

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

A CLASSIFICATION-BASED HEURISTIC APPROACH FOR
DYNAMIC ENVIRONMENTS

M.Sc. THESIS

Seyda YILDIRIM BILGIC

Department of Computer Engineering

Computer Engineering Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

A CLASSIFICATION-BASED HEURISTIC APPROACH FOR
DYNAMIC ENVIRONMENTS

M.Sc. THESIS

Seyda YILDIRIM BILGIC
(504151525)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Ayse Sima ETANER-UYAR

JUNE 2019

ISTANBUL TEKNIK UNIVERSITESI % FEN BILIMLERI ENSTITUSU

DINAMIK ORTAMLAR iCIN TASARLANMIS
SINIFLANDIRICI TABANLI SEZGISEL BiR YAKLASIM

YUKSEK LISANS TEZI

Seyda YILDIRIM BILGIC
(504151525)

Bilgisayar Miihendisligi Anabilim Dah

Bilgisayar Miihendisligi Programi

Tez Damismani: Do¢. Dr. Ayse Sima ETANER-UYAR

HAZIRAN 2019

Seyda YILDIRIM BILGIC, a M.Sc. student of ITU Graduate School of Science En-
gineering and Technology 504151525 successfully defended the thesis entitled “A
CLASSIFICATION-BASED HEURISTIC APPROACH FOR DYNAMIC ENVIRON-
MENTS”, which he/she prepared after fulfilling the requirements specified in the as-
sociated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Ayse Sima ETANER-UYAR ...
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Sanem SARIEL UZER ...
Istanbul Technical University

Asst. Prof. Dr. Berna KIRAZ e
FSM Vakif University

Date of Submission : 02 May 2019
Date of Defense : 13 June 2019

vii

To my loved ones,

FOREWORD

Special thanks to my advisor, Assoc. Prof. Dr. A. Sima Etaner-Uyar for all support
and contributions.

Thanks to my family for their encouragement and support in my life.

June 2019 Seyda YILDIRIM BILGIC
(Computer Engineer)

iX

TABLE OF CONTENTS

Page

FOREWORD . IX
TABLE OF CONTENTS . XI
ABBREVIATIONS .. Xiii
LIST OF TABLES v XV
LIST OF FIGURES <. XVii
SUMMARY XiX
OZET e XXI
1. INTRODUCTION wo 1
2. BACKGROUND w 3
2.1 Dynamic ENVITONMENLSc.eerriiieriiieriieniieeniieesiieesieeesieeeiee et esaeeesnee e 3
2.1.1 Dynamic optimization Problemsccceecueeerreeriiieerieeniireenieeeeeenenns 5
2.1.2 Performance evaluation CIiteria.........coovueeerueersiieereeeeriieenieeesireeseeeeieees 7

2.2 Related WOTKS.eoiiiiiiiiiiiiieieceeeete ettt 9

3. PROPOSED METHOD . 13
3.1 Change CharacteriZationceocueeerieerriieeniiieeniieesieeesreeeieeesreeeaeeesnee s 13
3.1.1 Sentinel PlaCemMEeNLt........cccueeevuieiriiieeiiieeiteeriee ettt stee e e sree e 14
3.1.2 Measure calCulation...........cocueiviieiiiiiniiiiieeeieeeeceeee e 15
3.1.3 Dataset CrEAtIONcevueeruririieieeniieeieeieete ettt 18
3.1.4 Classifier MOdel........cooueiiiiiiiiiiinieiiceeeee e 19

3.2 Mutation Rate SEIECtIONcocuuieriiiiiiiiiiiieiiiceieeete e 21
3.3 Using Sentinels as SOIULIONSccocueiiriieriiiiiniieeiieeeite et 22

4. EXPERIMENTS AND RESULTS. 23
4.1 Experimental DeSIZNcceeviiiiiiiiiiniiiieiiceceeeeeeeeeee e 23
4.1.1 The components of the proposed method...........ccccceeevvieriiiincieennineenen. 23
4.1.2 Experimental SEtNESccovveieiieeniiieiiieeeiie ettt 24
4.1.3 Evaluation of classifier modelcccccueeriiiiniiiniiiiiiecceceeeeeee, 26
4.1.4 Parameter tUNINE.......cc.eeerureerieeenieeeiieenieeeteeeniteesnseeesereesseeesaseesseeenaseas 29
4.1.4.1 Effect of number of peaks.........ccccoeieiiiiiiniiiiiniiieececeeee 29

4.1.4.2 Effect of default standard deviation parameter............cccceceeeueennene 30

4.1.4.3 Effect of sentinel Count...........cccooueeiienienieniieinienieeeeeeeeeeieeene 32

4.1.4.4 Standard deviation value ranges for each class...........ccocceevienneenn. 34

4.2 The Experiments for Component Analysis of the Proposed Method............. 34
4.3 The Experiments for Comparison with Similar Methods in Literature.......... 35
4.4 The Random-run EXperimentscccceevueeiiieiniiiiiieeniieeieesee e 38
4.5 The Experiments for Different Settings..........ccccevvueeeviiiniieinieeniieeieeeeeee 40

5. CONCLUSION 43
REFERENCES.... . 47

xi

CURRICULUM VITAE

Xii

ABBREVIATIONS

CF : Choice Function

CM : Confusion Matrix

EDA : Estimation of Distribution Algorithm
EI-MMS : Environment Identification-based Memory Management Scheme
HM : Hyper-mutation

IE : Improving and Equal

KNN : K-nearest Neighbors

LHC : Local Hill Climbing

MIA : Memory Indexing Algorithm

MLP : Multi-layer Perceptron

MPB : Moving Peaks Benchmark

PBIL : Population Based Incremental Learning

SVM : Support Vector Machine

xiil

LIST OF TABLES

Page
Table 2.1 : Severity settings of different change scenarios which create

different types of changes in environments using the MPB. 7
Table 3.1 : A sample of the dataset with four features and class information. 19
Table 4.1 : Parameter settings for the MPB. ... 25
Table 4.2 : Parameter settings for each severity level.ccocceviiiiniiiiiieenenn. 25
Table 4.3 : Different parameter settings for each severity level.ccceuee. 26
Table 4.4 : The meanings of the result sSymbols.ccccceoieriiniiiiiiniiniicieeeens 26
Table 4.5 : Classifier accuracy for sparse severity Settings.c.ccceeveveerrveerneenn. 26
Table 4.6 : Classifier accuracy for close severity Settings.ccceecveereveeerveerneenns 27
Table 4.7 : The ranked features of the model according to the variable

IMPOTTANCE MELTIC. .veeuvieeireerreeeiieerieessiteesiteeesieeesbeesnaeeesaneesnnreesnseenns 27
Table 4.8 : The confusion matrix of the classifier model.ccccceceeriirninncen. 27
Table 4.9 : Precision and recall values of each class...........cooceeviieniiniinniinicnneen. 29
Table 4.10: Classification accuracy of classifier models and offline error values

of the method with standard deviations in the environment that has

ten peaks. One is trained with five peaks, and the other is trained

WIth 1N PEAKS. ..eiuiiiiiiiiiiiiiieeeee e 30
Table 4.11: Classification accuracy of the model and offline error values of the

method with standard deviations in the environment that has ten

peaks. Training data obtained from both five peaks and ten peaks

EINVITONIMENIES. «..eeiuttteriiieeiteeetteeeitee et e e sbeeestteesbeeesbteesabeeesaneesbeeesaneenas 31
Table 4.12: The ANOVA test results of methods for different default standard

deviation values with different frequency and severity combinations. 31
Table 4.13: The overall ("S+’, ’S-’, ’>" and ’<’) counts for different default

standard deviation values.ccoceeeiiiiiiiiiiiienicee e 32
Table 4.14: The effect of the sentinel size for different frequency and severity

COMDBINALIONS. ..c.vveeurieiieeiieettenite ettt ettt e e s sbe e b e saees 33
Table 4.15: The standard deviation ranges for each class.cccceccvverirereiieennennne 34
Table 4.16: The ANOVA test results of the component analysis of the proposed

method for different frequency and severity combinations. 35
Table 4.17: The overall (S+’,’S-’, ’>’ and ’<’) counts for component analysis

of the proposed method............ccuviiiiiiiiiiiiiieeeeee e, 35
Table 4.18: The comparison of ANOVA test results of the proposed method

with similar approaches in the literature for different frequency

and severity COMDINAIONS.ccvueeeriieeriieerieeeiieeerieeeieeesieeeeeeesaeeens 36
Table 4.19: The overall ("S+’, ’S-’, >’ and ’<’) counts for the proposed

method and other approaches in the literature.c..ccoceecveeneennennne. 37

XV

Table 4.20:

Table 4.21 :

Offline errors and standard deviations of the random-run
experiments of each compared method (Cls+Snt, CF-IE, HM-IE,
and NoHM) averaged over 100 runs for each frequency settings....... 38
Offline errors and standard deviations of the random-run
experiments of each compared method (Cls+Snt, CF-IE, HM-IE,

and NoHM) for each frequency settings using different severity
SEELITIZS. +eevveureereerire et et e e et et e st ettt e st e et et e e ae e saneen e e e saneeaneen 40

XVi

LIST OF FIGURES

Page
Figure 2.1 : Four main approach groups for dynamic optimization problems...... 4
Figure 2.2 : (a), (d), (g) and (j) initial state. Results of change scenarios: (b)
scenario-la. (c) scenario-1b. (e) scenario-2a. (f) scenario-2b. (h)
scenario-3a. (i) scenario-3b. (k) scenario-4a. (1) scenario-4b............. 8
Figure 3.1 : Classification-based single-point search algorithm. 14
Figure 3.2 : Fifty randomly placed agents: (a) dimension 1,2. (c) dimension
1,3. (e) dimension 2,3. versus fifty agents placed by the sentinel
placement method: (b) dimension 1,2. (d) dimension 1,3. (f)
1400152 010 [0 1 10200 TR 16
Figure 3.3 : Stochastic hill climbing algorithm.............ccccoooiiiiiiniiiiiieeee, 18
Figure 3.5 : Model building proCess.cc.ccoceevuiriiniriininieninicneeeneeeneeeeene 19
Figure 3.4 : Flowchart of the dataset creation proCess.ccecvveevueeenveeriueeennnen. 20
Figure 3.6 : The landscape change classification process.ccceeeveeerveerueeennen. 21
Figure 4.1 : The components of the proposed method and their different

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

COMDBINATIONS. <. eeeeee ettt ee e e e e et e e e eeeaae e e eeeraeeeeeaaaeeeee 24

: Box-plots of offline errors for compared approaches (Cls+Snt,

CF-IE, HM-IE and NoHM) for different frequency and severity
COMDINATIONS. 1..vevveeeeiiiieeeriteeeerieeeeeeiteeeesteeeeestaeeessnbbeeesssneeessasseeennns 37

: Box-plots of offline errors for random-run experiments of each

compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) for low
FIEQUENCY SELNE. ..eeeiiieeiiieeiie ettt et e saeeeaaeesreeens 38

: Box-plots of offline errors for random-run experiments of each

compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) for
medium freqUeNCY SEtNG.ccevuvieriieiriieeriie et 39

: Box-plots of offline errors for random-run experiments of each

compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) for high
fTEQUENCY SELHING.veeuriiiieiiiieiieeeeee e 39

: Box-plots of offline errors random-run experiments (using

different severity settings) of each compared method (Cls+Snt,
CF-IE, HM-IE, and NoHM) for low frequency setting. 41

: Box-plots of offline errors random-run experiments (using

different severity settings) of each compared method (Cls+Snt,
CF-IE, HM-IE, and NoHM) for medium frequency setting. 41

: Box-plots of offline errors random-run experiments (using

different severity settings) of each compared method (Cls+Snt,
CF-IE, HM-IE, and NoHM) for high frequency setting. 42

Xvil

Xviii

A CLASSIFICATION-BASED HEURISTIC APPROACH FOR
DYNAMIC ENVIRONMENTS

SUMMARY

Most of the state-of-the-art methodologies focus on stationary optimization problems.
However, real-world optimization problems often have various types of uncertainties.
One source of such uncertainties is time-varying fitness functions. This occurs in
dynamic optimization problems which consist of the instance, the objectives and the
constraints that may change in time separately or simultaneously. In such dynamic
environments, an optimization algorithm must adapt to the changes in the environment
and be able to track the optimum. A solver can be considered successful by taking
into consideration its adaptation capacity and speed for reacting changes occurs in a
dynamic environment.

This challenging task has attracted a wide range of studies over the last decades.
Different solution approaches have been introduced for this challenging research
topic. It is difficult to demonstrate the superiority of an approach to another since
dynamism characteristics can vary in different environments. These characteristics
can be categorized according to the frequency of change, the severity of change, the
predictability of change and the periodicity of change. An optimization method may be
useful in environments with specific change characteristics but may fail for a different
environment. Therefore, the characteristic of changes is a crucial issue that needs to
be addressed.

Some of the earlier studies focus on understanding the nature of the changes. However,
very few of them use the information obtained to characterize the change for designing
better solver algorithms.

In this thesis, a classification-based single point search algorithm, which makes
use of the characterization information to react differently under different change
characteristics, is introduced. The proposed method includes a classification
mechanism that allows it to adapt to changes in various type automatically. The
mechanisms it employs to react to the changes resemble hyper-heuristic approaches
previously proposed for dynamic environments. During each change in the landscape,
the proposed algorithm first categorizes the change that occurs. To adapt to those
changes, it applies the predetermined steps according to the change category until the
next change in the environment.

In the first stage of this thesis, we applied several measures to extract features from the
dynamic landscape. These features provide information for the classification process
of dynamic environments.

The proposed algorithm is tested using the Moving Peaks Benchmark generator. In the
second stage of this thesis, experiments are performed to understand the underlying
components of the proposed method. The method is analyzed to have a better
comprehension by simply dividing it into separate algorithms. The performances of

Xix

the separated algorithms are compared. Also, different combinations and variations of
these algorithms have been described and analyzed. As a result of these experiments,
it is observed that the best combination is the method presented in this study.

In the third stage of this thesis, we compare the performance of our suggested
approach with similar single point search-based hyper-heuristic approaches for
dynamic environments in literature. The experimental results are promising and show
the strength of the proposed heuristic approach as a dynamic optimization solver. In
addition to this experiment, for maintaining dynamism as close as to real life, a test
environment with random changes in the dynamic environment is established, and
methods are tested in this experimental setup. As a result of this experiment, it has
been shown that the adaptation ability of our proposed approach is better than other
methods.

In the final stage of this thesis, we run the experiments for different settings to prove
the capability of our mechanism. It is observed that the classifier approach maintains
its effectiveness in environments with different dynamism characteristics.

Overall, experimental results are promising and demonstrate the appropriateness of
the proposed approach as a dynamic optimization method. On the other hand, our
method has certain limitations. The fact that the process of generating input data for
classifier costs computational complexity directly proportional to the number of agents.
However, the method turns that into an advantage by using the best agent as a candidate
solution to find the optimum solution.

Moreover, the trade-off between the agent count and the accuracy of the classifier
can be examined further to be optimized. Improvements in this aspect will decrease
computational complexity and save time to the approach.

Finally, the proposed method is developed as a single point search algorithm. Still, the
main idea in this study can be applied to population-based search algorithms.

XX

DINAMIK ORTAMLAR iCIN TASARLANMIS
SINIFLANDIRICI TABANLI SEZGISEL BiR YAKLASIM

OZET

Son zamanlarda 6nerilen eniyileme yontemlerinin cogu statik eniyileme problemlerine
odaklanmaktadir. ~ Fakat, gercek diinyadaki eniyileme problemleri ¢ogu zaman
cesitli belirsizliklere sahiptir. Bu gibi belirsizliklerin bir kaynagi da zamana gore
degisen secilim degeri fonksiyonlaridir. Bu durum, zaman i¢inde ayri ayr1 veya
eszamanl olarak degisebilecek problemin tanmimli degerleri, eniyilemede kullanilan
amag¢ fonksiyonlar1 ve kisitlardan olusan dinamik optimizasyon problemlerinde ortaya
cikar. Bu tiir dinamik ortamlarda, bir eniyileme algoritmasi ortamdaki degisimlere
uyum saglamali ve optimum olani izleyebilmelidir. Bu durumda bir eniyileme metodu,
dinamik bir ortamda meydana gelen degisimlere olan adaptasyon kapasitesi ve tepki
verme hiz1 géz oniinde bulundurarak basarili sayilabilir.

Son birkag on yil iginde, bu zorlu goérev cesitli sayida ¢alismaya ilham olmustur. Tlgi
ceken bu arastirma konusu igin farki ¢6ziim yaklasimlar ortaya koyulmustur. Onerilen
yontemlerin birbirinden iistiinliigiinii gostermek zordur. Ciinkii, dinamizm 6zellikleri
ortamdan ortama degisebilmektedir. Bu ozellikler degisim sikligi, degisim siddeti,
degisimin ongoriilebilirligi ve degisimin periyodik olup olmamasina gore kategorize
edilebilmektedir. Bir eniyileme yontemi belirli degisim 6zelliklerine sahip ortamlarda
etkin olabilirken, farkli bir ortam i¢in basarisiz olabilir. Bu nedenle, degisim 6zellikleri
dinamik ortamlarda caligsacak efektif bir yontem tasarimi icin ele alinmasi gereken bir
konudur. Bu tezin temelinde de degisim ozelliklerini kullanan bagarili bir yaklagim
tasartmi amaci yatmaktadir.

Onceki calismalardan bazilar1 dinamizmin dogasimi anlamaya odaklanmistir. Ancak,
aralarindan ¢ok azi, dinamizmi karakterize ederek elde edilen bilgiyi daha iyi
eniyileme algoritmalar1 tasarlamak i¢in kullanmaktadir.

Bu tezde, farkli degisim ozellikleri altinda farkli tepki vermek icin karakterizasyon
bilgilerinden faydalanan bir smiflandirma tabanli tek nokta arama algoritmasi
tanitilmustir. Onerilen yontem, digsaridan bir miidahale gerekmeksizin farkli 6zellikteki
degisimlere adapte olabilmesini saglayan bir siniflandirma mekanizmasi icermektedir.
Degisimlere tepki vermek i¢in kullandi1g1 bu mekanizmalar, dinamik ortamlar i¢in daha
onceleri Onerilen iist-sezgisel yaklagsimlara benzemektedir.

Ortamdaki her degisim esnasinda, Onerilen algoritma Oncelikle olusan degisimi
kategorize eder, degisime uyum saglamak i¢in bir sonraki degisime kadar degisim
kategorisine uygun ve onceden belirlenmis adimlar1 uygular. Boylelikle arama
uzayindaki tek nokta en iyi ¢oziimii aranirken ortamda degisim oldugunda rastgele
hareketler yapmak yerine belirli bir siire zarfinda en iyi c¢oziimii akillica takip
etmesini kolaylagtiracak adimlari uygular. Bu nedenle algoritma hizli adapte olabilen
genellestirilmig bir eniyileme ¢6ziimiidiir.

xXxi

Daha Onceki ¢calismalarda dinamik ortam degisimlerini kategorize etmek icin sunulan
etkinligi kanitlanmig metrikler bu ¢alismadaki siniflandirma yapisinda kullanilmak
iizere secilmistir. Bu metriklere ek olarak basit bir metrik de sunulmustur. Etkin
bir siniflandirma i¢in arama uzayina hakim olacak ajanlara ihtiya¢ duyulmustur. Bu
ajanlar1 dinamik ortama gozcii noktalar olarak verimli sekilde dagitacak yontem
belirlenmistir. Bu tezin ilk asamasinda, farkli tipte dinamizme sahip ortamlardan
arama uzaymi kapsayicit ajanlar kullanilarak belirlenen metrikler hesaplanmisgtir.
Smiflandirict modelini gelistirmek icin gerekli Oznitelikler hesaplanan metrikler ile
saglanmistir ve elde edilen veri kiimesine uygun siniflandirma algoritmasi yapilan
testler sonucu belirlenmistir. Siniflandiricilar bu testlerin sonucunda dogruluk, hiz ve
giirbiizliik acisindan degerlendirilmiglerdir.

Onerilen algoritma, yapay olusturulmus test problemleri (Moving Peaks Benchmark)
tizerinde test edilmistir.

Bu tezde sunulan yaklasimin analizi i¢in parametrelerinin bagsarima etkisi hem
siniflandirma yontemi hem de genel algoritma icin etraflica incelenmistir.

Bu tezin ikinci asamasinda, Onerilen yontemi olusturan bilesenleri anlamak icin
deneyler yapilmistir. YOntemin daha iyi anlagilmasi i¢in kendini olusturan ayri
algoritmalara boliinerek analiz edilmistir. Ayrilan algoritmalarin tek basina basarimi
Olciilip karsilagtirllmigtir. Ayrica bu algoritmalarin farkli kombinasyonlart ve
varyasyonlart tanimlanip yapilan deneyler sonucunda en iyi performansi veren
kombinasyonun bu ¢alismada sunulan yontem oldugu gézlemlenmistir.

Tezin {iciincii asamasinda, onerilen yaklasimimizin performansi literatiirde dinamik
ortamlar icin gelistirilmis benzer yapidaki tek nokta arama tabanli iist-sezgisel
yaklagimlarla karsilagtinlmisti. Sunulan yaklasimin kargilastirilan yontemlerden
istatistiksel olarak daha etkin oldugu gosterilmistir.

Bu deneye ek olarak, gercek hayata yakin bir dinamizmin yakalanmasi i¢in dinamik
ortamdaki degisimlerin rastgele oldugu bir test ortam1 kurulup karsilastirilan yontemler
bu deney kurulumda test edilmistir. Yapilan deney sonucunda onerilen yaklagimimizin
adaptasyon yeteneginin diger yontemlere kiyasla daha iyi oldugu gosterilmistir.

Bu tezin son asamasinda, sunulan mekanizmamizin kabiliyetini kanitlamak icin farkli
dinamizm Ozelliklerine sahip ortamlar i¢in de deneyler yapilmistir. Bu sayede
stniflandiric1 yaklagimin farkli dinamizm 6zelliklerine sahip ortamlarda da etkinligini
korudugu gozlemlenmistir.

Deneysel sonuclar umut vericidir ve onerilen sezgisel yaklasimin dinamik eniyileme
yontemi olarak uygunlugunu ve giiciinii gostermektedir. Bunun yaninda yontemimizin
belirli kisitlart da bulunmaktadir. Kullanilan siniflandirict icin girdi verisi olusturma
isleminin dogrudan ajan sayisiyla dogru orantili olarak hesaplama karmasikligina
mal oldugu soylenebilir. Fakat, yontemin biitiiniinde ajanlar optimal ¢oziimii
bulmada aday c¢oziim olarak kullanilarak avantaj saglamaktadirlar. Ajan sayisi
ile siniflandiricinin dogrulugu arasindaki odiinlesim daha optimize hale getirilerek,
hesaplama karmagiklig1 ve zamani acisindan yontemde iyilesme saglanabilir.

Ayrica dinamik ortamdaki tepe sayist deisimi sonucunda modelin yeniden
egitilme ihtiyacin1 kesfetmek icin analizler yapilmistir. Yapilan analizler sunulan
siniflandiricinin dinamik ortamdaki tepe sayisi parametresinden az da olsa etk-

Xxii

ilendigini fakat egitim kiimesi farkli tepe sayist bulunan ortamlarda alinan veriler ile
genisletildiginde daha genel bir siniflandirici elde edilebildigi gosterilmistir.

Buna ek olarak, onerilen metot tek nokta arama tabanl olarak gelistirilmistir. Ancak,
popiilasyon tabanli arama yontemi olarak da uygulanabilir.

xxiii

1. INTRODUCTION

Real-world optimization problems are mostly dynamic in nature. The aim of a dynamic
optimization method is not just finding a stationary optimum solution but also to track
the changing optimum [1]. A solver can be considered successful by comparison to its
adaptation capacity and speed for reacting changes occurs in a dynamic environment.
There are several mainstream methodologies that are applied in dynamic optimization
problems. These methodologies can be categorized into four groups according to
Jin Y. et al. [2]. These are the maintenance of diversity, reacting to changes in the

environment, making use of memory and lastly using multiple populations.

Every approach may perform differently for a specific type of dynamism in the
environment. For the reason that, knowing the type of dynamism can be useful when
selecting a proper approach for a dynamic optimization problem. The dynamism in
the environment might also change over time and choosing an approach can become
even an impossible task. Therefore, we must think a mechanism capable of reacting
different type of landscape changes during a run. There are some studies that focus
on representing different environments for adapting to changes. There are also prior
studies about the characterization of dynamic environments [3—5]. Branke et al. [6]
proposed a number of measures to characterize the nature of a change. The approach
proposed in our study expands this previous work by using the information about the
change characteristic for building a more effective solver. The novelty of this work lies
in making use of the properties of the change for adapting to a changing environment
continuously. In this thesis, we focus on creating a classification-based single point
search approach for dynamic optimization problems. The method proposed in this

study uses the characteristics of the change for adapting to the changing environment.

In the first stage of this thesis, we applied several measures to extract features from the
dynamic landscape. These features provide information for the classification process

of dynamic environments.

In the second stage of this thesis, experiments are performed to understand the
underlying components of the proposed method. The method is analyzed to have a

better comprehension by simply dividing it into separate algorithms.

The mechanisms that we propose in our study to respond to changes are similar to
the previously proposed hyper-heuristic approaches for dynamic environments. It
chooses proper mutation rates for a specific change characteristic like a selection
hyper-heuristic chooses low-level heuristics. To this end, we compare the performance
of our suggested approach with similar single point search-based hyper-heuristic
approaches for dynamic environments in literature in the third stage of this thesis. The
experimental results are promising and show the strength of the proposed heuristic
approach as a dynamic optimization solver. We conduct another experiment for
expanding this analysis. In the experiment, for maintaining dynamism as close as to
real life, a test setting with random changes in the dynamic environment is established,
and compared methods are tested in this experimental setup. As a result of this
analysis, it has been shown that the adaptation ability of our proposed approach is

better than other methods.

In the last stage of this thesis, we run the experiments for different settings to prove the

capability of our mechanism.

The rest of the thesis is organized as follows. The background information and the
related work from the literature are detailed in Section 2. The proposed approach is
introduced in Section 3. The experimental design, settings and the results are given in

Section 4. Finally, the paper concludes in Section 5 with suggestions for future work.

2. BACKGROUND

This chapter aims to give introductory information for the thesis. Firstly, the dynamic
environment concept is explained, and the following subjects are mentioned: dynamic
optimization problems, the Moving Peaks Benchmark (MPB), measuring performance

and the related work.

Comprehensive surveys on dynamic environments can be found in [1,2,5,7-9].

2.1 Dynamic Environments

Real-world optimization problems often have various types of uncertainties. One
source of such uncertainties is time-varying fitness functions. An environment is
called dynamic or changing in case of the optimization function, the problem instance
or some restrictions of the environment change in time separately or simultaneously.
Dynamic environments can be described with the characteristics of the changes. These

characteristics are presented in [5] as follows:

the frequency of change

the severity of change

the predictability of change

cycle length/cycle accuracy

The frequency of change determines how often a change happens in an environment.
The severity of change is a criterion that defines the intensity of a change. The
predictability of change controls the similarity between changes. Lastly, the cycle
length/cycle accuracy is used for describing the cyclic behavior of an environment.
These measures define the cycle of occurrence the similar states in an environment
and how similar these states. The characteristics of the change decide the dynamic
features of an environment and create various type of dynamism in the environment.

An optimum value may change over time because of this dynamism. In order to

3

" Approaches for Dynamic
Environments

T e B

" Maintain Diversity ‘ Increase Diversityk Memory-Based Multi-Population
_Throughout the Run | | After a change Approaches Approaches
~ Random H ermutationx Memory Indexing “Self-Organizing
_immigrants N Wyp _Evolutionary Algorithm Scouts
a Sharing/ “Variable Local Associative Memory leltlswarm
Crowdin Search Scheme for Genetic Particle Swarm
= g - Algorithms P _ Optimization

Figure 2.1 : Four main approach groups for dynamic optimization problems.

handle dynamism, unlike a stationary optimization problem, an optimization method
for dynamic environments must be capable of tracking the changing optimum [1]. The
simplest way to make a solver operate in a dynamic environment is to consider each
stationary state between changes as separate optimization problems. This approach
can work with dynamic environments that have severe changes. However, most of the
cases, good solutions are not very far from the previous ones. Therefore, transferring
some information between the following states may be a more useful approach. An
optimization method can be considered successful by comparison to its adaptation

capacity and speed for reacting changes occurs in a dynamic environment.

There are several mainstream methodologies that are applied in dynamic optimization
problems. These methodologies can be categorized into four groups according to Jin
Y. et al. [2] (see Figure 2.1). These are the maintenance of diversity [10—12], reacting
to changes in the environment [13—15], making use of memory [5, 16-21] and lastly

using multiple populations [22-27].

The algorithms that practice the principle of the maintenance of diversity do not take
particular actions when a change occurs. The algorithms aim to maintain diversity high
through the run to avoid convergence. Introducing randomly generated individuals
to a population called Random Immigrants was proposed by Grefenstette [10] is an

example to this group.

Another group of approach focuses on increasing exploration of solution space after
a change is detected. Hyper-mutation [13] is an example of these approaches. After

every change in an environment, the hyper-mutation method increases the mutation

4

rate in genetic algorithm drastically for some number of generations. Another example
is the extended compact genetic algorithm [14] that keeps diversity in the population

by doing random restarts of the population at every change.

Multi-population algorithms use several populations to find and trace multiple optima
in the search space such as self-organizing scouts [22] and multiswarm particle swarm

optimization methods [23,25].

In memory-based approaches, results produced in earlier search steps can be useful
later on, such as storing good solutions in memory to reuse them again. The storing
procedure can be done with implicit or explicit memory mechanisms [16]. The use of
memory mechanisms is more functional when cyclic changes occur in an environment,

or the previous environment resembles the new environment.

2.1.1 Dynamic optimization problems

Various approaches have been introduced to solve different types of dynamic
optimization problems, up to this date. Benchmark problems are needed for
comparison among different methods. There are different kinds of commonly used
benchmark problems. Most of the studies are done on syntactically-generated
benchmarks [4, 6, 28-31], where the complexity of the problem and the level of
dynamism in an environment is controllable [1]. There are also benchmarks that are

real-world dynamic optimization problems [21,32-35].

The MPB is one of the commonly used synthetic problems [1]. The MPB is a test
benchmark for dynamic optimization problems, created by Branke [4]. The MPB
is used in this study for examining the performance of the proposed algorithm and
comparing it with similar hyper-heuristic approaches from the literature. Also, in
the dataset creation process of this study, we extract features of various landscapes
that are generated by the benchmark. The MPB is suitable for this study since it
presents similar characteristics like in real-world problems [6] as well as it has several

parameters for creating several types of dynamic environments.

The benchmark generates dynamic landscapes with a number of peaks; every change

in the environment creates differences in heights, widths, and locations of each peak.

The generated dynamic landscapes with cone-shaped peaks can be defined with the

following Equation 2.1:

dim
— — 2
F(X,1) = max B(x),ir_nlai{Hi(t)—Wi(t)* Y (xj—Xij (1)} (2.1)
=1.. =
where B (X) is the base function, dim is the number of dimensions of the landscape, m

is the number of peaks and X;; is the position of the peaks in each dimension. Each

peak has its heights and widths which are H; and W;.

In the moving peaks problem, the task of a solver algorithm is to trace the highest peak
in a landscape of various peaks while the landscape is periodically changing. The MPB
has several parameters for creating different scenarios. In every environmental change,
the height, width and the location can change according to those parameters. The
frequency of change is determined as numbers of evaluations available between the
changes. When a change occurs, the heights and the widths of the peaks are changed
by adding Gaussian variables to current states. The peaks also move by a shift vector
v;. The changes in the landscape can be formulated with the following Equation 2.2,

Equation 2.3, Equation 2.4, Equation 2.5 and Equation 2.6:

peN(u,0?) (2.2)

H;(r) = H;(t — 1) + heightSeverity * p (2.3)
W;(r) = Wi(t — 1) + widthSeverity = p (2.4)
Xi(t) =X; (t — 1) +7i(r) (2.5)

—

Vi

(1) :m((l—l)ﬁﬁtﬁ(t—l)) 2.6)

Here, p is a random value which is produced from Gaussian distribution of N(u, 6?)
where y (mean) is set to 0, and ¢ (standard deviation) is 1. The shifting vector v; (t) 1S
determined according to the previous shifting vector v; (t — 1), a random shift vector 7,
A which is the correlation coefficient and parameter s. The A parameter (0 < A < 1)
defines the predictability of the changes in the shift vector v;. When the lambda is set
to 1, the movement directions of the peaks depends on the direction of the previous

movement. Whereas when the lambda is 0, the movement directions are decided

6

Table 2.1 : Severity settings of different change scenarios which create different types
of changes in environments using the MPB.

Scenario s heightSeverity widthSeverity
scenario-la 1.0 0 0
scenario-1b 5.0 0 0
scenario-2a 0 1.0 0
scenario-2b 0 5.0 0
scenario-3a 0 0 0.5
scenario-3b 0 0 1.0
scenario-4a 1.0 1.0 0.5
scenario-4b 5.0 5.0 1.0

randomly. The severity of the change in the height, width, and location of each peak is

controlled by the fixed parameters of heightSeverity, widthSeverity and s respectively.

A 2-dimensional landscape with five peaks is produced with the MPB to illustrate the
effect of changes one by one and also together. All scenarios are listed in Table 2.1.
Figure 2.2 a, d, g and j shows the initial state of the peaks at time t. Each scenario
is applied for ten following changes individually to the initial state. The results are

present with their scenario names as a caption.

2.1.2 Performance evaluation criteria

Performance evaluation is essential for understanding the effectiveness of different
approaches over changing environments. Several measures are for problem-specific
as well as general purposes. In stationary optimization problems, the best solution
obtained by an approach at the end of its run can be a meaningful performance
criterion. Another criterion can be run time or usage of memory until the best
solution is achieved. However, in case of changing environments, these measures are
not enough to judge an approach. There are additional aspects of a solver must be

considered such as adaptation capacity and speed for reacting changes.

In the case of dynamic optimization, the performance of the solver can be measured
with the online and offline performance measures which are proposed by De Jong [36]
[5]. For judging how good the performance, the online performance is described as an
average fitness of all evaluations from a run. The offline performance is defined as an
average fitness of all best solutions obtained so far since the last change. Unlike online

performance, offline performance considers only the fitness of the best solutions.

(), (k) ey
Figure 2.2 : (a), (d), (g) and (j) initial state. Results of change scenarios: (b)

scenario-la. (c) scenario-1b. (e) scenario-2a. (f) scenario-2b. (h)
scenario-3a. (i) scenario-3b. (k) scenario-4a. (1) scenario-4b.

Another measure, the offline error is based on offline performance. One of the
commonly used performance measure, the offline error [5], is described as the average

of the errors of the best solutions found so far since the last change of the environment.

Each candidate solution (individual) can be evaluated with their distance to the
optimum as given in Equation 2.7. In order to calculate the error value of a candidate

solution X at time #, the current optimum value must be known.

error (X,t) = |F (optimum,t) — F (X,1)| (2.7)

where F (optimum,t) is the fitness of the global optimum whereas F (¥, ¢) is the fitness

value of a candidate solution X.

Every evaluation step, the offline error is defined with the following Equation 2.8 and

Equation 2.9 :

Tevaluution
of flineError = (

error (xb_;st,t)/> (2.8)

evaluation — ;—|

!
error (Xpese,t) = min{error (xpys, T) ,error (Xpess, T+ 1), ..., error (Xpes 1)} (2.9)
— / . . —
Here error (xpey,t) is the error values of the best solutions x;,, found so far between

the last change and a considered time ¢ and 7,,4,4rion 15 the evaluation count.

Excellent tracking of the optimum means lower overall offline error values even closer

to zero for a solver algorithm.

Moreover, there are some other measures like Collective Mean Fitness [37] and Mean

Fitness Error [19]...etc.

In this thesis, the offline error measure is used in all experiments since the MPB

provides the optimum value at any given time.

Performance measure results alone are not enough for a proper comparison. A
fair comparison of different methods needs statistical tests for empirical confidence
that validates an approach performs better than another one. Some of the widely
used statistical analyses are Student t-test, Mann-Whitney U test, Wilcoxon’s
non-parametric test, ANOVA and Tukey HSD test. In this thesis, the One-way ANOVA
test at a confidence level of 95% is used. Statistical results of compared algorithms are
expressed with symbols that are S+’, ’S-’, ’>’ and ’<’ indicating statistically better,

statistically worse, better and worse respectively.

2.2 Related Works
Some studies focus on representing different environments for adapting to changes.

Explicit memory mechanism using the associative memory concept is investigated for
dynamic optimization problems. In the associative memory schemes, good solutions

are stored with associated environmental data. In this manner, when a new environment

which is similar to a collected environment instance occurs, the linked good solutions
can be employed for generating new solutions [38]. The associative memory scheme
has been developed for Population-based Incremental Learning (PBIL) algorithms for
dynamic environments [39]. The associative memory scheme has also been introduced
into Estimation of Distribution Algorithms (EDAs) which was firstly proposed by
Miihlenbein et al. [40]. The Memory Indexing Algorithm (MIA) indexes environments
with problem-specific knowledge such as the quality of the environment [17]. MIA
applies EDAs and hyper-mutation mechanism together to react on environmental
changes. If the environment is similar to previously seen ones, MIA uses a distribution
array to initialize the population. Peng et al. [41] have presented an environment
identification-based memory management scheme (EI-MMS). The EI-MMS uses, the
probability models to characterize and store the landscape of dynamic environments.
Then, it applies this stored data to adjust EDAs in compliance with environmental
changes. The study proposed an environment identification method for finding

best-fitting memory elements for new environments.

There are also prior studies about the characterization of dynamic environments [3-6,
42] which is one of the objectives of this thesis. Branke [5] introduced the frequency of
change, the severity of change, the predictability of change and the cycle length/cycle
accuracy criteria for categorization. Duhain et al. [42] reviews the previous methods
used for characterization and suggests a unified classification system. In the paper,
new behavioral classes; static environments, progressively changing environments,

abruptly changing environments and chaotic changing environments are proposed.

Branke et al. [6] proposed a number of measures to characterize the nature of a
change. The approach proposed in this thesis expands this previous work by using

the information about the change characteristic for building a more effective solver.

Hyper-heuristics are new search methodologies that have proven to be effective
solvers in dynamic environment optimization. Hyper-heuristics are high-level methods
that operate on top of a set of heuristics. There are two main categories of
hyper-heuristics [43]: heuristic selection and heuristic generation approaches. One
of the previous studies on hyper-heuristics in dynamic environments, Kiraz et
al. [44] shows the appropriateness of selection hyper-heuristics as solvers in dynamic

optimization problems. The empirical results of the study demonstrate that selection

10

hyper-heuristics are capable of reacting and tracking well in different types of changes.
The mechanisms that we propose in our study to respond to changes are similar to
the previously proposed hyper-heuristic approaches for dynamic environments. It
chooses proper mutation rates for a specific change characteristic like a selection

hyper-heuristic chooses low-level heuristics.

11

3. PROPOSED METHOD

We introduce here a classification-based single point search algorithm for solving
dynamic optimization problems. Single point search is a local search method
that operates on a particular solution candidate in search space by exploring its

neighborhood with a collection of moves.

The steps of this study can be summarized as follows:

* Collect data from dynamic environments by calculating measures for dataset

creation
* Build a classifier model to classify different type of landscape changes

* Modify a single point search algorithm by adding a new mechanism capable of

reacting different kinds of landscape changes during a run

The proposed algorithm consists of three components: change characterization,
mutation rate selection, and process of using sentinels as solutions. Briefly, at
the change characterization step, a learning mechanism is employed to classify the
landscape change with the data from the measure calculations. Then at the mutation
phase, the algorithm draws a standard deviation value within the given predetermined
interval for that class like a hyper-heuristic approach chooses a low-level heuristic.
Finally, sentinels that are used for measure calculations, also contribute as solutions
if the best sentinel is better than the current solution. The algorithm of the proposed

method is given in Figure 3.1.

3.1 Change Characterization

The ability to characterize the landscape changes of a dynamic environment provides
valuable information for adapting to those changes. In change characterization section
of this study, agents called sentinels, points in the search space, are used for computing

measures that represent the characteristics of a change. Next, a model has been

13

Algorithm 1 Classification-based single-point search algorithm

I: sentinel Placement ()
2: individual < createRandomlIndividual ()
3: while numberO fIterations do
4: if environmentChanged then
5: mutationSte pCount < 0
6: measures < calculateMeasures(sentinels)
7: bestSentinel < findBestSentinel()
8: if bestSentinel. fitness is better individual. fitness then
9: copySentinel (individual ,best Sentinel)
10: end if
L1 classResult < findClass(model , measures)
12: end if
13: if classResult.isDetermined() then
14: if mutationStepCount <= maxNumO fMutation then
15: stdev < selectStdev(classResult)
16: else
17: stdev < defaultStdev
18: end if
19: end if
20: mutant < mutate(individual 1 = 0,stdev)
21 mutationStepCount <— mutationSte pCount + 1
22: if mutant. fitness is better than or equal individual . fitness then
23: individual < mutant
24: end if
25: end while

Figure 3.1 : Classification-based single-point search algorithm.

developed for change classification by using the data from dynamic environments
which have different change characteristics. The change characterization steps are

detailed in the following subsections.

3.1.1 Sentinel placement

The Sentinel Placement method proposed by Morrison [45] is initially a change
detection method. The algorithm places sentinels in the landscape better than randomly
spread agents [46]. The sentinels take over the search space since they are distributed
evenly in higher dimensions. Therefore, in order to characterize changes efficiently,
instead of using randomly spread agents, we use the Sentinel Placement method to

position the sentinels.

The heuristic sentinel placement algorithm works as follows for N-dimensional space:

* Scale and offset all search space dimensions from O to 1.

14

* Randomly place the initial sentinel point x;, for i equals 1 to N.
* Create other sentinel points with Equation 3.1 and Equation 3.2.
Xip =modl [x;p_1 +Z;§] (3.1)

Z;£{41,43,47,59,83,107,109,173,311,373,401,409, ...} (3.2)

Here p equals 1 to sentinel count, ¢ is golden ratio equals to (v/541)/2, mod1 is
the modulo 1 operation and Z; values are set according to heuristic rules specified

in Morrison’s study [45].

There are two different agent placement examples in Figure 3.2. In two examples,
50 agents are distributed in 3-dimensional (100x100x100) search space. While
sub-figures a, ¢ and e show the result of the random distribution for each dimension
pair, sub-figures b, d and f show the result of the sentinel placement method for
each dimension pair. These two examples demonstrate the difference between the
two approaches. According to the experiment, the sentinel placement method has
obvious superiority compare to a random placement. It is more effective for landscape
exploration. If we want to use a small number of agents and higher multi-dimensional
space, the advantage of the sentinel placement method will become more evident.
However, the prime numbers, Z;, used in Equation 3.1, are known to produce

reasonably uniform distributions for 200 agents in dimensions up to 12 [45].

3.1.2 Measure calculation

In this thesis, several measures proposed by Branke et al. [6] have been used for
representing the nature of a change. We also include a simple measure called fitness
difference to the set of measures. We employed measures to extract features from the
dynamic landscape. These features provide information for the classification process

of dynamic environments. Calculations of the measures have been outlined below.

* Fitness Correlation: The fitness correlation is determined by fitness correlation
between the fitness of sentinels during the change steps [6]. The fitness correlation
is calculated using Equation 3.3.

Y (Sbefore; — Sbefore) (Safter; — Safter)

VJEE2" Svegore, — Soegore)Sater, ~ Safier)?

15

FC=

(3.3)

dimension 3

100

°
° ° o0
80 °
°
°
° °
~ 60 e ° ° ®
s S e
a D
c °]
@ .
£ °
S 40 o o® N
3 e e ®
°
°
20 .o
.
°« ° d
3 ° .
0o
[20 40 60 80 100
dimension 1
(a)
100 T
°
.
P, . :
°
° .
80 °
3 ° ° °
.
. o °
° oo 9
= 60 ° °
< °
=) °] °
2 . °
@
E
T 40
°
.
°
20 e
. °
. ° o
0 a
0 20 40 60 80 100
dimension 1
(©)
100
°
°
° X}
°
. o
80 e
° - e © .
°
°« ° ®e
° . ° .
60 ° -
q c
o o ® s
° ° 2
]
E
40 T
.
. °
° ° .
20
° °
°
° .
0 a
0 20 40 60 80 100
dimension 2

(e

100
0
° °
°
. ° o
o °
80 ° .
° L]
°
°
° o
°
~ 60 o ° .
5 . .
G °
c .
£ .) °
E °
T 40 L]
o
. . .
.
.
o .
20 o ° °
°
.
°
° °
o °
o 20 40 60 80 100
dimension 1
100 - -
° . °
[° °
(] ° .
80 L] . [
° ° °
. °
® ° °
m 60 ° ° °
c ° °
s
@ ° .
c
g . °
3 40 ° ¢
° °
° .
° °
o .
20 ° °
° °
° o
° °
0
9] 20 40 60 80 100
dimension 1
100 L4 v
. .
° . °
° ° (]
80 o °
° ° °
. ° °
° ° .
60 ® . °
° .
° °
°
40 ¢ *
. .
. °
° °
. °
20 . °
°
° .
° .
0
0 20 40 60 80 100
dimension 2

¢y

Figure 3.2 : Fifty randomly placed agents: (a) dimension 1,2. (c) dimension 1,3. (e)

dimension 2,3. versus fifty agents placed by the sentinel placement
method: (b) dimension 1,2. (d) dimension 1,3. (f) dimension 2,3.

16

Here sperore 18 a set of fitness values of sentinels before a change, s, e, 1S a set of

fitness values of sentinels after a change and count equals sentinel count.

Change Severity: The distance between the optimum before and after the
environmental change is called change severity [6]. For most of the cases, finding
the optimal solution at each environmental state won’t be possible. Hence, the
estimated change severity measure is used. Without knowing the real optimum, the
best solution is provided by performing local hill-climbing (LHC) to the sentinel
points is used as an optimum. Euclidean distance is used for distance calculation,

and the change severity is normalized according to the size of the search space.

LHC Fitness Correlation: The correlation of fitness after LHC before and
after landscape chance is also measured [6]. The measure is formulated as in

Equation 3.3 where spfore and sq e, are sets of fitness values that obtained by

LHC.

Fitness Difference: The fitness differences of sentinels before and after the change
are calculated. Then normalized fitness differences are averaged to use as a fitness

difference measure. The fitness difference is calculated as in Equation 3.4:

count | .. o
o Zi:] ‘Slbefore Slafzer

count

FD (3.4)

where s is fitness of sentinel, be fore and after indicate if it is from before or after

a change and count equals sentinel count.

The proposed algorithm is evaluated on the MPB. The MPB generator provides

dynamic environments with a variety of different change characteristics.

Euclidean distance is used if a measure requires distance calculations between points.

Where LHC is needed, a stochastic hill climbing algorithm is applied for 100 iterations,

and each LHC process starts from coordinates of the sentinels. The coordinates and

fitness values obtained at the end of the hill climbing processes are stored for measure

calculations. However, this process does not change the initial coordinates of the

sentinels. In this way, the sentinels start from the same coordinate points for every

calculation processes. The pseudo code of the stochastic hill climbing algorithm is

given in Figure 3.3. In the algorithm, the random neighbor is produced with using

17

Algorithm 2 Stochastic hill climbing algorithm

1: while numberOfIterations do

2: candidateSolution < createRandomNeighbor(currentSolution)

3: if candidateSolution. fitness is better currentSolution. fitness then
4: currentSolution < candidateSolution

5: end if

6: end while

7: return currentSolution

Figure 3.3 : Stochastic hill climbing algorithm.

gaussian mutation with a distribution of .4 (u,6?) where y (mean) is set to 0, and
sigma (standard deviation) is 1. The gaussian mutation operation is performed for

each dimension of the solution candidate and described in section 3.2.

Measure computing after each change causes some delay and more fitness evaluations.
However, the hill climbing process can be parallelized to deal with the overhead of
extra evaluations. Therefore we count that each LHC operation costs one evaluation,
losing one evaluation for each sentinel at LHC step is given up for employing

classification.

3.1.3 Dataset creation

A dataset consists of calculated measures as features and class information of changes,
collected using the MPB with three different severity levels. In the experimental
settings section 4.1.2, three different severity settings are listed in detail. These levels
are labeled as class information for each sample. (Frequency setting of the MPB makes
no difference for dataset creation. Since we classify dataset according to the severity

properties.)

Firstly, the severity settings of the dynamic environment are initialized for each specific
level. Then for each environmental setup, before the MPB runs, sentinel placement
method is employed to the environment. In the first stationary state of the environment,
sentinels prepare data from the landscape. This data will be used as information of
the before the change since the calculation of measures requires information from
the landscape before and after the change in the environment. During the run when

a change occurs in the landscape, sentinels prepare data from the altered landscape.

18

(MPB provides information whenever a change occurs.) This data is also stored to use

as a previous state of the environment if a new change happens.

Finally, measures are calculated by using both before and after change data as
explained in measure calculations section 3.1.2. The results are recorded as features
of a sample. This process repeatedly continues until a sufficient amount of samples is

gathered. Finally, the four-featured dataset with 407163 samples has been obtained.

A small part of the dataset is shown in Table 3.1 to help with visualization.

Table 3.1 : A sample of the dataset with four features and class information.

FITNESS DIF CHANGE SEV FITNESS CORR LHC FITNESS CORR CLASS

0.4124 0.0092453 0.995381 0.915427 LS
3.395 0.214257 0.603657 0.566644 HS
3.7838 0.186679 0.676397 0.659543 HS
2.3847 0.0640422 0.831933 0.763744 MS

The dataset creation process is also illustrated with a flowchart in Figure 3.4 Here,

Stop Criteria 1s the number of iterations to collect sufficient data.

3.1.4 Classifier model

The model building process has two stages, the training stage, and the model evaluation
stage. First, a classifier is trained with the given dataset, the output of the dataset
creation. Then, the performance of the built classifier is tested with different
performance measures such as accuracy, recall, and precision. In Figure 3.5, a diagram

of this process is presented.

Training
Data

Model Development

Performance

Model Evaluation |—» Measures

Figure 3.5 : Model building process.

19

Initialize
Environment Settings

!

Place Sentinels

yes

Stop

Criteria

Run MPB Generator

Is
Environment

no

Changed?

yes

Calculate Measures

Dataset
Features

End

Figure 3.4 : Flowchart of the dataset creation process.

20

In this study, the Random Forest Algorithm [47] is used for dynamic environment
classification. We trained the Random Forest model using the scikit-learn [48, 49]
with the collected dataset. The number of decision trees in the forest is 10, and
the maximum depth of the tree of the classifier is selected as 8. In our experiments
with the collected data, the classifier gives excellent results in terms of accuracy
and speed compared to other classification methods (K-Nearest Neighbor (KNN),
Gradient Boosting, Multi-layer Perceptron (MLP), and Support Vector Machine
(SVM) Classifiers) as explained in the section 4.1.3.

3.2 Mutation Rate Selection

The sentinel placement is performed at the beginning of the proposed method. The
algorithm starts with a single feasible solution which is created randomly. During
stationary states, the individual goes through gaussian mutation with a distribution of
N (1,0?) where (mean) is set to 0, and sigma (standard deviation) is the default
value of 10 and creates a mutant. It is assumed that the algorithm is aware of the
time when a change in the environment happens. Therefore, when there is a change,
measure calculations are performed before the classification step as shown in line 6
of the proposed algorithm in Figure 3.1. Then, four calculated features which present
last landscape change go through classification with our model to determine its class

as simplified in Figure 3.6.

Class: LS

Four features

which presents

last landscape
change

Output: /
Random) > Class: MS
Forest predicted /
class

Classifier

Input Data

Class: HS

Figure 3.6 : The landscape change classification process.

At the gaussian mutation step, instead of the default standard deviation, the algorithm

selects a standard deviation randomly and uniformly in the determined value ranges

21

for the specific class as shown in line 15 of the proposed algorithm in Figure 3.1.
The intervals are listed in the parameter tuning section. This standard deviation
selection according to the class of a change is used during defined sequential mutation
steps (maxNumO fMutation) after every landscape changes. Then the algorithm goes
back to applying the default standard deviation. The gaussian mutation operation is

performed as provided in Equation 3.5.

i =X +N(u,c?) (3.5)

Here, m is the mutant and X is the current individual respectively. The mechanisms
that the method uses to respond to changes resemble the previously proposed
hyper-heuristic approaches for dynamic environments. It chooses appropriate mutation
rates for specific change characteristics like a hyper-heuristic chooses a low-level

heuristic.

3.3 Using Sentinels as Solutions

In the measure calculation step, sentinel points go through an LHC process right after
each change. In LHC process, every sentinel points attempt to reach optimum value
like a single point doing a local search. End of the hill climbing, sentinels will have
information on better solution points in the search space. Therefore, those improved

points can be considered as decent solutions.

As mentioned before, hill climbing costs several evaluations directly proportional to
the sentinel count. However, the proposed approach turns that into an advantage by
using the best sentinel information. After the LHC process, the algorithm selects
the best solution among the sentinels and replaces the current solution with the best
sentinel if the sentinel is better than the current solution as shown in line 9 of the

proposed algorithm in Figure 3.1.

22

4. EXPERIMENTS AND RESULTS

A three-phase experiment is designed to evaluate the performance of the proposed
method. First phase is for parameter tuning, second phase for analyzing the
components of the proposed method and the last phase for comparison with other

methods in literature.

4.1 Experimental Design

4.1.1 The components of the proposed method

Some of the experiments focus on the component analysis of the proposed method.
For these experiments, the proposed algorithm is divided into separate algorithms to

have better comprehension.

The ’Snt’ approach operates as a single point algorithm and uses best sentinel
information as a solution after making sentinels LHC. Snt does not classify changes
in an environment. Snt method mutates the single point with fixed default standard

deviation without using the classification information of changes.

On the other hand, *Cls’ method classifies changes and uses the classification results of
changes when deciding a mutation rate after every change in an environment. Cls make
use of sentinels for change classification. However, it does not use the best sentinel as

a solution.

Moreover, to test the classification mechanism (Cls), the Cls method is altered as a
typical hyper-mutation method. Therefore at the mutation step, the altered method,
’RandHM’ method, selects a random standard deviation from the complete set of

standard deviations without knowing the class information.

Furthermore, the combination of Snt and RandHM methods is included as the
’Snt+RandHM’ method. Snt+RandHM approach operates as Snt method; it uses

the best sentinel information as solutions. But whenever a mutation operation is

23

performed instead of using fixed default standard deviation, Snt+RandHM chooses a
random standard deviation from the complete set of standard deviations like RandHM

approach.

Lastly, our complete proposed method is called the *Cls+Snt’ approach, which is
a combination of both Snt and Cls methods. Cls+Snt method applies the class
information of changes for mutation rate selection and also after each LHC of sentinels,
it replaces the current solution with the best sentinel if the sentinel is better than the

current as explained in detail in the proposed method section.

Figure 4.1 shows the components of the proposed method and their different
combinations. In the following sections, these short forms are used when referring

to the components.

altered
The Algorithm: Cls+Snt
RandHM
—
> Cls
combine
+
Snt v
Snt

+
combine
> RandHM

Snt + RandHM

Figure 4.1 : The components of the proposed method and their different
combinations.

4.1.2 Experimental settings

The performances of the compared approaches are examined under three separate
severity level classes with three different change frequency pairs. The performances
of the methods are compared using offline error [5]. One-way ANOVA test is used for

detecting the significance of the results.

24

Each experiment is run 100 times for the given settings with 20 changes in the
environment. Thus, there are 21 following stationary stages for each run. The number
of iterations of a run is calculated as in Equation 4.1. Also, the first stationary state of

the runs is not included in the offline error calculation.
numberO flIterations = (numberO fChanges + 1) * changePeriod 4.1)

Table 4.1 gives the parameters settings of the MPB and the severity levels are listed in

Table 4.2.

* Classes: low severity (LS), medium severity (MS) and high severity (HS).

* Change periods: low frequency (LF), medium frequency (MF), high frequency
(HF). The landscape changes every 6006 fitness evaluations for LF, 1001 for MF

and 126 for HE. The change periods are determined according to Kiraz’s study [44].

Table 4.1 : Parameter settings for the MPB.

Parameter Setting
Number of peaks 5
Peak heights [30, 70]
Peak widths [0.8, 7]
Uniform-height 50
Uniform-width 3
Peak function Cone
Range in each dimension [0, 100]
Number of dimensions 5
Basis function Not used
Correlation coefficient 0

Table 4.2 : Parameter settings for each severity level.

Setting LS MS HS
move severity 1 25 50
height severity 1 5 10

width severity 0.05 0.05 0.05

In this study, some of the experiments are conducted with different severity settings
which have more closely categorized classes as listed in Table 4.3. These are also the

MPB severity settings of Kiraz’s study [44].

In this thesis, statistical results of compared algorithms are expressed with symbols

that are S+’, ’S-’, ’>’ and ’<’. The explanation of these symbols are listed in Table 4.4.

25

Table 4.3 : Different parameter settings for each severity level.

Setting LS MS HS
move severity 1 5 10
height severity 1 5 10

width severity 0.1 0.5 1.0

Table 4.4 : The meanings of the result symbols.

Symbol Meanings
S+ Indicates that the first approach is significantly better than the second approach.
S- Indicates that the first approach is significantly worse than the second approach.
> Indicates that the first approach is better than the second approach.
< Indicates that the first approach is worse than the second approach.

4.1.3 Evaluation of classifier model

The experimental settings for evaluating classifier model are listed as follows:

* 80% of the dataset instance is used as training data.
* 20% of the dataset instance is used as testing data.

* 10 fold cross-validation is applied.

For choosing a suitable classifier model for our classification task, we examined a
number of algorithms with our data. The algorithms score very close results with the
severity settings used in this study from the point of classification accuracy. The results

can be observed in Table 4.5.

Table 4.5 : Classifier accuracy for sparse severity settings.

Classifier Classification Accuracy
Random Forest 0.978
KNN (N=3) 0.968
SVM 0.966
MLP Classifier 0.962
Gradient Boosting Classifier 0.976

Also, the robustness of the algorithms are tested with different severity settings taken
from the Kiraz’s study [44] (see Table 4.3). Table 4.6 provides the result of the second
experiment. Since the different sets of settings for the three classes have closer ranges
compared to this study, the classification task becomes more challenging. In this

aspect, the Random Forest and the Gradient Boosting algorithms are more robust than

26

the other techniques. In the end, the Random Forest is chosen because it gives faster

results than the Gradient Boosting.

Table 4.6 : Classifier accuracy for close severity settings.

Classifier Classification Accuracy
Random Forest 0.871
KNN (N=3) 0.755
SVM 0.696
MLP Classifier 0.693
Gradient Boosting Classifier 0.874

Table 4.7 provides ranked features of the model according to the variable importance

metric. The variable importance metric illustrates the statistical significance of each

feature in the dataset. The feature that ranked first is also the most important feature

that affects the model. The variable importance metric calculation can be found in the

H20 Flow framework [50].

Table 4.7 : The ranked features of the model according to the variable importance

metric.

Rank

Feature

1

2
3
4

Fitness Correlation
Fitness Difference
Change Severity

LHC Fitness Correlation

Here a confusion matrix (CM) which represents the performance of the classifier on

the test data is given for further analysis on the model. The CM in Table 4.8 shows the

predicted classes versus the actual classes.

Table 4.8 : The confusion matrix of the classifier model.

Predicted
LS MS HS
LS 21812 2 0
Actual MS 4 29094 1198
HS 0 706 28713

The numbers in the CM(3x3) can be interpreted as follows:

* CM(1,1): 21812 instances are correctly predicted as LS.

* CM(1,2): 2 instances are predicted as MS but their actual label is LS.

27

* CM(1,3): No LS instances that is predicted as HS.

* CM(2,1): 4 instances are predicted as LS but their actual label is MS.

* CM(2,2): 29094 instances are correctly predicted as MS.

* CM(2,3): 1198 instances are predicted as HS but their actual label is MS.
* CM(3,1): No HS instances that is predicted as LS.

* CM(3,2): 706 instances are predicted as MS but their actual label is HS.

* CM(3,3): 28713 instances are correctly predicted as HS.

It can be noticed from the observations the model almost perfectly predicts low severity
class (LS). Some of the cases it confused medium severity class (MS) with high

severity class (HS).

Moreover, precision and recall values are calculated for each class with Equation 4.2
and Equation 4.3 respectively. Precision indicates the proportion of the predicted
samples that are correctly predicted. On the other hand, recall indicates the amount
of the correctly predicted samples from the samples that should have been predicted in

the actual class.

precision = (tp:——pfp) 4.2)
recall = _r 4.3)
~ (tp+fn) '

For example, the false positive (fp) for class LS is the instances that have predicted
as LS; however, should have predicted as another class. On the other hand, the false
negative (fn) for class LS is the instances that have predicted as another class; but,
should have predicted as LS. Finally, the true positive (tp) for class LS is the instances
that are labeled as LS and have predicted as LS.

The precision and recall values of each class are provided in Table 4.9

28

Table 4.9 : Precision and recall values of each class.

Class Precision Recall
LS 0.99 0.99
MS 0.97 0.96
HS 0.95 0.97

4.1.4 Parameter tuning

Different components of the proposed method have parameters that require tuning for
better performance. These parameters are sentinel count, default standard deviation
and standard deviation value ranges which are used in the mutation operation for each
class. The parameters are determined experimentally with several preliminary tests

and optimized according to their effect on the performance.

Also, the effect of the number of peaks in an environment is investigated in terms of

the accuracy of the classifier and performance of the proposed method.

4.1.4.1 Effect of number of peaks

Since the classification model plays an essential role in our approach, we conducted
experiments for discovering the need for rebuilding the model if the number of peaks of
the dynamic environment changes. Therefore, the effect of using a different number of

peaks than the actual environment has, in the classifier training process is investigated.

The experiments are run with the same environment that has ten peaks. In the first test,
the classifier model trained with five peaks. On the other hand, in the second test the
classifier model, trained with ten peaks, is used. For each analysis, offline errors of the
proposed method for each frequency-severity pairs and classification accuracy of the

model are measured. In Table 4.10 the results of two experiments are listed.

In Table 4.10, it can be observed that if training data and input data of the classifier
have different peak counts, the accuracy of the classifier decreases. Despite the drop in
accuracy, the overall performance of the proposed method is not significantly affected.
If the dataset is expanded with more data from environments that have various peak

counts, the accuracy of the classifier would be higher.

29

Table 4.10 : Classification accuracy of classifier models and offline error values of the
method with standard deviations in the environment that has ten peaks.
One is trained with five peaks, and the other is trained with ten peaks.

Environment has 10 peaks.
Model trained with 10 peaks.

Environment has 10 peaks.
Model trained with 5 peaks.

Offline Error Classification Offline Error Classification
Accuracy Accuracy
LS 1.894+0.29 1.91+0.3
LF MS 4.29+0.57 4.4+0.63
HS 4.574+0.58 4.56+0.57
LS 2.09+0.33 2.060.29
MF MS 4.8+0.68 98.46 4.854+0.67 96.13
HS 5.03+0.62 498 +£0.62
LS 3.544+0.52 3.534+0.46
HF MS 8.62+1.12 8.53+1.08
HS 8.96+0.91 8.97+0.88

Therefore, we train the classifier model with data collected from both five peaks
and ten peaks environments, and we test the model in the environment that has ten
peaks. Table 4.11 gives the corresponding results of this test. This time, classification
accuracy and offline error values are really close as the model that is trained with data
obtained from ten peaks environment. This experiment shows us that a model which is
design for change classification can cope with different landscapes with various peak

numbers.

4.1.4.2 Effect of default standard deviation parameter

In this study, some of the algorithms that are compared, use the default standard
deviation parameter. The default standard deviation is a free parameter that affects
performance. We analyze this parameter with four different settings. Each algorithm
is run for the four different values of the default standard deviation. Statistical
significance tests are conducted to decide the best setting of default standard
deviation parameter for our proposed method (Cls+Snt). Cls+Snt, Snt, RandHM, and
RandHM+Snt algorithms are pairwise compared for four different default standard

deviation settings. The ANOVA test results are provided in Table 4.12.

30

Table 4.11 : Classification accuracy of the model and offline error values of the
method with standard deviations in the environment that has ten peaks.
Training data obtained from both five peaks and ten peaks environments.

Environment has 10 peaks.
Model trained with both 5 peaks and 10 peaks data.

Offline Error Classification
Accuracy
LS 1.87+£0.30
LF MS 4.2840.58
HS 4.5440.53
LS 2.13+0.36
MF MS 4.764+0.63 97.53

HS 5.03£0.58

LS 3.524+0.45
HF MS 8.524+1.07
HS 8.93+0.92

Table 4.12 : The ANOVA test results of methods for different default standard
deviation values with different frequency and severity combinations.

. Default LF MF HF
Algorithm Sud

tdev LS MS HS LS MS HS LS MS HS

0.3 < < < < < S S- < <

. 2.0 S+ > < S+ < < S+ < >
Cls+Sntvs Snt 5.0 S+ > > S+ S+ > S+ < >
10.0 S+ S+ < S+ S+ < S+ > <
Cls+Snt vs RandHM 0.3 S+ S+ S+ S+ S+ S+ S+ S+ S+
2.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
5.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
10.0 S+ S+ S+ S+ S+ S+ S+ S+ S+

Cls+Snt vs RandHM+Snt 0.3 < < < > > > S+ < >
2.0 S+ < < S+ < < S+ < <

5.0 S+ < < S+ < S- S+ > <

10.0 S+ < S S+ > S S+ < >
Snt vs RandHM 0.3 S+ S+ S+ S+ S+ S+ S+ S+ S+
2.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
5.0 S+ S+ S+ S+ S+ S+ S+ S+ S+
10.0 S+ S+ S+ S+ S+ S+ S+ S+ S+

Snt vs RandHM+Snt 0.3 < > > > > S+ S+ > >
2.0 < < > < < < < < <

5.0 S- S- < S- S- S- < > <

10.0 S S S S S S < < <

RandHM vs RandHM+Snt 0.3 S S S S S- S S S- S
2.0 S- S- S- S S- S S S- S

5.0 S- S- S- S S- S S S- S

10.0 S- S- S S S- S S S- S

According to the S+ results, the Cls+Snt method performs better when the default

standard deviation parameter is set to 10. The Cls+Snt method gives better results than

31

the Snt method at low severity settings regardless of frequency. Also, the RandHM

method falls behind of the Cls+Snt and the Snt methods for all settings.

Table 4.13 : The overall CS+’, ’S-’, ’>" and ’<’) counts for different default standard
deviation values.

Default

Algorithm Stdev S+ S- > <
0.3 10 2 4 11
2.0 15 0 2 10
Cls+Snt 50 16 1 5 5
10.0 17 2 3 5
0.3 13 0 13 1
St 2.0 9 3 5 10
5.0 9 9 2 7
10.0 9 11 3 4
03 0 27 0 0
2.0 0 27 0 0
RandHR 5.0 0 27 0 0
10.0 0 27 0 0
0.3 9 3 8 7
2.0 9 3 14 1
RandHM+Snt 50 15 3 7)
10.0 3 5 2

The overall S+ counts in Table 4.13 confirm that the proposed method, Cls+Snt,
performs best when the default standard deviation is set to 10. In this study, the default

standard deviation parameter is set to 10 for all approaches that employ the parameter.

4.1.4.3 Effect of sentinel count

The accuracy of the model depends on a set of parameters such as sentinel count,
number of peaks and the severity settings of each class. In this section, the sentinel
count parameter is investigated for building a better classifier model. The sentinel
count effect is shown in terms of the classification accuracy and the offline error that

represents the algorithm performance for each frequency-severity pairs in Table 4.14.

The results are indicated that the accuracy values of the classifier are close when the

sentinel size is 50 and 100. However, considering the offline error values, when the

32

Table 4.14 : The effect of the sentinel size for different frequency and severity

combinations.

Classification Accuracy of

of sentinel Frequency Severity Random Forest Classifier Offline Error
LS 4.14+2.29

LF MS 12.58 +3.84

HS 14.65+£2.86

LS 4.18+2.15

10 MF MS 0.9181 13£3.61
HS 16.344+2.86

LS 6.04+1.97

HF MS 23.05+4.84

HS 27.84+4.14

LS 2.87+1.48

LF MS 7.714+1.65

HS 8.82+1.39

LS 2.874+1.26

30 MF MS 0.9584 8.53+2.09
HS 9.95+1.7

LS 3.594+1.25

HS MS 11.37£2.05

HS 13.39+1.95

LS 2.24+0.74

LF MS 6.05+1.28

HS 7.01+1.12

LS 2.4+1.09

50 MF MS 0.9662 6.69+1.61
HS 7.64+1.12

LS 3.43+1.05

HS MS 10.52+1.93

HS 11.81+1.4

LS 1.83+0.44

LF MS 4.5440.8

HS 4.78 +0.84

LS 2.06+0.4

100 MF MS 0.9785 5+0.71
HS 5.594+0.85

LS 3.544+0.53

HF MS 9.73+£1.56

HS 10.8 £1.32

33

sentinel size is 100, the method gives better performance. Therefore, as an outcome of

the experiments, we selected sentinel count as 100.

4.1.4.4 Standard deviation value ranges for each class

After every landscape changes at the gaussian mutation step that detailed in the
proposed method, the proposed algorithm picks a standard deviation value randomly
and uniformly from the determined value ranges for each specific class. The specified
intervals are defined experimentally. Table 4.15 gives the standard deviation groups

for the classes that are used in this study.

Table 4.15 : The standard deviation ranges for each class.

Standard Deviation

Class Range
LS [0.5, 0.7]
MS [2.0, 3.0]
HS [7.0,9.0]

4.2 The Experiments for Component Analysis of the Proposed Method

The suggested method is analyzed to have a better comprehension by simply dividing
it into two separate algorithms. The performances of the separated algorithms are
compared. Also, different combinations and variations of these algorithms have been
described and analyzed. These experiments provide insight into the strengths and
weaknesses of the method. Algorithms are pairwise compared for different frequency
and severity combinations. The results are indicated in Table 4.16. The determined
default standard deviation is 10 and the maximum number of mutation step is 70.

These are the same for all compared methods that are using the mechanisms.

Firstly, the Cls method is compared with the Snt method. Cls method uses class
information while Snt method uses best sentinel information. The Snt method clearly
has better performance than the Cls method, as seen from the results. However, when
the Cls method combines with the Snt, it outperforms both the Cls and the Snt method
alone. RandHM, which is the modified version of Cls, uses hyper-mutation mechanism
without knowing the class of a change in an environment. It chooses random standard
deviations, unlike the Cls method that selects standard deviations according to a

change class. The comparison between Cls and RandHM shows us the classification

34

Table 4.16 : The ANOVA test results of the component analysis of the proposed
method for different frequency and severity combinations.

Algorithm LF MF HF

LS MS HS LS MS HS LS MS HS
Cls+Snt vs Snt S+ S+ > S+ S+ < S+ > <
Cls+Snt vs Cls S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs RandHM S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs RandHM+Snt S+ > S- S+ > S- S+ < >
Snt vs Cls S+ S+ S+ S+ S+ S+ S+ S+ S+
Snt vs RandHM S+ S+ S+ S+ S+ S+ S+ S+ S+
Snt vs RandHM+Snt S- < S- S- S- S- < < >
Cls vs RandHM S+ S+ S- S+ S+ > S+ S+ S+
Cls vs RandHM+Snt S- S- S- S- S- S- S- S- S-
RandHM vs RandHM+Snt S- S- S- S- S- S- S- S- S-

approach is useful for dynamic environments. Cls gives better performance than
RandHM. On the other hand, the results show that the RandHM+Snt performs better
than the Snt method yet, the Cls+Snt still has better results. The RandHM has the
weakest performance among all algorithms. The Cls+Snt algorithm is significantly
better than the RandHM+Snt for low severity settings of all frequency levels. Also,
Table 4.17 shows that the Cls+Snt performs well according to total scores. Overall, the
experimental observations indicate that the Cls+Snt combination is the best choice for

the solver approach.

Table 4.17 : The overall ("S+’,’S-’, ’>" and ’<’) counts for component analysis of the
proposed method.

Algorithm S+ S- > <
Cls+Snt 26 2 5 3
Snt 18 10 3 5
Cls 7 28 1 0
RandHM 1 34 0 1
RandHM+Snt 25 3 4 4

4.3 The Experiments for Comparison with Similar Methods in Literature

The proposed method is compared with other single-point search based hyper-heuristic
algorithms proposed for dynamic environments since the Cls part of the method
exhibits similar behaviors of a hyper-heuristic. One of the previous studies on
hyper-heuristics in dynamic environments, Kiraz et al. [44] shows the appropriateness
of selection hyper-heuristics as solvers in dynamic optimization problems. The study
carried on hyper-heuristics based on single-point search framework with using the

MPB. The empirical results of the study demonstrate that selection hyper-heuristics are

35

capable of reacting and tracking well in different types of changes. In Kiraz’s study, the
Choice Function (CF) heuristic selection [51] method combined with the Improving
and Equal (IE) move acceptance method [51, 52] (CF-IE) has the best performance
compared to the other approaches.! In this paper, we compared our classification-based
method with the CF-IE approach, along with the Hyper-mutation [13] Improving and
Equal (HM-IE) and a basic single-point search method (NoHM).

The experimental settings of CF-IE and HM-IE are directly taken from Kiraz’s
study [44]. The CF-IE uses seven mutation operators that have seven different standard
deviations {0.5, 2, 7, 15, 20, 25, 30} are used as low-level heuristics as described in

Kiraz’s study [44].

The HM-IE method operates gaussian mutation using 2 as a default standard deviation.
The method changes its standard deviation of 2 to 7 for 70 sequential steps if a change

occurs which is also defined in Kiraz’s study [44].

The NoHM method runs with using the default standard deviation of 10 in gaussian

mutation operation without reacting the changes.

Cls+Snt, CF-1E, HM-IE, and NoHM algorithms are pairwise compared for different
frequency and severity combinations. Table 4.18 summarizes the results of the
experiments and Figure 4.2 illustrates the box-plots of offline errors for the statistical
comparison of the experiments. Also, in Table 4.19, shows the overall counts of each

result type of significance tests.

Table 4.18 : The comparison of ANOVA test results of the proposed method with
similar approaches in the literature for different frequency and severity

combinations.

Algorithm LF MF HF

LS MS HS LS MS HS LS MS HS
Cls+Snt vs CF-IE S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs HM-IE S+ S+ S+ S+ S+ S+ S+ S+ S+
Cls+Snt vs NoHM S+ S+ S+ S+ S+ S+ S+ S+ S+
CF-IE vs HM-IE S+ > S+ S+ > S- S- S- S-
CF-IE vs NoHM S+ S+ S+ S+ S+ S+ S+ S+ S-
HM-IE vs NoHM S+ S+ S+ S+ S+ S+ S+ S+ S+

In this study, the MPB settings for three different severity classes are determined more widely
sparsed compared to the Kiraz’s study for capturing the behavior of the changing environment. Since
the MPB severity settings differ from the Kiraz’s study, the experimental results are also different.

36

Table 4.19 : The overall ("S+’,’S-’, ’>" and ’<’) counts for the proposed method and
other approaches in the literature.

Algorithm S+ S- > <
Cls+Snt 27 0 0 0
CF-IE 11 14 2 0
HM-IE 13 12 0 2
NoHM 1 26 0 0
LF-LS LF-MS LF-HS
120 120 120
100 100 100
s 80 5 80 5 80
& & &
@ 60 © 60 ® 60
£ £ £
S 40 S 40 " S 40 .
. +
20 20 H % 20 i % %
e % % % 0 =+ lt:‘rl 0 = %I
Cls+Snt CF-IE HM-IE NoHM Cls+Snt CF-IE HM-IE NoHM Cls+Snt GF-IE HM-IE NoHM
MF-LS MF-MS MF-HS
120 120 120
100 100 100
5 80 5 80 5 80
] i m
@ 60 © 60 @ 60
£ £ £
S 40 S 40 N - S 40 +
l — g _ L ==
20 - 20 @ % T 20 = s T
N== = NIES L= -
Cls+Snt CF—IE HM-IE NoHM Cls+Snt CF-IE HM-IE NoHM Cls+Snt CF-IE HM-IE NoHM
HF-LS HF-MS HF-HS
120 120 120
_
100 100 100 \
|
§ 80 § 80 =9— 80
o 60 o 60 o 60
2 2 - — 2 [=5
S £ _ £ 1 T
O 40 O 40 E E g O 40 ===
_ T + -
20 + % 20 - 20
s = = F = =

0
Cls+Snt CF-IE HM-IE NoHM

0
Cls+Snt CF-IE HM-IE NoHM

0
Cls+Snt CF-IE HM-IE NoHM

Figure 4.2 : Box-plots of offline errors for compared approaches (Cls+Snt, CF-IE,
HM-IE and NoHM) for different frequency and severity combinations.

The experiment shows us the Cls+Snt is significantly better than other compared

methods for all frequency-severity pairs (see Table 4.19). The HM-IE is scored closest

to the Cls+Snt approach, and it is followed by the CF-IE. The CF-IE gives better than

37

average outputs, and it is more efficient with lower frequency-severity settings. The

NoHM has poorer scores among the group.

4.4 The Random-run Experiments

For further analysis, the change adaptability of the compared approaches is tested with
an experiment. The test is carried out by ensuring that each change step, a severity
setting is randomly chosen from the determined three classes in Table 4.2 while the
frequency is kept fixed. Table 4.20 gives the results of the experiment for each
frequency setting in terms of offline error with the standard deviations of the offline
errors for 100 runs. Figure 4.3, Figure 4.4 and Figure 4.5 provide the corresponding

results as box-plots of offline errors for random-run experiments.

Table 4.20 : Offline errors and standard deviations of the random-run experiments of
each compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) averaged
over 100 runs for each frequency settings.

Algorithm LF MF HF

Cls+Snt 3.69+£0.77 4.25+0.97 8.12+1.67
CF-IE 10.70+£5.20 14.20£5.53 40.01 +£8.53
HM-IE 11.40£5.32 14.73+£5.60 29.25+6.29
NoHM 18.50£4.88 24.92+5.70 39.90+6.20

LF
80

70 9

60 - 1

[$))
o
T
|

N
o
T
1

Offline Error

W
o
T
|

20

+
+
—_—
|
|
|

T [
% ! JR
1

Cls+Snt CF-IE HM-IE NoHM

Figure 4.3 : Box-plots of offline errors for random-run experiments of each compared
method (Cls+Snt, CF-IE, HM-IE, and NoHM) for low frequency setting.

38

MF

80

70 N

60 - N

Offline Error
N
o
T
|

—
|
O |
30 [| | .
I
|
|
| |
201 | ! \ |
PR
101 | T *
%
0
Cls+Snt CF-IE HM-IE NoHM

Figure 4.4 : Box-plots of offline errors for random-run experiments of each compared
method (Cls+Snt, CF-IE, HM-IE, and NoHM) for medium frequency

setting.
HF
80
70 *
+
60 — -
| s
| —_—T
50 | ‘ i
. | [
g |
L [
o 40 | —
£
£ [
[
30 | | i
[
1
I I
[
20 | -
+ 1
10 .
R -
0
Cls+Snt CF-IE HM-IE NoHM

Figure 4.5 : Box-plots of offline errors for random-run experiments of each compared
method (Cls+Snt, CF-IE, HM-IE, and NoHM) for high frequency setting.

39

The offline error of all approaches rises as the frequency increases. Looking at
the random-run experiment results, it can be deduced that the Cls+Snt has the
best performance. Since the approach reacts to changes in a dynamic environment
immediately it is capable of following the random sequential changes. CF-IE gives
close results compare to HM-IE for low (LF) and medium (MF) frequency settings.
However, when the frequency increase to high (HF) setting, the performance of HM-IE

is better than CF-IE. NoHM has poorest scores for all frequency settings.

4.5 The Experiments for Different Settings

In this part of the experiment, we examine the influence of the severity settings that can
affect the performance of all compared approaches. We aim to test the limits of our
method by using different severity settings. Cls+Snt, CF-IE, HM-IE, and NoHM are
also run with the MPB severity settings of Kiraz’s study for the random-run experiment

(see Table 4.3).

The offline errors of this version for LF, MF and HF are listed in Table 4.21.

Table 4.21 : Offline errors and standard deviations of the random-run experiments of
each compared method (Cls+Snt, CF-IE, HM-IE, and NoHM) for each
frequency settings using different severity settings.

Algorithm LF MF HF

Cls+Snt 4.004+£2.07 4.78+1.91 7.33+2.41
CF-1IE 10.36 £5.49 11.07+£5.96 19.32+6.12
HM-IE 12.87+£6.47 1543+6.57 23.10+7.36
NoHM 19.36+6.75 23.31+6.72 31.44+8.91

In this experimental setup when frequency level is high, the CF-IE, HM-IE and
NoHM show improvement in terms of performance compare to previous random-run
experiment with initial settings. This means CF-IE, HM-IE and NoHM approaches
adapt better in low severity setting. The most significant performance improvement

can be observed in CF-IE approach.

On the other hand, Cls+Snt gives similar results compared to the previous random-run
experiment. The change in the severity settings does not have much effect on
Cls+Snt method. NoHM has the poorest performance for all frequency settings of

this experiment.

40

LF

80

70 T

50 T

Offline Error
N
o
T
|

|
30 — ‘ -
| | |
20} : l |
* |
- ‘]
10 +
| |
]
0
Cls+Snt CF-IE HM-IE NoHM

Figure 4.6 : Box-plots of offline errors random-run experiments (using different
severity settings) of each compared method (Cls+Snt, CF-IE, HM-IE,
and NoHM) for low frequency setting.

MF
80
70t .
60 - B
50 B
5
g
o 40 — .
£ |
5 \
|
30t \ | i
- |
| |
| |
20 | -
|
|
10 BN - i
[
— i
— 1 P
0
Cls+Snt CF-IE HM-IE NoHM

Figure 4.7 : Box-plots of offline errors random-run experiments (using different
severity settings) of each compared method (Cls+Snt, CF-IE, HM-IE,
and NoHM) for medium frequency setting.

41

HF

80
70 B
60 - B
|
50| |]
|
<] \
m - 1 |
o 40 R I T
£ | ‘ |
o | |
|
30t | ‘ -
|
[
20 I 1
|
|
i | ——
10 ‘ ! 1
—— —— —
P
0
Cls+Snt CF-IE HM-IE NoHM

Figure 4.8 : Box-plots of offline errors random-run experiments (using different
severity settings) of each compared method (Cls+Snt, CF-IE, HM-IE,
and NoHM) for high frequency setting.

Figure 4.6, Figure 4.7 and Figure 4.8 show the corresponding results as box-plots of

offline errors for this experiment.

42

S. CONCLUSION

In this thesis, a classification-based single point search algorithm, which makes use
of change characterization information to react differently under different change
characteristics in dynamic environments, is introduced. The proposed algorithm
reacts to changes like hyper-heuristic approaches previously proposed for dynamic
environments. The method uses the representation of change to track the optimum
smartly. The novelty of this work lies in making use of the properties of the change for

adapting to a changing environment continuously.

The proposed algorithm is tested using the MPB, a test benchmark, that generates
dynamic landscapes with a number of peaks; every change in the environment creates
differences in heights, widths, and locations of each peak. The benchmark is suitable

for this study since it presents similar characteristics like in real-world.

In the first stage of this thesis, we applied several measures to extract features from
the dynamic landscape. These features provide information for the classification
process of dynamic environments. At the classification process, several classification
algorithms are used with the extracted data for building a classifier model. The
Random Forest Algorithm is selected since it gives excellent results in terms of
accuracy, speed and robustness compared to other classification methods (K-Nearest
Neighbor, Gradient Boosting, Multi-layer Perceptron, and Support Vector Machine
Classifiers). The influence of the parameters on the accuracy of the classification
mechanism is also tested with several experiments and proper parameter settings are

adopted.

In the second stage of this thesis, experiments are performed to understand the
underlying components of the proposed method. The method is analyzed to have
a better comprehension by simply dividing it into separate algorithms. These

experiments provide insight into the strengths and weaknesses of the proposed method.

43

In the third stage of this thesis, we compare the performance of our suggested
approach with similar single point search-based hyper-heuristic approaches for
dynamic environments in literature. The experimental results are promising and show
the strength of the proposed heuristic approach as a dynamic optimization solver. In
addition to this experiment, for maintaining dynamism as close as to real life, a test
setting with random changes in the dynamic environment is established, and compared
methods are tested in this experimental setup. As a result of this experiment, it has
been shown that the adaptation ability of our proposed approach is better than other
methods. All approaches are compared under the assumption that the occurrence of
a landscape change is known and thus change detection step is ignored. If change
detection is considered as an issue, the proposed method will have a clear advantage

with the sentinels, even the occurrence of changes cannot be easily detected.

In the final stage of this thesis, we run the experiments for different settings to prove the
capability of our mechanism. The experimental results indicate the proposed approach
is able to work with various types of dynamism. The classification model plays an
essential role in our approach. The model used in this work has been trained with
the extracted data from environments that have specified settings. The capability
of the model is explored for different environment settings with this experiment.
A comprehensive analysis can be conducted for building a more generic model.
Therefore, the research of a more generic model can be a separate study topic. The
accuracy of the model depends on a set of parameters such as sentinel count, number
of peaks and the severity settings of each class. These parameters except the sentinel
count also have an impact on the difficulty level of a dynamic optimization problem
and will be investigated more for the overall performance of the proposed method. All
in all, as a future work the parameter dependency of the proposed algorithm can be

investigated more extensively.

We are aware that the process of generating input data for classifier costs several
evaluations directly proportional to the sentinel count. However, the method turns
that into an advantage by using the best sentinel information as explained in the Snt
method. The trade-off between the sentinel count and the accuracy of the classifier
can be examined further to be optimized. Improvements in this aspect will decrease

computational complexity and save time to the approach.

44

Furthermore, introducing different types of dynamism, like dimensionality change to

our optimization problem could be interesting as another future work.

Finally, the main idea explored in this study can be applied to population-based search
algorithms and thus can be compared with other state-of-art population-based heuristic

methods for dynamic environments.

45

REFERENCES

[1] Cruz, C., Gonzalez, J.R. and Pelta, D.A. (2011). Optimization in dynamic
environments: a survey on problems, methods and measures, Soft
Computing, 15(7), 1427-1448.

[2] Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain
environments-a survey, IEEE Transactions on evolutionary computation,

9(3), 303-317.

[3] De Jong, K. (1999). Evolving in a changing world, International Symposium on
Methodologies for Intelligent Systems, Springer, pp.512-519.

[4] Branke, J. (1999). Evolutionary algorithms for dynamic optimization problems: A
survey, AIFB.

[5] Branke, J. (2001). Evolutionary Optimization in Dynamic Environments.

[6] Branke, J., Salihoglu, E. and Uyar, S. (2005). Towards an analysis of dynamic
environments, Proceedings of the 7th annual conference on Genetic and
evolutionary computation, ACM, pp.1433—-1440.

[7] Weicker, K. (2003). Evolutionary algorithms and dynamic optimization problems,
Der Andere Verlag Berlin.

[8] Morrison, R.W. (2004). Designing Evolutionary Algorithms for Dynamic
Environments, Springer Science & Business Media.

[9] Yang, S., Ong, Y.S. and Jin, Y. (2007). Evolutionary computation in dynamic and
uncertain environments, volume 51, Springer Science & Business Media.

[10] Grefenstette, J.J. et al. (1992). Genetic algorithms for changing environments,
PPSN, volume 2, pp.137-144.

[11] Tinés, R. and Yang, S. (2007). A self-organizing random immigrants genetic
algorithm for dynamic optimization problems, Genetic Programming and
Evolvable Machines, 8(3), 255-286.

[12] Yang, S. (2008). Genetic algorithms with memory-and elitism-based immigrants
in dynamic environments, Evolutionary Computation, 16(3), 385-416.

[13] Cobb, H.G. (1990). An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent
nonstationary environments, Technical Report, NAVAL RESEARCH
LAB WASHINGTON DC.

47

[14] Abbass, H., Sastry, K. and Goldberg, D. (2004). Oiling the wheels of change:
The role of adaptive automatic problem decomposition in non-stationary
environments (IlliIGAL Report No. 2004029), Urbana, IL: University of
Hllinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

[15] Tinods, R. and Yang, S. (2008). Evolutionary programming with g-Gaussian
mutation for dynamic optimization problems, 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational
Intelligence), IEEE, pp.1823-1830.

[16] Branke, J. (1999). Memory enhanced evolutionary algorithms for changing
optimization problems, Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, volume 3, IEEE, pp.1875-1882.

[17] Karaman, A., Uyar, S. and Eryigit, G. (2005). The memory indexing evolution-
ary algorithm for dynamic environments, Workshops on Applications of
Evolutionary Computation, Springer, pp.563-573.

[18] Yang, S. (2006). Associative memory scheme for genetic algorithms in dynamic
environments, Workshops on Applications of Evolutionary Computation,
Springer, pp.788-799.

[19] Richter, H. and Yang, S. (2009). Learning behavior in abstract memory schemes
for dynamic optimization problems, Soft Computing, 13(12), 1163-1173.

[20] Pelta, D., Cruz, C. and Verdegay, J.L. (2009). Simple control rules in a
cooperative system for dynamic optimisation problems, International
Journal of General Systems, 38(7), 701-717.

[21] Yang, S., Cheng, H. and Wang, F. (2010). Genetic algorithms with immigrants
and memory schemes for dynamic shortest path routing problems in
mobile ad hoc networks, IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 40(1), 52—63.

[22] Branke, J., KauBler, T., Smidt, C. and Schmeck, H., (2000). A multi-population
approach to dynamic optimization problems, Evolutionary Design and
Manufacture, Springer, pp.299-307.

[23] Blackwell, T. and Branke, J. (2004). Multi-swarm optimization in dynamic
environments, Workshops on Applications of Evolutionary Computation,
Springer, pp.489-500.

[24] Mendes, R. and Mohais, A.S. (2005). DynDE: a differential evolution for
dynamic optimization problems, 2005 IEEE Congress on Evolutionary
Computation, volume 3, IEEE, pp.2808-2815.

[25] Blackwell, T. and Branke, J. (2006). Multiswarms, exclusion, and
anti-convergence in dynamic environments, [EEE transactions on
evolutionary computation, 10(4), 459-472.

[26] Moser, 1. and Hendtlass, T. (2007). A simple and efficient multi-component
algorithm for solving dynamic function optimisation problems, 2007 I[EEE
Congress on Evolutionary Computation, IEEE, pp.252-259.

48

[27] Novoa, P., Pelta, D.A., Cruz, C. and del Amo, I.G. (2009). Controlling
particle trajectories in a multi-swarm approach for dynamic optimization
problems, International Work-Conference on the Interplay Between
Natural and Artificial Computation, Springer, pp.285-294.

[28] Morrison, R.W. and De Jong, K.A. (1999). A test problem generator for
non-stationary environments, Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406), volume 3,
IEEE, pp.2047-2053.

[29] Aydin, MLE. and Oztemel, E. (2000). Dynamic job-shop scheduling using
reinforcement learning agents, Robotics and Autonomous Systems,
33(2-3), 169-178.

[30] Younes, A., Calamai, P. and Basir, O. (2005). Generalized benchmark generation
for dynamic combinatorial problems, Proceedings of the 7th annual
workshop on Genetic and evolutionary computation, ACM, pp.25-31.

[31] Hanshar, F.T. and Ombuki-Berman, B.M. (2007). Dynamic vehicle routing
using genetic algorithms, Applied Intelligence, 27(1), 89-99.

[32] Lin, S.C., Goodman, E.D. and Punch III, W.E. (1997). A Genetic Algorithm
Approach to Dynamic Job Shop Scheduling Problem., ICGA, pp.481-488.

[33] Branke, J. and Mattfeld, D.C. (2000). Anticipation in dynamic optimization: The
scheduling case, International Conference on Parallel Problem Solving
from Nature, Springer, pp.253—-262.

[34] Mack, Y., Goel, T., Shyy, W. and Haftka, R., (2007). Surrogate model-based
optimization framework: a case study in aerospace design, Evolu-
tionary computation in dynamic and uncertain environments, Springer,
pp-323-342.

[35] Michalewicz, Z., Schmidt, M., Michalewicz, M. and Chiriac, C., (2007). Adap-
tive business intelligence: three case studies, Evolutionary computation in
dynamic and uncertain environments, Springer, pp.179-196.

[36] De Jong, K.A. (1975). Analysis of the behavior of a class of genetic adaptive
systems.

[37] Morrison, R.W. (2003). Performance measurement in dynamic environments,
GECCO workshop on evolutionary algorithms for dynamic optimization
problems, 5-8, Citeseer.

[38] Yang, S., (2007). Explicit memory schemes for evolutionary algorithms
in dynamic environments, Evolutionary computation in dynamic and
uncertain environments, Springer, pp.3-28.

[39] Yang, S. and Yao, X. (2008). Population-based incremental learning with
associative memory for dynamic environments, /EEE Transactions on
Evolutionary Computation, 12(5), 542-561.

49

[40] Miihlenbein, H. and Paass, G. (1996). From recombination of genes to the
estimation of distributions I. Binary parameters, International conference
on parallel problem solving from nature, Springer, pp.178-187.

[41] Peng, X., Gao, X. and Yang, S. (2011). Environment identification-based memory
scheme for estimation of distribution algorithms in dynamic environments,
Soft Computing, 15(2), 311-326.

[42] Duhain, J.G. and Engelbrecht, A.P. (2012). Towards a more complete
classification system for dynamically changing environments, 2012 IEEE
Congress on Evolutionary Computation, IEEE, pp.1-8.

[43] Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. and
Qu, R. (2013). Hyper-heuristics: A survey of the state of the art, Journal
of the Operational Research Society, 64(12), 1695—-1724.

[44] Kiraz, B., Etaner-Uyar, A.S. and Ozcan, E. (2013). Selection hyper-heuristics
in dynamic environments, Journal of the Operational Research Society,
64(12), 1753-1769.

[45] Morrison, R.W., (2004). A New EA for Dynamic Problems, Designing
Evolutionary Algorithms for Dynamic Environments, Springer, pp.53—68.

[46] Nguyen, T.T., Yang, S. and Branke, J. (2012). Evolutionary dynamic
optimization: A survey of the state of the art, Swarm and Evolutionary
Computation, 6, 1-24.

[47] Breiman, L. (2001). Random forests, Machine learning, 45(1), 5-32.

[48] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
0., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. ez al. (2011).
Scikit-learn: Machine learning in Python, Journal of machine learning
research, 12(Oct), 2825-2830.

[49] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel,
O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J. er al.
(2013). API design for machine learning software: experiences from the
scikit-learn project, arXiv preprint arXiv:1309.0238.

[50] Variable Importance - H20 3.24.0.2 documentation, Retrieved
January 18, 2019 from http://docs.h20.ai/h20/
latest-stable/h2o-docs/variable—importance.html#
variable—-importance.

[51] Cowling, P., Kendall, G. and Soubeiga, E. (2000). A hyperheuristic approach to
scheduling a sales summit, International Conference on the Practice and
Theory of Automated Timetabling, Springer, pp.176—190.

[52] Cowling, P., Kendall, G. and Soubeiga, E. (2002). Hyperheuristics: A tool
for rapid prototyping in scheduling and optimisation, Workshops on
Applications of Evolutionary Computation, Springer, pp.1-10.

50

CURRICULUM VITAE

Name Surname: Seyda Yildirim Bilgic
Place and Date of Birth: Erzurum, 18.04.1990

E-Mail: sydyildirim@ gmail.com

EDUCATION:
* B.Sc.: 2014, Yildiz Technical University, Faculty of Electrical and Electronic,
Computer Engineering Department
PROFESSIONAL EXPERIENCE AND REWARDS:
e 2015-..., TUBITAK Bilgem BTE, Researcher

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

* Yildinm Bilgi¢ S., Etaner-Uyar A.S., 2019: A Classification-based Heuristic
Approach for Dynamic Environments, MENDEL 2019: International Conference
on Soft Computing-MENDEL, July 10-12, 2019 Brno, Czech Republic.

51

