
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

COMPLIANCE CONTROL OF COLLABORATING ROBOTS

M.Sc. THESIS

Mertcan KAYA

Department of Mechanical Engineering

System Dynamics and Control Engineering Programme

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

COMPLIANCE CONTROL OF COLLABORATING ROBOTS

M.Sc. THESIS

Mertcan KAYA
(503151611)

Department of Mechanical Engineering

System Dynamics and Control Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Zeki Yağız BAYRAKTAROĞLU

JUNE 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

İŞBİRLİKÇİ ROBOTLARIN UYUM KONTROLÜ

YÜKSEK LİSANS TEZİ

Mertcan KAYA
(503151611)

Makina Mühendisliği Anabilim Dalı

Sistem Dinamiği ve Kontrol Mühendisliği Programı

Tez Danışmanı: Doç. Dr. Zeki Yağız BAYRAKTAROĞLU

HAZİRAN 2019

Mertcan KAYA, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology, student ID 503151611, successfully defended the thesis entitled “COM-
PLIANCE CONTROL OF COLLABORATING ROBOTS”, which he prepared af-
ter fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Zeki Yağız BAYRAKTAROĞLU
Istanbul Technical University

Jury Members : Prof. Dr. Ata MUĞAN
Istanbul Technical University

Assoc. Prof. Dr. Cüneyt YILMAZ
Yıldız Technical University

Date of Submission : 3 May 2019
Date of Defense : 11 June 2019

v

vi

FOREWORD

I would like to thank my advisor Assoc. Prof. Dr. Zeki Yağız Bayraktaroğlu for his
guidance throughout my study. I would also like to thank İTÜ Mechatronics Education
and Research Center and its staff for allowing me to use the robot manipulators for this
study.

June 2019 Mertcan KAYA

vii

viii

TABLE OF CONTENTS

Page

FOREWORD... vii
TABLE OF CONTENTS.. ix
ABBREVIATIONS ... xi
SYMBOLS... xiii
LIST OF TABLES .. xv
LIST OF FIGURES ..xvii
SUMMARY ... xix
ÖZET ... xxi
1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 2
1.2 Literature Review ... 2
1.3 System Description... 3

1.3.1 Hardware .. 3
1.3.1.1 Robot manipulators.. 4
1.3.1.2 End-effector ... 4
1.3.1.3 F/T transducer and controller... 5
1.3.1.4 Robot controller ... 6
1.3.1.5 User input/output devices .. 7

1.3.2 Software.. 8
1.3.2.1 Controller operating system and interfaces 8
1.3.2.2 Robot algorithm development and analyzing environments............ 9

2. MATHEMATICAL MODELING... 11
2.1 Coordinate Frames and Representations .. 11

2.1.1 Joint space and task space coordinates ... 11
2.1.1.1 Position and orientation representations.. 12
2.1.1.2 Screw representations of velocities and forces 15

2.1.2 Virtual displacement and principle of virtual work 17
2.1.3 Transformation matrices... 17
2.1.4 Geometric representation.. 19

2.2 Kinematics.. 21
2.2.1 Forward kinematics .. 21
2.2.2 Inverse kinematics .. 24
2.2.3 Forward differential kinematics.. 25
2.2.4 Inverse differential kinematics.. 28

2.3 Dynamics.. 29
2.3.1 Inverse dynamics .. 29

2.3.1.1 Euler-Lagrange method ... 31

ix

2.3.1.2 Newton-Euler method.. 32
2.3.1.3 Joint friction and balancing forces... 36
2.3.1.4 End-effector and F/T transducer dynamics...................................... 36

2.3.2 Forward dynamics .. 38
3. CONTROL SYSTEM DESIGN .. 41

3.1 Trajectory Generation... 41
3.1.1 Joint space trajectories.. 42
3.1.2 Task space trajectories .. 42

3.2 Controller Design ... 44
3.2.1 Motion control .. 46
3.2.2 Force control... 48
3.2.3 Compliance control .. 49

3.2.3.1 Hybrid position/force control .. 49
3.2.3.2 Parallel position/force control.. 52

4. EXPERIMENTATION... 57
4.1 Experimental Setup .. 57
4.2 Task Description ... 58
4.3 Implementations ... 59

4.3.1 Task 1: Compliance control of a single robot... 60
4.3.1.1 Case 1: Hybrid position/force control ... 61
4.3.1.2 Case 2: Parallel position/force control .. 62
4.3.1.3 Discussion of the task 1 ... 64

4.3.2 Task 2: Compliance control of collaborating robots 65
4.3.2.1 Case 1: Hybrid position/force control ... 65
4.3.2.2 Case 2: Parallel position/force control .. 66
4.3.2.3 Discussion of the task 2 ... 70

5. CONCLUSIONS... 73
REFERENCES.. 75
APPENDICES... 79

APPENDIX A .. 81
APPENDIX B... 85
APPENDIX C... 87
APPENDIX D .. 93

CURRICULUM VITAE... 97

x

ABBREVIATIONS

3-D : Three-dimensional
API : Application Program Interface
CoM : Center of Mass
D-H : Denavit-Hartenberg
DoF : Degree of Freedom
E-L : Euler-Lagrange
EoM : Equation of motion
F/T : Force/Torque
FCL : Force control loop
IDE : Integrated Development Environment
I/O : Input/Output
LLI : Low-level Interface
N-E : Newton-Euler
OS : Operating System
PC : Personal computer
PCLJ : Position control loop in joint-space
PCLT : Position control loop in task-space
PID : Proportional–Integral–Derivative
TCP/IP : Transmission Control Protocol/Internet Protocol
USB : Universal Serial Bus

xi

xii

SYMBOLS

qqq : Generalized coordinate vector
x : Position and orientation in special Euclidean group
x : Parameterized position and orientation vector
v : Linear velocity vector
ω : Angular velocity vector
v : Stack of linear and angular velocity vectors (twist)
f : Force vector
n : Moment vector
f : Stack of force and moment vectors (wrench)
E : Mapping matrix
W : Work
JA : Analytic (task) Jacobian
J : Geometric (basic) Jacobian
R : Rotation matrix
p : Position vector
T : Homogeneous transformation matrix
X : Spatial transformation matrix
S : Skew-symmetric matrix
1 : Identity (unit) matrix
0 : Matrix or vector of zeros
f : Forward kinematics function

xiii

xiv

LIST OF TABLES

Page

Table 2.1 : D-H table for the RX160 series robot arms. 20
Table 2.2 : Parameters of the identified model of de(f z

e). 23
Table 4.1 : PID gains in hybrid position/force control scheme. 60
Table 4.2 : Controller parameters in parallel position/force control scheme........ 60
Table 4.3 : Control parameters for different impedances. 69
Table 4.4 : Performances of the parallel position/force control in terms of

position and force tracking errors... 69
Table A.1 : Work envelope of RX160 family. ... 84
Table A.2 : Amplitude, speed and resolution of RX160 family. 84
Table B.1 : Delta calibrations. ... 85
Table B.2 : Delta physical properties. ... 86

xv

xvi

LIST OF FIGURES

Page

Figure 1.1 : Stäubli RX160L and RX160 model robot manipulators [29] [30]. .. 4
Figure 1.2 : End-effector. .. 5
Figure 1.3 : ATI Delta transducer [31].. 6
Figure 1.4 : ATI F/T controller [32].. 6
Figure 1.5 : CS8C robot controller [33].. 7
Figure 1.6 : Manual control pendant [33]. .. 8
Figure 2.1 : Rotation on XYZ Euler angles. ... 14
Figure 2.2 : Elements of twist and wrench shown on a rigid link. 16
Figure 2.3 : Implementation of D-H convention on bodies and joints. 20
Figure 2.4 : Placement of coordinate frames on the robot joints, base and

end-effector (for qqq = [0,0,π/2,0,π/4,0]T). 20
Figure 2.5 : Model of the F/T transducer and the end-effector length de(f z

e). 23
Figure 2.6 : 6-DoF robot arm with a spherical wrist. ... 24
Figure 2.7 : Velocity and acceleration vectors for link i. 33
Figure 2.8 : Force and moment vectors for link i. .. 34
Figure 2.9 : Coordinate placement of sensor and end-effector tip/CoM. 37
Figure 3.1 : Trajectory generator and controller. .. 42
Figure 3.2 : Inverse kinematics in block diagram... 43
Figure 3.3 : PID controller. ... 45
Figure 3.4 : Computed torque method. ... 46
Figure 3.5 : Motion control in joint space. ... 47
Figure 3.6 : Motion control in task space. .. 47
Figure 3.7 : Explicit force control scheme.. 48
Figure 3.8 : Hybrid position/force control in joint space...................................... 50
Figure 3.9 : Hybrid position/force control in task space. 50
Figure 3.10 : Hybrid position/force control with computed torque........................ 51
Figure 3.11 : Basic impedance controller. .. 53
Figure 3.12 : Implemented impedance controller scheme...................................... 54
Figure 3.13 : Parallel position/force control scheme. ... 55
Figure 4.1 : Location of robots and work-piece. .. 58
Figure 4.2 : Experimental setup.. 59
Figure 4.3 : Position tracking error of the end-point on the work-piece (O-xz)

plane. .. 61
Figure 4.4 : Force control along the (O-y) axis to the work-piece plane.............. 62
Figure 4.5 : Translational motion of end-effector along the (O-y) axis................ 63
Figure 4.6 : Orientation error of the end-effector in terms of the Euler angles. ... 63

xvii

Figure 4.7 : Absolute mean error with standard deviations of both cases for
task 1... 64

Figure 4.8 : Position tracking error of the end-point on the work-piece (O-xz)
plane. .. 66

Figure 4.9 : Force control along the (O-y) axis to the work-piece plane.............. 67
Figure 4.10 : Translational motion of end-effector along the (O-y) axis................ 67
Figure 4.11 : Orientation error of the end-effector in terms of the Euler angles. ... 68
Figure 4.12 : Absolute mean error with standard deviations of both cases for

task 2... 68
Figure 4.13 : Position tracking error of the end-point on the work-piece (O-xz)

plane, with different impedances.. 70
Figure 4.14 : Force control along the normal (O-y) axis to the work-piece

plane, with different impedances.. 71
Figure 4.15 : Translational motion of end-effector along the normal (O-y) axis,

with different impedances. ... 71
Figure A.1 : Describtion of links and joints of the RX160 family robots. 81
Figure A.2 : Dimensions of RX160... 82
Figure A.3 : Dimensions of RX160L. ... 82
Figure A.4 : Work envelope of RX160 family robots on xz-plane........................ 83
Figure A.5 : Work envelope of RX160 family robots on xy-plane. 83
Figure B.1 : Placement of sensor frame on the F/T transducer. 85

xviii

COMPLIANCE CONTROL OF COLLABORATING ROBOTS

SUMMARY

Robot manipulators are known for their productivity in industrial applications. In a
highly restricted environment, robots can achieve given tasks as predicted. However
some more complex tasks require dynamic environment with interactions between
humans or other robots. While they were preferred to be used individually in isolated
spaces, technological developments and new studies on robotics made it possible to
use multiple robots in collaboration.

Industrial robots generally work at high speeds and produce high forces on contact.
Being in the workspaces of these robots is a dangerous position because it is possible
to be impacted by the robot arm while it is in a motion. In order to use robots interacting
with humans and other robots, various collaboration approaches have been developed.

Collaboration of robots requires a high environmental sensibility and compliance in
motion. Implemented force sensors are important for measuring interaction forces.
Controlling interaction forces and robot motions individually or jointly is a key part
of collaboration. Various types of force and motion control methods can be classified
under compliance control. Two of the compliance control methods presented in this
study are named as hybrid position/force control and parallel position/force control.

In this thesis, different compliance control methods are implemented practically for a
single robot and two robots in collaboration and the experimental results are compared
and discussed. The purpose of this study is presented with a literature review in the
introduction chapter. The system is also described in this chapter in terms of hardware
and software. The hardware such as robot manipulators, sensors, computational
and input/output devices are given in details. The software used throughout the
development and running of the robot algorithm is described under corresponding
sections.

The mathematical modeling of the robots and their attachments such as end-effector
and F/T transducer is formed for kinematics and dynamics. At first, the coordinate
frames and different types of representation methods are described as a basis of
formation for modeling. Orientation representations such as Euler angles are
mentioned. Screws denoting general velocities and forces as twist and wrench are
shown. Kinematic model of robots describes the motion in different spaces. The term
Jacobian is introduced and derived for various uses. Dynamic model relates forces and
torques acted on a body with its motion. Two methods for deriving dynamic models
are described in addition with friction and balancing effects.

In the next chapter, the control system is designed for motion and force control
separately and together under compliance control schemes. Hybrid position/force
control and paralel position/force control schemes are shown as control law equations

xix

and block diagrams. The basis of trajectory generation, which acts as reference for
control schemes, is also shown in this chapter.

Experiments on the implementation of the two compliance control schemes are
conducted for single robot and collaborating robots tasks. The task is described as a
sequence of a free motion of one of the robot’s end-effector switching to a compliance
motion after achieving a contact with a work-piece. Both tasks are identical except the
first one has a static environment and the second one has a dynamic environment due
to motion of the second robot. The experimental results for the two compliance control
methods in both tasks are presented as numerical values and graphics in this chapter.
Moreover, the parallel position/force control scheme is repeated with different control
parameters in order to investigate the changed dynamic behavior of the system.

In the conclusions chapter, experimental results are discussed and differences between
these results are shown. The shortcomings of this study and its implementations are
identified and possible improvements are suggested for future studies.

xx

İŞBİRLİKÇİ ROBOTLARIN UYUM KONTROLÜ

ÖZET

Robot manipülatörler, kullanıldıkları endüstriyel uygulamalarda verimliliği arttırması
ile bilinirler. Genel olarak robotlar, kısıtları yüksek bir ortamda yüksek kesinlik ile
tanımlanmış bir görevi öngörüldüğü biçimde yerine getirebilirler. Ancak robotlar için
verilen bazı daha karmaşık görevler, iyi tanımlanmamış belirsiz ortamlarda ve buna
ek olarak dinamik ortamların olduğu robotların insanlar ile ya da diğer robotlar ile
etkileşiminin içerildiği durumlarda gerçekleştirilmeyi gerektirebilirler. Endüstriyel
uygulamalarda son dönemlere kadar robotların tek başlarına yalıtılmış alanlarda
kullanılması tercih edilmekteyken, robotik konusundaki teknolojik gelişmeler ve yeni
çalışmalar, birden çok robotun işbirliği içinde kullanılmasına olanak sağlamıştır.

Endüstriyel robotlar, kullanıldıkları üretim süreçleri içerisinde genellikle yüksek
hızda çalışırlar ve temas anında yüksek kuvvetler üretirler. Bu robotların çalışma
alanları olası çarpışmalar nedeniyle tehlikelidirler. Robotların insanlar ile veya öteki
robotlar ile etkileşime girebilmeleri için çeşitli işbirliği yaklaşımları geliştirilmiştir.
Robotların işbirliği içerisinde çalışabilmesi için çevrelerinin yeteri kadar iyi bir
şekilde algılanabilmesi ve hareketlerinin birbirleri ile uyumlu olması gerekmektedir.
Robotların bilek eklemleri ile uç işlevcileri arasına eklenen kuvvet/tork algılayıcıları,
robotların uç işlevcilerinin çevresi ile etkileşiminden kaynaklanan kuvveti ve torku
ölçmek için kullanılmaktadırlar. Robotların işbirliği halinde çalışabilmeleri için
etkileşim kuvvetlerinin ve uç işlevci hareketlerinin tek başına kontrol edilmesinin
yetersiz kalacağı, her ikisinin de bir uyum içerisinde birlikte kontrol edilmesinin
gerekli olduğu bilinmektedir. Kuvvet ve hareket kontrol yöntemlerinin bir çok farklı
türü uyum kontrol methodları altında sınıflandırılabilir. Bu çalışmada sunulan ve
uygulanan uyum kontrol yöntemlerinden ikisi literatürde hibrit konum/kuvvet kontrolü
ve paralel konum/kuvvet kontrolü olarak adlandırılmıştır.

Bu çalışmada, önceki paragrafta belirtilen iki farklı uyum kontrol yöntemi tek bir
robot manipülatörün önceden tanımlandırılmadığı statik bir çevrede ve aynı robot
manipülatörün işbirliği içerisinde bir başka robot manipülatörün hareket etmesiyle
değişen dinamik bir çevrede pratik uygulaması gerçekleştirilmiş ve deneysel sonuçları
iki kontrol yöntemi arasında iki görev için de ayrı olarak karşılaştırılıp tartışılmıştır.
Bu çalışmanın giriş bölümünde robotların tanımı yapılıp tarihteki yerlerinden kısaca
bahsedilmiştir. Tezin amacı ve bu tez için kaynakça oluşturan çalışmaları içeren
literatür incelemesi bu bölüm içerisinde sunulmuştur. Ayrıca bu bölümde sistem
tanımlanması donanım ve yazılım olmak üzere iki bölümde yapılmıştır. Donanım
altbölümünde sistemin tanımlanması karşılık geldikleri başlıkların altında robot
manipülatörler, uç işlevci, kuvvet/tork algılayıcısı ve kontrolcüsü, robot kontrolcüsü
ve son olarak da giriş/çıkış aygıtları olarak ayrıntılı bir biçimde yapılmıştır. Bu
çalışmada robotun kontrol ve yörünge hesaplamalarının yapılması için oluşturulan

xxi

robot algoritmasının geliştirilmesi ve yürütülmesi boyunca kullanılan yazılımlar onlara
karşılık gelen başlıkların altında tanımlanmıştır.

İkinci bölümde, robot manipülatörlerin kinematik ve dinamik matematiksel modelleri
oluşturulmuştur. Öncelikle, matematiksel model oluşturmanın temelleri olarak
koordinat çerçeveleri ve farklı türlerden temsil yöntemleri tanımlanmıştır. Robotun
eklem uzayı ve görev uzayı koordinatları tanımlanmış, robotun uç işlevcisinin
konumunun ve yönelimin temsil yöntemleri belirtilmiştir. Konum temsil yöntemleri
için bu çalışmada kullanılan Kartezyen koordinatları tanımlanırken, diğer silindirik
ve küresel koordinatlardan kısaca bahsedilmiştir. Yönelim temsil yöntemlerinden
dönme matrisi ve minimal gösterim yöntemlerinden angle-axis ve birim kuaternion
kısaca açıklanırken bu çalışmada kullanılan Euler açıları ile yönelim temsilin
tanımlanması yapılıp, dönme matrisi ile dönüşümleri verilmiş, öteki minimal temsil
yöntemlerine göre avantajlı ve dezavantajlı yönleri ortaya konulmuştur. Katı cisim
dinamiğinde ortaya çıkan doğrusal/açısal hız ve kuvvet/tork vektörleri sırasıyla twist
ve wrench olarak ifade edilen ve genel olarak bunun gibi 3 boyutlu uzayda bir eksen
üzerinde öteleme ve dönme şeklinde gösterilebilen vektörleri screw olarak adlandırılan
bir vektör çifti biçiminde ifade etmenin yöntemi gösterilmiştir. Bunun yanında
dönme matrisinden skew-symmetry özelliği ile açısal hız vektörünün elde edilmesi
ve doğrusal/açısal hızların başka gösterim yöntemleri ile eşlenmesi gösterilmiştir.
Sonraki başlıkta kinematik ve dinamik modellemenin temellerini oluşturan sanal
yerdeğiştirme ve sanal iş prensibi hakkında kısaca bahsedilmiştir. Ardından koordinat
çevreveleri arasındaki dönüşümler için kullanılan homojen dönüşüm matrisleri ve
Plücker koordinat sisteminde ifade edilen screw dönümüşümleri için kullanılan uzaysal
dönüşüm matrisleri tanımlanmıştır. Robotların geometrik gösterimi için çoğunlukla
kullanılan Denavit-Hartenberg yönteminin kuralları açık bir şekilde belirtilmiştir.

Gerekli matematiksel tanımlamalar yapıldıktan sonra robot kinematiği ve dinamiği
modellenmeye hazır duruma getirilmiştir. Bu modellemelerde robotlara eklenen
uç işlevci ve kuvvet/tork algılayıcısı da göz önünde bulundurulmuştur. Uç
işlevcinin uygulanan kuvvete bağlı uzunluk değişimi deneysel olarak tanılanmış ve
modellenmiştir. Robotların kinematik modeli, robotun hareketini farklı uzaylarda
tanımlamaya yarar. Robotun eklem hareketlerini uç işlevcisinin hareketi olarak
hesaplamak için ileri kinematik model, tersi için ise ters kinematik model
kullanılmaktadır. Konum hesaplamaları yanı sıra, hız ve ivme hesaplamaları için
birinci ve ikinci dereceden diferansiyel kinematik modellemeler de altbaşlıklarda
tanımlanmıştır. Robotik uygulamalarda da kullanılan Jakobiyen terimi tanıtılmış,
gövde üzerindeli herhangi bir noktaya göre türetilme yöntemleri gösterilmiş ve
farklı kullanım alanları tanımlanmıştır. Jakobiyen matrisinin uç işlevciye göre
geometrik ve analitik olarak iki farklı türü belirtilmiş ve birbirleriyle olan ilişkisi
gösterilmiştir. Robotların dinamik modeli tüm gövdelere etki eden net kuvvet
ve tork ile bu gövdelerin hareketleri arasındaki ilişkiyi ortaya koyar. Gövdelere
uygulanan kuvvet/tork sonucunda ortaya çıkan gövde hareketi ters dinamik ile bu
ilişkinin tersi ise ileri dinamik ile tanımlanmaktadır. Robot dinamiğini belirten hareket
denklemi ve buradaki çeşitli dinamik etkiler tanımlanmıştır. Robotların dinamik
modelinin türetilmesi için kullanılan Euler-Lagrange ve Newton-Euler yöntemlerinin
temellerinden bahsedilmiş ve her eklem için sırayla kullanılan Newton-Euler
denklemleri verilmiştir. Bunlara ek olarak eklem sürtünme ve yerçekimi dengeleme
etkilerinin modellenmesinden de söz edilmiştir. Uç işlevcinin ağırlından kaynaklanan

xxii

etkinin kuvvet/tork algılayıcısının ölçüm değerlerinden çıkartılması için kullanılan
yönetemler belirtilmiştir.

Bir sonraki bölümde, robotun hareket ve kuvvet kontrolü için kontrol sistemi
tasarlanmıştır. İlk olarak kontrol sisteminde referans olarak kullanılacak yörüngeler
tanımlanmıştır. Hareket yörüngeleri eklem uzayı ve görev uzayı olarak iki başlıkta
anlatılmış, farklı kontol şemalarında kullanılma yöntemleri gösterilmiştir. Kontrolcü
tasarımında hareket ve kuvvet kontrollerinin ayrı olarak ve uyum kontrol şemaları
altında birlikte kullanımı gösterilmiştir. Hareket ve kuvvet konrol şemalarının ve
uyum kontrol şemalarından hibrit konum/kuvvet kontrol ve paralel konum/kuvvet
kontrol yöntemlerinin kontrol kanunu denklemleri ve blok diyagramları bu bölümde
karşılık geldikleri başlıkların altında gösterilmiştir. Uyum kontrol şemalarında
kontrol edilen eksenleri belirten uyum çerçevesi tanımlanmış, hibrit konum/kuvvet
kontrol şemasında kullanılan uyum seçilim matrisi ve paralel konum/kuvvet kontrol
şemasının temelini oluşturan empedans kontrol yöntemi gibi önemli konulara
değinilmiştir. Uyum çerçevesinin belirlenmesi verilen görevin kısıtlamalarına göre
seçilmesi gerekirken uyum seçilim matrisi bu çerçeve üzerindeki eksenlerin konum
veya kuvvet kontrolünde olmasını belirler. Empedans kontrol yöntemi robotun uç
işlevcisinin bir kütle-yay-damper sistemi gibi davranarak uç işlevcinin hareketi ile
ona etkiyen kuvvet/tork arasında bir ilişki içerisinde davranmasını amaçlar. Paralel
konum/kuvvet kontrol şeması ise empedans kontrolündeki dolaylı kuvvet kontrol
yönteminin doğrudan kuvvet yöntemine çevirilmesi ile oluşmaktadır.

Bu çalışmada ele alınan iki uyum kontrol yönteminden hibrit konum/kuvvet kontolü
ve paralel konum/kuvvet kontrolü, tek robot ve işbirlikçi robotlar ile uyum kontrolü
görevlerinin pratik uygulanması için deneyler gerçekleştirilmiştir. Uygulanan iki
deneysel görev de genel olarak serbest hareket eden robotlardan birinin uç-işlevcisinin
katı bir cisime temas etmesi ardından kuvvet takibiyle birlikte uyumlu bir harekete
geçmesi olarak tanımlanır. Bu iki deneysel görev de ilk görevin durağan bir çevrede
gerçekleşmesi ve ikinci görevin ise ikinci bir robotun hareketinden kaynaklı dinamik
bir çevrede gerçekleşmesi dışında özdeştir. Söz konusu iki uyum kontrol yöntemi
için her iki görevin pratik uygulanmasından elde edilen deneysel sonuçlar, sayısal
değerler ve grafikler verilerek bu bölümde sunulmuştur. Bunlara ek olarak, sistemin
dinamik davranışının değişimleri, paralel konum/kuvvet kontrol yönteminin farklı
kontrol parametreleri ile tekrarlanması yoluyla gözlemlenmiştir.

Sonuçlar bölümünde deneysel sonuçlar tartışılmış, değerlendirilmiş ve bu sonuçlar
arasındaki farklar gösterilmiştir. Söz konusu iki uyum kontrol yönteminin hangi
durumlarda daha yüksek konum ve kuvvet takibi performansları gösterdiği belirtilmiş
ve bu anlamda çıkarımlar yapılmıştır. Daha sonra bu çalışmanın ve onun
uygulamalarının eksiklikleri tanılanmış ve gelecek çalışmalar için olası geliştirmeler
önerilmiştir.

xxiii

xxiv

1. INTRODUCTION

Robots are generally defined as programmable machines or devices carrying out

actions in various levels of autonomy. The importance of robots comes up with

their ability of achieving tasks humans cannot do manually. Robots can work in the

environments that are dangerous or improbable for humans. They can be programmed

to perform series of actions without continuous human handling. The controllability

of robots allows them to complete complex tasks with high precision. The actuation

and transmission system can produce high speed motion with high power.

The term "robot" was firstly used in fiction to describe artificial human-like creatures

along with other different names. The idea of robot is dated back to legends and

mythologies of several ancient civilizations. However, modern concept of robot began

to be used after Industrial Revolution. The introduction of mass production came with

a need of automated tasks. Modern industrial robots started to be used after Digital

Revolution with the advances on electronics and invention of digital computing.

Robot manipulators are used for industrial applications such as pick and place,

welding, painting and machining applications. Most of these applications take

place under well-defined conditions by individual robots. The applications include

uncertainties that require compliance in force and motion. Different control methods

are proposed in literature to solve this problem [1] [2]. Designing an appropriate

controller including motion and force controls with a variety of implicit and explicit

combinations is essential [3]. However, the stability and performance of a task under

physical interactions are challenging issues [4]. In order to compensate for the system

uncertainties, model based or soft computing based methods are widely used [5] [6].

For situations including unknown or time-varying parameters, adaptive methods were

developed [7].

As the industrial applications become more complicated, a single robot manipulator

may not be sufficient for fulfillment of some dexterous tasks. Multiple robots can

1

be used for achieving a single goal. Moreover, a human can assist a robot or be

assisted by a robot for a specialized task [8]. These different agents are required to be

coordinated in order to work in harmony. This coordination is accomplished through

several collaboration approaches.

1.1 Purpose of Thesis

The purpose of this thesis can be summarized as implementing compliance control

schemes for collaborating robots and comparing the results about force and motion

tracking. There are two compliance control schemes proposed: hybrid position/force

control and parallel position/force control. These two control schemes are tested

in a fixed environment and a dynamically changing environment by a second robot

manipulator. The performances of these control schemes are compared across both

environments and between each other. This comparison gives a perspective about

which control scheme is favorable under specific circumstances.

1.2 Literature Review

The compliance control schemes for robotics were first discussed during the

1980s, refinements and variations have been done through the 1990s. The hybrid

position/force control scheme in joint-space was originated from Craig and Raibert in

1981 [9], and later corrected formulation about "kinematic instability" was presented

by Fisher in 1992 [10]. The use of hybrid position/force control scheme in

operational-space was proposed by Khatib in 1987 [11]. The implementation of the

mechanical impedance as a indirect force control method was originated from Hogan

in 1985 [12]. Various implementations of impedance control scheme in robotics were

presented as a hybrid impedance control by Anderson and Spong in 1988 [13] and a

parallel approach to force/position control by Chiaverini and Sciavicco in 1993 [14].

Implementations of hybrid position/force control for 3-DoF and 6-DoF industrial

robots were investigated in studies such as [15] and [16] respectively. This control

method is also studied in parallel robot applications [17] [18]. Implementations of

impedance control methods for 6-DoF industrial robots under undefined environments

were investigated in Ott et al. (2010) and Jung et al. (2004) [19] [20]. A hybrid-mode

impedance control method is implemented for robot-based rehabilitation in [21] and

2

[22]. Some machine learning algorithms are integrated in the control schemes of robot

manipulators [23].

In order to achieve collaboration of multiple robots, there are main approaches like

master-slave, centralized and decentralized control. In centralized control approach,

collaborating robots are controlled under a unified control scheme. In contrary, the

robots are controlled under independent control schemes in decentralized control

approach. The master-slave approach gives a hierarchical relationship between

collaborating robots. According to this approach, the general motion of robots is

determined by the robot that is considered as the master. In the meanwhile, other

robots that comply with the motion of the master through force inputs are considered

as the slaves. An implementation of master-slave approach in multiple collaborating

robots is shown by Sharifi at al. [24].

Coordination of multiple robots in collaborating tasks requires a compliance of force

and motion control together. The control schemes evaluating the force and motion

together are implemented in [25] for 3-DoF and [26] for 6-DoF collaborating robots.

Some compliance control methods were used for physical human-robot collaboration

tasks, which can be seen in [27] and [28].

1.3 System Description

The system used in this study is categorized under hardware and software. The

first section describes the hardware, which consists of mechanical and electronic

parts of the system. The second section describes the software running on the

computational devices. The software are classified into two categories according to

their functionalities about the robot algorithm. These functions of the software are

execution and development of the robot algorithm.

1.3.1 Hardware

The hardware of a robot manipulator consists of two main parts: a robot arm and

a robot controller. A force/torque sensor composed of a transducer and a controller

is introduced to sense the contact forces. A specialized end-effector is mounted on

the robot arm to interact with the environment. An input/output device is used for

operational purposes. Other than the computer as an I/O device, an identical or similar

3

Figure 1.1 : Stäubli RX160L and RX160 model robot manipulators [29] [30].

pair of each of these hardware are available for a robot-robot collaboration. These

hardware are described with their technical properties in the following subsections.

1.3.1.1 Robot manipulators

In this study, two robot manipulators are used for collaborating tasks. Stäubli RX160

and RX160L models seen in Figure 1.1 are the industrial robot manipulators located

opposed to each other in the work place. The RX160 series robots are 6-axis articulated

arms used for industrial automation with high-precision. The joints of the robot arm

are actuated by brushless motors. Every joint’s motion is tracked by a resolver and

parking breaks are included for locking the positions of each joint. First four joints

are equipped with cycloidal transmission and the joint bearing support. Last two joints

are coupled at wrist and driven via a worm and wheel gear. Sixth joint also includes

a bevel gear as a transmission component. The robot arms have an integrated spring

mechanism on the (upper) arm link that counterbalances the weight of the links after

the shoulder. RX160 and RX160L models differ by their forearms. While RX160

model has a standard sized forearm, RX160L model has an extended forearm for

increased reachability. The load capacities for RX160 series robot arms are given

as 34 kg and 28 kg for maximum load capacities and 20 kg and 16 kg at nominal speed

respectively. More technical details about RX160 family robot arms are provided in

Appendix A.

1.3.1.2 End-effector

A robot manipulator is desired to interact with the environment with its end point,

because it is the highest maneuver-capable part of a manipulator. Every different kind

4

Figure 1.2 : End-effector.

of interactions with environment requires a unique hardware that can be mounted on

the flange of the robot manipulator. In the setups that have a wrist F/T transducer, the

end-effector is mounted on the F/T transducer. An appropriate end-effector is selected

for the requirements of the given task, i.e. a gripper with mechanically moving parts

for pick-and-place applications and a laser cutter for a cutting application. In practical

implementations of this study, the interaction between the robot and environment is

achieved through the end-effector making a contact with an object and moving while

keeping the contact. Therefore, the end-effector used in this work, shown in Figure

1.2, consists of a spherical object and a spring mechanism for an easier interaction.

While the end-effector is moving on the object, spherical object reduces the generated

frictional forces by rolling in 3-DoF in its nest. The spring mechanism decreases the

sudden changes of the applied forces on the end-effector via moving in 1-DoF.

1.3.1.3 F/T transducer and controller

Mechanical interactions with the end-effector of the robot produce forces and torque

on the contact region. A wrist F/T transducer is mounted between the end-effector and

the flange of the robot. The F/T transducer used in this study is an ATI Delta six-axis

transducer shown in Figure 1.3. The F/T transducer uses semiconductor strain gauges

to measure the forces and torque on six orthogonal axes. The ATI Delta transducer that

is used in this study is calibrated according to SI-660-60. More technical details about

ATI Delta F/T transducers are provided in Appendix B.

5

Figure 1.3 : ATI Delta transducer [31].

Figure 1.4 : ATI F/T controller [32].

An ATI F/T controller shown in Figure 1.4 is complementing the ATI F/T transducer.

The transducer and controller are connected by an electrically shielded transducer

cable. The F/T controller can be used for computations on strain gauge data obtained

from the transducer, however in this study only analog output is used for transferring

the strain gauge data. The analog data is converted from analog to digital on a WAGO

terminal block and the digital data is sent through ethernet cable to ethernet port of the

robot controller by Modbus TCP/IP protocol.

1.3.1.4 Robot controller

The robot controller for Staubli RX160 series robots is a CS8C controller model from

CS8 controller series from the same manufacturer. CS8C robot controller is shown in

Figure 1.5. A robot controller is a device that controls the power supply of the robot

with processing the input data by running a control algorithm. CS8C controller has

digital power amplifiers for each axis of the robot and a processor that controls those

amplifiers.

6

Figure 1.5 : CS8C robot controller [33].

Safety stop channels are presented in the controller for robot and for a cell environment

if it is defined. For connectivity, two serial ports and two ethernet ports are available on

the controller device. One of the serial ports is used for data transfer with a computer

that is used by human operator. An ethernet port is used for Modbus TCP/IP protocol

communication with the F/T controller.

1.3.1.5 User input/output devices

Human operators use I/O devices to generate tasks for robot manipulators. These

devices provide the connectivity between the human operator and a robot controller

via taking inputs from the user and displaying feedback data from the controller.

For an industrial robot manipulator, a default user input device is a manual control

pendant. Manual control pendant shown in Figure 1.6 is a handheld device that is used

for generating input for the controller of the robot remotely. Pendants have emergency

switches for safety of the user while the device is handling. The pendant that we use

operates with a high-level interface and has a display for visual output and buttons for

the user input. Even when the user uses other input devices, the emergency stop button

of the pendant is strongly recommended to be ready to use.

The other user input device is a computer, which is used as the input device for this

work. The desktop PC that is used in this work has components as a display for visual

output and a keyboard for typing input. The communication between computer and

the controller is achieved via serial ports.

7

Figure 1.6 : Manual control pendant [33].

1.3.2 Software

The software used in this work consists of operating systems, integrated development

environments, compilers, serial console, programming interfaces, programming

languages and numerical computing environments. These software are classified under

execution and development of the robot algorithm. The robot algorithm developed for

this study includes trajectory generation and control algorithms.

1.3.2.1 Controller operating system and interfaces

The robot controller CS8C runs a real-time operating system called VxWorks R©. The

version 5.5.1 of this OS is used in this study. Real-rime operating systems are used for

applications that require computations completed on a strict time interval. Controlling

of the robots have to be done with instantaneous feedback and input values, therefore

real-time operating systems are commonly used in robotics. The default sampling

frequency of the real-time algorithm is set to 250 Hz. CS8C robot controller supports

two interfaces to run commands from two different programming languages. One

of the interfaces is working with a high-level programming language named VAL3.

It is a specialized scripting language for simplifying sophisticated tasks for human

operators. Provided manual control pendants are using VAL3 programming on an easy

to interactive environment.

8

The other interface is called LLI, which stands for low-level interface. It is an

application program interface (API) for C/C++ programming language which is

provided by the manufacturer. LLI provides functions and variables as input/output

for a robot control application to power source and motor drives while checking the

safety measurements. The robot algorithm written for LLI is interacted through a

serial console from a computer.

1.3.2.2 Robot algorithm development and analyzing environments

The code is written in C by using LLI is developed in Microsoft R© Visual Studio R© IDE

on Microsoft R© Windows R© OS. The versions of those software are specified as Visual

Studio 2017 & 2019 and Windows 10 for this process. On Windows platform the

code is compiled by Visual Studio’s C/C++ compiler to test and simulate the robot

program before using it on the robot’s controller. To use the same code on the robot

controller, which runs Wind River R© VxWorks R© OS, the code is compiled on Wind

River R© Tornado R© IDE. The software versions for this process are given as Tornado 2.2

on Windows XP. The compiled code is transferred to robot controller via a USB flash

drive.

The experimental data are written on the same USB flash drive as TXT files for

every cycle of controller. The data on those files is analyzed and visualized on the

MATLAB R© R2019a numerical computing environment.

9

10

2. MATHEMATICAL MODELING

Mathematical models are used to demonstrate and predict a physical system. In

robotics, the system can be defined on task (operational) space and joint spaces in their

corresponding coordinates. Kinematics are used for computing operational space and

joint space positions of a robot manipulator from one another. Differential kinematics

describes the time variations of geometric variables of a robot manipulator. Dynamic

models are used for relating general forces acting on a robot and its motion. These

mathematical models are used for the analysis and the control of the robot. These

different types of mathematical models are presented in the following sections.

2.1 Coordinate Frames and Representations

A robot manipulator can be described as an open kinematic chain of links connected

with joints. Each of these joints has 1-DoF prismatic or revolute movement capability.

The sequence of joints forms the movement capability of the robot’s end-effector. Base

of the robot manipulator can be fixed or floating for different types of robots. The

configuration of the robot can be given in joint space and task spaces with different

coordinates.

2.1.1 Joint space and task space coordinates

On the joint space, the configuration of a n-axis robot is described by a generalized

coordinate vector qqq in equation (2.1) with n number of independent variables for

decoupled manipulators.

qqq =




q1
...

qn


 (2.1)

Each of these variables corresponds to a joint of a manipulator. A variable for ith joint

qi is defined as a rotation angle θi for a revolute joint, and a linear displacement di for a

11

prismatic joint. Joint space coordinates are related to task-space with frames placed on

each joint axis overlapping with those frame’s ẑ-axes. The details of this relationship

are given in the geometric representation section.

A coordinate frame i in a three-dimensional space has an origin Oi and a triad of

mutually orthogonal vectors (x̂i, ŷi, ẑi). A vector in a frame i relative to another frame

j is denoted as jri in this study. The vectors and matrices relative to base or inertial

frames are neglected in some cases for simplicity.

In the task space of a robot, pose of the end-effector is described in its position and

orientation. Position and orientation are shown w.r.t. a reference frame, which is

generally chosen as base or inertial frame on a single fixed base robot. On mobile or

multiple robots the inertial frame is located on a fixed arbitrary point in space. A body

in a three-dimensional Euclidean space is represented in a special Euclidean group

SE(3). That is a special combination of a position vector pe ∈R3 and a rotation matrix

Re ∈ SO(3). This combination is shown in equation (2.2) and it is described in matrix

form via the homogeneous transformation matrices in the later sections.

xe = (pe,Re) ∈ SE(3) (2.2)

The end-effector pose can be represented with different parameterizations for both

position and orientation. The pose is parameterized in minimally six coordinates or

seven coordinates with one extra redundant parameter depending on the orientation

representation. The parameterized pose vector for end-effector in base or inertial frame

xe is given in equation 2.3.

xe =

(
xeP

xeR

)
∈ Rm, m = 6|7 (2.3)

2.1.1.1 Position and orientation representations

The position of the robot’s end-effector relative to its base frame is shown as a vector

pe in three-dimensional Euclidean space. This position vector can be represented

in Cartesian, cylindrical or spherical coordinates. Cartesian coordinates are more

commonly used in robotics and written as follows:

12

xeP = pe =




0 px
e

0 py
e

0 pz
e


 ∈ R3 (2.4)

Orientation of a robot’s end-effector can be represented with more variety than

its position. While position has different representations with three coordinates,

the coordinate numbers for orientation representations can be different. In the

homogeneous transformation matrix representation, rotation is represented by an

orthogonal matrix in SO(3) special orthogonal group in the equation (2.5), meaning

that a rotation is represented by 9 parameters but these parameters are dependent on

the orthogonality conditions. The rotation matrix of a frame i relative to a frame j is

shown as dot product of their basis vectors as follows:

jRi =



x̂i · x̂ j ŷi · x̂ j ẑi · x̂ j
x̂i · ŷ j ŷi · ŷ j ẑi · ŷ j
x̂i · ẑ j ŷi · ẑ j ẑi · ẑ j


=




r11 r12 r13
r21 r22 r23
r31 r32 r33


 ∈ SO(3) (2.5)

There are rotation representations such as Euler angle, angle-axis and unit quaternion

for representing a rotation in more minimal parameters.

A rotation in 3D space is minimally represented with three independent parameters

such as Euler angles. Three parameters of Euler angles are temporarily named as phi,

theta and psi in this study. These parameters are replaced with selected Euler angle

sets. In Euler angle representation of the orientation of the end-effector, a rotation can

be shown as three consequent elementary rotations on a reference coordinate frame.

These three rotations can be defined in two sets as symmetric and asymmetric. If the

first and third rotation occur on the same rotating frame, that set is called as symmetric

(e.g. ZXZ, ZYZ). If all rotations occur on different rotating frames, that set is called

as asymmetric (e.g. XYZ, ZYX).

XYZ Euler angles are selected as an example to demonstrate the following

transformations. The three sequenced rotations in XYZ Euler angles are shown in

Figure 2.1. The equivalent rotation matrix of a rotation parameterized by XYZ Euler

angles is shown as,

Re = RX(φ)RY (ϑ)RZ(ψ) =




cϑcψ −cϑsψ sϑ

cφsψ + sφsϑcψ cφcψ− sφsϑsψ −cϑsφ

sφsψ− cφsϑcψ sφcψ + cφsϑsψ cφcϑ


 (2.6)

13

x

y

z

φ

x′

y′

z′

x′′

y′′

z′′

θ

x′′′

y′′′
z′′′

ψ

Figure 2.1 : Rotation on XYZ Euler angles.

where, for a given angle α , cos(α) and sin(α) are abbreviated as cα and sα

respectively.

The rotation matrix is parameterized to XYZ Euler angle set is given in the following

equation.

xeR,eulerXY Z =




φ

ϑ

ψ


=




atan2(−r23,r33)

atan2(r13,
√

r2
11 + r2

12)

atan2(−r12,r11)


 (2.7)

Without any redundant parameters, a singularity-free rotation on that space is not

possible. An extra singularity named as gimbal lock is presented in Euler angle

representation. This is caused by the loss of 1-DoF by first and third rotations that

happen on the same axis on reference frame. To avoid the singularity caused by this

representation, a different Euler angle set that is farther away from this singularity can

be selected for that orientation [34].

Angle-axis and unit quaternion have one more parameter that eliminates that extra

singularity but the singular configurations of robot still remain. While angle-axis

and unit quaternion representations do not have the same singularity problem of

Euler angles, they are relatively harder to implement and more computationally

complex. Euler angle representation is preferred in this study due to its simplicity

and orientational changes of the end-effector remain in a small range.

14

2.1.1.2 Screw representations of velocities and forces

Linear velocity of the end-effector is represented as vector ve in task space. A linear

velocity vector can be represented on Cartesian, cylindrical and spherical coordinates

like in the case of a position vector. Linear mapping between coordinate frames can be

achieved by a matrix EP(xP). The time-derivative of position vector of the end-effector

ẋeP is linearly mapped as follows:

ve = EP(xeP)ẋeP ∈ R3 (2.8)

For three-dimensional Cartesian coordinates, EP(xeP) matrix equals to 3× 3 identity

matrix 13×3.

While angular displacement is not a proper vector in three-dimensional space, angular

velocity can be described as a vector. Angular velocity vector has a duality relationship

with an angular velocity tensor. Angular velocity tensor is a skew-symmetric matrix

and can be derived in following equations.

S(ωe) = ṘRT =




0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0


 (2.9)

Time-derivative of rotation parameters are used for velocity representation on rotation

parameterizations. A parameterized rotation vector is mapped to angular velocity

vector as follows:

ωe =




ωx
ωy
ωz


= ER(xeR)ẋeR (2.10)

The pairs of vectors such as linear and angular velocities or forces and torques can be

described in pairs of vectors named screws according to the screw theory. It provides

useful methods for mathematical computations in rigid body dynamics which is an

essential part of robotics. A 6-dimensional representation of a pair of 3-dimensional

vectors is named as a screw. The screw that is a pair of linear and angular velocities

is called a twist. Likewise, the screw that is a pair of forces and moments is called

a wrench. Twist vA and wrench fA of a point A about a fixed frame shown in Figure

15

fA

n

vA

ω

Link

A

O

rA

x̂0

ŷ0

ẑ0, ẑ1

x̂1

ŷ1

Figure 2.2 : Elements of twist and wrench shown on a rigid link.

2.2 are represented in Plücker axis and ray coordinate form of screws in the equations

(2.11) and (2.12) respectively.

vA =

(
vA
ω

)
=

(
rA×ω
ω

)
(2.11)

fA =

(
fA
n

)
=

(
fA

rA×fA

)
(2.12)

E(xe) is a mapping matrix composed from EP(xeP) linear and ER(xeR) angular

mapping matrices. This mapping matrix has a form of block diagonal matrix as shown

in the equation (2.13).

E(xe) =

[
EP(xeP) 0

0 ER(xeR)

]
(2.13)

The vector stack of the linear velocity and the time-derivative representation

parameters are mapped to the twist of the end-effector through E(xe) mapping matrix

as shown in equation (2.14), which is also valid for mapping changes of pose terms in

small time intervals approximately.

ve = E(xe)ẋe, ∆xe ≈ E(xe)∆xe (2.14)

16

2.1.2 Virtual displacement and principle of virtual work

The kinematics and dynamics of a robot is derived from the virtual displacement and

virtual work concepts. Extended information about kinematics and dynamics is given

in their corresponding sections. A body is in equilibrium when total virtual work

from external forces is zero for any virtual displacement for that body. The virtual

displacement due to the variation of joints can be described as follows:

(
δpC
δR

)
=

(
JCP
JCR

)
δqqq (2.15)

In this equation, virtual displacement in terms of variation in position vector δpC

of a point C and the variation in rotation matrix δR are the infinitesimal changes in

coordinates for a fixed instant in time. The principle of virtual work states that a

constraint force fC acted on a point pC in the same direction does not contribute to any

work.

δW = δpT
CfC = 0 (2.16)

For a body system, the principle of virtual work is extended with the d’Almbert’s

Principle. Inverse dynamic formulations based on this extended principle due to its

implementation on the rigid bodies.

2.1.3 Transformation matrices

A point in a three-dimensional space is transformed from one frame to another frame

by a homogeneous transformation matrix. The homogeneous transformation matrix

of coordinate frame i to coordinate frame j is denoted by jTi. jTi is a 4× 4 matrix

combines translational jpi ∈ R3 and rotational transformation jRi ∈ SO(3) as shown

in equation (2.17). The bottom row of the transformation matrix shapes the matrix as

square and equals to the bottom row of an identity matrix 14×4 in an isometric space.

That row is used for perspective transformations and scaling on graphical applications

mostly.

jTi =

[jRi
jpi

01×3 1

]
(2.17)

17

A transformation of a point vector ir to jr is achieved through adding a dummy

parameter as the last element of the position vectors in this process. This dummy

parameter has a value of one and it is used in the transformations as follows:

(jr
1

)
= jTi

(ir
1

)
(2.18)

The same point vector is transformed by iT j in the reverse direction. That

homogeneous transformation matrix is equal to the inverse of the matrix jTi and can

be shown as follows:

jT−1
i = iT j =

[jRT
i − jRT

i
jpi

01×3 1

]
(2.19)

A homogeneous transformation matrix kTi transforming from coordinate frame i to k

can be described as a consecutive multiplications of multiple transformation matrices.

This computation is shown as two transformation matrices with a intermediate frame

j in the equation below.

kTi =
kT j

jTi (2.20)

Transformations of screws such as twist and wrench occur in Plücker coordinates.

The transformation from Plücker ray coordinate i to j is achieved with the spatial

transformation matrix jXi given in equation (2.21). In this study, this is applied on

wrench, which is described in this coordinate system. On the other hand, twist is

described in Plücker axis coordinates in this study, which requires the transpose of that

matrix jXT
i for the spatial transformation.

jXi =

[jRi 03×3
S(jpi)

jRi
jRi

]
(2.21)

In this matrix, S(jpi) is the skew-symmetric matrix of the relative position vector jpi

and jRi is the relative rotation matrix. For the reverse of this transformation, inverse

of the jXi matrix is used.

jX−1
i = iX j =

[iR j 03×3
−iR jS(jpi)

iR j

]
(2.22)

18

2.1.4 Geometric representation

In robotics, Denavit − Hartenberg convention is used commonly for geometric

representation of serial robots. The number of required parameters to locate one

coordinate frame to another is reduced from six to four with this convention. A

series of coordinate frames is assigned to the base and the moving links of a robot

in an order by a set of rules. Links of the robot are assumed as perfectly rigid

bodies. There are different ways of implementing the D-H convention and one of

them suggested by Khalil and Dombre is described in this section [39]. According

to this convention, coordinate frames are assigned to numbered links and joints for

serial-chain mechanisms as described in Figure 2.3. The numbering of links and joints

follows this convention:

• The base is numbered as 0, and n-number of moving links numbered from 1 to n.

• n-number of joints, with joint i located between link i−1 and i are numbered from

1 to n.

Attachment of coordinate frames to joints follows this convention:

• The ẑi axis is located along the axis of joint i,

• The x̂i−1 axis is located along the common normal between the ẑi−1 and ẑi axes.

The four parameters are given as two link parameters, the link length ai and the link

twist αi, and two joint parameters, the joint offset di and the joint angle θi. These four

parameters are defined in the following list.

• ai is the distance from ẑi−1 to ẑi along x̂i−1.

• αi is the angle from ẑi−1 to ẑi about x̂i−1.

• di is the distance from x̂i−1 to x̂i along ẑi.

• θi is the angle from x̂i−1 to x̂i about ẑi.

19

Body i− 2

Body i− 1

Body i

Joint i− 1 Joint i

x̂i−2

ẑi−1

x̂i−1

ẑi

x̂i

di−1 di
ai

θi−1

θi

αi

Figure 2.3 : Implementation of D-H convention on bodies and joints.

x0

y0

z0

x1

y1

z1 x2

y2

z2

x3

y3 z3

x4

y4
z4

x5

y5 z5

x6

y6

z6

xe

ye

ze

d1

a2

a3

d4

d6

d∗e

0∗pI
xI

yI

zI

Figure 2.4 : Placement of coordinate frames on the robot joints, base and
end-effector (for qqq = [0,0,π/2,0,π/4,0]T).

Table 2.1 : D-H table for the RX160 series robot arms.

i ai (m) αi (rad) di (m) θi (rad)
1 0 0 0.55 θ1
2 0.15 −π/2 0 θ2−π/2
3 0.825 0 0 θ3 +π/2
4 0 π/2 d∗4 θ4
5 0 −π/2 0 θ5
6 0 π/2 0.110 θ6
*d4 = 0.925 (RX160L), 0.625 (RX160)

20

The placement of the coordinate frames on the kinematic chain of RX160 family robot

arms according to D-H convention is shown in Figure 2.4 as an example configuration.

The placements of inertial frame and end-effector for each robot are described in the

next section. The D-H parameters for the RX160 and RX160L robot manipulators are

given in the Table 2.1.

Finally, the homogeneous transformation matrix from coordinate frame i− 1 to i is

constructed as shown in equation (2.23).

i−1Ti = Rot(x̂i−1,αi)Trans(x̂i−1,ai)Rot(ẑi,θi)Trans(ẑi,di) (2.23)

The constructed homogeneous transformation matrices are used for obtaining the

kinematics of the robot manipulator.

2.2 Kinematics

Kinematics relates the motion of bodies in a system without taking consideration of

applied forces/torques. Kinematics in robotics deals with the relation between joint

space coordinates and task space coordinates. Geometric locations of a robot in

these spaces are given and converted to each other by a geometric model or simply

kinematics. The time-variations of geometric variables are covered in the same

manner by the differential kinematics. The conversion of variables from joint space

to task space is defined as forward, and the reverse of it is defined as inverse. These

conversions are achieved by matrices such as homogeneous transformation matrix and

the Jacobian. The Jacobian matrix and its variants are used for relating velocities in

different spaces and also force/joint torque. The detailed description of the Jacobian is

given in following sections.

2.2.1 Forward kinematics

A geometrically represented end-effector pose of a robot can be computed from its

joint positions by using forward kinematics. The mapping between joint coordinates

qqq and end-effector of an n-DoF robot’s configuration xe is obtained by successive

multiplications of homogeneous transformation matrices from inertial frame to

end-effector frame as shown in equation (2.24).

21

ETI(qqq) = 0TI

(n

∏
k=1

kTk−1(qqq)
)

ETn (2.24)

For a fixed-base robot arm, transformation between inertial frame to base frame 0TI

is constant. In this study, the inertial frame is located at the base frame of the RX160

model robot for simplicity. The transformation matrix between inertial frame to base

frame of RX160(1) and RX160L(2) models are shown in equation (2.25).

0∗TI =

[
13×3

0∗pI
01×3 1

]
, where 0(1)pI =




0
0
0


 and 0(2)pI =




dx
dy
0


 (2.25)

In this equation, values of dx and dy are 2.43 m and -0.28 m respectively. The

transformation matrix from inertial frame to base frame of the RX160(1) model robot
0(1)TI simply equals to identity matrix 14×4.

The transformation from the last link to end-effector ETn is constant on a rigid tool.

However, the end-effector that is used in the experiments for RX160 model has a

prismatic moving part that is changing dynamically. It can be assumed as constant

under small forces even though it is not constant. The end-effector of the RX160L

model is a gripper and has a fixed length. The transformation matrix of 6th frame to

end-effector frames of both RX160(1) and RX160L(2) are given in equation (2.26).

E∗T6 =

[
13×3

E∗p6
01×3 1

]
, where E (1)

p6 =




0
0

d(1)
e (f z

e)


 and E (2)

p6 =




0
0

d(2)
e


 (2.26)

Position vector of the end-effector in 6th frame Ep6 consists of summation of F/T

transducer and end-effector length in z-axis. That length for RX160 model is a function

of z-axis of end-effector force d(1)
e (f z

e) and for RX160L that length d(2)
e has a constant

value of 0.195 m. The maximum value of d(1)
e (f z

e) occurs under there is no acting force

in z-axis. The movement of the part is locked at maximum on tension. After a certain

amount of force, the spring compresses completely. The identified length function

of the spring mechanism with the end-effector and F/T transducer’s length shown in

Figure 2.5 is described in the equation (2.27), where f z
e is simplified as f .

22

-20 0 20 40 60 80 100 120
190

195

200

205

210

215

220

Figure 2.5 : Model of the F/T transducer and the end-effector length de(f z
e).

d(1)
e (f) =





0.216 m if f ≤ 0 N,
0.216− p1 f 6− p2 f 5− p3 f 4− p4 f 3− p5 f 2− p6 f m else if f ≤ 110 N,
0.194 m otherwise.

(2.27)

Parameters of the identified model of the end-effector’s spring mechanism described

in the equation (2.27) is given in the Table 2.2.

Table 2.2 : Parameters of the identified model of de(f z
e).

p1 p2 p3 p4 p5 p6
2.015e-13 7.036e-11 9.407e-09 5.66e-07 1.201e-05 0.000136

The resulting transformation matrix depending on joint coordinates ETI(qqq) can be

written in the form of end-effector configuration. In order to describe the relationship

between the joint positions and the end-effector pose, forward kinematics can be

represented as a function f (qqq) in the equation (2.28).

xe = f (qqq), xe = fA(qqq) (2.28)

In consequence, this configuration can be represented in other end-effector

configuration parameters such as Euler angles, angle-axis and unit quaternions.

23

Joint 1

Joint 2

Joint 3 Joint 4 Joint 5

Joint 6

Origin of the spherical wrist

Figure 2.6 : 6-DoF robot arm with a spherical wrist.

2.2.2 Inverse kinematics

The inverse kinematics or the inverse geometric model provides the joint coordinates

of a robot from its end-effector configuration in the task space. Inverse kinematics as a

function can be represented as the inverse of the forward kinematics function f (qqq) in

the equation below.

qqq = f−1(xe) = f−1
A (xe) (2.29)

Computations of the inverse kinematics are getting more complex with the increasing

number of freedoms of the system. The subjected end-effector should be located inside

the workspace of the robot to compute inverse kinematics. The number of inverse

kinematics solutions is depending on the configuration of the end-effector. Singular

configurations of the robot arm can give undefined solutions and some of the solutions

of inverse kinematics cannot be achieved due to physical limitations of the robot. For

redundant robots with more than 6-DoFs can have infinitely many valid solutions, for

a six-axis robot there can be finite number of solutions from inverse kinematics. The

unique solution can be selected by evaluating the robot’s current configuration and

by other criteria like optimization or task planning. The geometrically impossible or

hard-to-implement models can be computed by some iterative numerical techniques

not presented in this study.

24

There are multiple methods to be used to obtain the inverse geometric model of a robot.

Those methods are making simplifications by taking advantages of joint configurations

of robots. In this study, the advantage of spherical wrist feature of the Stäubli RX160

robot manipulator is used to simplify some of the calculations. A simplified drawing

of a 6-DoF robot arm with a spherical wrist is shown in Figure 2.6. This method leads

to a decomposition of the 6-DoF problem in two 3-DoFs as position and orientation.

In this method, first we compute the position of the center of the spherical wrist joint

in terms of first three joints, and then we get the orientation in terms of last three joints.

The C-code of the inverse geometric model of a 6-DoF robot with a spherical wrist is

presented in Appendix C.

2.2.3 Forward differential kinematics

The task space velocity of a point on the robot manipulator can be computed by

multiplying joint space velocities with the Jacobian matrix for that point. That point

subjected for a robot manipulator is generally chosen as the origin of the end-effector

frame. The matrix mapping the joint space velocities to a twist is named as geometric

or basic Jacobian.

ve = Je(qqq)q̇qq (2.30)

On small time intervals, the Jacobian approximately maps the change in joint position

to change in task space position.

∆xe ≈ Je(qqq)∆qqq (2.31)

The Jacobian mentioned above is the geometric Jacobian of the end-effector w.r.t. the

base. In addition to this, the Jacobian of any frame originated at point C on link k of

an n-DoF robot is described in following equations.

JC(q) =
[

JCP
JCR

]
=

[
JCPi . . . JCPn

JCRi . . . JCRn

]
(2.32)

The geometric Jacobian is a 6×n matrix consists of JCPi and JCRi 3×1 vectors as for

each joint i = 1 . . .n. These vectors are grouped as the position Jacobian JCP and the

25

rotation Jacobian JCR matrices sized as 3× n. The joint velocities are related to the

linear and angular velocities of the selected frame w.r.t. the base with the position and

the rotation Jacobian matrices of that frame relatively. Eventually, the Jacobian matrix

is a combination of position and rotation Jacobian matrices. Positional and rotational

parts of the Jacobian is ordered in the same Plücker coordinate form of the twist.

The geometric Jacobian is derived using the arm geometry. The position Jacobian

vector for link i with a revolute joint is derived as,

JCPi =

{
ẑi× (rC−Oi) if i≤ k,
0 otherwise.

(2.33)

Where rC is the position vector of point C relative to the base frame. Similarly, the

rotation Jacobian vector link i with a revolute joint is derived as,

JCRi =

{
ẑi if i≤ k,
0 otherwise.

(2.34)

For the kinematic computations of the end-effector, this frame is selected as the

end-effector frame. In dynamics, the Jacobian matrices for CoM of each link are

derived in order to compute the dynamic effects.

The orientation and the rotational velocities of the end-effector can be represented

as described in a previous section. While the joint space velocities q̇qq are mapped to

angular velocities of the end-effector w.r.t. the base frame by using geometric Jacobian

Je(qqq), another type of Jacobian is required for mapping of q̇qq to time-derivative of the

minimal rotation representation parameters. In order to achieve this minimal rotation

representation mapping, the matrix called analytic (task) Jacobian JA(qqq) is used [37].

The analytic Jacobian is derived by partial differentiation of position and orientation

parameterization vector for each joint coordinate as given in the following equation.

JA(qqq) =




∂xe1
∂q1

. . .
∂xe1
∂qn

...
∂xem
∂q1

. . .
∂xem
∂qn


 (2.35)

26

The number of rows n is depending on the DoF of the robot, and the number of

columns m is depending on the number of parameters on the position and orientation

representation vector xe. This leads to the analytic Jacobian to be a m×n matrix.

Due to the fact that the analytic Jacobian is used only for the end-effector w.r.t. the

base frame, there is no need to specify it like the geometric Jacobian in this study. The

analytic Jacobian is obtained from the geometric Jacobian of the end-effector by using

inverse of the E(xe) mapping matrix as shown in the following equation.

JA(qqq) = E−1(xe)Je(qqq) (2.36)

The stack of first-order time-derivatives of linear and rotation representation

parameters of end-effector ẋe can be computed using JA(qqq) as follows:

ẋe =

(
ẋeP
ẋeR

)
= JA(qqq)q̇qq (2.37)

For computing the end-effector acceleration as time-derivative of the twist ae or

the stack of second-order time-derivative of position and rotation representation

parameters ẍe, both sides of equation (2.36) and equation (2.42) are taken respectively

as follows:

ae =

(
ae
αe

)
= J̇e(qqq, q̇qq)q̇qq+Je(qqq)q̈qq (2.38)

ẍe =

(
ẍeP
ẍeR

)
= J̇A(qqq, q̇qq)q̇qq+JA(qqq)q̈qq (2.39)

The vectors ae and ẍe is directly mapped as shown in the following equation by

deriving the both sides of equation (2.38) w.r.t. time.

ae = Ė(xe, ẋe)ẋe+E(xe)ẍe (2.40)

The Jacobian is useful for not only velocity mapping but also singularity analysis and

relating link wrenches and joint torques. In singular configurations, the rank of the

Jacobian is smaller than the number of controllable DoFs.

27

2.2.4 Inverse differential kinematics

The inverse kinematics is used for computing the joint space velocities for a given task

space velocity. In order to obtain joint space velocities, equation (2.36) is solved for

q̇qq by passing the geometric Jacobian to the other side of the equality as its inverse.

The same is valid with the analytic Jacobian for obtaining joint space velocities from

task space velocity of the end-effector in terms of time-derivative of the rotation

representation parameters as follows:

q̇qq = J−1
e (qqq)ve = J−1

A (qqq)ẋe (2.41)

This computation requires the inversion of a selected type of Jacobian. Computation of

the inverse of a Jacobian is not possible for singular or computed with a high error for

close to singular configurations. Computations for close to singular configurations

result with extremely high joint velocities. To minimize the least square error in

this computations, the Moore-Penrose inverse method can be used. In singular

configurations, inverse of the Jacobian does not exist, because the determinant of

the matrix vanishes. Some of the singularities can be avoided by choosing different

configurations when planning the motion. Additional singular conditions exist for

the analytic Jacobian if the Euler angles is chosen for rotation representation. This

type of singularities are caused by when the determinant of the E(xe) mapping matrix

vanishes. In order to avoid this type of singularity, the Euler angle set is selected by

examining the end-effector orientation. To achieve this, different sets of Euler angles

that farther away from singularity for current end-effector orientation can be selected.

For the second-order inverse kinematics, the joint space accelerations can be obtained

from solving equation (2.46) for q̈qq by taking derivative of both sides as follows:

q̈qq = J̇−1
e (qqq, q̇qq)ve +J−1

e (qqq)ae = J̇−1
A (qqq, q̇qq)ẋe +J−1

A (qqq)ẍe (2.42)

A second formulation derived from equation (2.44) is more desired due to lack of

inversion of the time-derivative Jacobian computation as follows:

q̈qq = J−1
e (qqq)[ae− J̇e(qqq, q̇qq)q̇qq] = J−1

A (qqq)[ẍe− J̇A(qqq, q̇qq)q̇qq] (2.43)

28

2.3 Dynamics

Dynamics of a system describes the relationship between actuation and applied

forces/torques and the motion of the bodies. The dynamic models are classified

according to the cause and effect relationship between forces and motion. The motion

response of a system to any applied forces is modeled by using forward dynamics.

It is used mostly on simulations for analyzing purposes. The inverse dynamics

computes the required actuation torques of a system in order to achieve a motion. For

improvements on robot control and trajectory planning, the inverse dynamic model is

used commonly. The system models are computed analytically or numerically with

using dynamical parameters. These dynamic parameters such as mass, center of mass

and inertia tensor of the links have to be identified if they are not already available.

Dynamics of a robot can be modeled in either its joint space or task (operational)

space. While joint space dynamics is simpler to be modeled and implemented in a

joint space controller, task space dynamics is more straight-forward to implemented in

a task space controller. However derivation of task space dynamic terms requires more

computation due to the fact that they derive from their joint space counterparts.

2.3.1 Inverse dynamics

The inverse dynamics computes the joint torques required for the execution of a

planned trajectory for a robot. In general, an inverse dynamic model is used in robot

control and trajectory planning to increase the performance for tasks require high robot

joint accelerations. In order to have a dynamic model approximates the physical system

closely, all of the dynamic effects required to be modeled as possible. The inverse

dynamic relation of these dynamic effects can be demonstrated with joint torques in

joint space or with end-effector wrench in task space. The joint space EoM in compact

form is shown as follows:

τ = M(qqq)q̈qq+h(qqq, q̇qq, fe) (2.44)

Where for an n-DoF robot,

29

• M(qqq) ∈ Rn×n, Matrix of the inertia of the robot,

• h(qqq, q̇qq, fe) ∈ Rn, Vector of dynamic effects in terms of qqq, q̇qq and fe,

• τ ∈ Rn, Vector of joint actuation torques.

This compact form of the EoM gives how the joint actuation torques is related with the

joint actuation torques, the joint variables included general coordinates with their first

and second time-derivatives and the wrench exerted by the end-effector. It is important

to note that this form of EoM in (2.44) is used for deriving the forward dynamics.

The h(qqq, q̇qq, fe) vector is the sum of the torque vectors from contact forces and the joint

position and velocity dependent effects. The components of this vector can be used

together or separately as a compensation in robot control schemes in order to improve

the performance of the control algorithm. This vector is decomposed as,

h(qqq, q̇qq, fe) = b(qqq, q̇qq)+g(qqq)+τe(qqq, fe)+τ f rc(q̇qq)+τspr(qqq) (2.45)

where,

• b(qqq, q̇qq) ∈ Rn, Vector of Coriolis and centrifugal torque,

• g(qqq) ∈ Rn, Vector of gravitational torque,

• τe(qqq, fe) ∈Rn, Vector of torque caused by the forces exerted by the end-effector,

• τ f rc(q̇qq) ∈ Rn, Vector of joint friction torque,

• τspr(qqq) ∈ Rn, Vector of spring torque.

The inverse dynamics can be formulated by Euler-Lagrange and Newton-Euler

formulations. These are two different approaches that give identical results in terms of

joint torques. Both of these formulations has its own advantages and inconveniences

as described in their own sections.

While Euler-Lagrange and Newton-Euler formulations covers modeling of most of the

dynamics of a robot, some dynamic effects requires modeling separately. One of that

dynamic effects is the joint friction and other one is spring mechanism founded in the

RX160 series robots.

30

In addition to the joint space formulation of the EoM in (2.44), the EoM can be

demonstrated at the end-effector in the task space form as,

fe = ΛΛΛ e(xe)ae +µµµ(xe,ve)+ρρρ(xe) (2.46)

where in a 3-D Cartesian space,

• ΛΛΛ e(xe) = (JeM−1JT
e)
−1 ∈ R6×6, Generalized inertia (mass) matrix,

• µµµ(xe,ve) = ΛΛΛ eJeM−1b−ΛΛΛ eJ̇eq̇qq ∈ R6, Vector of Coriolis and centrifugal terms,

• ρρρ(xe) = ΛΛΛ eJeM−1g ∈ R6, Vector of gravity terms,

• fe ∈ R6, Generalized force vector.

Using task space inverse dynamics in a task space controller simplifies the controller

structure, because the space transformations occur on the dynamic terms. However,

deriving the task space dynamic terms requires additional computations due to the fact

that those terms derived from joint space dynamics.

2.3.1.1 Euler-Lagrange method

One of the methods for formulating the EoM of a robot is the Euler-Lagrange method.

It is an energy-based formulation originated from analytical mechanics. This method

is useful for analyzing the dynamic effects due to the closed-form description of EoM

as follows:

τ ∗ = M(qqq)q̈qq+C(qqq, q̇qq)q̇qq+g(qqq)+τe(qqq, fe) (2.47)

The result of this formulation τ ∗ in equation (2.48) is the joint actuation torque vector

excluding the joint friction and the spring torque vectors.

τ ∗ = τ − (τ f rc +τspr) (2.48)

The Coriolis and centrifugal torque vector b(qqq, q̇qq) is founded as C(qqq, q̇qq)q̇qq in this

formulation, where C(qqq, q̇qq) ∈ Rn×n is the Coriolis and centrifugal matrix. The torque

31

vector from end-effector wrench τe(qqq, fe) is computed using virtual work principle as

follows:

τe(qqq, fe) = JT
e (qqq)fe (2.49)

This method is based on the Lagrangian function L and the Euler-Lagrange equation

given below.

Lagrangian function:

L = T −U (2.50)

Euler-Lagrange equation:

d
dt

(
∂L
∂ q̇i

)
−
(

∂L
∂qi

)
= τi for i = 1 . . .n (2.51)

In the Lagrangian function, T is kinetic energy and U is the potential energy of the

system. In robotics, the Lagrangian is shown as a function of generalized coordinate

qqq, generalized velocity q̇qq and time as L(t,qqq, q̇qq). Likewise kinetic energy and potential

energy functions are shown as T (t,qqq, q̇qq) and U(t,qqq) respectively.

After the Euler-Lagrange equation is applied to each joint, the terms M(qqq), C(qqq, q̇qq)

and g(qqq) are obtained from the computations shown in the works of Akbaş [35] and

Szczesiak [42].

2.3.1.2 Newton-Euler method

Another method for formulating the EoM of a robot is the Newton-Euler method. It

is a recursive formulation based on the conservation of linear and angular momentum.

For a single body, the change in linear and angular momentum and resultant forces and

torques are related as following the Newton and Euler formulations:

(
ṗC
ṄC

)
=

(
fext,C
τext

)
(2.52)

The C is a point on the CoG for that body in equation (2.52). In this equation, fext,C

is the resultant external forces acting on the point C and τext is the resultant external

torques acting on that body. Integrating these with the principle of virtual work gives

equation (2.53).

32

Forward
Recursion aC,i

ai

ai−1

ẑiq̇i
ẑiq̈i

ωi−1

αi−1

ωi

αi

Link i−1

Link i
Link i+1

si

ρi

mi

Figure 2.7 : Velocity and acceleration vectors for link i.

0 = δW =

(
δpC
δR

)T ((ṗC
ṄC

)
−
(
fext,C
τext

))
∀
(

δpC
δR

)
(2.53)

The change in linear and angular momentum vectors are shown in open form as

follows:

(
ṗC
ṄC

)
=

[
13×3m 03×3
03×3 IC

](
aC
α

)
+

(
03×1

[ω]×ICω

)
(2.54)

For multi-body systems like robot manipulators, the computations are performed in

two successive recursions. The first recursion shown in Figure 2.7 is the computation of

velocities and accelerations for each link. This computation is called forward recursion

because it is performed for each link starting from base to end. Forward recursion

equations for each joint i from 1 to n are given as follows:

ωi = ωi−1 + ẑi q̇i (2.55)

αi =αi−1 + ẑi q̈i +ωi−1× (ẑi q̇i) (2.56)

ai = ai−1 +αi×ρi +ωi× (ωi×ρi) (2.57)

aC,i = ai +αi×si +ωi× (ωi×si) (2.58)

33

Backward
Recursion

Fi

fi+1

fi

Ni

ni

ni+1

ẑi

ẑi+1

Link i−1

Link i

Link i+1

si

ρi

mi

Figure 2.8 : Force and moment vectors for link i.

In the forward recursion equations, angular velocity ω0 and angular acceleration α0

are equal to zero vector 03×1 because the base of the robot is fixed. Gravity can be

added into the forward recursion equations via linear acceleration of base in (2.59).

a0 =




0
0
g


 (2.59)

The later recursion is computation of forces and torques acted on each link. This

computation is called backward recursion because the computation of forces and

torques starts from the external wrench acting on the end-point and ends on base link

as shown in Figure 2.8. Backward recursion equations for each joint i from n to 1 are

given as follows:

Fi = miaC,i (2.60)

Ni = IC,iαi +ωi× (IC,iωi) (2.61)

fi = fi+1 +Fi (2.62)

ni = ni+1 +ρi×fi+1 +(ρi +si)×Fi +Ni (2.63)

34

In the backward recursion equations, the contact force and moment can be included by

equating them to last acting force and moment as in equations (2.64) and (2.65).

Finally, the input torque for each joint i is computed from following equation:

fn+1 =−fe = fc (2.64)

nn+1 =−ne = nc (2.65)

In these equations contact wrench acting on the end-effector fc is equal to the wrench

exerted by the end-effector fe in the negative direction according to Newton’s third law.

τ ∗i = ni · ẑi (2.66)

This formulation gives the identical result τ ∗ from EoM (2.47) computed with the

Euler-Lagrange formulation.

τ ∗ = NE(qqq, q̇qq, q̈qq,g, fe) (2.67)

As opposed to Euler-Lagrange formulation, Newton-Euler formulation does not give

the EoM in closed-form. Since this formulation gives the result directly, it is commonly

preferred for control schemes that require real-time computations. However, it is

possible to compute the vectors from closed-form EoM by manipulating the inputs

of NE(qqq, q̇qq, q̈qq,g, fe) function. Similar to E-L formulation, this makes it possible to

analyze the dynamics effects separately. It is also necessary for using N-E method for

forward dynamics. The details are given in that section for these computations.

A different approach to N-E formulation named Projected Newton-Euler method

that combines the dynamic equilibrium in Cartesian coordinates with the constraint

compliant Euler-Langrange formulation using generalized coordinates [38]. This

method allows to compute M(qqq), b(qqq, q̇qq) and g(qqq) terms in order to obtain EoM in

closed-form without calling back N-E function repetitively.

35

2.3.1.3 Joint friction and balancing forces

It is shown that both E-L and N-E formulations compute a joint torque vector without

taking other dynamic effects into consideration. These effects have a significant impact

on the accuracy of the dynamic model of the robot. The inclusion of these dynamic

effects to the control scheme improves its performance. One of these effects is the joint

friction and the other one is the balancing forces.

The motion of the joints generates friction at the surface of the moving parts. The joint

friction becomes a dominant effect on the joint motions starting from rest and changing

velocity. A joint friction model approximates the actual system more with the inclusion

of different types of friction models such as Coulomb, static and viscous frictions. The

joint friction model used in this study includes these stated friction models. The friction

parameters used in the joint friction model are identified by Zengin [43] and later the

model is modified by Akbaş.

The first four joints of the robot are decoupled, so that their friction models are

independent from each other. On contrary, joints five and six are coupled and their

friction models are dependent with each other.

The balancing force is compensating the gravitational forces acting on the robot links.

Without a balancing force, torque values that are supposed to be generated by the joint

actuators can exceed the limits due to high weights of the links. This balancing force

is dependent on the displacement of the second joint. This dynamic effect is caused

by the spring mechanism that is integrated in the robot arm. This spring mechanism

is located in the second link (the arm) and connected to second link from one end and

the shoulder of the robot from the other end. A nonlinear mathematical model of the

spring mechanism is used in this study. This spring model with identified parameters

are taken from a previous study of Akbaş.

2.3.1.4 End-effector and F/T transducer dynamics

The vector τe shown in equation (2.45) is caused by the external interaction wrench

exerted by the end-effector. It can be also expressed in terms of forces acting on the

system τc as in equation (2.68).

36

F/T Transducer

End-effector

zs

ys

xs
y0
CoM

x0
CoM

z0
CoM

fg,e

y0
e

x0
e

z0
e

nc

fc

Figure 2.9 : Coordinate placement of sensor and end-effector tip/CoM.

τc(qqq, fc) =−τe(qqq, fe) (2.68)

Modeling the effects of the wrench acting on the end-effector allows to compensate

the extra torques applied on the joints. The relationship between end-effector wrench

fc and the torque vector τc is described in equation (2.69) in the same way as equation

(2.49).

τc(qqq, fc) = JT
e (qqq)fc (2.69)

The wrench acting on the end-effector fc is required for the computation of τc is

obtained by the F/T transducer mounted at the wrist. However, the force and torque

values it reads are not representing the pure external interaction wrench. The weight of

the end-effector is included in the forces that F/T transducer reads. In order to obtain

the pure external interaction wrench, the wrench that occurs from the end-effector

weight fg,e is required to be excluded from the forces and torques that are read through

the sensor fs. The forces and torques acting on the end-effector and F/T transducer and

the coordinate frames are shown in Figure 2.9. In this figure, while the sensor frame

is attached on its reference frame, other two frames have the orientation of the base

frame. It is important to note that the addition or subtraction of wrenches is valid if

37

they represented on the same coordinate frame, which is the coordinate frame of the

sensor S in equation (2.70).

f(S)c = f(S)s − f(S)bias− f(S)g,e (2.70)

In order to achieve this, the end-effector weight wrench fg,e have to be computed. The

method used for this computation is based on gathering raw sensor data on different

end-effector and F/T transducer orientations and processing the data to compute fg,e.

The raw sensor data gathering happens on three different orientations of sensor frame

in a short period of time. The average of data for each orientations are taken separately

to reduce the measurement noise. These computations are also used for eliminating

the available sensor bias fbias. This computations in C-code are available in Appendix

D.

As the result of these computations, the CoM of the end-effector and the total wrench

from the end-effector weight fg,e w.r.t. the CoM frame are obtained. In the next step,

fg,e transformed from base frame to the sensor frame with the spatial transformation

matrix sX(CoM) as follows:

f(S)g,e =
SXCoMf(CoM)

g,e (2.71)

In the final step, f(S)c computed in equation (2.70) is transformed from the sensor frame

to end-point of the end-effector w.r.t. base frame as follows:

fe =−fc =−e,0XSf(S)c (2.72)

The computation of fe is completed with these transformations and the compensation.

It becomes available for using in the dynamic formulations and control schemes.

2.3.2 Forward dynamics

The forward dynamics computes the predicted motion of a robot as a response to acted

actuation and contact forces/torques. It is useful for the simulations of the robots to

analyze system and design the controller. The EoM in terms of the forward dynamics

is derived from its inverse dynamics counterpart from equation (2.44) as follows:

38

q̈qq = M−1(qqq)[τ−h(qqq, q̇qq, fe)] (2.73)

The generalized acceleration q̈qq is computed as a result of the forward dynamics. The

generalized velocity q̇qq and position qqq is computed by the first and second integration

of q̈qq over time.

The computation of equation (2.73) is straightforward by using Euler-Lagrange

formulation due to its ability of finding the dynamic effects separately. The main

difficulty of this computation is the inversion of the 6× 6 inertia matrix M(qqq). In

order to use the Newton-Euler formulation for computing the forward dynamics, one

of the approaches is manipulating the inputs of the NE(qqq, q̇qq, q̈qq,g, fe) from equation

(2.67) iteratively to find the dynamic effects. M(qqq), b(qqq, q̇qq), g(qqq) and τe(qqq, fe) terms

are computed as follows:

m∗, j = NE(u j,0,0,0,0),where M(qqq) = mi, j ∈ Rn×n (2.74)

where u j is a n× 1 unit vector with a 1 on its jth element and 0 for the rest of the

elements for j = 1 . . .n.

b(qqq, q̇qq) = NE(qqq, q̇qq,0,0,0) (2.75)

g(qqq) = NE(qqq,0,0,g,0) (2.76)

τe(qqq, fe) = NE(qqq,0,0,0, fe) (2.77)

where 0 is n× 1 vector of zeros. Instead of finding b(qqq, q̇qq), g(qqq) and τe(qqq, fe) terms

separately, the sum of them can be computed as below:

h(qqq, q̇qq, fe)
∗ = b(qqq, q̇qq)+g(qqq)+τe(qqq, fe) = NE(0, q̇qq, q̈qq,g, fe) (2.78)

where h(qqq, q̇qq, fe)
∗ is the h(qqq, q̇qq, fe) vector without τ f rc and τspr. Those two vectors are

required to be implemented additionally.

39

40

3. CONTROL SYSTEM DESIGN

In this chapter, the trajectory generation and controller design are presented in two

sections. Trajectory generation describes how a robot behaves in time. Different types

of trajectories for motion are given in basic forms. A controller is used in the system of

the robot to achieve the generated trajectories. Design of motion and force controllers

are described separately at first and later integrated in the compliance control schemes.

The relationship between trajectory generation, controller and a robot can be visualized

simply as in the Figure 3.1. The difference between generated input and robot output

are processed through controller schemes and fed into robot’s actuators.

3.1 Trajectory Generation

Trajectories are used as reference inputs in robot control loops. In task planning,

trajectory generation plays an important role. Generation of trajectories are formulated

mathematically in consideration of physical limitations. Motion trajectories are the

main references for robots. How a robot moves to a point is as important as where a

robot goes. That means, velocity and acceleration profile of a robot motion is required

to be planned to achieve a stable and smooth movement. The motion trajectory for a

robot manipulator can be generated in joint-space or task-space. For basic motions,

trajectories are classified as point-to-point, via points and periodic trajectories. For

more complex motions, trajectories can be generated using parametric equations. A

constant force reference is used in the majority cases in which tasks require force

control; however more complex force trajectories can be also generated.

Point-to-point trajectories can be generated using polynomial or piece-wise position,

velocity and acceleration profiles. Trajectories with multiple way-points can be

achieved by sequencing point-to-point trajectories back-to-back or by giving via points

in space to guide the trajectory and filling or interpolating the points between them.

Linear interpolations with continuous acceleration blends are used as a method to

41

Trajectory
Generator Controller Robot

r e τ+

−
y

Figure 3.1 : Trajectory generator and controller.

achieve this. In this method, a trajectory is generated as via points connected with

linear interpolations and then the connection points are replaced with blends with

respect to the acceleration limits. A second method is to use cubic spline functions

by placing cubic functions between via points in order to have a continuous trajectory.

Trajectories using via points as opposed to sequenced point-to-points result in reduced

finishing times and smooth continuous motions.

3.1.1 Joint space trajectories

A robot manipulator’s joints can move separately or together as a result of the planned

joint space trajectories. In case of a single joint trajectory, one joint follows the given

trajectory while other joints stay in their initial positions. In case of a multiple joint

trajectory, all moving joints need to be synchronized to achieve a single motion for

the manipulator. To synchronize multiple trajectories, those trajectories have to be

calculated according to the most time-consuming trajectory. There are multiple factors

that limit a motion trajectory in terms of joint specifications. A range of joint limits

the positions that a joint can reach. Velocity and acceleration limits for nominal and

maximum speeds identified or provided by manufacturer determines the trajectories

final time.

A joint space trajectory can be converted to a task space trajectory via forward

kinematics. This can be useful for planning a trajectory while considering the

workspace limitations.

3.1.2 Task space trajectories

In task space, the trajectory of a robot is defined by the position and orientation of

the coordinate frame attached to its end-effector w.r.t. its base frame. While position

trajectory is represented generally on the three axes of a Cartesian coordinate frame,

42

q = f−1
A (xe)

J−1
A (q)

J̇A(q, q̇)

J−1
A (q)

xe

ẋe

ẍe

q

q̇

q̈
−
+

Figure 3.2 : Inverse kinematics in block diagram.

orientation trajectory is represented with one of the rotation representations like Euler

angles, angle-axis etc. Position and orientation trajectories on each axis also have

to be synchronized if the duration of both motions are requested to be the same.

The duration of task space trajectories is also dependent on estimated task space

velocity and acceleration limits. When planning a trajectory in task space, workspace

limitations and singularity configurations have to be taken into consideration.

A task space trajectory can be generated with respect to the base frame, the inertial

frame or the end-effector frame of the robot in order to satisfy the requirements of

the given tasks. A trajectory generated with respect to a frame can be transformed by

homogeneous and spatial transformation matrices. This operation is useful for some

control approaches on specific tasks.

Transformation of task space trajectories into joint space trajectories is achieved

through the inverse geometric and kinematic models. The implementation of this

transformation is represented in a control scheme as shown in Figure 3.2. This

transformation is useful for the observation of joint limits during the planning of a

motion trajectory.

Generating a task space trajectory for the applied force is also possible. Rather than

giving a constant desired force value, an altering force trajectory can be planned for

the tasks that require force sensitivity.

43

3.2 Controller Design

Control system design for dynamical systems aims at obtaining desired behavior

in presence of internal and external disturbances. Internal disturbances consist of

imperfections in kinematic and dynamic modeling and time-varying parameters. Some

of the external disturbances can be specified as contact forces and changes in heat and

humidity. Any disturbance can cause an error in desired behavior. A compensation

of errors can be ensured by designing a closed-loop control system. The output of

the system can be measured directly from a sensor device or computed from another

measured data. In robotics, motion and force variables are the quantities that are

intended to be controlled generally. Motion control and force control of the robot can

be implemented separately without intersecting; however, implementing both of these

controllers together in a single control scheme requires a compliance between them. In

this section, motion and force control are described briefly and two main compliance

control methods are discussed and applied in the experiments.

One of the most common control approaches is the decentralized PID (proportional,

integral, derivative) or its variants such as PD and PI for both motion and force control

schemes. This approach can be implemented on each degree of freedom of control

variables by tuning the gains that are modeled after a linear second order differential

equation. The tuning process can be done via trial-and-error by following the tuning

methods which can be also very time-consuming. The advantage of this approach

is the simplicity of implementation and ability to work without any dynamic model;

however, it shows poor accuracy for highly dynamic situations. In order to improve

the performance of the control scheme, nonlinear control schemes with implemented

models and adaptive techniques can be applied at a complexity and computational load

costs. The gains for PID controllers are positive definite diagonal matrices named as

proportional KP, integral KI and derivative KD gains respectively.

A typical PID control scheme can be seen in Figure 3.3. In this scheme, the error is

multiplied by KP gain directly and KI gain with its integration over time, with KD gain

with its time derivative. The sum of those control signals are named as control output

of a PID controller.

44

KPe(t)

KI

∫ t

0

e(t′)dt′

KD
de(t)

dt

e(t) u(t)
+

+

+

Figure 3.3 : PID controller.

For the tasks that require high dynamic performances, linearizing and decoupling

control methods can be utilized. The nonlinearities caused by the dynamic effects

of the robot can be canceled by using the computed torques via the inverse dynamic

model. An implementation of the computed torque in a control scheme is presented

in Figure 3.4. The estimation of the dynamic terms are denoted by hat symbol

(circumflex). The PID controller will encounter a more linear part of the system

with the computed torque method. An accurate inverse dynamic model will make a

better approximation of the system, which results in a further increase in the control

performance. The payoff of this method is the complexity it brings to the control

scheme and it can be impossible to implement on the systems lacking computational

capability.

Adaptive methods for control schemes can be implemented to improve the control

of the robot via adapting to uncertainties and system changes. Adaptation algorithm

can be applied on PID controller gains and inverse dynamic model. An adaptation

algorithm can be derived from dynamics of a robot or a model independent method

like fuzzy logic.

The joint velocity and end-effector wrench feedback signals include high frequency

noise due to derivation of discrete position values and analog measurement

respectively. In order to reduce these noises from signals Kalman filtering is applied

to these feedback signals of the control loops. A trade-off between noise reducing and

keeping the characteristics of the signal happens with this filtering process. So that,

signal noise cannot be eliminated completely and its effect can be seen on the control

signal due to the derivative action of the PID controllers.

45

M̂(q) Robot

ĥ(q, q̇, fe)

q

τu

q

q̇
fe

q

q̇
fe

+

+

Inverse Dynamics

Figure 3.4 : Computed torque method.

3.2.1 Motion control

One of the primary control subjects of a robot manipulator is its motion. Even if

to keep a robot in its current pose, it has to control its variable when the robot’s

motors are working. As mentioned in the previous sections, the motion of the robot

can be described in joint space or task space. A robot manipulator includes sensing

devices such as encoders and resolvers, which track the feedback joint positions or

incremental changes in these positions. Also, a robot manipulator is the plant of the

control system that accepts the system input in terms of joint torques. So that, it is

simpler to implement a motion control scheme in joint space than task space. The

block diagram of motion control in joint space is shown in Figure 3.5. In a joint space

PID motion controller, n×n diagonal gain matrices apply to joint errors of an n-DoF

robot. PID motion control law in the joint-space is given as follows:

τ = KP(qqqd−qqq)+KD(q̇qqd− q̇qq)+KI

∫ t

0
(qqqd−qqq)dt (3.1)

A task-space motion control scheme requires forward and inverse kinematic

transformations between joint-space and task-space. However, more complex tasks

given to a robot are generally generated on task-space environments and it can be

appropriate to use a task-space motion control in those situations. In a task-space PID

motion controller, 6× 6 diagonal gain matrices apply to errors on the 6-DoFs of the

three-dimensional space.

46

PID Robot

e

ė

τ

qd

q̇d

q

q̇

−

+

+

−

Figure 3.5 : Motion control in joint space.

PID JT (q)

xe = f(q)

ẋe = J(q)q̇

Robot

e

ė

u τ

xd
e

ẋd
e

q

q̇

−

+

+

−

Figure 3.6 : Motion control in task space.

The block diagram of PID control of a task space motion in Figure 3.6 shows the

additional kinematic transformations. At this time the errors are need to be in the

task space, so that the joint space feedback transforms through the forward kinematics.

As the PID controller in task space motion deals with the task space motion errors

of the end-effector, the output vector of this controller is generated in terms of forces

acting on the end-effector. The control output vector in terms of end-effector forces

transforms through the transpose of the Jacobian matrix to joint torque vector as system

input. PID motion control law in the task space is given as follows:

τ = JT (qqq)[KP(xd
e −xe)+KD(ẋd

e − ẋe)+KI

∫ t

0
(xd

e −xe)dt] (3.2)

It is also possible to control a task space motion in a joint space control scheme. In

order to achieve this, a task space trajectory is transformed through inverse kinematics.

This leads to the rest of the process is same as the joint space controller with a joint

space trajectory.

47

PID JT (q) Robot
e u τfde

q

fe

+

−

Figure 3.7 : Explicit force control scheme.

3.2.2 Force control

When a robot manipulator’s end-effector interacts with its environment, contact forces

and moments occur at that interaction location. This contact forces can be controlled

by a force control scheme. Controlling the contact forces makes the robot possible to

apply a desired force value to its end-effector contacts. This is crucial to keep a contact

with the interacted object with avoiding a damage from excessively applied forces. It

is very important for collaborating tasks, especially for the ones that involve human

interactions. An explicit force control makes it possible to move and repositions the

manipulator by hand on the applied axis. The controlled force data comes to the control

scheme through F/T transducer mounted before the end-effector. The raw sensor data

is required to be refined to contact wrench by removal of unwanted effects as described

in the dynamics section. After that, the external wrench becomes available to be used

in the control loop.

For the force control schemes, PID controller as shown in Figure 3.7 is also commonly

used; however, the derivative effect is not implemented in case of high amplitude

sensor noises. For this case, the negative value of the task-space velocity feedback of

the end-effector can be used if it has less noise. Moreover, it is beneficial to implement

a feedforward action to the force control scheme because of the need for a continuity

of applied force. PID force control law is given as follows:

τ = JT (qqq)[KP(fd
e − fe)+KD(ḟd

e − ḟe)+KI

∫ t

0
(fd

e − fe)dt] (3.3)

48

3.2.3 Compliance control

In some cases, robot manipulators are required to be controlled both for its motion and

the wrench generated from their physical interactions. Those cases can be interactions

between environment and collaboration with another robot or a human. Different

priorities need to be considered for different types of interactions. For example, for

a robot and a static environment interaction the precision of the motion can be more

important than considering force inputs from different directions. For a robot and a

human interaction, the force control can be more important than the motion control

due to safety reasons. In order to accomplish different types of interactions of a robot,

different types of compliance control methods have been developed. In this study,

hybrid position/force control and parallel position/force control schemes are presented

as compliance control schemes.

For the compliance control in task space, a compliance (task) frame is defined in order

to control the each of the 6-DoF of the 3-D space. The diagonal elements of gain

matrices are corresponding to the axes of a Cartesian coordinate frame that is selected

as the compliance frame. The determination of the compliance frame is depending

on the requirements of a given task. A task that involves an interaction between the

end-effector of a robot and its environment necessitates an appropriate compliance

frame to control desired axes.

3.2.3.1 Hybrid position/force control

The implementation of motion and force control schemes in a single control scheme

with a separation of two subspaces is named as hybrid position/force control scheme.

This control scheme consists of two complementary loops of motion control and

force control in either joint space or task space. The hybrid position/force control in

joint-space as shown in Figure 3.8 is proposed by Craig and Raibert and later corrected

by Fisher. The task space implementation shown in Figure 3.9 used in this study is

based on the design described in Khalil and Dombre [39].

In implementations of this control scheme, either motion or force control is applied on

the defined compliance frame, which is decided by considering the interaction of the

end-effector. In general, the compliance frame is selected on the end-effector frame in

49

(SJ)
+

[(I− S)J]
T

PCLJ

FCL

xe = f(q)

Robot

em

ef

τ

xd
e

fde

q

fe

−

+

+

−

+

+

Figure 3.8 : Hybrid position/force control in joint space.

PCLT

FCL

S

I− S

JT

xe = f(q)

Robot

em

ef

τ

xd
e

fde

q

fe

−

+

+

−

+

+

Figure 3.9 : Hybrid position/force control in task space.

order to control its each DoFs in the 3-D task space. The decision of which control

scheme to be enabled is achieved by a 6×6 matrix denoted as the compliance selection

matrix. The compliance selection matrix S is a square diagonal matrix that has diagonal

elements for each degree of freedom. Each diagonal element acts as an on/off switch

between the motion and the force control schemes for its corresponding axis by taking

1 or 0 values. It is implemented in the motion control part of the parallel loops. Its

complementary part is implemented on the force control loop as I−S matrix. As

a result, when a diagonal element of S matrix has a value of 1, motion control is

on for that DoF and the same element of the I−S matrix becomes 0, which makes

the force control is off on that DoF. The selected control outputs transform to joint

torques to be combined later. The implementation of this parallel schemes as the hybrid

position/force control in task space is shown in Figure 3.10.

50

KPE

KDE

Ė

E

KfP

KfI

∫
ef KfD

S

I− S

J−1

ẋe = JA(q)q̇

JT

J̇

J

xe = fA(q)

M̂ ĥ(q, q̇, fe)

Robot

e

ė

ef

τ

ẋe

xd
e

ẋd
e

ẍd
e

fde

q

fe

q̇

τm

τf

+
−

+
−

+

−

+
+

+
+

+
+

+ −

−
+

+

+

+

+
+

Figure 3.10 : Hybrid position/force control with computed torque.

The generalized control law for the hybrid position/force control scheme is given as

follows:

τ = τm +τ f + ĥ(qqq, q̇qq, fe) (3.4)

It is seen that the system input torque vector is composed of compensation torque

vector ĥ(qqq, q̇qq, fe) and torque vectors from motion control τm and force control τ f . The

motion control part of this control is chosen as PD with computed torque scheme.

The integral action is not implemented for simplicity and comparability reasons. The

control law for motion control part is designed as follows:

τm = M̂J−1S[(Eẍd
e + Ėẋd

e)+KPE(xd
e −xe)+KDE(ẋd

e − ẋe)− J̇q̇qq] (3.5)

The control law of the PID with a feedforward action for the force control part of the

general scheme is given in equation (3.6). The end-effector feedback twist is used

rather than the wrench in the following equation.

τ f = JT (I−S)[fd
e +K f P(fd

e − fe)+K f I

∫
(fd

e − fe)dt−K f Dẋ] (3.6)

51

3.2.3.2 Parallel position/force control

Another approach for achieving a compliance control of a robot is controlling the

dynamic behavior of the system in terms of relationship between produced forces

and its motion. The dynamic behavior of a system can be represented as a force

output produced from its velocity input is called as mechanical impedance. Moreover,

the inverse of this relationship is named as mechanical admittance. The mechanical

impedance Z is described in the frequency domain as follows:

Z(s) = F(s)/Ẋ(s) (3.7)

In the impedance control scheme, the end-effector of the robot is desired to behave like

a 2nd order linear dynamics of a mass-spring-damper system shown as,

F(s)
X(s)

= sZ(s) = Λs2 +Bs+K (3.8)

The desired behavior of the close-loop system for this system is represented in

time-domain by the following equation:

f = ΛΛΛ(ẍd− ẍ)+B(ẋd− ẋ)+K(xd−x) (3.9)

In this equation ΛΛΛ , B and K are 6× 6 positive definite diagonal gain matrices for

mass, damper and spring respectively. This can be described as six virtual independent

mass-damper-spring systems for each DoF of 3-D space. The natural frequency ωn

and the damping ratio ζ of a linear mass-spring-damper model are shown in terms of

its physical parameters (mass m, spring k and damper b coefficients) as follows:

ωn =

√
k
m
, ζ =

b
2
√

km
(3.10)

The dynamic behavior of the system can be described by relative magnitudes of ωn

and ζ with their constitutive parameters. An increase on the inertial coefficient while

keeping other coefficients constant, results in the decrease of ωn and ζ . That causes the

system to respond slower to an input. An increase only on the spring coefficient results

in an increase of ωn and a decrease of ζ . As a consequence, a faster response of the

52

K

B

Λ−1

xe = f(q)

J̇

ẋe = J(q)q̇

M̂J−1 Robot
e

ė

w τxd
e

ẋd
e

ẍd
e

fe
q

q̇

+
−

+

−

−
+

+

+
+

−

Figure 3.11 : Basic impedance controller.

system is generated. An increase only on the damping coefficient affects the transient

response of the system by increasing the damping ratio. A smaller ωn is desired for the

direction of the contact for keeping the forces relatively low and a higher ωn is desired

for the directions of the motion for a good trajectory tracking.

A basic impedance control scheme is presented in Figure 3.11. The control law of the

implemented impedance control scheme shown in Figure 3.12 is given as follows:

τ = M̂J−1{[Eẍd
e + Ėẋd

e]+ΛΛΛ
−1[BE(ẋd

e − ẋe)

+KE(xd
e −xe)− fe]− J̇q̇qq}+ ĥ(qqq, q̇qq, fe) (3.11)

Due to the nature of the impedance control scheme, the contact forces are controlled

indirectly depending on the motion of the end-effector. An extended version of the

impedance control scheme with explicit force control named as parallel position/force

control is purposed by Chiaverini and Sciavicco and implemented in this study as

in Figure 3.13. In this control scheme, the contact wrench is inserted to a force

control-loop instead of feeding it directly into the closed-loop. Thus, the desired

force reference can be achieved in addition to the controlling of the general dynamic

behavior of the system. The desired behavior of the system after the addition of an

explicit force control is described as follows:

53

KE

BE

E

Ė

Λ−1

xe = fA(q)

J−1

J̇

ẋe = JA(q)q̇

M̂ Robot

ĥ(q, q̇, fe)

e

ė

τ

xd
e

ẋd
e

ẍd
e

fe

q
q̇

+
−

+

−

+

+

+

+

+ −

+
+

−

+
+

+

Figure 3.12 : Implemented impedance controller scheme.

ΛΛΛ(ẍd− ẍ)+B(ẋd− ẋ)+K(xd−x)

+K f P(fd− f)+K f I

∫
(fd− f)dt−K f Dẋ+ fd = 0 (3.12)

In this parallel position/force control scheme, motion and force control variables can

be shown separately as in the hybrid position/force control scheme. The difference

between these two control schemes is that, the separate control variables in terms of

task-space accelerations are selected by S in hybrid position/force control scheme and

combined in parallel position/force control scheme about each DoF of task-space. The

control signals for motion wx(t) and w f (t) for parallel position/force control scheme

are given in the following equations.

wx(t) = [Eẍd
e + Ėẋd

e]+ΛΛΛ
−1[BE(ẋd

e − ẋe)+KE(xd
e −xe)] (3.13)

w f (t) = ΛΛΛ
−1[fd

e +K f P(fd
e − fe)+K f I

∫
(fd

e − fe)dt +K f Dẋe] (3.14)

The motion control part remains the same as the basic impedance control scheme. The

contribution of the force signal becomes a control output of a PID controller with a

feed-forward action. This control scheme becomes identical to the basic impedance

control scheme when there is no force reference and proportional gain is 1 and other

gains are zero.

54

BE

KE

KfP

KfI

∫
ef KfD

Ė

Λ−1

E ẋe = JA(q)q̇

J−1

J̇

J

xe = fA(q)

M̂

ĥ(q, q̇, fe)

Robot

e

ė

ef

τ

ẋe

xd
e

ẋd
e

ẍd
e

fde

q

fe

q̇

+
−

+
−

+

−

+
+

+
+

+ −

+

+

+
+

+
+

−

+
+

Figure 3.13 : Parallel position/force control scheme.

The total controller output in terms of end-effector acceleration is described as the sum

of two controllers as follows:

w(t) = wx(t)+w f (t) (3.15)

The general output of this control scheme is dominated by the control loop having

higher gains. For the contact direction, force control loop is desired to dominate the

system in order to achieve the reference contact forces even on a variable motion. For

other directions, motion control loop is desired to dominate the system for a good

trajectory tracking. The domination of the force control over the motion control is

achieved mostly by the integral action founded on the force control loop.

Due to the fact that control outputs appear in terms of task-space acceleration; an

inverse dynamic model is required to be used in the impedance control schemes that

include mass dynamics. The general control law of the impedance control scheme with

explicit force control loop is shown in the following equation.

τ = M̂J−1[w(t)− J̇q̇qq]+ ĥ(q, q̇, fe) (3.16)

55

56

4. EXPERIMENTATION

The two compliance control schemes presented in chapter 3 were implemented for the

control of a single robot and collaborating robots. Firstly, hardware of the system was

described in the experimental setup section. After that, the planned tasks of these two

scenarios were explained in phases. At last, performances of the implementations of

the hybrid position/force control and the parallel position/force control schemes were

examined. Furthermore, the parallel position/force control scheme was tested with

different control parameters in order to analyze resulting behaviors.

4.1 Experimental Setup

The experimental setup consists of mainly by two Stäubli RX160 series robots located

side-by-side and a work-piece placed in between them as shown in Figure 4.1. The

robot manipulators were equipped with F/T transducers on their wrists, and the one

with the compliance control applied had the end-effector described in the system

description section. Controllers of the robots have a sampling frequency of 250

Hz. Trajectories were planned using the robot application command terminal via a

computer connected to both robot controllers. After the run command was given, both

robots performed the tasks autonomously.

The work-piece used in this experimentation was a rigid body with a rectangular planar

surface (60 × 60 cm) and a thickness of 5 cm. One of the large surfaces was facing

towards the RX160 model robot manipulator executing the active compliance control

by contacting the surface with its end-effector. The opposite surface was backed

by the RX160L model robot manipulator via holding soft materials in-between the

work-piece and its gripper.

57

Figure 4.1 : Location of robots and work-piece.

4.2 Task Description

The same task is planned to be completed by the robot controlled with an active

compliance. The general task including both robot manipulators is separated in two

parts by the task of the robot with a passive compliance control. Before describing

the differences of those two tasks, the similarities of those tasks can be described in a

general task.

The general task can be described in three phases as follows:

Phase 1: The end-effector of the robot controlled with the active compliance starts its

motion from an arbitrary distance from the work-piece. It moves freely in constant

velocity in the direction towards the work-piece until the contact is established.

This motion for each cases is controlled by using motion control equivalents of the

implemented control schemes.

Phase 2: Once the physical contact is established between the surface of the

work-piece and the spherical object located on tip of the end-effector and the contact

force in the moving direction exceeds a predefined magnitude, the switch flag becomes

active on the trajectory generation and the control scheme.

Phase 3: In this phase, it is expected for the robot to complete a task of tracking a

trajectory while keeping a desired contact force. After the switch flag activated, the

reference motion trajectory at the tip point of the end-effector changes to a perfect

58

X
Y

Z

∼7◦

Figure 4.2 : Experimental setup.

circle path with a 5 cm radius. The circular trajectory is desired to have an angular

5th order polynomial interpolation with a maximum tangential velocity of 0.02 m/s.

Magnitude of the contact force controlled by the compliance control schemes is desired

to be 30 N which remains in the linear range of the F/T transducer.

End-effector motion of the compliance controlled robot and the work-piece in phase 3

is described with colored drawings in the Figure 4.2. The compliance frame of actively

compliance-controlled robot is chosen as a frame with origin on end-effector tip point

with respect to its base frame for both control schemes. The initial free movement and

active force control direction occured over y-axis and circular trajectory is generated

on a xz-plane of the compliance frame.

4.3 Implementations

The tasks differ in two by the phase 3 with the motion of the robot with a passive

compliance control. In the first task, named as single robot control, the passively

compliance-controlled robot does not move, so that the work-piece remains in a

fixed state. In the second task, named as collaboration control, the passively

compliance-controlled robot moves in a previously planned periodic trajectory in the

direction of the other robots contact force control. That causes the work-piece moving

in a periodic motion.

59

Table 4.1 : PID gains in hybrid position/force control scheme.

Gain x y z α β γ

KP 5500 3000 5750 4700 4500 5000
KD 24 20 26 16 16 17.5
K f P 14 14 14 14 14 14
K f D 6.2 6.2 6.2 6.2 6.2 6.2
K f I 20.2 20.2 20.2 20.2 20.2 20.2

Table 4.2 : Controller parameters in parallel position/force control scheme.

Gain x y z α β γ

Λ 1 7 1 1 1 1
K 5500 1000 5750 4700 4500 5000
B 24 20 26 16 16 17.5
K f P 0.2 9 0.2 0.2 0.2 0.2
K f D 0 4 0 0 0 0
K f I 0 13 0 0 0 0

Each of these single robot control and collaboration control tasks are repeated in two

cases. The first case is the implementation of the hybrid position/force control and

parallel position/force control schemes with a single robot control. The second case

is the implementation of the same two compliance control schemes with two robots

collaborating.

The control parameters of the implemented hybrid position/force control and parallel

position/force control schemes are given in Table 4.1 and 4.2 respectively. The rows of

the tables are indicating the diagonal terms of control gains matrices and the columns

are indicating the six independent axes of the task-space. The gray colored terms in

the Table 4.1 indicate the inactive gains of the hybrid position/force control scheme.

This selection happens by the compliance selection matrix S in between motion and

force control as mentioned in the previous chapter.

4.3.1 Task 1: Compliance control of a single robot

The first task is described as a single robot interacting with a fixed work-piece in

compliance control. The RX160L model robot is stationary in all phases of this task.

The compliance control is achieved by the RX160 model robot by keeping the contact

force in desired magnitude. The work-piece is leaned on the stationary robot with an

inclination in order to establish disturbance on the contact forces while end-effector is

tracking on a sloped surface. For this task, two types of compliance control schemes

60

0 5 10 15 20 25 30 35
time (sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

po
si

tio
n

er
ro

r
(m

m
)

hybrid p/f
parallel p/f

Figure 4.3 : Position tracking error of the end-point on the work-piece (O-xz) plane.

implemented and the results are given in the following cases. The experimental

results of first task with hybrid position/force control and parallel position/force control

schemes are shown in Figures 4.3 to 4.6.

4.3.1.1 Case 1: Hybrid position/force control

The results of the implementation of hybrid position/force control for the first task are

displayed in the stated figures. The position tracking error of the tip of the end-effector

over the reference circular path in a xz-plane with respect to base frame is shown in

Figure 4.3. The maximum and mean absolute position tracking errors are computed as

1.4 mm and 0.65 mm respectively.

The force tracking performance along the control direction is given in Figure 4.4. The

maximum and mean absolute force tracking errors are computed as 8.63 N and 1.12 N

respectively.

Mean absolute position and force tracking errors and their standard deviations of both

cases are given in Figure 4.7 for the first task. For the case 1, standard deviations of

absolute position and force errors are 0.417 mm and 1.272 N respectively.

The translational motion of the end-point along the force controlled direction is given

in Figure 4.5. The maximum displacement is 15.35 mm and the orientation error of

the end-effector during the physical interaction in Euler angles is shown in Figure 4.6.

61

-10 -5 0 5 10 15 20 25 30 35

time (sec)

-40

-30

-20

-10

0

10
fo

rc
e

(N
)

reference
hybrid p/f
parallel p/f
switch time

Figure 4.4 : Force control along the (O-y) axis to the work-piece plane.

4.3.1.2 Case 2: Parallel position/force control

The result of the implementation of parallel position/force control for the first task are

displayed in the stated figures. The position tracking error of the end-point over the

same reference circular path is given in Figure 4.3. The maximum and mean absolute

position tracking errors are computed as 1.6 mm and 0.69 mm respectively.

Figure 4.4 shows the force tracking performance along the control direction. The

maximum and mean absolute force tracking errors are computed as 5.02 N and 0.72 N

respectively.

Mean absolute position and force tracking errors and their standard deviations of both

cases are given in Figure 4.7 for the first task. For the case 2, standard deviations of

absolute position and force errors are 0.404 mm and 0.681 N respectively.

The translational motion of the end-point along the force controlled direction is

shown in Figure 4.5 and the maximum displacement is computed as 15.60 mm. The

orientation error of the end-effector during the physical interaction is shown in Figure

4.6.

62

0 5 10 15 20 25 30 35
time (sec)

-15

-10

-5

0

5

10

15

20
di

sp
la

ce
m

en
t (

m
m

)
hybrid p/f
parallel p/f

Figure 4.5 : Translational motion of end-effector along the (O-y) axis.

0 5 10 15 20 25 30 35

time (sec)

-0.6

-0.3

0

0.3

0.6

or
ie

nt
at

io
n

er
ro

r
(d

eg
)

hybrid position/force control

0 5 10 15 20 25 30 35

time (sec)

-0.6

-0.3

0

0.3

0.6

or
ie

nt
at

io
n

er
ro

r
(d

eg
)

parallel position/force control

Figure 4.6 : Orientation error of the end-effector in terms of the Euler angles.

63

a) Position

Case 1 Case 2
0

0.2

0.4

0.6

0.8

1

1.2
ab

so
lu

te
 e

rr
or

 (
m

m
)

b) Force

Case 1 Case 2
0

0.5

1

1.5

2

2.5

ab
so

lu
te

 e
rr

or
 (

N
)

Figure 4.7 : Absolute mean error with standard deviations of both cases for task 1.

4.3.1.3 Discussion of the task 1

The position error over time plots of both controllers from Figure 4.3 appear similar in

general. Both position tracking errors start and end around maximum negative values,

however hybrid position/force controller starts with less errors. The steady-state errors

are expected because there is no integrator action in the position control schemes.

When end-effector moves at the maximum and minimum distances on the z-axis,

position tracking errors fluctuate around zero. While end-effector is at the half-way

though the circular path, the position tracking error values become maximum positive.

Figure 4.4 indicates that force tracking errors of both controllers increases with the

velocity of the end-effector in the same axis. Velocity of the end-effector along the

y-axis of compliance frame can be interpreted from the change in displacements at

small instances from Figure 4.5. No significant differences in orientation errors in

terms of XYZ Euler angles for both controller are seen from Figure 4.6. Steady-state

errors for orientation error are observed because of the absence of the integrator action

in motion control parts of both compliance control schemes. The orientation error is

smaller in general at the angle ϑ for both controllers due to minimal moments on the

y-axis corresponding to rotation in ϑ . The spherical moving tip of the end-effector

reduces the moment produced from contact motion on that axis.

64

4.3.2 Task 2: Compliance control of collaborating robots

The second task is described as collaboration control with a moving piece. The

RX160L model robot is stationary in the first two phases and periodically moving

in the third phase. The compliance control is achieved actively by the RX160 model

robot by controlling the contact force while moving harmoniously with the passively

compliance-controlled robot. The purely motion controlled periodic motion of the

RX160L robot is a sinusoidal motion with a period of 12 seconds for two repeats.

The periodic angular motion of the work-piece about x-axis in orientation of base

frame caused by this motion is given as 3.5 deg for amplitude and π/6 rad/s for

frequency. The contact force is continuously changing due to the work-piece motion

and the changing surface slope in this task. The results of implementation of two

compliance control schemes to achieve this task is are discussed in the following cases.

The experimental results of the first task with hybrid position/force control and parallel

position/force control are shown in Figures 4.8 to 4.11.

This task is repeated with different control parameters resulting in various desired

natural frequencies and damping ratios for the parallel position/force control scheme.

The experimental results of the different natural frequencies and damping ratios are

shown in Figures 4.13 to 4.15.

4.3.2.1 Case 1: Hybrid position/force control

The results of the implementation of hybrid position/force control for the second

task can be found in the stated figures. The position tracking error of the tip of the

end-effector over the reference circular path in a xz-plane with respect to base frame

is shown in Figure 4.8. The maximum and mean absolute position tracking errors are

computed as 1.31 mm and 0.46 mm respectively.

The force tracking performance along the control direction is given in Figure 4.9. The

maximum and mean absolute force tracking errors are computed as 6.95 N and 2.01 N

respectively.

Mean absolute position and force tracking errors and their standard deviations of both

cases are given in Figure 4.12 for the second task. For the case 1, standard deviations

of absolute position and force errors are 0.336 mm and 1.535 N respectively.

65

0 5 10 15 20 25 30 35
time (sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5
po

si
tio

n
er

ro
r

(m
m

)
hybrid p/f
parallel p/f

Figure 4.8 : Position tracking error of the end-point on the work-piece (O-xz) plane.

The translational motion of the end-point along the force controlled direction is given

in Figure 4.10. The maximum displacement is 62.08 mm and the orientation error of

the end-effector during the physical interaction in Euler angles is shown in Figure 4.11.

4.3.2.2 Case 2: Parallel position/force control

The result of the implementation of parallel position/force control for the second task

can be found in the stated figures. The position tracking error of the end-point over the

same reference circular path is given in Figure 4.8. The maximum and mean absolute

position tracking errors are computed as 1.77 mm and 0.6 mm respectively.

Figure 4.9 shows the force tracking performance along the control direction. The

maximum and mean absolute force tracking errors are computed as 5.94 N and 1.29 N

respectively.

Mean absolute position and force tracking errors and their standard deviations of both

cases are given in Figure 4.12 for the second task. For the case 2, standard deviations

of absolute position and force errors are 0.433 mm and 1.115 N respectively.

The translational motion of the end-point along the force controlled direction is shown

in Figure 4.10 and the maximum displacement is computed as 60.95 mm. The

orientation error of the end-effector during the physical interaction is shown in Figure

4.11.

The same task for second case is repeated with alternative impedance references in

order to evaluate the parallel position/force controller. Two more experiments with

66

-10 -5 0 5 10 15 20 25 30 35

time (sec)

-40

-30

-20

-10

0

10
fo

rc
e

(N
)

reference
hybrid p/f
parallel p/f
switch time

Figure 4.9 : Force control along the (O-y) axis to the work-piece plane.

0 5 10 15 20 25 30 35
time (sec)

-80

-60

-40

-20

0

20

di
sp

la
ce

m
en

t (
m

m
)

hybrid p/f
parallel p/f

Figure 4.10 : Translational motion of end-effector along the (O-y) axis.

67

0 5 10 15 20 25 30 35

time (sec)

-0.6

-0.3

0

0.3

0.6

or
ie

nt
at

io
n

er
ro

r
(d

eg
)

hybrid position/force control

0 5 10 15 20 25 30 35

time (sec)

-0.6

-0.3

0

0.3

0.6

or
ie

nt
at

io
n

er
ro

r
(d

eg
)

parallel position/force control

Figure 4.11 : Orientation error of the end-effector in terms of the Euler angles.

a) Position

Case 1 Case 2
0

0.2

0.4

0.6

0.8

1

1.2

ab
so

lu
te

 e
rr

or
 (

m
m

)

b) Force

Case 1 Case 2
0

0.5

1

1.5

2

2.5

3

3.5

4

ab
so

lu
te

 e
rr

or
 (

N
)

Figure 4.12 : Absolute mean error with standard deviations of both cases for task 2.

68

different control parameters are conducted in addition to the previous case with the

parallel position/force controller. These three controllers with different impedance

references indicate the different levels of explicit force control effect on an impedance

control scheme.

Table 4.3 : Control parameters for different impedances.

Z# Λ K B K f P K f I K f D ωn ζ

1 7 1000 20 9 13 4 11.95 0.12
2 7 10000 20 4.5 6.5 0 37.8 0.04
3 2.5 1500 15 1 0 0 24.5 0.12

The first controller for impedance (Z1) is the one used in the parallel position/force

controller. This one is used for comparing with hybrid position/force controller shown

in the previous case. This controller prioritizes the force control over impedance

control. The second controller for impedance (Z2) has a balanced force and impedance

control with reduced force control parameters and an increased stiffness parameter

in the direction of contact in the compliance frame. Control parameters of the last

controller for impedance (Z3) were selected to act as a basic impedance controller. The

force reference is set as zero together with the derivative and integral force control

gains. Proportional force control gain is set as one in order to feed force feedback

value directly to the system as in basic impedance control schemes. The parameters

of these three controllers are presented in Table 4.3. Their corresponding natural

frequencies and damping ratios shown in the right columns of the table are calculated

using mass-spring-damper system parameters.

Table 4.4 : Performances of the parallel position/force control in terms of position
and force tracking errors.

Z# emax (mm) emean (mm) e f max (N) e f mean (N)
1 1.77 0.66 5.94 1.29
2 1.67 0.65 28.08 9.65
3 1.82 0.91 48.38 18.78

The position tracking errors and the force control performances of the parallel

position/force control scheme with alternative parameters sets are shown in Figures

4.13 and 4.14 respectively. Calculated maximum position error and mean absolute

position tracking errors are denoted by emax and emean respectively in Table 4.4.

Similarly, calculated maximum force tracking error and mean absolute force tracking

69

0 5 10 15 20 25 30 35
time (sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5
po

si
tio

n
er

ro
r

(m
m

)
Z

1

Z
2

Z
3

Figure 4.13 : Position tracking error of the end-point on the work-piece (O-xz) plane,
with different impedances.

errors are denoted by e fmax and e fmean respectively in the same table. The maximum

displacement along the y-axis of the compliance frame shown in Figure 4.15 are

calculated as 60.95 mm, 54.62 mm and 43.57 mm respectively.

4.3.2.3 Discussion of the task 2

In the collaboration task, the position tracking error over time plots of both controllers

from Figure 4.8 also appear similar in form roughly. However, hybrid position/force

controller resulted with smaller negative position tracking errors, while positive errors

are reaching closer limits. When looking at the changes of position tracking errors in

time, it is observed that errors with highest magnitude occur at the force unloading

situations. On the contrary, force tracking in Figure 4.9 are closer to the reference

values for parallel position/force controller in the same situations. Considering motion

along the (O-y) axis in Figure 4.15 together with the force tracking plots, deviations

from reference happen when the end-effector of the robot is moving with higher

velocities. Due to integral action of the integrated PID force controller exists on

both controllers, there are no significant steady-state force tracking errors among each

other. Figure 4.11 is showing the orientation tracking errors of the robot’s end-effector

in terms of XYZ Euler angles over time, it is indicated that there is no remarkable

differences for both controllers.

The results of the experiments with different impedances for the parallel position/force

controller are discussed in this paragraph. The position tracking errors for the radius of

70

-5 0 5 10 15 20 25 30 35

time (sec)

-80

-60

-40

-20

0

20
fo

rc
e

(N
)

reference
Z

1

Z
2

Z
3

switch time

Figure 4.14 : Force control along the normal (O-y) axis to the work-piece plane, with
different impedances.

0 5 10 15 20 25 30 35
time (sec)

-60

-40

-20

0

20

di
sp

la
ce

m
en

t (
m

m
)

Z
1

Z
2

Z
3

Figure 4.15 : Translational motion of end-effector along the normal (O-y) axis, with
different impedances.

71

the circular trajectory about controllers with three different impedances are shown in

Figure 4.13. As shown in the figure, it is observed that the first two controllers perform

similarly; however, the second controller produced an oscillation at the final stage. This

can be a result of the increase of the natural frequency and the reduced damping ratio,

which can be seen in Table 4.3. The third controller has a smaller position tracking

error, which is caused by the lack of an explicit force control. An explicit force control

on an axis can generate disturbances to other axes that are motion controlled. The force

control performances over time for the three controllers with different impedances are

shown in Figure 4.14. The first controller shows a dominant explicit force control with

an impedance control to a smaller extent. On the contrary, third controller does not

have an explicit force control, which is apparent in the plot when the force control

is observed. This is especially clear when the force control plot is evaluated with

the displacement of the end-effector on the force controlled axis over time in Figure

4.15. When the displacement of the tip of the end-effector increases, the spring effect

of the impedance control becomes dominant and the feedback force changes with a

direct proportion. The second controller was designed to behave in-between other two

controllers and the experimental results are supporting this prediction. The oscillation

observed in the position tracking error plot is also observable in this plot. Finally, while

ignoring the small delay caused by the initializing command of the second robot’s

motion, the effect of the interaction forces on the displacement of the end-effector

occur in Figure 4.15. This can be calculated more accurately by implementing the

spring model of the end-effector.

72

5. CONCLUSIONS

In this chapter, the results from the experimentation on both tasks with hybrid

position/force control and extended impedance schemes are discussed; and based on

these discussions, the conclusion of this study is stated.

The position and force tracking performances of the implemented hybrid position/force

control and extended impedance control schemes are compared for single robot and

collaborating robots tasks. Both compliance control schemes parameters are carefully

tuned in order to achieve a stable robot control for the experimentation tasks. In order

to ensure comparability between two compliance control schemes, the PID gains of

these two control schemes have to be chosen as close as possible.

The experimental results of both fixed and moving work-piece tasks generally show

that the hybrid position/force controller performs better in terms of position tracking,

while the extended impedance controller performs better in terms of force tracking on

similar conditions.

It is observed that force tracking is affected worse than position tracking by the

collaboration motion for the tasks of this study. While the hybrid position/force

controller for moving work-piece performs the force tracking worse, outstandingly the

position tracking performance gets slightly better. The extended impedance controller

is, however, did not perform better on position tracking but had less increase of force

tracking error in the collaboration task.

In conclusion, experimental results show that both hybrid position/force control

and extended impedance control schemes can be used for collaborating robot tasks.

According to the result of this study, the hybrid position/force control scheme is

preferable for tasks that require more precision about position tracking; and for tasks

that require more precision about force tracking, the extended impedance control

scheme is preferable.

73

The hybrid position/force control scheme has a stricter separation of force and position

control on compliance frame axes. Any contact force vector deviates from the force

controlled axis acts as a disturbance to the motion controlled axes. If motion control

has high gains to dominate the force control, position tracking performance gets better

opposed to force tracking. In order to improve both of the tracking performances, the

selection matrix can be applied on a dynamically changing compliance frame.

The extended impedance control scheme has motion and force control on all

compliance frame axes at the same time. A force input on any axis contributes to

the controller input with respect to force control gains for that axis. This can cause a

compromise on position tracking performance in favor of force tracking. An advantage

of extended impedance control scheme is that by manipulating the control parameters,

it can behave more like a hybrid position/force control scheme or more like a basic

impedance control scheme.

74

REFERENCES

[1] Zeng, G. and Hemami, A. (1997). An overview of robot force control, Robotica,
15(5), 473–482.

[2] Vukobratovic, M. (2009). Dynamics and robust control of robot-environment
interaction, World Scientific, Vol. 2.

[3] Siciliano, B., Siciavicco, L., Villani, L. and Oriolo, G. (2012). Robotics -
Modelling, Planning and Control. Springer Science & Business Media.

[4] Sariyildiz, E. and Ohnishi, K. (2015). On the explicit robust force control via
disturbance observer, IEEE Transactions on Industrial Electronics, 62(3),
1581–1589.

[5] Jung, S. and Hsia, T.C. (2000). Robust neural force control scheme under
uncertainties in robot dynamics and unknown environment, IEEE
Transactions on Industrial Electronics, 47(2), 403–412.

[6] Sariyildiz, E. and Ohnishi, K. (2014). A comparison study for force sensor and
reaction force observer based robust force control systems, IEEE 23rd
International Symposium on In Industrial Electronics (ISIE), 1156–1161.

[7] Yang, R., Yang, C., Chen, M. and Na, J. (2017). Adaptive impedance control of
robot manipulators based on Q-learning and disturbance observer, Systems
Science & Control Engineering, 5(1), 287–300.

[8] Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open
research issues. Journal of Industrial Information Integration, 6, 1–10.

[9] Raibert, M.H. and Craig, J.J. (1981). Hybrid position/force control of
manipulators, Journal of Dynamic Systems, Measurement, and Control,
103(2), 126–133.

[10] Fisher, W.D. and Mujtaba, M.S. (1992). Hybrid position/force control: a
correct formulation, The International journal of robotics research, 11(4),
pp.299–311.

[11] Khatib, O. (1987). A unified approach for motion and force control of robot
manipulators: The operational space formulation, IEEE Journal on
Robotics and Automation, 3(1), pp.43–53.

[12] Hogan, N. (1985). Impedance control: An approach to manipulation: Part
II—Implementation, Journal of dynamic systems, measurement, and
control, 107(1), 8–16.

75

[13] Anderson, R.J. and Spong, M.W. (1988). Hybrid impedance control of robotic
manipulators, IEEE Journal on Robotics and Automation, 4(5), 549–556.

[14] Chiaverini, S. and Sciavicco, L. (1993). The parallel approach to force/position
control of robotic manipulators, IEEE Transactions on Robotics and
Automation, 9(4), 361–373.

[15] Gierlak, P. (2014). Hybrid position/force control in robotised machining, Trans
Tech Publications In Solid State Phenomena 210, pp. 192–199.

[16] Solanes, J.E., Gracia, L., Muñoz-Benavent, P., Miro, J.V., Perez-Vidal, C.
and Tornero, J. (2019). Robust hybrid position-force control for robotic
surface polishing. Journal of Manufacturing Science and Engineering,
141(1): 011013.

[17] Gao, C., Cong, D., Liu, X., Yang, Z. and Tao, H. (2016). Hybrid position/force
control of 6-dof hydraulic parallel manipulator using force and vision,
Industrial Robot: An International Journal, 43(3), 274–283.

[18] Vergara, C.A. and Rodriguez, C.F. (2017). Hybrid Position-force Control for a
Stewart Platform, Journal of Automation and Control Engineering 5(1).

[19] Ott, C., Mukherjee, R. and Nakamura, Y. (2010). Unified impedance and
admittance control, IEEE Int. Conf. on Robotics and Automation (ICRA).

[20] Jung, S., Hsia, T.C. and Bonitz, R.G. (2004). Force tracking impedance control of
robot manipulators under unknown environment, IEEE Trans. on Control
Systems Technology, 12(3), 474–483.

[21] Kim, Y. (2015). Hybrid-mode impedance control for position/force tracking in
motor-system rehabilitation, International Journal of Advanced Robotic
Systems, 12(6), 79.

[22] Akdogan, E., Aktan, M.E., Koru, A.T., Arslan, M.S., Atlıhan, M. and Kuran,
B. (2018). Hybrid impedance control of a robot manipulator for wrist
and forearm rehabilitation: Performance analysis and clinical results,
Mechatronics, 4977–91.

[23] Marques, S.J., Baptista, L.F. and da Costa, J.M.S. (1997). Hybrid impedance
control of robot manipulators with neural networks compensation. IFAC
Proceedings Volumes, 30(3), 373–378.

[24] Sharifi, I., Talebi, H.A., Mousavi, S.A.R., Shemshaki, S and Tavakoli, M.
(2017). Haptic Tele-cooperation of Multiple Robots, In 2017 5th RSI
International Conference on Robotics and Mechatronics (ICRoM) (pp.
113–119). IEEE.

[25] Tinós, R., Terra, M.H. and Ishihara, J.Y. (2006). Motion and force control of
cooperative robotic manipulators with passive joints, IEEE Transactions
on Control Systems Technology, 14(4), 725–734.

[26] Martínez-Rosas, J.C., Arteaga, M.A. and Castillo-Sánchez, A.M. (2006).
Decentralized control of cooperative robots without velocity–force
measurements, Automatica, 42(2), 329–336.

76

[27] Magrini, E. and De Luca, A. (2016). Hybrid force/velocity control for physical
human-robot collaboration tasks, IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS).

[28] Gaz, C., Magrini, E. and De Luca, A. (2018). A model-based residual approach
for human-robot collaboration during manual polishing operations,
Mechatronics 55(19), 234–247.

[29] Url-1, https://www.staubli.com/en/robotics/product-range/
6-axis-scara-picker-industrial-robots/
6-axis-robots/rx160/, accessed: 01.05.2019.

[30] Url-2, https://www.staubli.com/en/robotics/product-range/
6-axis-scara-picker-industrial-robots/
6-axis-robots/rx160l/, accessed: 01.05.2019.

[31] Url-3, https://www.ati-ia.com/products/ft/ft_models.aspx?
id=Delta, accessed: 01.05.2019.

[32] ATI Industrial Automation (n.d.). F/T Controller - Six-Axis Force/Torque Sensor
System: Installation and Operation Manual.

[33] Url-4, https://www.staubli.com/en/robotics/product-range/
robot-controller/robot-controller-cs8/cs8c/,
accessed: 01.05.2019.

[34] Singla, P., Mortari, D. and Junkins, J.L. (2004). How to avoid singularity when
using Euler angles, In Proceedings of the AAS/AIAA 14th Space Flight
Mechanics Meeting, Maui County, HI, USA pp. 8–12.

[35] Akbaş, S. (2015). Force control of Stäubli RC-160 manipulator, M.Sc. thesis, ITU,
Istanbul.

[36] ATI Industrial Automation (2019). F/T Transducer - Six-Axis Force/Torque
Sensor System: Installation and Operation Manual.

[37] Chiaverini, S., Oriolo, G. and Maciejewski, A.A. (2016). Redundant Robots.
In: Siciliano B and Khatib O (eds) Springer Handbook of Robotics,
Heidelberg: Springer-Verlag Berlin, pp.221—242.

[38] Hutter, M., Hoepflinger, M.A., Gehring, C., Bloesch, M., Remy, C.D. and
Siegwart, R. (2013). Hybrid operational space control for compliant
legged systems, In: Roy N, Newman P and Srinivasa S (eds) Robotics:
Science and Systems VIII. MIT Press, p.129–136.

[39] Khalil, W. and Dombre, E. (2002). Modeling, Identification and Control of
Robots, Taylor & Francis.

[40] Stäubli (2008). Arm RX series 160 family Instruction Manual.

[41] Stäubli (2008). CS8C controller, Instruction Manual.

77

[42] Szczesiak, M. (2016). Force Control of Robotic Manipulators in Cooperation,
M.Sc. thesis, Istanbul Technical University, Graduate School of Science
Engineering and Technology.

[43] Zengin, E. (2013). Stäubli RX160 manipulatörün modellenmesi, tanınması
ve kontrolü, M.Sc. thesis, İstanbul Teknik Üniversitesi, Fen Bilimleri
Enstitüsü, İstanbul.

78

APPENDICES

APPENDIX A : Technical details of Stäubli RX160 and RX160L model robot
manipulators
APPENDIX B : Technical details of ATI Delta F/T transducers
APPENDIX C : C code for inverse kinematics for robots with a spherical wrist
APPENDIX D : C code for identification and compensation of end-effector wrench

79

80

APPENDIX A

The technical details of Stäubli RX160 and RX160L model industrial robot
manipulators are obtained from Arm - RX series 160 family manual [40].

Figure A.1 : Describtion of links and joints of the RX160 family robots.

Figure A.1 describes the joints in sequenced numbers and links as: the base (A), the
shoulder (B), the arm (C), the elbow (D), the forearm (E) and the wrist (F).

81

Figure A.2 : Dimensions of RX160.

Figure A.3 : Dimensions of RX160L.

82

Figure A.4 : Work envelope of RX160 family robots on xz-plane.

Figure A.5 : Work envelope of RX160 family robots on xy-plane.

83

Table A.1 : Work envelope of RX160 family.

RX160 RX160L
R.M max. reach between axis 1 and 5 1600mm 1900mm
R.m1 min. reach between axis 1 and 5 422mm 463mm
R.m2 min. reach between axis 2 and 5 312mm 462mm
R.b reach between axis 3 and 5 625mm 925mm
H 1300mm 1600mm
J 1600mm 1900mm

Table A.2 : Amplitude, speed and resolution of RX160 family.

Axis 1 2 3 4 5 6
Amplitude (◦) 320 275 300 540 225 540
Working range
distribution (◦) A±160 B±137.5 C±150 D±270 E+120-105 F±270

Nominal speed (◦/s) 165 150 190 295 260 440
Maximum speed∗ (◦/s) 278 278 356 409 800 1125
Angular resolution (◦.10−3) 0.68 0.68 0.87 1.0 1.95 2.75
Maximum Cartesian speed: 2.5 m/s.
* Maximum speed for reduced conditions of load and inertia.

84

APPENDIX B

The technical details of ATI Delta F/T transducer is obtained from F/T Transducer and
F/T Controller installation and operation manuals [36] and [32] respectively.

Figure B.1 : Placement of sensor frame on the F/T transducer.

Table B.1 : Delta calibrations.

(SI) Metric
Calibration

Fx,Fy
(N)

Fz
(N)

Tx,Ty
(Nm)

Tz
(Nm)

Fx,Fy
(N)

Fz
(N)

Tx,Ty
(Nm)

Tz
(Nm)

SI-165-15 165 495 15 15 1/32 1/16 1/528 1/528
SI-330-30 330 990 30 30 1/16 1/8 5/1333 5/1333
SI-660-60 660 1980 60 60 1/8 1/4 10/1333 10/1333

Sensing Ranges Resolution (DAQ,Net F/T)

85

Table B.2 : Delta physical properties.

Single axis overload (SI) Metric Units
Fxy ±3700 N
Fz ±10000 N
Txy ±280 Nm
Tz ±400 Nm
Stiffness (Calculated)
X-axis & Y-axis forces (Kx, Ky) 3.6×107 N/m
Z-axis forces (Kz) 5.9×107 N/m
X-axis & Y-axis torque (Ktx, Kty) 5.2×104 Nm/rad
Z-axis torque (Kz) 9.1×104 Nm/rad
Resonant Frequency
Fx, Fy, Tz 1500 Hz
Fz, Tx, Ty 1700 Hz
Physical Specifications
Weight1 0.913 kg
Diameter1 94.5 mm
Height1 33.3 mm
Note: 1. Specifications include standard interface plates.

86

APPENDIX C

The function in C code used for inverse kinematics for robots with a spherical wrist.

int getInvGeoKhalil(void)
{
double Px, Py, Pz;
double r1, r6, RL1, RL3, RL4, D2, D3;
double q[6], q_posFbk[6];
double W, X, Y, Z, Z1, Z2;
double B1, B2, B3;
double C2, C3, C5, C6, S2, S3, S5, S6;
int e;

unsigned int n, l_jnt;
double d[3], theta[3], a[3], alpha[3];
double SQ, CQ;

mdarray *Tj_i_h, *Tj_0_h, *A3_0, *FGH;

r1 = _kd.d[0]; // 0.550 + ...
r6 = _kd.d[5]; // 0.110
RL1 = 0.0;
RL3 = _kd.d[1];
RL4 = _kd.d[3]; // 0.625
D2 = _kd.a[1]; // 0.150
D3 = _kd.a[2]; // 0.825

for (l_jnt = 0; l_jnt < g_jntNb; l_jnt++)
q_posFbk[l_jnt] = mdarray1_get(_ad.q_posFbk, l_jnt + 1);

/// Transform position from base-to-end to shoulder-to-wrist

// Transform from base-to-end to base-to-wrist
// Tend_wrist = [1 0 0 0
// 0 1 0 0
// 0 0 1 - r(6)
// 0 0 0 1];
//
// Tbase_wrist = Tbase_end * Tend_wrist

Px = mdarray_get(_kd.T0_6Des, 1, 4)
- (mdarray_get(_kd.T0_6Des, 1, 3) * r6);
Py = mdarray_get(_kd.T0_6Des, 2, 4)

87

- (mdarray_get(_kd.T0_6Des, 2, 3) * r6);
Pz = mdarray_get(_kd.T0_6Des, 3, 4)
- (mdarray_get(_kd.T0_6Des, 3, 3) * r6);

// Transform from base-to-wrist to shoulder-to-wrist
// Tshoulder_wrist(3,4) = Tbase-to-wrist(3,4) - r(1);

Pz = Pz - r1;

// a) Computation of theta1, theta2, theta3

// theta 1
if (RL3 == 0)
{
q[0] = atan2(Py, Px);
}
else
{ // Type 2
X = -Px;
Y = Py;
Z = -RL3;

e = -1;

SQ = (X*Z + e * Y * sqrt(pow(X, 2) + pow(Y, 2)
- pow(Z, 2))) / (pow(X, 2) + pow(Y, 2));
CQ = (Y*Z - e * X * sqrt(pow(X, 2) + pow(Y, 2)
- pow(Z, 2))) / (pow(X, 2) + pow(Y, 2));

q[0] = atan2(SQ, CQ);

if (fabs(q_posFbk[0] - (q[0] - PI)) < fabs(q_posFbk[0] - q[0]))
q[0] = q[0] - PI;
else if (fabs(q_posFbk[0] - (q[0] + PI)) < fabs(q_posFbk[0] - q[0]))
q[0] = q[0] + PI;
}

// theta 2 & 3

// W SQj = X CQi + Y SQi + Z1
// W CQj = X SQi - Y CQi + Z2

W = -RL4;
X = -cos(q[0])*Px - sin(q[0])*Py + D2;
Y = Pz - RL1;
Z1 = -D3;
Z2 = 0;

88

// Type 6 Function

B1 = 2 * (Z1*Y + Z2 * X);
B2 = 2 * (Z1*X - Z2 * Y);
B3 = pow(W, 2) - pow(X, 2) - pow(Y, 2) - pow(Z1, 2)
- pow(Z2, 2);

if (_kd.elbow != LFT_POS)
e = -1;
else
e = 1;

C2 = (B2*B3 - e * B1*sqrt(pow(B1, 2) + pow(B2, 2)
- pow(B3, 2)))
/ (pow(B1, 2) + pow(B2, 2));
S2 = (B1*B3 + e * B2*sqrt(pow(B1, 2) + pow(B2, 2)
- pow(B3, 2)))
/ (pow(B1, 2) + pow(B2, 2));

q[1] = atan2(S2, C2);

S3 = (X*C2 + Y * S2 + Z1) / W;
C3 = (X*S2 - Y * C2 + Z2) / W;

q[2] = atan2(S3, C3);

// b) Computation of theta4, theta5, theta6

d[0] = 0.0;
d[1] = _kd.a[0];
d[2] = _kd.a[1];

a[0] = _kd.d[0];
a[1] = 0.0;
a[2] = 0.0;

alpha[0] = 0.0;
alpha[1] = _kd.alpha[0];
alpha[2] = 0.0;

theta[0] = q[0];
theta[1] = q[1];
theta[2] = q[2];

Tj_i_h = mdarray3_new(4, 4, 4);
Tj_0_h = mdarray3_new(4, 4, 4);
for (n = 1; n <= 4; n++)
{

89

// Transformation matrices (wrt previous coordinate)
if (n > 1)
{
mdarray3_set(Tj_i_h, 1, 1, n, cos(theta[n - 2]));
mdarray3_set(Tj_i_h, 1, 2, n, cos(alpha[n - 2])

* sin(theta[n - 2]));
mdarray3_set(Tj_i_h, 1, 3, n, sin(alpha[n - 2])

* sin(theta[n - 2]));
mdarray3_set(Tj_i_h, 1, 4, n, -d[n - 2] * cos(theta[n - 2]));
mdarray3_set(Tj_i_h, 2, 1, n, -sin(theta[n - 2]));
mdarray3_set(Tj_i_h, 2, 2, n, cos(alpha[n - 2])

* cos(theta[n - 2]));
mdarray3_set(Tj_i_h, 2, 3, n, sin(alpha[n - 2])

* cos(theta[n - 2]));
mdarray3_set(Tj_i_h, 2, 4, n, d[n - 2] * sin(theta[n - 2]));
mdarray3_set(Tj_i_h, 3, 1, n, 0.0);
mdarray3_set(Tj_i_h, 3, 2, n, -sin(alpha[n - 2]));
mdarray3_set(Tj_i_h, 3, 3, n, cos(alpha[n - 2]));
mdarray3_set(Tj_i_h, 3, 4, n, -a[n - 2]);
mdarray3_set(Tj_i_h, 4, 1, n, 0.0);
mdarray3_set(Tj_i_h, 4, 2, n, 0.0);
mdarray3_set(Tj_i_h, 4, 3, n, 0.0);
mdarray3_set(Tj_i_h, 4, 4, n, 1.0);
}
else
{
mdarray3_setpag_identity(Tj_i_h, n);
}

// Transformation matrices (wrt base)
if (n == 1)
mdarray3_memcpy_page(Tj_0_h, n, Tj_i_h, n);
else
mdarray3_mul_pags(Tj_0_h, n, Tj_i_h, n, Tj_0_h, n - 1);
}

mdarray_free(Tj_i_h);

A3_0 = mdarray_new(3, 3);
mdarray3_submatrix(A3_0, 1, Tj_0_h, 1, 3, 1, 3, 4);

mdarray_free(Tj_0_h);

// FGH = [F G H] = A3_0 * sna;
FGH = mdarray_new(3, 3);
mdarray_mul(FGH, A3_0, _kd.A0_6Des);

mdarray_free(A3_0);

90

// theta 4
q[3] = atan2(mdarray_get(FGH, 3, 3), mdarray_get(FGH, 1, 3));

if (fabs(q_posFbk[3] - (q[3] - PI))
< fabs(q_posFbk[3] - q[3]))
q[3] = q[3] - PI;
else if (fabs(q_posFbk[3] - (q[3] + PI / 2))
< fabs(q_posFbk[3] - q[3]))
q[3] = q[3] + PI / 2;
else if (fabs(q_posFbk[3] - (q[3] - PI / 2))
< fabs(q_posFbk[3] - q[3]))
q[3] = q[3] - PI / 2;
else if (fabs(q_posFbk[3] - (q[3] + 2 * PI))
< fabs(q_posFbk[3] - q[3]))
q[3] = q[3] + 2 * PI;

// theta 5
S5 = sin(q[3])*mdarray_get(FGH, 3, 3) + cos(q[3])

*mdarray_get(FGH, 1, 3);
C5 = -mdarray_get(FGH, 2, 3);

q[4] = atan2(S5, C5);

// theta 6
S6 = cos(q[3])*mdarray_get(FGH, 3, 1) - sin(q[3])

*mdarray_get(FGH, 1, 1);
C6 = cos(q[3])*mdarray_get(FGH, 3, 2) - sin(q[3])

*mdarray_get(FGH, 1, 2);

q[5] = atan2(S6, C6);

mdarray_free(FGH);

// finalize desired joint positions
for (l_jnt = 0; l_jnt < g_jntNb; l_jnt++)
mdarray1_set(_ad.q_posDes, l_jnt + 1, q[l_jnt]
+ _kd.theta[l_jnt]);

return 0;
}

91

92

APPENDIX D

The functions in C code used for identification of mass and CoM of attachments on
top the F/T transducer.

// --
// computeCompensation
// --
void computeCompensation(void)
{

mdarray *A6_0Fbk;
mdarray *tool_weight_fVec_wrld, *tool_weight_fVec_sxth;

tool_weight_fVec_wrld = mdarray1_new(3);
tool_weight_fVec_sxth = mdarray1_new(3);

// get rotation matrix end to base
A6_0Fbk = mdarray_new(3, 3);
mdarray_transpose(A6_0Fbk, _kd.A0_6Fbk);

// tool weight vector [N]
mdarray1_set3(tool_weight_fVec_wrld, 0.0, 0.0,
-(_dd.tool_mass * GRAV));

// transform tool weight vector from base frame to
// tool frame
mdarray_mul(tool_weight_fVec_sxth, A6_0Fbk,
tool_weight_fVec_wrld);

// transform tool weight vector from tool frame to
// sensor frame
rotateOnAnAxis(_sd.tool_weight_fVec_snsr
, tool_weight_fVec_sxth, ’z’, _kd.sensor_mount_ang);
mdarray_cross(_sd.tool_weight_tVec_snsr, _dd.tool_CoM_sF
, _sd.tool_weight_fVec_snsr);

mdarray_free(A6_0Fbk);

mdarray_free(tool_weight_fVec_wrld);
mdarray_free(tool_weight_fVec_sxth);

}

93

// --
// sumData
// --
void sumData(int motNb)
{

unsigned int i;

if (_sd.data_summation[motNb] == 1)
{

if (_ad.m_time < _td.tf[motNb] / g_cycleTime)
{

for (i = 0; i < 6; i++)
{

_sd.sensor_data_sum[i] +=
mdarray1_get(_ad.w_snsrFr
, i + 1);

}

++_sd.s_cycle;
}

}
else
{

_sd.s_cycle = 0;
}

}

// --
// averageData
// --
void averageData(double outputVector[6])
{

unsigned int i;

printf("\ns_cycle: %d", _sd.s_cycle);
for (i = 0; i < 6; i++)
{

printf("\nsensor_sum_data: %f"
, _sd.sensor_data_sum[i]);
outputVector[i] = _sd.sensor_data_sum[i]
/ _sd.s_cycle;

_sd.sensor_data_sum[i] = 0.0;
}
printf("\n");

}

94

// --
// sensorIdentification
// --
void sensorIdentification(void)
{

// compute final sensor force data using xMax
// and yMax data
mdarray1_set3(_sd.f_sensor_static_bias
,(_sd.sensor_FyMax_data[0]+_sd.sensor_FyMin_data[0])/2
,(_sd.sensor_FyMax_data[1]+_sd.sensor_FyMin_data[1])/2
,_sd.sensor_FyMin_data[2]);
mdarray1_set3(_sd.t_sensor_static_bias
,(_sd.sensor_FyMin_data[3]+_sd.sensor_FyMax_data[3])/2
,_sd.sensor_FyMax_data[4]
,(_sd.sensor_FyMax_data[5]+_sd.sensor_FyMin_data[5])/2);

printf("\n_sd.sensor_FyMax_data[1]: %f"
, _sd.sensor_FyMax_data[1]);
printf("\n_sd.sensor_FyMin_data[1]: %f"
, _sd.sensor_FyMin_data[1]);
printf("\ntool mass: %f"
, (_sd.sensor_FyMax_data[1] - _sd.sensor_FyMin_data[1])
/ (2 * GRAV));
_dd.tool_mass = (_sd.sensor_FyMax_data[1]
- _sd.sensor_FyMin_data[1]) / (2 * GRAV);

mdarray1_set3(_dd.tool_CoM_sF
, (_sd.sensor_FyMax_data[5]
- mdarray1_get(_sd.t_sensor_static_bias, 3))
/ (_dd.tool_mass * GRAV)
, -(_sd.sensor_FxMax_data[5]
- mdarray1_get(_sd.t_sensor_static_bias, 3))
/ (_dd.tool_mass * GRAV)
, (_sd.sensor_FyMin_data[3]
- mdarray1_get(_sd.t_sensor_static_bias, 1)
/ (_dd.tool_mass * GRAV));

rotateOnAnAxis(_dd.tool_CoM_6F, _dd.tool_CoM_sF, ’z’
, -_kd.sensor_mount_ang);
mdarray1_set(_dd.tool_CoM_6F, 3
, mdarray1_get(_dd.tool_CoM_6F, 3)
+ _kd.sensor_length);

initDynPara();
computeCompensation();

}

95

96

CURRICULUM VITAE

Name Surname: Mertcan Kaya

Place and Date of Birth: Edirne, Turkey, 5th April 1991

E-Mail: mertcan.kaya@gmail.com

EDUCATION:

• B.Sc.: 2014, Koç University, Collage of Engineering, Mechanical Engineering

97

