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SOME WEAK CONVERGENCE ANALYSIS
RESULTS OF THE SEMI-IMPLICIT SPLIT-STEP METHODS
FOR THE NON-LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

SUMMARY

The stochastic differential equation is defined as a differential equation including a
stochastic or random process. The analytical solutions of the stochastic differential
equations usually are not obtained. Therefore, the studies on the numerical solutions
of the nonlinear stochastic differential equations have recently increased in the
literature. There are different methods such as Euler-Maruyama, Milstein, Tamed
Euler, truncated Euler, split-step backward Euler (SSBE), semi-implicit split-step
(SISS) methods. The semi-implicit split-step methods among these methods have
recently introduced to solve a class of nonlinear stochastic differential equations with
non or locally lipschitz drift term.

This thesis is intended for obtaining some theoretical and numerical results for the
weak convergence analysis of the SISS methods since there is no enough study for the
weak convergence analysis of the SISS methods according to our literature review yet.
We especially focus on the SISS1 and SISS3, among others, based on the stochastic
Ginzburg-Landau differential equation.

First, we obtain the first moment boundaries of the numerical solutions of the
stochastic Ginzburg-Landau differential equation with the SISS1 and SISS3 methods.
We also find the first moment boundaries of the actual solution of the equation.
Moreover, we observe that the lower and upper boundaries of the first moments for
the numerical solutions of the equation behave almost same as the actual solution of
the Ginzburg-Landau SDE by our repeated simulation results for the sufficiently small
step size.

Then, we exhibit the second moment boundaries of the numerical methods and the
actual solution of the stochastic Ginzburg-Landau differential equation. In addition,
we illustrate our results by performing simulations for the various model parameters
by the graphs. These figures also confirm that the boundaries act the behavior of the
solution for the equation.

Finally, we extend our moment boundaries estimates for the pth moments of the SISS1
and SISS3 methods. Furthermore, we obtain pth moment boundaries of the actual
solution of the Ginzburg-Landau SDE. Then, we obtain similar simulations results
above for the pth moment boundaries by the repeated simulations. Additionally, we
create a table with the different p values for the moment boundaries of the both actual
and numerical solutions of the equation. Thus, the comparisons between the theoretical
results and the numerical results for the SISS methods based on the Ginzburg-Landau
SDE show that the theoretical results are consistent with the numerical results for all p
according to our analysis results. Moreover, we discuss their empirical rates of weak
convergence and show that the weak convergence rate of the SISS1 and SISS3 methods
is almost 1 by the log-log graphs.
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LINEER OLMAYAN STOKASTIK DIFERANSIYEL DENKLEMLER ICIN
YARI-KAPALI BOLUNMUS-ADIM METOTLARININ BAZI
ZAYTF YAKINSAKLIK ANALIiZ SONUCLARI

OZET

Stokastik diferansiyel denklemler, bir diferansiyel denkleme genel olarak rassal
bir siirecin eklenmesiyle olusur. Matematik, fizik, finans, ekonomi, meteoroloji
gibi bir¢ok disiplinde kullanilmakta olan bu denklemler, finans piyasalari iizerine
caligmalar yapan Lous Bachelier (1900) ve Iskog botanikci Robert tarafindan goriilen
kolloidal parcaciklarin diizensiz hareketinin matematiksel modelini sunan Albert
Einstein’nin (1905) ¢alismalari ile literatiire girmistir.

Stokastik diferansiyel denklemler, adi diferansiyel denklemler gibi lineer ve lineer
olmayan denklemler olarak ikiye ayrilirken, son zamanlarda lineer olmayan stokastik
diferansiyel denklemler iizerine yapilan calismalar artis gostermektedir. Bu tez
calismasinda yapilacak olan analizlerde de lineer olmayan stokastik diferansiyel
denklemler ele alinmigtir.

Lineer olmayan stokastik diferansiyel denklemlerin gercek ¢oziimlerinin bulunmasi
genellikle olduk¢a zordur. Bu nedenle bu gibi denklemlerin yaklasik ¢oziimlerinin
bulunabilmesi i¢in sayisal yontemler gelistirilmistir. Bu sayisal yontemler literatiirde
acik (explicit), kapali (implicit), yari-kapali (semi-implicit) olmak {iizere ii¢ baglik
altinda toplanmaktadir.  Acik sayisal yoOntemler olarak adlandirilan metotlar,
stiriklenme katsayis1 global lipschitz veya lineer biiyiime sart1 6zelliklerini saglayan
stokastik diferansiyel denklemlerin yaklagik c¢oziimlerinin bulunmasinda oldukga
elverigli ve kullanisli metotlardir. Kapali metotlar diye adlandirilan metotlar her
ne kadar bu tarz denklemlerin sayisal coziimleri icin de kullanilabilir olsalar da
daha cok siiriiklenme katsayis1 lokal lipschitz olan veya lipschitz olmayan stokastik
diferansiyel denklemlerin yaklasik ¢oztimlerinin bulunmasi icin gelistirilmistir. Ciinkii
acik metotlarin bu gibi katsayil1 stokastik diferansiyel denklemlerin sayisal ¢6ziimiinde
olduk¢a yetersiz kaldig1 yapilan calismalarla ispatlanmistir.  Ote yandan, kapali
metotlar genel olarak agik metotlara gore daha karmagik yapiya sahiptirler. Bu
yiizden her ne kadar lineer olmayan stokastik diferansiyel denklemlerin ¢oziimleri
icin kullanigh metotlar olsalar da, metotlarin yapist geregi stokastik diferansiyel
denklemlerin sayisal coziimlerini elde etmek acik metotlara gore daha ¢ok zaman
harcanmasini gerektirmektedirler. Bu da kapali metotlar i¢in bir dezavantaj olarak
karsimiza ¢cikmaktadir.

Iste tam da bu noktada, siiriiklenme katsayis1 lokal lipschitz olan veya lipschitz
olmayan stokastik diferansiyel denklemlerin yaklasik ¢oOziimlerini elde etmede
acik metotlar kadar pratik, kapali metotlar kadar da dogru yaklasik sonuglarin
elde edilmesinde kullanilan yari-kapali metotlar karsimiza cikmaktadir. Bu tezde
yari-kapali metotlardan 2017 yilinda literatire B. Izgi ve C. Cetin tarafindan
kazandirilmis olan yari-kapali boliinmiis-adim (semi-implicit split-step) olarak isim-
lendirilen metot iizerine ¢aligilmustir. Ozellikle, lineer olmayan stokastik diferansiyel
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denklemlerden literatiirde olduk¢a fazla kullamm alam1 olan Ginzburg-Landau
stokastik diferansiyel denklemi kullanilarak yari-kapali boliinmiis-adim metotlarinin
zay1f yakinsaklik analizleri i¢in baz1 sonuglar iizerine odaklanilmisgtir.

Bu hedef dogrultusunda giris boliimiinde:
I1k olarak stokastik diferansiyel denklemlerin kisaca tarihsel siirecinden bahsedilmistir.

Bir sonraki adimda ise bir sivida yiizen veya asili parcaciklarin rastlantisal hareketi
olarak tanimlanan Brown hareketinin matematiksel tanim1 ve bazi ozellikleri kisaca
sunulmugtur.

Daha sonra, stokastik diferansiyel denklemin motivasyonu ve genel formu verilmistir.

Ardindan, literatiirdeki stokastik diferansiyel denklemlerin yaklasik ¢oziimiinii bulmak
tizere gelistirilen metotlardan; Euler-Maruyama, Milstein, Tamed Euler, kesilmis
Euler (Truncated Euler), boliinmiis geri adim Euler (SSBE) ve yari-kapal1 boliinmiis
adim (SISS) metotlar1 baz1 6zellikleri ile birlikte tanitilmistir. Bu metotlardan kisaca
bahsedecek olursak;

Euler-Maruyama ve Milstein metotlar acik sayisal yontemlerdendir. Euler Maruyama
yontemi ismini Leonhard Euler ve Gisiro Maruyama’dan almistir. Milstein yontemi
ise ilk olarak Grigori N. Milstein tarafindan 1974 yilinda tanmitilmistir. Bu sayisal
yontemler, siiriiklenme ve difiizyon katsayisi global lipschitz 6zelligini saglayan
stokastik diferansiyel denklemlerin sayisal ¢Oziimiinii bulmada kullanilan oldukc¢a
kullaniglt yontemlerdir. Aksi taktirde bu kosullar1 saglamayan stokastik diferansiyel
denklemlerinin yaklasik ¢oziimlerinin elde edilebilmesi icin kullanilabilecek uygun
yontemler arasinda yer almamaktadirlar.  Ayrica, Euler-Maruyama ve Milstein
metotlarinin zayif yakinsaklik oranlar sirasiyla 1 ve 2 olup, giiclii yakinsaklik oranlari
da sirasiyla 1/2 ve 1 dir.

Diger taraftan lokal lipschitz olan veya lipschitz olmayan siiriiklenme katsayisina sahip
stokastik diferansiyel denklemlerin yaklasik ¢oziimlerinin elde edilisinde kullanilan
metotlardan; Tamed Euler ve kesilmis Euler acik metotlari, béliinmiis geri adim Euler
kapali metodu, yari-kapali boliinmiis adim veya Milstein tipi yari-kapali boliinmiis
adim metotlar1 kullanilabilirler.

J.C. Mattingly, A.M. Stuart ve D.J. Higham tarafindan sunulan bdliinmiis geri
adim Euler yontemi; dogrusal olmayan monoton stokastik diferansiyel denklemlerin
ergodiklik ozelliklerini korur. Fakat, boliinmiis geri adim Euler yonteminde her
adimda/yinelemede bir denklemin coziilmesi gerekmektedir. Bu nedenle, 6zellikle
yiiksek boyutlu dogrusal olmayan skaler/vektorel denklemleri iceren problemlerde
hesaplama siiresi maliyetli olan bir metottur.

Tamed Euler ve kesilmis Euler yontemleri Euler yonteminin alternatif versiyonlarin-
dandir. Tamed Euler metotu M. Hutzenthaler, A. Jentzen ve P.E. Kloeden tarafindan
sunulurken, Mao ve arkadaglar1 ise kesilmis Euler yontemini tamitmislardir. Bu
yontemler, stokastik diferansiyel denklemin siiriiklenme terimine bazi yaklagimlar
uygulanarak elde edilmistir. Ayrica Tamed Euler ve kesilmis Euler metotlar1 yiiksek
boyutlu problemler icin de uygundur. Her iki metotunda zayif yakinsaklik ve giiclii
yakinsaklik oranlari sirasiyla 1 ve 1/2 dir.

2017 yilinda, B. Izgi ve C. Cetin tarafindan tanitilan doért adet yari-kapali boliinmiis
adim metodu (SISS1, SISS2, SISS3 ve SISS4) lineer ve lineer olmayan stokastik
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diferansiyel denklemlerin lokal lipschitz olan veya lipschitz olmayan siiriiklenme
terimine bazi yaklagimlar uygulanarak elde edilmistir.

Boliinmiis geri adim Euler metodunun aksine, yari-kapali boliinmiis adim metodu her
adimda/yinelemede herhangi bir denklem c¢oziilmesini gerektirmemektedir. Bu da
zaman maliyeti acisindan kazan¢ saglamaktadir. Ayrica yari-kapali boliinmiis adim
yontemi, yiiksek boyutlu problemlere de kolaylikla uygulanabilmektedir. Bu tarz
problemlerin ¢oziimlerinin elde edilmesinde hesaplama siiresi acisindan da ciddi bir
avantaj saglamaktadir.

Metotlarin tanitilmasinin ardindan, bu ¢alismada siiriiklenme katsayis1 lokal lipschitz
sartin1 saglayan stokastik Ginzburg-Landau diferansiyel denkleminin genel formunun
ve acik ¢Oziimiiniin tanmitimini gerceklestirdik.

Ardindan girig boliimiiniin son kisminda, yari-kapal1 boliinmiis adim (SISS1, SISS2,
SISS3 ve SISS4) yontemlerinin stokastik Ginzburg-Landau diferansiyel denklemine
uygulaniglart sunulmustur.

Ikinci boliimde ise:

Ik olarak Ginzburg-Landau stokastik diferansiyel denklemi ele almarak SISS1 ve
SISS3 metotlarinin uygun kosullar altinda birinci momentlerinin alt ve iist sinirlari i¢in
teoremler sunulmus olup, gerekli ispatlar yapilmistir. Benzer sekilde Ginzburg-Landau
stokastik diferansiyel denkleminin ¢6ziimiiniin birinci momentlerinin de alt ve iist
siirlart ile ilgili teorem sunulup, ispatlanmigti. MATLAB yardimiyla sunmusg
oldugumuz teorik sonuglarin ilgili siimiilasyonlar1 yapilarak, elde ettigimiz sonuclar
ayrintilar1 ile sunulmustur. Ayrica birinci momentler i¢in elde edilmis olan log-log
grafigi ile metotlarin zayif yakinsaklik oraninin beklendigi gibi 1 oldugu niimerik
olarak gosterilmistir.

Ikinci olarak SISS1 ve SISS3 metotlar: ile Ginzburg-Landau stokastik diferansiyel
denkleminin ve bu denklemin gergcek ¢oziimiiniin yine bazi kogullar altinda ikinci
momentlerinin alt ve iist sinirlariyla ilgili teoremler sunulmustur. Bir onceki adimda
yaptigimiz islemlere benzer olarak, bulunan teorik sonuclar ile elde edilen simiilasyon
sonuclarindan yararlanilarak bazi grafikler olusturulmustur. Ayrica ikinci momentler
icin elde edilmis olan log-log grafigiyle, SISS yontemlerinin zayif yakinsaklik oraninin
yine beklenildigi gibi 1 oldugu gosterilmistir.

Son olarak, SISS1 ve SISS3 metotlan ile stokastik Ginzburg-Landau diferansiyel
denkleminin birinci ve ikinci momentlerinin alt ve iist sinirlarindan yararlanilarak;
bu metotlarin yiiksek momentleri icin alt ve iist sinirlar sunulmus ve bdylece
yaklagimlarimiz genellestirilmistir. Diger adimlarda oldugu gibi Ginzburg-Landau
diferansiyel denkleminin gercek c¢oziimiiniin sinirlar i¢in de bu genellestirme islemi
gerceklestirilmistir.  Ardindan, metotlarin ve denklemin gercek ¢oziimiiniin 6rnek
olarak ele alinan dokuzuncu momenti i¢in simiilasyonlar yapilmis ve bazi grafikler
olusturulmus olup, zayif yakinsaklik oraninin neredeyse 1 oldugu sonucuna tekrardan
ulagilmigtir.  Ayrica elde edilen teorik sonuclarin farklt momentleri icin analizler
yapilmig ve bu analiz sonuclari tablo yardimiyla sunulmustur.

Sonug olarak, teorik gosterimi bagka bir calismada ele alinmak iizere daha sonraya
birakilan yari-kapali geri-adim yonteminin zayif yakinsaklik oraninin 1 oldugunun
gosterilmesinde, bu tezin bir ¢iktis1 olarak bulunan sonuglarin 6nemli bir rol
oynayacag1 ongoriilmektedir.
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1. INTRODUCTION

The history of stochastic differential equations started with Louis Bachelier (1900)
who worked on financial markets for the modeling of price fluctuations and Albert
Einstein (1905), giving a mathematical model which is called Brownian motion for the

irregular movement of colloidal particles seen by Scottish botanist Robert.
Brownian Motion

Brownian motion; a mathematical model used to describe the random motion of
floating or suspended particles in a liquid. This model is also called the Wiener process.
The limit of the discrete version of the Wiener process which is denoted W(t) first

emerged as follows:
W (tier) = W (1) +2(t) VAL, W(0)=0 (1.1)

where z(#;) is the standard normal distribution independent of each other. Thus,

expected value and variance of W (#; 1) — W (#) are zero and At, respectively.

Definition 1.0.1 [1] Let (Q,F,P) be a probability space with filtration {F;} . A
(standard) one-dimensional Brownian motion is a real-valued continuous F; adapted

process {W;},~ with the following properties:

o For 0 < s <t, the increment Wy — Wy is normally distributed with mean zero and

variancet —s ;

o For 0 <s <t, the increment W; — W; is independent of Fj.

The stochastic differential equation is defined as a differential equation including a
stochastic or random process which consists of random variables indexed by some
mathematical variables that are generally time. Also, the stochastic process (for more

details see [2]) is usually denoted by X or X (¢).



The general form of stochastic differential equations (in short, SDEs) is
dX(t) =a(X(t))dt+o(X(t))dW (¢) with X (0) = Xp (1.2)

where a and o are called respectively drift and diffusion term, W is a standart Brownian
motion and also X is a stochastic process and satisfies Markov properties [3]. Here,
the Markov process (see [4]) says that the future situation depends on only the present

situation and also in the present case, it is independent of its past situations.

These are examined as linear and nonlinear stochastic differential equations. It is
usually hard to find the actual solution of SDEs. Thus, numerical methods have been
developed to find an approximated solution of the SDEs. The numerical methods can

be classified under three headings as explicit, implicit and semi-implicit methods.

We briefly introduce the application of these methods for equation (1.2) in this section

as following:

Euler-Maruyama Method: The explicit Euler-Maruyama method (see [5, 6]) is
X1 = Xk+a(Xk)A+ G(Xk>AWk with X(O) =Xp (1.3)

where A = At = T /n and AW, = Wia, — Wy_1)a; for each k = 1,2,..n. If the
coefficients a, o of equation (1.2) satisfy global lipschitz or linear growth condition,
then this method converges to the solution of the SDEs. Otherwise, it is not suitable to
find the approximated solution of this equation by this method. The weak convergence
rate of the Euler-Maruyama method equals 1 while the strong convergence rate of this

method is 1/2.

Milstein Method: The Milstein (see [7]) is an explicit method and its application to

equation (1.2) is
1
Xpr1 = Xk-i—a(Xk)A-i—G(Xk)AWk-l-EG(Xk)GX(Xk)((AWk)Z—A) (1.4)

where A = At = T'/n and AW, = Wiy, — Wi—1)ar for each k = 1,2,...n. As like as
the Euler Maruyama method, if the drift and diffusion term of the given stochastic
differential equation provide the global lipschitz property or linear growth condition,
it can be used to find the approximated solution of the equations. Otherwise, this
method is not convenient to find approximated solution of the equations. The weak

convergence rate of Milstein method equals 2 and the strong convergence rate of this

2



method is 1. On the other hand, the Milstein method will be identical to the Euler

Maruyama method when the diffusion term of the (1.2) does not depend on X.

In addition to these, the scientific studies in the literature on the solution of the
stochastic differential equations with the non or locally lipschitz coefficients have
recently increased (see [8]). For example; Tamed Euler, truncated Euler, split-step
backward Euler, Milstein type of semi-implicit split-step and semi-implicit split-step

methods are used to find the approximate solution of these SDEs.

Tamed Euler Method: Hutzenthaler et al. introduced Tamed Euler method (see [9])
which is modified version of Euler-Maruyama method to the nonlinear SDEs with non

or locally lipschitz coefficients. This method is as follows
Xkt1 :Xk—l—Ad(Xk) + G(Xk)AWn (1.5)

where a(X;) = %

and A =T /n, AW, = Win — Wii_1)a, foreach k =1,2,..n.
Thereafter, they also developed alternative versions of Tamed Euler method in [10] and
obtained the results for the convergence and stability of the methods. The strong and

weak convergence rates of Tamed Euler method are 1/2 and 1, respectively.
After that, Mao presented truncated Euler Method as follows:

Truncated Euler Method: Truncated Euler method (see [11]) is improved to
obtaining the numerical solution of the stochastic differential equation whose
coefficients satisfy locally lipschitz but without linear growth condition. The existence
of the global solution of the equation is guaranteed by Khasminskii-type condition,
which is 2X7a(X) + |6 (X)]* < K(1 + |X|*) for K > 0, on the drift and diffusion
terms. The following steps are used to define the truncated Euler method. First,
Mao chooses any strictly increasing continuous function p : RT™ — R™ which satisfies
p(r) — oo as r — o and supx|<,(la(X)| V|o(X)[) < p(r) for all r > 0. After
that, he also chooses any strictly decreasing function 4 : (0,1] — (0,00) such that

limy_,ei(A) = 00 and A'/*h(A) < 1 for all A € (0, 1].

Then, the discrete-time truncated Euler Maruyama method is defined with ap(x) =

a <(|x| A pfl(h(A)))ﬁ) and ox(x) = & <(|x| Ap! (h(A)))|;—|) as follows:

Xip1 = Xi +an(Xk) + o (X)) AWy (1.6)



for all k=0,1,...,n and A = T /n where AW, = Wiar — Wii_1)ar-
Moreover, the continuous-time truncated Euler Maruyama has two forms. The first

form of these method is

Xy = ZXkI[lkaH)(t) witht >0 (1.7)
k=0

and the second form of these method is
t t
5t =0+ [ as((s))ds+ [ oa(i(s)) W (s). (1.8)
0 0

with 7 > 0. Here xa(fx) = Xa(tx) = Xa(fx) = Xi. The strong convergence rate of

truncated Euler is proved by Mao in [12] that it equals 1/2.

Split-Step Backward Euler Method: Mattingly et al. presented split-step backward
Euler (in short, SSBE [13]) method which is one of the alternative Euler methods. The
SSBE method is defined by

X; = Xi + Aa(X}) (1.9)

Xir1 = X+ 0(X{) AW, (1.10)

fork=1,....n, A=T/nand AWy = Wip, — Wk—1)a- They proved strong convergence
results under less restrictive conditions for the coefficients of the nonlinear SDEs.
Furthermore, Bastani and Tahmasebi proved some results for the strong convergence

analysis of SSBE method for the nonlinear SDEs with non-smooth drift term [14].

On the other hand, Schurtz achieved some results on implicit and partial implicit
methods for nonlinear stochastic differential equations in [15]. Moreover, Szpruch
and Mao studied and presented the convergence of some implicit numerical methods

for nonlinear SDEs in [16].

Another method is semi-implicit split-step methods as follows:

1.1 Semi-Implicit Split-Step Methods

First, in [17], Izgi and Cetin presented semi-implicit split-step (in short, SISS) methods
for the nonlinear SDEs with non or locally lipschitz drift term and then they improved
SISS methods for the high dimensional cases in 2018 (see [3]). They generated

the SISS methods by using some approximations for the drift term of the nonlinear

4



stochastic differential equations. The general form of SISS method for the equation
(1.2)1s
X{ = X +X h(Xp)A (1.11)
Xer1 = X; +0(Xp) AWey (1.12)
where a(X;) = X h(Xi), A= T /n, and AW = Wia, — Wig_p)p, forallk=1,....,n.
The first and second SISS methods (for more details see [3]) are follows.

The first SISS method (SISS1): While f2(x) = SISS1 methods is

X
T—An(Xp)

X1 = fA(X0) + (X)) AWiy 1, (1.13)

The second SISS method (SISS2): While f*(x) =
SISS2 methods is

and 04 (x) = o (f4(x)),

X
1—AL(Xy)

X1 = 2 (Xk) + 0% (X ) AWy 1. (1.14)

forallk=1,....,n A=T /n, and AW, = Wi, — Wi 1)ar-

On the other hand, it is known that the SSBE method [13] is costly since the first step
of SSBE is needed to be solved in each iteration. In addition to this, the computational
cost of this method will be increased in the high dimensional cases. Because of this
approximation, we do not need to solve any equations at each step. Furthermore, the
SISS methods will offer a great advantage when working at high dimensions [3] with
respect to the SSBE method and it decreased the computational cost. You can see more
information about the SISS methods and their details in the articles of Izgi and Cetin
in [3, 17]. Thereafter, Milstein type versions of the SISS methods are also introduced
by them in [18]. Furthermore, some results of the strong convergence analysis for the

MSISS and SISS methods are presented by Izgi and Cetin in [19, 20].

In this thesis, the weak convergence analysis of the SISS method will be carried
out by focusing on the stochastic Ginzburg-Landau differential equation. So, brief

information about the equation will be given below.

1.2 Ginzburg-Landau Stochastic Differential Equation
In [5], general form of SDE with polynomial drift term of degree n is

dX(t) = (aX"(t) +bX(t))dt +cX (t)dWt with X(0) =X (1.15)
5



where X (¢) is stochastic process, W is a standard Brownian motion, a,b, and c are

constant.
The explicit solution of this equation (1.15) satisfies the following process:
1 1/(1=n)
X(0)=F(1) Xol_n+a(1—”)/F1_"(S)ds (1.16)
0
with F~1(¢) = (b= )i+cW,

For n=2, the equation which is represented in (1.15) is called the stochastic Verhults

equation (see [5])

Moreover, for n=3, the equation in (1.16) is called as stochastic Ginzburg-Landau

differential equation which is
dX (t) = (AX (1) — 8X>(1))dt + X (1)dW (1), 0 <t <T, (1.17)

The explicit and unique solution of the equation (1.17) satisfies the following process
t

X (1) :F_](t){x62+25/F_z(s)ds}_]/z (1.18)
0

1 <2

where F (1) = {20 ~A)1=0W () with F(0) = 1.

1.3 SISS Methods with Ginzburg-Landau SDE

This section provides partial information on obtaining SISS methods for stochastic

differential equation in (1.17). The split-step method for this scalar SDE reduces to
y=x+A(Ay—8y°). (1.19)

Then, Izgi and Cetin use the approximation of a(y) = Ay — 8y by the hy(x,y) =
Ay — 8yx? or hy(x,y) = Ax — 8yx?, in [3, 17]. First, we use h(x,y) function for an

approximation to the drift term and solve y = x + &1 (x,y)A equation for y. Then, we

obtain
A . X
ffx) = [T AGE_A) (1.20)
If we define a®(x) as following
A _ a(x)
a(x) = A2 (1.21)



then we may redefine f2(x) as x + Aa®(x).

Similar to this approach, when we use 4, (x,y) function, then we have

A (1+AA)x
87 (x) 1A (1.22)
and
A _ a(x)
a(x) = T ASK (1.23)

where g*(x) = x + Ad®(x).
The types of SISS methods for equation (1.17) are presented in [3,17] as follows:

The first SISS method (SISS1): While f*(x) = {5374 and 6(X) = 0X, defined
as follows
Xir1 = f2(Xk) + 0(Xe) AW 1, (1.24)

The second SISS method (SISS2): While f2(x) the same as in (1.24) and 62 (x) =
o(f2(x)) = o f2(x), then

X1 = f2(Xk) + 02 (X ) AW . (1.25)

The third SISS method (SISS3):While g*(x) = {424 and o/(X) = oX SISS3 is
defined as follows

Xii1 = g(Xy) + 6(Xp) AWy 1. (1.26)

The fourth SISS method (SISS4): While g*(x) the same as in (1.26) and ¢ (x) =
o(g%(x)) = og”(x) then SISS4 is

X1 = gA(Xk) + GA(Xk>AWk+1. (1.27)

where A=At =T /nand AW | = Wikt 1)ar — Weear foreachk =0,1,2,...n.
Moreover, if the diffusion term of SDE is independent from X, then the first and second

(likewise the third and fourth) SISS methods are coincide.

According to our literature review, there is no much study for the weak convergence
analysis of the SISS methods yet. Therefore, in this thesis, we work on the some
results of the weak convergence analysis for SISS1 and SISS3 methods, among others,
depending on stochastic Ginzburg-Landau differential equation. First of all, we find

the first moment boundaries for the SISS1 and SISS3 methods and also obtain the first

7



moment of the actual solution of the stochastic Ginzburg-Landau differential equation
in [21]. Afterthat, we also present the second moment boundaries of the numerical
methods and actual solution of the stochastic Ginzburg-Landau differential equation
in [22]. Lastly, we extend our results for the pth moments for the methods and actual

solution of the equation.



2. SOME MOMENT BOUNDARIES

In this section, we work on obtaining some moment boundaries for the SISS methods
based on Ginzburg-Landau stochastic differential equation. In particular, we deal
with the some moment boundaries for the SISS1 and SISS3 methods. In addition
to these, it is possible to extend our approaches in this thesis for the second and
fourth SISS methods, as well. Moreover, we work on moment estimates for the actual
solution of the stochastic Ginzburg-Landau differential equation. Either weak or strong
convergence analysis of the SISS methods, all moments of the iterations should be
exist. Therefore, we start with obtaining the boundaries of the first moments for both
iterations and actual solutions of stochastic Ginzburg-Landau differential equation.
Then, we present similiar work for the second moment boundaries of them. Finally,

we extend our approaches for the boundaries of the pth moments.

2.1 The First Moment Boundaries for the Numerical and Actual Solutions

As the first study in this thesis, we obtain the first moment boundaries of the SISS1 and
SISS3 methods depending on the stochastic Ginzburg-Landau differential equation and

its explicit solution.

Theorem 2.1.1 The iterations X; using the first SISS method (1.24) to solve the
equation (1.17) (see [21] ) satisfy the following:

(i) The upper bound for the first moment of the iterations while 6 > 0,A € R is

Xo

E[X;] < T—AAY

2.1

forall k=0,1,2,....n and sufficiently small 0 < A< T.

(ii) There is sufficiently small Ag > 0 such that Xo < y/ 142 IEAAO -(1—=AAy)" while

Ay
1 —AAgy > 0 then the lower bound for the first moment of the iterations

—2k
1 OA

holds for all k =0,1,2,....n and 0 < A < Ag while 6 > 0,A € R.
9



Proof 2.1.2 (i) If we take the expectation of the iterations for the first SISS method
X = f2(Xk—1) + 0Xx—1 AWy then we have E [X;] = E [ f*(Xk—1)] by using the basic
stochastic calculus rules. Then, we have the following results after some iterations for

fAx) = m which is given in (1.24) for equation (1.17).

Xi—1 E[X; 1]
EX,| = <
i 1—(A—G8X2 )A| ~ 1-AA
Xo
<
EX] = =43
E[Xl] Xo
EIX| <
Xl = TR S (1—AA)2
Xo
EX| <
X = (1—AA)
(ii) If we use similar approaches in (i), then we have
Xi—1
E[X]=E | (X - E
X
— E{ k 12] 2.3)
u—+mX;

where u=1—AA and m = SA.

then

Now, let’s define g(x) as uﬁnﬂ’

1 X m
glx) = ;(l—l—m 2) letN—

> ((1+\/_ whllex<\/ —1—2\/7

Thus, we have g(x) > h(x) where h(x) = % (W) . By the condition on Xy and the

result in (i) above it is clear that the monotonicity E[g(X;_1)] > E[h(Xk_1)] holds for
all k € ZF. Now if we use this fact in (2.3), then we have the following after some

iterations:

w0 2 () e

> %(m)ﬂxk—z]
3 () o () (i) om



Theorem 2.1.3 The iterations X using the third SISS method (1.26) to solve the
equation (1.17) (see [21] ) satisfy the following:

(i) The upper bound for the first moment of the iterations while 6 > 0,A € R is

E[Xk] < w

2.4
~1t6ax2”’ 2:4)

forall k=0,1,2,....n and sufficiently small 0 < A< T.

(ii) For sufficiently small Ag > 0, if Xo < , |14+ —2= - (1 —AAy) " then the lower

NN

bound for the first moment of the iterations

(1+AA)
EX] > ———X 2.5
[k]z(\/g_A+1)2k0 (2.5)

holds for all k =0,1,2,....n and 0 < A < Ay while 6 >0, A € R.

Proof 2.1.4 (i) The proof can be done by using the similar steps that are used in the

proof of Theorem 2.1.1 for the third SISS method X; = g™ (Xy_1) + 6 Xi_1 AW, while

A _ (I4+AA)x _all A — (1+AA) X
X) = . Then we have E|X;| = E X 1) =E . After some
8 ( ) 1+ASx2 [ k] [g ( k 1)] {1 ASX? | ] fi

iterations, we have

Xo(1+AA
E[Xl] - 0( 2)'

1+ 8AX]

Xo
E[X)] < (1+AAE[X|]=(1+AA)?—
[X2] < (1+AANE[X ] = (1+ )1+6AX§
Xo

EIX,] < (1+AAF—22
X < (14 )1+6AX5

(ii) It is clear that we have the following for SISS3 method

X1
E[X] = E[AX, }:E — Tl L (14AA
[X] 8" (Xi-1) 1+ 5AX2 | ( )
Xi—1
= ——— | (1+AA). 2.6
T mx (1+44) (2.6)
where m = SA.
In this step, if we define h(x) as oz then
X
h —
(x) (Vmx+ 12— 2 /mx
X 2
= N ESIE g(x) while x < +\/5_A

11



Use the monotonicity of h(x) > g(x) in (2.6) and iterate it, then we obtain

EXy] > (1 +AA)%

(1+AA)

2 (g 1)
(1+AA)*

e X ()

(VEA+1)%

Corollary 2.1.4.1 In [21], the terminal value, X,, satisfies E[X,] < XoeAT while using
the SISS1 and SISS3 methods to solve the equation (1.17) when 6 > 0,A € R and
sufficiently small 0 < A< T.

Theorem 2.1.5 The actual solution of equation (1.17) is given in equation (1.18) has

the following upper and lower boundaries:

E[X(1)] < Xoe (2.7)
Xoe(A—%()'2)t

- 286X2(e2A+02)
\/1 L2803 )

2A+02

(2.8)

while the model parameters § > 0, A € R with X (0) = X.

Proof 2.1.6 If we take the expected value of the actual solution where F(t) =

1o2-A)—oW(t)

e then we have the following for the upper bound of the actual solution:

EX(1) = E[F '(0){x;2+28 / F2(s)ds} /7]
0

IN

E[F~Y(1)]Xo, by the expectation of the geometric Brownian motions,

< Xope

Similarly, we start with

then, by Jensen’s inequality, we obtain

Xoe(Af%Gz)t

EX()] > t :
e‘GW(f)\/l +23X§fF_2(s)ds‘
0

E

12



Now, if we use Cauchy-Schwarz inequality with Fubini’s theorem then we have

(A—Lo?)
EX(1)] > Xoeo -

\/ezk;zt{l +26X3 ftE[e(ZA_"Z)S”"W(S)]ds}
0

X (A—%Gz)t
— 0¢ m

2
\/1 n 25Xg(e(2A+U )t_l)

2A+02

after some calculations.

Corollary 2.1.6.1 The expected value of the actual solution of equation (1.17) at the
terminal time E[X (T)] is bounded above by Xoe’"

2.2 The Second Moment Boundaries for the Numerical and Actual Solutions

In this section, we state and prove some theorems (see [22]) for the second moment
boundaries of the numerical and actual solutions of Ginzburg-Landau stochastic

differential equation.

Theorem 2.2.1 The iterations X using the first SISS methods (1.24) to solve the
equation (1.17) satisfy the following:

(i)The upper bound for the second moment of the iterations is

E[X} < ( + 62A> ‘x2. (2.9)

1 —2AA
forallk=0,1,2,....n and sufficiently small 0 < A < T where § > 0,A € R.

(ii) The lower bound for the second moment of the iterations, while Ay > 0 is sufficiently

—n
small such that Xy < \/(1 +2 1320&)) (1721AA0 + 62A0> when 62A¢ > Wl(rl’ is

1 SA \ —dk
E[X,S]zm@ﬂ/m) x2 (2.10)

forallk=0,1,2,.....nand 0 < A < Ag while 6 > 0,A € R

Proof 2.2.2 (i) We start with the calculate square of the expression in (1.24), and later

on evaluate the conditional expectation of the result. We have

2
Xi_1 2Xy 10X 1AW 292 A2
X2 — + + 0 X, (AW,

k <1+A(6X,3_1—A)> 1+A(8X2 | —A) k1T Tk

13



2
Xi—1 242
E,_([X? = +0%X2 A
k 1[ k] <1+A(6Xk2_l—A)) k—1
X7
14+2A(6X7 | —A)

+ Gszz_lA, since A is sufficiently small

< 2A | x2

Now, we take the expected values of both sides of the above inequality and use basic

probability rules.

Ve GZA) E[X? |]

E[E (X)) = E[X?] < (

k
< A ) X?

(ii) If we use the same approaches as (i) to prove this for the sufficiently small A > 0,

then we obtain

2
Xi—1 2Xy 10X 1AW, 2¢2 A2
X2 — + + o0 X, AW,

k (1+A(5X,3_1—A)) 1+A(8X2  —A) 17N

1
E._(X* = Xx? +o2A
k 1[ k] k—1 ((1—AA+A6X]<2_])2

% 2
> k—1
— \1-AA+AS8X}

Then, we take the expected value of both sides of the above inequality.

2
ENY) = E ( - )

1 —AA+ASX

Now, let u=1—AA and m = A and define h(x) = = . Then, we have h(x) >

% <m) = g(x) while x < 142,/ % and N = m/u as in [22]. According to

the result in (i) and the condition on Xy above it appears that E[h(X;_1)] > E[g(Xx—1)]

monotonicity is valid for all k > 1. Therefore, we have

() |-

EX}] > E

14



After some iterations, we reach the result as following
1 EX} )
EXY > 5kl
u* (VN +1)
1 XZ =
u2k (\/]T/ + 1)4k

Theorem 2.2.3 The iterations X using the third SISS methods (1.26) to solve the

v

equation (1.17) satisfy the following:

(i)The upper bound for the second moment of the iterations is
E[X?) < X2 ((1+A4)* + 62A)" @.11)

forallk=1,2,...,n and small enough 0 < A < T where § > 0,A € R.

(ii) For sufficiently small Ay > 0, if Xy < <1 + ) ((14+AAg)2 + 02A¢) " then

2
v/ 0Ag
lower bound for the second moment of the iterations is

2 2k
E[sz] > M (2.12)

(VOA+1)%
forallk=1,2,,....nand 0 < A < Ay while 6 >0, A€ R

Proof 2.2.4 (i) We prove it by using the similar steps in the proof of Theorem (2.2.1) for

1+AA
the third SISS method X;, = g*(X;_1) + 6Xy_ 1AW, for g(x) = (l—l_—'—TS); Namely,
X
X;—1(1+AA)
= —————— 4+ 0X;_ 1AW,
1rasx2, oA

Now we get the square of this equation,

2 Xk2—1(1 +AA)2 Xk,1(1 —|—AA)GXk,1AWk

2y 2 2
= +0° X AW,
CT (14 A8XE )2 1+AS8X2 k12 T

After that taking expected value of both sides of this equation, we obtain the following

inequalities.

X2 (1+AA)?
E[E X =EX;) = E m-i-asz{lA
i1

EX? ] ((1+4AA4)* +02A)

IN

15



This inequality holds for all k > 1 and sufficiently small A > 0. After some iterations,

we have

EX7] < E[XZ]((1+44)*+0°A)

k
< X5 ((1+4A4)*+0%A)".
(ii) If we use same approaches in (i) above, then we have

1+AA)?
Ek—l[sz] = sz—l (% +62A) since 6> >0
k—1

2 (1+AA)?
L+ A8x2 )2

2
Xi—1 2
= —_ 14+AA)~.
<1+A6Xk2_1> ( )

Take an expectation of both sides of the inequality above, we have

v

EX7] = E[Ec1[X]

2
Xi—1 )

> F _— 1+AA

- <1+A6szl> (1+a4)

In this step, if we define h(x) a while m = 6A then h(x) > —=—— = g(x)

X
(vVm+1)

2
or x < 4|1+ ——. Use the monotonicity of h(x) > g(x) same as proof of Theorem
fi \/ 752 ty of h(x) > g(x) proof of

2.1.1 and iterate it, then we obtain

X
§ 1+mx?2

2 (EX1])? s (E[Xe-1))? 2

E[X[] W(HAA) ——<m+1)4(1+AA)
X3 (1+AA)%
(VEA+1)%

Corollary 2.2.4.1 The terminal value, X,, satisfies E[X?] < Xge(2A+G2)T while using
the SISS1 and SISS3 methods to solve the equation (1.17) when 6 > 0,A € R and
sufficiently small 0 < A <T.
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Theorem 2.2.5 The actual solution of equation (1.17) is given in equation (1.18) has

the following upper and lower boundaries:

E[X2(1)] < XZ2e2AT0) (2.13)

Xge(ZA—SGZ)t

E[X*(1)] > (2.14)

46(8(2A+62)t ~1) ) 452t(e(4A+60'2)t _ 1)X4
(2A+0?%) 0 (4A+602) 0

,respectively, while § > 0, A € R with X(0) = Xy

1+

Proof 2.2.6 The actual solution of the stochastic Ginzburg-Landau equation is
X(0)=F~(t) (X2 +28 [LF2(s)ds)~"/* where F(t) = 3 ~A1=0W (1) igh F (0) =

1. We take the square of this actual solution, then we have

X(1)2=F (1) <X0_2+26 /O tF_z(s)ds)_]

Now, if we get expected value of both sides of the above equation, then we obtain the

follows

E[X*(t)] = E

F2(1) (X0_2+25/O[ \F(s)—z\ds)_ll

EXGIE[F (1))

IN

< Xg €(2A+62)t

by the basic stochastic calculus tools. In a similar way, we start with

EX2()] = E FZ() ]

i (Xy2+28 [ F2(s)ds)
one(zA—cz)t
e=20W () (1+28X3 [ F~2(s)ds)

= FE

then, we use Jensen’s inequality and apply Cauchy-Schwarz inequality, then obtain

x2p(24-0%)1
EX*0) > v asw T
E[e 20W()(1+28X3 [y F~2(s)ds)]

Xge(ZA—Gz)t

VEle oV OLE[(1+26X2 [§ F~2(s)ds)’]

v
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Now, if we use Holder inequality then use Fubini’s theroem, then we have

X02€(2A—562)t

E[X?(t)] > m

45X02(e(2A+02)t —1) 452X(4)1t(e(4A+662)t —1)
2A + 62 4A + 602

after some calculations.

Corollary 2.2.6.1 The expected value of the actual solution of equation (1.17) at the

terminal time E[X?(T)) is bounded above by Xge(z‘”"z)T.

18



2.3 The pth Moment Boundaries for the Numerical and Actual Solutions

In this section, we extent the theoretical results, which is obtained in Section 2.1 and
Section 2.2, pth moments for the SISS methods depend on stochastic Ginzburg-Landau
equation and its explicit solution. We start with introducing the following lemma to

use in our proofs.

Lemma 2.3.1 If E[X?] < MP satisfies integer p > 1 then E[X?*P] < M?P holds for all

p where X is stochastic process and M is constant.

Theorem 2.3.2 The iterations Xj using the first SISS methods to solve the stochastic
Ginzburg-Landau differential equation satisfy the following:

(i)The upper bound for the pth moment of the iterations is

Pk
+0%) T Xf, pez* (2.15)

1
EXP] < (
X1 < 1 —2AA

forall k =0,1,2,...,n and sufficiently small 0 < A < T where 6 > 0,A € R

(it) The lower bound for the pth moment of the iterations while Ag > 0 is sufficiently

n
small such that Xy < \/<1 +2 17AA0> (1721AA0 + 02A0> when G2Ag > —zAAlo,p is

5ho

1 OA \ —2pk
p p +
EX) > —(1_AA)pk(1+\/—1_AA) X!, pet (2.16)

forallk=0,1,2,....nand 0 < A < T is sufficiently small while § >0, A € R.

Proof 2.3.3 (i) We use mathematical induction with p € Z for the proof of this

theorem.

[T

Let’s start with assuming M is equal to <ﬁ + 62A> Xo.

e For p=1, we have E[X;| < M.

e Assume that it holds for p-1, E[X,f_l] < MP1,
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e Then consider E [X,f |. Now taking advantage of cauchy-schwarz inequality, we

obtain

EX] < EXIEX Y]

IN

< MZMZ(p*I),by Lemma 2.3.1 and Theorem (2.2.1)
— M?*
pk

Therefore, E[X]] < (ﬁ + 0'2A> 7Xé’.

(ii) If we take p power of iterations for the first SISS methods X, = f*(Xi—1) +

p
0X— 1AW, then we have X[ = (% + O'(XklA)Wk> forall p e Z*. Now
k—1
we use Jensen’s inequality and second moment lower bounds for SISS1. Thus, we
obtain
EX]] = E[X0)"

> EX7)?

5 4k p/2

1 A 1—AA
> | —— (1 X; le x<{/142

= (1—AA)2k< + 1—AA> 0 whzlex_\/ . SA

—2pk
= ! 1+ oA ! x’'m
(1 —AA)P 1—-AA 0

Theorem 2.3.4 The iterations X; using the third SISS methods to solve the

Ginzburg-Landau equation in (1.17) satisfy the following:

(i) The upper bound for the pth moment of the iterations while 6 > 0,A € R is

EX)) <XP((1+AA? +02A)F | pezt 2.17)

forall k=0,1,..,n and small enough 0 < A<T.

2
V0

lower bound for the pth moment of the itearitons is

(ii) For sufficiently small Ay > 0, if Xy < (1 + > ((14AAg)2 + 02A¢) 7", the

Xo(1+AA\"
E[X? —_— Z+ 2.18
[k]2<<\/5_A—|—1)2k> y PE ( )

holds for allk =0,1,....nand 0 < A < T while § >0,A € R
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Proof 2.3.5 (i) We prove it through using the similar approximation in the proof of

Theorem 2.3.2 for the third method SISS, X; = g*(Xx_1) + 6 Xs_ 1AWy while g*(X) =

%. Namely, we use the mathematical induction that E [X,f’ | holds for all p > 1.

e For p=1, we have E[X] SXO((1+AA)2+62A)§
e Suppose thatE[XP 1] <Xp ]((1+AA) —|—62A) forp>1

e Now consider E [X,f’ |- By using the Cauchy-Schwarz inequality, we get

2(p—1
E[x!] < \/E[X,f]E[Xk(P 4
< VM2M2r=1Y) by Lemma and Theorem (2.2.3)
= VM?

where M = Xo((1+AA)? + 62A)?.
Thus, we obtain E[X!] < X[ ((1+AA)* + GZA)%p

(i) If we use same approaches in the proof of Theorem 2.3.2, then X,f =
p
(W +0X_ 1AW | for all p € Z. Now we use Jensen’s inequality and
k—1

second moment upper bounds for third SISS. That’s way, we obtain

E[(X)"?] > EIX)P?

2
X2(1+A4A)%\" 2
< (1+44) ) whilex < 41+ ——

T\ (VA1) VA
Xo(1+A44) p.
(VEA+ 1)

Corollary 2.3.5.1 The terminal value, X,, satisfies E[X}] < Xg e(PA+P300)T \ohile
using the SISSI and SISS3 methods to solve the equation (1.17) when 6 > 0,A € R
and sufficiently small 0 <A < T.

Theorem 2.3.6 The actual solution of Ginzburg-Landau stochastic differential

equation in (1.17) has the following upper and lower boundaries:

EXP(1)] < XPelrA+5o%) (2.19)
2
XP (PA—15-)t
EXP(1)] > 0¢ 7 (220
| 46X3 (2402 1) ag2xdr(etAroody 1)\ P
+ 2A+02 4A+6072

forall p € Z* where 8 > 0,A € R and X (0) = X.
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Proof 2.3.7 By using induction hypothesis, we prove the upper bound for the pth
moment of actual solution of Ginzburg-Landau stochastic differential equation. Let

M= XO@<A+%62)t.

e Forp=1,E[X] <M.
e Assume that E[XP~'] < MP~! for p > 1.

e Then, we want to show that upper bound of E[XP].

EX?] < \/ E[X2E[X2r=V)], by Cauchy Schwarz
< VM2M2P=1) by Lemma and Theorem 2.2.5
= VM?p

- Xé’e(pA-i-%O'z)t'

Afte that, we start with XP(t) = F~P(t) (X072 +28 [§ F%(s)ds) /2 for the proof of
(ii) where p € 7. Now we take an expectation. Then we use Jensen’s inequality
and the second moment bounds for actual solution of stochastic Ginzburg-Landau

equation. Therefore we obtain

E((X*()P?] > (EX*(1)])"/?
p/2

Xge(ZAfSGz)z

v

{ 45X3(e(2A+02)t_1) 462th(e(4A+662)’—1) 1/2
2A+0? 4A+602

2
Xé’e(pA_SpTG)t

;i
| +4axg(e<2A+62>t—1) a82x41(etreo?)r 1)\ P /
2A+02 4A+602

Corollary 2.3.7.1 The expected value of the actual solution of equation (1.17) at the

terminal time E[XP(T)] is bounded above by Xé’ e(PA+P30%)T
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3. SIMULATION RESULTS

In this section, we conduct simulations (see [6,23]) through SISS1 and SISS3 methods
based on the Ginzburg-Landau stocastic differential equation in (1.17) and the actual
solution of the equation. First, we perform N = 10.000 simulations for the SISS
methods and the actual solution of the Ginzburg-Landau SDE. Then, we present
our simulation results for the first moment boundaries which are given in chapter
2. Second, we analyze the consistency of the boundaries obtained for the methods
by comparing them with the iteration results which are obtained by the simulations.
Finally, we obtain the similar comparisons results above for the pth moment boundaries
with 100.000 repeated simulations and the different p values. In these analyses (for
more details see [24,25]), we enhance the simulation size to the 100.000 since it reflects

the sensitvity of the model parameters better for the big moment values.

3.1 Experimental Results for the First Moment Boundaries

We conduct simulations through the first and third SISS methods for the stochastic
Ginzburg-Landau differential equation and the actual solution of the equation while we
investigate the consistency of the first moment boundaries. For example, we perform
N = 10.000 simulations [21] by the following parameters A = —1, § = 0.1, o =1,

xo = 5.

51551: Comparisions of the lower and upper boundaries with the numerical solutions while n=256 and T=5
T T T T T T T T T

lower bound values | 7

iteration values

—=—— upper bound values

E[X(tn)] values

"..
0 0.5 1 15 2 25 3 35 4 45 5
ln values

Figure 3.1 : SISS1: Comparisions of the boundaries for the first moment with the
numerical solutions.
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SI553: Comparisions of the lower and upper boundaries with the numerical solutions while n=256 and T=5
T T T T T T T T T T

5 ' 7 lower bound values | 7|
iteration values

4 —&£—— upper boun values |-

EX(t_ N values

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t_values
Figure 3.2 : SISS3: Comparisions of the boundaries for the first moment with the
numerical solutions.

Figure 3.1 and Figure 3.2 show that the numerical results of the Ginzburg-Landau SDE

are consistent with the first moment boundaries of the SISS1 and SISS3 methods.

Comparisions of the lower and upper boundaries with the actual solutions while n=256 and T=5
T T T T T T T T T T

actual values
—£— upper bound values

7 lower bound values | 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t values
Figure 3.3 : Comparisions of the boundaries for the first moment with the actual
solutions.

Moreover, the lower and upper boundaries for the first moment of the actual solution
of the equation, which is obtained in Theorem (2.1.5), with the actual solution of
the Ginzburg-Landau SDE are shown in Figure 3.3. These figures confirm that the
boundaries preserve the behavior of the solution of the stochastic Ginzburg-Landau

differential equation.

On the other hand, it is necessary to examine the terminal time values for the weak
convergence analysis (see [24]). In addition, we explore the weak convergence rate
of the SISS1 and SISS3 methods. For this purpose, we implement N = 100.000
simulations for each method with n = 26, 27, 28 and 2° step size, accordingly. Then,
we obtain the log-log graphs [21] and compare the analysis’ results with the reference

line of slope 1 in Figure 3.4.
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Weak Convergence: Log-log graph for SISS1 and SISS3 methods
T T T T T

5 T
—— 515851
&L |=siss3 ]
- reference line with slope 1
X
i
c 8r .
<
w
& ar .
i=)
A0
A1 1 1 1 1 1 1 1
8.5 -9 -8.5 -8 -7.5 -7 6.5 -6 -5.5
\ogz(;\t)
Figure 3.4 : Log—log graphs for the weak convergence rate of the SISS1 and SISS3
methods.

It is clear from Figure 3.4 that the rate of the weak convergence of the SISS1 and SISS3

methods is almost 1.

3.2 Experimental Results for the Second Moment Boundaries

In this section, we conduct simulations via SISS1 and SISS3 methods for
Ginzburg-Landau stochastic differential equation while we illustrate the consistency of
the second moment boundaries for the methods using the same parameters in Section

3.1.

S1S51: Comparisions of the lower and upper boundaries for the second with the nu ical soluti while n=256 and T=5
T T T T T T T T T T

257

iterations values
—&— upper bound values

%]
o

lower bound values (H

—
w4

EX*(t, )] values
=)

w

o

i R T
1 1 1 1 1 |

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
ln values

Figure 3.5 : SISS1: Comparisions of the boundaries for the second moment with the
numerical solutions.

Figure 3.5 and Figure 3.6 exhibit that the second moment of the numerical solutions
of the equation in (1.17) are consistent with the upper and lower boundaries for the

second moments of the SISS1 and SISS3 methods.

Moreover, Figure 3.7 displays that the second moment of the actual solution in
(1.18) for stochastic Ginzburg-Landau differential equation with the second moment

boundaries. It is observed that the second moment boundaries are reflect the behavior
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20 fi

EPC(t )] values

Figure 3.6 : SISS3: Comparisions of the boundaries for the second moment with the
numerical solutions.

EX2(1)] values

Figure 3.7 : Comparisions of the boundaries for the second moment with the actual
solutions.

of the solution of Ginzburg-Landau SDE as in the first moment boundaries of the

solutions.

In addition, we perform N = 100.000 simulations for each method with the respective
step sizes n = 2%, n =27, n =28 n =2 Then, we exhibit the log-log graph in Figure

3.8 and observe that the weak convergence rate of the SISS1 and SISS3 methods is

almost 1.
. ‘Weak Convergence: Log-log graph for SISS1 and SISS3 methods
55 L[+ sisst ]
—&- SISS3
— 17| —% reference line with slope 1 B
Z= 65 B
£ st _
B3
ooer |
_S’N 85 B
oF -
95 B
9.5 -9 8.5 -8 7.5 -7 6.5 ] 5.5
\ugz(Al)
Figure 3.8 : Log-log graphs for the weak convergence rate of the SISS1 and SISS3
methods.

S1S83:Comparisions of the lower and upper boundaries for the second moment with the numerical solutions while n=256 and T=5

25%

T
iterations values

—A— upper bound values

lower bound values | |

t values
n

Comparisions of the lower and upper boundaries for the second moment with the actual solution while n=256 andT=5

actual values
—4— upper bound values

7 lower bound values |

25
t values
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3.3 Experimental Results for the pth Moment Boundaries

The analysis in this section are done with respect to the theoretical results for the pth
moments in Section 2.3. In the applications, for instance, we choose the parameters as
A=-05X90=50=02,0=02,n= 29 T =5 when we conduct N = 100.000
repeated simulations . Although we perform simulations with the parameters above,
someone may conduct similar simulations with different parameters by taking account
the theoretical results. First, we present some figures with the parameters above for

p=09.

1SI§S1: Comparisions of the lower and upper boundaries for the pth with the numerical solution while n=512 and T=5
=10

T T T T T T T T T T
iteration values

—&— upper bound values

15 &= 7 lower bound values ||

0 0.5 1 1.5 2 25 3 35 4 4.5 5
tn values

Figure 3.9 : SISS1: Comparisions of the boundaries for the pth moment with the
numerical solutions.

SISgS: Comparisions of the lower and upper boundaries for the pth moment with the numerical solution while n=512 and T=5
=10

= iteration values
—&— upper bound values

15 & “7— lower bound values |

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
tn values

Figure 3.10 : SISS3: Comparisions of the boundaries for the pth moment with the
numerical solutions.

Figure 3.9 and Figure 3.10 display that the boundaries found for SISS1 and SISS3
methods are consistent with the respective numerical solutions of the stochastic

Ginzburg-Landau differential equation.

Moreover, we obtain Figure 3.11 for the actual solution of the Ginzburg-Landau SDE
with the boundaries.
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Comparisions of the lower and upper boundaries for the pth moment with actual seolution while n=512 and T=5
%10

actual values
—&—— upper bound values

7 lower bound values ||

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t values
Figure 3.11 : Comparisions of the boundaries for the pth moment with the actual
solutions.

Additionally, we perform 100.000 repeated simulations for pth moments of each

method when p = 9 with n = 25,2728 and 2? step size.

Then, we obtain the log-log graphs by using these analyses results . Hence, we observe

that the weak convergence rate of the methods is nearly 1 in Figure 3.12.

Weak Convergence : Log-log graph for the SISS1 and SISS3 methods

— SIS'S3 I T T T T T

. —{—sSISs1
= 30 —-+3—--reference line with slope 1 b
x4 |
w
cn€ 5+ -
a3
iy
T B c - .
g .

T+ —

-9.5 -9 -8.5 -8 -1.5 -7 -6.5 -6 -5.5

Iogz(At}
Figure 3.12 : Log—log graphs for the weak convergence rate of the SISS1 and SISS3
methods.

After that, we create Table 3.1 based on the theorems’ results by the model parameters
for Ginzburg-Landau equation with respect to different p values for the terminal time

T.

Consequently, these figures and Table 3.1 show that theoretical and the numerical result

are consistent.
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4. CONCLUSIONS

We present some theoretical and numerical results of the SISS1-3 methods based on
Ginzburg-Landau stochastic differential equation for the weak convergence analysis in

this thesis which consists of four chapters.

In the first chapter, the definition and historical process of the stochastic differential
equations are stated. Then, we briefly introduced Euler-Maruyama, Milstein, Tamed
Euler, truncated Euler, split-step backward Euler (SSBE), semi-implicit split-step
(SISS) numerical methods. Moreover, we introduce stochastic Ginzburg-Landau
differential equation, which is the special case (n=3) of the general form of stochastic

differential equation with polynomial degree n, in this section.

Chapter 2 consists of some theoretical results for the moment boundaries of the
numerical and actual solutions of Ginzburg-Landau stochastic differential equation.
First, we present the first moment boundaries of the SISS1 and SISS3 methods
based on the Ginzburg-Landau SDE in Theorem 2.1.1 and Theorem 2.1.3 and prove
these theorems. Similarly, we state and prove Theorem 2.1.5 is about the first
moment boundaries of the actual solution of the Ginzburg-Landau SDE. Then, the
second moment boundaries for the numerical and actual solutions of stochastic
Ginzburg-Landau differential equation are obtained by using the similar approaches

for the first moments. After that, we extend the results for the pth moments.

In Chapter 3, we conduct simulations and present some figures for the first, second
and pth moments boundaries for the numerical methods and the actual solution of the
equation. In addition to these, we summary the analyses results for the different p

values at the terminal time T for the moment boundaries of the solutions by a table.

Consequently, we believe that these results may take important role to show the usual
weak convergence rate of these methods is 1 theoretically which is shown numerically

in this thesis.
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