some vital
differences could be seen. SAIF files, being containing switching information for
the total simulation time scale; can only be used in average power consumption
estimation. On the other hand, their file size is considerably small (around couple
hundred megabytes for all signals was observed during this work). VCD files present
time by time signal values; so it requires more computing time to calculate average
power consumption, but it is also possible to make some observations on momentary
power consumption. In terms of file size however, since its size expected to be linearly
increased with time, they might become extremely large for long simulations (files
as large as tens of gigabytes were produced during this work), making processing
these files unproductive and problematic. Because of this, most of the modern tools
discarded VCD for using in average power consumption estimations. For example,
Vivado power estimator no longer supports VCD files to be used as inputs, only
accepting SAIF files. Albeit, it is still necessary to work with dump files if momentary

power consumption behaviour should desired to be examined.

During this work, both file types were used for different power analyses. SAIF files

were used to get average power consumption estimations for different becnhmarks,
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VCD files were used for drawing a momentary power consumption profile for

processor during the execution of machine codes (Refer to Chapter 4).

3.3.2 Average dynamic power consumption estimation with SAIF

As mentioned in Section 3.1.2, due to being unable to succesfully compile the testing
environment on Vivado, design files were exported to the ModelSim to be used together
with official PULPino testbench. In ModelSim SE versions, there exists a command
group named “power” for generating SAIF files of a given design. To create a
SAIF output from a simulation, firstly the command below must be added before the

simulation run statement:
power add —-in -inout -internal -out -r /testbench/uut/=«

This command starts the switching recording input signals (-in), output signals (-out),
inout signals (-inout) and internal signals (-internal) for all submodules of the Unit
Under Test (UUT) of the testbench. After the -r option the hierarchical name of the
design should be entered, with “** meaning to include all submodules below UUT’s

hierarchy. Then the run statement should be followed by:
power report -—-all -bsaif test.saif

This will result in printing out the specified switching activity in a SAIF file named
“test.saif**. The file then can be used as input for a desired power estimation tool that

support it.

Below, the summary of steps for preparing and running a program in PULPino for a
SAIF-using power consumption estimation within simulation environment are given

as follows:

1. Firstly, three bechmarks that are written in C language were compiled for
RISCY processor via RISCY toolchain; namely compress (data compression) [40],

crc (cyclic redundancy check) [41] and edn (finite impulse response filter

Table 3.2 : Structural properties of used benchmarks.

Benchmark Size (Bytes) Nested Loops Arrays Bit Operations

compress 13411 Yes Yes No
edn 10563 Yes Yes Yes
cre 5168 No Yes Yes
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Table 3.3 : Simulation times and run times for different becnhmarks (25 MHz clock).

Benchmark Run Time Simulation Time
compress ~ 40 min 4.39 ms
edn ~ 85 min 4.93 ms
cre / 65 min 4.06 ms

Table 3.4 : Average power consumption results obtained by Vivado, using SAIF files.

Benchmark Average Dynamic Power
compress 0.010 W
edn 0.006 W
cre 0.007 W

calculations) [42]. Structural properties of these benchmarks are given at Table

3.2.

2. SPI stimuli of these compiled codes were generated in PULPino working

environment, using file building scripts.

3. During the ModelSim post-implementation simulation, each of these stimuli was
sent via an SPI simulation model block to the instruction RAM of PULPino and the

simulation was run until the code execution was completed.

4. ModelSim-generated SAIF files were moved back to Vivado again; to act as input

files for Xilinx power estimation tool.

For each benchmark run, different SAIF files are given as simulation activity input,
along with PULPino post implementation model. Then the Xilinx power estimation
tool produces an output, that can be a text report or a graphical report, which includes
both average static power consumption and average dynamic power consumption
estimations. Since the static power depends on the FPGA device itself, thus being
same for all benchmarks, it is deducted from the results and only the dynamic power
is taken in consideration. Obtained average dynamic power consumption results are
presented in Table 3.4. The timing results are also given in Table 3.3. It should be
noted that the timing results also includes the part when the stimulus being transferred
over SPI module, causing run times to be longer than expected. On the other hand,

sending via SPI part was not included in SAIF files.
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4. MOMENTARY POWER CONSUMPTION PROFILE GENERATION

The load capacitance value in digital circuit depends on line lengths and fan-out.
When trying to generate momentary power consumption profile from VCD files,
the design’s mapping and routing information could be used in conjunction with
switching activities. However, this will only affect the resolution of actual power
consumption values and it requires more computing time during generating momentary
power consumption profile. Since the concern to observe sudden changes in power
consumption becomes not entirely necessary, and post-implementation VCD files
become ineffectively large; it was decided to just use the information of behavioral
simulation switching activity dump. Post-implementation activity files being far larger
than behavioral files is the naturally expected result of actual FPGA primitive models
replacing the written HDL (which what actually happens during mapping stage of
implementation), which greatly increases the total number of internal signals. Due to

the same reason, post-implementation simulation run times became longer as well.

Main reason for getting a momentary power consumption profile is to use it for
differential power analysis [16] on the implementations of cryptographic algorithms
during early design stages. With the acquired information, it is aimed to test the
behaviour of a cryptography algorithm implementation against side channel attacks

during early simulation stages of hardware designing process.

4.1 Generating Momentary Power Consumption Profiles using VCD

Since SAIF files only provide information for summative switching activity, this file
type is not suitable for sourcing information on instantaneous switching activity. Thus;
VCD files can be used instead, which gives a signal’s value for each clock cycle for

the duration of a simulation.

At first, the process of generating the VCD files were performed with the same steps
stated in 3.3.2, using the Verilog HDL system functions “dumpvars” and “dumpfile”.

These statements must be added to the correspoding sections of the design testbench.
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However, this method is discarded since the VCD file sizes were unpractically large;
even so when selective dumping had been performed by only dumping the values of
specific parts of the core. Due to these problems, it was decided to use behavioral
simulation for generating momentary power consumption profile. This will result
in discarding the actual path length and fan-out effect on the power consumption

estimation.

By using the VCD file produced from behavioral simulation, it is assumed that all
the load capacitances of all the lines given in Equation 3.1 are constant and roughly
the same. It is obvious that the power supply voltage V; in Equation 3.1 is the same
for all lines in the same FPGA device. Hence, in order to calculate dynamic power
consumption in Eq. 1, we only use swithcing activity. We claim that momentarily
power consumption information obtained in this way will be sufficient for DPA on
implementation of cryptographic algorithms, since the main concern is not the actual

value of power consumption, but the behaviour of the temporal switching activity.

Behavioral simulation is performed on ModelSim again as explained in Chapter 2,
while recording switching activity in the desired parts of the simulation. Using
behavioral analysis indeed shrinked the output file size; but still only some portions
of the core, Arithmetic Logic Unit (ALU) and core register blocks, dumped to achieve

an acceptible VCD file size.

VCD files are generated using the tabular list format of ModelSim (.Ist files), for easier
parsing in MATLAB [43]. This type of value dumping does not require the usage
of Verilog dumpfile system functions. In order to initiate list dumping, the command

below can be included in the related .do file:

add list -r /tb/top_i/core_region_i/CORE/RISCV_CORE/* run

-all

In this statement “add list opens up a new list, “-r hierarchical_element_name*
indicates that the specified element will be added to the list along
with all it’s internal signals. In the example, the element name
“/tb/top_i/core_region_i/CORE/RISCV_CORE/** points to the entire core region of
PULPino, while the “** symbol denotes that all submodules under RISCV_CORE

module will be included in the scope. To sum up, this statement adds all the specified
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signals, along with their submodules and all of their internal signals, to a newly

created list.

After completing the simulation the list can be extracted to a text based .1st file with

the command below:

write list -window .main_pane.list.interior.cs.body

destination dir/listl.lst

The “write list command* saves the value change dump stored in the list file to a
tabular file with the name specified in “destination_dir/listl.Ist*. The file name is user
determined. The “~-window object_name* option shows that the list to be written is
a windowed list named “object_name* ; “.main‘_pane.list.interior.cs.body* for this

example where “list* word in the object indicator holds the name of the windowed list.

A screen view of how these saved tabular list files look like can be seen at Figure 4.1.
Leftmost column holds the meaningful time values of simulation, while the other
columns show the levels of specified signals in that moment. In this figure, only a
cut set of the list is given due to list being too large, since there are too many signals

added to the list to be recorded.

4.2 Processing the Value Dump Files

To extract data from VCD files, we wrote a MATLAB script for reading VCD files
which first parses the switching information in the files, then compares the value
changes of each recorded signal whenever a value-level change happens in the circuit.

This script is given in Appendix A.2.

The script first imports the text based dump files and takes the parts that states current
times and actual list of signal values for that given time. Time values and the signal
value list are seperately stored in two matrices. The script then compares the value
differences of the adjacent rows of signal value list matrix, gets the sum of the value
changes found in comparison between two rows and stores them to their related time

index.
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Using the script, total switching for each moment of the simulation is calculated and
plotted. Finally obtained momentary power consumption profiles of PULPino ALU
and core registers for each benchmark can be seen at Figures 4.2 and 4.3, with thier

zoomed verisons given at Figures 4.4 and 4.5.

When the results of two different power analyses are compared, it could be seen that
according to Figure 4.2, compress operation caused more hectic and higher amount
of switching compared to the other benchmarks, while crc showing mostly consistent
switching behaviour with averagely lesser in amount than it was in compress. Sudden
rises in switching amounts are much more sparse compared to other benchmarks, and
the maximum swtiching amount observed in unit time is also lower. Although it may
not be completely accurate to compare a momentary approximate graphical result with
an average power consumption estimation of just some vital sections of the system,
in a sense this interpretations are apparently overlapping with the results in Table 3.4,
where Peompress > Pere > Peqn Was obtained. Similiar observations can also be made for

core register switching profiles given in Figure 4.5.

After seeing that the VCD processing script produces outputs that are expected in
terms of shape, activities regarding the main encryption algorithm that will be the

main test unit are taken and examined in the next section.
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Figure 4.2 : Momentary switching profile for arithmetic logic unit.
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Figure 4.5 : Momentary switching profile of core registers (zoomed).

38



4.3 Momentary Power Consumption Profile of an Advanced Encryption Standart

Algorithm

4.3.1 Overview of Advanced Encryption Standart

As the purpose of creating power consumption profile is to use them in DPA analysis
of implementations of cryptographic algortihms, an AES [44] algorithm was also

executed on PULPino in ModelSim environment.

The AES algorithm is an encryption standart specified by the United States’ NIST.
The original name of the algorithm was called Rijndael, a combination of the names of
it’s founders [45], and it’s the chosen algorithm for AES among the fifteen algorithm

purposals.

The Rijndael algorithm selected for AES has three adoptations depending it’s key size;
being either 128, 192 or 256 bits. A 128 bit one is used during this work.

The AES algorithm contains four fundamental operations in it’s rounds; named
Subbytes, shift rows, mix columns and adding round key. In one round these operations
are performed once, in the given order. A 128 bit AES operation consists of ten rounds.

A general schematic of 128 bit AES is given in Figure 4.6.

At the beginning of the algorithm, a plain text is stored as a matrix in the form given in
Figure 4.6, where each element represents a byte of the plain text. A subbyte operation
seen at the start of a round, replaces the bytes given as input using a matrix called
S-Box [44]. This is also a reversible operation. An illustration of this stage can be seen

in Figure 4.7.

Outputs produced from subbytes operation then processed in shift rows block. This
block circularly shifts each row by a specific amount. First row stays as it is, second
row is shifted by one; and for all other rows, the elements are shifted by one deficient
of their row index number, such as two shifts by third row and three shifts for fourth

row. Figure 4.8 illustrates this operation.

Thirdly, the mix columns operation is applied. This operation takes four byte inputs
column by column and applies a specific reversible linear transformation to produce

it’s output [44]. The way of its operation is portrayed at Figure 4.9.
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Figure 4.10 : Momentary power consumption profile of entire AES encryption stage
for one message.

As the last operation of a round, processed 4x4 matrix is added with a stage sub key,

which is generated by a scheduling process in the Rijndael algorithm [44]. These sub

keys are shown by K’s in Figure 4.6. The addition is performed by bitwise exclusive

or (XOR) operations.

As for the AES implementation in C, the specially arragned AES encryption algorithm
within PULPino working environment was modified and used. This algortihm can
be seen in Appendix A.3. Steps explained in Section 3.3.2 are repeated and VCD
files are generated and momentary power consumption profiles are plotted as a simple
demostration. As stated, the AES encryption is consisted of ten rounds. In Figure 4.10,
the ten rounds of the AES encryption are clearly visible by the sudden peak groups,
further solidifying our claim that still being able to distinguish the abrupt changes in the
power consumption activity, even for a behavioral simulation with capacitance values

taken as constant.

4.3.2 Masking Advanced Encryption Standart

Even though AES appears to be resistant to common cryptanalysis techniques, some
hardware realisations of it can be open against DPA attacks [5]. Thought behind
the attacks is predicting the sections of the key used within algorithm operations via

various side effects. The protection mechanism comes from the idea of altering this
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Figure 4.11 : Overview of basic masking [5].

vital information used inside algorithm functions. Performing this altering procedure

is named as masking.

The basic principle is to add a randomly generated mask value to the plaintext before
the first stage, then remove this mask to get the actual encrypted result. In order to
negate the mask value effect, mask modification and unmasking blocks are employed
to keep track the required operations. A portrayal of this basic mentality is given in

Figure 4.11.

The AES consists of linear and nonlinear functions. Since the result of linear
functions taking input of masked plaintexts will be the sum of the same functions
when mask value and plaintext value given as input, unmasking these functions are
straightforward. These linear functions include the round key addition, MixColumns
and ShiftRows operations. The nonlinear function is the SubBytes operation, and
more advanced approaches are required to unmask this process. One approach given
in [46] is used to demonstrate the protection provided against the side-channel attack

we perform in this work.
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S. DIFFERANTIAL POWER ANALYSIS USING MOMENTARY POWER
CONSUMPTION PROFILES

The penultimate chapter of the thesis examines the simulation based side channel
analysis environment we offer. The main concepts are explained, details regarding

the environment are given and the analysis results are presented.

5.1 Differantial Power Analysis

Differantial Power Analysis is an attack that can extract vital information form a
device’s real-time power consumption measurements [16]. First, a large number of
runtime measurements are taken from a working device. Secondly, some models
are predicted and a power consumption estimtation is made from these, to be used
in conjunction with the real time results. Then the result are compared and thier
correlation is checked. At the end, according to the analysis, a guess on the vital
algorithm information is tried to be extracted [17]. In this section, a method to do a

similiar attack during the course of simulation stage of a design is explained.

A total switching number per clock cycle matrix P;; given in Equation 5.1 is
constructed for n test messages, where each operation takes up k clock cycles of time
in total, also i and j denoting the i’th clock cycle for j’th test input. Afterwards, an
average switching number matrix F,,, is obtained by taking average of the elements
of each individual row. This provides an average switching count for each test case.
P,y 1s a vital element in correlation analysis since this will be reference vector that

contains information about device’s switch activity.

(P11 pi2 Pi3 o o DLk
P21 : : : : : Pavgl
P31 . . . .
Pij: . . aPavg: . (5.1)
: . . . . . avgn
_pn71 . . . . pmk_
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Script extension to create these matrices are given in Appendix A.4. Figure 5.1 shows

the initial XOR operation of AES for one message, with respect to clock pulses.

1400 , : : : .
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a 600 - |
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I
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Figure 5.1 : Swtching activity profile of AES initial XOR operation for one message,
with respect to clock pulses.

The section of the AES algorithm that the attack is performed (the section with the
recorded switching activity) then emulated in MATLAB. Using this emulation, all
possible values that one byte of the key can take are consecuently given here as input,
along with the messages to be used in AES simulation. The bit differences of the input
message and the processed output message then compared. With this comparison, total
number of 0 to 1 transitions are counted for each message and the results are recorded
in a switching weight matrix named S (Equation 5.2). A byte consists of eight bits,
hence it has 28 possible values. Thus, the size of this newly created matrix will be

n-by-256, where n represents the total number of test messages, just as before.

Si,1 S12 S130 ... .. s17256
$2.1
$3.1 . . . .
S= : : (5.2)
_Sn,l . . . . sn,256_

In the final step, correlation analysis is performed among the matrix P, and each

column of matrix S one by one. Resulting correlation coefficients are stored and the
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one with the highest value should correspond to the correct value of the wanted key
byte. Repetitions for other key bytes then could be applied for obtaining remaining
AES key bytes.

5.2 Test Attacks and Results

Testing schemes for this work involves applying side channel attacks on the standart
and masked AES designs, for a large number of individual plain text inputs. First type
of attack will include the main input section of the algorithm, where the raw form of the
plain text is added with the first sub key of the process. In another perspective, this also
means attacking on the initial XOR operation in the encryption process. A second type
of attack is performed on the S-box output of the first round, which is the first S-box
operation that is performed in the algorithm. This operation remotely uses the result
of the first XOR operation output of algorithm block. In fact, this attack is performed

initial sub-byte block of the algorithm, which contains S-box transformation.

Since the dump file sizes for entire simulation takes up quite large space even for one
plain text input, final outputs become massive and grow unpractical when trying to
hold activity records for thousands of test messages. For this reason, certain parts of
the AES operation is better to be taken for size reduction. Though, it is very difficult
to predict at which time the operation we want to record power of will be executed.
Although, this problem is solved by using a triggering signal during the simulation
when writing the value changes to a list. One of the idle output pins on PULPino is
set in C code just before the section that is being attack starts executing. A script was
written so when this signal is set, the recording to VCD file starts. After the execution
of the related part is finished, the same pin is set to zero, indicating the simulator to

halt dumping switching activity.

5.2.1 Attack on Initial XOR Stage

For our first testing attack case, an attack to the first byte of the first XOR operation
is planned to be performed, as per the side channel attack usage. In the AES C code,
just before the operations in question is performed, we set a specific unused pin on
the PULPino General Purpose Input and Output (GPIO) pin set. This pin being on

high value will trigger the value change dump within the simulation. Right after the
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code statement that peforms the operation that is desired to be power measured, the
same GPIO pin will be reset to stop recording. This will allow to exactly record the
one byte XOR operation section of the simulation for each individual plain text input.
Since we are only recording certain parts of the simulation, the switching dump list
will have sudden jumps in the time column, with each jump indicating the start of the
power recording of a new message. Our parsing script contains a section that detect
these jumps, then seperates and stores each message’s power recording. This part of

the script can be seen at Appendix A.S5.

First byte of the key that is used in the algorithm is arbitrarily set to hexadecimal AO,
which is 160 in decimal. As per the procedure presented at Section 5.1, predicted
switching activity numbers for each possible key values is obtained, using the XOR
operation among the targeted key byte and corresponding plaintext byte as expected
model. For various numbers of different plaintexts, correlation value by guessed
key value graphics are obtained. It is observed that for this attack, the correlation
profile settles even for relatively small number of plaintexts, only difference being
the diminishing correlation value as the number of plaintexts increases. The order
of correlation magnitude is also observed to be consistent for dominant peak values,
where key value decimal 96 (hexadecimal 60) being the highest correlated prediction.
Figure 5.2 shows the correlation value by key guess value for 100,200 and 300
plaintexts, and portrays the described situation. Figure 5.3 presents the correlation

profile for 4000 plaintexts, and still does not provide a drastical difference from Figure

——100 plaintexts
—— 200 plaintexts
300 plaintexts

Correlation Value

0 50 100 150 200 250 300

Key Value

Figure 5.2 : Initial XOR attack results for plaintext numbers of 100,200 and 300.
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Figure 5.3 : Initial XOR attack result for 4000 plaintext trials.

5.2’s profiles or a distinctive peak value. For 4000 plaintexts, the key guess with the
largest correlation value is still hexadecimal 60; while the correlation value for the real

key, hexadecimal AOQ, is the guess with tenth largest correlation value.

Results show that using this attack, correct key could not be guessed; however, having
a consistent correlation profile with a periodic profile shape suggests that the setup
works correct, but enough randomness cannot be provided from just an XOR operation
to distinguish a correct guess. In the C implementation, result of the input plaintext is
overwritten by the XOR output, therefore the total number of non-zero bits in the other
operand, key guesses in this case, directly determines the number of changes that will
occur at the XOR’s output. This means that the number of switches will be directly
determined by the Hamming weight of the key guess number that is used. This supports
the distinct correlation profile and unsuccesfulness of guessing the correct key. This
result neccesitated to find an attack on an operation block with a much more district

domain and range matching relation.

5.2.2 Attack on Initial SubBytes Stage

Following the failure of correct key prediction with the initial XOR attack, a more
comprehensive attack is defined, which covers a larger portion of the encryption
and uses two chained blocks as it’s model. The attack is performed on the first
round’s SubByte block, specifically the output of the non-linear S-box operation. This

operation is realised in C code as a look-up table, which will not be directly related
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to the Hamming weigth of the operand. Until coming up to this output, the XOR
operation described in Section 5.2.1 is performed first, then the result of the S-box
input that is generated from the XOR result of the first key byte is used to get the
S-box output. Hence, the predicted model will be using this two operations in the
correlation calculations. Also, the simulation scripts and C codes will be extended to

include the value change activity of this portion of the executions in VCD files.

5.2.2.1 Results on standart AES

To perform the attack on the S-box output of the encryption, a total of 2000 executions
are performed on the processor, and the correlation analysis is performed with a model
overlapping with the initial XOR and S-box operations. The most significant byte of
the key is set to decimal 160 again, similiarly the previous attack. Figure 5.4 shows that
after 2000 plaintext trials, the correct key is predicted by the program. Furthermore, a

correlation profile by the number of plaintext graph is obtained in Figure 5.5.

This figure contains 256 different plots, each representing a different key value between
0 and 255. The plot associated with the correct key 160 is given in red, and it can be

seen that after around 200 plaintexts, the correct key value is clearly distinguishable.

0.3 T T —1X: 160 T
Y: 0.2634

0.25

0.2 .

015} .

0.1

Correlation Value

0.05

0 1 1
0 50 100 150 200 250 300

Key Value

Figure 5.4 : Initial SubByte attack result for 2000 plaintext trials.
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Figure 5.5 : Correlation profiles of possible key values for different number of
plaintexts.
This satisfies the expectations of using a higher complexity operation to lessen
patterns between domain-range match-ups and making the correct key correlation

distinguishable.

5.2.2.2 Results on byte-Masked AES

After succesfully obtaining the most significant key byte, same attack procedure is
applied on a masked AES implementation to demonstrate the side channel attack
protection provided by the masked realisation. As the masked algorithm, the
byte-masked implementation described in [46] is used in C language. As for the
testing arrangements, a setup similiar to the standart AES test is used. For the predicted
model, first XOR and first SubByte blocks of standart AES are used. Maximum 2000
plaintexts are given to the program and correlation values are plotted. Figure 5.6 shows
the correlation by key guess value, and it can observed that there are no uniquely
distinguishable peak or a pattern in the profile. Moreover, Figure 5.7 shows the key
guess correlation profiles by the number of plaintexts shows diminishing correlation
values for all key guess correlation plots. The correct key byte which is shown in red
is expressing a continious non-distinguishable profile for the entire figure, satisfying

the expectations.
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Figure 5.6 : Initial SubByte attack result for 2000 plaintext trials.

0.5 T

0.35 \ i
\ Correlation Profile of

03 R\ | Real Key E

Correlation Value

0 _ 3
100 200 300 400 500 600 700 800 900 1000

Number of Plaintexts

Figure 5.7 : Correlation profiles of possible key values for different number of
plaintexts.
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6. CONCLUSION

During the course of this work, a simpler simulation stage based side channel attack
resistance test was offered that is analogous to DPA, using just the simulation switching
activity of a digital design, and it is demonstrated on a softcore processor system. To
this end, at first, a RISC-V implementation named PULPino was introduced and its
software and working envorinment usage is explained. Then, post-implementation
simulation and power consumotion estimation flows are added to PULPino’s working
environment. On the way, hardships of adding and generalizing out of the frame
custom flows for a softcore processor’s standart work flow are observed. Afterwards,
power estimation methods are discussed and several of these approaches are tested on
our simulation based resistance test. It is observed that taking entire post-simulation
switching activity to consideration becomes unefficient. Next, the offered resistance
test methodology is explained with some examples. Then it is shown that even with
just keeping track of number of switchings in a system during behavioral simulation
was sufficient to succesfully obtaining the key or narrowing the guesses required to

crack.

In the end, way to work with an open source softcore processor system was
experienced, and steps to these are explained in a user manual like manner to be a
reference for further studies. These steps included tasks expanding from setting up the
processor to showing . Also the main hypothesis was showed on one of these softcore
processor systems, which is being able to successfuly guess the key values of an AES
alogrithm during simulation stage of the design; without even being need to undergo a
complete power estimation step. Codes to perform this resistance test are also does not
depend on any third party power estimation tool. Furthermore, since the simulation
environment is noise-free, it certainly indicates if a design is resistant to side channel
attacks or not, since performing this with real time measurements will include noise

and parasitics and will be harder to crack in actual implementation.
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Future work includes generation of a common implementation flow and a parametric
testbench environment standart for various open source processor employing systems.
This will lead to being able to test and compare various softcore processor
implementations on the same setting, while also reducing the adaptation and
specific realisation environment learning steps of the related work. Test models
for various peripherals or blocks can also be made for inter-compatibility, like a
generalized RAM block to replace black box IP’s used for FPGA implementation
stage. On the cryptography side, several blocksare though to be offered for efficient
side-channel attack and DPA protection, and comparisons for these blocks can be
made. Perfromance comparisons of cryptographic designs may also be made on
various open source processor systems. Finally, current open source instruction
set architectures can be extended to be efficient on cryptographic applciations, and
their realizations could be demonstrated either on FPGA or as an application-specific

integrated circuit.
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APPENDIX A.1
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# Compile PULPino Post-TIwmplementation Netlist
vlog pulpino impl.w

# Launch simulator for testbench "th", using simprims library
# and wok libraries, use ¢ compiler at fusr/bin/gec
vsim th -L simprims wver work.glbl -dpicpppath fusr/bin/gec

# Record signals under core region, including internals
add list -r {sim:/th/top_i/pulpino_ifcore_region_i/*}

# RBun simulation until break statement
run -all
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APPENDIX A.2
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MULTIPLE_FILE = 0; & Read from individual dump files

ONE_FILE = 1; % Read from one collective dump file

max_msg = 1; % Used in multiple file mode

start_row = &; % The row in lst files which timing information hegins
total msgs = H

%% Using multiple message files
if(MULTIPLE_FILE)

end

% FPath to folder containing list files
LIT_FOLDER = "C:\UsershadmiDrophoxiFiratimatlabhlsts';

%% Using just one file to read
if (ONE_FILE)

end

path = "C:\Users‘adm‘\Dropbox‘\Firatimatlab‘\1000msgs.lst";; %
max_msg = 1;

%% LIAT PARSING

Flfor msg_no = 1:1l:max msg

if(MULTIPLE FILE)
path = [ LET FOLDER "“list’ intZstr{msg no) ".1st"];:
end

f = fopen{path);

g = textscan{f, %=", delimiter”, "sn"});
felose{£);
for j= start row:l:size(g{l,1},1)
index = 1;
for k = 1:

if(~isequal(g{l,1}{j,1}(k)," "))
time_temp(J- (start _row-1) ,index) = g{l,13{J.13(k);

index = indext+l;
else
Af ({1, 1 {7, 1 {k+l) == "7}
deltalj-{start_row-1),1:2) = g{1,1H{3, 13 (k+2:k+3);
else

delta(i-(start row-1),1:2) = ['07 g{1,1}{3, 1} (k+3)1;
end
end
end
end

for i=l:l:size(time_temp, 1)
while (isempty( strinum{ time_temp(i,size{time_temp,Z}) )))
if{ isempty(strinum(time temp{i,end-1)} )}
time_temp(i,l:size(time_temp,Z)) =
[ 00" time temp(i,l:size{time_temp,Z)-2) 1;
end
if{ isempty(strinum(time_temp{i,end)) ))
time_temp(i,l:size(time_temp,Z)) =
[ "0 time temp(i,l:size(time_temp,Z)-1) 1:
end
end
end

[delta_ivrs,clocks]=...
hist({strinum{time temp) ,unigue(strZnum{time_temp))) ;
num_delta = str@num(delta);

time = strZnum{time_temp) + num delta;

data_start col=1;
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while(~1sequal{g{l, l}{start row,l}{data start =ol), =7))
data_start col=data start col+l;
end

HEEEEEE R R R R G B R R R R PR RRRE LR RRERRRRERREEEEREELEREELEEERLEESE

for

k = start_row:l:sizedg{l,1},1)-
Af(g{l,1}{k,1}{data_start col) ~= "27)
data_start col = data_start col+l; end
Af(g{l,1}{k+1,1}{data start col) == " ") ...
E=data_start col+l; else X=data_ start col; end
diffs(k-start_rowtl) =

sum{g{l,l}{k,l}{data_start col:iend) ~= g{l,1}{k+1,1}(X:end));

diffs = [0 diffs];
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APPENDIX A.3

L L

I e T e
M HE WM = O\

17

#Hinclude "common.h”
#Hinclude "gpio.h"™

#include <stdio. kb=

#define AES_MAXROUNDS 14

#dofinc AES_BLOCKEIZE 16

#define AES_IV_SIZE 16
St EYTE CRDER == EI& ENDIAN

# define n;ohl(x) - (;)

# drfine ntnha(x (il

# define htonl{x) (=)

# oduling
#elif _ BYTE_CRDER ==

Bilusio () [

LITTLE_ ENDIAN

# define ntohl{x) _ haswap 32 (x)

# define ntohs () bowap 1& ()

# define htonl{x) _ _haswap 32 (x)

# define htans=s(w) _ hawap_1A (¥)
Lffendd £

typedet struct aes key st
=
uintlé_t rounds;
uintle t key_ size;
uint3Z_+ ks [{AES_MAXDOUNDE+1) *¥2] ;
uint8_t iwv[AES_IV_ SIZE] ;
L} anmn_Cws;

typedef enum
i)
AES _MODE_ 128,
AER_MODE_256
L} AES®_MODE;

Hdefine rotl{x) (({x) << 24) | ((x=) == 81}
fidefine rotZ (x) ({{x) =< 181 | ({2} == 1&))
#define rot3ix) ({(x) << 2) | {{x) == 243}
#define mt 0x80808080
fddefine ml OxTETETETE
#define mh Oxfefefefe
#Hdefine mm Oxlkblblblh

#define mulz (=, t) (OEY=((x) Emb),
(OO0 +(a0) ) Grmby ™ (0 (E) - ((E) =27 ) ) Grea) ) )
#define inv_mix col(x, £2, £4, £8, £97 (%
(£2)=mulZz (x, £2), ™
(£4)—mulZ (2, €4, N
(£8)=mulZ (£4, £83), %
CESY=(a:) M (£B), N
CEOY=((E2) ~(E4) M (ED ), N
(ERY=(ED . N
(£4) " =(£5), %
(EE ) Trotd (El), N
(£8)~=rot2 (£4), %
(£8)“rotl (£9))

e
T * ARED O box

*
static const

-t

uintd_t aes_shox[
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&8
&9
70
71
TZ
T3
T4
Ta
T
T
Ta
=
20
21
2z
23
24
25
26
27
g2a
29
20
91
N
93
94
95
96
)
L]
99
100
101
102
103
104
1035
106
107
108
102
110
111
112
113
114
115
1168
117
118
112
120
121
122
123
124
125
1Za
127
1z8
125
120
131

0204 ,0xC7,0x23,0x03,0x18,0x96,0x05,0x54,
O0x07 ,0x12 ,0xB0,0xE:Z ,0xEE, 0x27 ,0xB2 ,0x75,
0x09,0x83,0x2C,0xle,0x1E,0xaE, 0x54, 0xal,
O0x5E ,0x36,0xDé,0xB3 ,0x29,0xE3 ,0x2F,0x84,
Ox33,0xD1,0x00,0=xED,0x20,0xFC,0xEl,0x3E,
Oxed , 0xCE,0xBE, 0x3%,0xda, 0x42,0x38 , 0xCF,
OxD0 ,0xEF,0xaa , 0xFE,0x43,0x4D,0x33,0x25,
045 ,0xF%,0x0Z ,0x7F,0x50,0x3C,0x9F, 0xal,
051 ,0xa3,0x40,0xBF,0x%92,0x%D,0x38,0=xF5,
O0xBC,0xE6,0xDA, 0x£21,0x10,0xFF,0xF23,0xDE,
O0xCD,0x0C,0x13,0xEC,0x5F,0x27 ,0xd4,0x17,
OzCd , 0xa7 ,0x7E, 0x3D,0x64 ,0x5D,0x12,0x73,
Oxal ,0x81,0x4F,0xDC,0xEE , 0xEA, 020,082,
Ox46,0xEE,0xES ,0x14,0xDE,lx5SE,0x0E,0xDE,
OxB0,0x32 ,0x3a, 0x04,0x49, 0x06,0x24 ,0x5C,
02, 0xD3 , 0xal, 0xé2 , 0x91,0x95 ,0xE4,0=x7 2,
O0xB7 ,0xC8 ,0x37 ,0x6D,0x8D,0xD5 ,0xdE, 0xaS,
Oxal,0xbe,0xFd ,0xEA, 0xeS , 0xVA,DxAE, 0xO2,
OxBA, 078 ,0xz5 ,0xZE, 0x1C, 0xad, 0xBd , 0xCE,
O0xES ,0xDD,0x74,0x1F,0xd4E,0xED,0xEE, 0xBA,
0270 ,0x3E,0xES ,0x66, 0xd48 ,0x03 ,0xF&,0x0E,
Oxel  0x35,0x57,0xE9,0x86,0x21,0x1D,0x9E,
O0xBEl,0xFE,0x%8,0x11,0xa?,0xD9,0xEE,0x94,
0x9E6,0x1E,0xE7 ,0xE?,0xCE,0x55,0x28 ,0=xDF,
Ox8C,0xal,0xB9,0x0D,0=xEF,0xE6,0x42 ,0x68,
Ox41,0x99,0xzD,0x0F,0xE0,0x54 ,0xEE,0x16,

-}:

static const unsigned char Reon[30]=

{
O0x01,0x02,0x04,0x08,0=x10,0xZ0,0x40,0=x80,
Oxlb,0x36,0xéc,0xd8 ,0xab,0xd4d,0x%a,0=x2 £,
OxSe,0xbe,0xé3 ,0xcd,0x97 ,0x35,0x6a,0xdd,
Dxh3,0x7d,0xfa,0xef,0xc5,0x%1,

S

wold AEZ encrypt_main{AE3 CTX *otx, const uintb_t
*mag, uintS t *out, int length)

=1

int 1i;

uint3Z_t tin[4], tout[4], iv[4];:

wint3zZ _+t msg 32 [4];

uwint3zZ _t out_3Z[4];

memcpys (msg_32, msy, AES BLOCESIZE, ) ;
msy += AES BLOCESIZE;

for (i = 0; 1 < 4; i++)
tin[i] = ntohl{msg 32[i]) ;

AES encrypt{ctx, tin);

for (i = 0; 1 < 4; i++)

= {

tout[i] = tin[i]:

out 32 [i] = htonl{tout[i]);

memcpyz (out, out 32, AES BLOCESIZE,[);
out += AES BLOCRBIZE;

64




13%
i3
124
A5
136
137
138
138
140
141
142
143
144
145
146
147
148
143
150
151
i15%
ils3
154
55
156
157
158
152
1a0
161
162
163
S1la4
165
lea
167
1&g
162
170
171
172
173
174
175
176
177
178
172
1=20
181
152

statiz wvoid AES_encr?pt(const ARD CTE *eotx,

=

uint3Z_t *data)

uint3Z_t tmp[4];

uint3Z t tmpl, old_al, a0, al, aZ, a3, row;

int curr_rnd;
int rounds = ctx->ro
const uint3Z_t *k =

/* Pre-round key add
set_gpio_pin value(

data[0] "= *{k++);
set_gpio_pin wvalue(

for (row = ;o orow <
data[row] "= *(k

/* Encrypt one hlock

undza;

ctx-Fks;

ition */

, 1y: // setting gpio_out[30] to enable

4/ core dumping in testhench

, 0y // resetting gpio_out[30] to pause

/f core dumping in testhench

; rowtt)
++) ;

Ay

f/for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
{
/* Perform Bytedub and fhiftRow operations together */
for {(row = 0; row < 4; rowt+)
{
al = {(uint3Z t)aes_ shox[{data[row%i]>>24)& 1:
al = (uint32_t)aes_sbox[(data[(row+ YEA]FF1IA)& 1:
az = (uintSZ_t)aes_sbox[(data[(row+ YEA]>FE)E 1:
a3 = (uint3Z_ t)aes_shox[{data[{row+3)%4])& 1:;
/* Perform MixColumn if not last round */
if {(curr rnd < {rounds - 1))
{
tmpl = a0 ™ al ™ aZ ™ a3;
old_al = ab;
al "= tmpl ™ AE3 xtime{al ™ al);
al 7= tmpl ™ AE® xtime(al ™ aZ):
a2 "= tmpl ™ AEY xtime{aZ " al);
ad "= tmpl ™ AE3_xtime(al ™ old_a0};
}
tmp[row] = ({al << Y | (al << Il (aZ << B) | a3):
}
for {row = [; row <{ 4; rowt+)
datalrow] = tmplrow] ~ *{k++);
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APPENDIX A4

1

z r diffs = [];:

2 r_times = []:

4 =0 ;

5 for k = :length{clocks)

& r_times = [ r_times clocks(k):1l:clocks(k)+ 1:
7 temp = zeros{l,31);

2 for j = rdelta ivrs(k)

2 temp{num_delta(x+j)+1) = diffa(x+i);
10 end

11 x = xtdelta ivrs(k);

1z r diffs = [ r diffs temp ]:

13 end

14 r diffs = transpose{r_diffs);

15 r_times = transpose(r_times):

1la

17 i=1;:k=1;

1a while (1)

12 masgs{k} = r diffs{i:k*length(r diffs)ftotal msgs);
20 i=(k*length(r_diffs)/total_msgs)+ H

21 if(i>length(r_diffs))

22 break;

23 end

24 k=k+1;

25 end

26

27

28 k=1;

29 Fwhile{1)

30 i=1:9=1;

31 =l while{l)

a2 = iffit+tei<length{msgs{k}d)

33 clks avg(k,j) = sum{msgs{k}{i:i+c1))fez;
24 = else

33 break;

36 end

37 J=5+1;

28 1=1+62;

a9 end

40 k=k+1;

41 if{k>size(msgs,2}))

42 break;

43 end

44 end

45 %fur i=l:sizefclks_avg,l)

45 avg{i,:) = Su.m(clks_avg(i,:))[size(clks_avg, ):
47 end

48

66




APPENDIX A.5

1 %% DETECT MESSAGE SEPERATION FOINTS && Average switching per clock cycle
b

3 i=1;3=0;i_init=i;

4 [Hwhile{i<size(r_times, 1))

5 1=1+1;

[ i dnit=i;

T B while(r times(i)-r_times{i-1)< && i<=size{r_times,1) )
g 1i=1i+1;

2 - if( iFsize({r_times,1l) )} break; end

10 end

11 j=i+1:

12 msgs{j} = r_times{i_init-l:i-1};

13 L if( ir=size(r_times,l) ) hreak; end

14 end

15

16 1=1;:k=1;

17 while({1)

18 msgs{k} = r_diffs{i:k*length{r diffs)ftotal msgs);
19 i=(k*length(r_ diffs)/total msgs)+1;

20 if(ixlength{r_diffs))

21 break;

zZz end

23 k=k+1;

24 end
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