<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ DEPREM MÜHENDİSLİĞİ VE AFET</u> <u>YÖNETİMİ ENSTİTÜSÜ</u>

KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK ZEMİNE OTURAN DAİRESEL VE ELİPTİK PLAKLARIN TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ

YÜKSEK LİSANS TEZİ

Betül AYKILIÇ

Deprem Mühendisliği Anabilim Dalı

Deprem Mühendisliği Programı

EYLÜL 2019

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ DEPREM MÜHENDİSLİĞİ VE AFET</u> <u>YÖNETİMİ ENSTİTÜSÜ</u>

KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK ZEMİNE OTURAN DAİRESEL VE ELİPTİK PLAKLARIN TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ

YÜKSEK LİSANS TEZİ

Betül AYKILIÇ (802141209)

Deprem Mühendisliği Anabilim Dalı

Deprem Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Engin ORAKDÖĞEN

EYLÜL 2019

İTÜ, Deprem Mühendisliği ve Afet Yönetimi Enstitüsü'nün 802141209 numaralı Yüksek Lisans Öğrencisi Betül AYKILIÇ, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK ZEMİNE OTURAN DAİRESEL VE ELİPTİK PLAKLARIN TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

.....

.....

.....

Tez Danışmanı :Prof. Dr. Engin ORAKDÖĞENİstanbul Teknik Üniversitesi

Jüri Üyeleri :

Dr. Öğr. Üyesi Mecit ÇELİK İstanbul Teknik Üniversitesi

Dr. Öğr. Üyesi Ahmet GÜLLÜ İstanbul Gedik Üniversitesi

Teslim Tarihi: 09 Eylül 2019Savunma Tarihi: 23 Eylül 2019

ÖNSÖZ

Bu tez çalışması esnasında pek kıymetli birikim ve vaktini şahsımla paylaşan Sayın Hocam Prof. Dr. Engin ORAKDÖĞEN'e en kalbi duygularımla teşekkür ederim.

Tez çalışmam boyunca anlayış ve destekleri için tüm Pendik Belediyesi ailesi ile anne ve babama en derin saygılarımı sunarım.

Ayrıca SapTransform programını paylaşmaktan çekinmeyen İnş. Müh. Dr. Onur AVCIOĞLU'na, teze katkısından dolayı teşekkürü bir borç bilirim.

Eylül 2019

Betül AYKILIÇ (İnşaat Mühendisi)

İÇİNDEKİLER

<u>Sayfa</u>

IÇINDEKILER	•••••
ÇIZELGE LISTESI	•••••
	•••••
SEMBOL LISTESI	•••••
OZET	X
SUMMARY	X
1. GIRIŞ	•••••
1.1 Plak-Zemin Ilişkisi	•••••
1.2 Plak-Zemin Etkileşim Modelleri	•••••
1.2.1 Bir parametreli zemin modelleri	•••••
1.2.1.1 Winkler tipi zemin modeli	•••••
1.2.2 Iki parametreli zemin modelleri	•••••
1.2.2.1 Filonenko-Borodich tipi zemin modeli	•••••
1.2.2.2 Hetenyi tipi zemin modeli	
1.2.2.3 Pasternek tipi zemin modeli	
1.2.2.4 Vlasov tipi zemin modeli	
1.3 Çalışmanın Kapsam ve Amacı	
2. SAP2000 PROGRAMINDA IKI PARAMETRELI ZEMIN	
ÖZELLİKLERİNİN TANIMLANMASI	•••••
2.1 SAP2000 Sonlu Eleman Analiz ve Boyutlandırma Programı	
2.2 SAP2000 Programında Sonlu Eleman Matris Formülasyonu	•••••
2.3 SAP2000 Programında İki Parametreli Zemin ve Plak Elemanın Birlikt	te
Modellenmesi	
3. SAYISAL ÖRNEKLER	•••••
3.1 İki Parametreli Zemine Oturan Dairesel Plak	•••••
3.2 İki Parametreli Genişletilmiş Zemine Oturan Dairesel Plak	•••••
3.3 İki Parametreli Zemine Oturan Eliptik Plak	
3.4 İki Parametreli Genişletilmiş Zemine Oturan Eliptik Plak	
3.5 İki Parametreli Genişletilmiş Zemine Oturan Daire Halkası Temel	
3.6 İki Parametreli Zemine Oturan Dairesel Plağın Genişletilmemiş Zemin	e
Oturması Hali İle Genişletilmiş Zemine Oturması Halinde Spektral	
Analizi	9
3.7 İki Parametreli Zemine Oturan Eliptik Plağın Genişletilmemiş Zemine	
Oturması Hali İle Genişletilmiş Zemine Oturması Halinde Spektral	
Analizi	1
4. SONUÇ VE DEĞERLENDİRME	1
KAYNAKLAR	1
•• •	1

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 3.1	: Düzgün yayılı yük altında, sabit alanlı dairesel plağın, orta	
	noktasında, boyutsuzlaştırılmış çökme, eğilme momenti ve burulma	
	momenti değerleri43	
Çizelge 3.2	: Dairesel plak için göreceli hata hesabı44	
Çizelge 3.3	: Genişletilmiş zemin ve genişletilmemiş zemin için, düzgün yayılı yük	
	altında, sabit alanlı dairesel plağın, orta noktasında, çökme, eğilme	
	momenti ve burulma momenti değerleri	
Çizelge 3.4	: Zeminin genişletilmiş durumunda değişimler (%)	
Cizelge 3.5	: Elips geometrisi olusturulması için Excel programından kopyalanan	
, ,	veriler	
Cizelge 3.6	: Düzgün vayılı yük altında, sabit alanlı eliptik plağın, orta noktasında,	
3 8 8	cökme, eğilme momenti ve burulma momenti değerleri	
Cizelge 3.7	: Eliptik plak icin göreceli hata hesabı	
Cizelge 3.8	: Genisletilmis zemin ve genisletilmemis zemin icin. düzgün vavılı vük	
38	altında, sabit alanlı eliptik plağın, orta noktasında, cökme, eğilme	
	momenti ve burulma momenti değerleri	
Cizelge 3.9	: Zeminin genisletilmis durumunda değisimler (%)	
Cizelge 3.10	: Daire halkası temeldeki cökmeler (m)	
Cizelge 3.11	: Genisletilmis zeminde cökmeler (m).	
Cizelge 3.12	: $\alpha = 0$ aksında daire halkası temel M ₁₁ momenti değerleri 88	
Cizelge 3.12	$\cdot \alpha = 0$ aksında daire halkası temel M ₂₂ momenti değerleri 90	
Cizelge 3.14	• Sabit alanlı dairesel plağın spektral analizi sonucu orta noktasında	
Çizeige 5.14	eğilme momenti değerleri	
Cizelge 3 15	• Zeminin genisletilmis durumunda değisimler (%) 99	
Çizelge 3.15	· İki parametreli zemine oturan sahit alanlı dairesel plağa uygulanan	
Çizeige 5.10	spektral apaliz sonucu ilk üc moda ait perivat değerleri (s)	
Cizalga 2 17	• Sobit alanlı alintik nlağın analtral analizi sonyoy arta naktasında	
Çizeige 5.17	: Sabit alanni enpitk plagni spektral analizi sonucu ona noktasinua	
Circles 2 19	· Zaminin conjulatilaria durgunun da dažioimlar (0/)	
Çizeige 3.18	: Zemmin geniși culturi a degiși mier ($\%$)	
Çizeige 3.19	: IKI parametren zemine oturan sabit alanni eliptik plaga uygulanan	
	spektral analiz sonucu ilk üç moda ait periyot değerleri (s)108	

ŞEKİL LİSTESİ

<u>Sayfa</u>

Sekil 1.1 : Winkler tipi zemin modeli	4
Sekil 1.2 : Filonenko-Borodich tipi zemin modeli	6
Sekil 1.3 : Pasternak tipi zemin modeli	7
Sekil 1.4 : Vlasov tipi zemin modeli	8
Sekil 2.1 : Dairesel plak sistemi	16
Sekil 2.2 : Dairesel plağın 1 m altındaki zemin sistemi	17
Sekil 2.3 : Plak-iki parametreli zemin sistemi	17
Sekil 2.4 : Zemin yatak katsayısının girilmesi	18
Sekil 2.5 : Zemin yatak katsayısının girilmesi	18
Sekil 2.6 : Ortotropik zemin özelleklerinin tanımlanması	19
Sekil 2.7 : Zemin tabakası kalınlığının 1 m girilmesi	19
Sekil 2.8 : Constraint atanması	20
Sekil 2.9 : Constraint atanması	20
Sekil 2.10 : SapTransform programının veri giriş ekranı	21
Sekil 2.11 : C.s2k uzantılı dosya	21
Sekil 2.12 : SAP2000'den Import seçeneği ile veri aktarılması	22
Şekil 2.13 : Dış yüklerin girilmesi	22
Şekil 2.14 : Dış yüklerin girilmesi	23
Şekil 2.15 : Dış yükler	23
Şekil 2.16 : Mesnetlerin tanımlanması	24
Şekil 2.17 : Mesnet tipleri	24
Şekil 2.18 : Modelin genel görünümü	25
Şekil 3.1 : Plak geometrisi ve koordinat takımları	28
Şekil 3.2 : SAP2000 yeni model tanımlama ekranı	28
Şekil 3.3 : SAP2000 Pipes and Plates seçeneği	29
Şekil 3.4 : Component Category, Circular Plates seçeneği	29
Şekil 3.5 : Component Type, Without Hole seçeneği	30
Şekil 3.6 : Boşluksuz dairesel plak oluşturma ekranı	30
Şekil 3.7 : Boşluksuz dairesel plak bilgileri giriş ekranı	31
Şekil 3.8 : Boşluksuz dairesel plak	31
Şekil 3.9 : Boşluksuz dairesel plak oluşturma ekranı	32
Şekil 3.10 : Boşluksuz dairesel plağın kopyalanması	32
Şekil 3.11 : Dairesel plak	33
Şekil 3.12 : Dairesel plak kalınlığı	33
Şekil 3.13 : Dairesel plak Elastisite modülü ve Poisson's oranı	34
Şekil 3.14 : Dairesel plak malzeme özellikleri	35
Şekil 3.15 : Z=1 m kotu dairesel plak eleman ataması	35
Şekil 3.16 : Zemin yay sabiti ataması	36
Şekil 3.17 : Plain-Strain eleman	36
Şekil 3.18 : Zemin kayma parametreleri	37
Şekil 3.19 : SapTransform programı ile yapılan eşitleme sonucu	37

Sekil 3.20 : Dairesel plağa yayılı yük girilmesi	38
Sekil 3.21 : Mesnet ataması	38
Sekil 3.22 : Mesnet ataması ve modelin üc boyutlu görünümü	39
Sekil 3.23 : Dairesel plağın kenarlarına ankastre mesnet atanması	39
Sekil 3.24 : Z=0 m zemin elemanın kenarlarına ankaste mesnet atanması	40
Sekil 3.25 : Mesnet atanmıs bir düğüm noktasının durumu	40
Sekil 3.26 : Zemin acısı acısı $\theta = 0^{\circ}$ halinde, düzgün yayılı yük altında, sabit alanlı dairesel	
plağın orta noktasındaki çökme değeri (m).	41
Sekil 3.27 : Zemin açısı açısı $\theta = 0^{\circ}$ halinde, düzgün yayılı yük altında, sabit alanlı dairesel	
plağın orta noktasındaki M ₁₁ momenti değeri (kNm)	42
Şekil 3.28 : Zemin açısı açısı $\theta = 0^{\circ}$ halinde, düzgün yayılı yük altında, sabit alanlı dairesel	
plağın orta noktasındaki M ₂₂ momenti değeri (kNm)	42
Şekil 3.29 : Zemin açısı açısı $\theta = 0^{\circ}$ halinde, düzgün yayılı yük altında, sabit alanlı dairesel	
plağın orta noktasındaki M ₁₂ momenti değeri (kNm)	43
Şekil 3.30 : Genişletilmiş zemine oturan dairesel plak sisteminin üç boyutlu	
görünümü	45
Şekil 3.31 : Genişletilmiş zemine oturan dairesel plak sistemi	46
Şekil 3.32 : Genişletilmiş zemin sistemi.	46
Şekil 3.33 : Excel programındaki TYPE, NAME, X, Y, Z verilerinin oluşturulması ve pane	oya
kopyalanması	49
Şekil 3.34 : Elips geometrisi oluşturulması için Blank model seçimi	50
Şekil 3.35 : Excel programındaki verilerin Paste komutu ile SAP2000 programına	
aktarımı	50
Şekil 3.36 : SAP2000 Paste Coordinates ekranı	51
Şekil 3.37 : Elips geometrisinin noktasal koordinatları	51
Şekil 3.38 : SAP2000 programına aktarılan elips geometrisi	55
Şekil 3.39 : Eliptik plak	55
Şekil 3.40 : Sabit alanlı eliptik plak koordinat sistemi	56
Şekil 3.41 : Eliptik plak kalınlığı	56
Şekil 3.42 : Sabit alanlı eliptik plağın Elastisite modülü ve Poisson's oranı	57
Şekil 3.43 : Sabit alanlı eliptik plak malzeme özellikleri	57
Şekil 3.44 : Sabit alanlı eliptik plak malzeme özellikleri	58
Şekil 3.45 : Z=1 m kotuna eliptik plak eleman ataması	58
Şekil 3.46 : Zemin yay sabiti ataması	59
Şekil 3.47 : Plain-Strain eleman, zemin açısı θ =30°	.59
Şekil 3.48 : Zeminin ortotropik özelliği	60
Şekil 3.49 : Zemin kayma parametreleri	.60
Şekil 3.50 : Z=0 m kotu zemin eleman ataması	61
Şekil 3.51 : Eliptik plağa yayılı yük girilmesi	61
Şekil 3.52 : Eliptik plak ankastre kenar mesnetleri ve SapTransform programı ile eşitleme	
	62
Şekil 3.53 : Zemin eleman ankastre kenar mesnetleri ve Sap Fransform programi ile eşitlen	ne
Colvil 2.54 + 7 amin para (-200 holis 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	02
Şekii 3.54 : Zemin açısı $0=50^{\circ}$ nalınde, duzgun yayılı yuk altında, sabit alanlı eliptik plağlı orta nalıtasındaki ağlıma dağari (r.)	$\frac{1}{2}$
Solvil 3 55 , Zomin polsi A-200 holinda düzcün yayılı yült altırda çahit alanlı alintile ala	.03
orta noktasındaki M., momenti değeri (kNm)	.1
Sakil 3 56 · Zemin acısı A=30° halinde düzgün yayılı yük altında sahit alanlı alintik nlağır	.03 n
orta noktasındaki M., momenti değeri (kNm)	л 6Л
orta nortasinuari 19122 monicitu ucgeti (Kivin)	.04

Şekil 3.57 : Zemin açısı θ =30° halinde, düzgün yayılı yük altında, sabit alanlı el	iptik
plağın orta noktasındaki M ₁₂ momenti değeri (kNm)	64
Şekil 3.58 : Genişletilmiş zemine oturan eliptik plak sisteminin üç boyutlu görün	nümü
	67
Şekil 3.59 : Genişletilmiş zemine oturan eliptik plak sistemi	67
Şekil 3.60 : Genişletilmiş zemin sistemi	68
Şekil 3.61 : Daire halkası temelin planı	71
Sekil 3.62 : Daire halkası temelin kesiti	71
Şekil 3.63 : İki parametreli genişletilmiş zemine oturan daire halkası temel	
sisteminin üç boyutlu görüntüsü	72
Şekil 3.64 : Daire halkası temel geometrisinin oluşturulması	73
Şekil 3.65 : Daire halkası temel	73
Şekil 3.66 : Daire halkası temelin aks sistemi	74
Şekil 3.67 : Temel malzemesi Poisson's oranı ve Elastisite modülü	74
Şekil 3.68 : Temel kalınlığı	75
Sekil 3.69 : Z=0 metre kotuna temel eleman ataması	75
Sekil 3.70: 0,80 metrelik temel tabakasının Poisson's oranı ve Elastisite modüli	ü76
Sekil 3.71 : 0,80 metrelik temel tabakası	76
Sekil 3.72 : Z=0 metre kotuna 0,80 metrelik temel elemanı ataması	77
Sekil 3.73 : Z=-1 metre kotundaki genişletilmiş zemin eleman	77
Sekil 3.74 : Meshlere ayırma.	78
Sekil 3.75 : Ortotropik malzeme özelliği	78
Sekil 3.76 : Zemin kayma parametrelerinin girilmesi	79
Sekil 3.77 : Plain-Strain eleman	79
Sekil 3.78 : Z=-1 m kotunda tanımlı genisletilmis zemin eleman	80
Sekil 3.79 : Genisletilmis zemin vav katsavısı ataması	80
Sekil 3.80 : Z=-1 m kotu genisletilmis zemin vav katsavısı ataması	81
Sekil 3.81 : Daire halkası temele düsev tekil yük uygulanması	
Sekil 3.82 : Daire halkası temele düşey tekil yük uygulanması.	
Sekil 3.83 : SAP2000 analiz ekranı	82
Sekil 3.84 : $\alpha = 0$ aksında daire halkası temel maksimum cökme	83
Sekil 3.85 : $\alpha = 0$ aksında daire halkası temel minimum cökme	83
Sekil 3.86 : Daire halkası temelde cökmeler	84
Sekil 3.87 · Genisletilmis zeminin kenarındaki cökme	85
Sekil 3.88 • Genişletilmiş zeminin maksimum cökmesi	85
Sekil 3.89 · Genişletilmiş zeminde cökmeler	05
Sekil 3.00 : $\alpha = 0$ aksında daire halkası temel maksimum M ₁₁ momenti	07 87
Sekil $3.91 \cdot \alpha = 0$ aksında daire halkası temel M ₁ , moment grafiği	88
Sekil 3.97 : $\alpha = 0$ aksında daire halkası temel maksimum M ₂₂ momenti	
Sekil $3.92 \cdot \alpha = 0$ aksında daire halkası temel Maximum W_{22} moment grafiği	00 00
Sakil 3.97 • Örnek 3.1 iki parametreli zemine oturan dairesel plak	01
Solvil 3.05 • Weigh per unit volume (25 kN/m ³)	01
Solvil 3.06 • Diane grid VV plane	91 02
Solvil 3.07 • TSC 2018 function type	02
Solvil 3.08 · Desponse spectrum TSC 2018 function definition	72 02
Solvil 3 00 · L oad case data Desponse spectrum	73
Solvil 3 100 · Desponse spectrum SDEKTD A 1 applici	
Solvil 2 101 · Coso/Combo Name/SDEVTD A 1 duminant do Marco	94 04
SUCKIE 3.101 Case/Combo Name.SPEKIKAI durumunda W_{11} ve W_{22} momentiem.	94

Şekil 3.102 : Genişletilmemiş zemin durumu spektral analiz sonucu M₁₁=9,267 kNm.......95 Şekil 3.103 : Genişletilmemiş zemin durumu spektral analiz sonucu M₂₂=7,996 kNm......95 Sekil 3.104 : Genişletilmemiş zemin durumu spektral analiz sonucu M₁₂=0,032 kNm......96 Şekil 3.106 : Genişletilmiş zemin durumu spektral analiz sonucu M₁₁=16,827 kNm......97 Şekil 3.107 : Genişletilmiş zemin durumu spektral analiz sonucu M₂₂=12,028 kNm.......97 **Sekil 3.110**: Genişletilmemiş zemin durumu için ikinci moda ait periyot değeri......100 Sekil 3.111 : Genişletilmemiş zemin durumu için üçüncü moda ait periyot değeri......100 Sekil 3.112 : Genişletilmiş zemin durumu için birinci moda ait periyot değeri......100 Sekil 3.113 : Genişletilmiş zemin durumu için ikinci moda ait periyot değeri......101 Şekil 3.114 : Genişletilmiş zemin durumu için üçüncü moda ait periyot değeri101 Sekil 3.115 : Örnek 3.3 iki parametreli zemine oturan eliptik plak......102 Şekil 3.116 : Genişletilmemiş zemin durumu spektral analiz sonucu M₁₁=2,414 kNm......103 Sekil 3.117 : Genişletilmemiş zemin durumu spektral analiz sonucu M₂₂=3,648 kNm......103 Şekil 3.118 : Genişletilmemiş zemin durumu spektral analiz sonucu M₁₂=0,016 kNm.....103 Sekil 3.119 : Örnek 3.4 iki parametreli genişletilmiş zemine oturan eliptik plak......104 **Sekil 3.120 :** Genişletilmiş zemin durumu spektral analiz sonucu M₁₁=5,638 kNm......104 Sekil 3.121 : Genişletilmiş zemin durumu spektral analiz sonucu M₂₂=7,451 kNm......105 Şekil 3.122 : Genişletilmiş zemin durumu spektral analiz sonucu M₁₂=1,186 kNm......105 Sekil 3.124 : Genişletilmemiş zemin durumu için ikinci moda ait periyot değeri......107 Sekil 3.125 : Genişletilmemiş zemin durumu için üçüncü moda ait periyot değeri......107 Sekil 3.128 : Genişletilmiş zemin durumu için üçüncü moda ait periyot değeri......108

SEMBOL LİSTESİ

W	: Çökme, düşey yer değiştirme
\mathbf{w}^*	: Boyutsuz çökme, boyutsuz düşey yer değiştirme
k	: Elastik yay katsayısı
р	: Zemin direnci
T	: Membran kuvveti
∇	: Laplace operatörü
G_x, G_y, G_p	: Zemin kayma parametreleri
$\mathcal{O}(z)$: Deplasmanların derinlik boyunca değişimini
2t	: Zemin kayma parametresi
2	: Zemin parametresi
C	: Winkler parametresi
C_T	: Zemin modülü
D	: Plak eğilme rijitliği
Ep	: Elastisite modülü
h	: Yükseklik
υ	: Poisson's orani
u	: Yatay yer değiştirme
τ	: Kayma şekil değiştirme
k [*] .	: Boyutsuz Winkler zemin parametresi
$\mathbf{G}^{*}_{\mathbf{f}}$: Boyutsuz zemin kayma parametresi
a, b	: Plak boyutları
q	: Yayılı yük
r	: Dönme
M	: Eğilme momenti
\mathbf{M}_{\star}^{*}	: Boyutsuz eğilme momenti
\mathbf{T}^{*}	: Boyutsuz burulma momenti
θ	: Zemin açısı
p , q	: Merkezi koordinatlar
Р	: Düşey tekil yük
\mathbf{R}_1	: İç yarıçap
\mathbf{R}_2	: Dış yarıçap
α	: Boşluklu plağın aksı

KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK ZEMİNE OTURAN DAİRESEL VE ELİPTİK PLAKLARIN TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKRAL ANALİZİ

ÖZET

Yapı sistemlerinin analiz ve tasarımında temel zemini önemli bir parametredir. Zemin özelliklerinin üst yapı analizinde ve tasarımında göz önüne alınması çeşitli kabullere dayanmakta, genellikle sert ve orta sert zeminlerde zemin güvenlik gerilmesi belirli bir düzeyin üzerindeyse, üst yapının mesnetleri ankastre olarak alınmakta, ayrık olarak yapılan temel hesaplarında genellikle güvenlik gerilmesinin aşılıp aşılmadığının kontrolü ile yetinilmektedir. Zemin taşıma gücünün daha zayıf olması halinde ise zeminin özellikleri hesaba dolaylı olarak katılmaktadır. Üst yapıdan temele aktarılan en elverişsiz kesit zorları tekil, sürekli ya da radye temel olarak tasarlanan temel sistemine aktarılarak genellikle Winkler hipotezi kabulü ile elastik zemine oturan temel hesabı yapılabilmektedir. Winkler hipotezinde zemin gerilmelerinin o noktadaki çökmelerle orantılı olduğu kabul edilmekte, zemindeki komşu bölgelerin etkileşimi terk edilmektedir. Zemin özelliklerinin dikkate alınmasının gerekli olduğu radye ya da kazıklı temel sistemine sahip yüksek yapılarda ise zemin özellikleri üst yapı ile birlikte modellenerek hesaplara katılabilmektedir. Söz konusu hesaplarda Winkler, Pasternak, Vlasov, Kerr gibi nispeten basit zemin modellerinin yanında özellikle kazıklı temel sistemlerinde temel altı zemini de üst yapı ile birlikte modellenerek, yapı-zemin etkileşimi daha gerçekçi sekilde göz önüne alınabilmektedir.

Bu çalışmada zeminin komşu bölgelerindeki etkileşimi de dikkate alan Pasternak tipi zemine oturan plakların statik yükler altındaki davranışı ile serbest titreşim özellikleri incelenmiş; tasarım spektrumuna göre spektral analizi yapılmıştır.

Pasternak tipi zemini dikkate alan çalışmalarda araştırmacılar genellikle kendi geliştirdikleri sonlu eleman yazılımlarıyla analizleri gerçekleştirmektedirler.

Bu tezin amacı, akademik ortamda yapı mühendisliği problemlerinin çözümünde güvenilir bir şekilde kullanılan SAP2000 programı yardımıyla Pasternak tipi zemine oturan problemlerin çözülmesidir. Pasternak zemin elemanı, gerilme-şekil değiştirme bağıntılarının ve denge denklemlerinin,sadece kayma etkilerinin olduğu düzlem şekil değiştirme elemanının benzerliğinden faydalanılarak, düzlem şekil değiştirme elemanı olarak modellenmiştir. Her iki fiziksel probleme ait denklemler, bir katsayı farkı ile benzer olup, düzlem şekil değiştirme zemin elemanının kayma modülü olarak zeminin kayma modülü girilmiştir. SAP2000 programı malzeme olarak ortotrop malzemeleri de dikkate alabildiğinden, çeşitlidoğrultularda ortotrop zemine oturan plakların çözümü de kolaylıkla yapılabilmektedir. Daha önceden yapılan benzer çalışmalarda [4,8] Pasternak tipi zemin eleman, hazırlanan genel amaçlı yazılıma eklenmiş ya da zemin için yine elastik özelliklerin uygun şekilde kullanılması ile ortotrop plak elemana benzetilerek kullanılmıştır. Bu çalışmada ise Pasternak zemin elemana ait rijitlik matrisi sadece kayma etkilerinin bulunduğu düzlem şekil değiştirme elemanına ait matrisle katsayı farkı benzer olduğundan, hesaplarda bir yaklaşıklık bulunmamaktadır. Bu şekilde bir benzerlikle elde edilen Pasternak zemin elemanı SAP2000 programının her türlü esnekliğe sahip olmasından, Winkler zemine oturan yapı sistemlerinin hesabı, Pasternak zeminine oturan yapı sistemlerinin hesabını da içerecek şekilde genişletilmiş olmaktadır.

Ayrıca bir API (Application Programming Interface) yazılımı kullanılmak suretiyle her adımdaki zeminin elastik özellikleri yenilenerek ardışık yaklaşım gerektiren Vlasov zemine oturan yapı sistemlerinin hesabı da SAP2000 programından faydalanılarak yapılabilir [8]. Böylelikle aynı bölgede inşa edilen yapı sistemlerinin statik ya da dinamik yükler altındaki etkileşimi de kolaylıkla göz önüne alınabilir.

Bu çalışmada özel olarak ortotrop Pasternak tipi zemine oturan dairesel ve eliptik plakların statik davranışı ile serbest titreşim özellikleri incelenmiştir. Öncelikle literatürde daha önceden çözülmüş örnekler ile modellemenin doğruluğu gösterilmiş, daha sonra da benzer çalışmalarda göz önüne alınmayan, temel zemininin temel dışında da devam etmesi durumunda plak titreşim karakteristiklerindeki değişimler irdelenmiştir.

Bu çalışma dört bölümden oluşmaktadır. Birinci bölümde plak-zemin ilişkisi, plak-zemin etkileşim modelleri ile çalışmanın amaç ve kapsamı açıklanmıştır. Literatürde yer alan tek parametreli ve iki parametreli zemin modellerine değinilmiştir.

İkinci bölümde iki parametreli zemin elemana ait formülasyon verilmiştir. İki parametreli zemin modelinin SAP2000 programında nasıl tanımlandığı ve modellendiği anlatılmış; plak ile iki parametreli zemin sisteminin SAP2000 programında birlikte teşkili verilmiştir.

Üçüncü bölümde yedi adet sayısal örnek yapılmıştır. İlk iki örnekte iki parametreli zeminin SAP2000 programında modellenebilir olduğunu gösterebilmek amacıyla daha önce yapılmış çalışmalarda kullanılan zemin parametreleri aynen kullanılmış, elde edilen çökme, eğilme ve burulma momenti sonuçları karşılaştırılmıştır. İki parametreli zemine oturan dairesel plak için sonuçlar doğrulandıktan sonra, zemin genişletilmiş ve zeminin genişletilmemiş durumunda ortaya çıkan sonuçlar ile zeminin genişletilmiş olduğu halde sonuçlar karşılaştırılmış ve yorumlar yapılmıştır [9].

Üçüncü ve dördüncü örnekte, ilk örnekle benzer olarak, iki parametreli zemine oturan eliptik geometriye sahip plak irdelenmiş ve sonuçlar doğrulanmıştır. Sonuçlar doğrulandıktan sonra, zemin genişletilmiş ve zeminin genişletilmemiş durumunda ortaya çıkan sonuçlar ile zeminin genişletilmiş olduğu halde sonuçlar karşılaştırılmış ve yorumlar yapılmıştır [9]. Beşinci örnekte ise genişletilmiş iki parametreli genişletilmiş zemine oturan dairesel kesitli temel halkası örneği çözülmüş ve sonuçlar doğrulanarak yorumlar yapılmıştır [5].

Altıncı örnekte, ilk iki örneğe yani iki parametreli zemine oturan dairesel plak için genişletilmemiş zemin ve genişletilmiş zemin durumları için spektral analiz uygulanmıştır. Zeminin genişletilmemiş hali ve zeminin genişletilmiş halindeki plakta oluşan moment değerleri karşılaştırılmış ve yorumlar yapılmıştır.

Yedinci örnekte, üçüncü ve dördüncü örneğe yani iki parametreli zemine oturan eliptik plak için genişletilmemiş zemin ve genişletilmiş zemin durumları için spektral analiz uygulanmıştır. Zeminin genişletilmemiş hali ve zeminin genişletilmiş halindeki plakta oluşan moment değerleri karşılaştırılmış ve yorumlar yapılmıştır.

Son olarak dördüncü bölümde ise, sonuçlar, değerlendirmeler, yorumlar ve öneriler verilmiştir.

ANALYSIS OF CIRCULAR AND ELLIPTIC PLATES RESTING ON ARBITRARY ORTHOTROPIC PASTERNAC TYPE FOUNDATION AND SPECTRAL ANALYSIS

SUMMARY

In modern design and analysis of structures, the superstructure-foundation-soil interaction has to be taken into account in a sophisticated way, which is sufficiently accurate but simple enough for practical purposes. The concept of a plate resting on an elastic foundation has been an important tool for the modeling and analysis of structural, highway, geotechnical and railroad engineering problems. Extensive research in this area has been reported in the literature.

In order to model soil behavior, several approaches have been developed in the past. The oldest, most famous and most frequently used soil model is the one devised by Winkler (1867), in which the beam-supporting soil is modelled as a series of closely spaced, mutually independent, linear elastic vertical springs. The Winkler model has been extensively used to solve many soil-foundation interaction problems and has given satisfactory results for many practical problems. In that method, it is assumed that deflection at each point is proportional to the pressure applied at the point and completely independent of the pressures or deflections occuring at the neighbouring points along foundation.

In the Winkler model, the properties of soil are described only by the parameterk, which represents the stiffness of the vertical spring. One of the major disadvantages of this model is that a plate undergoes rigid body displacements without any bending moments and shear forces in it when subjected to uniform loads. Moreover, the use of the Winkler model involves difficulties in determining the value of k. Discontinuous nature of Winkler's model gives rise to the development of various forms of two-parameter elastic foundation models.

Some of the major two-parameter elastic foundation models are Filonenko-Borodich model (1940), Hetenyi model (1946, 1950), Pasternak model (1954), Vlasov model (1966). Filonenko-Borodich, Hetenyi, Pasternak and Vlasov have attempted to make the classical Winkler model more realistic by postulating a two-parameter model. Their model takes into account the effect of shear interaction among adjacent points in the foundation. In these models, the first parameter represents the stiffness of the vertical spring, as in the Winkler model, whereas the second parameter is introduced to account for the coupling effect of the linear elastic springs. It is worth mentioning that the interaction enabled by this second parameter also allows the consideration of influence of the soil on either side of plate. In this model, the first and second parameters have to be determined experimentally. Vlasov and Leont'ev (1966) have

introduced another arbitrary parameter, γ , dependent on soil material and thickness of the soil layer. However, they did not report the method of determining this parameter. In the work of Vallabhan and Daloglu (1999), it has been shown how the soil parameter , γ , can be estimated using an iterative computational procedure for plates. These three-parameter models constitute a generalization of two-parameter models, the third parameter being used to make them more realistic and effective. When the γ parmeter is determined, the first and second parameters of soil can be easily calculated. One of the basic features of the three-parameter models is the flexibility and convenience that they offer in the determination of the level of continuity of the vertical displacements at the boundaries between the loaded and unloaded surfaces of the soil.

In this study, static and dynamic analysis of circular and elliptic plates resting on two parameter elastic foundation are examined. In dynamic analyses, free vibration characteristics are obtained first for the comparison of the results from literature and then spectral analyses are performed to observe the behaviors against inertia forces. SAP2000 program is used to perform analysis. A subordinate macro is coded with VBA language is used to add equal displacements (constraints) to the SAP2000's \$2k file after the SDB file is created. The study is composed of four sections.

In the first section, informations about one and two parameter foundation models are given. Content and aim of this study are explained at the end of the first section.

In the second section, the characteristics of two parameter foundation are explained. Then, the formulations of two parameter foundation are given and how the two parameter foundation is modelled at SAP2000 program is shown. The first parameter of soil, soil elastic bedding coefficient or so called Winkler parameter C, is represented by springs at SAP2000 model. The springs are created by area springs feature at SAP2000 program and soil elastic bedding coefficient is entered as the spring coefficient. The second parameter of soil, is represented by plane strain element with shear deformations only that have orthotropic material features at SAP2000 program and it is called as soil element. The elastic modules of plane strain elements given as equal to zero and G_{13} and G_{23} shear parameters are given as equal to G_x and G_{v} soil modules respectively. G_{12} shear module of plane strain element given as zero. The soil finite element nodes are restrainted to make only vertical displacements at SAP2000 program. The plate finite element and soil finite element are modelled very close to each other and then vertical displacements of their nodes vertical displacements by constraints. A subordinate macro has been developed in order to equalize vertical displacements by adding the constraints block to the existing .\$2k file automatically. By using the orthotropic material and material angle properties of SAP2000 program, it is also shown how to analyze the plates on orthotropic two parameter elastic foundation.

In the third section, seven numerical examples are given. In the first two examples illustrate two parameter foundation that is correctly modelled on SAP2000. A circular foundation which is solved previous studies is solved in the first example. The results are shown graphically to compare with previous studies. In the first two examples, in order to show that the two-parameter foundation is modelable in SAP2000 programme, soil parameters used in previous studies were used exactly the result of collapse, bending and torsional moments were

compared. After confirming the results for the two plate circular plate fitting, with the results of the ground expanded and the ground not expanded, although the ground was expanded, the results were compared and comments were made [9].

An elliptic shaped foundation is solved in the third and fourth examples and then results are compared graphically with previous studies. In the third and fourth example, similar to the first, the elliptical geometry of the two parameter foundation was examined and the results were confirmed. Once the results are verified, ground expanded and unexpanded condition of the ground with the results, although the ground was expanded, the results were compared and comments were made [9].

In the fifth example a plate which is solved in previous studies is considered. In the fifth example, an example of an annular foundation ring with an extended two parameter, extented ground and circular cross section was solved and the results were compared and comments were made. This plate is subjected to concentrated loading cases. The problem is solved with SAP2000 program for one meter constant value of the thickness of the compressible soil layer. The results are compared with previous studies [5].

In the fifth example, a plate which are resting on two parameter elastic foundation are considered and then static analysis of this structure system is performed with SAP2000 programme. Then, soil elastic bedding coefficient C and soil shear parameter $2C_T$ are obtained depending on soil surface parameter. Soil elastic bedding coefficient C and soil shear parameter $2C_T$ which are obtained depending on different distance between buildings and compressible soil depth are considered constant during dynamic analysis.

Finally, in the sixth and seventh examples, spectral analysis was applied to the first two samples, ie the unexpanded soil for the circular and elliptic plates sitting on the two parameter foundation and the expanded soil conditions.

In the fourth chapter, results, evaluations, comments and suggestions are given. In the fourth section, the general results and conclusions are presented. In this study modelling of two parameter foundation at SAP2000 program are shown. Thus more complex plate system can be examined under static and dynamic loads and their interactions can be observed. Impact of unexpanded foundation and expanded foundation are obviously seen in the examples. Their interactions are shown graphically with different foundation angles in the example graphics. Linear behavior of structure systems resting on two parameter elastic foundation are observed under earthquake load in this study.

1. GİRİŞ

1.1 Plak-Zemin İlişkisi

Plak sistemlerinin, oturduğu zemin ile ilişkileri, araştırmacılar tarafından yaygın olarak konu edilmektedir. Tüm yapı sistemleri, özelde bu çalışma için plaklar, üzerlerine gelen yükleri, emniyetli bir biçimde zemin ortamına iletebilmelidir. Bu nedenle, plak ile plağın üzerine oturduğu zeminin bir bütün olarak ele alınıp incelenmesi kaçınılmaz olmaktadır. Bu incelemenin doğruluğu da, plak ve plağın oturduğu zeminin etkileşiminin, gerçeğe en yakın şekilde, hassas olarak modellenebilmesine bağlıdır.

Plak taşıyıcı sistemler, birçok mühendislik uygulamasında kullanım alanı bulan ve sık karşılaşılan yapısal elemanlardır. Binalarda döşeme ve temellerde, gemi ve deniz taşıtlarında sıvı basıncına maruz kalan gövde parçalarında, zeminle temas halindeki silo ve tank yapılarında kullanılan plak elemanlar, farklı yükleme ve etkileşim türlerine maruz kalırlar [21]. Uygulamada sıklıkla karşılaşılan kare, dikdörtgen, daire ve benzeri basit geometriye sahip plakların incelenmesi için birçok çalışma yapılmış, bazı özel durumlar için de kesin çözümler sunulmuştur[20]. Elips geometrisindeki plakların mekanik davranışı da birçok araştırmacı tarafından incelenmiştir. Prabhakara ve Chia ince eliptik plakların büyük çökme problemini pertürbasyon yöntemini kullanarak analitik olarak çözmüşlerdir [18]. Kesitte kayma şekil değiştirmelerini dikkate alan Liu ve arkadaşları tabakalı eliptik plakların büyük çökmesi için analitik çözüm üretmişlerdir [11]. Vasilenko ve Urusova kollokasyon yöntemini kullanarak tabakalı malzemeden üretilmiş eliptik plakların statik davranışını incelerişlerdir [23]. Altekin ve Altay Ritz metodunu kullanarak ince süper eliptik plakları incelerken sınır koşullarını Lagrange çarpanları ile sağlatmışlardır [3]. Altekin, ortotrop süper eliptik

plaklarda noktasal mesnetlerin konumunu optimize ederek, plakta en büyük çökmeyi minimize eden bir çalışma yapmıştır [2].

1.2 Plak-Zemin Etkileşim Modelleri

Plak sistemi ve plak sisteminin üzerine oturduğu zemin ortamı arasındaki ilişkiyi belirlemek, zemin ortamının komplike yapısından ötürü meşakkatlidir. Zemin ortamının izotrop ve homojen olmaması, bu karmaşıklığın önemli bir nedenidir. Buna ek olarak, zeminin malzeme ve mekanik özellikleri, zeminin suya doygunluğuna, nem durumuna ve üzerindeki basıncın değişimine bağlı olarak sürekli değişkenlik göstermektedir. Bundan dolayı, bu parametrelerin tam manasıyla belirlenmesi olanaklı değildir.

Tüm etkenler göz önüne alındığında, zemin ortamı ile alakalı bazı idealleştirmelerin yapılması gerektiği sonucu ortaya çıkmaktadır. Zemin ortamının mekanik ve fiziksel özelliklerini farklı araştırmacılar farklı şekillerde idealleştirmişlerdir.

Plak zemin etkileşimi problemi, gerek sık karşılaşılmasından, gerekse zeminle etkileşim halinde bulunmanın, yapısal davranışını önemli derecede etkilemesinden ötürü, birçok araştırmacı tarafından çeşitli açılardan incelenmiştir [17]. Mühendislik yaklaşımı için geliştirilmiş mekanik modeller yapı-zemin etkileşim problemlerinde yaygın şekilde kullanılmaktadır. Winkler tarafından sunulan ve bugün hala sıklıkla kullanılan yay modeli, Pasternak tarafından yayların birbirleriyle bir kayma etkisiyle etkileştiklerini varsayan modeli ile ileri taşınmıştır [7]. Rashed, Pasternak zeminine oturan Reissner plakların statik analizi için bir sınır eleman formülasyonu geliştirmiş ve daire geometrili plaklar için sonuçlar üretmiştir [19]. Yu ve Syracuse, Pasternak zeminine oturan dairesel plakların kapalı çözümünü ince plak teorisine göre vermiştir [25].

Al-Hosani ve arkadaşları Winkler zemini ile etkileşen Reissner plağı için sınır eleman yöntemini kullanmış, dikdörtgen ve dairesel plaklar için çözüm üretmişlerdir [1].

Wang ve arkadaşları, iki parametreli zemine oturan Reissner plaklarının temel çözümünü ve sınır integral değerlerini vermişlerdir [24].

Literatürde, elastik zeminle etkileşen dikdörtgen ve daire geometrili plaklar için birçok çalışma bulunmasına rağmen, eliptik geometriye sahip plaklar adına çok az çalışma gerçekleştirilmiştir. Datta, Winkler zemini ile etkileşen ince eliptik plakların büyük çökme problemini Galerkin yöntemini kullanarak incelemiştir [6].

Zhong ve arkadaşları, üçgen diferansiyel kuadratür yöntemini Pasternak zeminine oturan nispeten kalın plakların eğilme problemine uygulamış ve eliptik plaklar için sonuçlar üretmişlerdir [26].

Söz konusu başlıkta yapılan çalışmaların kısıtlı olması araştırmacıları bu doğrultuda çalışmaya yöneltmiştir. Bu çalışmada keyfi doğrultuda ortotrop Pasternak zemin ile etkileşen eliptik Mindlin plaklarının statik yükler altındaki davranışı sonlu elemanlar yöntemi kullanılarak incelenmiştir. Düzgün yayılı yük altında, ankastre sınır koşullarına sahip eliptik plakların eğilme davranışında, zemin parametrelerinin, eliptikliğin derecesinin ve zemin ortotropisinin etkisi araştırılmış, parametrik sonuçlar sunulmuştur. Elde edilen sonuçlar, Kutlu, A. ve arkadaşlarının parametrik örnekleri esas alınarak doğrulanmış ile karşılaştırmalı olarak sunulmuştur [9].

Zemin modelleri, bir parametreli zemin modelleri ve iki parametreli zemin modelleri olarak iki başlık altında incelenebilirler.

1.2.1 Bir parametreli zemin modelleri

1.2.1.1 Winkler tipi zemin modeli

Zeminin elastik davranışıyla alakalı ilk önemli çalışma Winkler tarafından ortaya konmuştur. Winkler zemin modelinde (1867), zeminin birbirine sonsuz yakın, lineer ve elastik yaylardan meydana geldiği kabul edilmiştir. Buna göre w(x, y)düşey doğrultuda çökme olarak alınırsa, zemin direnci p(x, y)=k w(x, y) olarak alınır. Burada k, elastik yay katsayısı olup, çökme bir birim olduğunda, birim genişlikteki birim alana gelen tepki kuvvetini ifade eder. Elastik yay katsayısı k, uygulamada zemin parametresi ya da yatak katsayısı olarak da isimlendirilir.

Winkler zemin modeli teorisine göre, zemine etkiyen kuvvetler yalnız etkidiği noktada çökme oluştururlar. Dolayısıyla her bir yay, kendisine komşu diğer yayların yükleme durumundan etkilenmez. Bu durum, zemin ortamının bütünüyle süreksiz bir ortam halinde dikkate alındığını gösterir. Oysaki, elastik tabakanın yüzeyinde, herhangi bir noktada meydana gelen yer değiştirme, yalnızca o noktaya etki eden kuvvetten değil, diğer noktalardaki kuvvetlerden de etkilenir. Bahsedilen Winkler tipi zemin modeli, tekil yük durumunda her ne kadar tatminkar sonuçlar verse de, düzgün yayılı yük durumunda gerçekçi olmayan sonuçlar vermektedir. Winkler tipi zemin modeli ile alakalı bir diğer konu da, yatak katsayısı olarak tanımlanan parametrenin nasıl hesaplanacağı hususudur. Bu konuyla alakalı çeşitli sonuçlar veren farklı bağıntılar mevcuttur.

Şekil 1.1'de Winkler tipi zemin modeline göre (a) ile düzgün yayılı olmayan yük halinde zeminin yer değiştirmesi, (b) ile tekil yük bulunması halinde zeminin yerdeğiştirmesi, (c) ile rijit tabaka ile aktarılan yük altında zeminin yer değiştirmesi ve (d) ile düzgün yayılı yük altında zeminin yer değiştirme hali gösterilmiştir.

Şekil 1.1 : Winkler tipi zemin modeli.

Tüm olumsuz taraflarına karşılık, bir çok zemin problemi için yeterli yaklaşım sağlayan bu zemin modeli, kullanım kolaylığı ile sadeliği sebebiyle günümüzde yaygın olarak kullanılan bir zemin modeli olmuştur.

1.2.2 İki parametreli zemin modelleri

Winkler tipi zemin modelinin, zeminin sürekliliğini karakterize edememesi sebebiyle bir çok araştırmacı zeminin sürekliliğini temsil etme amacı güden zemin modelleri geliştirmişlerdir. Bunlardan Filonenko-Borodich tipi zemin modeli, Hetenyi tipi zemin modeli, Pasternak tipi zemin modeli ve Vlasov tipi zemin modeline değinilmiştir.

1.2.2.1 Filonenko-Borodich tipi zemin modeli

Filonenko-Borodich tipi zemin modelinde (1940), zemin ortamının sürekliliği, yüzeyde bulunan elastik ince zar tabakasıyla temsil edilmiştir. Sisteme bir yük etkimesi halinde, yüzeyde gerilmeler oluşmakta ve yaylar birbirinden etkilenmektedir. Bu yay-membran sisteminde zeminin tepki fonksiyonu,

$$p(x, y) = kw(x, y) - T\nabla^2 w(x, y)$$
 (1.1)

ifadesiyle verilmektedir. Burada, T membran kuvveti, ∇^2 Laplace operatörünü göstermektedir. Laplace operatörü ise;

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
(1.2)

şeklindedir. Bir boyutlu problemler için (1.1) ifadesi;

$$p(x) = kw(x) - T\frac{d^2w(x)}{dx^2}$$
(1.3)

şeklini almaktadır.

Şekil 1.2'de Filonenko-Borodich tipi zemin modeline göre farklı yükleme halleri için yerdeğiştirmeler gösterilmiştir. Şekil 1.2'de (a) ile yük olmayan durum, (b) ile tekil yük etkisi altında zeminin yerdeğiştirmesi, (c) ile rijit tabaka ile iletilen yük etkisi altında zeminin yerdeğiştirmesi, (d) ile yayılı yük etkisi altında zeminin yerdeğiştirmesi, yük etkisi altında zeminin yerdeğiştirmesi, (d) ile yayılı yük etkisi altında zeminin yerdeğiştirmesi, (d) ile yayılı yük etkisi altında zeminin yerdeğiştirmesi, (d) ile yayılı yük etkisi altında zeminin yerdeğiştirmesi, (d) ile yayılı yük etkisi altında zeminin yerdeğiştirmesi, yerdeğiştirmesi, (d) ile yayılı yük etkisi altında zeminin yerdeğiştirmesi gösterilmiştir.

Şekil 1.2 : Filonenko-Borodich tipi zemin modeli.

1.2.2.2 Hetenyi tipi zemin modeli

Hetenyi tipi zemin modelinde (1946, 1950), iki boyutlu problemlerde Winkler yayları üzerine kiriş eklenerek zemin ortamının sürekliliği sağlanmıştır. Üç boyutlu problemlerde ise Winkler yayları üzerine elastik plaka ilave edilerek zeminin sürekliliği temin edilmiştir. Hetenyi tipi zemin modeline göre zeminin tepki fonksiyonu;

$$p(x, y) = kw(x, y) - D \nabla^2 w(x, y)$$
 (1.4)

ifadesi ile verilmektedir. Burada;

$$D = \left(\frac{E_p h^3}{12 \left(1 - \nu_p^2\right)}\right) \tag{1.5}$$

olup, *D* plak eğilme rijitliğini göstermektedir.*k* ise zemin yatak katsayısını temsil etmektedir. Bir boyutlu sistemlerde (1.4) ifadesi;

$$p(x) = kw(x) - D\frac{d^2w(x)}{dx^2}$$
(1.6)

halini alır.

1.2.2.3 Pasternak tipi zemin modeli

Pasternak tipi zemin modelinde (1954), Winkler yayları üzerinde, sıkışmayan bir kesme tabakası tanımlanarak, zemin ortamının sürekliliği sağlanmıştır. Bahse konu kesme tabakası, yalnızca düşey yönde yerdeğiştirme yapabilen elemanlardan oluşmaktadır (Şekil 1.3).

Bu kayma tabakasının x, y düzleminde izotropik olduğu kabulüyle, zeminin kayma parametreleri arasında $G_x = G_y = G_p$ ilişkisi olduğu söylenebilir. G_p zeminin kayma parametresi olmak üzere, Pasternak tipi zemin modeli için zeminin tepki fonksiyonu;

$$p(x, y) = kw(x, y) - G_p \nabla^2 w(x, y)$$
(1.7)

olarak ifade edilir.

Şekil 1.3 : Pasternak tipi zemin modeli.

Pasternak tipi zemin modeli ile Filonenko-Borodich tipi zemin modeli mukayese edildiğinde, aralarındaki tek farkın T ve G_p parametresi farkı olduğu görülmektedir. Bu sebeple bu iki zemin modeli birbirine yakın çökme değerleri vermektedir.

1.2.2.4 Vlasov tipi zemin modeli

Vlasov ve Leont'ev (1966) zemin tabakasını Winkler yaylarıyla tanımlamak yerine, x-z düzleminde zemin kolonları olarak tanımlamışlardır (Şekil 1.4). Bu zemin kolonu içinde yerdeğiştirmeler; u(x,z) x-z düzlemindeki yatay yer değiştirmeyi, w(x,z) x-z düzlemindeki düşey yer değiştirmeyi ve $\mathcal{O}(z)$ fonksiyonu w(x) deplasmanların derinlik boyunca değişimini veren yaklaşım fonksiyonu olmak üzere;

$$u(x, z) = 0$$
, $w(x, z) = w(x)\mathcal{O}(z)$ (1.8)

ifadesi ile tanımlanmıştır.

Şekil 1.4 : Vlasov tipi zemin modeli.

Vlasov tipi zemin modeline göre zeminin tepki fonksiyonu, 2t zemin kayma parametresini göstermek üzere;

$$p(x, y) = kw(x, y) - 2t\nabla^2 w(x, y)$$
(1.9)

olarak verilmektedir.

Vlasov modeli üzerinde fazla sayıda çalışma yapılmıştır. Vlasov ve Leont'ev (1966) zemindeki düşey deformasyon değişimini gösteren ve γ olarak tanımladıkları bir başka parametreden bahsetmişlerdir. γ parametresinin belirlenmesiyle yatak katsayısı k ve kayma parametresi 2t değerlerinin deneysel zorluk olmaksızın hesaplanmasının mümkün olduğunu göstermişlerdir, fakat γ parametresinin hesabıyla alakalı herhangi bir bilgi vermemişlerdir.

Vallabhan ve Das (1988), yayılı yükle yüklenmiş elastik zemine oturan kirişler için zeminin yerdeğiştirme fonksiyonunu karakterize eden γ parametresinin hesabı için bir yöntem sunmuşlardır. Elastik zemini, birbiriyle bağlantılı olan k, 2t, γ parametreleriyle tanımladıkları için kendi modellerini değiştirmiş, Vlasov tipi zemin modeli veya üç parametli zemin modeli olarak isimlendirmişlerdir.

1.3 Çalışmanın Kapsam ve Amacı

Bu çalışmanın amacı, iki parametreli keyfi doğrultuda ortotrop zeminler üzerine oturan dairesel ve eliptik plakların statik etkiler altında incelenmesidir. Yapılan analizlerde SAP2000 sonlu elemanlar programı kullanılmıştır. Eliptik plak geometrisinin oluşturulmasında Excel yazılımından faydalanılmıştır. SapTransform programıyla düşey yerdeğiştirmeler eşitlenmiş, üst yapı ile zeminin ortak hareketi sağlanmıştır. Plak ve zemine ait sonlu elemanlar iki ayrı tabaka halinde verildiğinden, plak ve zemin elemanların ortak bölgelerinde düğüm noktalarının yerdeğiştirmelerinin eşitlenmesi gerekmektedir. SAP2000 ortamında her bir düğüm noktasının seçilerek yapılması gereken bu işlem çok uzun ve meşakkatli olduğundan, SAP2000 programının .\$2k uzantılı dosyasından okuma yaparak, ilgili düğüm noktasındaki deplasmanları '*Constraint*' seçeneği ile eşitleyen yardımcı bir yazılımdan faydalanılmıştır [4].

Bu çalışmada ortotrop pasternak tipi zemin ile etkileşen dairesel, boşluklu dairesel ve eliptik geometriye sahip plakların eğilme davranışı incelenmiştir. SAP2000 programında sonlu elemanlar modellenirken, üçgen ve dörtgen elemanlar kullanılmıştır. Sayısal çözüm yöntemi literatürle doğrulanmış ve parametrik çözümler sunularak eliptikliğin ve zemin parametrelerinin plak eğilme davranışına olan etkileri araştırılmıştır. Plak taşıyıcı sistemler birçok mühendislik uygulamasında kullanım alanı bulan ve sık karşılaşılan yapısal elemanlardır. Binalarda döşeme ve temellerde, gemi ve deniz taşıtlarında, sıvı basıncına maruz kalan gövde parçalarında, zeminle temas halindeki silo ve tank türü yapılarda kullanılan plak elemanlar farklı yükleme ve etkileşim türlerine maruz kalırlar.

Uygulamada sıklıkla karşılaşılan kare, dikdörtgen, daire ve benzeri basit geometriye sahip plakların incelenmesi için birçok çalışma yapılmış, bazı özel durumlar için de kesin çözümler sunulmuştur. Elips geometrisindeki plakların mekanik davranışı da birçok araştırmacı tarafından incelenmiştir.

Bu çalışmada özel olarak ortotrop Pasternak tipi zemine oturan dairesel ve eliptik plakların statik davranışı ile serbest titreşim özellikleri incelenmiştir. Öncelikle literatürde daha önceden çözümlenmiş örnekler ile modellemenin doğruluğu gösterilmiş, daha sonra da benzer çalışmalarda göz önüne alınmayan temel zemininin temel dışında da devam etmesi durumunda plak titreşim karakteristiklerindeki değişimler irdelenmiştir. Sonuçlar tablolar halinde karşılaştırmalı olarak sunulmuştur. Ayrıca dairesel plak için, Türkiye Bina Deprem Yönetmeliği 2018'de öngörülen tasarım spektrumuna göre spektral analiz yapılmıştır.

Dairesel plak, daire halkası temel ve eliptik plak SAP2000 programında modellenirken sonlu elemanlara ayrılarak modellenmiştir.

Program bu parçayı alt parçalara ayırır bunlar sonlu eleman olarak adlandırılır. Alt parçalara ayırma işlemine mesh veya ağlara bölme denmektedir. Daha iyi ağ (daha çok eleman) fiziksel modelin matematik olarak daha iyi ifade edilmesi demektir. Kullanılacak sonlu eleman, problemin tipine göre değişmektedir.

Tabiatta karşılaşılan her olay fizik kanunları yardımıyla ve matematik diliyle anlaşılmaya çalışılır. Her olay kendine ait büyüklükler yardımıyla cebirsel, diferansiyel veya integral denklemler yardımıyla büyük oranda ifade edilebilirler. Karmaşık bir problem, bilinen veya kavranması daha kolay alt problemlere ayrılarak daha anlaşılır bir hale getirilebilir. Oluşturulan alt problemler çözülüp birleştirilerek esas problemin çözümü yapılabilir. Örneğin; gerilme problemi, basit kiriş, plak, silindir, küre gibi geometrisi bilinen şekillerle sınırlandırılabilir. Bu elde edilen sonuçlar çoğu kez problemin yaklaşık çözümüdür ve bazen doğrudan bazen de bir katsayı ile düzeltilerek kullanılır. Mühendislik uygulamalarında problemlerin karmaşıklığı sebebiyle genellikle problemlerin tam çözümü yerine, kabul edilebilir seviyede bir yaklaşık çözüm tercih edilir.
Bu çalışmada da örnekler modellenirken Sonlu Elemanlar Yönteminden faydalanılmıştır. Sonlu Elemanlar Yöntemi, çeşitli mühendislik problemlerine kabul edilebilir bir yaklaşımla çözüm arayan bir sayısal çözüm yöntemidir. Sonlu Elemanlar Analizi, fiziksel bir sistemin matematik olarak ifade edilmesidir. Bu sistem alt parçalara ayrılabilen model olup, malzeme özelliklerine ve uygulanabilir sınır şartlarına sahiptir.

Sonlu elemanlar metodu; karmaşık olan problemlerin daha basit alt problemlere ayrılarak her birinin kendi içinde çözülmesiyle tam çözümün bulunduğu bir çözüm şeklidir. Metodun üç temel niteliği vardır:

1) Geometrik olarak karmaşık olan çözüm bölgesi sonlu elemanlar olarak adlandırılan geometrik olarak basit alt bölgelere ayrılır.

2) Her elemandaki, sürekli fonksiyonların, cebirsel polinomların lineer kombinasyonu olarak tanımlanabileceği kabul edilir.

3) Aranan değerlerin her eleman içinde sürekli olan tanım denklemlerinin belirli noktalardaki (düğüm noktaları) değerleri elde edilmesinin problemin çözümünde yeterli olmasıdır.

Sonlu Eleman Yönteminin diğer nümerik yöntemlere göre avantajları;

a) Kullanılan sonlu elemanların boyutlarının ve şekillerinin değişkenliği nedeniyle ele alınan bir cismin geometrisi tam olarak temsil edilebilir.

b) Bir veya birden çok delik veya köşeleri olan bölgeler kolaylıkla incelenebilir.

c) Değişik malzeme ve geometrik özellikleri bulunan cisimler incelenebilir.

d) Sebep sonuç ilişkisine ait problemler, genel direngenlik matrisi ile birbirine bağlanan genelleştirilmiş kuvvetler ve yer değiştirmeler cinsinden formüle edilebilir. Sonlu elemanlar metodunun bu özelliği problemlerin anlaşılmasını ve çözülmesini hem mümkün kılar hem de basitleştirir.

e) Sınır şartlarının kolayca uygulanabilir olmasıdır.

2. SAP2000 PROGRAMINDA İKİ PARAMETRELİ ZEMİN ÖZELLİKLERİNİN TANIMLANMASI

2.1. SAP2000 Sonlu Eleman Analiz ve Boyutlandırma Programı

Yirminci yüzyılın ikinci yarısı ve sonrasında hızla ilerleyen bilgisayar teknolojileriyle, sonlu elemanlar metodu, geniş bir alanda kullanılır hale gelmiştir. Bu süreçte geliştirilen SAP2000 programı (Structural Software for Analysis and Design), sonlu elemanlar yöntemiyle çözümlemede yaygın olarak kullanılan programlardan biridir.

SAP2000 yazılımı, yapı sistemi modellerinin geliştirilmesi, analizi ve boyutlandırılması için kullanılan genel amaçlı bir programdır. Program Windows ortamında çalışmakta ve tüm işlemler özel Grafik Kullanıcı Arayüzü (Graphical User Interface - GUI) yardımıyla SAP2000 ekranı üzerinde gerçekleştirilmekte ve her türden yapının sonlu elemanlar yöntemiyle lineer ve nonlineer üç boyutlu statik ve dinamik çözümünü ve boyutlamasını yapabilmektedir.

SAP2000 V12 versiyonundan itibaren programa dahil edilen OAPI (Open Application Programing Interface) özelliği sayesinde geliştirici ara programlarla SAP2000 programı ile iki yönlü model ve veri alışverişi yapılabilmektedir. Geliştirici ikincil programlar, SAP2000 programına model bilgilerini gönderip SAP2000'den dizayn bilgilerini alabilmektedir. Bu özellik kullanıcılara sonsuz uygulama imkanları sunmaktadır. Nitekim bu tezde de bu özellikten faydalanılarak elips geometrisine sahip plak modeli oluşturulabilmesi için bir excel makrosu oluşturulmuştur. Ayrıca SapTransform programı geliştirilerek plak ve zemin arasında z doğrultusunda her bir düğüm noktası için deplasman eşitlemesi yapılarak, plağın ve zeminin birlikte hareket etmesinin temsili sağlanmıştır.

2.2. SAP2000 Programında Sonlu Eleman Matris Formülasyonu

SAP2000 programının kütüphanesinde bulunan düzlem gerilme ve şekil değiştirme elemanı, kompozit malzeme durumunda tabakalı formülasyonu kullanmaktadır. Bu formülasyonda düzlem içi şekil değiştirmelerle birlikte, kalınlık doğrultusundaki kayma şekil değiştirmeleri de göz önüne alınmaktadır. Düzlem şekil değiştirme durumunda, kompozit malzeme özelliği, olarak üç doğrultudaki elastisite modülleri ve Poisson's oranları sıfır olarak, düzlem içindeki ve iki doğrultudaki kayma modülleri sıfırdan farklı değerler olarak girildiğinde, elemanda sadece kalınlık doğrultusunda kayma gerilmeleri ve elemanda düşey yönde uç kuvvetleri oluşmaktadır. Söz konusu iki doğrultudaki düzlem içi kayma modülleri, iki parametreli zeminin kayma modülleri olarak girildiğinde ise elde edilen eleman rijitlik matrisi, iki parametreli ortotrop zemin elemanın, eleman rijitlik matrisine dönüştürmektedir. Düzlem içinde ve iki doğrultudaki zemin kayma modülleri eşit olarak verilirse, izotrop zemine ait rijitlik matrisi elde edilmektedir. Böylelikle zeminin ikinci parametresine diğer bir deyişle Pasternak parametresine ait rijitlik matrisi kolaylıkla elde edilebilmektedir. Elde edilen matriste bilinmeyenler sadece düğüm noktalarının çökmeleridir. İki parametreli zeminin birinci parametresi diğer bir deyişle Winkler parametresi ise SAP2000 programındaki alan yayı tanımlama (Area springs) özelliği ile temsil edilmektedir. Pasternak parametresine ait gerilme şekil değiştirme bağıntıları düzlem içi gerilme şekil değiştirme bağıntıları ile birlikte Denklem 2.1 ve Denklem 2.2'de verilmiştir.

Düzlem şekil değiştirme elemanında sadece kayma şekil değiştirmelerinin göz önüne alınması durumundaki gerilme-şekil değiştirme bağıntıları (Üç doğrultudaki elastisite modülleri ve Poisson's oranları sıfır alınmaktadır);

$$\begin{bmatrix} \gamma_{ZX} \\ \gamma_{Zy} \end{bmatrix} = \begin{bmatrix} \frac{\partial_{ux}}{\partial_z} + \frac{\partial_{uz}}{\partial_x} \\ \frac{\partial_{uy}}{\partial_z} + \frac{\partial_{uz}}{\partial_y} \end{bmatrix}$$
(2.1)

$$[\tau] = \begin{bmatrix} \tau_x \\ \tau_y \end{bmatrix} = \begin{bmatrix} G_1 & G_3 \\ G_3 & G_2 \end{bmatrix} \begin{bmatrix} \frac{\partial_{ux}}{\partial_z} + \frac{\partial_{uz}}{\partial_x} \\ \frac{\partial_{uy}}{\partial_z} + \frac{\partial_{uz}}{\partial_y} \end{bmatrix}$$
(2.2)

SAP2000 programının sonlu eleman kütüphanesindeki düzlem şekildeğiştirme elemanının sadece kayma şekildeğiştirmelerinin göz önüne alınması durumuna ait matris formülasyonu Denklem 2.1 ve Denklem 2.2'de verildiği gibidir. Ayrıca, Pasternak tipi zemin elemanda $G_3=0$, $u_x=u_y=0$ ve $u_z=w$ alındığında, söz konusu gerilme-şekil değiştirme bağıntısı Denklem 2.3'te verildiği gibi olur.

$$\begin{bmatrix} \tau \end{bmatrix} = \begin{bmatrix} G_1 & 0\\ 0 & G_2 \end{bmatrix} \begin{bmatrix} \frac{\partial w}{\partial_x}\\ \frac{\partial w}{\partial_y} \end{bmatrix}$$
(2.3)

Eleman ait denge denklemi ise, Denklem 2.4'teki gibidir.

$$P + G_1 \frac{\partial^2 w}{\partial x^2} + G_2 \frac{\partial^2 w}{\partial y^2} - kw = 0$$
(2.4)

 $G_1=G_2=G$ olması halinde yani zeminin homojen kabul edilmesi durumunda denge denklemi Denklem 2.5 veya Denklem 2.6 gibi olur.

$$P + G\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) - kw = 0$$
(2.5)

$$P = kw - G\nabla^2 w \tag{2.6}$$

Görüldüğü gibi [*G*] matrisinin zeminin kayma modüllerine eşit alınması ile, sadece kayma şekil değiştirmelerinin göz önüne alındığı düzlem şekil değiştirme elemanının formülasyonu, zeminin ikinci parametresine ait gerilme-şekil değiştirme bağıntıları ve denge denklemleri ile aynıdır.

2.3. SAP2000 Programında İki Parametreli Zemin ve Plak Elemanın Birlikte Modellenmesi

SAP2000 programında iki parametreli zemine oturan plakların modellenmesi genel hatlarıyla burada verilmektedir. Daha sonra örneklerin içerisinde ayrıntılı olarak anlatılacaktır. Veriler hazırlanırken öncelikle plak modeli girilmelidir. Plağa ait geometri dairesel, eliptik ya da dörtgen olması durumuna göre oluşturulur. Yarıçapı veya kenar uzunlukları belli olan plakların kalınlığı, Poisson's oranı, Elastisite modülü verilerek plak eleman oluşturulur. Şekil 2.1'de dairesel plağa ait geometri görülmektedir (Şekil 2.1).

Şekil 2.1 : Dairesel plak sistemi.

Oluşturulan plak modeli 1 metre aşağıya kopyalanarak ve ortotropik zemin kayma parametreleri girilerek zemin eleman oluşturulur. Plak eleman Z=1 metre kotunda olduğundan zemin eleman Z=0 metre kotunda olmaktadır (Şekil 2.2).

Şekil 2.2 : Dairesel plağın 1 m altındaki zemin sistemi.

Şekil 2.3 'te SAP2000 programında tanımlanan plak-iki parametreli zemin sistemine ait model görülmektedir (Şekil 2.3).

Şekil 2.3 : Plak-iki parametreli zemin sistemi.

Burada zeminin birinci parametresini (yatak katsayısını) ifade etmek amacıyla yaylar tanımlanmıştır. Yaylar SAP2000 programında yer alan *Area Springs* özelliğinden faydalanılarak oluşturulmuştur. Yay katsayısı olarak zemin yatak katsayısı girilmiştir (Şekil 2.4).

Şekil 2.4 : Zemin yatak katsayısının girilmesi.

K Assign Springs to Area Object Face	
Spring Type	
Simple	
Spring Stiffness per Unit Area	1000 kN/m/m ²
Simple Spring Resists	Tension and Compression 🔹
O Link Property +	
Local 2 Axis Angle from Default Orientation	
Spring Location (Area Object Face)	
Area Object Face	Тор 🔻
Area Object Edge Number	
Spring Tension Direction	
\bigcirc Parallel to Area Object Local Axis	
Normal to Specified Area Object Face	Inward 💌
O User Specified Direction Vector	
Coordinate System	
Local 1 Component	
Local 2 Component	
Local 3 Component	
Options	
Add to Existing Springs	
Replace Existing Springs	
O Delete Existing Springs	
Reset Form to	Default Values
ОК	Apply

Şekil 2.5 : Zemin yatak katsayısının girilmesi.

SAP2000 programında, zemin elemanın ikinci parametresi olan kayma parametresini temsil edebilmek maksadıyla, malzeme özelliği ortotropik olan elemanlar tanımlanmıştır (Şekil 2.6). Zemin elemanlarının kalınlığı 1 birim olarak girilmiştir (Şekil 2.7).

Material Name		Material Type	Symmetry Type
ZEMİN		Other	Orthotropic
Modulus	of Elasticity	Weight and Mass	Units
E1	0,	Weight per Unit Volume	KN, m, C 👻
E2	0,	Mass per Unit Volume 0,	
E3	0,	Advanced Material Property Data	
Poisson		Nonlinear Material Data	Material Damping Properties
U12	0,	Time Dependent Properties	Thermal Properties
U13	0,		
U23	0,		
Coeff of	Thermal Expansion		
A1	0,		
A1 A2	0, 0,		
A1 A2 A3	0, 0, 0,		
A1 A2 A3 Shear M	0, 0, 0, odulus		
A1 A2 A3 Shear M G12	0, 0, 0, 0, 0, 0,		
A1 A2 A3 Shear M G12 G13	0, 0, 0, 0, 0, 1373,6264		
A1 A2 A3 Shear M G12 G13 G23	0, 0, 0, 0, 0, 0, 1373,6264 137362,64		

Şekil 2.6 : Ortotropik zemin özelliklerinin tanımlanması.

lane Section Data	
Section Name	ZEMIN
Section name	
Section Notes	Modify/Show
	Display Color
Туре	
Plane-Stress	
Plane-Strain	
Incompatible Mode	s
Material	
Material Name	+ ZEMIN -
Material Angle	0
materiarAngle	•,
Thickness	
Thickness	1,
Stiffness Modifiers	Temp Dependent Properties
Set Modifiers	Thermal Properties
ОК	Cancel

Şekil 2.7 : Zemin tabakası kalınlığının 1 m girilmesi.

Zemine ait tüm elemanların sadece düşeyde deplasmanına müsade edilmiştir. Plak ile zemin elemanların bağlantısını kurabilmek amacıyla SAP2000 programındaki *Equal Constraint* özelliğinden faydalanılabilir. Bu sayede plaktaki elemanların düğüm noktalarına karşı gelen zemin elemanlarının düğüm noktaları düşeyde birlikte eşit deplasman yapabilmektedir (Şekil 2.8, Şekil 2.9).

Identification		
Label 2818		
Constraint		
Name	EQUAL_713_2818	
Туре	Equal	
Restraint	None	KN m C -
Local Axes	Default	
Springs	None	
Masses	None	Reset All
Panel Zone	None	
Joint Patterns	None	
Group	All	
Generalized Displs	None	
RS Named Sets	None	
Plot Functions	None	
Merge Number	0	Update Display
		Modify Display
		ОК

Şekil 2.8 : Constraint atanması.

💢 Equal Constraint	×
Constraint Name	EQUAL_713_2818
Coordinate System	GLOBAL
Constrained DOFs	
Translation X	Rotation X
Translation Y	Rotation Y
Translation Z	Rotation Z
ОК	Cancel

Şekil 2.9 : Constraint atanması.

Bu çalışmada plak ile zemin elemanların bağlantısını kurabilmek için *SapTransform* adlı Visual Basic dilinde geliştirilen yardımcı program kullanılmıştır.

SAP2000 programında model hazırlanır. Kaydedildikten sonra oluşan .\$2k uzantılı dosya SapTransform programına aktarılarak, hazırlanan modeldeki plaktaki elemanların düğüm noktalarına karşı gelen zemin elemanlarının düğüm noktaları düşeyde birlikte eşit deplasman yapması sağlanmaktadır (Şekil 2.10).

🐌 « Window	sFormsApplication3	•	∮ Ara: Debug		٩
 Kitaplığa 	ekle 🔻 Bununla paylaş 💌 Yaz Yeni kl	asör		· · ·	0
ullanılanlar	Ad	Değiştirme tarihi	Tür	Boyut	
şıdan Yüklem	WindowsFormsApplication3	07.12.2018 16:55	Uygulama	14 KB	
saüstü	WindowsFormsApplication3.exe.config	07.11.2018 16:34	CONFIG Dosyası	1 KB	
h Yerler	WindowsFormsApplication3.pdb	07.12.2018 16:55	PDB Dosyası	32 KB	
todesk 360	WindowsFormsApplication3.vshost	07.12.2018 16:55	Uygulama	24 KB	
-	WindowsFormsApplication3.vshost.exe.c	07.11.2018 16:34	CONFIG Dosyası	1 KB	
lıklar	Gan				
geler	Form1				
izik					
imler					
eo	bt dosyasından okuma				
ubu	Z koordinatına göre ayırma	0,5			

Şekil 2.10 : SapTransform programının veri giriş ekranı.

SapTransform programı, plaktaki elemanların düğüm noktalarına karşı gelen zemin elemanlarının düğüm noktalarının düşeyde birlikte eşit deplasman yapmasını sağlayacak eşitleme yapar ve dosyaismi_C.s2k şeklinde kaydeder. Bahse konu _C.s2k uzantılı dosya SAP2000 programından *Import* seçeneği ile açılır.

💽 🗢 📙 🕨 sap_trans	iorm)	▼ 4 j	Ara: sap_transform	Q
üzenle 🔻 📄 Aç	Bununla paylaş 🔻 Yaz Yeni klasör		:= ▼ □	?
🗸 Sık Kullanılanlar 🗂	Ad		Değiştirme tarihi	Tür
🗼 Karşıdan Yüklem	jak \min		25.04.2019 12:35	Metin
📃 Masaüstü	plak_C.s2k		25.04.2019 12:35	S2K D
📃 Son Yerler	plak.\$2k		25.04.2019 12:31	\$2K D

Şekil 2.11 : _C.s2k uzantılı dosya.

File		New Model Open	Ctrl+N Ctrl+O	Display Design Options Tools Help — Q W & 3-d xy xz yz rt rz tz nv 3 6
	H	Save Save As	Ctrl+S Ctrl+Shift+S	
-	5	Import	•	SAP2000 MS Access Database .mdb File
[•]		Export	Þ	SAP2000 MS Excel Spreadsheet .xls File
		Upload to CSI Cloud		SAP2000 .s2k Text File
\mathbb{Z}		Batch File Control		SAP2000 .XML File
X		Create Video	Þ	CIS/2 STEP File
	, at	Print Setup for Graphics		Steel Detailing Neutral File
		Print Graphics	Ctrl+P	FrameWorks Plus File

Şekil 2.12 : SAP2000'den Import seçeneği ile veri aktarılması.

SapTransform programı yardımıyla düğüm noktaların eşit deplasman yapması sağlanmış olur.

SAP2000 programının *Assign* → *Area Loads* sekmesinden, varsa yayılı dış yükler girilir. Tekil yükleme yapılacaksa *Joint Loads* sekmesi kullanılır (Şekil 2.13).

Şekil 2.13 : Dış yüklerin girilmesi.

Şekil 2.14 ve Şekil 2.15'te plağa 1000 kN/m² yayılı yük etkittirilmiştir (Şekil 2.14, Şekil 2.15).

Şekil 2.14 : Dış yüklerin girilmesi.

Şekil 2.15 : Dış yükler.

SAP2000 programının Assign \longrightarrow Joint \longrightarrow Restraint kısmından, varsa mesnetler tanımlanır (Şekil 2.16, Şekil 2.17).

Şekil 2.16 : Mesnetlerin tanımlanması.

🛛 🧮 X-Y Plane @ Z=0		
***	Assign Joint Restraints	×
	Restraints in Joint Local Dir	ections
+	Translation 1	Rotation about 1
	Translation 2	Rotation about 2
	✓ Translation 3	Rotation about 3
	Fast Restraints	
¥¥	ОК	Close Apply
·*₹	└┼┼┼┼ ╋╋╋╋	

Şekil 2.17 : Mesnet tipleri.

Şekil 2.18 : Modelin genel görünümü.

Özet olarak SAP2000 programına veri girişi öncelikle plak modelinin tanımlanmasıyla başlamaktadır. Plak eleman oluşturulduktan sonra plak elemanın 1 metre altına zemin eleman tanımlanmaktadır. Zeminin altına yay katsayısı olarak zemin yatak katsayısı girilmektedir. Zeminin ortotropik özelliği verilmektedir. SapTransform programıyla ya da SAP2000 programının *Equal Constraint* özelliği ile deplasmanlar eşitlenmektedir. Varsa dış yükler girilmektedir. Varsa mesnetler girilmektedir. Bu sayede iki parametreli ortotrop zemine oturan plak tanımlanmış olmaktadır.

3. SAYISAL ÖRNEKLER

İlk iki örnekte iki parametreli zeminin SAP2000 programında modellenebilir olduğunu gösterebilmek amacıyla daha önce yapılmış çalışmalarda kullanılan zemin parametreleri aynen kullanılmış, elde edilen çökme, eğilme ve burulma momenti sonuçları karşılaştırılmıştır. İki parametreli zemine oturan dairesel plak için sonuçlar doğrulandıktan sonra, zemin genişletilmiş ve zeminin genişletilmemiş durumunda ortaya çıkan sonuçlar ile zeminin genişletilmiş olduğu halde sonuçlar karşılaştırılmıştır. [9].

Üçüncü ve dördüncü örnekte, ilk örnekle benzer olarak, iki parametreli zemine oturan eliptik geometriye sahip plak irdelenmiş ve sonuçlar doğrulanmıştır. Sonuçlar doğrulandıktan sonra, zemin genişletilmiş ve zeminin genişletilmemiş durumunda ortaya çıkan sonuçlar ile zeminin genişletilmiş olduğu halde sonuçlar karşılaştırılmış ve yorumlar yapılmıştır [9].

Beşinci örnekte ise genişletilmiş iki parametreli genişletilmiş zemine oturan dairesel kesitli temel halkası örneği çözülmüş ve sonuçlar karşılaştırılmıştır ve yorumlar yapılmıştır [5].

Altıncı örnekte, ilk iki örneğe yani iki parametreli zemine oturan dairesel plak için genişletilmemiş zemin ve genişletilmiş zemin durumları için spektral analiz uygulanmıştır.

Son olarak yedinci örnekte, üçüncü ve dördüncü örneğe yani iki parametreli zemine oturan eliptik plak için genişletilmemiş zemin ve genişletilmiş zemin durumları için spektral analiz uygulanmıştır. Zeminin genişletilmemiş hali ve zeminin genişletilmiş halindeki plakta oluşan moment değerleri karşılaştırılmış ve yorumlar yapılmıştır.

3.1 İki Parametreli Zemine Oturan Dairesel Plak

Sunulan çözüm yönteminin doğrulanması için ilk olarak literatürdeki benzer bir çalışma ile karşılaştırma yapılmış [9], daha sonra zemin plak dışına genişletilerek davranış incelenmiştir.

Çözümlerde aksi belirtilmedikçe *D* plak rijitliği olmak üzere, Winkler zemin parametresi $k^* = ka^4/D$ ve zemin kayma parametresi $G_f^* = G_f a^2/D$ şeklinde boyutsuzlaştırılmış, elde edilen sonuçlar yine boyutsuz olarak sunulmuştur. Plak geometrisi, plak global eksenleri ve zemin yerel eksen takımı Şekil 3.1'de gösterildiği gibidir.

Şekil 3.1 : Plak geometrisi ve koordinat takımları.

Bahse konu çalışmada eliptikliğin derecesinin ve zeminin ortotropik özelliğinin plak eğilme davranışını nasıl etkilediği incelenmiştir. Bu amaçla sabit kalınlıklı, ankastre mesnetlenmiş ve yüzey alanı sabit olacak şekilde, düzgün yayılı yük altındaki, dairesel plağın statik analizi yapılmıştır.

Dairesel plak modelinin SAP2000 programında oluşturulma aşamaları sırasıyla verilmektedir. Öncelikle SAP2000 programı çalıştırılır ve sırasıyla *File* \longrightarrow *New Model* \longrightarrow *Pipes and Plates* \longrightarrow *Component Category* \longrightarrow *Circular Plates* \longrightarrow *Component Type Without Hole* \longrightarrow *Define and Add* seçenekleriyle dairesel plak geometri oluşturulur (Şekil 3.2, Şekil 3.3, Şekil 3.4).

File		New Model	Ctrl+N		Display	Design	Optio
		Open	Ctrl+O		Q 🖭 🤅	å 3-d	xy xz
	H	Save	Ctrl+S				
	R	Save As	Ctrl+Shift+S				
	Ð	Import		•			
<u> </u>	->	Export		×.			
S		Upload to CSI Cloud					
\mathbb{X}		Batch File Control					
		Create Video		Þ			
	_	Print Setup for Graphics					

Şekil 3.2 : SAP2000 yeni model tanımlama ekranı.

New Model Initialization	on			- Project Information	1
Initialize Model	from Saved Settings		-		
Initialize Model	from Defaults with U	nits KN, m, C	•	Modify/Sho	w Information
Initialize Model	from an Existing File			- Modily/ Shot	
		📝 Save Op	otions as Default		
Select Template					
Blank	Grid Only	Beam	2D Trusses	3D Trusses	2D Frames
					Ţ
3D Frames	Wall	Flat Slab	Shells	Staircases	Storage Structures
Underground	Solid Models	Pipes and Plates			

Şekil 3.3 : SAP2000 Pipes and Plates seçeneği.

			: • • •	th 5007	
Component Category	Circular Plates	-			
Component Type	Pipes Tubes Transitions Rectangular Plates Circular Plates				
Edit Components	Connections				
		Modify			
		Add Copy			
		, ad copy			
		Delete			
		Undo Delete			
Locate					

Şekil 3.4 : Component Category, Circular Plates seçeneği.

Component Category	Circular Plates	i Q. E. Q. 3 (1)
Component Type	Without Hole	
	With Rectangular Hole With Circular Hole	
Edit Components		
	Modify	
	Add Copy	
	Delete	
	Undo Delete	
Locate		
Auto Add Aron Soctions		

Şekil 3.5 : Component Type, Without Hole seçeneği.

Component Category	Circular Plates	
Component Type	Without Hole 🔻	
	Define and Add	
Edit Components		
	Modify	
	Add Copy	
	Delete	
	Undo Delete	
Locate		

Şekil 3.6 : Boşluksuz dairesel plak oluşturma ekranı.

Açılan ekranda boşluksuz dairesel plağın ismi, yarıçapı (m), kalınlığı (m) ve mesh aralık bilgileri girilir. Mesh aralıkları burada verilir (Şekil 3.7).

omp	oonent Parameters		Parametric Definition
⊿	General		
	Name	plak	
⊿	Dimensions		
	Radius, R (m)	8,66	
	Plate Thickness (m)	0,866	
⊿	Meshing Options		
	Max Mesh Size (m)	1	21
Ge	eneral		

Şekil 3.7 : Boşluksuz dairesel plak bilgileri giriş ekranı.

Bu şekilde oluşturulan boşluksuz dairesel plağın görünümü Şekil 3.8 'deki gibidir (Şekil 3.8).

Plates and Pipes Templates		
Add Component Component Category Component Type	Circular Plates Without Hole Define and Add	Model Preview
Edit Components		
plak	Add Copy	
	Delete	
	Undo Delete	
Locate		
✓ Auto Add Area Sections		
✓ Auto Add Constraints	ОК	Cancel

Şekil 3.8 : Boşluksuz dairesel plak.

Oluşturan plak elemanın 1 metre altına zemin elemanı atamak üzere plak eleman mevcut haliyle *Add Copy* komutuyla kopyalanır. *Locate* sekmesiyle nereye kopyalanacağı belirlenir. *Move Along Axis (m)* $\rightarrow D3 = -1$ girilerek plağın 1 metre altına kopyalanmış olur (Şekil 3.9).

omponent Parameters	I	.ocate Compo	nent		
▲ General Name	zemin	Scale Alor	ng Axis	Rotate About	Axis (deg)
⊿ Dimensions		S1	1	Angle 1	0
Radius, R (m) Plate Thickness (m)	8,66 0,866	S2	1	Angle 2	0
Meshing Options		S3	1	Angle 3	0
Max Mesh Size (m)	x Mesh Size (m) 1				-
		Move Alor	ng Axis (m)	Mirror About F	lane
		D1	0	12	
		D2	0	13	
		D3	-1	23	
Namo				K Capad	

Şekil 3.9 : Boşluksuz dairesel plak oluşturma ekranı.

Boşluksuz dairesel plak ve daha sonra zemin ataması yapılacak olan 1 metre alttaki eleman Şekil 3.10 'da görüldüğü gibi olur (Şekil 3.10).

Add Component			Model Preview
Component Category	Circular Plates	•	
Component Type	Without Hole	•	
		Define and Add	
Edit Components			
plak		Modify	
Comm		Add Copy	
		Delete	
		Undo Delete	
Locate			

Şekil 3.10 : Boşluksuz dairesel plağın kopyalanması.

Plak malzemesinde Poisson's oranı v=0,3 seçilmiş ve a/b=1 değerinde h/b=0,1 oranı için yüzey alanı sabit kalacak şekilde belirlenen plak kalınlığı h=0,866 metre, a=b=8,66 m olarak hesaplanmıştır (Şekil 3.11, Şekil 3.12).

Şekil 3.11 : Dairesel plak.

Section Name plak Section Notes Mod	ifv/Show	Display Color
	Thiskness	
⊚ Shell - Thin	Membrane	0,866
Shell - Thick	Bending	0,866
Plate - Thin	Material	
Plate Thick	Material Name +	plak
Membrane	Material Angle	0.
Shell - Layered/Nonlinear	Time Dependent Proportion	
Modify/Show Layer Definition	Set Time Dependent Properties	dent Properties
Concrete Shell Section Design Parameters	Stiffness Modifiers	Temp Dependent Properties
Modify/Show Shell Design Parameters	Set Modifiers	Thermal Properties

Şekil 3.12 : Dairesel plak kalınlığı.

D plak rijitliği olmak üzere $D = (Eh^3)/(12(1-v^2))$ ifadesinden hesaplanmıştır. Plak elastisite modülü $E=25.10^6$ kN/m² alınarak D=1486863,32 kNm olarak bulunmuştur (Şekil 3.13, Şekil 3.14).

Material Name and Display Color	plak
Material Type	Concrete -
Material Grade	
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 0,	KN, m, C
Mass per Unit Volume 0,	
Isotropic Property Data	
Modulus Of Elasticity, E	25000000,
Poisson, U	0,3
Coefficient Of Thermal Expansion, A	9,900E-06
Shear Modulus, G	9615385,
Other Properties For Concrete Materials	
Specified Concrete Compressive Stren	gth, fc 27579,032
Expected Concrete Compressive Stren	gth 27579,032
Lightweight Concrete	
Shear Strength Reduction Factor	

Şekil 3.13 : Dairesel plak Elastisite modülü ve Poisson's oranı.

Material	Name	Material Type	 Symmetry Typ 	be
plak		Concrete	Isotropic	
Modulus	of Elasticity	Weight and Mass		Units
Е	25000000,	Weight per Unit Volume 0		KN, m, C 👻
		Mass per Unit Volume 0,		·
		Other Properties For Concrete Materials		
Poisson		Specified Concrete Compressive Streng	gth, fc	27579,032
U	0,3	Expected Concrete Compressive Streng	gth	27579,032
		Lightweight Concrete		
		Shear Strength Reduction Factor		
Coeff or	f Thermal Expansion			
A	9,900E-06			
Shear N	Iodulus			
G	9615385,	Advanced Material Property Data		
		Nonlinear Material Data	Material Da	mping Properties
		Time Dependent Properties	Therma	al Properties

Şekil 3.14 : Dairesel plak malzeme özellikleri.

Z=1 m kotuna tanımlanan plak eleman atanmıştır (Şekil 3.15).

🔀 X-Y Plane @ Z=1		▼ × X X3-D View	
	bject Model - Area Information		×
	ation Assignments Loads		
$\times \times \times \times \times$	Identification		
\wedge \wedge \times \times \wedge	Jahol 474		
\land	Label 4/4		
\land \land \land \checkmark \land \land \land \land \land			
$\star \times \times \times \times \times \times \times$	Section Property		
$\star \times \times \times \times \times \times \times$	Section Name	plak	
	Section Type	Shell (Plate-Thick)	
$\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge$	Property Modifiers	None	KN. m. C 👻
$+ \times \times \times \times \times \times \times \times$	Material Overwrite	None	
////// / / / / / / / / / / / / / / / /	Thickness Overwrite	None	Devel All
$t \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land$	Joint Offset Overwrite	None	Reset All
$\mathbb{V} \vee $	Local Axes	Default	
$\land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land $	Area Springs	None	
	Area Mass	None	
$\land \land \land \land \land \land \land \land \land \land$	Automatic Area Mesh	None	
$-X \times X \times X \times X \times X \times X$	Auto Edge Constraint	No	
////////////////////////////////////	Edge Releases	None	
T X X X X X X X X	Material Temp	Default	Update Display
$\mathbb{Y} \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee$	Rebar Ratio for Creep Analysis	None	Modify Display
$\land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land $	Group	All	
$+ \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times$	Plot Functions	None	ОК
			Cancel
\dagger X X X X X X X X X			CallCel
	Double click white background cell to	edit item.	

Şekil 3.15 : Z=1 m kotu dairesel plak eleman ataması.

Zemin parametreleri $k^* = ka^2b^2/D$ ve $G_f^* = G_f ab/D$ formülasyonlarıyla boyutsuzlaştırılmıştır. Boyutsuz zemin yay sabiti $k^* = 2,88$ boyutlu hale çevrilerek SAP2000 programına k = 761,36 kN/m² olarak girilmiştir (Şekil 3.16).

🔀 X-Y Plane @ Z=0	• X [💢 3-D View	
			Y
	R Object Model - Area Informatio	on	
	Location Assignments Loads		
$\mathcal{A} \times \mathcal{X} \times \mathcal{X} \times \mathcal{A}$	Identification		
\land \land \land \land \land \land \land \land \land	Label 248		
\land \land \land \land \land \land \land \land \land			
$ + \times \times \times \times \times \times \times $			
$\star \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times$	Section Property		*
$+$ \times \times \times \times \times \times \times	Section Name	zemin	
	Section Type	Plane-Strain	
\land \land \land \land \land \land \land \land \land \land	Property Modifiers	None	KN. m. C 👻
	Material Overwrite	None	
$(\land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land $	Thickness Overwrite	None	
$X \times X \times X \times X \times X \times X$	Joint Offset Overwrite	None	Reset All
$(\backslash / \backslash / \backslash / \backslash / \backslash / \backslash / \backslash / \backslash / \backslash / \backslash /$	Local Axes	Default	_
. X X X X X X X X X X	Area Spring		=
$\lor \lor \lor \lor \lor \lor \lor$	Spring Type	Simple	
$\land \land \land \land \land \land \land \land \land \land \land$	Stiffness/Length2	761,3633	
	Springs Resists	Tension and Compres	
$(\land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land $	Spring Tension Dir Type	Normal To Face	
$X \times X \times X \times X \times X \times X$	Face	Тор	Update Display
/ / / / / / / / / / / / / / / / / / /	Normal Orientation	Inward	Modify Display
	Area Mass	None	mouny Display
$\lor \lor \lor \lor \lor \lor \lor \lor \lor \lor \lor$	Automatic Area Mesh	None	ОК
$\land \land \land \land \land \land \land \land \land \land \land$	Auto Edge Constraint	No	
	Edge Releases	None	T Cancel
	Double click white background	d cell to edit item.	

Şekil 3.16 : Zemin yay sabiti ataması.

Boyutsuz ortotropik zemin kayma parametreleri $G_{fl}^*=0,36$ ve $G_{f2}^*=36$ boyutlu değerlere çevrilerek, $G_{fl}=7137,362637$ GPa ve $G_{f2}=713736,2637$ GPa olarak SAP2000 programına girilmiş ve zemin Plain-Strain tipi seçilmiştir (Şekil 3.17, Şekil 3.18). Z=0 m kotuna tanımlanan zemin eleman atanmıştır.

	zemin
Section Notes	Modify/Show
	Display Color
Туре	
Plane-Stress	
Plane-Strain	
Incompatible Mode	S
Material	
Material Name	+ zemin
Material Angle	0,
Thickness	
Thickness	1,
Stiffness Modifiers	Temp Dependent Properties

Şekil 3.17 : Plain-Strain eleman.

	Name	Material Type	Symmetry Type
zemin		Other	Orthotropic
Modulus	of Elasticity	Weight and Mass	Units
E1	0,	Weight per Unit Volume	KN, m, C
E2	0,	Mass per Unit Volume 0,	
E3	0,	Advanced Material Property Data	
Poisson		Nonlinear Material Data	Material Damping Properties
U12	0,	Time Dependent Properties	Thermal Properties
U13	0,		
U23	0,		
Coeff of	Thermal Expansion		
A1	0,		
A2	0,		
A3	0,		
Shear M	odulus		
	0,		
G12	7137,3626		
G12 G13			

Şekil 3.18 : Zemin kayma parametreleri.

Daha önce Bölüm 2 'de anlatılan SapTransform programı ile yapılan eşitleme sonucu Şekil 3.19 'da görülmektedir (Şekil 3.19).

X-Y Plane @ Z=1	Object Model - Point Information ocation Assignments Loads Identification Label 465		
*	Constraint		
\star X X X \parallel	Name	EQUAL 141 465	
	Туре	Equal	
	Restraint	None	
$\land \land \land$	Local Axes	Default	KN, III, C
$\land \land \land \land$	Springs	None	
$(X \times X)$	Masses	None	Reset All
$X \times X$	Panel Zone	None	
$/ \vee \vee \vee \parallel$	Joint Patterns	None	
\sim	Group	All	
$\wedge \wedge \wedge /$	Generalized Displs	None	
$(X \times X)$	RS Named Sets	None	
$X \times X$)	Plot Functions	None	
$\langle X X X \ $	Merge Number	0	Update Display
¥ ¥ ¥ ¥ ¥ ¥ ¥	Dauble sick white besteround call	in add item	Modify Display OK Cancel

Şekil 3.19 : SapTransform programı ile yapılan eşitleme sonucu.

🔀 X-Y Plane @ Z=1		▼ × X X 3-D View	
	Dbject Model - Area Information		×
***	ocation Assignments Loads		
	Identification		
	Label 474		
$+\times\times\times\times\times\times$	Load Pattern	DEAD	Assign Load
$\star \times \times \times \times \times \times \times$	Uniform Load		Assign Loud
$\downarrow \lor \lor \lor \lor \lor \lor \lor \lor$	Coordinate System	GLOBAL	
$\land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land $	Load Direction	Gravity	KN, m, C 👻
$\pm \times \times \times \times \times \times \times \times$	Force/Area	1000,	
4 \vee \vee \vee \vee \vee \vee			Reset All
$\land\land\land\land\land\land\land\land\land\land\land\land$			
$X \times X \times X \times X \times X$			
$\mathbb{N} \wedge \wedge \wedge \wedge \wedge \overline{\wedge}$			
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} $			
$\bigvee \lor \lor \lor \lor \lor \lor \lor \lor \lor$			Undate Display
$\frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown \frown $			
$+ \times \times \times \times \times \times \times$			Modify Display
$\mathbb{Y} \vee \mathbb{V} \vee \mathbb{V} \vee \mathbb{V} \vee \mathbb{V}$			ОК
$+ \times \times \times \times \times \times \times$			Cancel
	Double click white background of	cell to edit item.	

Dairesel plak üzerine etki eden yayılı yük q=1000 kN/m² olarak girilmiştir (Şekil 3.20).

Şekil 3.20 : Dairesel plağa yayılı yük girilmesi.

Dairesel plağın ve zemin elemanın kenarlarına, kenarlardaki düğüm noktaları seçildikten sonra *Assign* \longrightarrow *Joint* \longrightarrow *Restraints* komutları ile ankastre mesnet tanımı yapılmış ve üç boyutlu görünümü verilmiştir (Şekil 3.21, Şekil 3.22).

Şekil 3.21 : Mesnet ataması.

Şekil 3.22 : Mesnet ataması ve modelin üç boyutlu görünümü.

Dairesel plağın kenarlarındaki düğüm noktaları seçildikten sonra ankastre mesnet tanımlanmıştır (Şekil 3.23).

🔀 X-Y Plane @ Z=1			
	┿╈╪╪╪┿┿┿		
***	K Assign Joint Restraints		×
	Restraints in Joint Local	Directions	
+	Translation 1	Rotation about 1	
	Translation 2	Rotation about 2	
	✓ Translation 3	☑ Rotation about 3	
	Fast Restraints		
¥¥¥¥¥	ОК	Close Apply	
	┿┿╤╤╤╤┿┿┿		

Şekil 3.23 : Dairesel plağın kenarlarına ankastre mesnet atanması.

Zemin elemanın kenarlarındaki düğüm noktaları seçildikten sonra ankastre mesnet atanmıştır (Şekil 3.24).

🔀 X-Y Plane @ Z=0			
			*
	Assign Joint Restraints		
	Restraints in Joint Local D	irections	
\star	Translation 1	Rotation about 1	
+	Translation 2	Rotation about 2	
	Translation 3	Rotation about 3	
	Fast Restraints		
	ОК	Close Apply	
	+++++		

Şekil 3.24 : Z=0 m zemin elemanın kenarlarına ankastre mesnet atanması.

Mesnet atanan herhangi bir düğüm noktası seçilerek, düğüm noktasının durumu görüntülenebilir. u_1 , u_2 ve u_3 yerdeğiştirmeleri ile r_1 , r_2 ve r_3 dönmelerinin engellendiği ankastre mesnet tipinin atandığı görülmektedir (Şekil 3.25).

🕤 🧮 X-Y Plane @ Z	=0	_	-
	Collect Model - Point Informatic Location Assignments Loads Identification Label 180	n	
++++++++++++++++++++++++++++++++++++++	Constraint Name Type Restraint Local Axes Springs Masses Panel Zone Joint Patterns Group Generalized Displs RS Named Sets Plot Functions Merge Number Double click white background	EQUAL_180_504 Equal u1, u2, u3, r1, r2, r3 Default None None None All None None None O	KN, m, C Reset All Update Display Modify Display OK Cancel

Şekil 3.25 : Mesnet atanmış bir düğüm noktasının durumu.

Düzgün yayılı yük altında, sabit alanlı dairesel plağın, orta noktasında, boyutsuzlaştırılmış çökme, eğilme momenti ve burulma momenti değerleri karşılaştırılmıştır. w^* boyutsuz çökme olmak üzere $w^* = (wD/qa^2b^2)x1000$ ifadesiyle; M^* boyutsuz eğilme momenti olmak üzere $M^* = (M/qab)x1000$ ifadesiyle; T^* boyutsuz burulma momenti olmak üzere $T^* = (T/qab)x1000$ ifadesiyle dönüştürülmüş ve Çizelge 3.1'de verilmiştir. θ zemin açısı 0°, 30°, 45°, 60° ve 90° olacak şekilde değiştirilerek, değerler karşılaştırılmıştır (Çizelge 3.1). w ve M değerleri SAP2000 sonuçlarından okunan değerlerdir. [9]'da T ile verilen değişken SAP2000'de M_{12} burulma momentini ifade etmektedir. Ayrıca SAP2000 sonuçları 0° zemin açısı için gösterilmiştir (Şekil 3.26, Şekil 3.27, Şekil 3.28, Şekil 3.29). Aynı şekilde 30°, 45°, 60° ve 90° zemin açıları için de değerler okunmuş ve çizelgeye girilmiştir. Çökme birimi metre, moment birimi kNm'dir.

Şekil 3.26 : Zemin açısı θ=0° halinde, düzgün yayılı yük altında, sabit alanlı dairesel plağın orta noktasındaki çökme değeri (m).

Şekil 3.27 : Zemin açısı θ =0° halinde, düzgün yayılı yük altında, sabit alanlı dairesel plağın,
orta noktasındaki M_{11} momenti değeri.

Şekil 3.28 : Zemin açısı θ =0° halinde, düzgün yayılı yük altında, sabit alanlı dairesel plağın,
orta noktasındaki M₂₂ momenti değeri.

Şekil 3.29 : Zemin açısı $\theta=0^{\circ}$ halinde, düzgün yayılı yük altında, sabit alanlı dairesel plağın, orta noktasındaki M₁₂ momenti değeri.

Çizelge 3.1 : Düzgün yayılı yük altında, sabit alanlı dairesel plağın, orta noktasındaki çökme, eğilme momenti ve burulma momenti değerleri.

Düzgün yayılı yük altında sabit alanlı dairesel plağın orta noktasındaki çökme ve eğilme momenti değerleri								
				Çökme (w, w*)				
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	1		6,97	6,97	6,97	6,97	6,97
Bu çalışma (w^*)	0,1	1		7,06	7,06	7,06	7,06	7,06
Bu çalışma (w)	0,1	1		0,0267	0,0267	0,0267	0,0267	0,0267
					Eğilme m	omenti (M	$(11, M_{11})^*$	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	1		31,78	31,00	30,24	29,39	28,55
Bu çalışma (M_{11}^{*})	0,1	1		31,38	30,76	30,06	29,31	28,50
Bu çalışma (M ₁₁)	0,1	1		2353,41	2306,86	2254,64	2197,75	2137,34
			Eğilme momenti (M_{22}, M_{22}^*)					
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	1		28,55	29,39	30,24	31,00	31,78
Bu çalışma (M_{22}^{*})	0,1	1		28,47	29,32	30,10	30,84	31,52
Bu çalışma (M ₂₂)	0,1	1		2135,51	2198,55	2257,74	2312,92	2363,91
				Burulma momenti (M_{12}, M_{12}^*))		
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	1		0,00	1,51	1,71	1,51	0,00
Bu çalışma (M_{12}^{*})	0,1	1		0,00	1,40	1,61	1,39	0,00
Bu çalışma (M ₁₂)	0,1	1		0,0887	104,64	120,78	104,33	0,04

Çizelge 3.1'den anlaşıldığı üzere sonuçlar birbiriyle uyuşmaktadır. SAP2000 programında zemin modellemesinin doğruluğu bununla kanıtlanmıştır.

Çizelge 3.1'e göre sonuçlar incelendiğinde;

1) Çökme değerlerinin zemin açısından bağımsız olduğu görülmektedir. Zemin açısı $\theta=0^{\circ}$ olduğunda, çökme değeri 0,0267 m olarak ortaya çıkmış; örneğin zemin açısı $\theta=60^{\circ}$ olduğunda da çökme değeri 0,0267 m olduğu tespit edilmiştir. Yani zemin açısı değişimi çökme değerlerini etkilememektedir. Çizelge 3.2'de verilen göreceli hata %1,28 olarak hesaplanmış, bu hata oranının kabul edilebilir seviyede olduğu belirlenmiştir.

2) M_{11} eğilme momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye doğru gidildikçe azaldığı görülmektedir. Yine Çizelge 3.2'de verilen göreceli hata oranlarının zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye doğru gidildikçe azaldığı görülmektedir.

3) M_{22} eğilme momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye doğru gidildikçe arttığı görülmektedir. Yine Çizelge 3.2'de verilen göreceli hata oranlarının zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye doğru gidildikçe arttığı görülmektedir.

4) M_{12} burulma momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'de ve $\theta=90^{\circ}$ 'de sıfır olduğu ve sonuçların bire bir uyumlu olduğu görülmektedir. M_{12} burulma momenti değerlerinin zemin açısı $\theta=30^{\circ}$ 'de ve $\theta=60^{\circ}$ 'de aynı şekilde simetriden dolayı uyumlu olduğu görülmektedir.

5) Çizelge 3.2 incelendiğinde referans alınan sayısal örneklerle [9], çökme sonuçlarının ortalama %1,28 hata ile, M_{11} eğilme momentlerinin ortalama %0,6 hata ile, M_{22} eğilme momentlerinin ortalama %0,4 hata ile, M_{12} burulma momentlerinin ortalama %4,4 hata ile doğrulandığı görülmektedir (Çizelge 3.2).

Çökme değerleri için göreceli hata hesabı (%)							
0°	30°	45°	60°	90°			
1,28	1,28	1,28	1,28	1,28			
Eğilme	e momenti M	[11 için görec	eli hata hesa	bı (%)			
0°	30°	45°	60°	90°			
1,26	0,78	0,59	0,29	0,18			
Eğilme	e momenti M	[₂₂ için görec	eli hata hesa	bı (%)			
0°	30°	45°	60°	90°			
0,26	0,25	0,45	0,52	0,82			
Burulma momenti M_{12} için göreceli hata hesabı (%)							
0°	30°	45°	60°	90°			
0,00	7,89	6,00	8,20	0,00			

Çizelge 3.2 : Dairesel plak için göreceli hata hesabı.

3.2 İki Parametreli Genişletilmiş Zemine Oturan Dairesel Plak

Örnek 3.1'deki tüm veriler aynı kalacak şekilde, bu örnekte sadece zemin genişletilmiştir (Şekil 3.30, Şekil 3.31, Şekil 3.32). Zeminin genişletilmemiş hali Örnek 3.1 ile, genişletilmiş haldeki Örnek 3.2 'den elde edilen değerler karşılaştırılmıştır. Zeminin genişletilmesi için SAP2000 programında elle ya da SAP2000 programının çeşitli özelliklerinden faydalanılarak sonlu elemanlar oluşturulmuş ve zemin bu şekilde genişletilmiş halde modellenmiştir. Burada dikkat edilmesi gereken husus sonlu elemanlar modellenirken üçgen ya da dörtgen elemanlara ayrılması, beşgen elemanlar oluşturulmamasıdır. Düğüm noktalarının birbiriyle bağlantısı sağlanmadığı takdirde SAP2000 programı bunları sonlu eleman olarak algılamayacak ve analizde hata verecektir.

Şekil 3.30 : Genişletilmiş zemine oturan dairesel plak sisteminin üç boyutlu görünümü.

Şekil 3.31 : Genişletilmiş zemine oturan dairesel plak sistemi.

Şekil 3.32 : Genişletilmiş zemin sistemi.
Çizelge 3.3 : Genişletilmiş zemin ve genişletilmemiş zemin için, düzgün yayılı yük altında, sabit alanlı dairesel plağın, orta noktasında, çökme, eğilme momenti ve burulma momenti değerleri.

Düzgün yayılı yü	k altır	nda s	ab	it alanlı dairesel	plağın orta nokt	asındaki çökme	ve eğilme mome	nti değerleri
				Çökme (w)				
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.2 (w)	0,1	1		0,1234	0,1299	0,1305	0,1298	0,1234
Örnek 3.1 (w)	0,1	1		0,0267	0,0267	0,0267	0,0267	0,0267
				Eğilme momenti (M ₁₁)				
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.2 (M ₁₁)	0,1	1		2964,56	3152,75	2862,25	2750,97	2445,74
Örnek 3.1 (M ₁₁)	0,1	1		2353,41	2306,86	2254,64	2197,75	2137,34
					Eğ	ilme momenti (N	(1 ₂₂)	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.2 (M ₂₂)	0,1	1		2447,10	2749,66	2856,62	3148,22	2965,87
Örnek 3.1 (M ₂₂)	0,1	1		2135,51	2198,55	2257,74	2312,92	2363,91
					Bur	ulma momenti (N	M ₁₂)	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.2 (M ₁₂)	0,1	1		0,0000	384,6065	364,3669	380,8117	0,0000
Örnek 3.1 (M ₁₂)	0,1	1		0,0887	104,6426	120,7762	104,3266	0,0404

Çizelge 3.3'te verilen Örnek 3.1'deki değerler zeminin genişletilmemiş halini, Örnek 3.2 ise zeminin genişletilmiş haldeki değerleri kapsamaktadır. Çizelge 3.3'teki tüm değerler SAP2000'de alınmıştır. Çizelge 3.3'ü incelediğimizde;

1) Örnek 3.1 yani genişletilmemiş zemin modelinde çözülen plak çökme değerlerinin, bu örnekteki genişletilmiş zemine oturan plağa ait çökme değerlerinden daha küçük olduğu görülmektedir. Örnek 3.2 genişletilmiş zemine oturan plaktaki çökme değerleri daha büyüktür. Buradan genişletilmiş zemin modelinin gerçeğe daha yakın modelleme sağladığı anlaşılmaktadır. Çünkü gerçek hayatta zemin yapı altında sonsuz devam etmektedir. Bu nedenle bu tip yapı zemin problemlerinde zemin genişletilerek çözüme ulaşılması sonucu bir zorunluluk olarak karşımıza çıkmaktadır.

2) Aynı şekilde genişletilmiş zemin modelinde çözülen plak M_{11} ve M_{22} eğilme momenti değerlerinin, genişletilmemiş zemin modelinde çözülen plak daha büyük olduğu görülmektedir. Örneğin zemin açısı θ =30° halinde M_{11} eğilme momenti genişletilmemiş zemin için 2306 kNm mertebesindeyken, genişletilmiş zeminde ise 3152 kNm civarındadır. Bu da yaklaşık 850 kNm fazla moment anlamına gelmektedir. 3) M₁₂ burulma momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'de ve $\theta=90^{\circ}$ 'de genişletilmiş zemine oturan plak için daha küçük olduğu görülmektedir. M₁₂ burulma momenti değerlerinin zemin açısı $\theta=30^{\circ}$ 'de ve $\theta=60^{\circ}$ 'de simetriden dolayı uyumlu olduğu görülmekte ve genişletilmiş zemin için çözümde burulma momentleri, genişletilmemiş zemin için çözüme nazaran daha büyük olduğu görülmektedir.

Zeminin gen	işletilmiş d	urumunda	değişimle	r (%)	
Zemin açısı (θ)	0°	30°	45°	60°	90°
Çökme (w)	362,17	386,52	388,76	386,14	362,17
Eğilme momenti (M ₁₁)	25,97	36,67	26,95	25,17	14,43
Eğilme momenti (M ₂₂)	14,59	25,07	26,53	36,11	25,46
Burulma momenti (M ₁₂)	100,00	267,54	201,69	265,02	100,00

Cizelge 3.4 : Zeminin genişletilmiş durumunda değişimler (%).

Çizelge 3.4'ten görüldüğü üzere zemin genişletilince çökme değeri yaklaşık %370 mertebesinde artmaktadır. M₁₁ eğilme momenti zemin genişletilince yaklaşık %25 artmaktadır. M₂₂ eğilme momenti zemin genişletilince yaklaşık %25 artmaktadır. M₁₂ burulma momenti Zemin açısı $\theta=0^{\circ}$ ve $\theta=90^{\circ}$ 'de yaklaşık %100 oranında azalmış, buna karşın, diğer zemin açılarında %240 mertebesinde artmıştır.

3.3 İki Parametreli Zemine Oturan Eliptik Plak

4)

Sabit kalınlıklı, ankastre mesnetlenmiş ve yüzey alanı sabit olacak şekilde, düzgün yayılı yük altındaki eliptik plağın statik analizi yapılmıştır [9].

SAP2000 programında eliptik plak geometrisinin oluşturulabilmesi için, Excel programından yararlanılmıştır. Denklem 3.1 ve Denklem 3.2 ile gerekli hesaplamalar yapıldıktan sonra SAP2000 programına veriler aktarılmıştır.

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$$
(3.1)

$$y = \mp \sqrt{\left(1 - \frac{(x-p)^2}{a^2}\right)b^2} + q$$
 (3.2)

x'e 0'dan başlayarak 15'e kadar ve 0'dan başlayarak -15'e kadar 0,50 aralıkla değerler verilerek y değerleri bulunmuştur. y değerleri mutlak değerler olarak alınıp, +y değerleri bulunmuştur. Böylece elipsin üst yarı yayı elde edilmiş olur. Aynı şekilde x'e 0'dan başlayarak 15'e kadar ve 0'dan başlayarak -15'e kadar 0,50 aralıkla değerler verilerek negatif y değerleri bulunmuştur. Mutlak y değerleriyle ortaya çıkan elipsin üst yayına, negatif y değerleri de eklenerek elipsin alt yayı da tamamlanmış olur ve bu şekilde elips geometrisi elde edilmiş olur. Excel programında bu şekilde düzenlenen verilerin SAP2000 programına aktarımı için TYPE, NAME, X, Y, Z verileri oluşturulur (Şekil 3.33) [16]. Ayrıca verilerin tamamı Çizelge 3.5 'te ayrıntılı olarak verilmiştir (Çizelge 3.5). Z koordinatlarının sıfır olmasının anlamı plağın kalınlık boyutunu temsil edeceğinden ileri gelmektedir. Daha sonra SAP2000 programında plağa kalınlık verilerek düzenlenecektir.

Elips geometrisi a=15, b=5 ve merkezi koordinatlar p=0, q=0 olmak üzere, Excel programında daha önceden Denklem 3.1 ve Denklem 3.2 'ye göre hazırlanan veriler panoya kopyalanır (Çizelge 3.5).

SAP2000 programının *Edit* menüsünden *Paste* seçilir ve Excel programındaki veriler SAP2000 programına aktarılmış olur (Şekil 3.33) [16].

) =							
Giriş Ekle	Sayfa D)üzen	i Formü	iller Ver	i Gözde	n Geçir	Görünüm	
Yapıştır Bicim Boyaçısı	Calibri K T	A	• 11 • 🖽 •]	• A • • A			📑 Metni Ka	aydır ve Ortala 👻
Pano 🕞		1	Yazı Tipi	G.		Hizala	ma	6
Δ1	- 6		fr TY	PE				
1 (24					C	D	F	F
1 / 24 - Pano	• x			NAME	v	v	7	F
🛗 Tümünü Yapıştır		2	DOINT	INAIVIE 1	^ 0	T 5	2	
🔀 Tümünü Temizle		2	POINT	2	0.5	/ 997221	0	
Yapıştırılacak öğeyi tıklatın:		4	POINT	2	0,5	4 988877	0	
TYPE NAME X Y Z POINT	1 ^	5	POINT	4	15	4 974937	0	
0 5 0 POINT 2 0,5		6	POINT	5	2,5	4,955356	0	
7,5572210 POINT 5 1 4.		7	POINT	6	2.5	4,930066	0	
		8	POINT	7	2,0	4.898979	0	
		9	POINT	8	3.5	4.861984	0	
		10	POINT	9	4	4.818944	0	
		11	POINT	10	4.5	4,769696	0	
		12	POINT	11	5	4,714045	0	
		13	POINT	12	5,5	4,651762	0	
		14	POINT	13	6	4,582576	0	
		15	POINT	14	6,5	4,506169	0	
		16	POINT	15	7	4,422166	0	
		17	POINT	16	7,5	4,330127	0	
		18	POINT	17	8	4,229526	0	
		19	POINT	18	8,5	4,119736	0	
		20	POINT	19	9	4	0	
		21	POINT	20	9,5	3,869396	0	
		22	POINT	21	10	3,72678	0	
		23	POINT	22	10,5	3,570714	0	
	-	24	POINT	23	11	3,399346	0	
Conseller -		25	POINT	24	11,5	3,210227	0	

Şekil 3.33 : Excel programındaki TYPE, NAME, X, Y, Z verilerinin oluşturulması ve panoya kopyalanması.

SAP2000 programı çalıştırıldıktan sonra, New Model menüsünden, Blank seçilir (Şekil 3.34).

Şekil 3.34 : Elips geometrisi oluşturulması için Blank model seçimi.

Edit menüsünden *Paste* komutu seçilir ve ekrana gelen *Paste Coordinates* penceresinde *OK* tıklanır (Şekil 3.35, Şekil 3.36).

Şekil 3.35 : Excel programındaki verilerin Paste komutu ile SAP2000 programına aktarımı.

File	Edit	View	Define	Draw	Select	Assign	Analyze	Display [
) 🗄	a	200	/ 6	• •	Q. Q.	€ €	Q 💓 🧤
	📜 3-D	View						
•	×	Paste Co	ordinates					
<u>.</u>]		01						
>	i .	Chang	e Coordina	tes by:		1		
\mathbf{N}		De	ta X 🧕					
\mathbf{X}		De	taY 0	,	_			
		De	taZ 0	,				
~			K		ncel			
			ĸ	Ca			_	
							, ∧	v
						1		~
Ύ́,								

Şekil 3.36 : SAP2000 Paste Coordinates ekranı.

Daha sonra *Display Options* menüsünden *Joint Invisible* tiki kaldırılır ve Excel programından kopyalanan noktasal koordinatlar SAP2000 programında görünür hale getirilmiş olur (Şekil 3.37).

Şekil 3.37 : Elips geometrisinin noktasal koordinatları.

TYPE	NAME	Х	Y	Z
POINT	1	0	5	0
POINT	2	0,5	4,99722	0
POINT	3	1	4,98888	0
POINT	4	1,5	4,97494	0
POINT	5	2	4,95536	0
POINT	6	2,5	4,93007	0
POINT	7	3	4,89898	0
POINT	8	3,5	4,86198	0
POINT	9	4	4,81894	0
POINT	10	4,5	4,7697	0
POINT	11	5	4,71405	0
POINT	12	5,5	4,65176	0
POINT	13	6	4,58258	0
POINT	14	6,5	4,50617	0
POINT	15	7	4,42217	0
POINT	16	7,5	4,33013	0
POINT	17	8	4,22953	0
POINT	18	8,5	4,11974	0
POINT	19	9	4	0
POINT	20	9,5	3,8694	0
POINT	21	10	3,72678	0
POINT	22	10,5	3,57071	0
POINT	23	11	3,39935	0
POINT	24	11,5	3,21023	0
POINT	25	12	3	0
POINT	26	12,5	2,76385	0
POINT	27	13	2,49444	0
POINT	28	13,5	2,17945	0
POINT	29	14	1,79505	0
POINT	30	14,5	1,28019	0
POINT	31	15	0	0
POINT	32	0	5	0
POINT	33	-0,5	4,99722	0
POINT	34	-1	4,98888	0
POINT	35	-1,5	4,97494	0
POINT	36	-2	4,95536	0
POINT	37	-2,5	4,93007	0
POINT	38	-3	4,89898	0
POINT	39	-3,5	4,86198	0
POINT	40	-4	4,81894	0

Çizelge 3.5 : Elips geometrisi oluşturulması için Excel programından kopyalanan veriler.

POINT	41	-4,5	4,7697	0
POINT	42	-5	4,71405	0
POINT	43	-5,5	4,65176	0
POINT	44	-6	4,58258	0
POINT	45	-6,5	4,50617	0
POINT	46	-7	4,42217	0
POINT	47	-7,5	4,33013	0
POINT	48	-8	4,22953	0
POINT	49	-8,5	4,11974	0
POINT	50	-9	4	0
POINT	51	-9,5	3,8694	0
POINT	52	-10	3,72678	0
POINT	53	-10,5	3,57071	0
POINT	54	-11	3,39935	0
POINT	55	-11,5	3,21023	0
POINT	56	-12	3	0
POINT	57	-12,5	2,76385	0
POINT	58	-13	2,49444	0
POINT	59	-13,5	2,17945	0
POINT	60	-14	1,79505	0
POINT	61	-14,5	1,28019	0
POINT	62	-15	0	0
POINT	63	0	-5	0
POINT	64	0,5	-4,9972	0
POINT	65	1	-4,9889	0
POINT	66	1,5	-4,9749	0
POINT	67	2	-4,9554	0
POINT	68	2,5	-4,9301	0
POINT	69	3	-4,899	0
POINT	70	3,5	-4,862	0
POINT	71	4	-4,8189	0
POINT	72	4,5	-4,7697	0
POINT	73	5	-4,714	0
POINT	74	5,5	-4,6518	0
POINT	75	6	-4,5826	0
POINT	76	6,5	-4,5062	0
POINT	77	7	-4,4222	0
POINT	78	7,5	-4,3301	0
POINT	79	8	-4,2295	0
POINT	80	8,5	-4,1197	0

Çizelge 3.5 : Elips geometrisi oluşturulması için Excel programından kopyalanan veriler.

POINT	81	9	-4	0
POINT	82	9,5	-3,8694	0
POINT	83	10	-3,7268	0
POINT	84	10,5	-3,5707	0
POINT	85	11	-3,3993	0
POINT	86	11,5	-3,2102	0
POINT	87	12	-3	0
POINT	88	12,5	-2,7639	0
POINT	89	13	-2,4944	0
POINT	90	13,5	-2,1794	0
POINT	91	14	-1,7951	0
POINT	92	14,5	-1,2802	0
POINT	93	15	0	0
POINT	94	0	-5	0
POINT	95	-0,5	-4,9972	0
POINT	96	-1	-4,9889	0
POINT	97	-1,5	-4,9749	0
POINT	98	-2	-4,9554	0
POINT	99	-2,5	-4,9301	0
POINT	100	-3	-4,899	0
POINT	101	-3,5	-4,862	0
POINT	102	-4	-4,8189	0
POINT	103	-4,5	-4,7697	0
POINT	104	-5	-4,714	0
POINT	105	-5,5	-4,6518	0
POINT	106	-6	-4,5826	0
POINT	107	-6,5	-4,5062	0
POINT	108	-7	-4,4222	0
POINT	109	-7,5	-4,3301	0
POINT	110	-8	-4,2295	0
POINT	111	-8,5	-4,1197	0
POINT	112	-9	-4	0
POINT	113	-9,5	-3,8694	0
POINT	114	-10	-3,7268	0
POINT	115	-10,5	-3,5707	0
POINT	116	-11	-3,3993	0
POINT	117	-11,5	-3,2102	0
POINT	118	-12	-3	0
POINT	119	-12,5	-2,7639	0
POINT	120	-13	-2,4944	0
POINT	121	-13,5	-2,1794	0
POINT	122	-14	-1,7951	0
POINT	123	-14,5	-1,2802	0
POINT	124	-15	0	0

Çizelge 3.5 : Elips geometrisi oluşturulması için Excel programından kopyalanan veriler.

Şekil 3.38 : SAP2000 programına aktarılan elips geometrisi.

Bu şekilde Excel programında oluşturulan nokta koordinatları SAP2000 programına aktarılarak düzenlenmiş ve elips geometrisine sahip plak oluşturulmuştur.

SAP2000 programında sonlu elemanlar oluşturulmak suretiyle, Şekil 3.38'deki noktalar birleştirilerek ve içerisi sonlu elemanlarla doldurularak elips plak elde edilmiştir. Sonlu elemanlara ayırma işlemi SAP2000 programının *Edit Edit Areas Mesh Areas* özelliğinden faydalanılarak yapılmıştır.

Plak malzemesinde Poisson's oranı v=0,3 seçilmiş ve a/b=3 değerinde h/b=0,1 oranı için belirlenen plak kalınlığı h=0,5 metre, a=15 metre b=5 metre olarak hesaplanmıştır (Şekil 3.39, Şekil 3.40, Şekil 3.41).

Şekil 3.39 : Eliptik plak.

System Nan	ne	GLO	BAL				Quick Start
Grid Data							
Grid ID	Ordinate (m)	Line Type	Visible	Bubble Loc	Grid Color	1	
	-15	Primary	Yes	End		Add	
	0	Primary	Yes	End			
	15	Primary	Yes	End		Delete	
	-5	Primary Primary Primary	Yes Yes	End End		Add Delete	Hide All Grid Lines
	5	rnmary	Tes	Ena			Bubble Size 2,4384
Grid Data						_	Reset to Default Colo
Grid ID	Ordinate (m	n) Line	Туре	Visible	Bubble Loc		Reorder Ordinates
z1	0	Pri	mary	Yes	End	Add	
z2	1	Pri	mary	Yes	End	Delete	
							OK Canc

Şekil 3.40 : Sabit alanlı eliptik plak koordinat sistemi.

Section Name PLAK Section Notes Modify	y/Show	Display Color
ӯуре	Thickness	
Shell - Thin	Membrane	0,5
Shell - Thick	Bending	0,5
Plate - Thin	Material	
Plate Thick	Material Name +	PLAK -
Membrane	Material Angle	0,
Shell - Layered/Nonlinear	- Time Dependent Properties	
Modify/Show Layer Definition	Set Time Depe	ndent Properties
Concrete Shell Section Design Parameters	Stiffness Modifiers	Temp Dependent Properties
Modify/Show Shell Design Parameters	Set Modifiers	Thermal Properties

Şekil 3.41 : Eliptik plak kalınlığı.

D plak rijitliği olmak üzere $D=(Eh^3)/(12(1-v^2))$ ifadesinden hesaplanmıştır. Plak elastisite modülü $E=25.10^6 \text{ kN/m}^2$ alınarak D=286172,161 kNm olarak bulunmuştur (Şekil 3.42, Şekil 3.43, Şekil 3.44).

Material Name and Display Color	PLAK	
Material Type	Concrete	
Material Crade	Concrete	
Material Grade		Netes
Material Notes	Modify/Show	Notes
Weight and Mass	Ur	iits
Weight per Unit Volume		KN, m, C 👻
Mass per Unit Volume 0,		
Isotropic Property Data		
Modulus Of Elasticity, E	25	000000,
Poisson, U	0,3	3
Coefficient Of Thermal Expansion,	A 9,9	900E-06
Shear Modulus, G	96	\$15385,
Other Properties For Concrete Materi	als	
Specified Concrete Compressive St	rength, fc 27	579,032
Expected Concrete Compressive St	rength 27	579,032
Lightweight Concrete		
Shear Strength Reduction Factor	or in the second se	
Curtat Ta A damaged Descents Disc	les :	

Şekil 3.42 : Sabit alanlı eliptik plağın Elastisite modülü ve Poisson's oranı.

PLAK	Name	Concrete	Symmetry Type Isotropic
Modulus E	s of Elasticity 25000000,	Weight and Mass Weight per Unit Volume Mass per Unit Volume 0,	Units KN, m, C
Poisson U Coeff o	0,3	Other Properties For Concrete Materials Specified Concrete Compressive Streng Expected Concrete Compressive Streng Lightweight Concrete Shear Strength Reduction Factor	th, fc 27579,032 th 27579,032
A Shear N G	9,900E-06 fodulus 9615385,	Advanced Material Property Data Nonlinear Material Data	Material Damping Properties
		Time Dependent Properties	Thermal Properties

Şekil 3.43 : Sabit alanlı eliptik plak malzeme özellikleri.

Material Name PLAK	
Material Grade	
Material Notes	Modify/Show
Material Type Directional Symmetry Type	Concrete
Display Color	
Material Properties are Tem	perature Dependent
Modify/Show Ma	terial Properties

Şekil 3.44 : Sabit alanlı eliptik plak malzeme özellikleri.

Z=1 metre kotuna tanımlanan eliptik plak eleman atanmıştır (Şekil 3.45).

Şekil 3.45 : Z=1 m kotuna eliptik plak eleman ataması.

Zemin parametreleri $k^* = ka^2b^2/D$ ve $G_f^* = G_fab/D$ formülasyonlarıyla boyutsuzlaştırılmıştır. Boyutsuz zemin yay sabiti $k^* = 2,88$ boyutlu hale çevrilerek SAP2000 programına $k = 146,52kN/m^2$ olarak girilmiştir (Şekil 3.46).

Şekil 3.46 : Zemin yay sabiti ataması.

Boyutsuz ortotropik zemin kayma parametreleri $G_{fl}^*=0,36$ ve $G_{f2}^*=36$ boyutlu değerlere çevrilerek, $G_{f1}=1373,626374$ GPa ve $G_{f2}=137362,6374$ GPa olarak SAP2000 programına girilmiş ve zemin Plain-Strain tipi ve ortotropik özellik seçilmiştir (Şekil 3.47, Şekil 3.48, Şekil 3.49). Z=0 metre kotuna tanımlanan zemin eleman atanmıştır (Şekil 3.50).

Section Name	ZEMIN
Section Notes	Modify/Show
	Display Color
Туре	
Plane-Stress	
Plane-Strain	
Incompatible Mode	s
Material	
Material Name	+ ZEMIN
Material Angle	30,
Thickness	
Thickness	1,
Stiffness Modifiers	Temp Dependent Properties

Şekil 3.47 : Plain-Strain eleman, zemin açısı θ =30°.

Material Name ZEMIN	
Material Grade	
Material Notes	Modify/Show
Options	
Material Type	Other 👻
Directional Symmetry Type	Orthotropic -
Display Color	
Material Properties are Te	emperature Dependent
Modifu/Show N	Interial Properties

Şekil 3.48 : Zeminin ortotropik özelliği.

	Name	Material Type	Symmetry Type
ZEMIN		Other	Orthotropic
lodulus	of Elasticity	Weight and Mass	Units
E1	0,	Weight per Unit Volume	KN, m, C
E2	0,	Mass per Unit Volume 0,	
E3	0,	Advanced Material Property Data	
oisson		Nonlinear Material Data	Material Damping Properties
U12	0,	Time Dependent Properties	Thermal Properties
U13	0,		· · ·
U23	0,		
Coeff of	Thermal Expansion		
A1	0,		
A2	0,		
A3	0,		
Shear M	odulus		
G12	0,		
G13	1373,6264		
	127262.64		

Şekil 3.49 : Zemin kayma parametreleri.

Şekil 3.50 : Z=0 m kotu zemin eleman ataması.

Eliptik plak üzerine etki eden yayılı yük $q=1000 \text{ kN/m}^2$ olarak girilmiştir (Şekil 3.51).

Şekil 3.51 : Eliptik plağa yayılı yük girilmesi.

Location Assignments Loads Identification Label 2162			the second second second second second second second second second second second second second second second se
Constraint Name	EQUAL_57_2162		
Туре	Equal		•
Restraint	u1, u2, u3, r1, r2, r3	KN, m, C 👻	
Local Axes	Nene		
Massas	None	ResetAll	
Danel Zone	None		
Ioint Patterns	None		
Group	All		
Generalized Displs	None		
RS Named Sets	None		
Plot Functions	None		
Merge Number	0	Update Display	
Double click white background o	cell to edit item.	Modify Display OK Cancel	

Şekil 3.52 : Eliptik plak ankastre kenar mesnetleri ve SapTransform programı ile eşitleme

durumu.

 Location Assignments Loads		
Identification Label 57		
Constraint		
Name	EQUAL_57_2162	
Туре	Equal	
Restraint	u1, u2, u3, r1, r2, r3	KN m C
Local Axes	Default	KN, III, C 🗸
Springs	None	
Masses	None	Reset All
Panel Zone	None	
Joint Patterns	None	
Group	All	
Generalized Displs	None	
RS Named Sets	None	
Plot Functions	None	
Merge Number	0	Update Display
Double click white background ce	II to edit item.	Modify Display OK Cancel

Şekil 3.53 : Zemin eleman ankastre kenar mesnetleri ve SapTransform programı ile eşitleme durumu.

Düzgün yayılı yük altında, sabit alanlı eliptik plağın, orta noktasında, boyutsuzlaştırılmış çökme, eğilme momenti ve burulma momenti değerleri karşılaştırılmıştır. w^* boyutsuz çökme olmak üzere $w^* = (wD/qa^2b^2)x1000$ ifadesiyle; M^* boyutsuz eğilme momenti olmak üzere $M^* = (M/qab)x1000$ ifadesiyle; T^* boyutsuz burulma momenti olmak üzere $T^* = (T/qab)x1000$ ifadesiyle dönüştürülmüş ve Çizelge 3.6 'da verilmiştir. θ zemin açısı 0°, 30°, 45°, 60° ve 90° olacak şekilde değiştirilerek, değerler karşılaştırılmıştır (Çizelge 3.6). w ve M değerleri SAP2000 sonuçlarından okunan değerlerdir. [9]'da T ile verilen değişken SAP2000'de M_{12} burulma momentini ifade etmektedir. Örnek 1'de SAP2000 sonuçları 0° zemin açısı için gösterilmişti. Örnek 3.1'den farklı olarak zemin açısı $\theta=30^\circ$ olan sayısal değerler incelenecektir (Şekil 3.54, Şekil 3.55, Şekil 3.56, Şekil 3.57). Aynı şekilde 0°, 45°, 60° ve 90° zemin açıları için de değerler okunmuş ve çizelgeye girilmiştir. Çökme birimi metre, moment birimi kNm'dir.

Şekil 3.54 : Zemin açısı θ=30° halinde, düzgün yayılı yük altında, sabit alanlı eliptik plağın, orta noktasındaki çökme değeri.

Şekil 3.55 : Zemin açısı θ =30° halinde, düzgün yayılı yük altında, sabit alanlı eliptik plağın, orta noktasındaki M₁₁ momenti değeri.

Şekil 3.56 : Zemin açısı θ =30° halinde, düzgün yayılı yük altında, sabit alanlı eliptik plağın,
orta noktasındaki M₂₂ momenti değeri.

Şekil 3.57 : Zemin açısı θ =30° halinde, düzgün yayılı yük altında, sabit alanlı eliptik plağın,
orta noktasındaki M₁₂ momenti değeri.

Düzgün yayılı yük altında sab	it alanl	ı elip	tik	plağın orta nok	tasında çökme	ve eğilme mome	nti değerleri	
						Çökme (w, w [*])	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	3		2,10	2,37	2,71	3,17	3,80
Bu çalışma (w [*])	0,1	3		2,11	2,38	2,72	3,17	3,79
Bu çalışma (w)	0,1	3		0,0414	0,0467	0,0534	0,0623	0,0744
					Eğilm	e momenti (M ₁₁	, M ₁₁ [*])	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	3		8,40	9,76	11,53	13,89	17,33
Bu çalışma (M_{11}^{*})	0,1	3		8,43	9,79	11,61	14,02	17,33
Bu çalışma (M ₁₁)	0,1	3		632,4768	735,7031	870,6965	1051,7287	1299,5652
					Eğilm	e momenti (M ₂₂	, M ₂₂ *)	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	3		21,47	24,95	29,52	35,68	44,79
Bu çalışma (M_{22}^{*})	0,1	3		21,65	25,20	29,86	36,17	45,08
Bu çalışma (M ₂₂)	0,1	3		1623,9074	1889,9191	2239,8628	2712,7432	3381,3310
			2		Buruln	na momenti (M ₁	$_{2}, M_{12}^{*})$	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Kutlu, A. ve arkadaşları [9]	0,1	3		0,00	0,16	0,25	0,32	0,00
Bu çalışma (M_{12}^{*})	0,1	3		0,01	0,15	0,23	0,29	0,02
Bu çalışma (M ₁₂)	0,1	3		0,4807	11,1512	17,5730	21,4412	1,8540

Çizelge 3.6 : Düzgün yayılı yük altında, sabit alanlı eliptik plağın, orta noktasında, çökme, eğilme momenti ve burulma momenti değerleri.

Çizelge 3.6 'dan anlaşıldığı üzere sonuçlar birbiriyle uyuşmaktadır. SAP2000 programında zemin modellemesinin doğruluğu bununla kanıtlanmıştır.

Çökn	ne değerleri	için görece	li hata hesa	bı (%)
0°	30°	45°	60°	90°
0,30	0,25	0,25	0,02	0,39
Eğilme 1	nomenti M	11 için göre	celi hata he	sabı (%)
0°	30°	45°	60°	90°
0,39	0,32	0,69	0,95	0,01
Eğilme 1	nomenti M ₂	22 için göre	celi hata he	sabı (%)
0°	30°	45°	60°	90°
0,84	0,99	1,16	1,36	0,66
Burulma	momenti M	l ₁₂ için göre	eceli hata he	esabı (%)
0°	30°	45°	60°	90°
0,00	8,26	6,48	11,26	0,00

Çizelge 3.7 : Eliptik plak için göreceli hata hesabı.

Çizelge 3.6 ve Çizelge 3.7 'ye göre sonuçlar incelendiğinde;

1) Çökme değerlerinin zemin açısı arttıkça arttığı görülmektedir. Zemin açısı $\theta=0^{\circ}$ olduğunda, çökme değeri 0,0414 m olarak ortaya çıkmış; örneğin zemin açısı $\theta=60^{\circ}$ olduğunda da çökme değeri 0,0623 m olduğu tespit edilmiştir. Yani zemin açısı değişimi çökme değerlerini etkilememekte, zemin açısı arttıkça çökmelerde artmaktadır. Çizelge 3.7'de verilen göreceli hata oranları hesaplanmış, bu hata oranlarının kabul edilebilir seviyede olduğu belirlenmiştir.

2) M_{11} eğilme momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye doğru gidildikçe artttığı görülmektedir.

3) M_{22} eğilme momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye doğru gidildikçe arttığı görülmektedir.

4) M_{12} burulma momenti değerlerinin zemin açısı $\theta=0^{\circ}$ 'de ve $\theta=90^{\circ}$ 'de sonuçların neredeyse bire bir uyumlu olduğu görülmektedir.

5) Çizelge 3.7 incelendiğinde referans alınan sayısal örneklerle [9], çökme sonuçlarının ortalama %0,24 hata ile, M_{11} eğilme momentlerinin ortalama %0,47 hata ile, M_{22} eğilme momentlerinin ortalama %1,00 hata ile, M_{12} burulma momentlerinin ortalama %5,2 hata ile doğrulandığı görülmektedir (Çizelge 3.7).

3.4 İki Parametreli Genişletilmiş Zemine Oturan Eliptik Plak

Örnek 3.3'teki tüm veriler aynı kalacak şekilde, sadece zemin genişletilmiştir. Zeminin genişletilmemiş hali ile, genişletilmiş haldeki değerler karşılaştırılmıştır.

Şekil 3.58 : Genişletilmiş zemine oturan eliptik plak sisteminin üç boyutlu görünümü.

Şekil 3.59 : Genişletilmiş zemine oturan eliptik plak sistemi.

Şekil 3.60 : Genişletilmiş zemin sistemi.

Çizelge 3.8 : Genişletilmiş zemin ve genişletilmemiş zemin için, düzgün yayılı yük altında, sabit alanlı eliptik plağın, orta noktasında, çökme, eğilme momenti ve burulma momenti değerleri.

Düzgün yayılı yük altında sabit	alanlı	elipt	ik	plağın orta n	oktasında çö	kme ve eğilr	ne momenti o	leğerleri
						Çökme (w)		
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.4 (w)	0,1	3		0,2491	0,3169	0,4225	0,5892	0,8539
Örnek 3.3 (w)	0,1	3		0,0414	0,0467	0,0534	0,0623	0,0744
				Eğilme momenti (M ₁₁)				
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.4 (M ₁₁)	0,1	3		815,2030	1111,8411	1613,1825	2146,7313	2036,8176
Örnek 3.3 (M ₁₁)	0,1	3		632,4768	734,3733	870,6965	1051,7287	1299,5652
					Eğiln	ne momenti (M ₂₂)	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.4 (M ₂₂)	0,1	3		1951,3414	2494,0545	3292,4819	3988,3877	2817,8411
Örnek 3.3 (M ₂₂)	0,1	3		1623,907	1889,919	2239,863	2712,743	3381,3310
					Buruh	ma momenti	(M ₁₂)	
	h/b	a/b	θ	0°	30°	45°	60°	90°
Örnek 3.4 (M ₁₂)	0,1	3		0,1116	99,7264	249,2610	353,7717	3,7866
Örnek 3.3 (M ₁₂)	0,1	3		0,4807	11,0477	17,5730	21,4412	1,8540

Genişletilmemiş zeminde değerlerin daha küçük olduğu görülmektedir. Genişletilmiş zemin uygulamasında değerler daha büyüktür, gerçeğe daha yakın modelleme sağlanmıştır.

Çizelge 3.8'de verilen Örnek 3.3'deki değerler zeminin genişletilmemiş halini, Örnek 3.4 ise zeminin genişletilmiş haldeki değerleri kapsamaktadır. Çizelge 3.8'deki tüm değerler SAP2000'den alınmıştır. Çizelge 3.8'i incelediğimizde;

1) Örnek 3.3 yani genişletilmemiş zemin modelinde çözülen plak çökme değerlerinin, bu örnekteki genişletilmiş zemine oturan plağa ait çökme değerlerinden daha küçük olduğu görülmektedir. Örnek 3.4 genişletilmiş zemine oturan plaktaki çökme değerleri daha büyüktür. Buradan genişletilmiş zemin modelinin gerçeğe daha yakın modelleme sağladığı anlaşılmaktadır. Çünkü gerçek hayatta zemin yapı altında sonsuz devam etmektedir. Bu nedenle bu tip yapı zemin problemlerinde zemin genişletilerek çözüme ulaşılması sonucu bir zorunluluk olarak karşımıza çıkmaktadır.

2) Aynı şekilde genişletilmiş zemin modelinde çözülen plak M_{11} ve M_{22} eğilme momenti değerlerinin, genişletilmemiş zemin modelinde çözülen plak elemanın M_{11} ve M_{22} eğilme moment değerlerinden daha büyük olduğu görülmektedir. Örneğin zemin açısı θ =60° halinde M_{11} eğilme momenti genişletilmemiş zemin için 1050 kNm mertebesindeyken, genişletilmiş zeminde ise 2150 kNm civarındadır. Bu da yaklaşık 1100 kNm fazla moment anlamına gelmektedir.

3) M₁₂ burulma momenti değerlerinin genişletilmiş zemine oturan plak için daha büyük olduğu görülmektedir. Genişletilmiş zemin için çözümde burulma momentleri, genişletilmemiş zemin için çözüme nazaran daha büyük olduğu görülmektedir.

4) Çökme değerlerinin iki durumda da zemin açısı arttıkça arttığı görülmektedir.

5) M_{11} eğilme momenti değerlerinin, genişletilmiş zemin durumunda, zemin açısı $\theta=0^{\circ}$ 'den $\theta=60^{\circ}$ 'ye kadar arttığı; zemin açısı $\theta=90^{\circ}$ 'de azaldığı görülmektedir. Buna karşılık M_{11} eğilme momenti değerlerinin, genişletilmemiş zemin durumunda, zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye kadar arttığı görülmektedir.

6) M_{11} eğilme momenti değerlerine benzer şekilde; M_{22} eğilme momenti değerlerinin genişletilmiş zemin durumunda, zemin açısı $\theta=0^{\circ}$ 'den $\theta=60^{\circ}$ 'ye kadar arttığı; zemin açısı $\theta=90^{\circ}$ 'de azaldığı görülmektedir. Buna karşılık M_{22} eğilme momenti değerlerinin, genişletilmemiş zemin durumunda, zemin açısı $\theta=0^{\circ}$ 'den $\theta=90^{\circ}$ 'ye kadar arttığı görülmektedir. 7) M_{11} ve M_{22} eğilme momenti değerlerine benzer olarak; M_{12} burulma momenti değerlerinin genişletilmiş zemin durumunda, zemin açısı $\theta=0^{\circ}$ 'den $\theta=60^{\circ}$ 'ye kadar arttığı; zemin açısı $\theta=90^{\circ}$ 'de azaldığı görülmektedir. Buna karşılık M_{12} burulma momenti değerlerinin, genişletilmemiş zemin durumunda, zemin açısı $\theta=0^{\circ}$ 'den $\theta=60^{\circ}$ 'ye kadar arttığı zemin açısı $\theta=90^{\circ}$ 'de azaldığı görülmektedir.

Zeminin g	enişletilmiş	durumund	a değişimle	er (%)	
Zemin açısı (0)	0°	30°	45°	60°	90°
Çökme (w)	501,69	578,59	691,20	845,75	1047,72
Eğilme momenti (M ₁₁)	28,89	51,40	85,27	104,11	56,73
Eğilme momenti (M ₂₂)	20,16	31,97	46,99	47,02	20,00
Burulma momenti (M_{12})	330,62	802,69	1318,43	1549,96	104,24

Çizelge 3.9 : Zeminin genişletilmiş durumunda değişimler (%).

8)

Çizelge 3.9'da görüldüğü üzere zemin genişletilince çökme değeri yaklaşık %730 mertebesinde artmaktadır. M_{11} eğilme momenti zemin genişletilince yaklaşık %65 artmaktadır. M_{22} eğilme momenti zemin genişletilince yaklaşık %33 artmaktadır. M_{12} burulma momenti Zemin açısı θ =0° yaklaşık %100 oranında azalmış, buna karşın diğer zemin açılarında %940 mertebesinde artmıştır.

3.5 İki Parametreli Genişletilmiş Zemine Oturan Daire Halkası Temel

Daha önce literatüre geçmiş bir örnek SAP2000 programında modellenmiş ve sonuçlar karşılaştırmalı olarak verilmiştir [5]. Bahse konu çalışmada iki parametreli genişletilmiş zemine oturan daire halkası temelin hesabı yapılmıştır. İki farklı tabaka kalınlığına sahip daire halkası temelin eksenini oluşturan 4,5 metre yarıçaplı daire çevresi üzerinde, eşit aralıklı 6 noktanın her birinden P=1000 kN düşey yük etkidiği varsayılmıştır (Şekil 3.61). Bu kısımlar 0,80 metre kalınlığındaki temeli oluştururken, halka temelin diğer kısımları 0,30 metre kalınlıklı olarak tanımlanmıştır (Şekil 3.62).

Şekil 3.61 : Daire halkası temelin planı.

Şekil 3.62 : Daire halkası temelin kesiti.

Modele ait üç boyutlu SAP2000 ekranı Şekil 3.63'te görülmektedir (Şekil 3.63).

Şekil 3.63 : İki parametreli genişletilmiş zemine oturan daire halkası temel sisteminin üç boyutlu görüntüsü.

Kalınlığı 0,3 metre olan daire halkası temelin dış yarıçapı $R_2=6,3$ metre ve iç yapıçapı $R_1=2,7$ metre olarak belirlenmiş, Z=0 metre kotuna girilmiş ve daire halkası temelin aks sistemi gösterilmiştir (Şekil 3.64, Şekil 3.65, Şekil 3.66).

Plates and Pipes Templates	Add New Component	
Add Component Component Category Gircular Plates Component Type With Circular Hole Edit Components	Component Parameters General Name temel Dimensions Inner Radius, R1 (m) 0,3 Plate Thickness (m) 0,3 Meshing Options Max Mesh Size (m) 0,06	Parametric Definition
Locate	Name Name to identify the component in the sub model.	
✓ Auto Add Constraints	Locate in Model	OK Cancel

Şekil 3.64 : Daire halkası temel geometrisinin oluşturulması.

Şekil 3.65 : Daire halkası temel.

System Nan	ne	GLO	BAL				Quick Start
X Grid Data							
Grid ID	Ordinate (m)	Line Type	Visible	Bubble Loc	Grid Color		
	-6,3	Primary	Yes	End		Add	
	0	Primary	Yes	End			
	6,3	Primary	Yes	End		Delete	
	-6,3 0	Primary Primary	Yes Yes	End		Delete	Hide All Grid Lines
Grid ID	Ordinate (m)	Line Type	Visible	Bubble Loc	Grid Color	Add	0 0 -,
	0	Primary	Yes	End		Delete	Hide All Grid Lines
-	6,3	Primary	Yes	End			Glue to Grid Lines
							Bubble Size 2,4384
							Reset to Default Color
Z Grid Data	Ordinate (n	n) Line	Туре	Visible	Bubble Loc		Reorder Ordinates
Z Grid Data Grid ID		Pri	mary	Yes	End	Add	
Z Grid Data Grid ID	-1			Yes	End	Delete	
Z Grid Data	-1 0	Pri	mary			Delete	

Şekil 3.66 : Daire halkası temelin aks sistemi.

Temel malzemesinde Poisson's oranı v=0,16 ve Elastisite modülü $E=2.10^7 kN/m^2$ olarak alınmıştır (Şekil 3.67).

Material Name and Display Color	temel
Material Type	Concrete
Material Grade	
Material Notes	Modify/Show Notes
indicital notes	mouny/onow notes
Veight and Mass	Units
Weight per Unit Volume	KN, m, C
Mass per Unit Volume 0,	
sotropic Property Data	
Modulus Of Elasticity, E	2000000,
Poisson, U	0,16
Coefficient Of Thermal Expansion, A	9,900E-06
Shear Modulus, G	8620690,
Other Properties For Concrete Materia	ls
Specified Concrete Compressive Stre	ength, fc 27579,032
Expected Concrete Compressive Stre	ength 27579,032
Lightweight Concrete	
Shear Strength Reduction Factor	

Şekil 3.67 : Temel malzemesi Poisson's oranı ve Elastisite modülü.

Temel kalınlığı 0,30 metre olarak SAP2000 programına girilmiştir (Şekil 3.68).

Section Name teme	v/Show	Display Color
Type	Thickness	
Shell - Thin	Membrane	0,3
Shell - Thick	Bending	0,3
Plate - Thin	Material	
Plate Thick	Material Name +	temel
Membrane	Material Angle	0,
Shell - Layered/Nonlinear	Time Dependent Properties	
Modify/Show Layer Definition	Set Time Depe	ndent Properties
Concrete Shell Section Design Parameters	Stiffness Modifiers	Temp Dependent Propertie
Modify/Show Shell Design Parameters	Set Modifiers	Thermal Properties

Şekil 3.68 : Temel kalınlığı.

Malzeme özellikleri ve kesiti tanımlanan temel eleman Z=0 metre kotuna atanmıştır (Şekil 3.69).

📜 X-Y Plane @ Z=0			
	bject Model - Area Information	NAM	×
Loo	cation Assignments Loads		
	Identification		
$\langle \times \times \times \times \rangle \times \langle$	Label 1351		
\times \times \times \times \setminus			
\checkmark \times \times \sim \times			
$\wedge \times \times \times \times$	Section Property		1
\checkmark \checkmark \checkmark \land \land	Section Name	temel	
\searrow \times \times \checkmark	Section Type	Shell (Plate-Thick)	
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	Property Modifiers	None	
	Material Overwrite	None	KN, m, C 👻
	Thickness Overwrite	None	
	Joint Offset Overwrite	None	Reset All
	Local Axes	Default	
	Area Springs	None	
	Area Mass	None	
	Automatic Area Mesh	None	
	Auto Edge Constraint	No	
	Edge Releases	None	
	Material Temp	Default	Update Display
	Rebar Ratio for Creep Analysis	None	Modify Display
	Group	All	
	Plot Functions	None	ОК
			Cancel
			Calicer
	Double click white background cell to	o edit item.	

Şekil 3.69 : Z=0 metre kotuna temel eleman ataması.

0,80 metrelik temel tabakasının Poisson's oranı v=0,16 ve Elastisite modülü $E=2.10^7 \text{ kN/m}^2$ olark girilmiştir (Şekil 3.70, Şekil 3.71).

Material Name and Display Color Material Type Material Grade Material Notes	plak_80 Concrete Modify/Show Notes
Weight and Mass Weight per Unit Volume Mass per Unit Volume 0,	Units KN, m, C 🔹
Isotropic Property Data Modulus Of Elasticity, E Poisson, U Coefficient Of Thermal Expansion, A Shear Modulus, G	20000000, 0,16 9,900E-06 8620690,
Other Properties For Concrete Material Specified Concrete Compressive Stre Expected Concrete Compressive Stre Lightweight Concrete Shear Strength Reduction Factor	ls ength, fc 27579,032 ength 27579,032
Switch To Advanced Property Displa	ay

Şekil 3.70 : 0,80 metrelik temel tabakasının Poisson's oranı ve Elastisite modülü.

Section Name plak_80 Section Notes Modify	Display Color				
Туре	Thickness				
💿 Shell - Thin	Membrane 0,8				
Shell - Thick	Bending 0,8				
Plate - Thin	Material				
Plate Thick	Material Name + plak_80				
Membrane	Material Angle 0,				
Shell - Layered/Nonlinear	Time Dependent Properties				
Modify/Show Layer Definition	Set Time Dependent Properties				
Concrete Shell Section Design Parameters Modify/Show Shell Design Parameters	Stiffness Modifiers Temp Dependent Properties				

Şekil 3.71 : 0,80 metrelik temel tabakası.

Halka temelin eksenini oluşturan 4,5 metre yarıçaplı daire çevresi üzerine gelecek olan P=1000 kN düşey yükün etkiyeceği kısımlara 0,80 metrelik temel elemanı atanmıştır (Şekil 3.72).

Şekil 3.72 : Z=0 metre kotuna 0,80 metrelik temel elemanı ataması.

Oluşturulan daire halka temelin 1 metre altına genişletilmiş zemin eleman tanımlanmıştır. Tanımlanan genişletilmiş zemin eleman Şekil 3.73'te görülmektedir (Şekil 3.73).

Şekil 3.73 : Z= -1 metre kotundaki genişletilmiş zemin eleman.

Plak altındaki zeminin genişletilmiş plak dışında da devam etmesi sağlanmıştır. Plak dışında devam eden zemin eleman ve daire halkası temelin iç kısmı, SAP2000 programının *Edit Areas, Divide Areas* özelliğinden faydalanılarak ya da elle sonlu elemanlara ayrılmıştır (Şekil 3.74).

File	e Edit	View	Define	Draw	Select	Assigr	n Ar	nalyze	Display	Desig	jn (Options	Тоо	ls He	lp	
	10	Undo			Ctrl+	Z	2.0	Ð,	Q 💓	⁸ ₿ 3-	d xy	xz y	z nv	36		₽
	10	Redo			Ctrl+	Y									•	• ×
~	¥	Cut			Ctrl+	Х	د داد :	1: N:		<u> </u>	<u> </u>	<u></u>	* *	- 424		
-		Сору			Ctrl+	C		3	\$ \$ 3		\sim		$\langle \rangle$	≥ 2		
~	Ē	Paste			Ctrl+	V					X	\mathbf{S}		X		
$\overline{\mathbf{v}}$	×	Delete			Dele	te		35		L.		\sum		X		
X	F	Add to M	Model From	m Templat	te			33			$\langle \rangle$	S.				
	E.	Interacti	ve Databa	se Editing.	Ctrl+	ъ				$\langle S \rangle \rangle$	$\langle \rangle$	SX.	23. X			
Ď	111	Replicat	e		Ctrl+	R	33				\mathbf{S}	SX	X	1		
	T	Extrude				•					33	202	X	3.28		
	+‡+	Move			Ctrl+	М						彩				
	•	Edit Poir	nts			•	Same a					22		3.3		
	~	Edit Line	25			F		an								
	۳î	Edit Area	as			•	\otimes	Divid	e Areas			<u>_</u>				
194 V.	Ø	Divide S	olids				2	Merg	e Areas			羔	833			
ペ 上	• å	Select D	uplicates				B	Expar	nd/Shrink	Areas		3				

Şekil 3.74 : Meshlere ayırma.

Genişletilmiş zemin eleman oluşturulurken ortotropik malzeme özelliği seçilmiştir (Şekil 3.75).

Matarial Namo	
Material Grade	
Material Notes	Modify/Show
Options	
Material Type	Other -
Directional Symmetry Type	Orthotropic -
Display Color	
Material Properties are Tem	perature Dependent
Modify/Show Ma	terial Properties

Şekil 3.75 : Ortotropik malzeme özelliği.

Zemin kayma parametrelerinin değerleri belirlenirken Örnek 5.4, Tablo 5.12'de sunulan Zemin Yüzey Parametresi ve Karakteristiklerinde Poisson's oranı v=0,25 için verilen $C_T=43404,87$ kN/m değerinin iki katı olan 86809,74 kN/m olarak SAP2000 programına girilmiştir (Şekil 3.76) [5].

Material	Name	Material Type	Symmetry Type
zemin		Other	Orthotropic
Modulus	of Elasticity	Weight and Mass	Units
E1	0,	Weight per Unit Volume	KN, m, C 👻
E2	0,	Mass per Unit Volume 0,	
E3	0,	- Advanced Meterial Branathy Data	
Poisson		Nonlinear Material Data	Material Damping Properties
U12	0,	Time Dependent Properties	Thermal Properties
U13	0,		
U23	0,		
Coeff of	Thermal Expansion		
A1	0,		
A2	0,		
A3	0,		
Shear M	odulus		
G12	0,		
G13	86809,74		
G23	86809,74		

Şekil 3.76 : Zemin kayma parametrelerinin girilmesi.

Zemin eleman tanımlanırken SAP2000 programında Plain-Strain tipi seçilmiştir (Şekil 3.77).

zemin
Modify/Show
Display Color
zemin 🔻
0,
1,
Temp Dependent Properties
Thermal Properties
Cancel

Şekil 3.77 : Plain-Strain eleman.

Tanımlanan zemin eleman Z=-1 metre kotuna atanmıştır. Genişletilmiş zemin eleman oluştururken, üçgen ve dörtgen geometrili sonlu elemanlar oluşturularak genişletilmiş zemin elde edilmiştir. Halka temelin orta noktasından itibaren 16,3 metre yani halka temelin en dış noktalarından onar metre dışarı çıkılarak 16,3 m x 16,3 m'lik genişletilmiş zemin eleman oluşturulmuştur (Şekil 3.78).

	🔀 Object Model - Area Information		
	Location Assignments Loads		
+	dentification		
$(X \times X \times Y)$	2440		
	Label 3410		
$ / / \times \times \times \times$			
$ /\times/\times\times\times$	Section Property		
	Section Name	zemin	
	Section Type	Plane-Strain	
$M \rightarrow X \times X$	Property Modifiers	None	KN m C
	Material Overwrite	None	Riv, in, C
	Thickness Overwrite	None	
	Joint Offset Overwrite	None	Reset All
	Local Axes	Default	
	Area Spring	-	
	Spring Type	Simple	
	Stiffness/Length2	10081,85	
	Springs Resists	Tension and Compres	
	Spring Tension Dir Type	Normal To Face	
	Face	Тор	Update Display
	Normal Orientation	Inward	Modify Display
	Area Mass	None	induity coopery
	Automatic Area Mesh	None	ОК

Şekil 3.78 : Z=-1 m kotunda tanımlı genişletilmiş zemin eleman.

Oluşturulan zemin elemanın altına yaylar atanmıştır. Yay katsayısı değeri belirlenirken referans aldığımız örnek, Tablo 5.12'de sunulan Zemin Yüzey Parametresi ve Karakteristiklerinde Poisson's oranı v=0,25 için verilen $C=10081,85 \text{ kN/m}^3$ değeri SAP2000 programına girilmiştir (Şekil 3.79, Şekil 3.80) [5].

Simple	
Spring Stiffness per Unit Area	10081,85 kN/m
Simple Spring Resists	Tension and Compression 🔹
O Link Property	+
Local 2 Axis Angle from Default Orient	tation
opring Location (Area Object Face)	
Area Object Face	Тор 👻
Area Object Edge Number	
pring Tension Direction	
Parallel to Area Object Local Axis	
Normal to Specified Area Object Face	Inward 👻
O User Specified Direction Vector	
Coordinate System	
Local 1 Component	
Local 2 Component	
Local 3 Component	
Options	
Add to Existing Springs	
Replace Existing Springs	

Şekil 3.79 : Genişletilmiş zemin yay katsayısı ataması.

Şekil 3.80 : Z=-1 m kotu genişletilmiş zemin yay katsayısı ataması.

Daire halkası temelin eksenini oluşturan 4,5 metre yapıçaplı daire çevresi üzerinde eşit aralıklı olacak şekilde P=1000 kN düşey yük etkittirilmiştir. (Şekil 3.81, Şekil 3.82).

Şekil 3.81 : Daire halkası temele düşey tekil yük uygulanması.

Şekil 3.82 : Daire halkası temele düşey tekil yük uygulanması.

İki parametreli genişletilmiş zemine oturan dairesel temelin statik analizi SAP2000 programı yardımıyla yapılmıştır (Şekil 3.83).

_	_			Click to:
Case	lype	Status	Action	Run/Do Not Run Case
MODAL Modal	Not Run	Do not Run	Show Case	
				Delete Results for Case
			Run/Do Not Run All	
			Delete All Results	
				Show Load Case Tree
alysis Monitor Options	•			Model-Alive
Always Show				Bup New

Şekil 3.83 : SAP2000 analiz ekranı.
Elde edilen zemin parametreleri kullanılarak, genişletilmiş zemine oturan dairesel halka temel sistemin analizi yapılmış, Poisson's oranı v=0,25 hali için $\alpha=0$ aksı boyunca temel çökmesi ve zemin çökmesi ile M₁₁, M₂₂ ve M₁₂ momentlerinin değişimi gösterilmiştir. Bu örnek doğrulama örneği olarak çözülmüş ve sonuçlar doğrulanmıştır [5].

Şekil 3.84 : α=0 aksında daire halkası temel maksimum çökme.

Şekil 3.85 : α=0 aksında daire halkası temel minimum çökme.

	Temeldeki çökme, w (m)	Koordinat (m)
	-0,002	-6,3
	-0,0023	-5,884
	-0,0026	-5,493
	-0,0028	-5,127
	-0,0029	-4,783
	-0,0031	-4,461
	-0,0031	-4,158
	-0,0032	-3,875
	-0,0032	-3,609
	-0,0032	-3,359
	-0,0032	-3,125
	-0,0031	-2,906
	-0,0031	-2,7
	-0,0031	2,7
	-0,0031	2,906
	-0,0032	3,125
	-0,0032	3,359
	-0,0032	3,609
1	-0,0032	3,875
	-0,0031	4,158
	-0,0031	4,461
	-0,0029	4,783
	-0,0028	5,127
	-0,0026	5,493
	-0,0023	5,884
	-0,002	6,3

Çizelge 3.10 : Daire halkası temeldeki çökmeler (m).

Şekil 3.87 : Genişletilmiş zeminin kenarındaki çökme.

Şekil 3.88 : Genişletilmiş zeminin maksimum çökmesi.

Zemindeki çökme, w (m)	Koordinat (m)	Zemindeki çökme, w (m)	Koordinat (m)
0	-16,3	-0,0025	0,36
0	-15,775	-0,0025	0,72
0	-15,25	-0,0026	1,083
0	-14,375	-0,0026	1,446
-0,0001	-13,5	-0,0027	1,824
-0,0001	-12,75	-0,0029	2,201
-0,0002	-12	-0,003	2,451
-0,0003	-11,25	-0,0031	2,7
-0,0004	-10,5	-0,0031	2,906
-0,0005	-9,625	-0,0032	3,125
-0,0007	-8,75	-0,0032	3,359
-0,0009	-8,074	-0,0032	3,609
-0,0012	-7,398	-0,0032	3,875
-0,0016	-6,849	-0,0031	4,158
-0,002	-6,3	-0,0031	4,461
-0,0023	-5,884	-0,0029	4,783
-0,0026	-5,493	-0,0028	5,127
-0,0028	-5,127	-0,0026	5,493
-0,0029	-4,783	-0,0023	5,884
-0,0031	-4,461	-0,0019	6,3
-0,0031	-4,158	-0,0015	6,9
-0,0032	-3,875	-0,0012	7,5
-0,0032	-3,609	-0,001	7,875
-0,0032	-3,359	-0,0009	8,25
-0,0032	-3,125	-0,0007	8,625
-0,0031	-2,906	-0,0006	9
-0,0031	-2,7	-0,0005	9,5
-0,0029	-2,296	-0,0004	10
-0,0028	-1,892	-0,0003	11
-0,0027	-1,556	-0,0002	12
-0,0026	-1,219	-0,0001	12,625
-0,0025	-0,893	-0,0001	13,25
-0,0025	-0,567	0	14
-0,0025	-0,283	0	14,75
-0,0025	0	0	15,525
-0,0025	0,36	0	16,3

Çizelge 3.11 : Genişletilmiş zeminde çökmeler (m).

Şekil 3.89 : Genişletilmiş zeminde çökmeler.

Şekil 3.90 : α =0 aksında daire halkası temel maksimum M₁₁ momenti.

M ₁₁ (kNm)	Koordinat (m)
-1,098	-6,3
2,589	-5,884
19,539	-5,493
32,329	-5,127
102,383	-4,783
176,036	-4,622
190,809	-4,31
96,194	-4,158
58,429	-3,875
35,623	-3,609
20,632	-3,359
11,329	-3,125
4,833	-2,906
-1,144	-2,7
0,469	2,7
1,622	2,906
6,984	3,125
15,699	3,359
26,827	3,609
30,951	3,875
109,602	4,158
186,512	4,31
181,545	4,622
108,169	4,783
53,783	5,127
19,279	5,493
2,241	5,884
0,528	6,3

Çizelge 3.12 : α =0 aksında daire halkası temel M₁₁ momenti değerleri.

Şekil 3.91 : α =0 aksında daire halkası temel M₁₁ moment grafiği.

Şekil 3.92 : α =0 aksında daire halkası temel maksimum M₂₂ momenti.

M ₂₂ (kNm)	Koordinat (m)
8,851	-6,3
11,817	-5,884
17,925	-5,493
242,471	-5,127
371,633	-4,783
390,995	-4,622
390,815	-4,31
307,785	-4,158
26,173	-3,875
16,422	-3,609
10,401	-3,359
6,234	-3,125
3,455	-2,906
1,209	-2,7
4,831	2,7
4,294	2,906
6,437	3,125
10,467	3,359
16,745	3,609
280,459	3,875
384,263	4,158
395,585	4,31
386,909	4,622
290,503	4,783
22,069	5,127
16,465	5,493
12,395	5,884
12,102	6,3

Çizelge 3.13 : α =0 aksında daire halkası temel M₂₂ momenti değerleri.

Şekil 3.93 : α =0 aksında daire halkası temel M₂₂ moment grafiği.

3.6 İki Parametreli Zemine Oturan Dairesel Plağın Genişletilmemiş Zemine Oturması Hali İle Genişletilmiş Zemine Oturması Halinde Spektral Analizi

Örnek 3.1 İki Parametreli Zemine Oturan Dairesel Plak ile, Örnek 3.2 İki Parametreli Genişletilmiş Zemine Oturan Dairesel Plak için spektral analiz yapılmış ve sonuçlar karşılaştırılmıştır (Şekil 3.94).

Şekil 3.94 : Örnek 3.1 iki parametreli zemine oturan dairesel plak.

Spektral analiz yapılabilmesi için SAP2000 programının *Define* menüsünden *Material* kısmına gelinir ve plağın sıfır olan *Weight per Unit Volume* özelliği 25 kN/m³ olarak değiştirilir (Şekil 3.95). Hesaplarda zemin kütlesi ihmal edilmiştir.

Material Name and Display Color	plak
Material Type	Concrete \lor
Material Grade	
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 25.	KN, m, C
Mass per Unit Volume 2.5493	3
Isotropic Property Data	
Modulus Of Elasticity, E	25000000.
Poisson, U	0.3
Coefficient Of Thermal Expansion, A	9.900E-06
Shear Modulus, G	9615385.
Other Properties For Concrete Materials	
Specified Concrete Compressive Streng	gth, fc 27579.032
Expected Concrete Compressive Streng	gth 27579.032
Lightweight Concrete	
Shear Strength Reduction Factor	
Switch To Advanced Property Display	
Switch to Advanced Property Display	

Şekil 3.95 : Weight per unit volume (25 kN/m^3).

Analysis Options bölümünden Plane Grid - XY Plane seçilir (Şekil 3.96). Spektral analizin XY düzleminde yaptırılması sağlanır.

	RZ
Fast DOFs	
Space Frame Plane Frame Plane Grid Space	OK
	Cancel
	₩A
	Solver Options
Tabular File	
Automatically save XML, Excel or Microsoft Access table	ular file after analysis
File name	
Database Tables Named Set Group	
✓	~

Şekil 3.96 : Plane grid - XY plane.

Define menüsünün *Function* bölümünden Türkiye Bina Deprem Yönetmeliği 2018 (TBDY-2018) TSC-2018 *Function Type* olarak seçilir ve DEPREM olarak isimlendirilir (Şekil 3.97).

lesponse Spectra	Choose Function Type to Add	
DEPREM	AASHTO 2006	
	BC 2012 C IS 1893-2016 IS 1893-2002 Italian 3274 Italian NTC 2008 Italian NTC 2018 JTG/T B02-2013 KBC 2016 Korean KBC 2009 Mexico CFE-2008 Mexico CFE-2008 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBCC 2015 NBC 2015 NBC 2015 NBC 2015 NBC 2015 NBC 2015 NBC 2015 NBC 2015 NBC 2015 NBC 2014 YE 413 SP 14, 1330, 2014	
	TSC 2007	
	UBC 94	
	UBC 97	
	lleer	

Şekil 3.97 : TSC-2018 function type.

Response Spectrum TSC-2018 Function Definition Şekil 3.98'deki haliyle karşımıza çıkar (Şekil 3.98).

Şekil 3.98 : Response spectrum TSC-2018 function definition.

Define, Load Cases, Add New Load Case, Load Case Name:SPEKTRA1, Load Case Type, Response Spectrum, Modal Combination : SRSS, Load Name : U3, Function : DEPREM, Scale Factor : 3,27 adımları takip edilir (Şekil 3.99). Scale Factor 9,81/3=3,27 yatay depremin 1/3'inin düşey deprem olarak hesaplarda kullanılmasından ileri gelmektedir.

Load Case Nam	e		Notes	Load Case Type	
SPEKTRA1		Set Def Name	Modify/Show	Response Spectrum	▼ Design
Modal Combinati	on	GMC	n 1,	Directional Combination SRSS COS2	
 SRSS Absolute GMC 		GMC Periodic + Rigid Typ	12 0, De SRSS •	Clacs Absolute Scale Factor	
 NRC 10 Pe Double Sur 	rcent m			Mass Source Previous (MSSSRC1)	
Modal Load Cas Use Modes fro	e om this Modal Load	Case	MODAL -	Diaphragm Eccentricity Eccentricity Ratio	0,
 Standard - Advanced 	Acceleration Loadi	ng tia Loading		Override Eccentricities	Override
 Standard - Advanced Loads Applied Load Type 	Acceleration Loadi - Displacement Iner Load Name	ng tia Loading Function Scale Fac	tor	Override Eccentricities	Override
Standard - Advanced Loads Applied Load Type Accel Accel Show Add	Acceleration Loadi - Displacement liner Load Name U3 U3 Vanced Load Param	ng tia Loading Function Scale Face DEPREM 3.27 (CEPREM 3.27 CEPREM 3.27	Add Modify Delete	Override Eccentricities	Override
Standard - Advanced Advanced Loads Applied Load Type Accel Accel Show Adv Other Parameter	Acceleration Loadi - Displacement Iner Load Name U3 U3 Vanced Load Param	ng tia Loading Function Scale Fac DEPREM = 3.27 CEBREM 3.27 eters	Add Modify Delete	Override Eccentricities	Override

Şekil 3.99 : Load case data - Response spectrum.

0		0 1.1	A	Click to:
Case Name	lype	Status	Action	Run/Do Not Run Case
MODAL DIS YÜK	Linear Static Modal Linear Static	Finished Finished Finished	Run Run	Show Case
SPEKTRA1	Response Spectrum	Finished	Run	Delete Results for Case
				Run/Do Not Run All
				Delete All Results
				Show Load Case Tree
nalysis Monitor Option	S			Model-Alive
Always Show				Run Now
Never Show				

Response Spectrum SPEKTRA1 analiz ettirilir (Şekil 3.100).

Şekil 3.100 : Response spectrum SPEKTRA1 analizi.

Case/Combo Name:SPEKTRA1 durumunda M₁₁ ve M₂₂ momentleri okunur (Şekil 3.101).

Case/Combo	Component Type			
Case/Combo Name SPEKTRA1 ~	 Resultant Ford 	es 🛛 :	Shell Layer Stresses	
	O Shell Stresses	0 :	Shell Layer Strains	
	O Shell Strains	0	Concrete Design	
Multivalued Options				
Envelope Max	Component			
Sten	O F11	• M11	○ V13	
- sup	O F22	O M22	O V23	
	O F12	O M12	○ VMax	
Contour Range	○ FMax	O MMax		
Automatic Contour Range User Defined Contour Range	O FMin	O MMin		
Minimum Value for User Contour Range	○ FVM			
Maximum Value for User Contour Range				
Stress Averaging				
○ None				
At All Joints				
Over Objects and Groups Set Groups				
Missellaneous Ontions				
Show Continuous Contours (Enhanced Graphics)				
show continuous contours (crimanceu oraphics)				
Reset	Form to Default Values			
Devel Form	to Council Window Cattions			
Reset Form	to current window Settings			

 $\label{eq:sekil3.101:Case/Combo Name:SPEKTRA1 durumunda M_{11} ve M_{22} momentleri.$

Genişletilmemiş zemin ve SPEKTRA1 durumunda spektral analiz sonucu M_{11} =9,267 kNm olarak ortaya çıkmıştır (Şekil 3.102).

Şekil 3.102 : Genişletilmemiş zemin durumu spektral analiz sonucu M_{11} =9,267 kNm.

Genişletilmemiş zemin ve SPEKTRA1 durumunda spektral analiz sonucu M₂₂=7,996 kNm olarak ortaya çıkmıştır (Şekil 3.103).

Genişletilmemiş zemin ve SPEKTRA1 durumunda spektral analiz sonucu $M_{12}=0,032$ kNm olarak ortaya çıkmıştır (Şekil 3.104).

Şekil 3.104 : Genişletilmemiş zemin durumu spektral analiz sonucu M₁₂=0,032 kNm.

Aynı işlemler genişletilmiş zemin durumu için de tekrarlanmış ve sonuçlar aşağıda belirtilmiştir (Şekil 3.105).

Şekil 3.105 : Örnek 3.2 iki parametreli genişletilmiş zemine oturan dairesel plak.

Genişletilmiş zemin ve SPEKTRA1 durumunda spektral analiz sonucu M_{11} = 16,827 kNm olarak ortaya çıkmıştır (Şekil 3.106).

Şekil 3.106 : Genişletilmiş zemin durumu spektral analiz sonucu M₁₁=16,827 kNm.

Genişletilmiş zemin ve SPEKTRA1 durumunda spektral analiz sonucu M_{22} =12,028 kNm olarak ortaya çıkmıştır (Şekil 3.107).

Genişletilmiş zemin ve SPEKTRA1 durumunda spektral analiz sonucu $M_{12}=0,011$ kNm olarak ortaya çıkmıştır (Şekil 3.108).

Şekil 3.108 : Genişletilmiş zemin durumu spektral analiz sonucu M₁₂=0,011 kNm.

Çizelge 3.14 : Sabit alanlı dairesel plağın spektral analizi sonucu orta noktasında eğilme momenti değerleri.

Sabit alanlı dairesel plağın plağın orta noktasındaki eğilme ve burulma momenti değerleri					a momenti değerleri
M ₁₁ (kNm) M ₂₂ (kNm) M				M ₁₂ (kNm)	
Genişletilmemiş zemin hali 9,267 7,996				0,032	
Genişletilmiş zemin hali		16,827	12,028	0,011	

Sabit alanlı dairesel plağın spektral analizi sonucu, orta noktasındaki eğilme ve burulma momenti değerleri, zeminin genişletilmemiş hali ve zeminin genişletilmiş hali için ayrı ayrı verilmiştir (Çizelge 3.14). Çizelge 3.14 incelendiğinde;

1) Zemin ortotrop olduğundan M_{11} ve M_{22} moment değerleri birbirine eşit çıkmamaktadır. Zemin kayma modülleri G_{13} ve G_{23} birbirine eşit olarak girildiği takdirde, zeminin izotrop özelliği tanımlanmış olur ve M_{11} ve M_{22} moment değerleri birbirine eşit çıkmaktadır. Yani bunun anlamı dönel simetrik problemlerde zemiz izotrop ise, M_{11} ve M_{22} moment değerleri birbirine eşit çıkmaktadır. Fakat bu örnekte zemin ortotrop olduğundan M_{11} ve M_{22} momentleri birbirinden farklıdır (Çizelge 3.14).

2) Spektral analiz durumunda da zemin genişletildiği takdirde M_{11} ve M_{22} moment değerlerinin büyüdüğü görülmektedir. Genişletilmemiş zemin durumunda M_{11} ve M_{22} moment değerleri daha küçüktür.

Çizelge 3.15 : Zeminin genişletilmiş durumunda değişimler (%).

Zeminin genişletilmiş durumunda değişimler (%)			
Eğilme momenti (M ₁₁)	Eğilme momenti (M ₂₂)	Burulma momenti (M ₁₂)	
81,58	50,43	190,91	

Çizelge 3.15'ten görüldüğü üzere zemin genişletilince M₁₁ eğilme momenti yaklaşık %80 artmaktadır. M₂₂ eğilme momenti zemin genişletilince yaklaşık %50 artmaktadır. M₁₂ burulma momenti yaklaşık %190 oranında artmaktadır.

Ayrıca genişletilmemiş zemine oturan dairesel plak için ve genişletilmiş zemine oturan dairesel plak için ilk üç moda ait periyot değerleri T_1 , T_2 ve T_3 gösterilmektedir (Şekil 3.109, Şekil 3.110, Şekil 3.111, Şekil 3.112, Şekil 3.113, Şekil 3.114).

Şekil 3.109 : Genişletilmemiş zemin durumu için birinci moda ait periyot değeri T₁=0,0389 s.

Şekil 3.110 : Genişletilmemiş zemin durumu için ikinci moda ait periyot değeri T₂=0,02431 s.

Şekil 3.111 : Genişletilmemiş zemin durumu için üçüncü moda ait periyot değeri $T_3=0,019$ s.

Şekil 3.112 : Genişletilmiş zemin durumu için birinci moda ait periyot değeri $T_1=0,09416$ s.

Şekil 3.113 : Genişletilmiş zemin durumu için ikinci moda ait periyot değeri T₂=0,07517 s.

Şekil 3.114 : Genişletilmiş zemin durumu için üçüncü moda ait periyot değeri T₃=0,05097 s.

Çizelge 3.16 : İki parametreli zemine oturan sabit alanlı dairesel plağa uygulanan spektral analiz sonucu ilk üç moda ait periyot değerleri (s).

Sabit alanlı dairesel plağa uygulanan spektral analiz sonucu ilk üç moda ait periyot değerleri				
		T ₁ (s)	T ₂ (s)	T ₃ (s)
Genişletilmemiş zemin hali		0,03889	0,02431	0,01983
Genişletilmiş zemin hali		0,09416	0,07517	0,05097

Genişletilmiş zemine oturan dairesel plaktaki ilk üç moda ait periyot değerlerinin, genişletilmemiş zemine oturan dairesel plaktaki periyot değerlerinden daha büyük olduğu görülmektedir.

Tasarım spektrumunda genişletilmemiş zemine oturan dairesel plak için okunan periyot değerlerine karşılık gelen Sa ivme değerlerinin rijit bölgede kaldığı, genişletilmiş zemine oturan dairesel plak için ise tasarım spektrumunda,okunan periyot değerlerine karşılık gelen Sa ivme değerlerinin tepe düzlüğüne çıktığı görülmektedir. Daha büyük periyotlar daha büyük Sa değerinin olmasını bu da daha büyük kesit tesirlerinin oluşmasına neden olur. Bu da genişletilmiş zemine oturan plakta spektral analiz sonucu moment değerlerinin Çizelge 3.14'te görüldüğü üzere daha büyük çıkmasını doğrulamaktadır.

3.7 İki Parametreli Zemine Oturan Eliptik Plağın Genişletilmemiş Zemine Oturması Hali İle Genişletilmiş Zemine Oturması Halinde Spektral Analizi

Örnek 3.3 İki Parametreli Zemine Oturan Eliptik Plak ile, Örnek 3.4 İki Parametreli Genişletilmiş Zemine Oturan Eliptik Plak için spektral analiz yapılmıştır (Şekil 3.115).

Şekil 3.115 : Örnek 3.3 iki parametreli zemine oturan eliptik plak.

Örnek 3.6 'daki spektral analiz aşamaları aynen takip edilerek sonuçlar verilmektedir.

Şekil 3.116 : Genişletilmemiş zemin durumu spektral analiz sonucu M_{11} =2,414 kNm.

Şekil 3.117 : Genişletilmemiş zemin durumu spektral analiz sonucu M_{22} =3,648 kNm.

Şekil 3.118 : Genişletilmemiş zemin durumu spektral analiz sonucu M_{12} = 0,016 kNm.

Şekil 3.119 : Örnek 3.4 iki parametreli genişletilmiş zemine oturan eliptik plak.

Şekil 3.120 : Genişletilmiş zemin durumu spektral analiz sonucu M_{11} = 5,638 kNm.

Şekil 3.121 : Genişletilmiş zemin durumu spektral analiz sonucu M_{22} = 7,451 kNm.

Şekil 3.122 : Genişletilmiş zemin durumu spektral analiz sonucu M_{12} = 1,186 kNm.

Çizelge 3.17 : Sabit alanlı eliptik plağın spektral analizi sonucu orta noktasında eğilme momenti değerleri.

Sabit alanlı eliptik plağın plağın orta noktasındaki eğilme ve burulma momenti değerleri					
			M ₁₁ (kNm)	M ₂₂ (kNm)	M ₁₂ (kNm)
Genişletilmemiş zemin hali		2,414	3,648	0,016	
Genişletilmiş zemin hali		5,638	7,451	1,186	

Sabit alanlı eliptik plağın spektral analizi sonucu, orta noktasındaki eğilme ve burulma momenti değerleri, zeminin genişletilmemiş hali ve zeminin genişletilmiş hali için ayrı ayrı verilmiştir (Çizelge 3.17). Çizelge 3.17 incelendiğinde;

1) Elips geometrisinde dönel simetrik özellik bulunmadığından, M_{11} ve M_{22} moment değerleri birbirinden farklıdır. Burulma momenti M_{12} 'nin çok küçük olduğu görülmektedir (Çizelge 3.17).

2) Spektral analiz durumunda da zemin genişletildiği takdirde M_{11} ve M_{22} moment değerlerinin büyüdüğü görülmektedir. Genişletilmemiş zemin durumunda M_{11} ve M_{22} moment değerleri daha küçüktür.

3)

Cizelge 3.18 : Zeminin genişletilmiş durumunda değişimler (%).

Zeminin genişletilmiş durumunda değişimler (%)			
Eğilme momenti (M ₁₁)	Eğilme momenti (M ₂₂)	Burulma momenti (M_{12})	
133,55	104,25	7312,50	

Çizelge 3.18'den görüldüğü üzere zemin genişletilince M_{11} eğilme momenti yaklaşık %130 artmaktadır. M_{22} eğilme momenti zemin genişletilince yaklaşık %100 artmaktadır. M_{12} burulma momenti yaklaşık %7300 oranında artmaktadır.

Ayrıca genişletilmemiş zemine oturan eliptik plak için ve genişletilmiş zemine oturan eliptik plak için ilk üç moda ait periyot değerleri T_1 , T_2 ve T_3 gösterilmektedir (Şekil 3.123, Şekil 3.124, Şekil 3.125, Şekil 3.126, Şekil 3.127, Şekil 3.128).

Şekil 3.124 : Genişletilmemiş zemin durumu için ikinci moda ait periyot değeri T₂=0,0328 s.

Şekil 3.125 : Genişletilmemiş zemin durumu için üçüncü moda ait periyot değeri $T_3=0,028$ s.

Şekil 3.126 : Genişletilmiş zemin durumu için birinci moda ait periyot değeri $T_1=0,11186$ s.

Şekil 3.127 : Genişletilmiş zemin durumu için ikinci moda ait periyot değeri $T_2=0,09633$ s.

Şekil 3.128 : Genişletilmiş zemin durumu için üçüncü moda ait periyot değeri T₃=0,07715 s.

Çizelge 3.19 : İki parametreli zemine oturan sabit alanlı eliptik plağa uygulanan spektral analiz sonucu ilk üç moda ait periyot değerleri (s).

Sabit alanlı eliptik plağa uygulanan spektral analiz sonucu ilk üç moda ait periyot değerleri					
			T ₁ (s)	T ₂ (s)	T ₃ (s)
Genişletilmemiş zemin hali		0,03805	0,03282	0,02791	
Genişletilmiş zemin hali		0,11186	0,09633	0,07715	

Genişletilmiş zemine oturan eliptik plaktaki ilk üç moda ait periyot değerlerinin, genişletilmemiş zemine oturan eliptik plaktaki periyot değerlerinden daha büyük olduğu görülmektedir. Tasarım spektrumunda genişletilmemiş zemine oturan eliptik plak için okunan periyot değerlerine karşılık gelen S_a ivme değerlerinin rijit bölgede kaldığı, genişletilmiş zemine oturan eliptik plak için ise tasarım spektrumunda, okunan periyot değerlerine karşılık gelen S_a ivme değerlerinin tepe düzlüğüne çıktığı görülmektedir. Daha büyük periyotlar daha büyük S_a değerinin olmasını bu da daha büyük kesit tesirlerinin oluşmasına neden olur. Bu da genişletilmiş zemine oturan plakta spektral analiz sonucu moment değerlerinin Çizelge 3.17'de görüldüğü üzere daha büyük çıkmasını doğrulamaktadır.

4. SONUÇ VE DEĞERLENDİRME

Bu çalışmada keyfi doğrultuda ortotrop pasternak zemine oturan dairesel ve eliptik plakların titreşim karakteristiklerinin belirlenmesi ve spektral analizi konusu işlenmiştir. Bu amaçla SAP2000 programı ve SAP2000 programı ile etkileşimli olarak çalışabilen Excel programı kullanılmıştır. Ayrıca plak ile zemin elemanların bağlantısını kurabilmek için SapTransform programı kullanılmıştır. SapTransform programı, hazırlanan modeldeki, plaktaki elemanların düğüm noktalarına karşı gelen zemin elemanların düğüm noktalarının düşeyde birlikte eşit deplasman yapması sağlanır.

Sayısal örneklerde iki parametreli zeminin SAP2000 programında modellenebilir olduğu ispatlanmıştır.

Keyfi doğrultuda ortotrop pasternak zemine oturan dairesel ve eliptik plakların, plak dışındaki zeminin etkileri de dikkate alınarak, dinamik karakteristikleri belirlinmiş ve spektral analizleri yapılmıştır. Bu analizlerde SAP2000 programı kullanılmıştır.

SAP2000 programıyla Winkler zemini SAP2000 program kütüphanesindeki yaylarla temsil edilebilmektedir. Ancak Pasternak zemini direkt olarak temsil edilememektedir. Bu yüzden Pasternak zemininin temsili için, SAP2000 programındaki *Plain-Strain* seçeneğiyle sadece kayma şekil değiştirmelerinin göz önüne alındığı düzlem şekil değiştirme elemanından yararlanılmıştır. Bölüm 2'de düzlem şekil değiştirme elemanında sadece kayma şekil değiştirme olması durumundaki gerilme şekil değiştirme bağıntıları ve denge denklemleri, Pasternak zemine ait gerilme şekil değiştirme ve denge denklemleri ile katsayı farkıyla aynıdır. Bu katsayı bir tanesinde kayma modülü, bu çalışmada Pasternak sabitidir. G 'ye Pasternak sabiti denilebilir. Sadece plak altında zemin tanımlanan dairesel plak örneği için, çökme sonuçlarının ortalama %1,28 hata ile, M_{11} eğilme momentlerinin ortalama %0,6 hata ile, M_{22} eğilme omentlerinin ortalama %0,4 hata ile, M_{12} burulma momentlerinin ortalama %4,4 hata ile doğrulandığı görülmektedir. Zemin genişletilince çökme değeri yaklaşık %370 mertebesinde artmaktadır. M_{11} eğilme momenti zemin genişletilince yaklaşık %25 artmaktadır. M_{22} eğilme momenti zemin genişletilince yaklaşık %25 artmaktadır. M_{22} eğilme momenti 20° ve θ = 90° 'de yaklaşık %100 oranında azalmış, buna karşın, diğer zemin açılarında %240 mertebesinde artmıştır.

Sadece plak altında zemin tanımlanan eliptik plak örneği için, çökme sonuçlarının ortalama %0,24 hata ile, M_{11} eğilme momentlerinin ortalama %0,47 hata ile, M_{22} eğilme momentlerinin ortalama %1,00 hata ile, M_{12} burulma momentlerinin ortalama %5,2 hata ile doğrulandığı görülmektedir. Zemin genişletilince çökme değeri yaklaşık %730 mertebesinde artmaktadır. M_{11} eğilme momenti zemin genişletilince yaklaşık %65 artmaktadır. M_{22} eğilme momenti zemin genişletilince yaklaşık %65 artmaktadır. M_{22} eğilme momenti zemin genişletilince yaklaşık %65 artmaktadır. M_{22} eğilme açısı $\theta=0^{\circ}$ yaklaşık %100 oranında azalmış, buna karşın diğer zemin açılarında %940 mertebesinde artmıştır.

Doğrulama örneği olarak [5]'te verilen, genişletilmiş zemine oturan dairesel halka temel sistemin analizi yapılmış, Poisson's oranı v=0,25 hali için $\alpha=0$ aksı boyunca temel çökmesi ve zemin çökmesi ile M₁₁, M₂₂ ve M₁₂ momentlerinin değişimi gösterilmiş ve doğrulanmıştır.

Spektral analize konu edilen dairesel plak sistemi için, zemin genişletilince M_{11} eğilme momenti yaklaşık %80 artmaktadır. M_{22} eğilme momenti zemin genişletilince yaklaşık %50 artmaktadır. M_{12} burulma momenti yaklaşık %190 oranında artmaktadır.

Elips plak sistemini için spektral analiz uygulandığında ise, zemin genişletilince M₁₁ eğilme momenti yaklaşık %130 artmaktadır. M₂₂ eğilme momenti zemin genişletilince yaklaşık %100 artmaktadır. M₁₂ burulma momenti yaklaşık %7300 oranında artmaktadır.

KAYNAKLAR

- [1] Al-Hosani, K., Fadhil, S., El-Zafrany, A. (1999). Fundamental Solution And Boundary Element Analysis Of Thick Plates On Winkler Foundation, Computers & Structures.
- [2] Altekin, M. (2010). Bending of Orthotropic Super Elliptical Plates On Intermediate Point Supports, Ocean Engineering.
- [3] Altekin, M., Altay, G. (2008). Static Analysis of Point Supported Super Elliptical Plates, Archive of Applied Mechanics.
- [4] Avcıoğlu, O. (2015). İki Parametreli Zemine Oturan Betonarme Yapıların Doğrusal Olmayan Hesabı ve Görsel Tabanlı Bir Bilgisayar Yazılımı, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
- [5] Çelik, M. (1996). Plak Sonlu Elemanlarda Kayma Şekil Değiştirmelerinin Göz Önüne Alınması ve İki Parametreli Zemine Oturan Plakların Hesabı İçin Bir Yöntem, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.)
- [6] Datta, S. (1976). Large Deflections Of Elliptic Plates Exhibiting Rectilinear Orthotropy And Placed On Elastic Foundation, Journal Of Applied Mechanics Transactions Of The ASME.
- [7] **Dutta, S. C., Roy, R.** (2002). A Critical Review On Idealization And Modelling For Interaction Among Soil Foundation Structure System, Computers & Structures.
- [8] **Hamarat, M. A.** (2012). İki Parametreli Zeminler Üzerine Oturan Yapı Sistemlerinin Dinamik Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul.
- [9] Kutlu, A., Arıbaş, Ü.N., Karayiğit, H., Omurtag, M.H. (5-9 Eylül 2011). XVII. Ulusal Mekanik Kongresi, Ortotrop Pasternak Zeminine Oturan Eliptik Mindlin Plağının Karışık Sonlu Elemanlarla Statik Analizi, Fırat Üniversitesi, Elazığ.
- [10] Kutlu, A. (2007). Keyfi Doğrultuda Ortotrop Pasternak Zeminine Oturan Mindlin Plaklarının Serbest Titreşimlerinin Karışık Sonlu Elemanlarla Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul.
- [11] Liu, R., Xu, J., Zhai, S. (1997). Large Deflection Bending of Symmetrically Laminated Rectilinearly Orthotropic Elliptical Plates Includig Transverse Shear, Archive of Applied Mechanics.

- [12] Ozgan, K., Daloğlu, A. T. (2008). Application of the Modified Vlasov Model to the free vibration analysis of thick platesresting on elastic foundations, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- [13] Ozgan, K., Daloğlu, A. T. (2008). Application of the Modified Vlasov Model to the free vibration analysis of thick plates resting on elastic foundations, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- [14] Ozgan, K., Daloğlu, A. T. (2012). Free Vibration Analysis of Thick Plates on Elastic Foundations Using Modified Vlasov Model with Higher Order Finite Elements, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- [15] Ozgan, K., Daloğlu, A. T. (2008). Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model, Air Force Academy, Yesilyurt, Istanbul, Turkey, Faculty of Engineering, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- [16] Özmen, G., Orakdöğen, E., Darılmaz, K. (2018). Örneklerle SAP2000 v20, Birsen Yayınevi, İstanbul.
- [17] Uğurlu, B., Kutlu, A., Ergin, A., Omurtag, M. H. (2008). Dynamics Of A Rectangular Plate Resting On An Elastic Foundation And Particially In Contact With A Quiescent Fluid, Journal Of Sound and Vibration.
- [18] Prabhakara, M., Chia, C. (1976). Bending of Elliptical Orthotropic Plates with Large Deflection, Acta Mechanica.
- [19] **Rashed, Y.F.** (2000). An Alternative Treatment of Body Forces in the BEM for Thick Plates Resting on Elastic Foundations, Engineering Analysis with Boundary Elements.
- [20] Reddy, J. N. (2006). Theory and Analysis of Elastic Plates and Shells, CRC Press.
- [21] Szilard, R. (2004). Theories and Applications of Plate Analysis, John Wiley and Sons.
- [22] TBDY. (2018). Türkiye Bina Deprem Yönetmeliği, 18 Mart 2018, Resmi Gazete Sayı : 30364 (Mükerrer)
- [23] **Vasilenko, A., Urusova, G.** (1997). Stress State of Freely Supported Multilayered Elliptical Plates of Anisotropic Materials, Mechanics of Composite Materials.
- [24] Wang, J., Wang, X., Huang, M. (1992). Fundamental Solutions And Boundary Integral Equations For Reissner's Plates On Two Parameter Foundations, International Journal Of Solids And Structures.
- [25] Yu, Y. Y., Syracuse, N. Y. (1957). Axisymmetrical Bending of Circular Plates Under Simultaneous Action of Lateral Load, Force in the Middle Plane, and Elastic Foundation, Journal of Applied Mechanics ASME.
- [26] Zhong, H., Li, X., He, Y. (2005). Static Flexural Analysis Of Elliptic Reissner Mindlin Plates On A Pasternak Foundation By The Triangular Differential Quadrature Method, Archive Of Applied Mechanics.

ÖZGEÇMİŞ

Ad Soyad	: Betül AYKILIÇ	
Doğum Yeri ve Tarihi	: Alaplı, 1991	
E-Posta	: aykilicbetul@gmail.com	
Lisans	: Sakarya Üniversitesi (2010-2013)	
Mesleki Deneyim	: İstanbul MTM Yapı Denetim Ltd. Şti., Kontrol Müh. (2013-2014)	
	Pendik Belediyesi, İnş. Müh., (2014 - Halen)	