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and contributions.

Thanks to my family for their encouragement and support in my life.
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A CLASSIFICATION-BASED HEURISTIC APPROACH FOR
DYNAMIC ENVIRONMENTS

SUMMARY

Most of the state-of-the-art methodologies focus on stationary optimization problems.
However, real-world optimization problems often have various types of uncertainties.
One source of such uncertainties is time-varying fitness functions. This occurs in
dynamic optimization problems which consist of the instance, the objectives and the
constraints that may change in time separately or simultaneously. In such dynamic
environments, an optimization algorithm must adapt to the changes in the environment
and be able to track the optimum. A solver can be considered successful by taking
into consideration its adaptation capacity and speed for reacting changes occurs in a
dynamic environment.

This challenging task has attracted a wide range of studies over the last decades.
Different solution approaches have been introduced for this challenging research
topic. It is difficult to demonstrate the superiority of an approach to another since
dynamism characteristics can vary in different environments. These characteristics
can be categorized according to the frequency of change, the severity of change, the
predictability of change and the periodicity of change. An optimization method may be
useful in environments with specific change characteristics but may fail for a different
environment. Therefore, the characteristic of changes is a crucial issue that needs to
be addressed.

Some of the earlier studies focus on understanding the nature of the changes. However,
very few of them use the information obtained to characterize the change for designing
better solver algorithms.

In this thesis, a classification-based single point search algorithm, which makes
use of the characterization information to react differently under different change
characteristics, is introduced. The proposed method includes a classification
mechanism that allows it to adapt to changes in various type automatically. The
mechanisms it employs to react to the changes resemble hyper-heuristic approaches
previously proposed for dynamic environments. During each change in the landscape,
the proposed algorithm first categorizes the change that occurs. To adapt to those
changes, it applies the predetermined steps according to the change category until the
next change in the environment.

In the first stage of this thesis, we applied several measures to extract features from the
dynamic landscape. These features provide information for the classification process
of dynamic environments.

The proposed algorithm is tested using the Moving Peaks Benchmark generator. In the
second stage of this thesis, experiments are performed to understand the underlying
components of the proposed method. The method is analyzed to have a better
comprehension by simply dividing it into separate algorithms. The performances of
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the separated algorithms are compared. Also, different combinations and variations of
these algorithms have been described and analyzed. As a result of these experiments,
it is observed that the best combination is the method presented in this study.

In the third stage of this thesis, we compare the performance of our suggested
approach with similar single point search-based hyper-heuristic approaches for
dynamic environments in literature. The experimental results are promising and show
the strength of the proposed heuristic approach as a dynamic optimization solver. In
addition to this experiment, for maintaining dynamism as close as to real life, a test
environment with random changes in the dynamic environment is established, and
methods are tested in this experimental setup. As a result of this experiment, it has
been shown that the adaptation ability of our proposed approach is better than other
methods.

In the final stage of this thesis, we run the experiments for different settings to prove
the capability of our mechanism. It is observed that the classifier approach maintains
its effectiveness in environments with different dynamism characteristics.

Overall, experimental results are promising and demonstrate the appropriateness of
the proposed approach as a dynamic optimization method. On the other hand, our
method has certain limitations. The fact that the process of generating input data for
classifier costs computational complexity directly proportional to the number of agents.
However, the method turns that into an advantage by using the best agent as a candidate
solution to find the optimum solution.

Moreover, the trade-off between the agent count and the accuracy of the classifier
can be examined further to be optimized. Improvements in this aspect will decrease
computational complexity and save time to the approach.

Finally, the proposed method is developed as a single point search algorithm. Still, the
main idea in this study can be applied to population-based search algorithms.
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DİNAMİK ORTAMLAR İÇİN TASARLANMIŞ
SINIFLANDIRICI TABANLI SEZGİSEL BİR YAKLAŞIM

ÖZET

Son zamanlarda önerilen eniyileme yöntemlerinin çoğu statik eniyileme problemlerine
odaklanmaktadır. Fakat, gerçek dünyadaki eniyileme problemleri çoğu zaman
çeşitli belirsizliklere sahiptir. Bu gibi belirsizliklerin bir kaynağı da zamana göre
değişen seçilim değeri fonksiyonlarıdır. Bu durum, zaman içinde ayrı ayrı veya
eşzamanlı olarak değişebilecek problemin tanımlı değerleri, eniyilemede kullanılan
amaç fonksiyonları ve kısıtlardan oluşan dinamik optimizasyon problemlerinde ortaya
çıkar. Bu tür dinamik ortamlarda, bir eniyileme algoritması ortamdaki değişimlere
uyum sağlamalı ve optimum olanı izleyebilmelidir. Bu durumda bir eniyileme metodu,
dinamik bir ortamda meydana gelen değişimlere olan adaptasyon kapasitesi ve tepki
verme hızı göz önünde bulundurarak başarılı sayılabilir.

Son birkaç on yıl içinde, bu zorlu görev çeşitli sayıda çalışmaya ilham olmuştur. İlgi
çeken bu araştırma konusu için farkı çözüm yaklaşımları ortaya koyulmuştur. Önerilen
yöntemlerin birbirinden üstünlüğünü göstermek zordur. Çünkü, dinamizm özellikleri
ortamdan ortama değişebilmektedir. Bu özellikler değişim sıklığı, değişim şiddeti,
değişimin öngörülebilirliği ve değişimin periyodik olup olmamasına göre kategorize
edilebilmektedir. Bir eniyileme yöntemi belirli değişim özelliklerine sahip ortamlarda
etkin olabilirken, farklı bir ortam için başarısız olabilir. Bu nedenle, değişim özellikleri
dinamik ortamlarda çalışacak efektif bir yöntem tasarımı için ele alınması gereken bir
konudur. Bu tezin temelinde de değişim özelliklerini kullanan başarılı bir yaklaşım
tasarımı amacı yatmaktadır.

Önceki çalışmalardan bazıları dinamizmin doğasını anlamaya odaklanmıştır. Ancak,
aralarından çok azı, dinamizmi karakterize ederek elde edilen bilgiyi daha iyi
eniyileme algoritmaları tasarlamak için kullanmaktadır.

Bu tezde, farklı değişim özellikleri altında farklı tepki vermek için karakterizasyon
bilgilerinden faydalanan bir sınıflandırma tabanlı tek nokta arama algoritması
tanıtılmıştır. Önerilen yöntem, dışarıdan bir müdahale gerekmeksizin farklı özellikteki
değişimlere adapte olabilmesini sağlayan bir sınıflandırma mekanizması içermektedir.
Değişimlere tepki vermek için kullandığı bu mekanizmalar, dinamik ortamlar için daha
önceleri önerilen üst-sezgisel yaklaşımlara benzemektedir.

Ortamdaki her değişim esnasında, önerilen algoritma öncelikle oluşan değişimi
kategorize eder, değişime uyum sağlamak için bir sonraki değişime kadar değişim
kategorisine uygun ve önceden belirlenmiş adımları uygular. Böylelikle arama
uzayındaki tek nokta en iyi çözümü aranırken ortamda değişim olduğunda rastgele
hareketler yapmak yerine belirli bir süre zarfında en iyi çözümü akıllıca takip
etmesini kolaylaştıracak adımları uygular. Bu nedenle algoritma hızlı adapte olabilen
genelleştirilmiş bir eniyileme çözümüdür.
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Daha önceki çalışmalarda dinamik ortam değişimlerini kategorize etmek için sunulan
etkinliği kanıtlanmış metrikler bu çalışmadaki sınıflandırma yapısında kullanılmak
üzere seçilmiştir. Bu metriklere ek olarak basit bir metrik de sunulmuştur. Etkin
bir sınıflandırma için arama uzayına hakim olacak ajanlara ihtiyaç duyulmuştur. Bu
ajanları dinamik ortama gözcü noktalar olarak verimli şekilde dağıtacak yöntem
belirlenmiştir. Bu tezin ilk aşamasında, farklı tipte dinamizme sahip ortamlardan
arama uzayını kapsayıcı ajanlar kullanılarak belirlenen metrikler hesaplanmıştır.
Sınıflandırıcı modelini geliştirmek için gerekli öznitelikler hesaplanan metrikler ile
sağlanmıştır ve elde edilen veri kümesine uygun sınıflandırma algoritması yapılan
testler sonucu belirlenmiştir. Sınıflandırıcılar bu testlerin sonucunda doğruluk, hız ve
gürbüzlük açısından değerlendirilmişlerdir.

Önerilen algoritma, yapay oluşturulmuş test problemleri (Moving Peaks Benchmark)
üzerinde test edilmiştir.

Bu tezde sunulan yaklaşımın analizi için parametrelerinin başarıma etkisi hem
sınıflandırma yöntemi hem de genel algoritma için etraflıca incelenmiştir.

Bu tezin ikinci aşamasında, önerilen yöntemi oluşturan bileşenleri anlamak için
deneyler yapılmıştır. Yöntemin daha iyi anlaşılması için kendini oluşturan ayrı
algoritmalara bölünerek analiz edilmiştir. Ayrılan algoritmaların tek başına başarımı
ölçülüp karşılaştırılmıştır. Ayrıca bu algoritmaların farklı kombinasyonları ve
varyasyonları tanımlanıp yapılan deneyler sonucunda en iyi performansı veren
kombinasyonun bu çalışmada sunulan yöntem olduğu gözlemlenmiştir.

Tezin üçüncü aşamasında, önerilen yaklaşımımızın performansı literatürde dinamik
ortamlar için geliştirilmiş benzer yapıdaki tek nokta arama tabanlı üst-sezgisel
yaklaşımlarla karşılaştırılmıştır. Sunulan yaklaşımın karşılaştırılan yöntemlerden
istatistiksel olarak daha etkin olduğu gösterilmiştir.

Bu deneye ek olarak, gerçek hayata yakın bir dinamizmin yakalanması için dinamik
ortamdaki değişimlerin rastgele olduğu bir test ortamı kurulup karşılaştırılan yöntemler
bu deney kurulumda test edilmiştir. Yapılan deney sonucunda önerilen yaklaşımımızın
adaptasyon yeteneğinin diğer yöntemlere kıyasla daha iyi olduğu gösterilmiştir.

Bu tezin son aşamasında, sunulan mekanizmamızın kabiliyetini kanıtlamak için farklı
dinamizm özelliklerine sahip ortamlar için de deneyler yapılmıştır. Bu sayede
sınıflandırıcı yaklaşımın farklı dinamizm özelliklerine sahip ortamlarda da etkinliğini
koruduğu gözlemlenmiştir.

Deneysel sonuçlar umut vericidir ve önerilen sezgisel yaklaşımın dinamik eniyileme
yöntemi olarak uygunluğunu ve gücünü göstermektedir. Bunun yanında yöntemimizin
belirli kısıtları da bulunmaktadır. Kullanılan sınıflandırıcı için girdi verisi oluşturma
işleminin doğrudan ajan sayısıyla doğru orantılı olarak hesaplama karmaşıklığına
mal olduğu söylenebilir. Fakat, yöntemin bütününde ajanlar optimal çözümü
bulmada aday çözüm olarak kullanılarak avantaj sağlamaktadırlar. Ajan sayısı
ile sınıflandırıcının doğruluğu arasındaki ödünleşim daha optimize hale getirilerek,
hesaplama karmaşıklığı ve zamanı açısından yöntemde iyileşme sağlanabilir.

Ayrıca dinamik ortamdaki tepe sayısı değişimi sonucunda modelin yeniden
eğitilme ihtiyacını keşfetmek için analizler yapılmıştır. Yapılan analizler sunulan
sınıflandırıcının dinamik ortamdaki tepe sayısı parametresinden az da olsa etk-
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ilendiğini fakat eğitim kümesi farklı tepe sayısı bulunan ortamlarda alınan veriler ile
genişletildiğinde daha genel bir sınıflandırıcı elde edilebildiği gösterilmiştir.

Buna ek olarak, önerilen metot tek nokta arama tabanlı olarak geliştirilmiştir. Ancak,
popülasyon tabanlı arama yöntemi olarak da uygulanabilir.
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1. INTRODUCTION

Real-world optimization problems are mostly dynamic in nature. The aim of a dynamic

optimization method is not just finding a stationary optimum solution but also to track

the changing optimum [1]. A solver can be considered successful by comparison to its

adaptation capacity and speed for reacting changes occurs in a dynamic environment.

There are several mainstream methodologies that are applied in dynamic optimization

problems. These methodologies can be categorized into four groups according to

Jin Y. et al. [2]. These are the maintenance of diversity, reacting to changes in the

environment, making use of memory and lastly using multiple populations.

Every approach may perform differently for a specific type of dynamism in the

environment. For the reason that, knowing the type of dynamism can be useful when

selecting a proper approach for a dynamic optimization problem. The dynamism in

the environment might also change over time and choosing an approach can become

even an impossible task. Therefore, we must think a mechanism capable of reacting

different type of landscape changes during a run. There are some studies that focus

on representing different environments for adapting to changes. There are also prior

studies about the characterization of dynamic environments [3–5]. Branke et al. [6]

proposed a number of measures to characterize the nature of a change. The approach

proposed in our study expands this previous work by using the information about the

change characteristic for building a more effective solver. The novelty of this work lies

in making use of the properties of the change for adapting to a changing environment

continuously. In this thesis, we focus on creating a classification-based single point

search approach for dynamic optimization problems. The method proposed in this

study uses the characteristics of the change for adapting to the changing environment.

In the first stage of this thesis, we applied several measures to extract features from the

dynamic landscape. These features provide information for the classification process

of dynamic environments.

1



In the second stage of this thesis, experiments are performed to understand the

underlying components of the proposed method. The method is analyzed to have a

better comprehension by simply dividing it into separate algorithms.

The mechanisms that we propose in our study to respond to changes are similar to

the previously proposed hyper-heuristic approaches for dynamic environments. It

chooses proper mutation rates for a specific change characteristic like a selection

hyper-heuristic chooses low-level heuristics. To this end, we compare the performance

of our suggested approach with similar single point search-based hyper-heuristic

approaches for dynamic environments in literature in the third stage of this thesis. The

experimental results are promising and show the strength of the proposed heuristic

approach as a dynamic optimization solver. We conduct another experiment for

expanding this analysis. In the experiment, for maintaining dynamism as close as to

real life, a test setting with random changes in the dynamic environment is established,

and compared methods are tested in this experimental setup. As a result of this

analysis, it has been shown that the adaptation ability of our proposed approach is

better than other methods.

In the last stage of this thesis, we run the experiments for different settings to prove the

capability of our mechanism.

The rest of the thesis is organized as follows. The background information and the

related work from the literature are detailed in Section 2. The proposed approach is

introduced in Section 3. The experimental design, settings and the results are given in

Section 4. Finally, the paper concludes in Section 5 with suggestions for future work.
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2. BACKGROUND

This chapter aims to give introductory information for the thesis. Firstly, the dynamic

environment concept is explained, and the following subjects are mentioned: dynamic

optimization problems, the Moving Peaks Benchmark (MPB), measuring performance

and the related work.

Comprehensive surveys on dynamic environments can be found in [1, 2, 5, 7–9].

2.1 Dynamic Environments

Real-world optimization problems often have various types of uncertainties. One

source of such uncertainties is time-varying fitness functions. An environment is

called dynamic or changing in case of the optimization function, the problem instance

or some restrictions of the environment change in time separately or simultaneously.

Dynamic environments can be described with the characteristics of the changes. These

characteristics are presented in [5] as follows:

• the frequency of change

• the severity of change

• the predictability of change

• cycle length/cycle accuracy

The frequency of change determines how often a change happens in an environment.

The severity of change is a criterion that defines the intensity of a change. The

predictability of change controls the similarity between changes. Lastly, the cycle

length/cycle accuracy is used for describing the cyclic behavior of an environment.

These measures define the cycle of occurrence the similar states in an environment

and how similar these states. The characteristics of the change decide the dynamic

features of an environment and create various type of dynamism in the environment.

An optimum value may change over time because of this dynamism. In order to
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Figure 2.1 : Four main approach groups for dynamic optimization problems.

handle dynamism, unlike a stationary optimization problem, an optimization method

for dynamic environments must be capable of tracking the changing optimum [1]. The

simplest way to make a solver operate in a dynamic environment is to consider each

stationary state between changes as separate optimization problems. This approach

can work with dynamic environments that have severe changes. However, most of the

cases, good solutions are not very far from the previous ones. Therefore, transferring

some information between the following states may be a more useful approach. An

optimization method can be considered successful by comparison to its adaptation

capacity and speed for reacting changes occurs in a dynamic environment.

There are several mainstream methodologies that are applied in dynamic optimization

problems. These methodologies can be categorized into four groups according to Jin

Y. et al. [2] (see Figure 2.1). These are the maintenance of diversity [10–12], reacting

to changes in the environment [13–15], making use of memory [5, 16–21] and lastly

using multiple populations [22–27].

The algorithms that practice the principle of the maintenance of diversity do not take

particular actions when a change occurs. The algorithms aim to maintain diversity high

through the run to avoid convergence. Introducing randomly generated individuals

to a population called Random Immigrants was proposed by Grefenstette [10] is an

example to this group.

Another group of approach focuses on increasing exploration of solution space after

a change is detected. Hyper-mutation [13] is an example of these approaches. After

every change in an environment, the hyper-mutation method increases the mutation
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rate in genetic algorithm drastically for some number of generations. Another example

is the extended compact genetic algorithm [14] that keeps diversity in the population

by doing random restarts of the population at every change.

Multi-population algorithms use several populations to find and trace multiple optima

in the search space such as self-organizing scouts [22] and multiswarm particle swarm

optimization methods [23, 25].

In memory-based approaches, results produced in earlier search steps can be useful

later on, such as storing good solutions in memory to reuse them again. The storing

procedure can be done with implicit or explicit memory mechanisms [16]. The use of

memory mechanisms is more functional when cyclic changes occur in an environment,

or the previous environment resembles the new environment.

2.1.1 Dynamic optimization problems

Various approaches have been introduced to solve different types of dynamic

optimization problems, up to this date. Benchmark problems are needed for

comparison among different methods. There are different kinds of commonly used

benchmark problems. Most of the studies are done on syntactically-generated

benchmarks [4, 6, 28–31], where the complexity of the problem and the level of

dynamism in an environment is controllable [1]. There are also benchmarks that are

real-world dynamic optimization problems [21, 32–35].

The MPB is one of the commonly used synthetic problems [1]. The MPB is a test

benchmark for dynamic optimization problems, created by Branke [4]. The MPB

is used in this study for examining the performance of the proposed algorithm and

comparing it with similar hyper-heuristic approaches from the literature. Also, in

the dataset creation process of this study, we extract features of various landscapes

that are generated by the benchmark. The MPB is suitable for this study since it

presents similar characteristics like in real-world problems [6] as well as it has several

parameters for creating several types of dynamic environments.

The benchmark generates dynamic landscapes with a number of peaks; every change

in the environment creates differences in heights, widths, and locations of each peak.
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The generated dynamic landscapes with cone-shaped peaks can be defined with the

following Equation 2.1:

F
(
~x, t
)
= max

B(~x) , max
i=1..m

{
Hi
(
t
)
−Wi

(
t
)
∗

√√√√dim

∑
j=i

(
x j−Xi j (t)

)2} (2.1)

where B(~x) is the base function, dim is the number of dimensions of the landscape, m

is the number of peaks and Xi j is the position of the peaks in each dimension. Each

peak has its heights and widths which are Hi and Wi.

In the moving peaks problem, the task of a solver algorithm is to trace the highest peak

in a landscape of various peaks while the landscape is periodically changing. The MPB

has several parameters for creating different scenarios. In every environmental change,

the height, width and the location can change according to those parameters. The

frequency of change is determined as numbers of evaluations available between the

changes. When a change occurs, the heights and the widths of the peaks are changed

by adding Gaussian variables to current states. The peaks also move by a shift vector

~vi. The changes in the landscape can be formulated with the following Equation 2.2,

Equation 2.3, Equation 2.4, Equation 2.5 and Equation 2.6:

ρεN
(
µ,σ2) (2.2)

Hi
(
t
)
= Hi

(
t−1

)
+heightSeverity∗ρ (2.3)

Wi
(
t
)
=Wi

(
t−1

)
+widthSeverity∗ρ (2.4)

~Xi (t) = ~Xi (t−1)+~vi
(
t
)

(2.5)

~vi
(
t
)
=

s∣∣~r+~vi
(
t−1

)∣∣ ((1−λ )~r+λ~vi
(
t−1

))
(2.6)

Here, ρ is a random value which is produced from Gaussian distribution of N(µ,σ2)

where µ (mean) is set to 0, and σ (standard deviation) is 1. The shifting vector ~vi
(
t
)

is

determined according to the previous shifting vector ~vi
(
t−1

)
, a random shift vector~r,

λ which is the correlation coefficient and parameter s. The λ parameter (0 ≤ λ ≤ 1)

defines the predictability of the changes in the shift vector ~vi. When the lambda is set

to 1, the movement directions of the peaks depends on the direction of the previous

movement. Whereas when the lambda is 0, the movement directions are decided
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Table 2.1 : Severity settings of different change scenarios which create different types
of changes in environments using the MPB.

Scenario s heightSeverity widthSeverity
scenario-1a 1.0 0 0
scenario-1b 5.0 0 0
scenario-2a 0 1.0 0
scenario-2b 0 5.0 0
scenario-3a 0 0 0.5
scenario-3b 0 0 1.0
scenario-4a 1.0 1.0 0.5
scenario-4b 5.0 5.0 1.0

randomly. The severity of the change in the height, width, and location of each peak is

controlled by the fixed parameters of heightSeverity, widthSeverity and s respectively.

A 2-dimensional landscape with five peaks is produced with the MPB to illustrate the

effect of changes one by one and also together. All scenarios are listed in Table 2.1.

Figure 2.2 a, d, g and j shows the initial state of the peaks at time t. Each scenario

is applied for ten following changes individually to the initial state. The results are

present with their scenario names as a caption.

2.1.2 Performance evaluation criteria

Performance evaluation is essential for understanding the effectiveness of different

approaches over changing environments. Several measures are for problem-specific

as well as general purposes. In stationary optimization problems, the best solution

obtained by an approach at the end of its run can be a meaningful performance

criterion. Another criterion can be run time or usage of memory until the best

solution is achieved. However, in case of changing environments, these measures are

not enough to judge an approach. There are additional aspects of a solver must be

considered such as adaptation capacity and speed for reacting changes.

In the case of dynamic optimization, the performance of the solver can be measured

with the online and offline performance measures which are proposed by De Jong [36]

[5]. For judging how good the performance, the online performance is described as an

average fitness of all evaluations from a run. The offline performance is defined as an

average fitness of all best solutions obtained so far since the last change. Unlike online

performance, offline performance considers only the fitness of the best solutions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.2 : (a), (d), (g) and (j) initial state. Results of change scenarios: (b)
scenario-1a. (c) scenario-1b. (e) scenario-2a. (f) scenario-2b. (h)

scenario-3a. (i) scenario-3b. (k) scenario-4a. (l) scenario-4b.

Another measure, the offline error is based on offline performance. One of the

commonly used performance measure, the offline error [5], is described as the average

of the errors of the best solutions found so far since the last change of the environment.

Each candidate solution (individual) can be evaluated with their distance to the

optimum as given in Equation 2.7. In order to calculate the error value of a candidate

solution~x at time t, the current optimum value must be known.

error (~x, t) = |F (optimum, t)−F (~x, t)| (2.7)
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where F (optimum, t) is the fitness of the global optimum whereas F (~x, t) is the fitness

value of a candidate solution~x.

Every evaluation step, the offline error is defined with the following Equation 2.8 and

Equation 2.9 :

o f f lineError =
1

Tevaluation

Tevaluation

∑
t=1

(
error ( ~xbest , t)

′)
(2.8)

error ( ~xbest , t)
′
= min{error ( ~xbest ,τ) ,error ( ~xbest ,τ +1) , ...,error ( ~xbest , t)} (2.9)

Here error ( ~xbest , t)
′

is the error values of the best solutions ~xbest found so far between

the last change and a considered time t and Tevaluation is the evaluation count.

Excellent tracking of the optimum means lower overall offline error values even closer

to zero for a solver algorithm.

Moreover, there are some other measures like Collective Mean Fitness [37] and Mean

Fitness Error [19]...etc.

In this thesis, the offline error measure is used in all experiments since the MPB

provides the optimum value at any given time.

Performance measure results alone are not enough for a proper comparison. A

fair comparison of different methods needs statistical tests for empirical confidence

that validates an approach performs better than another one. Some of the widely

used statistical analyses are Student t-test, Mann-Whitney U test, Wilcoxon’s

non-parametric test, ANOVA and Tukey HSD test. In this thesis, the One-way ANOVA

test at a confidence level of 95% is used. Statistical results of compared algorithms are

expressed with symbols that are S+’, ’S-’, ’>’ and ’<’ indicating statistically better,

statistically worse, better and worse respectively.

2.2 Related Works

Some studies focus on representing different environments for adapting to changes.

Explicit memory mechanism using the associative memory concept is investigated for

dynamic optimization problems. In the associative memory schemes, good solutions

are stored with associated environmental data. In this manner, when a new environment
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which is similar to a collected environment instance occurs, the linked good solutions

can be employed for generating new solutions [38]. The associative memory scheme

has been developed for Population-based Incremental Learning (PBIL) algorithms for

dynamic environments [39]. The associative memory scheme has also been introduced

into Estimation of Distribution Algorithms (EDAs) which was firstly proposed by

Mühlenbein et al. [40]. The Memory Indexing Algorithm (MIA) indexes environments

with problem-specific knowledge such as the quality of the environment [17]. MIA

applies EDAs and hyper-mutation mechanism together to react on environmental

changes. If the environment is similar to previously seen ones, MIA uses a distribution

array to initialize the population. Peng et al. [41] have presented an environment

identification-based memory management scheme (EI-MMS). The EI-MMS uses, the

probability models to characterize and store the landscape of dynamic environments.

Then, it applies this stored data to adjust EDAs in compliance with environmental

changes. The study proposed an environment identification method for finding

best-fitting memory elements for new environments.

There are also prior studies about the characterization of dynamic environments [3–6,

42] which is one of the objectives of this thesis. Branke [5] introduced the frequency of

change, the severity of change, the predictability of change and the cycle length/cycle

accuracy criteria for categorization. Duhain et al. [42] reviews the previous methods

used for characterization and suggests a unified classification system. In the paper,

new behavioral classes; static environments, progressively changing environments,

abruptly changing environments and chaotic changing environments are proposed.

Branke et al. [6] proposed a number of measures to characterize the nature of a

change. The approach proposed in this thesis expands this previous work by using

the information about the change characteristic for building a more effective solver.

Hyper-heuristics are new search methodologies that have proven to be effective

solvers in dynamic environment optimization. Hyper-heuristics are high-level methods

that operate on top of a set of heuristics. There are two main categories of

hyper-heuristics [43]: heuristic selection and heuristic generation approaches. One

of the previous studies on hyper-heuristics in dynamic environments, Kiraz et

al. [44] shows the appropriateness of selection hyper-heuristics as solvers in dynamic

optimization problems. The empirical results of the study demonstrate that selection
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hyper-heuristics are capable of reacting and tracking well in different types of changes.

The mechanisms that we propose in our study to respond to changes are similar to

the previously proposed hyper-heuristic approaches for dynamic environments. It

chooses proper mutation rates for a specific change characteristic like a selection

hyper-heuristic chooses low-level heuristics.
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3. PROPOSED METHOD

We introduce here a classification-based single point search algorithm for solving

dynamic optimization problems. Single point search is a local search method

that operates on a particular solution candidate in search space by exploring its

neighborhood with a collection of moves.

The steps of this study can be summarized as follows:

• Collect data from dynamic environments by calculating measures for dataset

creation

• Build a classifier model to classify different type of landscape changes

• Modify a single point search algorithm by adding a new mechanism capable of

reacting different kinds of landscape changes during a run

The proposed algorithm consists of three components: change characterization,

mutation rate selection, and process of using sentinels as solutions. Briefly, at

the change characterization step, a learning mechanism is employed to classify the

landscape change with the data from the measure calculations. Then at the mutation

phase, the algorithm draws a standard deviation value within the given predetermined

interval for that class like a hyper-heuristic approach chooses a low-level heuristic.

Finally, sentinels that are used for measure calculations, also contribute as solutions

if the best sentinel is better than the current solution. The algorithm of the proposed

method is given in Figure 3.1.

3.1 Change Characterization

The ability to characterize the landscape changes of a dynamic environment provides

valuable information for adapting to those changes. In change characterization section

of this study, agents called sentinels, points in the search space, are used for computing

measures that represent the characteristics of a change. Next, a model has been
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Figure 3.1 : Classification-based single-point search algorithm.

developed for change classification by using the data from dynamic environments

which have different change characteristics. The change characterization steps are

detailed in the following subsections.

3.1.1 Sentinel placement

The Sentinel Placement method proposed by Morrison [45] is initially a change

detection method. The algorithm places sentinels in the landscape better than randomly

spread agents [46]. The sentinels take over the search space since they are distributed

evenly in higher dimensions. Therefore, in order to characterize changes efficiently,

instead of using randomly spread agents, we use the Sentinel Placement method to

position the sentinels.

The heuristic sentinel placement algorithm works as follows for N-dimensional space:

• Scale and offset all search space dimensions from 0 to 1.
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• Randomly place the initial sentinel point xi, for i equals 1 to N.

• Create other sentinel points with Equation 3.1 and Equation 3.2.

xi,p = mod1
[
xi,p−1 +Ziφ

]
(3.1)

Ziε{41,43,47,59,83,107,109,173,311,373,401,409, ...} (3.2)

Here p equals 1 to sentinel count, φ is golden ratio equals to (
√

5+1)/2, mod1 is

the modulo 1 operation and Zi values are set according to heuristic rules specified

in Morrison’s study [45].

There are two different agent placement examples in Figure 3.2. In two examples,

50 agents are distributed in 3-dimensional (100x100x100) search space. While

sub-figures a, c and e show the result of the random distribution for each dimension

pair, sub-figures b, d and f show the result of the sentinel placement method for

each dimension pair. These two examples demonstrate the difference between the

two approaches. According to the experiment, the sentinel placement method has

obvious superiority compare to a random placement. It is more effective for landscape

exploration. If we want to use a small number of agents and higher multi-dimensional

space, the advantage of the sentinel placement method will become more evident.

However, the prime numbers, Zi, used in Equation 3.1, are known to produce

reasonably uniform distributions for 200 agents in dimensions up to 12 [45].

3.1.2 Measure calculation

In this thesis, several measures proposed by Branke et al. [6] have been used for

representing the nature of a change. We also include a simple measure called fitness

difference to the set of measures. We employed measures to extract features from the

dynamic landscape. These features provide information for the classification process

of dynamic environments. Calculations of the measures have been outlined below.

• Fitness Correlation: The fitness correlation is determined by fitness correlation

between the fitness of sentinels during the change steps [6]. The fitness correlation

is calculated using Equation 3.3.

FC =
∑

count
i=1 (sbe f orei− sbe f ore)(sa f teri− sa f ter)√

∑
count
i=1 (sbe f orei− sbe f ore)2(sa f teri− sa f ter)2

(3.3)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2 : Fifty randomly placed agents: (a) dimension 1,2. (c) dimension 1,3. (e)
dimension 2,3. versus fifty agents placed by the sentinel placement
method: (b) dimension 1,2. (d) dimension 1,3. (f) dimension 2,3.
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Here sbe f ore is a set of fitness values of sentinels before a change, sa f ter is a set of

fitness values of sentinels after a change and count equals sentinel count.

• Change Severity: The distance between the optimum before and after the

environmental change is called change severity [6]. For most of the cases, finding

the optimal solution at each environmental state won’t be possible. Hence, the

estimated change severity measure is used. Without knowing the real optimum, the

best solution is provided by performing local hill-climbing (LHC) to the sentinel

points is used as an optimum. Euclidean distance is used for distance calculation,

and the change severity is normalized according to the size of the search space.

• LHC Fitness Correlation: The correlation of fitness after LHC before and

after landscape chance is also measured [6]. The measure is formulated as in

Equation 3.3 where sbe f ore and sa f ter are sets of fitness values that obtained by

LHC.

• Fitness Difference: The fitness differences of sentinels before and after the change

are calculated. Then normalized fitness differences are averaged to use as a fitness

difference measure. The fitness difference is calculated as in Equation 3.4:

FD =
∑

count
i=1

∣∣sibe f ore− sia f ter

∣∣
count

(3.4)

where s is fitness of sentinel, be f ore and a f ter indicate if it is from before or after

a change and count equals sentinel count.

The proposed algorithm is evaluated on the MPB. The MPB generator provides

dynamic environments with a variety of different change characteristics.

Euclidean distance is used if a measure requires distance calculations between points.

Where LHC is needed, a stochastic hill climbing algorithm is applied for 100 iterations,

and each LHC process starts from coordinates of the sentinels. The coordinates and

fitness values obtained at the end of the hill climbing processes are stored for measure

calculations. However, this process does not change the initial coordinates of the

sentinels. In this way, the sentinels start from the same coordinate points for every

calculation processes. The pseudo code of the stochastic hill climbing algorithm is

given in Figure 3.3. In the algorithm, the random neighbor is produced with using
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Figure 3.3 : Stochastic hill climbing algorithm.

gaussian mutation with a distribution of N (µ,σ2) where µ (mean) is set to 0, and

sigma (standard deviation) is 1. The gaussian mutation operation is performed for

each dimension of the solution candidate and described in section 3.2.

Measure computing after each change causes some delay and more fitness evaluations.

However, the hill climbing process can be parallelized to deal with the overhead of

extra evaluations. Therefore we count that each LHC operation costs one evaluation,

losing one evaluation for each sentinel at LHC step is given up for employing

classification.

3.1.3 Dataset creation

A dataset consists of calculated measures as features and class information of changes,

collected using the MPB with three different severity levels. In the experimental

settings section 4.1.2, three different severity settings are listed in detail. These levels

are labeled as class information for each sample. (Frequency setting of the MPB makes

no difference for dataset creation. Since we classify dataset according to the severity

properties.)

Firstly, the severity settings of the dynamic environment are initialized for each specific

level. Then for each environmental setup, before the MPB runs, sentinel placement

method is employed to the environment. In the first stationary state of the environment,

sentinels prepare data from the landscape. This data will be used as information of

the before the change since the calculation of measures requires information from

the landscape before and after the change in the environment. During the run when

a change occurs in the landscape, sentinels prepare data from the altered landscape.
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(MPB provides information whenever a change occurs.) This data is also stored to use

as a previous state of the environment if a new change happens.

Finally, measures are calculated by using both before and after change data as

explained in measure calculations section 3.1.2. The results are recorded as features

of a sample. This process repeatedly continues until a sufficient amount of samples is

gathered. Finally, the four-featured dataset with 407163 samples has been obtained.

A small part of the dataset is shown in Table 3.1 to help with visualization.

Table 3.1 : A sample of the dataset with four features and class information.

FITNESS DIF CHANGE SEV FITNESS CORR LHC FITNESS CORR CLASS
0.4124 0.0092453 0.995381 0.915427 LS
3.395 0.214257 0.603657 0.566644 HS
3.7838 0.186679 0.676397 0.659543 HS
2.3847 0.0640422 0.831933 0.763744 MS

... ... ... ... ...

The dataset creation process is also illustrated with a flowchart in Figure 3.4 Here,

Stop Criteria is the number of iterations to collect sufficient data.

3.1.4 Classifier model

The model building process has two stages, the training stage, and the model evaluation

stage. First, a classifier is trained with the given dataset, the output of the dataset

creation. Then, the performance of the built classifier is tested with different

performance measures such as accuracy, recall, and precision. In Figure 3.5, a diagram

of this process is presented.

Figure 3.5 : Model building process.
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Figure 3.4 : Flowchart of the dataset creation process.
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In this study, the Random Forest Algorithm [47] is used for dynamic environment

classification. We trained the Random Forest model using the scikit-learn [48, 49]

with the collected dataset. The number of decision trees in the forest is 10, and

the maximum depth of the tree of the classifier is selected as 8. In our experiments

with the collected data, the classifier gives excellent results in terms of accuracy

and speed compared to other classification methods (K-Nearest Neighbor (KNN),

Gradient Boosting, Multi-layer Perceptron (MLP), and Support Vector Machine

(SVM) Classifiers) as explained in the section 4.1.3.

3.2 Mutation Rate Selection

The sentinel placement is performed at the beginning of the proposed method. The

algorithm starts with a single feasible solution which is created randomly. During

stationary states, the individual goes through gaussian mutation with a distribution of

N (µ,σ2) where µ (mean) is set to 0, and sigma (standard deviation) is the default

value of 10 and creates a mutant. It is assumed that the algorithm is aware of the

time when a change in the environment happens. Therefore, when there is a change,

measure calculations are performed before the classification step as shown in line 6

of the proposed algorithm in Figure 3.1. Then, four calculated features which present

last landscape change go through classification with our model to determine its class

as simplified in Figure 3.6.

Figure 3.6 : The landscape change classification process.

At the gaussian mutation step, instead of the default standard deviation, the algorithm

selects a standard deviation randomly and uniformly in the determined value ranges
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for the specific class as shown in line 15 of the proposed algorithm in Figure 3.1.

The intervals are listed in the parameter tuning section. This standard deviation

selection according to the class of a change is used during defined sequential mutation

steps (maxNumO f Mutation) after every landscape changes. Then the algorithm goes

back to applying the default standard deviation. The gaussian mutation operation is

performed as provided in Equation 3.5.

~mi =~xi +N(µ,σ2) (3.5)

Here, ~m is the mutant and ~x is the current individual respectively. The mechanisms

that the method uses to respond to changes resemble the previously proposed

hyper-heuristic approaches for dynamic environments. It chooses appropriate mutation

rates for specific change characteristics like a hyper-heuristic chooses a low-level

heuristic.

3.3 Using Sentinels as Solutions

In the measure calculation step, sentinel points go through an LHC process right after

each change. In LHC process, every sentinel points attempt to reach optimum value

like a single point doing a local search. End of the hill climbing, sentinels will have

information on better solution points in the search space. Therefore, those improved

points can be considered as decent solutions.

As mentioned before, hill climbing costs several evaluations directly proportional to

the sentinel count. However, the proposed approach turns that into an advantage by

using the best sentinel information. After the LHC process, the algorithm selects

the best solution among the sentinels and replaces the current solution with the best

sentinel if the sentinel is better than the current solution as shown in line 9 of the

proposed algorithm in Figure 3.1.
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4. EXPERIMENTS AND RESULTS

A three-phase experiment is designed to evaluate the performance of the proposed

method. First phase is for parameter tuning, second phase for analyzing the

components of the proposed method and the last phase for comparison with other

methods in literature.

4.1 Experimental Design

4.1.1 The components of the proposed method

Some of the experiments focus on the component analysis of the proposed method.

For these experiments, the proposed algorithm is divided into separate algorithms to

have better comprehension.

The ’Snt’ approach operates as a single point algorithm and uses best sentinel

information as a solution after making sentinels LHC. Snt does not classify changes

in an environment. Snt method mutates the single point with fixed default standard

deviation without using the classification information of changes.

On the other hand, ’Cls’ method classifies changes and uses the classification results of

changes when deciding a mutation rate after every change in an environment. Cls make

use of sentinels for change classification. However, it does not use the best sentinel as

a solution.

Moreover, to test the classification mechanism (Cls), the Cls method is altered as a

typical hyper-mutation method. Therefore at the mutation step, the altered method,

’RandHM’ method, selects a random standard deviation from the complete set of

standard deviations without knowing the class information.

Furthermore, the combination of Snt and RandHM methods is included as the

’Snt+RandHM’ method. Snt+RandHM approach operates as Snt method; it uses

the best sentinel information as solutions. But whenever a mutation operation is
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performed instead of using fixed default standard deviation, Snt+RandHM chooses a

random standard deviation from the complete set of standard deviations like RandHM

approach.

Lastly, our complete proposed method is called the ’Cls+Snt’ approach, which is

a combination of both Snt and Cls methods. Cls+Snt method applies the class

information of changes for mutation rate selection and also after each LHC of sentinels,

it replaces the current solution with the best sentinel if the sentinel is better than the

current as explained in detail in the proposed method section.

Figure 4.1 shows the components of the proposed method and their different

combinations. In the following sections, these short forms are used when referring

to the components.

Figure 4.1 : The components of the proposed method and their different
combinations.

4.1.2 Experimental settings

The performances of the compared approaches are examined under three separate

severity level classes with three different change frequency pairs. The performances

of the methods are compared using offline error [5]. One-way ANOVA test is used for

detecting the significance of the results.
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Each experiment is run 100 times for the given settings with 20 changes in the

environment. Thus, there are 21 following stationary stages for each run. The number

of iterations of a run is calculated as in Equation 4.1. Also, the first stationary state of

the runs is not included in the offline error calculation.

numberO f Iterations = (numberO fChanges+1)∗ changePeriod (4.1)

Table 4.1 gives the parameters settings of the MPB and the severity levels are listed in

Table 4.2.

• Classes: low severity (LS), medium severity (MS) and high severity (HS).

• Change periods: low frequency (LF), medium frequency (MF), high frequency

(HF). The landscape changes every 6006 fitness evaluations for LF, 1001 for MF

and 126 for HF. The change periods are determined according to Kiraz’s study [44].

Table 4.1 : Parameter settings for the MPB.

Parameter Setting
Number of peaks 5
Peak heights [30, 70]
Peak widths [0.8, 7]
Uniform-height 50
Uniform-width 3
Peak function Cone
Range in each dimension [0, 100]
Number of dimensions 5
Basis function Not used
Correlation coefficient 0

Table 4.2 : Parameter settings for each severity level.

Setting LS MS HS
move severity 1 25 50
height severity 1 5 10
width severity 0.05 0.05 0.05

In this study, some of the experiments are conducted with different severity settings

which have more closely categorized classes as listed in Table 4.3. These are also the

MPB severity settings of Kiraz’s study [44].

In this thesis, statistical results of compared algorithms are expressed with symbols

that are S+’, ’S-’, ’>’ and ’<’. The explanation of these symbols are listed in Table 4.4.
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Table 4.3 : Different parameter settings for each severity level.

Setting LS MS HS
move severity 1 5 10
height severity 1 5 10
width severity 0.1 0.5 1.0

Table 4.4 : The meanings of the result symbols.

Symbol Meanings
S+ Indicates that the first approach is significantly better than the second approach.
S- Indicates that the first approach is significantly worse than the second approach.
> Indicates that the first approach is better than the second approach.
< Indicates that the first approach is worse than the second approach.

4.1.3 Evaluation of classifier model

The experimental settings for evaluating classifier model are listed as follows:

• 80% of the dataset instance is used as training data.

• 20% of the dataset instance is used as testing data.

• 10 fold cross-validation is applied.

For choosing a suitable classifier model for our classification task, we examined a

number of algorithms with our data. The algorithms score very close results with the

severity settings used in this study from the point of classification accuracy. The results

can be observed in Table 4.5.

Table 4.5 : Classifier accuracy for sparse severity settings.

Classifier Classification Accuracy
Random Forest 0.978
KNN (N=3) 0.968
SVM 0.966
MLP Classifier 0.962
Gradient Boosting Classifier 0.976

Also, the robustness of the algorithms are tested with different severity settings taken

from the Kiraz’s study [44] (see Table 4.3). Table 4.6 provides the result of the second

experiment. Since the different sets of settings for the three classes have closer ranges

compared to this study, the classification task becomes more challenging. In this

aspect, the Random Forest and the Gradient Boosting algorithms are more robust than
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the other techniques. In the end, the Random Forest is chosen because it gives faster

results than the Gradient Boosting.

Table 4.6 : Classifier accuracy for close severity settings.

Classifier Classification Accuracy
Random Forest 0.871
KNN (N=3) 0.755
SVM 0.696
MLP Classifier 0.693
Gradient Boosting Classifier 0.874

Table 4.7 provides ranked features of the model according to the variable importance

metric. The variable importance metric illustrates the statistical significance of each

feature in the dataset. The feature that ranked first is also the most important feature

that affects the model. The variable importance metric calculation can be found in the

H2O Flow framework [50].

Table 4.7 : The ranked features of the model according to the variable importance
metric.

Rank Feature

1 Fitness Correlation
2 Fitness Difference
3 Change Severity
4 LHC Fitness Correlation

Here a confusion matrix (CM) which represents the performance of the classifier on

the test data is given for further analysis on the model. The CM in Table 4.8 shows the

predicted classes versus the actual classes.

Table 4.8 : The confusion matrix of the classifier model.

Predicted
LS MS HS

Actual
LS 21812 2 0
MS 4 29094 1198
HS 0 706 28713

The numbers in the CM(3x3) can be interpreted as follows:

• CM(1,1): 21812 instances are correctly predicted as LS.

• CM(1,2): 2 instances are predicted as MS but their actual label is LS.
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• CM(1,3): No LS instances that is predicted as HS.

• CM(2,1): 4 instances are predicted as LS but their actual label is MS.

• CM(2,2): 29094 instances are correctly predicted as MS.

• CM(2,3): 1198 instances are predicted as HS but their actual label is MS.

• CM(3,1): No HS instances that is predicted as LS.

• CM(3,2): 706 instances are predicted as MS but their actual label is HS.

• CM(3,3): 28713 instances are correctly predicted as HS.

It can be noticed from the observations the model almost perfectly predicts low severity

class (LS). Some of the cases it confused medium severity class (MS) with high

severity class (HS).

Moreover, precision and recall values are calculated for each class with Equation 4.2

and Equation 4.3 respectively. Precision indicates the proportion of the predicted

samples that are correctly predicted. On the other hand, recall indicates the amount

of the correctly predicted samples from the samples that should have been predicted in

the actual class.

precision =
t p

(t p+ f p)
(4.2)

recall =
t p

(t p+ f n)
(4.3)

For example, the false positive (fp) for class LS is the instances that have predicted

as LS; however, should have predicted as another class. On the other hand, the false

negative (fn) for class LS is the instances that have predicted as another class; but,

should have predicted as LS. Finally, the true positive (tp) for class LS is the instances

that are labeled as LS and have predicted as LS.

The precision and recall values of each class are provided in Table 4.9
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Table 4.9 : Precision and recall values of each class.

Class Precision Recall
LS 0.99 0.99
MS 0.97 0.96
HS 0.95 0.97

4.1.4 Parameter tuning

Different components of the proposed method have parameters that require tuning for

better performance. These parameters are sentinel count, default standard deviation

and standard deviation value ranges which are used in the mutation operation for each

class. The parameters are determined experimentally with several preliminary tests

and optimized according to their effect on the performance.

Also, the effect of the number of peaks in an environment is investigated in terms of

the accuracy of the classifier and performance of the proposed method.

4.1.4.1 Effect of number of peaks

Since the classification model plays an essential role in our approach, we conducted

experiments for discovering the need for rebuilding the model if the number of peaks of

the dynamic environment changes. Therefore, the effect of using a different number of

peaks than the actual environment has, in the classifier training process is investigated.

The experiments are run with the same environment that has ten peaks. In the first test,

the classifier model trained with five peaks. On the other hand, in the second test the

classifier model, trained with ten peaks, is used. For each analysis, offline errors of the

proposed method for each frequency-severity pairs and classification accuracy of the

model are measured. In Table 4.10 the results of two experiments are listed.

In Table 4.10, it can be observed that if training data and input data of the classifier

have different peak counts, the accuracy of the classifier decreases. Despite the drop in

accuracy, the overall performance of the proposed method is not significantly affected.

If the dataset is expanded with more data from environments that have various peak

counts, the accuracy of the classifier would be higher.
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Table 4.10 : Classification accuracy of classifier models and offline error values of the
method with standard deviations in the environment that has ten peaks.
One is trained with five peaks, and the other is trained with ten peaks.

Environment has 10 peaks.
Model trained with 10 peaks.

Environment has 10 peaks.
Model trained with 5 peaks.

Offline Error
Classification

Accuracy Offline Error
Classification

Accuracy

LF
LS 1.89±0.29

98.46

1.91±0.3

96.13

MS 4.29±0.57 4.4±0.63
HS 4.57±0.58 4.56±0.57

MF
LS 2.09±0.33 2.06±0.29
MS 4.8±0.68 4.85±0.67
HS 5.03±0.62 4.98±0.62

HF
LS 3.54±0.52 3.53±0.46
MS 8.62±1.12 8.53±1.08
HS 8.96±0.91 8.97±0.88

Therefore, we train the classifier model with data collected from both five peaks

and ten peaks environments, and we test the model in the environment that has ten

peaks. Table 4.11 gives the corresponding results of this test. This time, classification

accuracy and offline error values are really close as the model that is trained with data

obtained from ten peaks environment. This experiment shows us that a model which is

design for change classification can cope with different landscapes with various peak

numbers.

4.1.4.2 Effect of default standard deviation parameter

In this study, some of the algorithms that are compared, use the default standard

deviation parameter. The default standard deviation is a free parameter that affects

performance. We analyze this parameter with four different settings. Each algorithm

is run for the four different values of the default standard deviation. Statistical

significance tests are conducted to decide the best setting of default standard

deviation parameter for our proposed method (Cls+Snt). Cls+Snt, Snt, RandHM, and

RandHM+Snt algorithms are pairwise compared for four different default standard

deviation settings. The ANOVA test results are provided in Table 4.12.
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Table 4.11 : Classification accuracy of the model and offline error values of the
method with standard deviations in the environment that has ten peaks.

Training data obtained from both five peaks and ten peaks environments.

Environment has 10 peaks.
Model trained with both 5 peaks and 10 peaks data.

Offline Error
Classification

Accuracy

LF
LS 1.87±0.30

97.53

MS 4.28±0.58
HS 4.54±0.53

MF
LS 2.13±0.36
MS 4.76±0.63
HS 5.03±0.58

HF
LS 3.52±0.45
MS 8.52±1.07
HS 8.93±0.92

Table 4.12 : The ANOVA test results of methods for different default standard
deviation values with different frequency and severity combinations.

Algorithm
Default
Stdev

LF MF HF

LS MS HS LS MS HS LS MS HS

Cls+Snt vs Snt

0.3 < < < < < S- S- < <
2.0 S+ > < S+ < < S+ < >
5.0 S+ > > S+ S+ > S+ < >
10.0 S+ S+ < S+ S+ < S+ > <

Cls+Snt vs RandHM 0.3 S+ S+ S+ S+ S+ S+ S+ S+ S+
2.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
5.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
10.0 S+ S+ S+ S+ S+ S+ S+ S+ S+

Cls+Snt vs RandHM+Snt 0.3 < < < > > > S+ < >
2.0 S+ < < S+ < < S+ < <
5.0 S+ < < S+ < S- S+ > <
10.0 S+ < S- S+ > S- S+ < >

Snt vs RandHM 0.3 S+ S+ S+ S+ S+ S+ S+ S+ S+
2.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
5.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
10.0 S+ S+ S+ S+ S+ S+ S+ S+ S+

Snt vs RandHM+Snt 0.3 < > > > > S+ S+ > >
2.0 < < > < < < < < <
5.0 S- S- < S- S- S- < > <
10.0 S- S- S- S- S- S- < < <

RandHM vs RandHM+Snt 0.3 S- S- S- S- S- S- S- S- S-
2.0 S- S- S- S- S- S- S- S- S-
5.0 S- S- S- S- S- S- S- S- S-
10.0 S- S- S- S- S- S- S- S- S-

According to the S+ results, the Cls+Snt method performs better when the default

standard deviation parameter is set to 10. The Cls+Snt method gives better results than
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the Snt method at low severity settings regardless of frequency. Also, the RandHM

method falls behind of the Cls+Snt and the Snt methods for all settings.

Table 4.13 : The overall (’S+’, ’S-’, ’>’ and ’<’) counts for different default standard
deviation values.

Algorithm
Default
Stdev S+ S- > <

Cls+Snt

0.3 10 2 4 11
2.0 15 0 2 10
5.0 16 1 5 5
10.0 17 2 3 5

Snt

0.3 13 0 13 1
2.0 9 3 5 10
5.0 9 9 2 7
10.0 9 11 3 4

RandHM

0.3 0 27 0 0
2.0 0 27 0 0
5.0 0 27 0 0
10.0 0 27 0 0

RandHM+Snt

0.3 9 3 8 7
2.0 9 3 14 1
5.0 15 3 7 2
10.0 17 3 5 2

The overall S+ counts in Table 4.13 confirm that the proposed method, Cls+Snt,

performs best when the default standard deviation is set to 10. In this study, the default

standard deviation parameter is set to 10 for all approaches that employ the parameter.

4.1.4.3 Effect of sentinel count

The accuracy of the model depends on a set of parameters such as sentinel count,

number of peaks and the severity settings of each class. In this section, the sentinel

count parameter is investigated for building a better classifier model. The sentinel

count effect is shown in terms of the classification accuracy and the offline error that

represents the algorithm performance for each frequency-severity pairs in Table 4.14.

The results are indicated that the accuracy values of the classifier are close when the

sentinel size is 50 and 100. However, considering the offline error values, when the
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Table 4.14 : The effect of the sentinel size for different frequency and severity
combinations.

# of sentinel Frequency Severity
Classification Accuracy of
Random Forest Classifier Offline Error

10

LF
LS

0.9181

4.1±2.29
MS 12.58±3.84
HS 14.65±2.86

MF
LS 4.18±2.15
MS 13±3.61
HS 16.34±2.86

HF
LS 6.04±1.97
MS 23.05±4.84
HS 27.84±4.14

30

LF
LS

0.9584

2.87±1.48
MS 7.71±1.65
HS 8.82±1.39

MF
LS 2.87±1.26
MS 8.53±2.09
HS 9.95±1.7

HS
LS 3.59±1.25
MS 11.37±2.05
HS 13.39±1.95

50

LF
LS

0.9662

2.24±0.74
MS 6.05±1.28
HS 7.01±1.12

MF
LS 2.4±1.09
MS 6.69±1.61
HS 7.64±1.12

HS
LS 3.43±1.05
MS 10.52±1.93
HS 11.81±1.4

100

LF
LS

0.9785

1.83±0.44
MS 4.54±0.8
HS 4.78±0.84

MF
LS 2.06±0.4
MS 5±0.71
HS 5.59±0.85

HF
LS 3.54±0.53
MS 9.73±1.56
HS 10.8±1.32
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sentinel size is 100, the method gives better performance. Therefore, as an outcome of

the experiments, we selected sentinel count as 100.

4.1.4.4 Standard deviation value ranges for each class

After every landscape changes at the gaussian mutation step that detailed in the

proposed method, the proposed algorithm picks a standard deviation value randomly

and uniformly from the determined value ranges for each specific class. The specified

intervals are defined experimentally. Table 4.15 gives the standard deviation groups

for the classes that are used in this study.

Table 4.15 : The standard deviation ranges for each class.

Class
Standard Deviation

Range

LS [0.5, 0.7]
MS [2.0, 3.0]
HS [7.0, 9.0]

4.2 The Experiments for Component Analysis of the Proposed Method

The suggested method is analyzed to have a better comprehension by simply dividing

it into two separate algorithms. The performances of the separated algorithms are

compared. Also, different combinations and variations of these algorithms have been

described and analyzed. These experiments provide insight into the strengths and

weaknesses of the method. Algorithms are pairwise compared for different frequency

and severity combinations. The results are indicated in Table 4.16. The determined

default standard deviation is 10 and the maximum number of mutation step is 70.

These are the same for all compared methods that are using the mechanisms.

Firstly, the Cls method is compared with the Snt method. Cls method uses class

information while Snt method uses best sentinel information. The Snt method clearly

has better performance than the Cls method, as seen from the results. However, when

the Cls method combines with the Snt, it outperforms both the Cls and the Snt method

alone. RandHM, which is the modified version of Cls, uses hyper-mutation mechanism

without knowing the class of a change in an environment. It chooses random standard

deviations, unlike the Cls method that selects standard deviations according to a

change class. The comparison between Cls and RandHM shows us the classification
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Table 4.16 : The ANOVA test results of the component analysis of the proposed
method for different frequency and severity combinations.

Algorithm LF MF HF

LS MS HS LS MS HS LS MS HS
Cls+Snt vs Snt S+ S+ > S+ S+ < S+ > <
Cls+Snt vs Cls S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs RandHM S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs RandHM+Snt S+ > S- S+ > S- S+ < >
Snt vs Cls S+ S+ S+ S+ S+ S+ S+ S+ S+
Snt vs RandHM S+ S+ S+ S+ S+ S+ S+ S+ S+
Snt vs RandHM+Snt S- < S- S- S- S- < < >
Cls vs RandHM S+ S+ S- S+ S+ > S+ S+ S+
Cls vs RandHM+Snt S- S- S- S- S- S- S- S- S-
RandHM vs RandHM+Snt S- S- S- S- S- S- S- S- S-

approach is useful for dynamic environments. Cls gives better performance than

RandHM. On the other hand, the results show that the RandHM+Snt performs better

than the Snt method yet, the Cls+Snt still has better results. The RandHM has the

weakest performance among all algorithms. The Cls+Snt algorithm is significantly

better than the RandHM+Snt for low severity settings of all frequency levels. Also,

Table 4.17 shows that the Cls+Snt performs well according to total scores. Overall, the

experimental observations indicate that the Cls+Snt combination is the best choice for

the solver approach.

Table 4.17 : The overall (’S+’, ’S-’, ’>’ and ’<’) counts for component analysis of the
proposed method.

Algorithm S+ S- ≥ ≤
Cls+Snt 26 2 5 3
Snt 18 10 3 5
Cls 7 28 1 0
RandHM 1 34 0 1
RandHM+Snt 25 3 4 4

4.3 The Experiments for Comparison with Similar Methods in Literature

The proposed method is compared with other single-point search based hyper-heuristic

algorithms proposed for dynamic environments since the Cls part of the method

exhibits similar behaviors of a hyper-heuristic. One of the previous studies on

hyper-heuristics in dynamic environments, Kiraz et al. [44] shows the appropriateness

of selection hyper-heuristics as solvers in dynamic optimization problems. The study

carried on hyper-heuristics based on single-point search framework with using the

MPB. The empirical results of the study demonstrate that selection hyper-heuristics are
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capable of reacting and tracking well in different types of changes. In Kiraz’s study, the

Choice Function (CF) heuristic selection [51] method combined with the Improving

and Equal (IE) move acceptance method [51, 52] (CF-IE) has the best performance

compared to the other approaches.1 In this paper, we compared our classification-based

method with the CF-IE approach, along with the Hyper-mutation [13] Improving and

Equal (HM-IE) and a basic single-point search method (NoHM).

The experimental settings of CF-IE and HM-IE are directly taken from Kiraz’s

study [44]. The CF-IE uses seven mutation operators that have seven different standard

deviations
{
0.5, 2, 7, 15, 20, 25, 30

}
are used as low-level heuristics as described in

Kiraz’s study [44].

The HM-IE method operates gaussian mutation using 2 as a default standard deviation.

The method changes its standard deviation of 2 to 7 for 70 sequential steps if a change

occurs which is also defined in Kiraz’s study [44].

The NoHM method runs with using the default standard deviation of 10 in gaussian

mutation operation without reacting the changes.

Cls+Snt, CF-IE, HM-IE, and NoHM algorithms are pairwise compared for different

frequency and severity combinations. Table 4.18 summarizes the results of the

experiments and Figure 4.2 illustrates the box-plots of offline errors for the statistical

comparison of the experiments. Also, in Table 4.19, shows the overall counts of each

result type of significance tests.

Table 4.18 : The comparison of ANOVA test results of the proposed method with
similar approaches in the literature for different frequency and severity

combinations.

Algorithm LF MF HF

LS MS HS LS MS HS LS MS HS
Cls+Snt vs CF-IE S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs HM-IE S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs NoHM S+ S+ S+ S+ S+ S+ S+ S+ S+
CF-IE vs HM-IE S+ > S+ S+ > S- S- S- S-
CF-IE vs NoHM S+ S+ S+ S+ S+ S+ S+ S+ S-
HM-IE vs NoHM S+ S+ S+ S+ S+ S+ S+ S+ S+

1In this study, the MPB settings for three different severity classes are determined more widely
sparsed compared to the Kiraz’s study for capturing the behavior of the changing environment. Since
the MPB severity settings differ from the Kiraz’s study, the experimental results are also different.
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Table 4.19 : The overall (’S+’, ’S-’, ’>’ and ’<’) counts for the proposed method and
other approaches in the literature.

Algorithm S+ S- > <
Cls+Snt 27 0 0 0
CF-IE 11 14 2 0
HM-IE 13 12 0 2
NoHM 1 26 0 0
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Figure 4.2 : Box-plots of offline errors for compared approaches (Cls+Snt, CF-IE,
HM-IE and NoHM) for different frequency and severity combinations.

The experiment shows us the Cls+Snt is significantly better than other compared

methods for all frequency-severity pairs (see Table 4.19). The HM-IE is scored closest

to the Cls+Snt approach, and it is followed by the CF-IE. The CF-IE gives better than
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average outputs, and it is more efficient with lower frequency-severity settings. The

NoHM has poorer scores among the group.

4.4 The Random-run Experiments

For further analysis, the change adaptability of the compared approaches is tested with

an experiment. The test is carried out by ensuring that each change step, a severity

setting is randomly chosen from the determined three classes in Table 4.2 while the

frequency is kept fixed. Table 4.20 gives the results of the experiment for each

frequency setting in terms of offline error with the standard deviations of the offline

errors for 100 runs. Figure 4.3, Figure 4.4 and Figure 4.5 provide the corresponding

results as box-plots of offline errors for random-run experiments.

Table 4.20 : Offline errors and standard deviations of the random-run experiments of
each compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) averaged

over 100 runs for each frequency settings.

Algorithm LF MF HF
Cls+Snt 3.69±0.77 4.25±0.97 8.12±1.67
CF-IE 10.70±5.20 14.20±5.53 40.01±8.53
HM-IE 11.40±5.32 14.73±5.60 29.25±6.29
NoHM 18.50±4.88 24.92±5.70 39.90±6.20
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Figure 4.3 : Box-plots of offline errors for random-run experiments of each compared
method (Cls+Snt, CF-IE, HM-IE, and NoHM) for low frequency setting.
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Figure 4.4 : Box-plots of offline errors for random-run experiments of each compared
method (Cls+Snt, CF-IE, HM-IE, and NoHM) for medium frequency

setting.
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Figure 4.5 : Box-plots of offline errors for random-run experiments of each compared
method (Cls+Snt, CF-IE, HM-IE, and NoHM) for high frequency setting.
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The offline error of all approaches rises as the frequency increases. Looking at

the random-run experiment results, it can be deduced that the Cls+Snt has the

best performance. Since the approach reacts to changes in a dynamic environment

immediately it is capable of following the random sequential changes. CF-IE gives

close results compare to HM-IE for low (LF) and medium (MF) frequency settings.

However, when the frequency increase to high (HF) setting, the performance of HM-IE

is better than CF-IE. NoHM has poorest scores for all frequency settings.

4.5 The Experiments for Different Settings

In this part of the experiment, we examine the influence of the severity settings that can

affect the performance of all compared approaches. We aim to test the limits of our

method by using different severity settings. Cls+Snt, CF-IE, HM-IE, and NoHM are

also run with the MPB severity settings of Kiraz’s study for the random-run experiment

(see Table 4.3).

The offline errors of this version for LF, MF and HF are listed in Table 4.21.

Table 4.21 : Offline errors and standard deviations of the random-run experiments of
each compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) for each

frequency settings using different severity settings.

Algorithm LF MF HF
Cls+Snt 4.00±2.07 4.78±1.91 7.33±2.41
CF-IE 10.36±5.49 11.07±5.96 19.32±6.12
HM-IE 12.87±6.47 15.43±6.57 23.10±7.36
NoHM 19.36±6.75 23.31±6.72 31.44±8.91

In this experimental setup when frequency level is high, the CF-IE, HM-IE and

NoHM show improvement in terms of performance compare to previous random-run

experiment with initial settings. This means CF-IE, HM-IE and NoHM approaches

adapt better in low severity setting. The most significant performance improvement

can be observed in CF-IE approach.

On the other hand, Cls+Snt gives similar results compared to the previous random-run

experiment. The change in the severity settings does not have much effect on

Cls+Snt method. NoHM has the poorest performance for all frequency settings of

this experiment.
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Figure 4.6 : Box-plots of offline errors random-run experiments (using different
severity settings) of each compared method (Cls+Snt, CF-IE, HM-IE,

and NoHM) for low frequency setting.
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Figure 4.7 : Box-plots of offline errors random-run experiments (using different
severity settings) of each compared method (Cls+Snt, CF-IE, HM-IE,

and NoHM) for medium frequency setting.

41



0

10

20

30

40

50

60

70

80

Cls+Snt CF−IE HM−IE NoHM

O
ff
li
n
e
 E

rr
o
r

HF

Figure 4.8 : Box-plots of offline errors random-run experiments (using different
severity settings) of each compared method (Cls+Snt, CF-IE, HM-IE,

and NoHM) for high frequency setting.

Figure 4.6, Figure 4.7 and Figure 4.8 show the corresponding results as box-plots of

offline errors for this experiment.
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5. CONCLUSION

In this thesis, a classification-based single point search algorithm, which makes use

of change characterization information to react differently under different change

characteristics in dynamic environments, is introduced. The proposed algorithm

reacts to changes like hyper-heuristic approaches previously proposed for dynamic

environments. The method uses the representation of change to track the optimum

smartly. The novelty of this work lies in making use of the properties of the change for

adapting to a changing environment continuously.

The proposed algorithm is tested using the MPB, a test benchmark, that generates

dynamic landscapes with a number of peaks; every change in the environment creates

differences in heights, widths, and locations of each peak. The benchmark is suitable

for this study since it presents similar characteristics like in real-world.

In the first stage of this thesis, we applied several measures to extract features from

the dynamic landscape. These features provide information for the classification

process of dynamic environments. At the classification process, several classification

algorithms are used with the extracted data for building a classifier model. The

Random Forest Algorithm is selected since it gives excellent results in terms of

accuracy, speed and robustness compared to other classification methods (K-Nearest

Neighbor, Gradient Boosting, Multi-layer Perceptron, and Support Vector Machine

Classifiers). The influence of the parameters on the accuracy of the classification

mechanism is also tested with several experiments and proper parameter settings are

adopted.

In the second stage of this thesis, experiments are performed to understand the

underlying components of the proposed method. The method is analyzed to have

a better comprehension by simply dividing it into separate algorithms. These

experiments provide insight into the strengths and weaknesses of the proposed method.
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In the third stage of this thesis, we compare the performance of our suggested

approach with similar single point search-based hyper-heuristic approaches for

dynamic environments in literature. The experimental results are promising and show

the strength of the proposed heuristic approach as a dynamic optimization solver. In

addition to this experiment, for maintaining dynamism as close as to real life, a test

setting with random changes in the dynamic environment is established, and compared

methods are tested in this experimental setup. As a result of this experiment, it has

been shown that the adaptation ability of our proposed approach is better than other

methods. All approaches are compared under the assumption that the occurrence of

a landscape change is known and thus change detection step is ignored. If change

detection is considered as an issue, the proposed method will have a clear advantage

with the sentinels, even the occurrence of changes cannot be easily detected.

In the final stage of this thesis, we run the experiments for different settings to prove the

capability of our mechanism. The experimental results indicate the proposed approach

is able to work with various types of dynamism. The classification model plays an

essential role in our approach. The model used in this work has been trained with

the extracted data from environments that have specified settings. The capability

of the model is explored for different environment settings with this experiment.

A comprehensive analysis can be conducted for building a more generic model.

Therefore, the research of a more generic model can be a separate study topic. The

accuracy of the model depends on a set of parameters such as sentinel count, number

of peaks and the severity settings of each class. These parameters except the sentinel

count also have an impact on the difficulty level of a dynamic optimization problem

and will be investigated more for the overall performance of the proposed method. All

in all, as a future work the parameter dependency of the proposed algorithm can be

investigated more extensively.

We are aware that the process of generating input data for classifier costs several

evaluations directly proportional to the sentinel count. However, the method turns

that into an advantage by using the best sentinel information as explained in the Snt

method. The trade-off between the sentinel count and the accuracy of the classifier

can be examined further to be optimized. Improvements in this aspect will decrease

computational complexity and save time to the approach.
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Furthermore, introducing different types of dynamism, like dimensionality change to

our optimization problem could be interesting as another future work.

Finally, the main idea explored in this study can be applied to population-based search

algorithms and thus can be compared with other state-of-art population-based heuristic

methods for dynamic environments.
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