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EARTHQUAKE DAMAGE IDENTIFICATION
FROM VERY HIGH RESOLUTION POST EVENT IMAGE
USING ADVANCED METHODS IN MATHEMATICAL MORPHOLOGY

SUMMARY

Our planet is subjected to earthquakes, which is a devastating natural disaster that
affects human life, wild life, and their habitats. Earthquake engineering discipline
is trying to manage risks and to protect all living creatures from destructive effects
of the earthquakes for over a hundred years. One of the most important issues
in this discipline is to detect damaged or totally collapsed buildings right after the
earthquake. Because the damage information provided in a short time of period could
help the decision makers to build a fast emergency plan, and to guide research and
rescue teams. Even though the field based surveys can provide a detailed illustration
of the earthquake-induced damage, they are not sufficient to rapidly serve critical
information. Therefore, remote sensing data sources are becoming a popular direction
in the earthquake-induced damage assessment. Light detection and ranging (LIDAR),
synthetic aperture radar (SAR), and optical images are three main types of the remote
sensing data that are used for earthquake-induced damage detection tasks. Each data
type has its own advantages and disadvantages for such tasks. For example, LIDAR
images can be useful to detect the damaged in detail, while SAR is not affected by
severe weather conditions, or optical images are the most accessible and interpretible
type of the data. Thanks to recent technological improvements, optical imaging sensors
are able to acquire very high resolution images. Therefore, in this study, a very
high resolution post-earthquake image was considered to detect earthquake-induced
damage.

For an accurate earthquake damage assessment from very high resolution (VHR)
images, contextual relations between pixels need to be included in conjunction with
spectral information during the classification. To utilize the spatial information
in an efficient way, specific patterns representing the earthquake-induced damage
should properly be modelled. Morphological Profiles (MPs) and Attribute Profiles
(APs) provide a multi-dimensional representation of an image with a successive
implementation of different attribute filters, and they are able to generate the
complicated features for a specific pattern. In this study, the APs and the MPs were
used to extract the additional contextual features for two different very high resolution
post-event satellite images, acquired from City of Bam in Iran and Porto-Prince. These
contextual features were then analyzed by means of a feature selection algorithm to
find the optimal features , contributing the damage the most, in those profiles. A feature
selection method, called Minimum Redundancy Maximum Relevance (mRMR) was
used to analyze performance of the morphological and attribute features. A final subset
of selected features was analyzed also using two different classifiers, that are k-Nearest
Neighbours (kNN) and Support Vector Machines (SVM). The results showed that use
of a proper configuration of those profiles can significantly improve the classification
accuracy and the quality of the thematic map.
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DEPREM HASARININ YUKSEK COZUNURLUKLU
AFET SONRASI GORUNTULERDEN ILERI MATEMATIKSEL
MORFOLOJi YONTEMLERI KULLANILARAK BELIRLENMESI

OZET

Diinya iizerinde her yil insan hayatina, cevreye ve ekonomiye ciddi zararlar
veren depremler meydana gelmektedir. Miihendisler ve bilim insanlari mevcut
teknolojiyle bu dogal afetlerin 6nceden tahmin edilebilecegi bir yontemi heniiz
gelistirememiglerdir. Bu nedenle depremler insan hayatim1 bir cok yonden ciddi
anlamda etkilemeye devam etmektedir. Deprem Miihendisligi, bu etkileri en aza
indirgemeyi amagclayan calismalarin yapildig1 bir disiplindir. Bu etkilerin en az
indirilmesi soz konusu oldugunda ¢ogu zaman ilk akla gelen yapisal giivenilirlik
olmaktadir. Ancak yapisal giivenilirligin saglanmamasi durumunda da Deprem
Miihendisligi disiplini mevcut risklerin yonetimi konusunu da ele almaktadir. Bu
rikslerin dogru yonetilmesini saglayan bilesenlerden birisi de deprem sonrasi ortaya
cikan yapisal hasarlari hizli bir sekilde belirlenebilmesidir. Yapisal hasarlarin hizh
belirlenebilmesi, kurtarma c¢alismalarinin planlanmasiyla daha c¢ok ve daha hizh
hayat kurtarabilmenin yaninda, hasarin ekonomik boyutu ve afet sonrast kalkinma
planlarmin yapilmas: gibi faydalar da saglamaktadir. Bu amag¢ dogrultusunda, afet
sonrast hasarin belirlenmesinde uzaktan algilama sistemlerinden yaygin bir sekilde
faydalanilmaktadir. Uzaktan algilama verilerinden, mevcut bilimsel birikimin ve
teknolojinin de olumlu etkisiyle, goriintii isleme ve makine Ogrenmesi teknikleri
kullanilarak afet durum degerlendirmesinin yapilmasi ©ne ¢ikan bir arastirma
konusudur.

Bu calismada deprem nedeniyle meydana gelen yapisal hasarin belirlenerek acil durum
planlanmasina kaynak olusturacak hasar haritalarinin belirlenebilmesinde ¢ok yiiksek
coziiniirliikii optik uydu fotograflarinin kullanilmasi konusu ele alinmistir. Literatiirde
s0z konusu verilerin bu amagcla kullanildig1 bir ¢cok calisma yapilmis olsa da heniiz
istenilen hiz ve dogruluga ulasabilecek genel bir yaklagima erisilememistir. Bu nedenle
gorlintii isleme ve yapay O0grenme alanlarindaki mevcut gelismeler de gbz Oniine
alinarak ihtiya¢ duyulan hiz ve dogrulukta sonug verebilecek bir yaklagim olusturmak
amaclanmugtir.  Onerilen yaklasgimin sekillenmesinde ve degerlendirilmesinde vaka
calismasi olarak; 12 Ocak 2010’da 7.0 Mw biiyiikliiglinde meydana gelen Haiti
ve 26 Aralik 2003’te 6.6 Mw biiyiikliiglinde meydana gelen Bam depremlerine
ait ¢ok yiiksek coziiniirlikli veri setleri kullamilmistir. S6z konusu depremlerin
meydana getirdigi yapisal hasarlar sadece deprem sonrasi goriintiilerin goriintii
isleme teknikleriyle detaylandirilmis ve bu detayli veriler yapay 6grenme yontemleri
kullanilarak mevcut hasarin belirlenmesinde kullanilmistir.
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Incelenen veri setlerinden Bam sehrine ait olan1 depremden sadece sekiz giin sonra
Quickbird isimli ticari uydu aracilifiyla ¢ekilmistir. Bam verisinin olusturulmasinda
kullanilan sensor kirmizi, yesil, mavi ve yakin kizil 6tesi dalga boylarinda elde edilen
dort kanalli bir multi-spektral veriye ek olarak daha genis bir dalga boyu araliginda
tek kanalli, 0.6 metrelik uzamsal ¢oziiniirlikkte pankromatik bir veri sunabilmektedir.
Haiti sehrinden elde edilen veri setinin alindigr Worldview-1 isimli uydu ise kirmizi,
yesil ve mavi olmak iizere ii¢ kanallt multi-spektral, 0.5 metrelik uzamsal ¢coziiniirliikte
de pankromatik veri sunmaktadir. Sensorlerin sundugu multispektral veri parcalari
pankromatik verilerle karsilastirildiginda spektral ¢oziiniirliik bakimindan daha zengin
olsa da, uzamsal c¢oziiniirlik acisindan ¢ok daha zayiftirr Matematiksel olarak
degerlendirildiginde multispektral kanallar ¢ekilen alandaki malzeme kimyasiyla ilgili
daha cok bilgi verirken, pankromatik veriler nesneleri ayirt etmek konusunda daha
faydali bilgi vermektedir. Zira, uzamsal ¢oziiniirliik olarak belirtilen biiyiikliikler
veri icerisinde bir piksel igerisine sigdirilan alanin gercekte ka¢ metrekarelik bir alan
oldugunu temsil etmektedir. Dolayisiyla bu iki veriyi bir arada kullanmak analizleri
daha dogru sonuclara yonlendirecektir. Bu dogrultuda “pan-sharpening” adi verilen
bir iglem uygulanarak iki veri tiirii birlestirilerek analizlerde kullanilmaktadr.

S6z konusu uzaktan algilama verileri makine 6grenmesi veya bagka bir deyisle
yapay Ogrenme kullanilarak bir cok amac icin simflandirilabilir.  Ornegin tarim
arazileri iizerinde bu siniflandirma yaklasimi kullanilarak arazi iizerindeki bitki Ortiisii
kolaylikla belirlenebilir. Bu calismada smiflandirma yaklasimini deprem sonrasi
hasarli yapilarin tespit edilmesi i¢in kullanilmistir.  Siniflandirilacak veri her ne
kadar yiiksek coziiniirliikte olsa da boyle zor bir problemin ¢oziilmesi ancak ileri
diizey goriintii isleme metodlarinin kullanilmasiyla miimkiin olacaktir. Bu nedenle
calismada bagaris1 benzer analizlerde basarisinin literatiirdeki bir ¢ok calismayla
dogrulanmis bir goriintii isleme dali olan matematiksel morfolojinin ileri yontemleri
kullanilarak mevcut goriintiilerden ek ozellikler hesaplanmistir. Bu ileri yontemler
morfolojik profiller ve morfolojik nitelik profilleridir. Bu yontemlerle siniflandirma
sonucunu iyilestirmek miimkiin olsa da, profillerin olusturulmasinda kullanilacak
parametreler bolgeye has geometrik Ozelliklere baghh oldugundan bir siipervizyon
gerektirmektedir. Bu gereklilik de yontemleri otomatik bir hasar tespit yaklasiminda
kullanmay1 zorlastirmaktadir. Fakat bagka bir yapay 6grenme dali olan 6znitelik se¢me
yontemleri bu konuda bir ¢oziim tiretmek i¢in kullanilabilmektedir.

Bu calismada, incelenen iki farkli bolgeye ait deprem sonrasi uydu goriintiisiiniin
icerisinden segilen, goreli olarak kiicliik alanlara ait, calisma alanlar1 iizerinden
yukarida bahsedilen morfolojik yontemler kullanilarak ¢ok fazla sayida Oznitelik
olusturulmug ve bu Oznitelikler Oznitelik se¢gme yontemlerinden maksimum alaka
minimum gereksizlik (ing: maximum relevance minimum redundancy (mRMR))
isimli yontem uygulanarak dznitelikler bir 6nem sirasina gore siralanmuglardir. Tlgili
deprem goriintiisiindeki biitiin bolgelerde bu siralamalar iizerinden elde edilen en
onemli Ozniteliklerle ayn1 parametrelere sahip 0znitelikler hesaplanarak biitiin bolgeler
siniflandirilmig ve hasar haritalar: elde edilmistir. Ulagilan sonuglar 6nerilen yontemin
iki ayn veri iizerinde de siniflandirma dogruluklarini ve tematik harita kalitelerini
onemli dlciide iyilestirdigini gostermisgtir.

Bu tezde onerilen yaklasim ve bu yaklasimda kullanilan biitiin yontemler detayli
bir sekilde aciklanmistir. Dort boliimden olusan bu tezin, ilk boliimiinde problemin
tanim1 anlatilarak literatiirde daha 6nce yapilan benzer calismalar incelenmistir. Ikinci
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boliimde ise kullanilan yontemlerin teorik altyapilar1 anlatilmistir. Uglincii boliimde
ise ele alinan deprem sonrasi ¢cok yiiksek ¢oziiniirliiklii goriintiiler i¢in yapilan analizler
ve sonuglart ayrintili olarak sunulmustur. Son boliimde ise ¢alismanin sonuglari
degerlendirilmis, olasi ileri calismalar tartisilmisgtir.
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1. INTRODUCTION

Earthquakes, as the one of the most destructive natural disasters, affect a lot of people
in every year. Detecting earthquake-induced building damage, first and foremost, is
a vital task since it provides information for search and rescue teams to response the
emergency. Due to this, the damage assessment should be as accurate and as fast
as possible. Remote sensing technologies offer valuable sources to response these
necessities. A damage map can be quickly generated by using remote sensing imagery,
and this damage map can be used for managing the help and rescue operations as
well as for evaluating the natural, social and economical impacts and for planning the

possible further restorations.

There have been several studies in the literature on the earthquake damage
identification by using remote sensing images [1-5]. The damage assessment problem
is still an open problem for researches as it involves many challenges such as the need
for a satisfactory accuracy and a quick response time. Therefore, this thesis aims to
propose an accurate and a fast earthquake damage identification approach using the

state-of-the-art tools along with the image processing and machine learning.

In order to build a fast and an accurate damage assessment, very high resolution
(VHR) optical post-earthquake satellite images were considered since they are the
most accessible and the most interpretable type of the remote sensing data. The
information in the original data was spatially enhanced by a proper implementation of
mathematical morphology tools, which are morphological profiles (MPs) and attribute
profiles (APs). However, for such a proper implementation of MPs and APs the
corresponding parameters can not be selected in the first step since both of the methods
can give different output images based on different datasets with the same parameters.
Because the outputs depend not only the parameters but also the spatial content of the
datasets. Therefore, a data-driven implementation should be designed. This design
can be possible by selecting the most relevant features from an extensive feature

set generated by using the morphological tools. In this sense, the thesis proposes



an approach based on three steps: i) an extensive morphological feature set from a
selected study area on the original post-earthquake image is generated. ii) a feature
selection by using maximum relevant minimum redundancy (mRMR) method on this
extensive feature set is conducted to select the relevant features for the entire post-event
image. iii) with the joint use of those created features and the spectral features of
the image, the post-event image is classified into some land cover classes, including
damage, to generate a damage map showing the regions, that have light, moderate, and
severe damages is created based on the damage intensities in the classified data. In the
evaluation of the results, two different classification methods k-Nearest Neighbours
(kKNN) and support vector machines (SVM) were used to remove the effects of the
classifier from the results. In the implementations, two different post-event images,
acquired from City of Bam in Iran and Port-au-prince in Haiti, were considered as
case studies. The performance of the proposed approach were evaluated in terms of
the classification accuracy, and the quality of the thematic maps in particular areas of

interest was also interpreted.

To sum up, this thesis proposes to utilize the APs and MPs to assess the earthquake
damage from a post-event VHR satellite image. To find the most proper feature
configuration describing the damage patterns, a high dimensional data-set was created
with extensive configuration intervals (e.g: criterion values, size and shape of
structuring elements.), then a supervised feature selection procedure was implemented
on this high dimensional dataset. The outcomes of the case studies conducted on
were examined if there are essential common feature configurations independent of the
characteristics of the dataset, such as the structural characteristics and constructional
details of the building. According to the extensive literature search conducted in
this thesis, there has been no study reported in the literature extensively exploring
the effects of the APs and MPs together on VHR image for an earthquake damage

assessment.

1.1 Literature Review

Remote sensing technologies have been used as primary source to response the need for
an overall post-earthquake damage assessment for decades [2]. In the vast majority of

the related studies, three types of remote sensing data have commonly been used; light



detection and ranging (LIDAR), synthetic aperture radar (SAR), and optical images.
Therefore the related studies can be categorized into three main group according to the
used data type. For instance, Gamba et al. [6] discussed the performance of optical
remote sensing images in earthquake damage assessment by utilizing Geographic
Information Systems (GIS). Ito et al. [7] proposed an earthquake damage extraction
method for using SAR data by using artificial neural networks. Schweier and Markus

[8], used LIDAR data to assess building damage and losses caused by the earthquake.

Dong and Shan [1] comprehensively reviewed the studies related to the
post-earthquake building damage assessment by using remote sensing in 2013. The
review showed that use of different types of the data comes with different advantages
and disadvantages. For instance, LIDAR images can be useful to detect the pancake
type of building collapse by exploring the changes occurred in the building heights.
SAR images are not affected by the cloudy weather conditions, whereas optical images

are very useful data for damage assessment due to their easier visual interpretation.

The existing studies are not only dissociate from each other by the data types, but also
dissociated by the methods which can be split into two general approaches: mono-
and multi-temporal. Mono-temporal approaches identify the damage by interpreting
the features of the objects coming from a single post-earthquake image, whereas
multi-temporal approaches detect the damage by comparing pre- and post-earthquake
images. In 2002, Ishii et al. [9] firstly examined both approaches on a aerial photograph
image pair of Kobe city taken before and after the Hyogoken-Nanbu earthquake.
They discussed the potential success and shortcomings of those approaches specific to
aerial image. The study yielded two important results: in the mono-temporal analysis
using only the pixel intensity levels to determine damaged buildings can cause errors
since the damaged areas may represent different intensities depending upon its source
material, whereas in the multi-temporal analysis shadows lead to several confusions as

it can cause high redundant differences between the pre- and post-earthquake images.

When both pre- and post-event data are available, a multi-temporal analysis can
be performed for detecting the damaged areas by focusing the changes related to
earthquake. Turker and San [10], calibrated the post- and pre-event optical satellite
images from Izmit earthquake of 1999 and used the difference between near-infrared

bands to detect the damaged areas. The reason that they used the near-infrared
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bands is because of its insensitivity to atmospheric variations. Kusogi et al. [11]
proposed a nonlinear change detection method and tested it on an aerial image pair of
Hanshin-Awaji earthquake. Turker and Cetinkaya [12] detected the collapsed buildings
using the idea that the building heights change if the building is collapsed. They
used digital elevation models (DEMs) to extract the building heights and detected the
damaged buildings according to their height differences between pre- and post-event
images based on a threshold value. On the contrary of these data types, SAR data can
not be able to be used for such an analysis except for very limited case studies, where
suitable pre-event SAR data is available. In 2014, Plank [13] reviewed SAR based
multi-temporal damage assessment studies and showed the limitations of the data type
for such problem. For instance, at least three SAR images are required for the damage
assessment, or after a disaster SAR amplitude does not only increase, the amplitude

can also decrease and this fluctuation causes several misdetections.

Multi-temporal approaches might not be very feasible in terms of time efficiency
since they require the pre-processing steps, including registration and correction of
radiometric and atmospheric effects to make both pre- and post-images comparable [1].
Therefore, use of a single post-earthquake image in earthquake damage assessment
is an effective alternative way to a image-to-image comparison. Vu et al. [14],
in 2007, succeed to generate a damage map that is consistent with the field-based
investigations by using only post-event data. Trianni and Gamba [15] tested the joint
use of post-event and ancillary data, such as GIS, and showed that use of extra spectral
and spatial information are required for an accurate damage assessment. However, in
this case, a very high resolution optical image should be used for an accurate damage
identification, which makes the damage assessment task even more difficult due to the
large variations occurred in the urban areas. Especially the damage, the open ground,
and the building classes might be very challenging classes to be detected using only a
post-event image because of the possible geometric irregularities, different reflections,
or strong similarities between the spectral values of these classes. To address such
difficulties, post-event image are mostly used by incorporating spatial context into
per-pixel spectral classification. This spatial context can be extracted based on textural

or geometrical characteristics of the objects.



There have been several studies in the literature focusing on the textural patterns, which
express spatial distributions of variations in pixel densities [16—18]. Rathje et al. [19]
used the textural features combined with the spectral features on the VHR post-event
image acquired from Bam earthquake and showed that the damaged areas are better
identified with additional textural features compared to pixel-based classification. Sun
et al. [20] used the different types of textural features based on gray level histograms,
gray level co-occurrence matrices (GLCMs), local binary patterns, gaussian markov
random fields, and gabor filters, for determining the collapsed buildings from the
post-event images. After a timely expensive processing, a comprehensive experiments
conducted with 122 features yields a conclusion that no specific textural features exist

representing the all types of damage and building patterns in this feature set.

To extract geometrical information from the VHR earthquake images, mathematical
morphology has commonly been used as an image processing tool [21-23]. Chini
et al. [24] proposed a damage detection approach based on the fusion of SAR and
VHR images using a mathematical morphology tool, called morphological profiles
(MPs) [25], which implements a sequence of the opening and closing operators to
extract additional features. They created a building mask with MPs from the VHR
image as to use a reference data for change detection and presented the potential
benefits of using the MPs in the damage detection tasks. Dell’ Acqua et al. [26] also
showed that MPs are very effective tools in earthquake damage identification when
using a single post-event image. Wang et al. [27] also proved the contribution of the
Mathematical Morphology to the damage assessment. They proposed a method that
includes different morphological operations, such as closing, erase etc., to extract the

damaged parts of the roads after an earthquake.

Besides, the geometrical and textural information can be complementary to each other
when using them together in the damaged building extraction. Ma and Quin [28],
developed a method that uses both textural and morphological information together
in mono-temporal damage assessment process. Li et al. [29] used MPs and textural
features together on a post-earthquake image with 4 different window sizes and the
study achieved a reasonable improvement in the collapsed building detection from the

post-event images. However, their method also resulted apparent errors and they stated



that a future study, that includes more features and seeks the most relevant features

through adopting a feature reduction method, may be valuable for the literature.

In the literature of the mathematical morphology, Dalla Mura et al. [30] have recently
used attribute profiles (APs) and multi-attribute profiles (MAPs) to extract geometrical
and textural information from VHR images. They created APs using attribute filters
sequentially and compared the performance of the APs to the conventional MPs
resulting in that the APs outperforms MPs in terms of both classification accuracy
and computational time. Although both methods have proved their efficiency in image
understanding, the parameter selection for constructing elements is a difficult task to
consider. A solution constructing the most possible profiles with very high number of
parameter between very small intervals might be useful, but this approach dramatically
increases the number of dimensions and also brings a very high computational time,
as well as need for more training samples [31]. As a result of this, there can be a
large number of redundant features in the dataset. The dimensionality reduction is a
way to deal with such difficulties. In 2013, Pedergnana et al. [32] used unsupervised
manifold embedding and supervised feature selection methods to reduce this high
dimensionality, and they showed the potential success of the dimensionality reduction
techniques in solving such problems. However, manifold embedding methods requires
all the extracted features of the entire area of interest to be classified, meaning that
they are not very convenient to be used in classification tasks. Therefore, feature
selection techniques are more feasible in such cases since they can be used to select a
representative subset from those high dimensional feature profiles. This selection can
be conducted both supervised and unsupervised way. In 2008, Bhardwaj and Patra [33]
proposed an unsupervised feature selection method to select the most relevant features
in the high dimensional morphological profiles. The unsupervised feature selection
method is very efficient in terms of computational time, supervised methods are more

credible in terms of classification accuracy for such the problems.

The damage maps, also called as thematic maps, provide information about pixels
or segments whether they are collapsed or not. However, determining the intensity
of earthquake-induced building damage is another problem to solve. Earthquake
engineers developed many different intensity scales to express the damage levels in

different areas of the subjected cities [34]. Remote sensing based damage detection



applications can be ended up with the damage maps created with the implementation
of the intensity scales. In the studies creating a damage map by using remote sensing
datasets, European Macroseismic Scale 1998 (EMS-98) [35] is one of the mostly
used intensity scales for mapping the impact of earthquakes. Yamazaki et. al. [36]
used EMS-98 to interpret the building damage in five different levels and created a
damage map of Bam Earthquake based on these classified damage information by a
multi-temporal analysis. In 2013, Rastiveis et. al. [37] proposed a fuzzy decision
making system considering the building shape differences between pre- and post-event
images and created a five level damage map. In some cases, interpreting the damage
with five different scales may not be possible. In such cases, the damage can be
classified into less number of levels due to some limitations of remote sensing data,
which for example remote sensing can not capture the pancake type building collapse.
Romaniello et. al. [38] conducted a case study on 2011 Haiti Earthquake and created a
damage map with three different classes, that are heavy, moderate, and light damages.
They also reported the accuracy loss in comparison to detection of only collapsed
buildings. In the mono-temporal approaches, it is much more challenging to identify
the damage levels since the approach has not another source to decide the intensity of

damage.

1.2 Thesis Outline

This thesis consists of four chapters. The first chapter introduces the definition of the
problem and motivation of the thesis followed by giving a literature review to support
the motivation. The second chapter explains the details of the proposed approach and
provides a brief introduction to the machine learning (ML) techniques considered in
this study followed by describing the image processing tools that are used to extract
the features for a better representation of damage patterns. An overview of feature
selection (FS) methods are also given in this chapter. The third chapter focuses on
the experimental studies conducted in this thesis by using the proposed approach. The
last chapter presents the discussion of experimental results, the conclusions, and the

problems addressed for possible future researchers.






2. THEORETICAL BACKGROUND

For making an accurate earthquake damage assessment possible from the VHR images,
contextual relations among the pixels should be used hand in hand. This contextual
relations can be derived from modelling specific patterns, representing the earthquake
damage. Morphological Profiles (MPs) and Attribute Profiles (APs) are able to
generate complicated features for those specific patterns. It can be possible to create a
great variety of features with different configurations of the APs and the MPs, such as
different attributes, different criterion values, or different shapes and size of structuring
element (SE). In that variety, an optimal subset, that has the most separability power,
should be determined. To determine such a subset, a feature selection process can be

used.

To be brief, the thesis proposes a damage detection approach exploiting the theories of
Remote Sensing, Mathematical Morphology, and Machine Learning. Therefore, this
chapter focuses on those topics especially by explaining briefly the methods considered

in this thesis.

2.1 Remote Sensing Principals

In the most general sense, remote sensing is a process that measures the physical
characteristics of an area by remotely measuring reflected and absorbed radiation
coming from the objects. The sensors mounted on the satellites take images of
the Earth’s surface that offer a deep understanding about the objects on the ground.
The different imaging systems can be developed by using different types of sensor
technologies; hence providing the different types of the data. For instance, optical
imaging systems use passive sensors that measure the reflected solar radiation at
different wavelengths, whereas SAR imaging systems use active sensors that transmit
microwave pulses to the target object and create an image based on time difference

between transmitted and back-scattered pulses.



Optical remote sensing systems are generally classified into four different types
including panchromatic imaging, multi-spectral imaging, super-spectral imaging, and
hyper-spectral imaging. The panchromatic imaging systems use a sensor sensitive
to radiation within a wide wavelength range. The measured physical quantity in
panchromatic systems is the brightness of the target objects. In multi-spectral remote
sensing systems, the sensor collects a multi-channel data in a certain wavelength range.
The spectral channels are sensitive to radiation within different narrow wavelength
bands. The resulting image contains both the brightness and spectral information of the
targets being observed. If the sensors, which have more than ten channels in narrower
wavelength bands are used, then the imaging system is called super-spectral. As for
hyper-spectral imaging systems, the sensors have capability to capture reflectance in
more than 100 adjacent spectral bands. The bandwidths in images from all of those

optical imaging systems were illustrated in Figure 2.1.

Visible Light Near IR
< >4

\/

Multi-spectral

Super-spectral

Hyper-spectral

Figure 2.1 : Examples of bandwidths in each optical imaging system.

2.2 Fundamentals of Machine Learning

The analysis of remote sensing data reveal a lot of information about the object on the
Earth, therefore machine learning is a very effective tool for knowledge extraction for
remote sensing images. Machine learning optimizes a specific criterion value subject
to some constraints to build a learning model that extracts descriptive or inferential
knowledge from the past experience [39]. This model can be a boundary to classify
instances in a population, a set of cluster centres to cluster a group, or a function which

estimates the outcome of the new observations.
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The machine learning methods that are used in this study can be split into two
categories as classification and feature selection methods which have been explained

in the following subsections.

2.2.1 Classification methods

Classification is a supervised ML application that requires a labelled dataset to be
used during the learning process. The classification methods basically split the data
into several classes by providing class boundaries, so called decision boundary, the
features of the given data. In this study, k-Nearest Neighbours (kNN) and Support
Vector Machines (SVM) are mostly used classification methods in the analysis of the
remote sensing data. These two classification methods are explained in the following

subsections.

2.2.1.1 k Nearest neighbours

k-Nearest Neighbours method classifies an instances with respect to the the most
frequent label of the number of k nearest labelled samples based on the closeness of
the neighbours which is defined by a distance function [40]. Those distance functions
could be depended on the numerical or categorical features of the data. The distance
function can be based on different distance measures such as Euclidean, Hamming,
Manhattan, or Chebychev. The number of neighbours, so called k, is a parameter that
needs to be optimized in kNN. In order to find an optimum k, 2-fold cross validation
data is used with different k numbers, then the optimum k is selected based on the
highest average accuracy. A visual example to demonstrate the effects of the k is
shown in Figure 2.2 for a synthetic dataset. The sample represented by a black solid
square is classified with different number of k nearest neighbours as k = 1,2 and 3,
respectively. In the synthetic dataset the new sample is classified into the blue class
for the 1- and 2-NN cases, whereas the 3-NN model classifies the sample into the red

class.

In terms of computational complexity, kNN is much more simple than other
classification algorithms. However, the less complexity does not mean the less

accuracy [41]. It should be noted that performance of a classifier always depends
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Figure 2.2 : Effects of neighbourhood number in kNN.

on the data to be classified, and there is not possible to create a model that fits all types

of data [42].

2.2.1.2 Support vector machines

Support vector machines (SVM) is a classification method based on the idea that:
estimation of the actual class densities is not required for separating two classes, but an
estimation of the class boundaries is sufficient to separate the classes [43,44]. In this
sense, the method simply classifies the instances by creating an optimal hyperplane by
maximizing the margin between the classes [45]. The concept of SVM is explained
as follows through an example for a linearly separable data with two classes in two

dimensional space.

X ={(x1,¢1)s e, (XmsCm), xi €R?, c; € {—1,+1}} .1

where X is a set of training samples consisting of x; which corresponds to location

vector of the i’ sample. ¢; corresponds to class label of associated i’ sample. To

separate this data into two classes , a discrimination function, also called a decision

boundary, f(x) is defined as follows:

Fx) =wlxi+wo (2.2)

The discriminant function should also satisfy the following constraint related to the

class labels such that

ri(waH—wo) > 1 (2.3)
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Figure 2.3 : SVM’s separating hyperplane and the margin.

It should be noted that the constraint in Equation 2.3 drives the hyperplane to some
distance from the classes, not to the exact boundary of any class. This distance, called
margin, is the distance between the hyperplane and the instances that are the closest
ones to the hyperplane, for both classes. SVM classifier tries to maximize this distance
to separate classes with the best generalization capacity. There are an infinite number
of possible hyperplanes in the considered space R. However, there is one unique
hyperplane with the maximum margin. Thus, the margin term has to be maximised
in order to find the optimal hyperplane. As can be seen in Fig. 2.3, the margin is in a
inverse proportion of the weight vector w. Therefore, the optimization problem can be

expressed as:

1
min —|lwll* (2.4a)
W,Wo 2
subject to ri(wai+w0) >1 (2.4b)

The constrained optimization problem can be solved by implementing Langrange
multipliers ;. Then, the problem in the unconstrained form can be expressed as in

Equation 2.5.

1 m
L(w,wo, ) = = ||w|*+ ¥ oti{ri(w’ x;+wo) — 1} (2.5)
2
i=1

The problem needs to be more manipulated by expressing the w and wq in terms of

the Langrange multipliers with the use of Karush-Kuhn-Tucker (KKT) conditions.
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After the implementation of KKT conditions, the problem becomes a dual optimization

problem yielding as follows:

n 1 n n
Z EZ Z iorir j(x; xj) (2.6a)
i=1 i=1j=1

subject to Z a;ri =0, ;>0 (2.6b)

Equation 2.6 can be solved by a quadratic programming approach. The samples having
nonzero a;s are called support vectors. Finally, this solution makes the discriminant
function able to analytically separate instances. The decision boundary is a linear
combination of the support vectors. All the expressions given in above are based on
the assumption that the data is linearly separable. However, most of the real world
problems the is not sufficient to provide a satisfactory accuracy especially for the
nonlinearly separable data. By utilizing the nonlinear kernel functions, data can be
mapped into a higher dimensional space in which the data can be classified more
accurate. There are three types of the kernel functions generally used in this context:
polynomial, hyperbolic tangent function, and radial basis factor (RBF). In this study,
RBF kernel was used due to its confirmed suitability to similar problems [46,47]. The

RBF kernel for two samples is determined by the following equation:

K (xi,x;) = e Thiil? @7

whereY is called as kernel width parameter.

In the implementation of the nonlinear SVM, the parameter Y in the kernel function
and a penalty parameter for the second term of Equation 2.6 called C has to be tuned to
maximize the performance of classifier and its generalization capacity. This selection,
also called model selection in the literature, can be done by using a k-fold cross
validation. The k-fold cross validation is a simple concept that folds the training data
into number of k folds and conducts pre-executions using the folded parts of the data
as training and validation parts. Based on this idea, a grid search can be implemented

to select the most relevant parameters for the problem [48].
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2.2.2 Feature selection

In machine learning applications data is handled with respect to variation of instances
in its features. It can be possible to analyse the data sufficiently with the less number
of features than it has. Furthermore, it is also possible to reach a better success level
with the less number of features. Dimensionality reduction framework tries to find
or to compute those valuable features. The methods in that frame work are generally
categorized as feature extraction (FE) and feature selection (FS). FS methods seek for
a feature subset that have more ability to represent underlying structure of the data than
others, while FE methods compute new features based on the originals to decrease the
dimensionality. As can be clearly understood from the definitions, FS has an advantage

over FE since that the physical meaning of the data is preserved.

In this study, a great number of features were extracted by using image processing
tools called MPs and APs and a feature selection method was used in order to not only
decrease such a high dimensionality and but also to look for a subset that contains
optimal synthetic features. In this sense, a feature selection method, named Minimum
Redundancy Maximum Relevance (mRMR), was used due to its proved success on

similar analyses reported in the literature [49-51].

2.2.2.1 Minimum redundancy maximum relevance

Minimum Redundancy Maximum Relevance (mRMR) [52] is a feature selection
method that measures feature-feature and feature-label correlations according to

mutual information (MI), expressed in Equation 2.8.

Mi(xy)= Y p(m)log(M) 2.8)

X€0,,y€0)

where Oy and O, correspond to the instance spaces for x and y, respectively. While

p(x,y) is the joint probability of x and y. p(x) and p(y) are the marginal probabilities.

The feature-feature and feature-label correlations are called redundancy and relevance,
respectively. The method solves a dual optimization problem iteratively to sort the
features from the most relevant to the least. The objective of the optimization problem
introduced in Equation 2.9 is maximizing the relevance V, while minimizing the

redundancy W.
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min <7 L MG, ) (2.92)
W | | i,jeS

max ZMI (h,i) (2.9b)
4 |S| €S

where S refers to set of features, and MI(i, j) refers to mutual information between i-th
and j-th features. MI(h,i) corresponds to mutual information between target class &

and i-th feature.

The mRMR feature selection method combines the relevance and the redundancy terms

in two different ways, that are shown in Equation 2.10.

max V —W = MI(h,i) MI(i, j) (2.10a)
VW |S| z]ze"S

max V /W = MI(h,i) MI(i, j (2.10b)
o [\S\ L ]

The alternatives are called mutual information difference (MID) and mutual
information quotient (MIQ), respectively. Based on the data characteristics, MID and
MIQ approaches can lead different or similar selection results. In this study, both of
the approaches are considered and the MIQ is decided to use since it gives a bit more

consistent selection results in comparison to the MID.

2.3 Mathematical Morphology

Mathematical morphology is a widely used framework in the field of image processing,
that is constructed based on simple mathematical concepts from set theory. The
components of the framework are used in a wide range of of problems in image analysis

such as edge detection, noise reduction, image restoration, or segmentation.

In a gray-scale image, the pixel intensities represent the relative height of a surface
in three-dimensional Euclidean space. Morphological operations probe those surfaces
according to pixel intensities that represent their heights. Figure 2.4 illustrates the

relative heights represented by pixel intensities.
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(a) Surfaces in 3D Euclidean space. (b) Representative pixel intensities.

Figure 2.4 : An object has different surfaces with relatively different heights and its
corresponding pixel representation.

2.3.1 Morphological profiles

Morphological Profiles (MPs) are very effective image processing tools when
considering to detect heterogeneous structures in an image [25]. The MPs are defined
as a cumulative function that combines varied morphological opening and closing

operators with different scales of the structuring element as in the following equation:

MP(f) = {(pli(f)?"'>(pll(f)?}/ll(f)7"'aY/li(f)} (2.1

where ¢ ;(f) and 7, ;(f) are the images created by implementing closing and opening

operators, respectively, on an image f with a structuring element A;.

To explain the concept of the MPs more clear, the fundamental terms of morphological
image processing, such as structuring element, erosion and dilation, should be clarified.
The structuring element (SE) is a binary template matrix that situates in all possible
locations in the considered image. The SE can be created with different shapes and
sizes. SEs with some possible shapes and sizes can be shown in Fig. 2.5. The erosion
operator slides the pre-defined SE in the image, and set the minimum value of all
pixels in the neighbourhood to pixel that corresponds to the origin of the SE. The
dilation analogously set the maximum value to the origin. Sequential use of erosion
and dilation, generates morphological opening and closing operations. The opening
operator contains a dilation of an eroded image with the same SE. In a similar manner,
the closing of an image is an erosion after an dilation of this image. These operations

are demonstrated on a binary image illustrated in Fig. 2.6.

The opening and closing operations can be performed with morphological

reconstruction to eliminate effects of those operations on the image, such as totally
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Figure 2.5 : SEs with some of the possible shapes and sizes.
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Figure 2.6 : Demonstration of the fundamental operators.

deforming the original shape, caused by the large size of the SE compared to the objects
in the image. These effects of the operation and the elimination by the reconstruction

can be shown in the Fig. 2.7.

Opening without
reconstruction «

\

Opening with
reconstruction

Original Image

Figure 2.7 : The difference between operations with reconstruction and without
reconstruction.
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2.3.2 Morphological attribute profiles

Attribute Profiles (APs) has been suggested as using MPs’ cumulative concept in
conjunction with the attribute filters that can extract different types of the structural
patterns from an image as described in the Eq. 2.12. To retain simplicity, this thesis
explains fundamental principles of attribute filtering. Therefore, the reader is advised

to read [53, 54] for a complete understanding of the details.

AP(f) = {02 (f), -, 0T (). £ (), VT () (2.12)

Where ¢A7i(f) and yA7i( ) refer to the images, generated by using the thickening and
thinning operators, respectively. The operators compare the attributes of the objects
in the image to the criterion 7; which corresponds to the type of the attribute to be
considered. The different types of attributes, such as area, standard deviation, or
moment of inertia, can be used for modelling the different geometrical or textural

information of the objects [55].

(a) (b)

Figure 2.8 : Connected components in an image (a), and their tree representation (b).

Attribute filters probe connected components in an image. The connected components
structure in an image illustrated in Figure 2.8. The operations look for a criterion
whether is satisfied or not by the components. An attribute opening removes the
component that is not satisfies an increasing criterion. If the criterion is not increasing,
the operator is not an opening anymore. The operator based on a non-increasing
criterion is called as attribute thinning. The increasingness of a criterion can be
explained by a simple principle; when the all of supersets a connected component

set can satisfy the criterion that is also satisfied by the main set, the criterion is defined
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as increasing. Differently from opening and thinning, attribute closing and thickening
operators compounds the different connected components in the image that satisfies

the criterion.

For the images subjected to the considered, a joint use of the different attributes can
offer valuable information [56]. To use the information from the different attributes

together, a MAP can be created as in Eq. 2.13.

MAP(f) = {AP(A}),...,AP(4,)} (2.13)

where A,, is the n-th AP added into MAP(f). In this study, MAPs are actually created
but the features in this MAP are not used since the study aims to achieve an improved
performance with the less number of features. In other words, the APs is evaluated

separately in this study.
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3. EXPERIMENTS AND RESULTS

The aim of this study is to determine the most representative morphological features
detecting earthquake damage. Only VHR post-event optical satellite images were
considered and hundreds of different morphological features were created based on the
original images. In this extended dataset a feature selection procedure was conducted.
To make a robust subset selection, feature selection operation was repeated based on
100 different realizations of the training data and the final subset was statistically
determined from these 100 different selection results. Figure 3.1 shows the flowchart

of the proposed approach.

Panchromatic Extracting Spatial

Image Information

Feature Selection
Extended . Subset
with 100 .
Dataset Decision

/ realizations

Multi-spectral Pan-sharpened

Image Image

Figure 3.1 : Flowchart of the proposed approach.

After the subset selection procedure on the training area, the finalized features were
also generated for all the entire image. Then the entire area was classified with the
selected morphological features and spectral bands and a thematic map of the area was
obtained. Based on the thematic map, a damage map was determined by a decision

making approach that considers the proportion of pixels classified as damage.

The performances of the finally selected features were evaluated in terms of
classification accuracy and the quality of thematic map. All the experiments were
conducted on two different test images selected from two different earthquake datasets

in order to evaluate the generalization capacity of the proposed approach.
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Before using earthquake images, an evaluation of the proposed subset decision
approach was completed on a synthetic dataset. The synthetic dataset contain three
different images which were created to make them separable by the different attributes.
This chapter firstly focuses on the evaluation of the proposed selection approach on the
synthetic data. It continues by presenting the description of the datasets considered and
the selecting training areas, classifications schemes on the training areas, the results of
the feature selection procedures, and finally the transformation of the classification

results into damage maps.

3.1 An Evaluation of The Proposed Approach

The proposed approach creates a feature subset that includes different morphological
features which have different geometrical meanings. Those geometrical meanings can
be evaluated visually. However, in a complex dataset, such as VHR post-earthquake
images, the evaluation might be deceptive. For this reason, the proposed process should

be verified through a properly created toy data.

To verify the proposed method, three toy datasets were created. As can be seen in
Fig. 3.2, the toy data contain three different type of geometrical shapes. These shapes
was manipulated to highlight particular geometrical attributes, such as area, moment
of inertia, and standard deviation. The different geometrical objects in each of the toy

data were labeled as illustrated in Fig. 3.3.

For each toy data, three extended attribute profiles that include area, moment of
inertia, and standard deviation attribute profiles with the same criterion values were
created. Then the selection procedure was implemented on the each extended toy

dataset. As shown in Table 3.1, we expect to find the subsets that represent the

(a) (b) (©
Figure 3.2 : The created toy data (a) highlights area, (b) highlights moment of inertia,
(c) highlights standard deviation.
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(a) (b) (©)

Figure 3.3 : Assigned labels for toy data (a) highlights area, (b) highlights moment of
inertia,(c) highlights standard deviation.

geometric differences of each toy data. For instance, the area attribute profile should
be clearly distinguishable in the top rankings of the selection results of the toy data
which includes shapes with different areas, whereas the other attribute profiles should

take place in the behind.

Table 3.1 : The created profiles and the expected subsets for each toy data.

Data Created Profiles

e Area: {100, 500, 2000, 2500, 4000, 6000, 25000}
e Inertia: {0.05, 0.1, 0.1593, 0.1595, 0.2, 0.4, 0.8}

e Std: {10, 50, 100, 150, 200, 250, 300}

® Area: {100, 500, 2000, 2500, 4000, 6000, 25000}
e Inertia: {0.05, 0.1, 0.1593, 0.1595, 0.2, 0.4, 0.8}

e Std: {10, 50, 100, 150, 200, 250, 300}

® Area: {100, 500, 2000, 2500, 4000, 6000, 25000}

e Inertia: {0.05, 0.1, 0.1593, 0.1595, 0.2, 0.4, 0.8}

e Std: {10, 50, 100, 150, 200, 250, 300}

To find a representative subset in the extended profiles, feature selection experiment
was conducted with 100 different realizations with 40 pixels for each classes. In
these experiments maximum relevance and minimum redundancy (mRMR) feature
selection algorithm was used. The results of the realizations, which were visualized in

the second column of Table 3.2, can give an insight about the feature relevancy. As can
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be seen from the selection results, the expected profiles appear at the first places of the
feature-axis, meaning that those are the most important ones among the rest profiles.
However, subset from the ranking variations, including the most important features,
should also be determined. To determine this subset, the number of top features in
ranking should be decided. The final subsets were determined by considering feature
frequencies in the decided number of top ranking. The standard deviation of all the
feature frequencies in the decided ranking range was used as a decision boundary. The
features having a frequency above the decision boundary were included in the final

subset.

For the toy data, considering the first 5 features in the ranking as top features rankings
is sufficient. The determined subsets and the relevant features in these subsets were
shown in Table 3.3. The selected features satisfy the expectations for the proposed

method.

Table 3.2 : The data and the corresponding selection results.

Data Selection Result Subset Decision

Analysis ID
Frequency
s

Analysis ID
Frequency
s @

Features in mRMR Top 5

[===Threshola|

I Ll

B

Analysis ID

=

Feature ID
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Table 3.3 : The toy data and the corresponding selected subsets.

Data Selected Features

HEEEHE
HH B i I B

3.2 Earthquake Damage Assessment: Description of Datasets

As the first dataset, the image of City of Bam (Iran) acquired by high-resolution
commercial satellite QuickBird with a multi-spectral and a panchromatic image pairs
was used in the experiments. The spatial resolutions of multi-spectral and the
panchromatic images are 2.4 m. and 0.6 m., respectively. A region with the area of
45 hectares from the entire image was selected as a study area to find the best features
by the proposed approach. A true color representation from the multi-spectral pair and

the panchromatic image of the study area in Bam can be seen in Figure 3.4.

The second dataset is the image acquired after the Haiti Earthquake of 2011 by
high-resolution commercial satellite WorldView-1. The original dataset contains a
pan-sharpened multi-spectral and a panchromatic images both with the 0.5 m. spatial
resolution. The study region in this dataset was selected with the area of 40 hectares to
test the proposed approach and to train the classification model. In Figure 3.5, the true

color representation and the panchromatic images of the Haiti study area can be seen.

In the analysis of such datasets, to use both of the spatial and spectral content of

the original data, a pan-sharpened image (PSI) is created [57]. Pan-sharpening, also
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(a) A true color representation of the Bam (b) Panchromatic image of the Bam
training area. training area.

Figure 3.4 : True color and panchromatic images of the Bam training area.

(a) A true color representation of the Haiti (b) Panchromatic image of the Haiti study
study area. area.

Figure 3.5 : True color and panchromatic images of the Haiti training area.

called panchromatic sharpening, is using a panchromatic image to enhance the spatial

resolution of multi-spectral images.

26



3.3 Morphological Feature Extractions

The panchromatic images were used to extract the spatial information due to its high
spatial resolution. In the implementation of the APs for damage assessment, four
attributes, including the area (AP,), moment of inertia (AP;), standard deviation (AP;),
and length of the diagonal (AP;) were considered due to the fact that they were

reported as the most representative attributes for detecting the similar problems [30].

On the side of the MPs, eight different profiles with four shape of the SE,
including disk, square, diamond, and line were created with and without geodesic
reconstruction. Some of the images obtained by the defined profiles for each attribute
and morphological operation are shown in Fig. 3.6 and 3.7. The criterion value
used in the attribute filters, and the size of the SEs used in the morphological profiles
were defined in an increasing order as shown in the Table 3.4 and 3.5. Finally, the
Bam and Haiti datasets was reached 557 and 556 dimensions, respectively, with the
extracted features and the original panchromatic along with the pan-sharpened image

of the selected study areas.

Area, ., Diagonal

Inertia,_, , Std

C=250

C=50

Thickening

Figure 3.6 : Representative images from each attribute profile set of the Bam study
area.
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Figure 3.7 : Representative images from morphological profile sets of the Bam study
area created by opening and closing operators without reconstruction.

Table 3.4 : Features in each attribute profile sets and their specifications.

Feature Set  Assigned Colors Description Fuature IDs Method Attribute Criterions (C)
1 -_— AP, {1,2,...,20} Thickening Area {1000, 950, ... , 50}
1 [ AP, {21,22, ..., 40} Thinnig Area {50, 100, ... , 1000}
2 - AP, {41,42, ... ,59} Thickening Length of diagonal {500, 475, ... , 50}
2 \ AP, {60, 61, ..., 78} Thinnig  Length of diagonal {50, 75, ..., 500}
3 [ AP; {79, 80, ... , 87} Thickening Moment of inertia {0.9,0.8, ...,0.1}
3 AP; {88, 89, ..., 96} Thinnig Moment of inertia ~ {0.1,0.2,... , 0.9}
4 [ APy {97,98, ...,116}  Thickening Standard deviation {100, 95, ..., 5}
4 - APy {117,118, ..., 136} Thinnig Standard deviation {5, 10, ..., 100}

Table 3.5 : Features in each morphological profile sets and their specifications.

Feature Set  Assigned Colors Description Fuature IDs Method Shape of SE Size of SE
5 - MPp, {137,138, ..., 162}  Closing with reconstruction Disk {51x51,49x49, ..., I1x1}
5 MPp, {163, 164, ..., 188} Opening with reconstruction Disk {1x1,3x3,...,51x51}
6 L MPpg {189,190, ..., 214} Closing Disk {51x51,49x49, ..., 1x1}
6 MPpg {215,216, ... , 240} Opening Disk {1x1,3%3,...,51x51}
7 -_— MPg; {241,242, ... ,266} Closing with reconstruction Square {51x51,49x49, ..., 1x1}
7 _— MPg; {267,268, ... ,292} Opening with reconstruction Square {1x1,3x%x3,...,51x51}
8 - MPyg {293,294, ..., 318} Closing Square {S1x51,49x49, ..., 1x1}
8 | MPyg {319, 320, ..., 344} Opening Square {1x1,3x3,...,51x51}
9 MP {345, 346, ... , 370}  Closing with reconstruction Line {51x51,49x%x49, ..., 1x1}
9 | = MP, {371,372, ...,396} Opening with reconstruction Line {1x1,3x3,...,51x51}
10 MP; {397, 398, ..., 422} Closing Line {51x51,49x49, ..., Ix1}
10 MP; {423,424, ... , 448} Opening Line {1x1,3x3,...,51x51}
11 MPpa; {449, 450, ... , 474}  Closing with reconstruction Diamond {51x51,49x%49, ..., 1x1}
11 MPpa; {475, 476, ... , 500} Opening with reconstruction ~ Diamond {1x1,3x%3,...,51x51}
12 -_— MPpao {501, 502, ... , 526} Closing Diamond  {51x51,49x49, ..., 1x1}
12 _ MPpao {527,528, ..., 552} Opening Diamond {1x1,3%3,...,51x51}
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3.4 Classification Schemes

For both of the considered datasets, the number of six land-cover classes, including
damage, building, road, vegetation, shadow, and open-ground, were determined for
the classification, and the ground truth data were visually created by comparing the
pre- and post-event images of the selected study areas. The ground truth data for both

of the study areas can be seen in Figure 3.8.

Il Damage [l Vegetation [ Road Bl Damage [l Vegetation [IRoad
[ Building [ Open Ground [l Shadow [IBuilding [__]OpenGround [l Shadow
(a) Ground truth of the Bam study area. (b) Ground truth of the Haiti study area.

Figure 3.8 : Ground truths created by a visual comparison of pre- and post-event
images.

Table 3.6 : The number of training and test samples for each class used in the
experiments on the Bam study area.

Class Damage Building Shadow Vegetation Road Open Ground Total
Training 150 150 150 150 150 150 900

Test 2539 5849 1017 3446 2559 1028 16438

Total 2689 5999 1167 3596 2709 1178 17338

Table 3.7 : The number of training and test samples for each class used in the
experiments on the Haiti study area.

Class Damage Building Shadow Vegetation Road Open Ground Total

Training 150 150 150 150 150 150 900
Test 919 1297 227 1088 719 292 4542
Total 1069 1447 357 1238 869 442 5442

The author’s previous work [58] based on those ground truth data showed that, even

if a high classification accuracy is achieved the quality of thematic map might be very
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poor. Thus, the ground truth data need to be evaluated and analyzed to measure the
variations in the original multi-spectral image of the all labeled pixels for all classes.
The variations of each classes in original bands were illustrated in Figure 3.9 and
Figure 3.10. As can be seen in the variation plots, some labeled pixels causes high
variance in the ground truth. To eliminate these effects, the samples that are not

coherent with the normal distribution were removed from the ground truth.

Shadow

Open Ground
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300

250

200
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1 15 2 25 3 s

‘ s Mean = mmm Mean +- Std  ==ssssm Training Pixels |

Figure 3.9 : Evaluation of the labeled pixels in the Bam study area.

To perform a reliable comparison, all the classification experiments were repeated ten
times based on randomly selected training and test samples from the aforementioned
ground truth data, that the number of samples for each class was given in Table 3.6 and

Table 3.7 for Bam and Haiti datasets, respectively.
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Figure 3.10 : Evaluation of the labeled pixels in the Haiti study area.

3.5 Feature Selection and Subset Decision

To find the most representative features in the each extended dataset, feature selection
experiments were conducted with 100 different realizations of training samples. The
outputs of selection process for the top 40 features were visualized as the heat maps as
in Fig. 3.11. The colors in the heat maps represent the features given in Table 3.5 and

3.4.

Number of Experiments
Y
II'I (I | |

Number of Experiments

5 10 15 20 25 30 35 40
Feature Ranking Feature Ranking
(a) (b)

Figure 3.11 : Top 40 features ranked with respect to the feature selection for (a) Bam
study area and (b) Haiti study area.
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Figure 3.12 : PCA based learning curve.

The different realizations of the feature selection operations brings different rankings
as those use different pixels for training, meaning that the training data affect
performance of the feature selection algorithm. Despite of this, a feature pattern
might be more dominant among the others even when using different training set, if
this feature is really effective in damage assessment. Therefore, the more dominant
features out of hundred experiments should be determined. To determine this subset,
the one should decide how many of those features are the most important ones. For this
aim, a learning curve based on principal component analysis was created to find the
number of features which affects the classification performance the most. The curve
created by classifying the data using different size of the first principal components
in an increasing order with the step size of five, and shows the corresponding overall
accuracies from ten different realizations of the training data. According to the result of
this analysis, illustrated in Fig. 3.12, the top 10, 20, 40 feature rankings were decided
as the ranges for selecting the optimal features as they have a significant effect on

classification accuracy.

The final subsets from a number of different feature selection experiments can be
determined by three simple approaches, such as keeping an absolute number of the
most frequent features in the experiments, or keeping a percentage of the most frequent
features, or keeping features that exceeds a pre-defined importance threshold. Keeping
an absolute number of features or percentage can pass over features that have too close
importance. Therefore, we used a threshold to determine the final feature subsets.
The threshold should not have a large bias, hence the standard deviation of feature
frequencies in related part of the selection result was used as the threshold and the

features above the threshold are selected as the most important features. This process
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is illustrated with frequency plots as shown in Fig. 3.13 and 3.14. It should be noted
that, the features which are not ranked in the top 10, 20 and 40 are not included into

the related frequency plots.
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Figure 3.13 : Feature frequencies in the mRMR rankings of the Bam extended
dataset and their corresponding thresholds.

It can be clearly seen in both set of frequency plots, selecting the most frequent features
in the first 10, 20 and 40 rankings directly could cause to miss important features or to
select irrelevant features. For instance, in Figure 3.13 eight features are selected within
the features ranked in the first top ten features for the Bam dataset, but if the most

frequent ten features were directly selected two irrelevant features would be selected.

Regarding the results of the Bam dataset, shown in Fig. 3.13, a number of features
from the moment of inertia and the standard deviation APs and red, blue, and green
spectral bands come to the fore in all the top rankings. The features from MPs created
using disk, square, and diamond shaped SEs are also observed several times in the top
20 and 40 rankings. On the contrary, the area and the length of diagonal APs, and MPs

created using line shaped SEs are nearly not observed in any top ranking.
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Figure 3.14 : Feature frequencies in the mRMR rankings of the extended dataset
from Haiti study area and their corresponding thresholds.
The results from the feature analysis of the Haiti extended dataset were shown in Figure
3.14. In all the selected top rankings of this dataset, a variety of different feature types
distinguish themselves including the area and the length of diagonal APs and the MPs

based on the disk, square, and diamond shaped SEs.

The selection results from the both of the extended datasets should be also analyzed
together. Each dataset has its own challenges and the selected features are expected
to overcome these challenges. On the one hand, the Haiti dataset includes buildings
with sharp edges and the damaged buildings were extracted with the use of area or
length of the diagonal attributes. On the other hand, the buildings in the Bam dataset
can not be easily separated by the edges as they have similar textures and colours with
the open ground class, hence in the Haiti extended dataset the features from standart
deviation and moment of inertia APs led to the most significant improvements on the
assessment. With regard to the MPs, it can be possible to select many different features
in such wide implementation since they directly related to the shape of SE, not the

texture. Consequently, the selected features from all the top rankings of Bam and
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Haiti extended datasets are visualized in Figure 3.15 showing that a number of he MPs
obtained by using the SEs with disk, square, and diamond shapes, and a few features
from the inertia and the standard deviation APs are commonly observed in the both
analysis. However, there is not any attribute type nor a specific SE type that can be

prominently noticed in both of the results.

-Selected in Haiti Case -Selected in Bam Case DSelected in Both Cases

Subset - 1]

Subset - 2 “

Do | ]\/"?SI ]\/"?8'0 l N")Lf | MPL[) | MPDAI| N[PDAo

150 200 250 300 350 400 450 500 550

Subset - 3

Figure 3.15 : The features selected from all the considered top rankings in each
cases, individually and commonly.

3.6 Results

Based on the aforementioned threshold approach, three feature subsets each of which
consists of features selected in top 10, 20, and 40 rankings were determined for each
study area extracted from both Bam and Haiti dataset, and these areas were classified
with k-NN and SVM classifiers based on the feature subsets. The results for each
dataset were discussed separately in the following subsection. The performance of
the proposed approach was evaluated in terms of both classificaiton accuracy and the
quality of thematic maps. Therefore, the confusion matrices were also given to provide
per class accuracy. All the confusion matrices were obtained by averaging 10 trials of

different random realizations from the training data.

3.6.1 Results: Bam dataset

In the study area of Bam dataset, the hardest classes to separate are the open ground,
the building, and the damage classes since they have similar textures and spectral
signatures. For this reason, it is expected to observe a significant improvement on

the classification performance especially for those classes.
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The classification accuracies obtained using k-NN and SVM classifiers were given by
the confusion matrices as shown in Figure 3.17 and 3.19 respectively. The confusion
matrices indicate that the use of new feature subsets in the classification does not
only improved the overall and average accuracy, but also improve the accuracy for
the classes open ground, building, and damage classes compared to the case obtained
by using only the pixel densities of the original data. The thematic maps, given in
3.16 and 3.18, also showed the improvement for those classes by providing less noisy
representation of those classes. Both the accuracies and quality of the thematic maps in
terms of extracting the most difficult classes are found to be consistent for both SVM
and k-NN. According to the classification accuracies obtained by the both classifiers,
the most significant improvement is resulted from the use of selected feature subsets
in top 10 features. However, the feature subsets from the top 20 and 40 features
have also an apparent positive effect on the classification accuracy and the quality
of the thematic map. As a result, the subset from the top 40 features achieves the
highest classification accuracy, while the subset from the top 10 features makes the

most significant improvement of the classification accuracy.

Figure 3.16 : Thematic maps of the Bam study area obtained with k-NN classifier
using (a) pixel densities, (b) Subset-1, (c) Subset-2, (d) Subset-3.
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Figure 3.17 : Confusion matrices of the Bam study area obtained with kNN classifier
using (a) pixel densities, (b) Subset-1, (c) Subset-2, (d) Subset-3.
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Figure 3.18 : Thematic maps of the Bam study area obtained with SVM classifier
using (a) pixel densities,(b) Subset-1, (c) Subset-2, (d) Subset-3.

OA:92.32%  AA:89.74% OA:97.87%  AA:95.89% OA:99.10%  AA:98.31% OA:99.18%  AA: 98.69%

0.0% 0.0% 00% 02% 7.0% CPy 0.1% 0.0% 0.0% 01% 22%
0 58 861 38

0.0% 14.7%
0

D
D

0
A 0.0%

5 36

0.0% 0.0%
0 0

¥4 0.0% 0.0%
0 0 0

& 0.0%
1

B
B

0.0% 0.0% 0.0%
0 0 0

0.0%
0

s
s
s
s

Output Class

Output Class
v

Output Class
v

v

0.0%
0

v

04% 04% 0.0% 0.0%
91 240 0 0

01% 0.1% 0.0% 0.0%
78 0 0

02% 0.0% 0.0% 0.0%
60 0 0 0

05% 0.1% 0.0% 0.1%
122 84 0 50
32% 21% 00% 0.0% 20% 04% 00% 0.0% 0.0% 03% 02% 00% 00% 0.0%

796 1045 0 3 500 224 0 0 0 86 92 0 0 0

D B s v R oG D B s v R oG D B s v R oG D B S v R oG
Target Class Target Class Target Class Target Class

(@) (b) (© (d)
Figure 3.19 : Confusion matrices of the Bam study area obtained with SVM classifier
using (a) pixel densities, (b) Subset-1, (c) Subset-2, (d) Subset-3.
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3.6.2 Results: Haiti dataset

The challenge in the Haiti study area is to separate the building and the damage classes
as in the case of the Bam dataset. The study area includes the buildings with many
different types of shapes, roofs, colours and sizes. Therefore, the extracted feature

subsets are expected to help for handling this difficulty.

The confusion matrices shown in Figure 3.21 and 3.23 clearly express the effect of the
extracted subsets in the classification accuracy compared to the case obtained with only
using pixel densities of the original feature set. The accuracy for the most confused
classes were significantly improved with the use of the new features. As be seen
in Figure 3.20 and 3.22, the quality of the thematic maps in terms of classification
accuracy were also improved by using additional features, which are consistent with
the confusion matrices as well. In the thematic maps obtained by using only the
original features, the damaged areas can not be distinguished well and some of the
damage patterns were classified as undamaged buildings, while the thematic maps
obtained by using the extracted features provides better representations for the damage

class.
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Figure 3.20 : Thematic maps of the Haiti study area obtained with kNN classifier

using (a) pixel densities, (b) selected feature subsets from top 10, (c)
20, (d) 40 features.

OA:81.33%  AA: 80.40% OA:98.48%  AA:97.97% OA:99.43%  AA:99.02% OA:99.35%  AA:99.07%
- 0.0% 00% 00% 0.0% 0.0% 6 0.0% 0.0% - d 00% 00% 00% 03% 00% - 23 0.0% 00% 00% 0.0% 0.0%
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
- A 03% 15% 0.0% 04% « 0.0% « @ 06% 0.0% 00% 0.1% - 13% 0.1% 0.0% 0.0%
9 161 0 17 0 9 1 0 6 19 6 0 0

2o 88%) 0.8% 00% 03% B o . 0.0% 2o . 0.0% 2o A 0o% 00%
Go 1809 % o 11 GO 0 5o 5o

24 37.2% A 0.0% 24 5.8% IR 0.0% 24 3.4% £

3 1277 0 3 87 0 3 51 3

100.0%
770
0.0%
0

s

0.0% 0.0%
0 0

S

0.0%
0

0.0% 0.0%
0 0

24.5% 24.2%
841 2586

0.0%
0

0.0% 0.0% 0.0% 1.0% 0.0%
0

D
D

0.0% 0.0% 00% 1.0% 00% [§
102 0

v R s D v R s D v R s D v R

oG B oG B oG B oG B
Target Class Target Class Target Class Target Class

(a) (b) (©) (d)
Figure 3.21 : Confusion matrices of the Haiti study area obtained with kNN classifier
using (a) pixel densities, (b) selected feature subsets from top 10, (c)
20, (d) 40 features.

Bl Damage [l Vegetation [ JRoad [JBuilding [_]OpenGround [l Shadow

(a) (b) (©) (d)
Figure 3.22 : Thematic maps of the Haiti study area obtained with SVM classifier
using (a) Pixel densities, (b) selected feature subsets from top 10, (c)
20, (d) 40 features.
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Figure 3.23 : Confusion matrices of the Haiti study area obtained with SVM

classifier using (a) Pixel densities, (b) selected feature subsets from top
10, (c) 20, (d) 40 features.
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(b) Subset-2
Figure 3.24 : Selected feature sets for the Bam study area.

To sum up, both of the case studies conducted with Bam and Haiti datasets show
the efficiency of the selected feature subsets in classification accuracy for both of
the classification methods compared to the pixel-based classification results. All
the feature subsets from each number of the top features improve the classification
accuracy. However, the number of features to be generated is also important in terms
of the computational time for an analysis on the entire images. Therefore, only the
features selected from the top ten and the top twenty rankings were used in the analysis
of the entire areas in the considered images, since they have the most significant effect
on the results. The selected feature subsets for Bam and Haiti datasets are shown in

Figure 3.24 and 3.25, respectively.

39



Feature ID: 19 Feature ID: 20 : Feature ID: 96 Feature ID: 209
e — e — S g wap F Akl

(a) Subset-1

Feature ID: 16 Feature ID: 19 Feature ID: 20 Feature ID: 58 Feature ID 59 Featu re ID 51

A

Feature ID: 209

Feature ID: 87 Feature Feature ID 96

Feature 1D: 223 Feature 1D: 300 Fealure 1D: 302
Feature 1D: 314 Feature I1D: 537

Fealure 1D: 395 Fealure 1D: 483

(b) Subset-2
Figure 3.25 : Selected feature sets for the Haiti study area.

3.7 Damage Maps

In this study, an automatic earthquake-induced damage detection approach in the way
that is as fast and as accurate as possible was proposed. Therefore, any ancillary data
or pre-earthquake data were not used. The use of such data needs time consuming
pre-processing steps such as image registration and atmospheric correction. Due to
this, creating a damage map without using any pre-earthquake information is another
challenge for the proposed earthquake-induced damage detection approach. In order
to build the damage map, the entire area in the post-earthquake image is classified and
a thematic map is obtained to represent all the land cover classes. However, to classify
the entire area at only one execution is not a practical approach due to its need for
high memory. The entire area is generally classified in small pieces and the general
thematic map is obtained with the synthesis of those small pieces. In this study, both

of the Bam and Haiti datasets were subdivided into small parts consisting of 900x900
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pixels, and then they were classified using the training data associated with the study

areas by using selected features from the top ten rankings of FS analysis.

The thematic maps include all the land cover classes by definition. But the damage
maps should only provide the level of the earthquake-induced damage. Therefore, the
thematic maps are not directly used to interpret the damage distributions. In this study,
the true color representation of the images are masked red colored pixels that represent
the damage labels from corresponding classification results. The classes different
from damage are eliminated in the damage maps. Finally, the obtained damage maps
of entire areas for each dataset, can be seen in Figure 3.26 and 3.27. The damage
maps generated by the proposed approach are evaluated in comparison to the reference
maps obtained by European Space Agency (ESA), which are shown in Figure 3.28 and
3.29. The comparison shows that the generated damage maps are consistent with the

reference works in broad strokes.
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(b)
Figure 3.26 : Damage maps of the entire Bam image obtained using (a) Subset-1, (b)
Subset-2.
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(b)
Figure 3.27 : Damage maps of the entire Haiti image obtained using (a) Subset-1, (b)
Subset-2.
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Figure 3.29 : The reference damage map of the Haiti dataset.
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4. CONCLUSIONS AND DISCUSSIONS

A fast and accurate earthquake damage identification from VHR post-earthquake
image is very challenging task, requiring additional contextual information. This study
aims to implement the recently proposed spatial feature extraction methods, that are
MPs and APs, for the earthquake damage assessment. There can be a great variety
of extracted features by the use of different parameters for these methods. When the
data size is considered, to generate that variety of features is not a practical approach
as such process would be expensive in terms of both the computational time and the
memory usage. Furthermore, it can be possible to generate irrelevant features in such
variety. Therefore, in this study, wide feature sets were created by using MPs and
APs and a feature selection procedure using mRMR was implemented to find the most
relevant features in those feature sets. The proposed approach was firstly tested with
a synthetic dataset set and the results of this synthetic analysis reached the expected

improvements compared to conventional pixel-based classification.

In order to evaluate the proposed approach in an unbiased manner, two post-event
VHR images were selected as case studies, Bam and Haiti. In those case studies,
two training areas were selected to be used for the FS process and also to use as
training area in classification of the entire areas. Three different feature subsets for
each case studies, that contain the most frequent features in top ten, twenty and
forty rankings, were determined. The determined subsets were evaluated in terms of
the classification accuracies and the quality of the thematic maps obtained based on
the training areas. The evaluation showed that all the determined subsets improved
classification accuracies and the quality of the thematic maps, severely. However,
the most severe improvement were observed on the results from the feature subsets
selected from top ten features. Furthermore, the visual examination of those selected
subsets, as shown in Fig. 3.24 and 3.25, proves their capability to separate different
patterns in the selected study areas of the considered images. Therefore, the entire

damage maps of the considered post-earthquake images, which were shown in Figure
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3.26 and 3.27, were computed by using only the features selected from top ten, and top

twenty rankings.

The evaluation also yielded two important results: only one solution for these problem
is not possible as the generated features may extract similar information from the
image, and the features created by using the same methods and the same parameters
may provide different information for the different datasets. For instance, the feature
#96 was selected in both of the case studies but in the Bam case it highlights the
open ground class, whereas it highlights the damage class in the Haiti case. As a
summary, even the selected feature sets significantly improve the performance of the
earthquake-induced damage assessment, it is not possible to specify a morphological
feature type nor a parameter range for the morphological operations for such a
multi-class problem. That might be possible when the damage assessment task is

addressed with a two class approach.

The damage map generating process also revealed an important challenge. As
mentioned before, the damage maps were generated by the classification results of
the entire areas, and these areas were classified within subdivided small parts. In other
words, the features in the selected feature subsets were created for those small areas,
individually. However, it should be noted that the MPs and APs are extracted based
on the geometrical properties in the images and dividing the entire images into small
parts also means dividing the geometries in the entire image. It can be defined as a

generalization problem of the such image processing tools.

To conclude, advanced methods in mathematical morphology are very efficient
source for a fast and an accurate earthquake-induced damage identification from
VHR post-event image. The methods provides the needed spatial details that can
not be extracted directly from the source image. However, their usage may be
improved further by handling the generalization problems, and/or by transforming the
classification scheme into two class scheme. The author’s future study will be focused

on these two challenges.

46



REFERENCES

[1] Dong, L. and Shan, J. (2013). A comprehensive review of earthquake-induced
building damage detection with remote sensing techniques.

[2] Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K. and Mehl, H. (2007).
Satellite Image Analysis for Disaster and Crisis-Management Support,
IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1520-1528.

[3] Stramondo, S., Bignami, C., Chini, M., Pierdicca, N. and Tertulliani, A.
(2006). Satellite radar and optical remote sensing for earthquake damage

detection: results from different case studies, International Journal of
Remote Sensing, 27(20), 4433-4447.

[4] Brunner, D., Lemoine, G. and Bruzzone, L. (2010). Earthquake Damage
Assessment of Buildings Using VHR Optical and SAR Imagery, /[EEE
Transactions on Geoscience and Remote Sensing, 48(5), 2403-2420.

[5] Dell’Acqua, F. and Gamba, P. (2012). Remote Sensing and Earthquake Damage
Assessment: Experiences, Limits, and Perspectives, Proceedings of The
IEEE, 100(10, SI), 2876-2890.

[6] Gamba, P. and Casciati, F. (1998). GIs and Image Understanding for
Near-Real-Time Earthquake Damage Assessment, Photogrammetric
Engineering & Remote Sensing, 64(10), 987-994.

[7] Ito, Y., Hosokawa, M., Lee, H. and Liu, J.G. Extraction of damaged regions using
SAR data and neural networks.

[8] Schweier, C. and Markus, M. (2006). Classification of Collapsed Build-
ings for Fast Damage and Loss Assessment, Bulletin of Earth-
quake Engineering, 4(2), 177-192, https://doi.org/10.1007/
s10518-006-9005-2.

[9] ISHII, M. (2002). Detection of Earthquake Damage Area from Aerial Photographs
by Using Color and Edge Information, ACCV2002, 27-32, https://
ci.nii.ac.jp/naid/10011073649/en/.

[10] Turker, M. and San, B.T. (2003). SPOT HRV data analysis for detecting
earthquake-induced changes in Izmit, Turkey, International Journal
of Remote Sensing, 24(12), 2439-2450, https://doi.org/10.
1080/0143116031000070427, https://doi.org/10.1080/
0143116031000070427.

[11] Kosugi, Y., Sakamoto, M., Fukunishi, M., , Doihara, T. and Kakumoto, S.
(2004). Urban change detection related to earthquakes using an adaptive

47



nonlinear mapping of high-resolution images, IEEE Geoscience and
Remote Sensing Letters, 1(3), 152—-156.

[12] Turker, M. and Cetinkaya, B. (2005). Automatic detection of
earthquake-damaged buildings using DEMs created from pre- and
post-earthquake stereo aerial photographs, International Journal of
Remote Sensing, 26(4), 823-832, https://doi.org/10.1080/
01431160512331316810.

[13] Plank, S. (2014). Rapid Damage Assessment by Means of Multi-Temporal
SAR — A Comprehensive Review and Outlook to Sentinel-1, Remote
Sensing, 6(6), 4870—-4906, http://www.mdpi.com/2072-4292/
6/6/4870.

[14] Vu, T.T., Matsuoka, M. and Yamazaki, F. (2005). Detection and Anima-
tion of Damage Using Very High-Resolution Satellite Data Follow-
ing the 2003 Bam, Iran, Earthquake, FEarthquake Spectra, 21(S1),
319-327, https://doi.org/10.1193/1.2101127, https://
doi.org/10.1193/1.2101127.

[15] Trianni, G. and Gamba, P. (2008). Damage detection from SAR imagery:
Application to the 2003 Algeria and 2007 Peru earthquakes, International
Journal of Navigation and Observation, 2008.

[16] Mitomi, H., Matsuoka, M. and Yamazaki, F. (2002). Application of automated
damage detection of buildings due to earthquakes by panchromatic

television images, The 7th US National Conference on Earthquake
Engineering, CD-ROM, p. 10.

[17] Samadzadegan, F. and Rastiveisi, H. Automatic detection and classification of
damaged buildings, using high resolution satellite imagery and vector data.

[18] Dubois, D. and Lepage, R. (2014). Fast and Efficient Evaluation of Building
Damage From Very High Resolution Optical Satellite Images, IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 7(10), 4167-4176.

[19] Rathje, E.M., Crawford, M., Woo, K. and Neuenschwander, A. (2005).
Damage Patterns from Satellite Images of the 2003 Bam, Iran, Earthquake,
Earthquake Spectra, 21(S1), 295-307, https://doi.org/10.
1193/1.2101047,https://doi.org/10.1193/1.2101047.

[20] Sun, W., Shi, L., Yang, J. and Li, P. (2016). Building Collapse Assessment in
Urban Areas Using Texture Information From Postevent SAR Data, I[EEE

Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 9(8), 3792-3808.

[21] Pesaresi, M. and Benediktsson, J.A. (2001). A new approach for the
morphological segmentation of high-resolution satellite imagery, /[EEE
Transactions on Geoscience and Remote Sensing, 39(2), 309-320.

48



[22] Benediktsson, J.A., Pesaresi, M. and Amason, K. (2003). Classification and
feature extraction for remote sensing images from urban areas based on
morphological transformations, IEEE Transactions on Geoscience and
Remote Sensing, 41(9), 1940—-1949.

[23] Huang, X. and Zhang, L. (2012). Morphological Building/Shadow Index for
Building Extraction From High-Resolution Imagery Over Urban Areas,
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 5(1), 161-172.

[24] Chini, M., Pierdicca, N. and Emery, W.J. (2009). Exploiting SAR and VHR
Optical Images to Quantify Damage Caused by the 2003 Bam Earthquake,
IEEE Transactions on Geoscience and Remote Sensing, 47(1), 145-152.

[25] Pesaresi, M. and Benediktsson, J.A. (2001). A new approach for the
morphological segmentation of high-resolution satellite imagery, /IEEE
transactions on Geoscience and Remote Sensing, 39(2), 309-320.

[26] Dell’Acqua, F., Bignami, C., Chini, M., Lisini, G., Polli, D.A. and Stramondo,
S. (2011). Earthquake Damages Rapid Mapping by Satellite Remote
Sensing Data: L’ Aquila April 6th, 2009 Event, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 4(4), 935-943.

[27] Wang, J., Qin, Q., Zhao, J., Ye, X., Feng, X., Qin, X. and Yang, X.
(2015). Knowledge-Based Detection and Assessment of Damaged Roads
Using Post-Disaster High-Resolution Remote Sensing Image, Remote
Sensing, 7(4), 4948-4967, http://www.mdpi.com/2072-4292/
7/4/4948.

[28] Ma, J. and Qin, S. (2012). Automatic depicting algorithm of earthquake collapsed
buildings with airborne high resolution image, 2012 IEEE International
Geoscience and Remote Sensing Symposium, pp.939-942.

[29] Li, L., Li, Z., Zhang, R., Ma, J. and Lei, L. (2010). Collapsed buildings
extraction using morphological profiles and texture statistics - A case study
in the 5.12 wenchuan earthquake, 2010 IEEE International Geoscience
and Remote Sensing Symposium, pp.2000-2002.

[30] Mura, M.D., Benediktsson, J. and Bruzzone, L. (2009). Modeling structural
information for building extraction with morphological attribute filters,
Image and Signal Processing for Remote Sensing XV, volume7477,
International Society for Optics and Photonics, p.747703.

[31] Fukunaga, K., (1990). Chapter 10 - Feature extraction and linear mapping
for classification, K. Fukunaga, editor, Introduction to Statistical
Pattern Recognition (Second Edition), Academic Press, Boston, second
edition edition, pp.441 — 507, http://www.sciencedirect.com/
science/article/pii/B9780080478654500168.

[32] Pedergnana, M., Marpu, P.R., Dalla Mura, M., Benediktsson, J.A. and
Bruzzone, L. (2013). A novel technique for optimal feature selection
in attribute profiles based on genetic algorithms, IEEE Transactions on
Geoscience and Remote Sensing, 51(6), 3514-3528.

49



[33] Bhardwaj, K. and Patra, S. (2018). An unsupervised technique for optimal
feature selection in attribute profiles for spectral-spatial classification of
hyperspectral images, ISPRS Journal of Photogrammetry and Remote
Sensing, 138, 139 — 150, http://www.sciencedirect.com/
science/article/pii/S0924271618300340.

[34] Musson, R.M. and Ceci¢, L. (2012). Intensity and intensity scales, New Manual of
Seismological Observatory Practice 2 (NMSOP-2), 1-41.

[35] Griinthal, G. (1998). European macroseismic scale 1998, Technical Report,
European Seismological Commission (ESC).

[36] Yamazaki, F., Yano, Y. and Matsuoka, M. (2005). Visual Damage
Interpretation of Buildings in Bam City Using QuickBird Images
Following the 2003 Bam, Iran, Earthquake, Earthquake Spectra, 21(S1),
329-336, https://doi.org/10.1193/1.2101807, https://
doi.org/10.1193/1.2101807.

[37] Rastiveis, H., Samadzadegan, F. and Reinartz, P. (2013). A fuzzy decision
making system for building damage map creation using high resolution
satellite imagery, Natural Hazards and Earth System Sciences, 13(2), 455.

[38] Romaniello, V., Piscini, A., Bignami, C., Anniballe, R. and Stramondo, S.
(2017). Earthquake damage mapping by using remotely sensed data: the
Haiti case study, Journal of Applied Remote Sensing, 11(1), 016042.

[39] Alpaydin, E. (2014). Introduction to machine learning, MIT press.

[40] Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification, /IEEE
transactions on information theory, 13(1), 21-217.

[41] Ran, Q., Li, W., Du, Q. and Yang, C. (2015). Hyperspectral image classification
for mapping agricultural tillage practices, Journal of Applied Remote
Sensing, 9(1), 097298.

[42] Ho, Y. and Pepyne, D. (2002). Simple Explanation of the No-Free-Lunch
Theorem and Its Implications, Journal of Optimization Theory and
Applications, 115(3), 549-570, https://doi.org/10.1023/A:
1021251113462.

[43] Vapnik, V. and Vapnik, V., (1998), Statistical learning theory.

[44] Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine learning,
20(3), 273-297.

[45] Melgani, F. and Bruzzone, L. (2004). Classification of hyperspectral remote
sensing images with support vector machines, IEEE Transactions on
geoscience and remote sensing, 42(8), 1778—1790.

[46] Taskin, G., Ersoy, O.K. and Kamasak, ML.E. (2015). Earthquake-induced
damage classification from postearthquake satellite image using spectral
and spatial features with support vector selection and adaptation, Journal
of Applied Remote Sensing, 9, 9 — 9 — 20, https://doi.org/10.
1117/1.JRS.9.096017.

50



[47] Mountrakis, G., Im, J. and Ogole, C. (2011). Support vector machines in
remote sensing: A review, ISPRS Journal of Photogrammetry and Remote
Sensing, 66(3), 247-259.

[48] Chang, C.C. and Lin, C.J. (2011). LIBSVM: A library for support vector
machines, ACM transactions on intelligent systems and technology (TIST),
2(3), 27.

[49] Wang, M., Wan, Y., Ye, Z., Gao, X. and Lai, X. (2018). A band selection
method for airborne hyperspectral image based on chaotic binary coded
gravitational search algorithm, Neurocomputing, 273, 57-67.

[50] Cukur, H., Binol, H., Uslu, E.S., Kalayci, Y. and Bal, A. (2015). Cross correlation
based clustering for feature selection in hyperspectral imagery, 2015
9th International Conference on Electrical and Electronics Engineering
(ELECO), IEEE, pp.232-236.

[51] Leignel, C., Caelen, O., Debeir, O., Hanson, E., Leloup, T., Simler, C.,
Beumier, C., Bontempi, G. and Wolff, E. (2010). Detecting man-made
structure changes to assist geographic data producers in planning their
update strategy, ISPRS Archive, 38(Part 4), 8-2.

[52] Hanchuan Peng, Fuhui Long and Ding, C. (2005). Feature selection based
on mutual information criteria of max-dependency, max-relevance, and

min-redundancy, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8), 1226-1238.

[53] Breen, E. and Jones, R. (1996). Attribute openings, thinnings, and granulometries,
Computer Vision and Image Understanding, 64(3), 377-389.

[54] Dalla Mura, M., Benediktsson, J.A., Chanussot, J. and Bruzzone, L., (2011).
The Evolution of the Morphological Profile: from Panchromatic to
Hyperspectral Images, Prasad, S and Bruce, LM and Chanussot, J,
editor, Optical Remote Sensing: Advances in Signal Processing and
Exploitation Techniques, volume 3 of Augmented Vision and Reality,

pp.123-146.

[55] Dalla Mura, M., Benediktsson et al. (2010). Morphological attribute profiles
for the analysis of very high resolution images, IEEE Transactions on
Geoscience and Remote Sensing, 48(10), 3747-3762.

[56] Mura, M.D., Benediktsson, J.A. et al. (2010). Extended profiles with
morphological attribute filters for the analysis of hyperspectral data,
International Journal of Remote Sensing, 31(22),5975-5991, https://
doi.org/10.1080/01431161.2010.512425, https://doi.
org/10.1080/01431161.2010.512425.

[57] Ghassemian, H. (2016). A review of remote sensing image fusion methods,
Information Fusion, 32, 75-89.

[58] Alatas, E.O. and Taskin, G. (2019). Attribute Profiles in Earthquake Damage
Identification from Very High Resolution Post Event Image, IGARSS 2019

51



- 2019 IEEE International Geoscience and Remote Sensing Symposium,
pPp.9299-9302.

52



CURRICULUM VITAE

Name Surname: Enes Oguzhan Alatas
Place and Date of Birth: Ercis 07.09.1993

E-Mail: oguzenesalatas @gmail.com

EDUCATION:
e B.Sc.: 2017, Yildiz Technical University, Civil Engineering

e M.Sc.: 2020, Istanbul Technical University, Earthquake Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:
e 08/2018-12/2019 - Research Scholar in TUBITAK Project ID: 217E032

PUBLICATION LIST:

e E. O. Alatas and G. Tasgkin, "Attribute Profiles in Earthquake Damage Identification
from Very High Resolution Post Event Image," IGARSS 2019 - 2019 IEEE
International Geoscience and Remote Sensing Symposium, Yokohama, Japan,

2019, pp. 9299-9302.

e E. O. Alatas, G. Tagkin, A. Ertiirk, K. Kayabol, "Post-Earthquake Image
Classification with The Joint Use of Attribute Profiles and Simple Linear Iterative
Clustering " M2GARSS 2020 - 2020 Mediterranean and Middle-East Geoscience
and Remote Sensing Symposium, Tunis, Tunisia, 2020.

53



