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Earthquake Engineering and Disaster Management Institute

Earthquake Engineering Programme

DECEMBER 2019





ISTANBUL TECHNICAL UNIVERSITY F EARTHQUAKE ENGINEERING

AND DISASTER MANAGEMENT INSTITUTE

EARTHQUAKE DAMAGE IDENTIFICATION
FROM VERY HIGH RESOLUTION POST EVENT IMAGE

USING ADVANCED METHODS IN MATHEMATICAL MORPHOLOGY

M.Sc. THESIS
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YÜKSEK LİSANS TEZİ
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EARTHQUAKE DAMAGE IDENTIFICATION
FROM VERY HIGH RESOLUTION POST EVENT IMAGE

USING ADVANCED METHODS IN MATHEMATICAL MORPHOLOGY

SUMMARY

Our planet is subjected to earthquakes, which is a devastating natural disaster that
affects human life, wild life, and their habitats. Earthquake engineering discipline
is trying to manage risks and to protect all living creatures from destructive effects
of the earthquakes for over a hundred years. One of the most important issues
in this discipline is to detect damaged or totally collapsed buildings right after the
earthquake. Because the damage information provided in a short time of period could
help the decision makers to build a fast emergency plan, and to guide research and
rescue teams. Even though the field based surveys can provide a detailed illustration
of the earthquake-induced damage, they are not sufficient to rapidly serve critical
information. Therefore, remote sensing data sources are becoming a popular direction
in the earthquake-induced damage assessment. Light detection and ranging (LIDAR),
synthetic aperture radar (SAR), and optical images are three main types of the remote
sensing data that are used for earthquake-induced damage detection tasks. Each data
type has its own advantages and disadvantages for such tasks. For example, LIDAR
images can be useful to detect the damaged in detail, while SAR is not affected by
severe weather conditions, or optical images are the most accessible and interpretible
type of the data. Thanks to recent technological improvements, optical imaging sensors
are able to acquire very high resolution images. Therefore, in this study, a very
high resolution post-earthquake image was considered to detect earthquake-induced
damage.

For an accurate earthquake damage assessment from very high resolution (VHR)
images, contextual relations between pixels need to be included in conjunction with
spectral information during the classification. To utilize the spatial information
in an efficient way, specific patterns representing the earthquake-induced damage
should properly be modelled. Morphological Profiles (MPs) and Attribute Profiles
(APs) provide a multi-dimensional representation of an image with a successive
implementation of different attribute filters, and they are able to generate the
complicated features for a specific pattern. In this study, the APs and the MPs were
used to extract the additional contextual features for two different very high resolution
post-event satellite images, acquired from City of Bam in Iran and Porto-Prince. These
contextual features were then analyzed by means of a feature selection algorithm to
find the optimal features , contributing the damage the most, in those profiles. A feature
selection method, called Minimum Redundancy Maximum Relevance (mRMR) was
used to analyze performance of the morphological and attribute features. A final subset
of selected features was analyzed also using two different classifiers, that are k-Nearest
Neighbours (kNN) and Support Vector Machines (SVM). The results showed that use
of a proper configuration of those profiles can significantly improve the classification
accuracy and the quality of the thematic map.
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DEPREM HASARININ YÜKSEK ÇÖZÜNÜRLÜKLÜ
AFET SONRASI GÖRÜNTÜLERDEN İLERİ MATEMATİKSEL

MORFOLOJİ YÖNTEMLERİ KULLANILARAK BELİRLENMESİ

ÖZET

Dünya üzerinde her yıl insan hayatına, çevreye ve ekonomiye ciddi zararlar
veren depremler meydana gelmektedir. Mühendisler ve bilim insanları mevcut
teknolojiyle bu doğal afetlerin önceden tahmin edilebileceği bir yöntemi henüz
geliştirememişlerdir. Bu nedenle depremler insan hayatını bir çok yönden ciddi
anlamda etkilemeye devam etmektedir. Deprem Mühendisliği, bu etkileri en aza
indirgemeyi amaçlayan çalışmaların yapıldığı bir disiplindir. Bu etkilerin en az
indirilmesi söz konusu olduğunda çoğu zaman ilk akla gelen yapısal güvenilirlik
olmaktadır. Ancak yapısal güvenilirliğin sağlanmaması durumunda da Deprem
Mühendisliği disiplini mevcut risklerin yönetimi konusunu da ele almaktadır. Bu
rikslerin doğru yönetilmesini sağlayan bileşenlerden birisi de deprem sonrası ortaya
çıkan yapısal hasarları hızlı bir şekilde belirlenebilmesidir. Yapısal hasarların hızlı
belirlenebilmesi, kurtarma çalışmalarının planlanmasıyla daha çok ve daha hızlı
hayat kurtarabilmenin yanında, hasarın ekonomik boyutu ve afet sonrası kalkınma
planlarının yapılması gibi faydalar da sağlamaktadır. Bu amaç doğrultusunda, afet
sonrası hasarın belirlenmesinde uzaktan algılama sistemlerinden yaygın bir şekilde
faydalanılmaktadır. Uzaktan algılama verilerinden, mevcut bilimsel birikimin ve
teknolojinin de olumlu etkisiyle, görüntü işleme ve makine öğrenmesi teknikleri
kullanılarak afet durum değerlendirmesinin yapılması öne çıkan bir araştırma
konusudur.

Bu çalışmada deprem nedeniyle meydana gelen yapısal hasarın belirlenerek acil durum
planlanmasına kaynak oluşturacak hasar haritalarının belirlenebilmesinde çok yüksek
çözünürlükü optik uydu fotoğraflarının kullanılması konusu ele alınmıştır. Literatürde
söz konusu verilerin bu amaçla kullanıldığı bir çok çalışma yapılmış olsa da henüz
istenilen hız ve doğruluğa ulaşabilecek genel bir yaklaşıma erişilememiştir. Bu nedenle
görüntü işleme ve yapay öğrenme alanlarındaki mevcut gelişmeler de göz önüne
alınarak ihtiyaç duyulan hız ve doğrulukta sonuç verebilecek bir yaklaşım oluşturmak
amaçlanmıştır. Önerilen yaklaşımın şekillenmesinde ve değerlendirilmesinde vaka
çalışması olarak; 12 Ocak 2010’da 7.0 Mw büyüklüğünde meydana gelen Haiti
ve 26 Aralık 2003’te 6.6 Mw büyüklüğünde meydana gelen Bam depremlerine
ait çok yüksek çözünürlüklü veri setleri kullanılmıştır. Söz konusu depremlerin
meydana getirdiği yapısal hasarlar sadece deprem sonrası görüntülerin görüntü
işleme teknikleriyle detaylandırılmış ve bu detaylı veriler yapay öğrenme yöntemleri
kullanılarak mevcut hasarın belirlenmesinde kullanılmıştır.
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İncelenen veri setlerinden Bam şehrine ait olanı depremden sadece sekiz gün sonra
Quickbird isimli ticari uydu aracılığıyla çekilmiştir. Bam verisinin oluşturulmasında
kullanılan sensör kırmızı, yeşil, mavi ve yakın kızıl ötesi dalga boylarında elde edilen
dört kanallı bir multi-spektral veriye ek olarak daha geniş bir dalga boyu aralığında
tek kanallı, 0.6 metrelik uzamsal çözünürlükte pankromatik bir veri sunabilmektedir.
Haiti şehrinden elde edilen veri setinin alındığı Worldview-1 isimli uydu ise kırmızı,
yeşil ve mavi olmak üzere üç kanallı multi-spektral, 0.5 metrelik uzamsal çözünürlükte
de pankromatik veri sunmaktadır. Sensörlerin sunduğu multispektral veri parçaları
pankromatik verilerle karşılaştırıldığında spektral çözünürlük bakımından daha zengin
olsa da, uzamsal çözünürlük açısından çok daha zayıftır. Matematiksel olarak
değerlendirildiğinde multispektral kanallar çekilen alandaki malzeme kimyasıyla ilgili
daha çok bilgi verirken, pankromatik veriler nesneleri ayırt etmek konusunda daha
faydalı bilgi vermektedir. Zira, uzamsal çözünürlük olarak belirtilen büyüklükler
veri içerisinde bir piksel içerisine sığdırılan alanın gerçekte kaç metrekarelik bir alan
olduğunu temsil etmektedir. Dolayısıyla bu iki veriyi bir arada kullanmak analizleri
daha doğru sonuçlara yönlendirecektir. Bu doğrultuda “pan-sharpening” adı verilen
bir işlem uygulanarak iki veri türü birleştirilerek analizlerde kullanılmaktadır.

Söz konusu uzaktan algılama verileri makine öğrenmesi veya başka bir deyişle
yapay öğrenme kullanılarak bir çok amaç için sınıflandırılabilir. Örneğin tarım
arazileri üzerinde bu sınıflandırma yaklaşımı kullanılarak arazi üzerindeki bitki örtüsü
kolaylıkla belirlenebilir. Bu çalışmada sınıflandırma yaklaşımını deprem sonrası
hasarlı yapıların tespit edilmesi için kullanılmıştır. Sınıflandırılacak veri her ne
kadar yüksek çözünürlükte olsa da böyle zor bir problemin çözülmesi ancak ileri
düzey görüntü işleme metodlarının kullanılmasıyla mümkün olacaktır. Bu nedenle
çalışmada başarısı benzer analizlerde başarısının literatürdeki bir çok çalışmayla
doğrulanmış bir görüntü işleme dalı olan matematiksel morfolojinin ileri yöntemleri
kullanılarak mevcut görüntülerden ek özellikler hesaplanmıştır. Bu ileri yöntemler
morfolojik profiller ve morfolojik nitelik profilleridir. Bu yöntemlerle sınıflandırma
sonucunu iyileştirmek mümkün olsa da, profillerin oluşturulmasında kullanılacak
parametreler bölgeye has geometrik özelliklere bağlı olduğundan bir süpervizyon
gerektirmektedir. Bu gereklilik de yöntemleri otomatik bir hasar tespit yaklaşımında
kullanmayı zorlaştırmaktadır. Fakat başka bir yapay öğrenme dalı olan öznitelik seçme
yöntemleri bu konuda bir çözüm üretmek için kullanılabilmektedir.

Bu çalışmada, incelenen iki farklı bölgeye ait deprem sonrası uydu görüntüsünün
içerisinden seçilen, göreli olarak küçük alanlara ait, çalışma alanları üzerinden
yukarıda bahsedilen morfolojik yöntemler kullanılarak çok fazla sayıda öznitelik
oluşturulmuş ve bu öznitelikler öznitelik seçme yöntemlerinden maksimum alaka
minimum gereksizlik (ing: maximum relevance minimum redundancy (mRMR))
isimli yöntem uygulanarak öznitelikler bir önem sırasına göre sıralanmışlardır. İlgili
deprem görüntüsündeki bütün bölgelerde bu sıralamalar üzerinden elde edilen en
önemli özniteliklerle aynı parametrelere sahip öznitelikler hesaplanarak bütün bölgeler
sınıflandırılmış ve hasar haritaları elde edilmiştir. Ulaşılan sonuçlar önerilen yöntemin
iki ayrı veri üzerinde de sınıflandırma doğruluklarını ve tematik harita kalitelerini
önemli ölçüde iyileştirdiğini göstermiştir.

Bu tezde önerilen yaklaşım ve bu yaklaşımda kullanılan bütün yöntemler detaylı
bir şekilde açıklanmıştır. Dört bölümden oluşan bu tezin, ilk bölümünde problemin
tanımı anlatılarak literatürde daha önce yapılan benzer çalışmalar incelenmiştir. İkinci
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bölümde ise kullanılan yöntemlerin teorik altyapıları anlatılmıştır. Üçüncü bölümde
ise ele alınan deprem sonrası çok yüksek çözünürlüklü görüntüler için yapılan analizler
ve sonuçları ayrıntılı olarak sunulmuştur. Son bölümde ise çalışmanın sonuçları
değerlendirilmiş, olası ileri çalışmalar tartışılmıştır.
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1. INTRODUCTION

Earthquakes, as the one of the most destructive natural disasters, affect a lot of people

in every year. Detecting earthquake-induced building damage, first and foremost, is

a vital task since it provides information for search and rescue teams to response the

emergency. Due to this, the damage assessment should be as accurate and as fast

as possible. Remote sensing technologies offer valuable sources to response these

necessities. A damage map can be quickly generated by using remote sensing imagery,

and this damage map can be used for managing the help and rescue operations as

well as for evaluating the natural, social and economical impacts and for planning the

possible further restorations.

There have been several studies in the literature on the earthquake damage

identification by using remote sensing images [1–5]. The damage assessment problem

is still an open problem for researches as it involves many challenges such as the need

for a satisfactory accuracy and a quick response time. Therefore, this thesis aims to

propose an accurate and a fast earthquake damage identification approach using the

state-of-the-art tools along with the image processing and machine learning.

In order to build a fast and an accurate damage assessment, very high resolution

(VHR) optical post-earthquake satellite images were considered since they are the

most accessible and the most interpretable type of the remote sensing data. The

information in the original data was spatially enhanced by a proper implementation of

mathematical morphology tools, which are morphological profiles (MPs) and attribute

profiles (APs). However, for such a proper implementation of MPs and APs the

corresponding parameters can not be selected in the first step since both of the methods

can give different output images based on different datasets with the same parameters.

Because the outputs depend not only the parameters but also the spatial content of the

datasets. Therefore, a data-driven implementation should be designed. This design

can be possible by selecting the most relevant features from an extensive feature

set generated by using the morphological tools. In this sense, the thesis proposes

1



an approach based on three steps: i) an extensive morphological feature set from a

selected study area on the original post-earthquake image is generated. ii) a feature

selection by using maximum relevant minimum redundancy (mRMR) method on this

extensive feature set is conducted to select the relevant features for the entire post-event

image. iii) with the joint use of those created features and the spectral features of

the image, the post-event image is classified into some land cover classes, including

damage, to generate a damage map showing the regions, that have light, moderate, and

severe damages is created based on the damage intensities in the classified data. In the

evaluation of the results, two different classification methods k-Nearest Neighbours

(kNN) and support vector machines (SVM) were used to remove the effects of the

classifier from the results. In the implementations, two different post-event images,

acquired from City of Bam in Iran and Port-au-prince in Haiti, were considered as

case studies. The performance of the proposed approach were evaluated in terms of

the classification accuracy, and the quality of the thematic maps in particular areas of

interest was also interpreted.

To sum up, this thesis proposes to utilize the APs and MPs to assess the earthquake

damage from a post-event VHR satellite image. To find the most proper feature

configuration describing the damage patterns, a high dimensional data-set was created

with extensive configuration intervals (e.g: criterion values, size and shape of

structuring elements.), then a supervised feature selection procedure was implemented

on this high dimensional dataset. The outcomes of the case studies conducted on

were examined if there are essential common feature configurations independent of the

characteristics of the dataset, such as the structural characteristics and constructional

details of the building. According to the extensive literature search conducted in

this thesis, there has been no study reported in the literature extensively exploring

the effects of the APs and MPs together on VHR image for an earthquake damage

assessment.

1.1 Literature Review

Remote sensing technologies have been used as primary source to response the need for

an overall post-earthquake damage assessment for decades [2]. In the vast majority of

the related studies, three types of remote sensing data have commonly been used; light

2



detection and ranging (LIDAR), synthetic aperture radar (SAR), and optical images.

Therefore the related studies can be categorized into three main group according to the

used data type. For instance, Gamba et al. [6] discussed the performance of optical

remote sensing images in earthquake damage assessment by utilizing Geographic

Information Systems (GIS). Ito et al. [7] proposed an earthquake damage extraction

method for using SAR data by using artificial neural networks. Schweier and Markus

[8], used LIDAR data to assess building damage and losses caused by the earthquake.

Dong and Shan [1] comprehensively reviewed the studies related to the

post-earthquake building damage assessment by using remote sensing in 2013. The

review showed that use of different types of the data comes with different advantages

and disadvantages. For instance, LIDAR images can be useful to detect the pancake

type of building collapse by exploring the changes occurred in the building heights.

SAR images are not affected by the cloudy weather conditions, whereas optical images

are very useful data for damage assessment due to their easier visual interpretation.

The existing studies are not only dissociate from each other by the data types, but also

dissociated by the methods which can be split into two general approaches: mono-

and multi-temporal. Mono-temporal approaches identify the damage by interpreting

the features of the objects coming from a single post-earthquake image, whereas

multi-temporal approaches detect the damage by comparing pre- and post-earthquake

images. In 2002, Ishii et al. [9] firstly examined both approaches on a aerial photograph

image pair of Kobe city taken before and after the Hyogoken-Nanbu earthquake.

They discussed the potential success and shortcomings of those approaches specific to

aerial image. The study yielded two important results: in the mono-temporal analysis

using only the pixel intensity levels to determine damaged buildings can cause errors

since the damaged areas may represent different intensities depending upon its source

material, whereas in the multi-temporal analysis shadows lead to several confusions as

it can cause high redundant differences between the pre- and post-earthquake images.

When both pre- and post-event data are available, a multi-temporal analysis can

be performed for detecting the damaged areas by focusing the changes related to

earthquake. Turker and San [10], calibrated the post- and pre-event optical satellite

images from Izmit earthquake of 1999 and used the difference between near-infrared

bands to detect the damaged areas. The reason that they used the near-infrared
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bands is because of its insensitivity to atmospheric variations. Kusogi et al. [11]

proposed a nonlinear change detection method and tested it on an aerial image pair of

Hanshin-Awaji earthquake. Turker and Cetinkaya [12] detected the collapsed buildings

using the idea that the building heights change if the building is collapsed. They

used digital elevation models (DEMs) to extract the building heights and detected the

damaged buildings according to their height differences between pre- and post-event

images based on a threshold value. On the contrary of these data types, SAR data can

not be able to be used for such an analysis except for very limited case studies, where

suitable pre-event SAR data is available. In 2014, Plank [13] reviewed SAR based

multi-temporal damage assessment studies and showed the limitations of the data type

for such problem. For instance, at least three SAR images are required for the damage

assessment, or after a disaster SAR amplitude does not only increase, the amplitude

can also decrease and this fluctuation causes several misdetections.

Multi-temporal approaches might not be very feasible in terms of time efficiency

since they require the pre-processing steps, including registration and correction of

radiometric and atmospheric effects to make both pre- and post-images comparable [1].

Therefore, use of a single post-earthquake image in earthquake damage assessment

is an effective alternative way to a image-to-image comparison. Vu et al. [14],

in 2007, succeed to generate a damage map that is consistent with the field-based

investigations by using only post-event data. Trianni and Gamba [15] tested the joint

use of post-event and ancillary data, such as GIS, and showed that use of extra spectral

and spatial information are required for an accurate damage assessment. However, in

this case, a very high resolution optical image should be used for an accurate damage

identification, which makes the damage assessment task even more difficult due to the

large variations occurred in the urban areas. Especially the damage, the open ground,

and the building classes might be very challenging classes to be detected using only a

post-event image because of the possible geometric irregularities, different reflections,

or strong similarities between the spectral values of these classes. To address such

difficulties, post-event image are mostly used by incorporating spatial context into

per-pixel spectral classification. This spatial context can be extracted based on textural

or geometrical characteristics of the objects.
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There have been several studies in the literature focusing on the textural patterns, which

express spatial distributions of variations in pixel densities [16–18]. Rathje et al. [19]

used the textural features combined with the spectral features on the VHR post-event

image acquired from Bam earthquake and showed that the damaged areas are better

identified with additional textural features compared to pixel-based classification. Sun

et al. [20] used the different types of textural features based on gray level histograms,

gray level co-occurrence matrices (GLCMs), local binary patterns, gaussian markov

random fields, and gabor filters, for determining the collapsed buildings from the

post-event images. After a timely expensive processing, a comprehensive experiments

conducted with 122 features yields a conclusion that no specific textural features exist

representing the all types of damage and building patterns in this feature set.

To extract geometrical information from the VHR earthquake images, mathematical

morphology has commonly been used as an image processing tool [21–23]. Chini

et al. [24] proposed a damage detection approach based on the fusion of SAR and

VHR images using a mathematical morphology tool, called morphological profiles

(MPs) [25], which implements a sequence of the opening and closing operators to

extract additional features. They created a building mask with MPs from the VHR

image as to use a reference data for change detection and presented the potential

benefits of using the MPs in the damage detection tasks. Dell’Acqua et al. [26] also

showed that MPs are very effective tools in earthquake damage identification when

using a single post-event image. Wang et al. [27] also proved the contribution of the

Mathematical Morphology to the damage assessment. They proposed a method that

includes different morphological operations, such as closing, erase etc., to extract the

damaged parts of the roads after an earthquake.

Besides, the geometrical and textural information can be complementary to each other

when using them together in the damaged building extraction. Ma and Quin [28],

developed a method that uses both textural and morphological information together

in mono-temporal damage assessment process. Li et al. [29] used MPs and textural

features together on a post-earthquake image with 4 different window sizes and the

study achieved a reasonable improvement in the collapsed building detection from the

post-event images. However, their method also resulted apparent errors and they stated
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that a future study, that includes more features and seeks the most relevant features

through adopting a feature reduction method, may be valuable for the literature.

In the literature of the mathematical morphology, Dalla Mura et al. [30] have recently

used attribute profiles (APs) and multi-attribute profiles (MAPs) to extract geometrical

and textural information from VHR images. They created APs using attribute filters

sequentially and compared the performance of the APs to the conventional MPs

resulting in that the APs outperforms MPs in terms of both classification accuracy

and computational time. Although both methods have proved their efficiency in image

understanding, the parameter selection for constructing elements is a difficult task to

consider. A solution constructing the most possible profiles with very high number of

parameter between very small intervals might be useful, but this approach dramatically

increases the number of dimensions and also brings a very high computational time,

as well as need for more training samples [31]. As a result of this, there can be a

large number of redundant features in the dataset. The dimensionality reduction is a

way to deal with such difficulties. In 2013, Pedergnana et al. [32] used unsupervised

manifold embedding and supervised feature selection methods to reduce this high

dimensionality, and they showed the potential success of the dimensionality reduction

techniques in solving such problems. However, manifold embedding methods requires

all the extracted features of the entire area of interest to be classified, meaning that

they are not very convenient to be used in classification tasks. Therefore, feature

selection techniques are more feasible in such cases since they can be used to select a

representative subset from those high dimensional feature profiles. This selection can

be conducted both supervised and unsupervised way. In 2008, Bhardwaj and Patra [33]

proposed an unsupervised feature selection method to select the most relevant features

in the high dimensional morphological profiles. The unsupervised feature selection

method is very efficient in terms of computational time, supervised methods are more

credible in terms of classification accuracy for such the problems.

The damage maps, also called as thematic maps, provide information about pixels

or segments whether they are collapsed or not. However, determining the intensity

of earthquake-induced building damage is another problem to solve. Earthquake

engineers developed many different intensity scales to express the damage levels in

different areas of the subjected cities [34]. Remote sensing based damage detection
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applications can be ended up with the damage maps created with the implementation

of the intensity scales. In the studies creating a damage map by using remote sensing

datasets, European Macroseismic Scale 1998 (EMS-98) [35] is one of the mostly

used intensity scales for mapping the impact of earthquakes. Yamazaki et. al. [36]

used EMS-98 to interpret the building damage in five different levels and created a

damage map of Bam Earthquake based on these classified damage information by a

multi-temporal analysis. In 2013, Rastiveis et. al. [37] proposed a fuzzy decision

making system considering the building shape differences between pre- and post-event

images and created a five level damage map. In some cases, interpreting the damage

with five different scales may not be possible. In such cases, the damage can be

classified into less number of levels due to some limitations of remote sensing data,

which for example remote sensing can not capture the pancake type building collapse.

Romaniello et. al. [38] conducted a case study on 2011 Haiti Earthquake and created a

damage map with three different classes, that are heavy, moderate, and light damages.

They also reported the accuracy loss in comparison to detection of only collapsed

buildings. In the mono-temporal approaches, it is much more challenging to identify

the damage levels since the approach has not another source to decide the intensity of

damage.

1.2 Thesis Outline

This thesis consists of four chapters. The first chapter introduces the definition of the

problem and motivation of the thesis followed by giving a literature review to support

the motivation. The second chapter explains the details of the proposed approach and

provides a brief introduction to the machine learning (ML) techniques considered in

this study followed by describing the image processing tools that are used to extract

the features for a better representation of damage patterns. An overview of feature

selection (FS) methods are also given in this chapter. The third chapter focuses on

the experimental studies conducted in this thesis by using the proposed approach. The

last chapter presents the discussion of experimental results, the conclusions, and the

problems addressed for possible future researchers.
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2. THEORETICAL BACKGROUND

For making an accurate earthquake damage assessment possible from the VHR images,

contextual relations among the pixels should be used hand in hand. This contextual

relations can be derived from modelling specific patterns, representing the earthquake

damage. Morphological Profiles (MPs) and Attribute Profiles (APs) are able to

generate complicated features for those specific patterns. It can be possible to create a

great variety of features with different configurations of the APs and the MPs, such as

different attributes, different criterion values, or different shapes and size of structuring

element (SE). In that variety, an optimal subset, that has the most separability power,

should be determined. To determine such a subset, a feature selection process can be

used.

To be brief, the thesis proposes a damage detection approach exploiting the theories of

Remote Sensing, Mathematical Morphology, and Machine Learning. Therefore, this

chapter focuses on those topics especially by explaining briefly the methods considered

in this thesis.

2.1 Remote Sensing Principals

In the most general sense, remote sensing is a process that measures the physical

characteristics of an area by remotely measuring reflected and absorbed radiation

coming from the objects. The sensors mounted on the satellites take images of

the Earth’s surface that offer a deep understanding about the objects on the ground.

The different imaging systems can be developed by using different types of sensor

technologies; hence providing the different types of the data. For instance, optical

imaging systems use passive sensors that measure the reflected solar radiation at

different wavelengths, whereas SAR imaging systems use active sensors that transmit

microwave pulses to the target object and create an image based on time difference

between transmitted and back-scattered pulses.

9



Optical remote sensing systems are generally classified into four different types

including panchromatic imaging, multi-spectral imaging, super-spectral imaging, and

hyper-spectral imaging. The panchromatic imaging systems use a sensor sensitive

to radiation within a wide wavelength range. The measured physical quantity in

panchromatic systems is the brightness of the target objects. In multi-spectral remote

sensing systems, the sensor collects a multi-channel data in a certain wavelength range.

The spectral channels are sensitive to radiation within different narrow wavelength

bands. The resulting image contains both the brightness and spectral information of the

targets being observed. If the sensors, which have more than ten channels in narrower

wavelength bands are used, then the imaging system is called super-spectral. As for

hyper-spectral imaging systems, the sensors have capability to capture reflectance in

more than 100 adjacent spectral bands. The bandwidths in images from all of those

optical imaging systems were illustrated in Figure 2.1.

Figure 2.1 : Examples of bandwidths in each optical imaging system.

2.2 Fundamentals of Machine Learning

The analysis of remote sensing data reveal a lot of information about the object on the

Earth, therefore machine learning is a very effective tool for knowledge extraction for

remote sensing images. Machine learning optimizes a specific criterion value subject

to some constraints to build a learning model that extracts descriptive or inferential

knowledge from the past experience [39]. This model can be a boundary to classify

instances in a population, a set of cluster centres to cluster a group, or a function which

estimates the outcome of the new observations.
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The machine learning methods that are used in this study can be split into two

categories as classification and feature selection methods which have been explained

in the following subsections.

2.2.1 Classification methods

Classification is a supervised ML application that requires a labelled dataset to be

used during the learning process. The classification methods basically split the data

into several classes by providing class boundaries, so called decision boundary, the

features of the given data. In this study, k-Nearest Neighbours (kNN) and Support

Vector Machines (SVM) are mostly used classification methods in the analysis of the

remote sensing data. These two classification methods are explained in the following

subsections.

2.2.1.1 k Nearest neighbours

k-Nearest Neighbours method classifies an instances with respect to the the most

frequent label of the number of k nearest labelled samples based on the closeness of

the neighbours which is defined by a distance function [40]. Those distance functions

could be depended on the numerical or categorical features of the data. The distance

function can be based on different distance measures such as Euclidean, Hamming,

Manhattan, or Chebychev. The number of neighbours, so called k, is a parameter that

needs to be optimized in kNN. In order to find an optimum k, 2-fold cross validation

data is used with different k numbers, then the optimum k is selected based on the

highest average accuracy. A visual example to demonstrate the effects of the k is

shown in Figure 2.2 for a synthetic dataset. The sample represented by a black solid

square is classified with different number of k nearest neighbours as k = 1,2 and 3,

respectively. In the synthetic dataset the new sample is classified into the blue class

for the 1- and 2-NN cases, whereas the 3-NN model classifies the sample into the red

class.

In terms of computational complexity, kNN is much more simple than other

classification algorithms. However, the less complexity does not mean the less

accuracy [41]. It should be noted that performance of a classifier always depends
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Figure 2.2 : Effects of neighbourhood number in kNN.

on the data to be classified, and there is not possible to create a model that fits all types

of data [42].

2.2.1.2 Support vector machines

Support vector machines (SVM) is a classification method based on the idea that:

estimation of the actual class densities is not required for separating two classes, but an

estimation of the class boundaries is sufficient to separate the classes [43, 44]. In this

sense, the method simply classifies the instances by creating an optimal hyperplane by

maximizing the margin between the classes [45]. The concept of SVM is explained

as follows through an example for a linearly separable data with two classes in two

dimensional space.

X = {(x1,c1), ... , (xm,cm), xi ∈ R2, ci ∈ {−1,+1}} (2.1)

where X is a set of training samples consisting of xi which corresponds to location

vector of the ith sample. ci corresponds to class label of associated ith sample. To

separate this data into two classes , a discrimination function, also called a decision

boundary, f (x) is defined as follows:

f (x) = wT xi +w0 (2.2)

The discriminant function should also satisfy the following constraint related to the

class labels such that

ri(wT xi +w0)≥ 1 (2.3)
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Figure 2.3 : SVM’s separating hyperplane and the margin.

It should be noted that the constraint in Equation 2.3 drives the hyperplane to some

distance from the classes, not to the exact boundary of any class. This distance, called

margin, is the distance between the hyperplane and the instances that are the closest

ones to the hyperplane, for both classes. SVM classifier tries to maximize this distance

to separate classes with the best generalization capacity. There are an infinite number

of possible hyperplanes in the considered space R. However, there is one unique

hyperplane with the maximum margin. Thus, the margin term has to be maximised

in order to find the optimal hyperplane. As can be seen in Fig. 2.3, the margin is in a

inverse proportion of the weight vector w. Therefore, the optimization problem can be

expressed as:

min
w,w0

1
2
‖w‖2 (2.4a)

subject to ri(wT xi +w0)≥ 1 (2.4b)

The constrained optimization problem can be solved by implementing Langrange

multipliers αi. Then, the problem in the unconstrained form can be expressed as in

Equation 2.5.

L(w,w0,α) =
1
2
‖w‖2 +

m

∑
i=1

αi{ri(wT xi +w0)−1} (2.5)

The problem needs to be more manipulated by expressing the w and w0 in terms of

the Langrange multipliers with the use of Karush-Kuhn-Tucker (KKT) conditions.
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After the implementation of KKT conditions, the problem becomes a dual optimization

problem yielding as follows:

L(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jrir j(xT
i x j) (2.6a)

subject to
n

∑
i=1

αiri = 0, α j ≥ 0 (2.6b)

Equation 2.6 can be solved by a quadratic programming approach. The samples having

nonzero ais are called support vectors. Finally, this solution makes the discriminant

function able to analytically separate instances. The decision boundary is a linear

combination of the support vectors. All the expressions given in above are based on

the assumption that the data is linearly separable. However, most of the real world

problems the is not sufficient to provide a satisfactory accuracy especially for the

nonlinearly separable data. By utilizing the nonlinear kernel functions, data can be

mapped into a higher dimensional space in which the data can be classified more

accurate. There are three types of the kernel functions generally used in this context:

polynomial, hyperbolic tangent function, and radial basis factor (RBF). In this study,

RBF kernel was used due to its confirmed suitability to similar problems [46,47]. The

RBF kernel for two samples is determined by the following equation:

K(xi,x j) = e−γ‖xi−x j‖2
(2.7)

whereγ is called as kernel width parameter.

In the implementation of the nonlinear SVM, the parameter γ in the kernel function

and a penalty parameter for the second term of Equation 2.6 called C has to be tuned to

maximize the performance of classifier and its generalization capacity. This selection,

also called model selection in the literature, can be done by using a k-fold cross

validation. The k-fold cross validation is a simple concept that folds the training data

into number of k folds and conducts pre-executions using the folded parts of the data

as training and validation parts. Based on this idea, a grid search can be implemented

to select the most relevant parameters for the problem [48].
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2.2.2 Feature selection

In machine learning applications data is handled with respect to variation of instances

in its features. It can be possible to analyse the data sufficiently with the less number

of features than it has. Furthermore, it is also possible to reach a better success level

with the less number of features. Dimensionality reduction framework tries to find

or to compute those valuable features. The methods in that frame work are generally

categorized as feature extraction (FE) and feature selection (FS). FS methods seek for

a feature subset that have more ability to represent underlying structure of the data than

others, while FE methods compute new features based on the originals to decrease the

dimensionality. As can be clearly understood from the definitions, FS has an advantage

over FE since that the physical meaning of the data is preserved.

In this study, a great number of features were extracted by using image processing

tools called MPs and APs and a feature selection method was used in order to not only

decrease such a high dimensionality and but also to look for a subset that contains

optimal synthetic features. In this sense, a feature selection method, named Minimum

Redundancy Maximum Relevance (mRMR), was used due to its proved success on

similar analyses reported in the literature [49–51].

2.2.2.1 Minimum redundancy maximum relevance

Minimum Redundancy Maximum Relevance (mRMR) [52] is a feature selection

method that measures feature-feature and feature-label correlations according to

mutual information (MI), expressed in Equation 2.8.

MI(x,y) = ∑
x∈Ox,y∈Oy

p(x,y)log
(

p(x,y)
p(x)p(y)

)
(2.8)

where Ox and Oy correspond to the instance spaces for x and y, respectively. While

p(x,y) is the joint probability of x and y. p(x) and p(y) are the marginal probabilities.

The feature-feature and feature-label correlations are called redundancy and relevance,

respectively. The method solves a dual optimization problem iteratively to sort the

features from the most relevant to the least. The objective of the optimization problem

introduced in Equation 2.9 is maximizing the relevance V , while minimizing the

redundancy W .
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min
W

W =
1
|S|2 ∑

i, j∈S
MI(i, j) (2.9a)

max
V

V =
1
|S|∑i∈S

MI(h, i) (2.9b)

where S refers to set of features, and MI(i, j) refers to mutual information between i-th

and j-th features. MI(h, i) corresponds to mutual information between target class h

and i-th feature.

The mRMR feature selection method combines the relevance and the redundancy terms

in two different ways, that are shown in Equation 2.10.

max
V−W

V −W = MI(h, i)− 1
|S| ∑

i, j∈S
MI(i, j) (2.10a)

max
V/W

V/W = MI(h, i)/

[
1
|S|∑i∈S

MI(i, j)

]
(2.10b)

The alternatives are called mutual information difference (MID) and mutual

information quotient (MIQ), respectively. Based on the data characteristics, MID and

MIQ approaches can lead different or similar selection results. In this study, both of

the approaches are considered and the MIQ is decided to use since it gives a bit more

consistent selection results in comparison to the MID.

2.3 Mathematical Morphology

Mathematical morphology is a widely used framework in the field of image processing,

that is constructed based on simple mathematical concepts from set theory. The

components of the framework are used in a wide range of of problems in image analysis

such as edge detection, noise reduction, image restoration, or segmentation.

In a gray-scale image, the pixel intensities represent the relative height of a surface

in three-dimensional Euclidean space. Morphological operations probe those surfaces

according to pixel intensities that represent their heights. Figure 2.4 illustrates the

relative heights represented by pixel intensities.
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Figure 2.4 : An object has different surfaces with relatively different heights and its
corresponding pixel representation.

2.3.1 Morphological profiles

Morphological Profiles (MPs) are very effective image processing tools when

considering to detect heterogeneous structures in an image [25]. The MPs are defined

as a cumulative function that combines varied morphological opening and closing

operators with different scales of the structuring element as in the following equation:

MP( f ) = {φλ i( f ), ...,φλ 1( f ),γλ 1( f ), ...,γλ i( f )} (2.11)

where φλ i( f ) and γλ i( f ) are the images created by implementing closing and opening

operators, respectively, on an image f with a structuring element λi.

To explain the concept of the MPs more clear, the fundamental terms of morphological

image processing, such as structuring element, erosion and dilation, should be clarified.

The structuring element (SE) is a binary template matrix that situates in all possible

locations in the considered image. The SE can be created with different shapes and

sizes. SEs with some possible shapes and sizes can be shown in Fig. 2.5. The erosion

operator slides the pre-defined SE in the image, and set the minimum value of all

pixels in the neighbourhood to pixel that corresponds to the origin of the SE. The

dilation analogously set the maximum value to the origin. Sequential use of erosion

and dilation, generates morphological opening and closing operations. The opening

operator contains a dilation of an eroded image with the same SE. In a similar manner,

the closing of an image is an erosion after an dilation of this image. These operations

are demonstrated on a binary image illustrated in Fig. 2.6.

The opening and closing operations can be performed with morphological

reconstruction to eliminate effects of those operations on the image, such as totally
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(a) 3×3 square SE
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
(b) 4×4 disk SE

0 0 1
0 1 0
1 0 0


(c) 3×3 line SE

Figure 2.5 : SEs with some of the possible shapes and sizes.

Figure 2.6 : Demonstration of the fundamental operators.

deforming the original shape, caused by the large size of the SE compared to the objects

in the image. These effects of the operation and the elimination by the reconstruction

can be shown in the Fig. 2.7.

Figure 2.7 : The difference between operations with reconstruction and without
reconstruction.
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2.3.2 Morphological attribute profiles

Attribute Profiles (APs) has been suggested as using MPs’ cumulative concept in

conjunction with the attribute filters that can extract different types of the structural

patterns from an image as described in the Eq. 2.12. To retain simplicity, this thesis

explains fundamental principles of attribute filtering. Therefore, the reader is advised

to read [53, 54] for a complete understanding of the details.

AP( f ) = {φ AT i( f ), ...,φ AT 1( f ), f ,γAT 1( f ), ...,γAT i( f )} (2.12)

Where φ AT i( f ) and γAT i( f ) refer to the images, generated by using the thickening and

thinning operators, respectively. The operators compare the attributes of the objects

in the image to the criterion Ti which corresponds to the type of the attribute to be

considered. The different types of attributes, such as area, standard deviation, or

moment of inertia, can be used for modelling the different geometrical or textural

information of the objects [55].

(a) (b)

Figure 2.8 : Connected components in an image (a), and their tree representation (b).

Attribute filters probe connected components in an image. The connected components

structure in an image illustrated in Figure 2.8. The operations look for a criterion

whether is satisfied or not by the components. An attribute opening removes the

component that is not satisfies an increasing criterion. If the criterion is not increasing,

the operator is not an opening anymore. The operator based on a non-increasing

criterion is called as attribute thinning. The increasingness of a criterion can be

explained by a simple principle; when the all of supersets a connected component

set can satisfy the criterion that is also satisfied by the main set, the criterion is defined
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as increasing. Differently from opening and thinning, attribute closing and thickening

operators compounds the different connected components in the image that satisfies

the criterion.

For the images subjected to the considered, a joint use of the different attributes can

offer valuable information [56]. To use the information from the different attributes

together, a MAP can be created as in Eq. 2.13.

MAP( f ) = {AP(A1), ...,AP(An)} (2.13)

where An is the n-th AP added into MAP( f ). In this study, MAPs are actually created

but the features in this MAP are not used since the study aims to achieve an improved

performance with the less number of features. In other words, the APs is evaluated

separately in this study.
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3. EXPERIMENTS AND RESULTS

The aim of this study is to determine the most representative morphological features

detecting earthquake damage. Only VHR post-event optical satellite images were

considered and hundreds of different morphological features were created based on the

original images. In this extended dataset a feature selection procedure was conducted.

To make a robust subset selection, feature selection operation was repeated based on

100 different realizations of the training data and the final subset was statistically

determined from these 100 different selection results. Figure 3.1 shows the flowchart

of the proposed approach.

Panchromatic
Image

Extracting Spatial
Information

Extended
Dataset

Feature Selection
with 100

realizations

Subset
Decision

Multi-spectral
Image

Pan-sharpened
Image

Figure 3.1 : Flowchart of the proposed approach.

After the subset selection procedure on the training area, the finalized features were

also generated for all the entire image. Then the entire area was classified with the

selected morphological features and spectral bands and a thematic map of the area was

obtained. Based on the thematic map, a damage map was determined by a decision

making approach that considers the proportion of pixels classified as damage.

The performances of the finally selected features were evaluated in terms of

classification accuracy and the quality of thematic map. All the experiments were

conducted on two different test images selected from two different earthquake datasets

in order to evaluate the generalization capacity of the proposed approach.
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Before using earthquake images, an evaluation of the proposed subset decision

approach was completed on a synthetic dataset. The synthetic dataset contain three

different images which were created to make them separable by the different attributes.

This chapter firstly focuses on the evaluation of the proposed selection approach on the

synthetic data. It continues by presenting the description of the datasets considered and

the selecting training areas, classifications schemes on the training areas, the results of

the feature selection procedures, and finally the transformation of the classification

results into damage maps.

3.1 An Evaluation of The Proposed Approach

The proposed approach creates a feature subset that includes different morphological

features which have different geometrical meanings. Those geometrical meanings can

be evaluated visually. However, in a complex dataset, such as VHR post-earthquake

images, the evaluation might be deceptive. For this reason, the proposed process should

be verified through a properly created toy data.

To verify the proposed method, three toy datasets were created. As can be seen in

Fig. 3.2, the toy data contain three different type of geometrical shapes. These shapes

was manipulated to highlight particular geometrical attributes, such as area, moment

of inertia, and standard deviation. The different geometrical objects in each of the toy

data were labeled as illustrated in Fig. 3.3.

For each toy data, three extended attribute profiles that include area, moment of

inertia, and standard deviation attribute profiles with the same criterion values were

created. Then the selection procedure was implemented on the each extended toy

dataset. As shown in Table 3.1, we expect to find the subsets that represent the

(a) (b) (c)

Figure 3.2 : The created toy data (a) highlights area, (b) highlights moment of inertia,
(c) highlights standard deviation.
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(a) (b) (c)

Figure 3.3 : Assigned labels for toy data (a) highlights area, (b) highlights moment of
inertia,(c) highlights standard deviation.

geometric differences of each toy data. For instance, the area attribute profile should

be clearly distinguishable in the top rankings of the selection results of the toy data

which includes shapes with different areas, whereas the other attribute profiles should

take place in the behind.

Table 3.1 : The created profiles and the expected subsets for each toy data.

Data Created Profiles

• Area: {100, 500, 2000, 2500, 4000, 6000, 25000}

• Inertia: {0.05, 0.1, 0.1593, 0.1595, 0.2, 0.4, 0.8}

• Std: {10, 50, 100, 150, 200, 250, 300}

• Area: {100, 500, 2000, 2500, 4000, 6000, 25000}

• Inertia: {0.05, 0.1, 0.1593, 0.1595, 0.2, 0.4, 0.8}

• Std: {10, 50, 100, 150, 200, 250, 300}

• Area: {100, 500, 2000, 2500, 4000, 6000, 25000}

• Inertia: {0.05, 0.1, 0.1593, 0.1595, 0.2, 0.4, 0.8}

• Std: {10, 50, 100, 150, 200, 250, 300}

To find a representative subset in the extended profiles, feature selection experiment

was conducted with 100 different realizations with 40 pixels for each classes. In

these experiments maximum relevance and minimum redundancy (mRMR) feature

selection algorithm was used. The results of the realizations, which were visualized in

the second column of Table 3.2, can give an insight about the feature relevancy. As can
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be seen from the selection results, the expected profiles appear at the first places of the

feature-axis, meaning that those are the most important ones among the rest profiles.

However, subset from the ranking variations, including the most important features,

should also be determined. To determine this subset, the number of top features in

ranking should be decided. The final subsets were determined by considering feature

frequencies in the decided number of top ranking. The standard deviation of all the

feature frequencies in the decided ranking range was used as a decision boundary. The

features having a frequency above the decision boundary were included in the final

subset.

For the toy data, considering the first 5 features in the ranking as top features rankings

is sufficient. The determined subsets and the relevant features in these subsets were

shown in Table 3.3. The selected features satisfy the expectations for the proposed

method.

Table 3.2 : The data and the corresponding selection results.

Data Selection Result Subset Decision
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Table 3.3 : The toy data and the corresponding selected subsets.

Data Selected Features

3.2 Earthquake Damage Assessment: Description of Datasets

As the first dataset, the image of City of Bam (Iran) acquired by high-resolution

commercial satellite QuickBird with a multi-spectral and a panchromatic image pairs

was used in the experiments. The spatial resolutions of multi-spectral and the

panchromatic images are 2.4 m. and 0.6 m., respectively. A region with the area of

45 hectares from the entire image was selected as a study area to find the best features

by the proposed approach. A true color representation from the multi-spectral pair and

the panchromatic image of the study area in Bam can be seen in Figure 3.4.

The second dataset is the image acquired after the Haiti Earthquake of 2011 by

high-resolution commercial satellite WorldView-1. The original dataset contains a

pan-sharpened multi-spectral and a panchromatic images both with the 0.5 m. spatial

resolution. The study region in this dataset was selected with the area of 40 hectares to

test the proposed approach and to train the classification model. In Figure 3.5, the true

color representation and the panchromatic images of the Haiti study area can be seen.

In the analysis of such datasets, to use both of the spatial and spectral content of

the original data, a pan-sharpened image (PSI) is created [57]. Pan-sharpening, also
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(a) A true color representation of the Bam
training area.

(b) Panchromatic image of the Bam
training area.

Figure 3.4 : True color and panchromatic images of the Bam training area.

(a) A true color representation of the Haiti
study area.

(b) Panchromatic image of the Haiti study
area.

Figure 3.5 : True color and panchromatic images of the Haiti training area.

called panchromatic sharpening, is using a panchromatic image to enhance the spatial

resolution of multi-spectral images.
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3.3 Morphological Feature Extractions

The panchromatic images were used to extract the spatial information due to its high

spatial resolution. In the implementation of the APs for damage assessment, four

attributes, including the area (APa), moment of inertia (APi), standard deviation (APs),

and length of the diagonal (APd) were considered due to the fact that they were

reported as the most representative attributes for detecting the similar problems [30].

On the side of the MPs, eight different profiles with four shape of the SE,

including disk, square, diamond, and line were created with and without geodesic

reconstruction. Some of the images obtained by the defined profiles for each attribute

and morphological operation are shown in Fig. 3.6 and 3.7. The criterion value

used in the attribute filters, and the size of the SEs used in the morphological profiles

were defined in an increasing order as shown in the Table 3.4 and 3.5. Finally, the

Bam and Haiti datasets was reached 557 and 556 dimensions, respectively, with the

extracted features and the original panchromatic along with the pan-sharpened image

of the selected study areas.

Figure 3.6 : Representative images from each attribute profile set of the Bam study
area.
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Figure 3.7 : Representative images from morphological profile sets of the Bam study
area created by opening and closing operators without reconstruction.

Table 3.4 : Features in each attribute profile sets and their specifications.

Feature Set Assigned Colors Description Fuature IDs Method Attribute Criterions (C)
1 APa {1, 2, ... , 20} Thickening Area {1000, 950, ... , 50}
1 APa {21, 22, ... , 40} Thinnig Area {50, 100, ... , 1000}
2 APd {41, 42, ... , 59} Thickening Length of diagonal {500, 475, ... , 50}
2 APd {60, 61, ... , 78} Thinnig Length of diagonal {50, 75, ... , 500}
3 APi {79, 80, ... , 87} Thickening Moment of inertia {0.9, 0.8, ... , 0.1}
3 APi {88, 89, ... , 96} Thinnig Moment of inertia {0.1, 0.2,... , 0.9}
4 APs {97, 98, ... , 116} Thickening Standard deviation {100, 95, ... , 5}
4 APs {117, 118, ... , 136} Thinnig Standard deviation {5, 10, ... , 100}

Table 3.5 : Features in each morphological profile sets and their specifications.

Feature Set Assigned Colors Description Fuature IDs Method Shape of SE Size of SE
5 MPD1 {137, 138, ... , 162} Closing with reconstruction Disk {51×51, 49×49, ... , 1×1}
5 MPD1 {163, 164, ... , 188} Opening with reconstruction Disk {1×1, 3×3, ... , 51×51}
6 MPD0 {189, 190, ... , 214} Closing Disk {51×51, 49×49, ... , 1×1}
6 MPD0 {215, 216, ... , 240} Opening Disk {1×1, 3×3, ... , 51×51}
7 MPS1 {241, 242, ... , 266} Closing with reconstruction Square {51×51, 49×49, ... , 1×1}
7 MPS1 {267, 268, ... , 292} Opening with reconstruction Square {1×1, 3×3, ... , 51×51}
8 MPS0 {293, 294, ... , 318} Closing Square {51×51, 49×49, ... , 1×1}
8 MPS0 {319, 320, ... , 344} Opening Square {1×1, 3×3, ... , 51×51}
9 MPL1 {345, 346, ... , 370} Closing with reconstruction Line {51×51, 49×49, ... , 1×1}
9 MPL1 {371, 372, ... , 396} Opening with reconstruction Line {1×1, 3×3, ... , 51×51}

10 MPL0 {397, 398, ... , 422} Closing Line {51×51, 49×49, ... , 1×1}
10 MPL0 {423, 424, ... , 448} Opening Line {1×1, 3×3, ... , 51×51}
11 MPDA1 {449, 450, ... , 474} Closing with reconstruction Diamond {51×51, 49×49, ... , 1×1}
11 MPDA1 {475, 476, ... , 500} Opening with reconstruction Diamond {1×1, 3×3, ... , 51×51}
12 MPDA0 {501, 502, ... , 526} Closing Diamond {51×51, 49×49, ... , 1×1}
12 MPDA0 {527, 528, ... , 552} Opening Diamond {1×1, 3×3, ... , 51×51}

28



3.4 Classification Schemes

For both of the considered datasets, the number of six land-cover classes, including

damage, building, road, vegetation, shadow, and open-ground, were determined for

the classification, and the ground truth data were visually created by comparing the

pre- and post-event images of the selected study areas. The ground truth data for both

of the study areas can be seen in Figure 3.8.

(a) Ground truth of the Bam study area. (b) Ground truth of the Haiti study area.

Figure 3.8 : Ground truths created by a visual comparison of pre- and post-event
images.

Table 3.6 : The number of training and test samples for each class used in the
experiments on the Bam study area.

Class Damage Building Shadow Vegetation Road Open Ground Total
Training 150 150 150 150 150 150 900

Test 2539 5849 1017 3446 2559 1028 16438
Total 2689 5999 1167 3596 2709 1178 17338

Table 3.7 : The number of training and test samples for each class used in the
experiments on the Haiti study area.

Class Damage Building Shadow Vegetation Road Open Ground Total
Training 150 150 150 150 150 150 900

Test 919 1297 227 1088 719 292 4542
Total 1069 1447 357 1238 869 442 5442

The author’s previous work [58] based on those ground truth data showed that, even

if a high classification accuracy is achieved the quality of thematic map might be very
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poor. Thus, the ground truth data need to be evaluated and analyzed to measure the

variations in the original multi-spectral image of the all labeled pixels for all classes.

The variations of each classes in original bands were illustrated in Figure 3.9 and

Figure 3.10. As can be seen in the variation plots, some labeled pixels causes high

variance in the ground truth. To eliminate these effects, the samples that are not

coherent with the normal distribution were removed from the ground truth.

Figure 3.9 : Evaluation of the labeled pixels in the Bam study area.

To perform a reliable comparison, all the classification experiments were repeated ten

times based on randomly selected training and test samples from the aforementioned

ground truth data, that the number of samples for each class was given in Table 3.6 and

Table 3.7 for Bam and Haiti datasets, respectively.
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Figure 3.10 : Evaluation of the labeled pixels in the Haiti study area.

3.5 Feature Selection and Subset Decision

To find the most representative features in the each extended dataset, feature selection

experiments were conducted with 100 different realizations of training samples. The

outputs of selection process for the top 40 features were visualized as the heat maps as

in Fig. 3.11. The colors in the heat maps represent the features given in Table 3.5 and

3.4.
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Figure 3.11 : Top 40 features ranked with respect to the feature selection for (a) Bam
study area and (b) Haiti study area.
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Figure 3.12 : PCA based learning curve.

The different realizations of the feature selection operations brings different rankings

as those use different pixels for training, meaning that the training data affect

performance of the feature selection algorithm. Despite of this, a feature pattern

might be more dominant among the others even when using different training set, if

this feature is really effective in damage assessment. Therefore, the more dominant

features out of hundred experiments should be determined. To determine this subset,

the one should decide how many of those features are the most important ones. For this

aim, a learning curve based on principal component analysis was created to find the

number of features which affects the classification performance the most. The curve

created by classifying the data using different size of the first principal components

in an increasing order with the step size of five, and shows the corresponding overall

accuracies from ten different realizations of the training data. According to the result of

this analysis, illustrated in Fig. 3.12, the top 10, 20, 40 feature rankings were decided

as the ranges for selecting the optimal features as they have a significant effect on

classification accuracy.

The final subsets from a number of different feature selection experiments can be

determined by three simple approaches, such as keeping an absolute number of the

most frequent features in the experiments, or keeping a percentage of the most frequent

features, or keeping features that exceeds a pre-defined importance threshold. Keeping

an absolute number of features or percentage can pass over features that have too close

importance. Therefore, we used a threshold to determine the final feature subsets.

The threshold should not have a large bias, hence the standard deviation of feature

frequencies in related part of the selection result was used as the threshold and the

features above the threshold are selected as the most important features. This process
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is illustrated with frequency plots as shown in Fig. 3.13 and 3.14. It should be noted

that, the features which are not ranked in the top 10, 20 and 40 are not included into

the related frequency plots.

Features in Top 10
8
5
 

9
6
 

1
0
6

1
2
9

1
3
0

2
2
7

5
5
4

5
5
6

Feature ID

0

20

40

60

80

100

F
re

q
u

e
n

c
y

Threshold

Features in Top 20

8
4
 

8
5
 

8
6
 

9
6
 

1
0
6

1
0
9

1
2
8

1
2
9

1
3
0

1
3
1

1
7
3

2
2
7

2
7
1

2
7
3

2
8
6

2
9
5

5
0
8

5
5
4

5
5
6

Feature ID

0

20

40

60

80

100

F
re

q
u

e
n

c
y

Threshold

Features in Top 40

6
9
 

8
2
 

8
3
 

8
4
 

8
5
 

8
6
 

8
9
 

9
5
 

9
6
 

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
2
1

1
2
2

1
2
8

1
2
9

1
3
0

1
3
1

1
7
3

1
7
4

2
0
1

2
1
3

2
2
7

2
2
8

2
2
9

2
7
1

2
7
3

2
8
6

2
8
7

2
9
4

2
9
5

2
9
7

3
1
5

3
4
0

4
8
7

5
0
7

5
0
8

5
2
5

5
5
4

5
5
5

5
5
6

Feature ID

0

20

40

60

80

100

F
re

q
u

e
n

c
y

Threshold

Figure 3.13 : Feature frequencies in the mRMR rankings of the Bam extended
dataset and their corresponding thresholds.

It can be clearly seen in both set of frequency plots, selecting the most frequent features

in the first 10, 20 and 40 rankings directly could cause to miss important features or to

select irrelevant features. For instance, in Figure 3.13 eight features are selected within

the features ranked in the first top ten features for the Bam dataset, but if the most

frequent ten features were directly selected two irrelevant features would be selected.

Regarding the results of the Bam dataset, shown in Fig. 3.13, a number of features

from the moment of inertia and the standard deviation APs and red, blue, and green

spectral bands come to the fore in all the top rankings. The features from MPs created

using disk, square, and diamond shaped SEs are also observed several times in the top

20 and 40 rankings. On the contrary, the area and the length of diagonal APs, and MPs

created using line shaped SEs are nearly not observed in any top ranking.
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Figure 3.14 : Feature frequencies in the mRMR rankings of the extended dataset
from Haiti study area and their corresponding thresholds.

The results from the feature analysis of the Haiti extended dataset were shown in Figure

3.14. In all the selected top rankings of this dataset, a variety of different feature types

distinguish themselves including the area and the length of diagonal APs and the MPs

based on the disk, square, and diamond shaped SEs.

The selection results from the both of the extended datasets should be also analyzed

together. Each dataset has its own challenges and the selected features are expected

to overcome these challenges. On the one hand, the Haiti dataset includes buildings

with sharp edges and the damaged buildings were extracted with the use of area or

length of the diagonal attributes. On the other hand, the buildings in the Bam dataset

can not be easily separated by the edges as they have similar textures and colours with

the open ground class, hence in the Haiti extended dataset the features from standart

deviation and moment of inertia APs led to the most significant improvements on the

assessment. With regard to the MPs, it can be possible to select many different features

in such wide implementation since they directly related to the shape of SE, not the

texture. Consequently, the selected features from all the top rankings of Bam and
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Haiti extended datasets are visualized in Figure 3.15 showing that a number of he MPs

obtained by using the SEs with disk, square, and diamond shapes, and a few features

from the inertia and the standard deviation APs are commonly observed in the both

analysis. However, there is not any attribute type nor a specific SE type that can be

prominently noticed in both of the results.

Subset - 1

Subset - 3

Subset - 2

APa APd AP৻ APs MP D1 MP D0 MPS1 MPS0 MPL1 MPL0 MPDA1 MPDA0

Selected ൴n Ha൴t൴ Case Selected ൴n Bam Case Selected ൴n Both Cases

Figure 3.15 : The features selected from all the considered top rankings in each
cases, individually and commonly.

3.6 Results

Based on the aforementioned threshold approach, three feature subsets each of which

consists of features selected in top 10, 20, and 40 rankings were determined for each

study area extracted from both Bam and Haiti dataset, and these areas were classified

with k-NN and SVM classifiers based on the feature subsets. The results for each

dataset were discussed separately in the following subsection. The performance of

the proposed approach was evaluated in terms of both classificaiton accuracy and the

quality of thematic maps. Therefore, the confusion matrices were also given to provide

per class accuracy. All the confusion matrices were obtained by averaging 10 trials of

different random realizations from the training data.

3.6.1 Results: Bam dataset

In the study area of Bam dataset, the hardest classes to separate are the open ground,

the building, and the damage classes since they have similar textures and spectral

signatures. For this reason, it is expected to observe a significant improvement on

the classification performance especially for those classes.
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The classification accuracies obtained using k-NN and SVM classifiers were given by

the confusion matrices as shown in Figure 3.17 and 3.19 respectively. The confusion

matrices indicate that the use of new feature subsets in the classification does not

only improved the overall and average accuracy, but also improve the accuracy for

the classes open ground, building, and damage classes compared to the case obtained

by using only the pixel densities of the original data. The thematic maps, given in

3.16 and 3.18, also showed the improvement for those classes by providing less noisy

representation of those classes. Both the accuracies and quality of the thematic maps in

terms of extracting the most difficult classes are found to be consistent for both SVM

and k-NN. According to the classification accuracies obtained by the both classifiers,

the most significant improvement is resulted from the use of selected feature subsets

in top 10 features. However, the feature subsets from the top 20 and 40 features

have also an apparent positive effect on the classification accuracy and the quality

of the thematic map. As a result, the subset from the top 40 features achieves the

highest classification accuracy, while the subset from the top 10 features makes the

most significant improvement of the classification accuracy.

(a) (b) (c) (d)

Figure 3.16 : Thematic maps of the Bam study area obtained with k-NN classifier
using (a) pixel densities, (b) Subset-1, (c) Subset-2, (d) Subset-3.
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Figure 3.17 : Confusion matrices of the Bam study area obtained with kNN classifier
using (a) pixel densities, (b) Subset-1, (c) Subset-2, (d) Subset-3.
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(a) (b) (c) (d)

Figure 3.18 : Thematic maps of the Bam study area obtained with SVM classifier
using (a) pixel densities,(b) Subset-1, (c) Subset-2, (d) Subset-3.
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Figure 3.19 : Confusion matrices of the Bam study area obtained with SVM classifier
using (a) pixel densities, (b) Subset-1, (c) Subset-2, (d) Subset-3.

3.6.2 Results: Haiti dataset

The challenge in the Haiti study area is to separate the building and the damage classes

as in the case of the Bam dataset. The study area includes the buildings with many

different types of shapes, roofs, colours and sizes. Therefore, the extracted feature

subsets are expected to help for handling this difficulty.

The confusion matrices shown in Figure 3.21 and 3.23 clearly express the effect of the

extracted subsets in the classification accuracy compared to the case obtained with only

using pixel densities of the original feature set. The accuracy for the most confused

classes were significantly improved with the use of the new features. As be seen

in Figure 3.20 and 3.22, the quality of the thematic maps in terms of classification

accuracy were also improved by using additional features, which are consistent with

the confusion matrices as well. In the thematic maps obtained by using only the

original features, the damaged areas can not be distinguished well and some of the

damage patterns were classified as undamaged buildings, while the thematic maps

obtained by using the extracted features provides better representations for the damage

class.
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(a) (b) (c) (d)

Figure 3.20 : Thematic maps of the Haiti study area obtained with kNN classifier
using (a) pixel densities, (b) selected feature subsets from top 10, (c)

20, (d) 40 features.
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Figure 3.21 : Confusion matrices of the Haiti study area obtained with kNN classifier
using (a) pixel densities, (b) selected feature subsets from top 10, (c)

20, (d) 40 features.
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Figure 3.22 : Thematic maps of the Haiti study area obtained with SVM classifier
using (a) Pixel densities, (b) selected feature subsets from top 10, (c)

20, (d) 40 features.
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Figure 3.23 : Confusion matrices of the Haiti study area obtained with SVM
classifier using (a) Pixel densities, (b) selected feature subsets from top

10, (c) 20, (d) 40 features.
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(a) Subset-1

(b) Subset-2

Figure 3.24 : Selected feature sets for the Bam study area.

To sum up, both of the case studies conducted with Bam and Haiti datasets show

the efficiency of the selected feature subsets in classification accuracy for both of

the classification methods compared to the pixel-based classification results. All

the feature subsets from each number of the top features improve the classification

accuracy. However, the number of features to be generated is also important in terms

of the computational time for an analysis on the entire images. Therefore, only the

features selected from the top ten and the top twenty rankings were used in the analysis

of the entire areas in the considered images, since they have the most significant effect

on the results. The selected feature subsets for Bam and Haiti datasets are shown in

Figure 3.24 and 3.25, respectively.
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(a) Subset-1

(b) Subset-2

Figure 3.25 : Selected feature sets for the Haiti study area.

3.7 Damage Maps

In this study, an automatic earthquake-induced damage detection approach in the way

that is as fast and as accurate as possible was proposed. Therefore, any ancillary data

or pre-earthquake data were not used. The use of such data needs time consuming

pre-processing steps such as image registration and atmospheric correction. Due to

this, creating a damage map without using any pre-earthquake information is another

challenge for the proposed earthquake-induced damage detection approach. In order

to build the damage map, the entire area in the post-earthquake image is classified and

a thematic map is obtained to represent all the land cover classes. However, to classify

the entire area at only one execution is not a practical approach due to its need for

high memory. The entire area is generally classified in small pieces and the general

thematic map is obtained with the synthesis of those small pieces. In this study, both

of the Bam and Haiti datasets were subdivided into small parts consisting of 900×900
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pixels, and then they were classified using the training data associated with the study

areas by using selected features from the top ten rankings of FS analysis.

The thematic maps include all the land cover classes by definition. But the damage

maps should only provide the level of the earthquake-induced damage. Therefore, the

thematic maps are not directly used to interpret the damage distributions. In this study,

the true color representation of the images are masked red colored pixels that represent

the damage labels from corresponding classification results. The classes different

from damage are eliminated in the damage maps. Finally, the obtained damage maps

of entire areas for each dataset, can be seen in Figure 3.26 and 3.27. The damage

maps generated by the proposed approach are evaluated in comparison to the reference

maps obtained by European Space Agency (ESA), which are shown in Figure 3.28 and

3.29. The comparison shows that the generated damage maps are consistent with the

reference works in broad strokes.
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(a)

(b)

Figure 3.26 : Damage maps of the entire Bam image obtained using (a) Subset-1, (b)
Subset-2.
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(a)

(b)

Figure 3.27 : Damage maps of the entire Haiti image obtained using (a) Subset-1, (b)
Subset-2.

43



Figure 3.28 : The reference damage map of the Bam dataset.

Figure 3.29 : The reference damage map of the Haiti dataset.
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4. CONCLUSIONS AND DISCUSSIONS

A fast and accurate earthquake damage identification from VHR post-earthquake

image is very challenging task, requiring additional contextual information. This study

aims to implement the recently proposed spatial feature extraction methods, that are

MPs and APs, for the earthquake damage assessment. There can be a great variety

of extracted features by the use of different parameters for these methods. When the

data size is considered, to generate that variety of features is not a practical approach

as such process would be expensive in terms of both the computational time and the

memory usage. Furthermore, it can be possible to generate irrelevant features in such

variety. Therefore, in this study, wide feature sets were created by using MPs and

APs and a feature selection procedure using mRMR was implemented to find the most

relevant features in those feature sets. The proposed approach was firstly tested with

a synthetic dataset set and the results of this synthetic analysis reached the expected

improvements compared to conventional pixel-based classification.

In order to evaluate the proposed approach in an unbiased manner, two post-event

VHR images were selected as case studies, Bam and Haiti. In those case studies,

two training areas were selected to be used for the FS process and also to use as

training area in classification of the entire areas. Three different feature subsets for

each case studies, that contain the most frequent features in top ten, twenty and

forty rankings, were determined. The determined subsets were evaluated in terms of

the classification accuracies and the quality of the thematic maps obtained based on

the training areas. The evaluation showed that all the determined subsets improved

classification accuracies and the quality of the thematic maps, severely. However,

the most severe improvement were observed on the results from the feature subsets

selected from top ten features. Furthermore, the visual examination of those selected

subsets, as shown in Fig. 3.24 and 3.25, proves their capability to separate different

patterns in the selected study areas of the considered images. Therefore, the entire

damage maps of the considered post-earthquake images, which were shown in Figure

45



3.26 and 3.27, were computed by using only the features selected from top ten, and top

twenty rankings.

The evaluation also yielded two important results: only one solution for these problem

is not possible as the generated features may extract similar information from the

image, and the features created by using the same methods and the same parameters

may provide different information for the different datasets. For instance, the feature

#96 was selected in both of the case studies but in the Bam case it highlights the

open ground class, whereas it highlights the damage class in the Haiti case. As a

summary, even the selected feature sets significantly improve the performance of the

earthquake-induced damage assessment, it is not possible to specify a morphological

feature type nor a parameter range for the morphological operations for such a

multi-class problem. That might be possible when the damage assessment task is

addressed with a two class approach.

The damage map generating process also revealed an important challenge. As

mentioned before, the damage maps were generated by the classification results of

the entire areas, and these areas were classified within subdivided small parts. In other

words, the features in the selected feature subsets were created for those small areas,

individually. However, it should be noted that the MPs and APs are extracted based

on the geometrical properties in the images and dividing the entire images into small

parts also means dividing the geometries in the entire image. It can be defined as a

generalization problem of the such image processing tools.

To conclude, advanced methods in mathematical morphology are very efficient

source for a fast and an accurate earthquake-induced damage identification from

VHR post-event image. The methods provides the needed spatial details that can

not be extracted directly from the source image. However, their usage may be

improved further by handling the generalization problems, and/or by transforming the

classification scheme into two class scheme. The author’s future study will be focused

on these two challenges.
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