İSTANBUL TEKNİK ÜNİVERSİTESİ DEPREM MÜHENDİSLİĞİ VE AFET YÖNETİMİ ENSTİTÜSÜ

YARI RİJİT BİRLEŞİMLİ ÇELİK ÇERÇEVELERİN YER DEĞİŞTİRME ARTTIRMA KATSAYISININ ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ

Ahmet KARABACAK

Deprem Mühendisliği Anabilim Dalı

Deprem Mühendisliği Programı

KASIM 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ DEPREM MÜHENDİSLİĞİ VE AFET YÖNETİMİ ENSTİTÜSÜ

YARI RİJİT BİRLEŞİMLİ ÇELİK ÇERÇEVELERİN YER DEĞİŞTİRME ARTTIRMA KATSAYISININ ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ

Ahmet KARABACAK (802161201)

Deprem Mühendisliği Anabilim Dalı

Deprem Mühendisliği Programı

Tez Danışmanı: Doç. Dr. Barlas Özden ÇAĞLAYAN Eş Danışman: Dr. Kerem PEKER

KASIM 2019

İTÜ, Deprem Mühendisliği ve Afet Yönetimi Enstitüsü'nün 802161201 numaralı Yüksek Lisans Öğrencisi Ahmet KARABACAK, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "YARI RİJİT BİRLEŞİMLİ ÇELİK ÇERÇEVELERİN YER DEĞİŞTİRME ARTTIRMA KATSAYISININ ARAŞTIRIL-MASI" başlıklı tezini aşağıdaki imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Doç. Dr. Barlas Özden ÇAĞLAYAN İstanbul Teknik Üniversitesi	
Eş Danışman :	Dr. Kerem PEKER Erdemli Proje Müşavirlik	
Jüri Üyeleri :	Prof. Dr. Bilge DORAN Yıldız Teknik Üniversitesi	
	Prof. Dr. Bülent AKBAŞ Gebze Teknik Üniversitesi	
	Prof. Dr. Filiz PİROĞLU İstanbul Teknik Üniversitesi	

Teslim Tarihi :	15 Kasım 2019
Savunma Tarihi :	12 Aralık 2019

ÖNSÖZ

Bu tez çalışması süresince samimiyetini ve hoşgörüsünü benden esirgemeyen, bilgisi ile her zaman istifade ettiğim danışman hocam Doç. Dr. Barlas Özden ÇAĞLAYAN'a, mesleki eğitim sürecimin başından beri vizyonu ile yolumu aydınlatan, üstadım ve eş danışmanım Dr. Müh. Kerem PEKER'e sonsuz teşekkür ederim.

Çok kıymetli görüşleri ve deneyimlerini benimle paylaşan, İnş. Yük. Müh. Ahmet KAPTAN'a ve İnş. Yük. Müh. Ahmet Metin YILDIRIM'a teşekkürü bir borç bilirim.

Bu süreçte desteğini esirgemeyen İnş. Yük. Müh. Ecem ŞENGÜL'e çok teşekkür ederim.

Tezin hazırlanması aşamasında yardımları için Dr. Ögr. Üyesi Barış ERKUŞ'a teşekkür ederim.

Ayrıca bu yüksek lisans tezi 42127 numaralı İTÜ-Bilimsel Araştırma Projesi kapsamında kabul görmüştür, destekleri için İstanbul Teknik Üniversitesi'ne teşekkürlerimi sunarım.

Hayatım boyunca bana her zaman güvenen, koşulsuz destekleyen ve her daim yanımda hissettiğim aileme, annem Kadriye KARABACAK, babam İbrahim KARABACAK'a ve kardeşlerime teşekkür ederim.

Kasım 2019

Ahmet KARABACAK İnşaat Mühendisi

İÇİNDEKİLER

Sayfa

ÖNSÖZ	vii
İÇİNDEKİLER	ix
KISALTMALAR	xiii
SEMBOLLER	XV
ÇİZELGE LİSTESİ	xix
ŞEKİL LİSTESİ	xxi
ÖZETxx	cvii
SUMMARYx	xix
1. GİRİŞ	1
1.1 Amaç ve Kapsam	5
2. YARI RİJİT BİRLEŞİMLER	7
2.1 Birleşimlerin Sınıflandırılması	9
2.1.1 Kiriş çizgi konsepti	10
2.1.2 AISC yönetmeliği [1]	16
2.1.2.1 Birleşim rijitliği	16
2.1.2.2 Birleşim dayanımı	17
2.1.2.3 Birleşimin sünekliği	18
2.1.3 Eurocode yönetmeliği [2]	19
2.1.3.1 Birleşimin rijitliği	19
2.1.3.2 Birleşimin dayanımı	20
2.1.4 Türkiye Çelik Yapıların Tasarım Hesap ve Yapımına Dair Esaslar	
Yönetmeliği [3]	20
2.1.5 Türkiye Bina Deprem Yönetmeliği [4]	21
2.1.6 AS 4100 Standardi [5]	21
2.1.7 Kanada Ulusal Yapı Standardı [6]	22
2.1.8 Hindistan Ulusal Yapı Standardı [7]	23
2.1.9 Çin Binaların Deprem Tasarımı Standardı [8]	24
2.2 Birleşim Davranışının Modellenmesi	24
2.2.1 Matematik modeller	26
2.2.2 Analitik modeller	26
2.2.2.1 Akma çızgıleri metodu	27
2.2.3 Mekanik modeller.	28
2.2.3.1 Bileşen metodu	28
2.2.4 Soniu eleman modeller	29
2.2.5 Deneysei modeller	29
2.5 Birieşim Davranişinin Modellenmesi ile ilgili Geçmiş Çalışmalar	<i>3</i> 0
2.3.1 Lui ve Unen (1980) in çaiişmasi [9]	30

2.3.2 Lui ve Chen (1987) in çalışması [10]	31
2.3.3 Elnashai ve Elghazouli (1994) nin çalışması [11]	31
2.3.4 Gupta ve Krawinkler (1999) in çalışması [12]	31
2.3.5 Maison ve Kasai (2000) in çalışması [13]	32
2.3.6 Yemez (2007) in çalışması [14]	33
2.3.7 Peker (2009) in çalışması [15]	33
2.4 Birleşim Dönme Kapasitesi	33
2.4.1 AISC yönetmeliği [1]	35
2.4.2 Eurocode yönetmeliği [2]	35
3. YER DEĞİŞTİRME ARTTIRMA KATSAYISI	37
3.1 Taşıyıcı Sistem Davranış Katsayısı	38
3.2 Dayanım Fazlalığı Katsayısı	40
3.2.1 Dayanım fazlalığı katsayısı ile ilgili geçmiş çalışmalar	41
3.2.1.1 Freeman [16]	41
3.2.1.2 Osteraas ve Krawinkler [17]	41
3.2.1.3 Balendra ve Huang [18]	41
3.3 Süneklik Azaltma Katsayısı	41
3.3.1 Süneklik azaltma katsayısı ile ilgili yapılan çalışmalar	44
3.3.1.1 Newmark ve Hall [19]	44
3.3.1.2 Lai ve Biggs [20]	45
3.3.1.3 Miranda [21]	45
3.4 Eşit Yer Değiştirme ve Eşit Enerji Prensipleri	45
3.5 Yer Değiştirme Arttırma Katsayısı	46
3.5.1 Yer değiştirme arttırma katsayısı ile ilgili yapılan çalışmalar	49
3.5.1.1 Uang ve Maarouf [22]	49
3.5.1.2 Şeker, Akbaş, Shen ve Öztürk [23]	50
3.5.1.3 Mohammadi ve Kordbagh [24]	50
4. PARAMETRİK ÇALIŞMA	53
4.1 Parametrik Çalışmada Kullanılacak Yapılar	53
4.2 Moment Dayanımlı Çelik Çerçeveli Sistemlerin Tasarımı	55
4.3 Birleşim Dönme Rijitliklerinin Seçimi ve Modellenmesi	61
5. ÇERÇEVELERIN YER DEGIŞTIRME ARTTIRMA KATSAYISININ	
BELIRLENMESI	65
5.1 Doğrusal Olmayan Statik İtme Analizi	65
5.1.1 Kapasite spektrumu metodu	65
5.1.1.1 Kapasite eğrisinin elde edilmesi	67
5.1.1.2 Talep eğrisinin elde edilmesi	68
5.1.2 3 Katlı yapının yer değiştirme arttırma katsayısının kapasite	68
5 1 3 9 Katlı yapının ver değiştirme arttırma katşayışının kapaşite	00
spektrumu vöntemi ile elde edilmesi	70
5.1.4 20 Katlı yapının yer değiştirme arttırma katşavışının kapaşite	-
spektrumu yöntemi ile elde edilmesi	71
5.2 Zaman Tanım Alanında Doğrusal Olmayan Dinamik Analiz	72
5.2.1 Deprem kayıtlarının seçimi ve ölçeklendirilmesi	73

5.2.2 Yer değiştirme arttırma katsayısının zaman tanım alanında doğrusal	
olmayan dinamik analiz ile elde edilmesi	74
6. ANALİZ SONUÇLARI	75
6.1 3 Katlı yapıların doğrusal olmayan statik analiz sonuçları	76
6.2 3 Katlı yapıların doğrusal olmayan dinamik analiz sonuçları	77
6.3 9 Katlı yapıların doğrusal olmayan statik analiz sonuçları	82
6.4 9 Katlı yapıların doğrusal olmayan dinamik analiz sonuçları	83
6.5 20 Katlı yapıların doğrusal olmayan statik analiz sonuçları	88
6.6 20 Katlı yapıların doğrusal olmayan dinamik analiz sonuçları	89
6.7 Yer değiştirme arttırma katsayıları	94
7. SONUÇLAR VE ÖNERİLER	99
7.1 Genel Değerlendirme	99
7.2 Gelecek Çalışmalara Yönelik Öneriler10	03
KAYNAKLAR10	05
EKLER	11
EK A: Yarı Rijit Birleşimli Yapıların Etkin Göreli Kat Ötelemeleri1	13
EK B: Seçilen Deprem Kayıtlarının Ölçeklendirilmesi1	19
ÖZGEÇMİŞ	23

KISALTMALAR

ADRS	: Acceleration Displacement Response Spectrum
AISC	: American Institute of Steel Construction
ASCE	: American Society of Civil Engineers
ATC	: Applied Technology Council
CUREe	: California Universities for Research in Earthquake Engineering
FEMA	: Federal Emergency Management Agency
NEHRP	: National Eartquake Hazards Reduction Program
PEER	: Pacific Earthquake Engineering Research Center
PGA	: Peak Ground Acceleration
PGV	: Peak Ground Velocity
SAC	: SEAOC - ATC - CUREe
SEAOC	: Structural Engineers Association of California
TBDY	: Türkiye Bina Deprem Yönetmeliği
UBC	: Uniform Building Code
YDKT	: Yük ve Dayanım Katsayıları ile Tasarım

SEMBOLLER

- a_0 : Rayleigh sönüm matrisi için kütle matrisi çarpanı
- *a*₁ : Rayleigh sönüm matrisi için rijitlik matrisi çarpanı
- a_1 : Birinci moda ait modal ivme
- $C_{\rm d}$: Yer değiştirme arttırma katsayısı
- $C_{\rm R}$: Spektral yer değiştirme oranı
- C : Sönüm matrisi
- d : Bulon çapı
- d_1 : Birinci moda ait modal yer değiştirme
- $d_{\rm c}$: Kolon en kesit yüksekliği
- D : Dayanım fazlalığı katsayısı
- *E* : Elastisite modülü
- $F_{\rm b}$: Kiriş başlıkları tarafından aktarılan kuvvet
- $F_{\rm V}$: Akma gerilmesi
- $F_{\rm S}$: Kısa periyot bölgesi için yerel zemin etki katsayısı
- F_1 : 1.0 saniye periyot için yerel zemin etki katsayısı
- g : Yer çekimi ivmesi
- *h*_i : i'inci katın yüksekliği
- *I* : Bina önem katsayısı
- *I* : Atalet momenti
- *I*_b : Kiriş atalet momenti
- *L* : Kiriş uzunluğu
- K : Rijitlik matrisi
- $K_{\rm o}$: Alın levhalı ve başlık levhalı birleşim bölgesi rijitliği
- *K*_S : Sekant rijitliği
- m_{t1} : Birinci moda ait modal etkin kütle
- m^1 : Boyutsuz moment parametresi
- M : Moment
- $M_{\rm A}$: A ucundaki moment
- $M_{\rm B}$: B ucundaki moment
- $M_{i,Rd}$: Birleşimin tasarım momenti dayanımı
- $M_{\rm n}$: Nihai eğilme momenti dayanımı
- $M_{\rm p}$: Plastik eğilme momenti kapasitesi
- $M_{\rm pl,Rd}$: Tasarım plastik momenti dayanımı
- $M_{\rm s}$: Servis yükleri altındaki moment
- $M_{\rm W}$: Moment büyüklüğü
- M : Kütle matrisi
- *N* : Eksenel kuvvet

R	: Taşıyıcı sistem davranış katsayısı
R _S	: Dayanım fazlalığı çarpanı
$R_{\rm y}$: Akma dayanımı azaltma katsayısı
R _R	: Bağlılık çarpanı
R_{μ}	: Süneklik azaltma katsayısı
R_{ξ}	: Sönüm çarpanı
N _{Ed}	: Tasarım eksenel kuvveti
S_{a}	: Spektral ivme
Sae	: Elastik spektral ivme
S _{de}	: Elastik tasarım spektral yer değiştirmesi
S_{d1}	: Doğrusal elastik olmayan spektral yer değiştirme
$S_{\rm DS}$: Kısa periyot tasarım spektral ivme katsayısı
S_{D1}	: 1.0 saniye periyot için tasarım spektral ivme katsayısı
Si	: Dönme rijitliği
S _S	: Kısa periyot harita spektral ivme katsayısı
S_1	: 1.0 saniye periyot için harita spektral ivme katsayısı
$S_{j,ini}$: Başlangıç dönme rijitliği
tp	: Panel bölgesi kalınlığı
t _w	: Kolon gövde kalınlığı
$T_{\rm A}$: Yatay elastik tasarım ivme spektrumu köşe periyodu
$T_{\rm B}$: Yatay elastik tasarım ivme spektrumu köşe periyodu
$T_{\rm L}$: Yatay elastik tasarım spektrumunda sabit yer değiştirme bölgesine geçiş periyodu
$T_{\rm p}$: Binanın hakim doğal titreşim periyodu
$V_{\rm d}$: Tasarıma esas alınan taban kesme kuvveti
Ve	: Yapının elastik kalması durumunda sistemde oluşacak en büyük taban kesme kuvveti
$(V_{\rm S})_{30}$: Üst 30 metredeki ortalama kayma dalgası hızı
Vt	: Yapı taban kesme kuvveti
V _{t1}	: İtme analizi sırasında yapının tepesinde elde edilen birinci moda ait taban kesme kuvveti
V_{y}	: Yapının akma durumundaki taban kesme kuvveti
z.	: Kuvvet kolu
W	: Düzgün yayılı yük
α	: $C_{\rm d}$ düzeltme katsayısı
$\delta_{\mathrm{i,max}}$: Binanın i'inci katındaki etkin göreli kat ötelemelerinin kat içindeki en büyük değeri
Wi	: Mander modelinde düşey donatıların eksenleri arasındaki uzaklık
Wi	: Yapının <i>i</i> . moduna ait açısal frekansı
wj	: Yapının j. moduna ait açısal frekansı
γ	: Panel bölgesi kayma deformasyonu
λ	: Göreli kat ötelemelerinin sınıflandırılmasında kullanılan amprik katsayı
$\Delta_{\rm d}$: Tasarıma esas alınan taban kesme kuvvetine karşılık gelen tepe yer değiştirmesi
$\Delta_{\rm e}$: Yapının elastik kalması durumunda sistemde oluşacak tepe yer değiştirmesi

$\Delta_{ m y}$: Akma dayanımına karşılık gelen tepe yer değiştirmesi
Δ_{\max}	: Yapının nihai tepe yer değiştirmesi
μ	: Yer değiştirme süneklik oranı
θ	: Dönme
$ heta_{ m A}$: Kirişin A ucundaki dönme
$ heta_{ m B}$: Kirişin B ucundaki dönme
$ heta_{ m b}$: Kirişin dönmesi
θ_C	: Kolonun dönmesi
θ_{cy}	: Birleşim akma dönmesi
$\theta_{\rm n}$: En büyük moment kapasitesindeki dönme
$\theta_{\rm s}$: Servis yükleri altındaki dönme
θ_{u}	: Nihai dönme kapasitesi
$oldsymbol{ heta}^1$: Boyutsuz dönme parametresi
ξ_i	: Yapının <i>i</i> . açısal frekansına karşılık gelen sönüm oranı
ξ_j	: Yapının j. açısal frekansına karşılık gelen sönüm oranı
ϕ_{n1}	: Binanın tepesinde birinci moda ait mod şekli genliği
Ω	: Dayanım fazlalığı katsayısı
φ	: Birleşim dönmesi
Γ	: Modal katkı çarpanı

ÇİZELGE LİSTESİ

Sayfa

Çizelge 2.1	: Birleşimlerin sınıflandırma sınırları.	23
Çizelge 3.1	: Ortalama yer değiştirme arttırma katsayıları	50
Çizelge 4.1	: 3 katlı yapının kesitleri	59
Çizelge 4.2	: 9 katlı yapının kesitleri	59
Çizelge 4.3	: 20 katlı yapının kesitleri	60
Çizelge 4.4	: Yapıların hakim titreşim periyotları.	61
Çizelge 5.1	: Seçilen yer hareketi kayıtları	74
Çizelge 6.1	: Statik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan C_{d}	
	katsayılarının normal dağılım istatistiksel sonuçları	95
Çizelge 6.2	: Statik analizlerle, yarı rijit tasarım yer değiştirmesi ile hesaplanan	
	$C_{\rm d}$ katsayılarının normal dağılım istatistiksel sonuçları	96
Çizelge 6.3	: Dinamik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan	
	$C_{\rm d}$ katsayılarının normal dağılım istatistiksel sonuçları	97
Çizelge 6.4	: Dinamik analizlerle, yarı rijit tasarım yer değiştirmesi ile	
	hesaplanan C_d katsayılarının normal dağılım istatistiksel sonuçları	98
Çizelge B.1	: Seçilen yer hareketi kayıtlarının ölçeklendirme katsayıları	121

ŞEKİL LİSTESİ

Sayfa

Şekil 2.1	: Moment dönme ilişkisi	7
Şekil 2.2	: Kolon-Kiriş bağlantısı	8
Şekil 2.3	: Bağlantı deformasyonu	9
Şekil 2.4	: Kolon-Kiriş birleşim tipleri [25].	9
Şekil 2.5	: Birleşimlerin moment dönme diyagramları [26]	10
Şekil 2.6	: Kiriş uç momentleri ve uç dönmeleri	11
Şekil 2.7	: Ankastre mesnetli, düzgün yayılı yüklü kiriş	11
Şekil 2.8	: Kiriş için moment dönme çizgisi.	12
Şekil 2.9	: Birleşim için moment dönme diyagramı	12
Şekil 2.10	: Kiriş çizgisi ile birleşim çizgisinin birleştirilmesi	13
Şekil 2.11	: Normalize eğilme momentine karşılık birleşim rijitliğini kiriş	
	rijitliğine oranı	14
Şekil 2.12	: Kiriş ve birleşim çizgilerinin kesişimi.	15
Şekil 2.13	: Kiriş ve birleşim çizgilerinin eğimi, sekant rijitlikleri	16
Şekil 2.14	: Yarı rijit bir birleşimin rijitlik, dayanım ve süneklik karakteristikleri.	17
Şekil 2.15	: Birleşimlerin moment dönme tepkilerine göre sınıflandırılması	18
Şekil 2.16	: Rijitliğe göre sınıflandırma sınırları	19
Şekil 2.17	: Dayanıma göre sınıflandırma sınırları	20
Şekil 2.18	: Krawinkler ve Scissors modeli	25
Şekil 2.19	: Moment dönme eğrisinin matematiksel ifadeleri	25
Şekil 2.20	: Birleşimin dönme kapasitesi [25].	34
Şekil 3.1	: Genel yapı davranışı	38
Şekil 3.2	: Sistemin yatay dayanımı ile yer değiştirme süneklik talebi	
	arasındaki değişim	43
Şekil 3.3	: Eşit yer değiştirme ve eşit enerji prensipleri	46
Şekil 3.4	: FEMA P695'e göre genel yapı davranışı [27].	49
Şekil 4.1	: 3 katlı yapının plan ve A,G aksı kesiti	54
Şekil 4.2	: 9 katlı yapının plan ve A,F aksı kesiti	55
Şekil 4.3	: 20 katlı yapının plan ve A,G aksı kesiti	55
Şekil 4.4	: Yaslanan kolonların modellenmesi [28]	56
Şekil 4.5	: Yatay tasarım elastik spektrumu.	57
Şekil 4.6	: 3 katlı rijit birleşimli yapının etkin göreli kat ötelemesi	58
Şekil 4.7	: 9 katlı rijit birleşimli yapının etkin göreli kat ötelemesi	59
Şekil 4.8	: 20 katlı rijit birleşimli yapının etkin göreli kat ötelemesi	60
Şekil 4.9	: Parametrik çalışmada kullanılan birleşim dönme rijitlikleri	61
Şekil 4.10	: Link elemanlar	62
Şekil 4.11	: Kiriş elemanların doğrusal olmayan eğilme davranışı modeli	62
	Şekil 2.1 Şekil 2.2 Şekil 2.3 Şekil 2.4 Şekil 2.5 Şekil 2.5 Şekil 2.6 Şekil 2.7 Şekil 2.7 Şekil 2.8 Şekil 2.9 Şekil 2.10 Şekil 2.12 Şekil 2.13 Şekil 2.14 Şekil 2.15 Şekil 2.16 Şekil 2.17 Şekil 2.18 Şekil 2.19 Şekil 2.19 Şekil 3.1 Şekil 3.1 Şekil 3.2 Şekil 3.4 Şekil 3.4 Şekil 4.1 Şekil 4.2 Şekil 4.3 Şekil 4.5 Şekil 4.5 Şekil 4.5 Şekil 4.5 Şekil 4.7 Şekil 4.8 Şekil 4.9 Şekil 4.10 Şekil 4.10	Şekil 2.1 : Moment dönme ilişkisi

Şekil 4.12	: Yarı rijit birleşimlerin doğrusal olmayan eğilme davranışı modeli	63
Şekil 5.1	: Kapasite spektrumu metod ile deprem performansı değerlendirmesi.	66
Şekil 5.2	: 3 katlı yapıya ait kapasite spektrumu ve talep spektrumu	69
Şekil 5.3	: 9 katlı yapıya ait kapasite spektrumu ve talep spektrumu	71
Şekil 5.4	: 20 katlı yapıya ait kapasite spektrumu ve talep spektrumu	72
Şekil 5.5	: Doğal frekans sönüm oranı ilişkisi ve Rayleigh sönümü	73
Şekil 6.1	: 3 katlı çerçevelerin kapasite eğrileri	76
Şekil 6.2	: Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı	
	taban kesme kuvveti ve oranları (Durum-1).	77
Şekil 6.3	: Rijit birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı	
	tepe yer değiştirmesi ve oranları (Durum-2)	77
Şekil 6.4	: Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı	
	en büyük taban kesme kuvveti ve oranları (Durum-3)	77
Şekil 6.5	: Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük tepe yer	
	değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1)	78
Şekil 6.6	: Yarı rijit (20 EI/L) birleşimli çerçevenin,en büyük taban kesme	
a	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).	78
Şekil 6.7	: Yarı rıjıt (20 El/L) birleşimli çerçevenin, en büyük tepe yer	
	degiştirmesine karşı en buyuk taban kesme kuvveti ve oranları	70
Salvil 6 9	(Durum-3).	/0
Şekii 0.0	değiştirmeşine kerşi tahan keşme kuşuşati ve oranları (Durum 1)	70
Sabil 6 0	• Vera rijit (15.5 EI/L) birlesimli corcevenin on büyük tehen kesme	19
ŞEKII 0.9	kuvvetine karsi tene ver değiştirmeşi ve oranları (Durum-2)	70
Sekil 6 10	• Vari rijit (15.5 EI/I) birlesimli cercevenin en bijvijk tene ver	1)
ŞCKII 0.10	değiştirmeşine karşı en büyük taban keşme kuyveti ve oranları	
	(Durum-3).	79
Sekil 6.11	: Yarı rijit (11 EI/L) birlesimli cercevenin, en büyük tepe ver	
3	değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1)	80
Şekil 6.12	: Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük taban kesme	
2	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2)	80
Şekil 6.13	: Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük tepe yer	
	değiştirmesine karşı en büyük taban kesme kuvveti ve oranları	
	(Durum-3)	80
Şekil 6.14	: Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer	
	değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1)	81
Şekil 6.15	: Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük taban kesme	~ .
~ • • • • • •	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).	81
Şekil 6.16	: Yarı rijit (8 El/L) birleşimli çerçevenin, en büyük tepe yer	
	degiştirmesine karşı en buyuk taban kesme kuvveti ve oranları	01
Sale: 1 (17	(Durum-3).	81 82
Şekli 0.17	: y Kaul çerçevelerin kapasıte egrileri.	82
Şekii 0.18	: Kijit officijini çerçevenin, en buyuk tepe yer degiştirmesine karşı tahan keşme kuyyeti ye oranları (Durum 1)	82
Sabil 6 10	• Dijit birlasimli saraayanin, an biyyiik tahan kasma kuyyatina kasar	03
ŞCKII 0.19	tene ver değiştirmeşi ve oranları (Durum-2)	83
	tope yer degignimesi ve oraman (Durum-2)	05

Şekil 6.20	: Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban keşme kuyyeti ye oranları (Durum-3)	83
Sakil 6 21	• Vari rijit (20 EU) birlesimli cercevenin en bijvijk tene ver	05
ŞCKII 0.21	değiştirmesine karşı tahan keşme kuyyeti ye oranları (Durum-1)	84
Sabil 6 22	• Ver rijit (20 EI/I.) birlegimli gergevenin on büyük tehen keçme	04
ŞEKII 0.22	kuyyatina kara tana yar dağiştirmasi ya aranları (Durum 2)	01
G.1.91 (22	Normality (20, EI(I)) historiality conservation on historial tensor	04
Şekii 0.25	: Yari fijit (20 El/L) birleşimli çerçevenin, en buyuk tepe yer	
	(Durgen 2)	04
G 1 1 6 A	(Durum-3).	84
Şekil 6.24	: Yarı rijit (15.5 El/L) birleşimli çerçevenin, en buyuk tepe yer	05
	degiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1)	83
Şekil 6.25	: Yarı rıjıt (15.5 El/L) birleşimli çerçevenin, en büyük taban kesme	~ -
~ • • • • • •	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2)	85
Şekil 6.26	: Yarı rijit (15.5 El/L) birleşimli çerçevenin, en büyük tepe yer	
	değiştirmesine karşı en büyük taban kesme kuvveti ve oranları	0.7
	(Durum-3).	85
Şekil 6.27	: Yarı rıjıt (11 El/L) birleşimli çerçevenin, en büyük tepe yer	0.0
	degiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1)	86
Şekil 6.28	: Yarı rijit (11 El/L) birleşimli çerçevenin, en büyük taban kesme	0.0
~ • • • • • •	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2)	86
Şekil 6.29	: Yarı rijit (11 El/L) birleşimli çerçevenin, en büyük tepe yer	
	değiştirmesine karşı en buyuk taban kesme kuvveti ve oranları	0.0
0.1.11.6.00	(Durum-3).	86
Şekil 6.30	: Yarı rıjıt (8 El/L) birleşimli çerçevenin, en büyük tepe yer	07
	degiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1)	87
Şekil 6.31	: Yarı rijit (8 El/L) birleşimli çerçevenin, en büyük taban kesme	07
	kuvvetine karşı tepe yer degiştirmesi ve oranları (Durum-2).	8/
Şekil 6.32	: Yarı rijit (8 El/L) birleşimli çerçevenin, en buyuk tepe yer	
	degiştirmesine karşı en buyuk taban kesme kuvveti ve oranları	07
0.1.1.(22	(Durum-3)	8/
Şekii 6.33	20 Katlı çerçevelerin kapasıte egrileri.	88
Şekil 6.34	: Rijit birleşimli çerçevenin, en buyuk tepe yer degiştirmesine karşı	00
G 1 1 6 25	Difference in the second	89
Şekii 0.35	: Rijit birleşimli çerçevenin, en buyuk taban kesme kuvvetine karşı	00
	Diit hidaainli aanaanin an hirril tana yar da žistimusina kara	09
Şekii 0.30	an hövrök tahan kasma kuvvati va aranlar (Durum 2)	00
Salvil 6 27	Nor riiit (20 EI/L) historimli correctionin on hövölt tong vor	09
ŞEKII 0.57	dežistirmesine korst tahen kesme kususti ve orenler (Durum 1)	00
Gal-11 (20	veg stillesine kalşı tabalı kesine kuvveti ve olamalı (Dululi-1)	90
ŞEKII 0.38	i Tali fijit (20 EI/L) officşifilli çerçevenin, en buyuk taban kesme kuyyatina karşı tana yar dağiştirmesi ya aranları (Durum 2)	00
Gal-11 (20	Nor with (20 EI/L) biologicality of the second state of the second	90
şekii 0.39	a in the second	
	(Durum 2)	00
Salei C 10	(Duluii-3).	90
şekii 0.40	ağıstirmesine karşı tahan kaşma kuyyati ya aranlar (Durum 1)	01
	ucziştimesine karşı taban kesine kuvveti ve oraman (Durum-1)	フト

Şekil 6.41	: Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük taban kesme
	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2) 91
Şekil 6.42	: Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük tepe yer
	değiştirmesine karşı en büyük taban kesme kuvveti ve oranları
	(Durum-3)
Şekil 6.43	: Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük tepe yer
	değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1) 92
Şekil 6.44	: Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük taban kesme
	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2)
Şekil 6.45	F: Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük tepe yer
	değiştirmesine karşı en büyük taban kesme kuvveti ve oranları
	(Durum-3)
Şekil 6.46	Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer
	değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1) 93
Şekil 6.47	': Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük taban kesme
	kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2)
Şekil 6.48	: Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer
	değiştirmesine karşı en büyük taban kesme kuvveti ve oranları
	(Durum-3)
Şekil 6.49	• : Statik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan $C_{\rm d}$
	katsayıları
Şekil 6.50	: Statik analizlerle, yarı rijit tasarım yer değiştirmesi ile hesaplanan
	C_d katsayilari. 96
Şekii 6.51	: Dinamik analizierie, rijit tasarim yer degiştirmesi ile nesaplanan
	C_d katsayilari
Şekii 0.52	basarlanan C katasuklar
Solvil A 1	• 2 ketly vorge rijit (20EL/L) birlegimli vonung etkin göreli ket ötelemegi 112
Şekil A.1	• 2 katlı yan nijit (15 5EI/I) birləşimli yapının atkin göreli kat
ŞEKII A.2	ötelemesi (13.5E/L) ölileşinin yapının etkin gören kat
Sekil A 3	• 3 katlı varı-rijit (11FI/I) birleşimli yapının etkin göreli kat ötelemeşi 113
Şekil A 4	• 3 katlı yarı-rijit (8FI/I) birleşimli yapının etkin göreli kat ötelemesi 113
Şekil A 5	• 9 katlı yarı-rijit (20FI/I) birleşimli yapının etkin göreli kat ötelemesi. 115
Şekil A 6	•9 katlı yarı-rijit (15 5FI/I.) birleşimli yapının etkin göreli kat
şem m	ötelemesi 114
Sekil A.7	: 9 katlı varı-rijit (11EI/L) birleşimli vapının etkin göreli kat ötelemeşi, 114
Sekil A.8	: 9 katlı yarı-rijit (8EI/L) birleşimli yapının etkin göreli kat ötelemesi 115
Sekil A.9	: 20 katlı varı-rijit (20EI/L) birleşimli vapının etkin göreli kat
3 •	ötelemesi
Sekil A.1	0:20 katlı yarı-rijit (15.5EI/L) birlesimli yapının etkin göreli kat
3	ötelemesi
Şekil A.1	1:20 katlı yarı-rijit (11EI/L) birleşimli yapının etkin göreli kat
-	ötelemesi
Şekil A.1	2:20 katlı yarı-rijit (8EI/L) birleşimli yapının etkin göreli kat ötelemesi.117
Şekil B.1	: 3 katlı yapılar için H1 doğrultusunda ölçeklendirilmiş ivme kayıtları.119
Şekil B.2	: 3 katlı yapılar için H2 doğrultusunda ölçeklendirilmiş ivme kayıtları. 119
Şekil B.3	: 9 katlı yapılar için H1 doğrultusunda ölçeklendirilmiş ivme kayıtları.119

Şekil B.4	: 9 katlı yapılar için H2 doğrultusunda ölçeklendirilmiş ivme kayıtları. 1	20
Şekil B.5	: 20 katlı yapılar için H1 doğrultusunda ölçeklendirilmiş ivme	
	kayıtları 1	20
Şekil B.6	: 20 katlı yapılar için H2 doğrultusunda ölçeklendirilmiş ivme	
	kayıtları 1	20

YARI RİJİT BİRLEŞİMLİ ÇELİK ÇERÇEVELERİN YER DEĞİŞTİRME ARTTIRMA KATSAYISININ ARAŞTIRILMASI

ÖZET

Moment dayanımlı çelik çerçeveli yapılar emniyet, ekonomi ve estetik gibi yapı tasarımının önemli performans parametreleri ile öne çıkmaktadır. Moment dayanımlı çelik çerçeveler bugün yüksek süneklik kapasiteleri ile deprem bölgelerinde az ve orta katlı ofis türü binalarda sıklıkla kullanılmaktadır. Moment çerçevelerinin yüksek süneklik özellikleri yatay kuvvetlere maruz kaldığında sistemin enerji sönüm mekanizmasındaki basitlikte yatmaktadır. Bu sistemlerde özellikle deprem kuvvetleri altında yapının dayanımında azalma olmadan kirişlerde çok sayıda akma ve elastik olmayan şekil değiştirme ile sağlanır. Bu tip yapılarda plastik mafsalların kolonlardan önce kirişlerde oluşmasını sağlamak, yapının sünekliğini arttırıp, göçmesini geciktirmek için güçlü kolon zayıf kiriş ilkesi uygulanır. Bu kural gerekenden daha büyük kolon kesitlerinin seçilmesine ve ekonomik olmayan, aşırı güvenli tasarımlarla sonuçlanmaktadır. Bu sorunu gidermek için özellikle Amerika'da uygulanan yöntem yapıların başlıca dezavantajlarından biri, sistemin yeniden dağılım imkânının sınırlı olmasıdır.

1994 Northridge ve 1995 Kobe depremleri sırasında rijit birleşimli moment dayanımlı çelik çerçeveli yapılarda ve özellikle tamamen kaynaklı birleşimlerde ağır ve beklenilmeyen hasarlar oluşmuş ve bu tip yapıların tasarım yöntemlerinin gözden geçirilmesine neden olmuştur. Bu keşiflerin ardından, SAC ortak girişimi olarak bilinen profesyonel derneklerin ve araştırmacılardan oluşan bir konsorsiyum, bu beklenmeyen davranışın nedenlerini belirlemek ve daha sağlam moment çerçevesi inşası için öneriler geliştirmek için kapsamlı bir çalışma yürütmüştür. Araştırmalar sonucu, çatlakların ve hasarların, temel birleşim geometrisi, yapısal malzemelerin kontrolünün eksikliği, iç yapısındaki düşük tokluğa sahip kaynak dolgu metallerinin kullanılması, kolon başlıklarında divot kırılması, karşılama levhası kaynaklı hasarlar, yetersiz kalite kontrol ve diğer faktörlerin bir sonucu olduğu tespit edildi. Ortaya çıkan araştırma, mevcut özel moment çerçeveleri için yönetmelik tasarım gerekliliklerinin temelini oluşturmuştur.

Bir yapıdaki bütün kolon-kiriş birleşimlerinin tasarımda tam rijit veya ideal mafsallı kabulünün ne derece doğru olduğu tartışma konusudur. Gerçekte moment çerçevesinde kullanılan birleşimlerin güçlü veya zayıf eksende olsun, davranışı incelendiğinde birleşimlerin rijit veya ideal mafsal davranışı göstermesi için çok özel detaylandırmaların kullanılması şarttır halbuki kullanılan birleşimlerin çoğunluğu rijit ve mafsallı iki uç sınır durumun arasında kalmaktadır. Bu birleşim türleri yarı-rijit birleşim olarak sınıflandırılmaktadır.

Geçtiğimiz yarım asırlık süreçte yapısal tasarım için mühendislerin kullandığı bilgisayar destekli yazılım araçları önemli gelişme kaydetmiştir. Ancak hala

çelik yapıların modellenmesi ve tasarımı aşamasında yapılan bazı kabuller göze çarpmaktadır. Özellikle deprem bölgesinde tasarlanan bir çelik yapı için güvenlik ve ekonomi amacı büyük önem arz eder. Deprem yönetmeliklerinde yer alan yapısal tasarım felsefesi, makul bir oluşma olasılığı olan bir depremde bile mutlak güvenlik ve hasarsızlığın sağlanamayacağının altını çizmektedir. Bununla birlikte, bazı yapısal ve yapısal olmayan hasarlara izin verip elastik olmayan enerjiyi sönümleyerek yapılarda yüksek bir yaşam güvenliği seviyesini ekonomik olarak sağlamayı hedefler. Bu tasarım felsefesinin bir sonucu olarak, yönetmeliklerde öngörülen yatay tasarım kuvveti yapıyı elastik aralıkta tutmak için gereken yatay kuvvetten daha düşüktür. Yapının elastik zarfta tutulması, yanal harekete maruz kalan tüm yapısal elemanların, herhangi bir kalıcı deformasyon ve hasar almadan başlangıç durumuna geri dönmesinin garanti edilmesi anlamına gelir ki bu durumu korumak, uygulanabilir ve rasyonel olmaktan uzaktır.

Moment çerçevelerinin tasarımı göz önüne alındığında tasarımı yöneten ana parametrenin yer değiştirme olduğu ortaya çıkar. Bu çalışmada deprem yönetmeliklerinde çelik çerçeveli yapıların tasarımında birleşim dönme rijitliği kavramı ve yönetmeliklerin tasarımda kullanılacak gerçek yer değiştirme talebi için tepki değişitirme katsayısı üzerinde durmaktadır. *Yer Değiştirme Arttırma Katsayısı*, en basit ifadeyle yapının elastik durumdaki yer değiştirme değerinden, elastik ötesi durumdaki yer değiştirme değerini elde etmek için kullanılmaktadır. Bu amaç doğrultusunda az,orta ve yüksek katlı rijit birleşimli moment çerçeveli yapılar belirlenen deprem düzeyi için tasarlanmış, beş farklı dönme rijitliği ile doğrusal elastik olmayan statik ve dinamik analizlerle incelenmiştir. 15 adet çelik çerçeve statik itme analizleri ve tasarım depremi seviyesinde ölçeklendirilmiş 18 adet gerçek yer hareketi ile dinamik analizler yapılmıştır. Bu analiz sonuçları ile her bir çelik çerçeve için yer değiştirme arttırma katsayısı hesaplanmıştır.

Az, orta ve yüksek katlı çerçevelerde, beş farklı birleşim rijitliği altında, statik analizler sonucu, ortalama 4.84, dinamik analizler sonucu, ortalama 3.86 olarak hesaplanan *C*_d katsayıları AISC ve TBDY-2018 yönetmeliklerinin sırasıyla kullandığı 5.50 ve 8.00 değerinden daha düşüktür. Sonuçlar çelik çerçeveli bir yapıda birleşim rijitliğinin yapının davranışını değiştirdiğini, dolayısı ile çelik çerçeveli yapılar için önemli bir tepki değiştrme katsayısı olan *Yer Değiştirme Arttırma Katsayısı*nın değiştirdiği anlaşılmaktadır. Bulunan yer değiştirme arttırma katsayılarındaki farklılık, moment dayanımlı bir çelik çerçevenin doğrusal olmayan değerlendirmesi yapılması durumunda yapıda kullanılan birleşimlerin rijitliklerinin göz ardı edilmemesi gerektiğini göstermektedir. Ayrıca birleşim rijitliğinin azalmasının yapıların süneklik talebinin azaldığını göstermiştir.

INVESTIGATION OF DISPLACEMENT AMPLIFICATION FACTOR OF STEEL FRAMES WITH SEMI RIGID CONNECTIONS

SUMMARY

Moment resisting steel frames structures stand out with important performance parameters of structure design such as safety, economy and aesthetics. Moment resisting steel frames with high ductility capacities are frequently used in low and medium rise buildings in earthquake zones. The high ductility characteristics of the moment frames in the simplicity of the system's energy damping mechanism when subjected to horizontal forces. In these systems, especially under earthquake forces, a great number of yields in the beams are achieved by inelastic deformation without reducing the strength of the structure. In such structures, the principle of strong column-weak beam is applied to ensure that plastic hinges are formed in the beams before the columns, to increase ductility and delay the collapse of the structure. This rule results in the selection of larger column sections than required and uneconomical, extremely safe designs. In order to solve this problem, especially in the USA, the method is to design only the outer frames of the buildings as horizontal load bearing systems. However, one of the main disadvantages of these structures is that the redistribution of the system is limited(low redundancy).

During the 1994 Northridge and 1995 Kobe earthquakes, heavy and unexpected damages occurred in rigid connected moment resisting steel frames structures, and especially in fully welded connections, leading to a review of the design methods of such structures. Following this discovery, a consortium of professional associations and researchers known as the SAC joint venture conducted extensive work to identify the causes of this unexpected behavior and develop recommendations for building a more robust moment framework. Cracks and damages were found to be the result of basic joint geometry, lack of control of basic materials, the use of weld filler metals with low toughness in the internal structure, divot breakage of column heads, damage caused by the cover plate, inadequate quality control and other factors. The resulting research formed the basis for regulatory design requirements for existing special moment frameworks.

It is debatable to what extent all column-beam joints in a structure are fully rigid or ideally hinged in the design. In fact, when the behavior of the joints used in the moment frame is in the strong or weak axis, it is necessary to use very specific detailing in order to show that the joints exhibit rigid or ideal hinged behavior, whereas the majority of the joints used are between two rigid and hinged end boundary states. These connection types of classified as semi-rigid connections.

Over the past half century, computer aided software tools used by engineers for structural design have made significant progress. However, there are still some assumptions made during the modeling and design of steel structures. Especially for a steel structure designed in the earthquake zone, the aim of safety and economy is of great importance. The structural design philosophy in the earthquake regulations underlines that even in an earthquake with a reasonable probability of occurrence, absolute safety and damage cannot be ensured. However, it aims to economically provide a high level of safety in buildings by allowing some structural and non-structural damage and absorbing inelastic energy. As a result of this design philosophy, the horizontal design force prescribed in the regulations is lower than the horizontal force required to keep the structure within the elastic range. Retention of the structure in the elastic envelope means that all structural elements subjected to lateral movement are returned to the initial state without any permanent deformation and damage, which is to be maintained, far from practical and rational.

When the design of moment frames is considered, the main parameter that governs the design is displacement. This study focuses on the concept of connection rotation stiffness in the design of steel frame structures with moment resistance in the earthquake regulations, and the concept of the reaction coefficient of change for the actual displacement of regulations to be used in design. The *Displacement Amplification Factor* is used to obtain the displacement value of the structure from the elastic displacement value in the inelastic state. For this purpose, low, medium and high storied rigid connections moment framed structures were designed for the earthquake level determined and examined with five different rotational stiffnesses by linear inelastic static and dynamic analyses. 15 steel frame static pushover analyses and 18 real-ground motion dynamic time-history analyses were scaled at the design earthquake level. With these analysis results, the displacement amplification factor was calculated for each steel frame.

In low, medium and high-rise frames, C_d coefficients calculated under average of 4.84 for dynamic analysis and 3.86 for dynamic analysis are less than the values of 5.50 and 8.00 used by AISC and TBDY-2018 regulations, respectively. The results show that the stiffness of the connection in a steel-frame structure changes the behavior of the structure, thereby changing the *Displacement Amplification Factor*, which is an important response coefficient for steel-frame structures. The difference in the displacement amplification coefficients shows that the rigidity of the connections used in the structure should not be ignored if a non-linear evaluation of a moment resisting steel frame is performed. In addition, the decrease in connection stiffness has shown that the ductility ratio of the structures is reduced.

1. GİRİŞ

İnşaat sektöründe çelik malzemesinin kullanımı için sayısız neden sayılabilir fakat yapısal mühendislik alanında özellikle hızlı bir şekilde tasarım, imalat, montaj edilebilirliği, sürdürülebilir bir yapı malzemesi olması ve yüksek dayanım/ağırlık oranları, yüksek süneklik kapasiteleri, rijitlikleri ve öngörülebilir göçme kapasiteleri nedeniyle yaygın olarak kullanılmaktadır.

Moment dayanımlı çelik çerçeveler, 1800'lerin sonunda demir, betonarme ve özellikle yığma yapılarla birlikte kullanmak için geliştirildi. Binalar daha uzun ve daha hafifleştikçe ve mühendisler bu yeni yapısal montaj yönteminin avantajlarını anladıkları için çerçevelerin yanal yüklere karşı davranışı konusunda araştırmalara itti. Hardy Cross (1885-1959) gibi mühendisler, pek çok binanın moment dağıtım yöntemini kullanarak başarıyla inşa edilmesi sağlayarak rijit çerçeve davranışının anlaşılması için temel sağlamıştır. Gelişmiş malzemelerin ve birleşim yöntemlerinin (kaynak, bulon, vb.) geliştirilmesi analitik gelişime paraleldi ve rijit çerçeve konstrüksiyonu 1900'lerin başından günümüze kadar hızla büyümüştür. Daha hafif yapıya ve daha ince elemanlara olan talep açıkça belirlendi ve bugün de devam etmektedir.

II. Dünya Savaşından sonra, mühendisler kirişleri kolonlara bağlamak için üst ve alt kiriş başlıklarında korniyer veya yarım I profiller kullanarak birleşimler tasarlamaya başladı. 1950'lerde, yapı inşaatına kaynak tanıtımı yapıldığı için, korniyer ve yarım I kesitler, başlık üst levhaları, kolon başlıklarına kaynaklanarak değiştirildi, sonra kiriş başlıklarına perçinlendi. 1960'larda perçinleme, ekonomik değildi ve yerini yüksek dayanımlı bulonlara bıraktı. Son olarak, 1970'lerin başında, mühendisler bugün kiriş başlıları kaynaklı ve gövdesinden ek levhalı bulonlu olarak bilinen birleşim türünü kullanmaya başladılar. Bu gelişmelerin sonucunda, mühendisler çelik moment çerçevelerinin depremlerde üstün performans sergilediğini görmeye başladılar.

Bu yapıların göze çarpan üstün performansının bir sonucu olarak, 1960'ların yapı yönetmelikleri çelik moment çerçeveleri için tercih edilen tasarım kriterlerini

benimsemiştir. Bu yönetmelikler uyarınca, yanal kuvvet dirençli sistem olarak çerçeve sisteme sahip binalar, yanal ötelenmesi desteklenmiş çerçeveler (çaprazlı çerçeveler) için belirtilen deprem kuvvetlerin üçte ikisi ve perde duvarlı yapıları taşımak için belirtilen kuvvetlerin yarısı için tasarlanabilir oldular. 1960'larda, araştırmacılar çelik moment çerçevelerinin çevrimsel laboratuvar testlerini yapmaya başladı. Güçlü depremlerde üstün elastik olmayan davranışlar elde etmek için bu yapıların detaylandırılmasında bazı kontrollerin gerekli olduğu belirlenmiştir [29].

Batı Amerika'da bu dönemde inşa edilen hemen hemen her yüksek bina, çelik moment çerçeve konstrüksiyonu idi. 1960'larda ve 1970'lerde tasarlanan bu yapılarda, her kiriş-kolon bağlantısında moment dayanımlı bağlantılar kullanmaya meyilliydi, bu da yanal kuvvet direncinin dağıtılması için yüksek bağlılık ve alternatif yük yolları sağladı. Bununla birlikte, 1980'lerde mühendisler tasarımlarını ekonomikleştirmeye ve daha konsantre yanal kuvvet dayanımına sahip, daha büyük açıklık ile daha az açıklık sayısı ve daha az moment dayanımlı çerçeveler kullanarak, pahalı saha kaynağını en aza indirmeye başlamıştı. Nadir de olsa, bazı yüksek yapılara binanın her bir tarafında yalnızca tek bir moment çerçevesi kullanılmıştır. Bu taşıyıcı sistem dünyanın önemli yapı tasarım mühendisleri tarafından yüksek binalarda kullanıldı, önemli örnekleri olarak, Leslie E. Robertson'ın tasarladığı, 1972'de New York'ta tamamlanan World Trade Center ve Fazlurrahman Han (1929-1982) tarafından tasarlanan, 1974'de Chicago'da tamamlanan Sears Tower, söylenebilir.

1994 Northridge depreminin ardından mühendisler, bir dizi modern, özel moment dayanımlı çelik çerçeve yapısının, kaynaklı kiriş-kolon bağlantılarında beklenmeyen gevrek kırılmalar yaşandığını keşfettiğine şaşırdı. Benzer hasar ve hatta bazı binaların yıkılması, Japonya depremi 1 yıl sonra, 1995 Kobe'de meydana geldi. Bu keşiflerin ardından, SAC ortak girişimi olarak bilinen profesyonel derneklerin ve araştırmacılardan oluşan bir konsorsiyum, bu beklenmeyen davranışın nedenlerini belirlemek ve daha sağlam moment çerçevesi inşası için öneriler geliştirmek üzere federal olarak finanse edilen, uzun bir araştırma ve geliştirme programı yürütmüştür.

Çatlakların ve hasarların, temel birleşim geometrisi, temel malzemelerin kontrolünün eksikliği, iç yapıdaki düşük tokluğa sahip kaynak dolgu metallerinin kullanılması, kolon başlıklarında divot kırılması, karşılama levhası kaynaklı hasarlar, yetersiz kalite kontrol ve diğer faktörlerin bir sonucu olduğu tespit edildi. Ortaya çıkan araştırma,

mevcut özel moment çerçeveleri için yönetmelik tasarım gerekliliklerinin temelini oluşturmuştur.

Moment çerçeveleri büyük yer değiştirme yapabilme özellikleri hem avantaj hemde dezavantajı olarak söylenebilir. Rijit bir çerçevenin yanal yer değiştirme bileşenlerinin, konsol bir kirişin yer değiştirme bileşenlerine benzer iki bileşenden kaynaklandığı düşünülebilir. Bir bileşen eğilme yer değiştirmesi ve diğeri konsolun kesme kuvveti kaynaklı yer değiştirmesine benzetilebilir. Normalde, derinlik/açıklık oranı 10 veya daha fazla olduğunda dikdörtgen kesitli konsol elemanlar için, eğilme yer değiştirmesi, çok daha baskın olan bileşendir. Bu fenomeni çok katlı moment çerçevelerinin yer değiştirme karakteristiği olarak düşünülebilir. Kesme kaynaklı yer değiştirmeler ise, toplam yer değiştirmeye küçük bir katkıda bulunur ve bu nedenle yer değiştirmelerin hesaplanmasında genellikle ihmal edilir. Öte yandan rijit ve az katlı bir çerçevenin yer değiştirmeler, çoğunlukla yer değiştirmelerin genel resmine hakimdir ve toplam yer değiştirmeler, çoğunlukla yer değiştirmelerin genel resmine hakimdir ve toplam yer değiştirmelerin büyük bir yüzdesini oluşturabilir.

Moment dayanımlı çelik çerçeveler deprem bölgelerinde yüksek sünek davranışları ile tercih edilen sistemlerdendir. Deprem yer hareketi altında sistemde kiriş uçları akma ve plastik şekil değiştirmelere maruz kalarak deprem kuvvetleri sönümlenmektedir. Moment dayanımlı çelik çerçevelerin tasarımını, bu sistemlerin büyük yer değiştirme yapabilme kabiliyetlerinin bir sonucu olarak göreli kat ötelemeleri yönetmektedir.

Moment çerçeveleri için diğer önemli husus ise birleşimlerdir. Çerçevenin ana elemanları olan kolon ve kirişleri birbirine bağlandığı bölge çerçeve davranışı için çok önemlidir. Çerçevenin yatay kuvvet etkisi altında, enerji sönümleme mekanizması olarak kiriş uçlarında akma ve plastik şekil değiştirmelerin oluşabilmesi ve çerçeve stabilitesinin korunabilmesi için birleşim bölgelerinin hasar almadan kolon ve kirişlere yükleri aktarabilmelidir. Birleşimler yaygın kullanılan I profiller için, gerek bağlandığı elemanın güçlü ekseninde gerekse zayıf ekseninde ve kutu-boru profiller için davranışları, birleşim araçlarının çeşitliliği sebebi ile birbirinden çok farklıdır. Çerçevede kullanılan birleşimin rijitlik ve dayanım gibi iki karakteristik özelliği detaylı incelendiğinde, çerçeve davranışında birleşimlerin davranışını önemli kılar. Daha önce de bahsedilen gelişen imkanlar mühendislere daha hassas modelleme

imkanı vermektedir. Moment dayanımlı çerçeveler kullanılmaya başladığından beri araştırmalara konu olan birleşimlerin davranışı günümüzde de devam etmektedir.

Gectiğimiz yarım asırlık sürecte yapısal tasarım için mühendislerin kullandığı bilgisayar destekli yazılım araçları önemli gelişme kaydetmiştir. Ancak hala çelik yapıların modellenmesi ve tasarımı aşamasında yapılan bazı kabuller göze çarpmaktadır. Özellikle deprem bölgesinde tasarlanan bir çelik yapı için güvenlik ve ekonomi amacı büyük önem arz eder. Deprem yönetmeliklerinde yer alan yapısal tasarım felsefesi, makul bir oluşma olasılığı olan bir depremde bile mutlak güvenlik ve hasarsızlığın sağlanamayacağının altını çizmektedir. Bununla birlikte, bazı yapısal ve yapısal olmayan hasarlara izin verip elastik olmayan enerjiyi sönümleyerek yapılarda yüksek bir yaşam güvenliği seviyesini ekonomik olarak sağlamayı hedefler. Bu tasarım felsefesinin bir sonucu olarak, yönetmeliklerde öngörülen yatay tasarım kuvveti yapıyı elastik aralıkta tutmak için gereken yatay kuvvetten daha düşüktür. Yapının elastik zarfta tutulması, yanal harekete maruz kalan tüm yapısal elemanların, herhangi bir kalıcı deformasyon ve hasar almadan başlangıç durumuna geri dönmesinin garanti edilmesi anlamına gelir ki bu durumu korumak, uygulanabilir ve rasyonel olmaktan uzaktır.

Ana yaklaşım tepki değiştirme katsayıları kavramında yatmaktadır. Yapısal sistemler için belirsiz modifikasyon faktörleri atama yaklaşımı, mühendislikteki rutin uygulamalara gelince çok pratik olabilir, ancak bu basitlik tasarıma daha yüksek belirsizlik getirir. Ne yazık ki, şu ana kadar bir tasarım depreminde bina performansını dikkate alan faktöre atanan değerlerin güvenilirliği tam olarak bilinmemektedir. ATC-19 [30]'da belirtildiği gibi, deprem yönetmeliklerinde tablolanan tepki değiştirme katsayılarının matematiksel bir temeli yoktur ve bunlar (*R* için değerler) zamanında elde edilen hükümlere ve bazı verilere dayanmaktadır fakat yazılan yönetmelik hükümlerinin periyodik olarak gözden geçirilmesi gerekir. Bu faktörlere çeşitli yapısal sistemler için yönetmeliklere atanan sayısal değerler, titiz analizler ve deneylerle değil, uzman mühendislerin fikir birliği ile elde edildiği unutulmamalıdır. Bu sebeplerden dolayı, tepki değiştirme katsayılarının moment çerçeveleri için çok daha önemli olan bir parametre ise *Yer Değiştirme Arttırma Katsayısı* 'dır. Yapının elastik ötesi davranışı esnasında yaptığı en büyük yer değiştirme değerinin, tasarıma esas alınan
yatay kuvvetler altında yapmış olduğu yer değiştirme değerine oranı olarak tanımlanan katsayının moment çerçeveli için önemi açıktır.

1.1 Amaç ve Kapsam

Bu çalışmanın amacı, Türkiye Bina Deprem Yönetmeliği 2018'e göre tasarlanan moment dayanımlı çelik çerçeveli yapıların, hesap yükünden dolayı ihmal edilen kolon-kiriş birleşim rijitliği dikkate alındığında yapıların yer değiştirme arttırma katsayısını araştırmaktır.

Bu amaç için doğrusal olmayan analizlerden oluşan bir parametrik çalışma yapılmalıdır. Bu çalışmada için, az, orta ve yüksek katlı üç bina ve her bina için beş farklı birleşim dönme rijitliği parametreleri ana değişkenler olarak düşünülmüştür. Yükleme koşulları ve zemin sınıfı parametreleri sabit tutulmuştur. Tasarlanan yapılara ilgili parametrelerde, doğrusal olmayan statik ve zaman tanım alanında doğrusal olmayan dinamik analizlerle yapıların yer değiştirme arttırma katsayıları elde edilecektir. Bu sonuçlar doğrultusunda, yapıların birleşimlerinin davranışı daha detaylı bir yaklaşımla dikkate alındığında belirlenen yer değiştirme arttırma katsayıları ile yapıların tasarımının en başında kullanılan yönetmelik hükümleri arasındaki fark irdelenecektir.

Çalışmalar, yedi bölüm halinde incelenecektir.

Birinci bölümde, tez konusunun genel mahiyeti belirtilmiş, tezin amacı ve kapsamı sunulmuştur.

İkinci bölüm, yarı rijit birleşimleri kapsamaktadır, bu bölümde yarı rijit birleşimler geçmişte yapılmış önemli çalışmalarla anlatılmış, birleşimlerin sınıflandırılması uluslar arası kabul görmüş yönetmeliklerin konuya bakışı incelenmiş daha sonra yarı rijit birleşimlerin davranışının modellenmesine yer verilmiş ve birleşimlerin dönme kapasiteleri anlatılmıştır.

Üçüncü bölümde Yer Değiştirme Arttırma Katsayısını (C_d) ve bu katsayıyı daha iyi kavrayabilmek adına eşit yer değiştirme ve eşit enerji prensipleri ve diğer tepki değiştirme katsayıları da anlatılmıştır.

Dördüncü bölümde parametrik çalışma kapsamında kullanılacak moment dayanımlı çelik çerçeveli yapıların tasarımı açıklanmıştır. Bu bölümde ayrıca, tasarımı yapılan

yapıların incelenen çerçevelerindeki yarı rijit davranışı göstermek amacıyla belirlenen birleşimlerin dönme rijitliklerinin seçimi ve modellenmesi açıklanmıştır.

Beşinci bölümde daha önceki bölümde tasarımı yapılan ve dönme rijitlikleri belirlenen yarı rijit birleşimli çelik çerçevelerin yer değiştirme arttırma katsayısının belirlenmesi için yapılan doğrusal elastik olmayan statik ve zaman tanım alanında doğrusal olmayan dinamik analiz açıklanmıştır.

Altıncı bölümde parametrik çalışmanın doğrusal olmayan analiz sonuçları detaylı olarak gösterilmiştir ve sonuçlar istatistiksel olarak da analiz edilmiş, sonuçları özetlenmiştir.

Yedinci bölüm çalışmanın son bölümüdür. Bu bölümde daha önceki bölümlerde elde edilen sonuçlar kapsamlı olarak yorumlanmıştır. Bu sonuçlar ışığında da çıkarımlar belirtilmiş ayrıca gelecek çalışmalar için de bazı önerilere yer verilmiştir.

2. YARI RİJİT BİRLEŞİMLER

Bir kolon-kiriş birleşimi genellikle, düzlem içi davranışı nedeniyle eksenel kuvvete, kesme kuvvetine ve eğilme momentine maruz kalır. Bununla birlikte, eksenel kuvvet ve kesme kuvvetlerinin neden olduğu birleşimin deformasyonu, eğilme momentinin neden olduğu deformasyonla karşılaştırıldığında genellikle çok küçüktür. Sonuç olarak, pratik amaçlar için, Şekil 2.1'de gösterildiği gibi sadece eğilme momentinin birleşimlerin dönme deformasyonu üzerindeki etkisi dikkate alınması yeterlidir. Birleşimlerin düzlem içi davranışı, Şekil 2.1'de gösterilen moment-dönme $(M - \theta)$ eğrileriyle temsil edilir.

Şekil 2.1 : Moment dönme ilişkisi.

Her türlü gerçek kolon-kiriş birleşimi, tam rijit ve ideal mafsallı iki uç durum arasında kalan bir dönme rijitliğine sahiptir. Böylece, birleşimlerin yarı rijit olarak modellenmesi daha gerçekçidir. Bununla birlikte, mühendislik uygulamalarında, bazı birleşimler, eğer rijitlikleri çok küçükse, birleşimlerin herhangi bir önemli moment iletmediği ve böylece neredeyse serbest dönüşe izin vermesi durumunda mafsallıymış gibi düşünülebilir. Benzer şekilde, bazı birleşimler, rijitlikleri çok büyükse ve bitişik elemanlar arasında belirgin bir eğim süreksizliğinin bulunmadığı durumlarda rijit kabul edilebilir. İdeal olarak mafsallı veya rijit birleşim varsayımı, çerçeveli yapıların tasarım ve analiz prosedürlerini önemli ölçüde basitleştirir. Bu

nedenle, birleşimlerin rijit, yarı rijit veya mafsallı olabileceğini tahmin etmek faydalı ve pratiktir. Birleşimlerin sınıflandırılması çerçevelerin davranışına dayanarak yapılmalıdır çünkü yatay ötelenmesi tutulmuş ve tutulmamış çerçevelerde birleşim dönme talepleri farklıdır. Birleşimlerin moment-dönme özelliklerini yöneten birincil gösterge özellikleri, rijitlik, dayanım ve dönme kapasitesidir. Bu özellikler, sınıflandırma için kullanılan önemli faktörlerdir [31].

Birleşim tiplerinden bahsetmeden önce birleşim ve düğüm noktası ifadelerini tanımlamak faydalı olacaktır. Şekil 2.2'de gösterildiği üzere kolon-kiriş bağlantısı (düğüm noktası) bir kolon gövdesinde yer alan panel bölgesi ve bir veya iki birleşimden oluşur. Paneli bölgesi, kolon gövdesi ve bağlı kirişin yüksekliği boyunca kolonun başlıklarını içerir. Düğüm noktası, iki elemanın birbirine bağlandığı yerdir ve ara birleşim araçları, yani, bağlı elemanları mekanik olarak bağlayan fiziksel bileşenler kümesidir. Özetle, birleşim, kolon ile kiriş arasında mekanik bir bağlantı sağlayan fiziksel bileşenlerdir ve bütün etkiler birleşimin bulunduğu yerde meydana gelmektedir. Düğüm noktası ise birleşimle beraber bağlanan elemanlar arasındaki kolon gövdesi gibi iç etkileşim bölgelerini de kapsayan bölgeyi tarifler.

Şekil 2.2 : Kolon-Kiriş bağlantısı.

Denklem2.1'de ifade edildiği gibi bir bağlantının düzlem içi eğilme (*M*) 'den kaynaklı dönme deformasyonu, θ , panel bölgesi kayma deformasyonu(γ), ve birleşim dönme deformasyonunun (ϕ) toplamıdır.

$$\theta = \gamma + \varphi \tag{2.1}$$

Birleşimin dönme deformasyonu, bağlantı elemanlarının (bulonlar, alın levhası, vb.) deformasyonunu ve kolon gövdesinin başlangıç yükleme deformasyonunu içerir. Bu durum kiriş ve kolon eksenleri arasında, θ_b ve θ_c gibi göreceli bir dönme ile sonuçlanır:

$$\varphi = \theta_b - \theta_c \tag{2.2}$$

Şekil 2.3 'de gösterilen bu deforme olabilirlik, sadece kirişin başlıkları tarafından aktarılan ve kirişe etki eden eğilme momentine statik olarak eşdeğer olan kuvvet çiftleri nedeniyledir, z kuvvet kolunu göstermektedir.

Şekil 2.3 : Bağlantı deformasyonu.

Günümüzde sıklıkla kullanılan bazı birleşim tipleri Şekil 2.4'de gösterilmiştir. Birleşim tiplerinin rijitlik ve kapasite değerleri, levha veya korniyer kalınlığı, levha yüksekliği ve bulon çapı gibi birçok geometrik özelliğe bağlıdır.

Şekil 2.4 : Kolon-Kiriş birleşim tipleri [25].

2.1 Birleşimlerin Sınıflandırılması

Birleşimleri sınıflandırmak için birleşimlerin tepkisini niteleyen ana parametreleri incelemek yeterli olacaktır, bu parametreler rijitlik, dayanım(taşıma kapasitesi) ve süneklik'tir. Birleşimler literatürde genel olarak rijitlik ve dayanım özelliklerine göre sınıflandırılırlar, süneklik ise birleşimin $(M - \theta)$ eğrisi ile anlaşılabilir.

Yaygın olarak kullanılan birleşimlerin moment dönme ilişkileri Şekil 2.5'de verilmiştir. Birleşimin doğrusal olmayan davranışı, birleşimi oluşturan elemanların malzeme özellikleri, levha elemanlarının lokal burkulması, elemanlardaki bölgesel akmalar gibi birçok parametreye bağlıdır. Birleşimin tasarımı, üretimi ve montajı doğru yapıldığı takdirde, yarı rijit birleşimler sünek davranış sergileyebilirler. Özellikle deprem bölgelerinde inşa edilecek yapılarda, birleşimin süneklik değeri en az birleşim kapasitesi kadar önemlidir. Birleşimlerin sınıflandırılmasında yapılan temel varsayım, en önemli davranışsal özelliklerinin moment dönme $(M - \theta)$ eğrisi ile modellenebileceğidir.

Şekil 2.5 : Birleşimlerin moment dönme diyagramları [26].

Yönetmeliklerin birleşimleri sınıflandırdıklarını incelemeden önce tez kapsamında birleşim dönme rijitliği seçiminde tercih edilen AISC yönetmeliğinin sınıflandırma kavramını irdelemek yönetmeliklerin birleşimleri sınıflandırma prensibini anlamak için faydalı olacaktır.

2.1.1 Kiriş çizgi konsepti

Esnek veya yarı rijit birleşimlere sahip kirişin performans davranışı üzerine düşey yüklenmesine dayanan birleşim tepkisi araştırılması esastır. Her iki ucunda dönmeye sahip bir kiriş için eğim-deplasman gibi klasik bir yöntem ile göz önüne alındığında, A ucundaki moment, Şekil 2.6 ve Denklem 2.3'de gösterildiği gibi tanımlanır.

$$M_{\rm A} = \frac{4EI}{L}\theta_{\rm A} + \frac{2EI}{L}\theta_{\rm B}$$
(2.3)

Burada *E*, Elastisite modülü, *I*, atalet momenti, *L*, kiriş uzunluğudur. Düzgün yayılı düşey yüke sahip iki ucundan ankastre mesnetle tutulu kiriş için, Şekil 2.7, uç momenti

Şekil 2.6 : Kiriş uç momentleri ve uç dönmeleri.

Denklem 2.4 olarak tanımlanır.

$$M_{\rm A,Ankastre} = -\frac{wL^2}{12} \tag{2.4}$$

Burada w kiriş üzerindeki düzgün yayılı yüktür.

Şekil 2.7 : Ankastre mesnetli, düzgün yayılı yüklü kiriş.

B ucundaki dönme, A ucundaki dönme ile aynıdır ve buna karşılık denklemlerin süperpozisyonu ile A ucunda bulunan 2.3 ve 2.4' denklemlerindeki moment Denklem 2.5' de gösterildiği gibi tanımlanır.

$$M_{\rm A} = \frac{2EI}{L}\theta - \frac{wL^2}{12} \tag{2.5}$$

Burada, basit ve ankastre uçlu kiriş olmak üzere iki özel durum incelenmiştir. Basit kiriş koşulunda, A ucundaki moment sıfırdır ve Denklem 2.5'i çözerek, dönme aşağıdaki şekilde hesaplanır:

$$0 = \frac{2EI}{L}\theta - \frac{wL^2}{12} \to \theta = \frac{wL^3}{24EI}$$
(2.6)

Ankastre uçlu bir kiriş için, dönme sıfıra eşit olarak değerlendirildiğinde, A ucundaki moment aşağıdaki şekilde hesaplanır:

$$M_{\rm A} = \frac{2EI}{L}(0) - \frac{wL^2}{12} \to M_{\rm A} = -\frac{wL^2}{12}$$
(2.7)

Denklem 2.6 ve 2.7, Şekil 2.8'te çizilmiştir. Bu şekil açıkça, kirişin ucundaki moment ve dönme arasındaki doğrusal ilişkiyi ifade etmektedir.

Şekil 2.8 : Kiriş için moment dönme çizgisi.

Birleşimdeki moment, Şekil 2.9 ve Denklem 2.8 'de gösterildiği gibi birleşim rijitliği ve dönme ile ilgilidir.

$$M_{\rm birlesim} = -n\theta \tag{2.8}$$

burada, n, birleşim dönme rijitliğidir.

Şekil 2.9 : Birleşim için moment dönme diyagramı.

Şekil 2.9, moment-dönme diyagramının düz bir çizgi olarak temsil edildiğini göstermektedir. Ancak, bu doğrusal davranış bazı varsayımlarla ilişkilidir. Gerçek durumda birleşim Şekil 2.9'dekine benzer şekilde doğrusal davranmaz. Ayrıca, belirli bir noktada, birleşimin davranışı göçme ile sonuçlanır. Kiriş ve birleşim eğrilerinin üst üste getirilmesi durumunda, Şekil 2.10'de gösterilen denge elde edilir.

Şekil 2.10 : Kiriş çizgisi ile birleşim çizgisinin birleştirilmesi.

Denklem 2.5 ve Denklem 2.8 eşitlendiğinde, denge noktasındaki dönme, aşağıdaki denklem ile belirlenebilir:

$$M_{\text{birlesim}} = M_{\text{kirls}} \to -n\theta = \frac{2EI}{L}\theta - \frac{wL^2}{12} \to \theta = \frac{1}{\left[1 + \frac{nL}{2EI}\right]} \left[\frac{wL^3}{24EI}\right]$$
(2.9)

Benzer şekilde, denge noktasındaki moment aşağıdaki gibi belirlenebilir:

$$\theta_{\text{birlesim}} = \theta_{\text{kiris}} \to \theta_{\text{birlesim}} = \frac{-M_{\text{birlesim}}}{n} \to \theta_{\text{kiris}} = \frac{\left[M_{\text{kiris}} + \frac{wL^2}{12}\right]}{\frac{2EI}{L}}$$

$$\to M_{\text{birlesim}} = M_{\text{kiris}} = M = \frac{1}{\left[1 + \frac{2EI}{nL}\right]} \left[-\frac{wL^2}{12}\right]$$
(2.10)

Yukarıda belirtilen denklemde, $\frac{\binom{EI}{L}}{n}$, kiriş rijitliğinin birleşim rijitliğine oranıdır. Bu oran, *u* şöyle tanımlanmaktadır:

$$u = \frac{\left(\frac{EI}{L}\right)}{n} = \frac{EI}{nL} \tag{2.11}$$

Düzgün yayılı olarak yüklenmiş bir kiriş göz önünde bulundurulur ve kirişin açıklığındaki moment için Denklem 2.10 çözülürse, Denklem 2.12 elde edilebilir:

$$M = \left(\frac{6u+1}{4u+2}\right) \left(\frac{wL^2}{12}\right) \tag{2.12}$$

Denklem 2.11 ve 2.12, düşey düzgün yayılı yüklemeye maruz kalan doğrusal esnek birleşimler için Şekil 2.11'da çizilmiştir. Şekil 2.11 de, rijitlik oranı (u) sıfır olduğunda birleşim momentinin veya negatif momentin başladığını, ankastre uç momentine oranının (1) üstündeki momentin 1 olduğunu gösterir. Rijitlik oranı arttıkça kirişin

ucundaki moment azalır. Bu grafik ayrıca, kiriş ucundaki moment azalırken, açıklık momentin aynı anda arttığını da gösterir. *u* sıfıra eşit olduğunda, kiriş ucunda $\frac{wL^2}{12}$ ve açıklıkta $\frac{wL^2}{24}$ bulunduğunu belirtmekte fayda var. Üstelik, *u* arttıkça, açıklık momenti artar, oysa *u* sonsuza doğru gittikçe, uç momentinin sıfır olması ve açıklık momentinin uç momentinin bir buçuk katı kadar $\frac{wL^2}{8}$ olması beklenir.

Rijitlik Oranı, u

Şekil 2.11 : Normalize eğilme momentine karşılık birleşim rijitliğini kiriş rijitliğine oranı.

Geschwinder, 1991 yılındaki çalışmasında kiriş çizgisi ile birleştirilen rijit, yarı rijit ve mafsallı birleşimlerini temsil eden üç farklı birleşim eğrisi Şekil 2.12'de gösterilmektedir. Kiriş çizgisinin üst üste getirilmesiyle, bu davranışın rijit veya mafsala yeterince yakın olup olmadığı değerlendirilebilir. Şekil 2.12'den, birleşim ankastre uç momentinin en az yüzde 90'ına dayanabildiği sürece rijit olarak, birleşimin ankastre uç momentinin yüzde 20'sinden fazlasını almadığı sürece de mafsallı olarak sınıflandırılabileceğini göstermektedir. Bu iki nokta arasındaki herhangi bir davranış, yarı rijit bir birleşim olarak kabul edilir [32].

Şekil 2.12 : Kiriş ve birleşim çizgilerinin kesişimi.

Şekil 12, kiriş çizgisine rijit, yarı rijit ve mafsallı birleşiminin doğrusal çizgilerinin üst üste getirilmesini göstermektedir. Bu Şekilde gösterildiği gibi, doğrusal çizgiyi ankastre uç momentinin %90 ve %20'sine kadar alınarak, $\frac{k_sL}{EI}$ ilişkisi sırasıyla sırasıyla rijit, yarı rijit ve basit birleşimler olarak belirlenebilir. Bu ilişkilerde, birleşimin sekant rijitliği, k_s , servis yükleri altındaki momentin, M_s , servis yüklerindeki dönmeye, θ_s , oranı olarak tanımlanır. AISC yönetmeliği 2005 ve daha sonraki yıllarda rijit birleşimler için sekant rijitliği K_s 'yi 18 den 20 ye çıkarmıştır.

Şekil 2.13 : Kiriş ve birleşim çizgilerinin eğimi, sekant rijitlikleri.

2.1.2 AISC yönetmeliği [1]

Yapısal çelik binalar yönetmeliği, birleşimleri, rijit ve mafsallı olarak iki ana başlıkta gruplandırır daha sonra ,rijit birleşimleri de, rijit ve yarı rijit olarak iki gruba ayırır.

2.1.2.1 Birleşim rijitliği

Birleşimin doğrusal olmayan davranışı düşük moment dönme seviyelerinde bile kendini gösterir, başlangıç rijitliği K_i , düşük moment seviyelerinde birleşimin tepkisini yeterli şekilde ifade edemez. Servis yüklerinde sekant rijitliği K_s , birleşim rijitliğinin gerçek davranışını ifade eder(Şekil 2.14).

$$K_{\rm s} = \frac{M_{\rm s}}{\theta_{\rm s}} \tag{2.13}$$

Burada;

 M_s , Servis yüklerindeki altındaki moment, θ_s , servis yüklerindeki dönme, L ve EI, kirişin sırasıyla uzunluk ve eğilme rijitliği olmak üzere, $\frac{K_sL}{EI} \ge 20$ ise, birleşimin rijit olduğu kabul edilebilir (bağlanan elemanlar arasındaki açı korunur). $\frac{K_sL}{EI} \le 2$ ise, birleşimin mafsallı olduğu kabul edilebilir. Bu iki limit arasındaki rijitlikdeki birleşimler yarı rijit olduğu ve birleşimin rijitliği, dayanımı ve sünekliği tasarımda dikkate alınmalıdır.

Şekil 2.14 : Yarı rijit bir birleşimin rijitlik, dayanım ve süneklik karakteristikleri.

2.1.2.2 Birleşim dayanımı

Bir birleşimin dayanımı, Şekil 2.14 'de gösterildiği gibi M_n , taşıyabileceği en büyük momenttir. Bir birleşimin dayanımı, nihai sınır durumu modeline veya fiziksel testlere dayanarak belirlenebilir. Moment-dönme tepkisi herhangi bir maksimum yük göstermiyorsa, dayanım 0.02 radyan'lık bir dönme değerindeki moment olarak alınabilir.

Birleşimin basit olarak değerlendirilebileceği bir alt dayanım sınırının belirlenmesi de faydalıdır. Kirişin eğilme momenti dayanımının %20'sinden daha az bir dayanıma sahip ve bu dayanımda 0.02 radyan'lık bir dönme gösteren bileşimlere tasarım için eğilme dayanımının olmadığı kabul edilebilir. Ancak, birçok zayıf eksen birleşimin toplam dayanımının, birkaç güçlü eksen birleşimine kıyasla önemli olabileceği göz ardı edilmelidir.

Şekil 2.15 'te, M_n ile işaretli noktalar, örnek birleşimlerin nihai dayanım durumlarını gösterirken, θ_u ile işaretli noktalar, örnek birleşimlerin nihai dönme durumlarını gösterir. Tam dayanımlı bir birleşim bağlandığı kirişin dayanımından daha az bir dayanıma sahip olabileceği gibi kısmi dayanımlı bir birleşiminin bağlandığı kirişin dayanımından daha büyük bir dayanıma sahip olması da mümkündür. Birleşimin dayanımı, tasarım yüklerinin gerektirdiği moment taleplerine karşı koymak için yeterli olmalıdır.

Şekil 2.15 : Birleşimlerin moment dönme tepkilerine göre sınıflandırılması.

2.1.2.3 Birleşimin sünekliği

Birleşim dayanımı kirişin tam plastik moment dayanımını büyük ölçüde aşarsa, birleşimlerin elastik kaldığı varsayımı ile, yapısal sistemin sünekliği kiriş tarafından kontrol edilir. Birleşim dayanımı, yalnızca kirişin tam plastik moment dayanımını kısmen aşıyorsa, kiriş nihai dayanımına ulaşmadan önce birleşim büyük ölçüde elastik olmayan deformasyona maruz kalabilir. Kirişin dayanımı birleşim dayanımını aşarsa, deformasyonlar birleşimde konsantre olabilir. Bir birleşimin gerekli sünekliği, özel detaylandırmalara bağlı olacaktır. Örneğin, deprem tehlikesi olmayan bir alanda bir çerçeve için süneklik gereksinimi, genellikle deprem tehlikesi yüksek bir alanda

Şekil 2.14'de, dönme kapasitesi, θ_u , birleşimin nihai dayanımının 0.8 M_n 'ye düştüğü noktadaki birleşimin dönme değeri olarak veya birleşimin 0.03 radyanın ötesinde deforme olduğu değer olarak tanımlanabilir. Bu ikinci kriter, çok büyük dönmeler meydana gelinceye kadar dayanım kaybının olmadığı birleşimlere yöneliktir. Tasarımda bu büyük dönme değerlerine güvenmek akılcı değildir. Mevcut dönme kapasitesi θ_u , birleşimin doğrusal olmayan davranışını hesaba katan bir analiz tarafından belirlenir ve dayanım sınırında gerekli olan dönme ile karşılaştırılmalıdır. Doğru bir analiz yapılmadığında, 0,03 radyan'lık bir dönme kapasitesinin yeterli olduğu kabul edilir. Bu dönme, özel moment çerçeveleri için sismik koşullarda belirtildiği gibi minimum kiriş-kolon birleşim kapasitesine eşittir.

2.1.3 Eurocode yönetmeliği [2]

Eurocode EN1993-1-8 (2005)'de birleşimleri, ilk olarak çerçeve tipinin yatayda tutulu olup olmadığına bağlı olarak (çaprazlı veya çaprazsız taşıyıcı sistem), birleşimleri taşıma kapasitesine(dayanımına) ve rijitliğine göre sınıflandırılmıştır.

2.1.3.1 Birleşimin rijitliği

Eurocode yönetmeliği birleşimleri Şekil 2.16'da verilen başlangıç rijitliklerine bağlı olarak karşılaştırılmaları ile rijit, yarı rijit ve mafsallı olarak sınıflandırır. Bir birleşimin, başlangıç dönme rijitliği S_j , aşağıda verilen sınıflandırma sınırları ile karşılaştırarak sınıflandırılabilir.

Şekil 2.16 : Rijitliğe göre sınıflandırma sınırları.

• Rijit Birleşim;

yatay ötelenmesi tutulmamış çerçeve için : $S_{j,ini} \ge 25EI/L$, yatay ötelenmesi tutulmuş çerçeve için : $S_{j,ini} \ge 8EI/L$

• Yarı rijit Birleşim;

yatay ötelenmesi tutulmamış çerçeve için : $0.5EI/L < S_{j,ini} < 25EI/L$, yatay ötelenmesi tutulmuş çerçeve için : $0.5EI/L < S_{j,ini} < 8EI/L$

• Mafsallı Birleşim;

 $S_{j,ini} \leq 0.5 EI/L$

2.1.3.2 Birleşimin dayanımı

Bir düğüm noktası, bağlandığı elemanların tasarım momenti dayanımları ile karşılaştırılarak tam dayanımlı, mafsallı veya kısmi dayanımlı olarak sınıflandırılır.

Şekil 2.17 : Dayanıma göre sınıflandırma sınırları.

Tam dayanımlı birleşim: Tasarım dayanımı, bağlı olduğu elemanlarınkinden daha az olmamalıdır. Birleşim, Şekil 2.17'de verilen kriterleri yerine getirirse tam dayanımlı olarak sınıflandırılabilir.

Mafsallı birleşim: Elemanları veya yapıyı bir bütün olarak olumsuz yönde etkileyen önemli momentler geliştirmeden, iç kuvvetleri aktarabilmelidir. Mafsallı bir birleşim, tasarım yükleri altında ortaya çıkan dönmeleri karşılayabilmelidir. Tasarım momenti dayanımı $M_{j,Rd}$, yeterli dönme kapasitesine sahip olması şartıyla, tam dayanımlı bir birleşim için gereken tasarım momenti dayanımının 0,25 katından fazla değilse, birleşim mafsallı olarak sınıflandırılabilir.

Kısmi dayanımlı birleşim: Tam dayanımlı veya mafsallı birleşim kriterlerini karşılamayan bir birleşim kısmi dayanımlı bir birleşim olarak sınıflandırılır.

2.1.4 Türkiye Çelik Yapıların Tasarım Hesap ve Yapımına Dair Esaslar Yönetmeliği [3]

Türkiye Çelik Yapılar Yönetmeliği, birleşimleri mafsallı ve moment aktaran olarak iki ana gruba ayırmaktadır. Moment aktaran birleşimler ise kendi içinde rijit moment aktaran ve yarı rijit (elastik) moment aktaran birleşimler olarak ikiye ayrılmaktadır. Mafsallı birleşimler: Eğilme momentinin sıfır veya sıfıra yakın olduğu, buna karşılık birleşen elemanlar arasında göreli dönme hareketine izin veren birleşimlerdir. Bu birleşimlerin dönme kapasitesi, yapısal analiz ile hesaplanan gerekli dönme hareketi ile uyumlu olmalıdır. Ayrıca yeteri kadar dönme yeteneğine sahip olacak ve sadece kesme kuvveti etkisi dikkate alınarak boyutlandırılması ayrıca birleşimlerin dönme miktarının kirişlerin uç dönmeleri ile uyumlu olası gerekmektedir.

Moment aktaran birleşimler: Moment aktaran birleşimler,rijit moment aktaran ve yarı rijit (elastik) moment aktaran birleşimler olarak ikiye ayrılmaktadır.

Rijit moment aktaran birleşimler: Birleşen elemanlar arasındaki göreli dönme hareketinin tam olarak sınırlandırıldığı ve göreli dönme hareketinin sıfır olmasını sağlayacak yeterli dayanım ve rijitliğe sahip olacaktır.

Yarı rijit moment aktaran birleşimler: Birleşen elemanlar arasındaki göreli dönme hareketinin tam olarak sınırlandırılmadığı bu durumda yapı sistemlerinin analizi için geliştirilen analitik modellerde, birleşimlerin kuvvet-şekil değiştirme davranışını göz önüne alacak şekilde oluşturulacaktır. Bu davranış karakteristiklerinin analitik veya deneysel olarak belgelenmesi gerekmektedir. Bu durumda birleşimler, öngörülen göreli dönme hareketini sağlayacak yeterli dayanım, rijitlik ve şekil değiştirme kapasitesine sahip olacaktır.

2.1.5 Türkiye Bina Deprem Yönetmeliği [4]

TBDY-2018 birleşimlerin yarı rijit olarak dikkate alınmasına izin vermektedir. Tam dayanımlı bulonlu alın levhalı birleşimler ile bulonlu başlık levhalı birleşimler, birleşim rijitliğini ifade eden dönme yayları kullanılarak modellenecektir. Birleşimlerin yarı rijit olarak modellenmesi durumunda, dönme yayı rijitliği, $K_o = \frac{M_{pe}}{0.005}$, kiriş rijitliği ise, $EI_{bn} = \frac{1}{\frac{3}{l_bK_o} + \frac{1}{El_b}}$ 'ye göre hesaplanacaktır.

2.1.6 AS 4100 Standardı [5]

Avustralya Çelik Yapılar Standardı birleşimleri, mafsallı birleşim, rijit birleşim ve yarı rijit birleşim olarak üç başlık altında sınıflandırmıştır.

Rijit birleşim: Bu birleşimler, göreli dönmenin olmadığı birleşimlerdir. Bu tür birleşimlerin, kiriş ucu ile bağlı elemanlar arasındaki açıyı korumak için yeterli rijitliğe sahip olduğu varsayılmaktadır.

Basit birleşim: Bu birleşim kiriş uçlarında eğilme momentlerinin oluşmadığı ve kirişlerin mafsallı bir şekilde mesnetlendiği varsayılmaktadır.

Yarı rijit birleşim: Bu birleşimler, sınırlı ve kontrollü bir rijitlik sağlamak için özel olarak tasarlanmıştır. Seçilen birleşim rijitliği kullanılarak kiriş, elastik birleşimli bir çerçevenin parçası olarak tasarlanmıştır. Bu birleşim tipleri yaygın olarak kullanılmamaktadır, çünkü eğilme kısıtı ve yük etkileri arasındaki ilişkinin iyi anlaşılması gerekmektedir.

2.1.7 Kanada Ulusal Yapı Standardı [6]

2015 yılında yayınlanan standartda birleşimlerde üç temel yapı tipi ve bununla ilişkili tasarım varsayımları, yani, "rijit", "mafsallı" ve "yarı rijit" yapının tamamı veya bir kısmı için kullanılabilir. İç kuvvetlerin ve eğilme momentlerinin yapı boyunca dağılımı, seçilen yapım tipine veya tiplerine ve direnecek kuvvetlere bağlı olacaktır.

Rijit: Bu birleşimde, kirişler ve tali kiriş elemanlarına sağlam bir şekilde bağlanmıştır veya çaprazların üzerinde süreklidir. Birleşimler genel olarak kesişen elemanlar arasındaki açıların yapı ilgili yüklere maruz kaldığında değişmeden kaldığı varsayılarak hesaplanan eğilme momentlerine ve iç kuvvetlere dayanacak şekilde tasarlanacaktır.

Mafsallı: Mafsallı birleşim kirişlerin ve tali kirişlerin uçlarının yükleme düzleminde yük altında dönmekte serbest olduğunu varsayar.

Yarı rijit: Bu birleşimde, bağlı elemanlar arasındaki açılar, uygulanan eğilme momentleri altında değişir ayrıca yanal yüklere karşı yeterli stabilitesini sağlamak için yeterli kapasiteyi koruyarak, elemanlar arasındaki momentleri yeniden dağıtabilir.

Ayrıca yarı rijit çerçevelerin tasarımı ve inşası aşağıdaki gereklilikleri karşılayacaktır:

• Birleşimlerin en büyük kapasitelerine kadar moment - dönme tepkisi, test ile oluşturulmuş ve teknik literatürde yayınlanmış veya saygın bir test laboratuvarından alınmalıdır.

- Yapının tasarımı, nihai yükte birleşimlerin sekant rijitliğini kullanan doğrusal analize veya birleşimlerin doğrusal olmayan test tepkisini izleyen artımsal analizlere dayanmalıdır.
- Özellikle birleşimlerdeki artık gerilme ve düşük çevrimlerde yorulma olmak üzere, tekrarlanan düşey ve yatay yükleme ve yük geri dönüşlerinin etkilerine dikkat edilmelidir.

2.1.8 Hindistan Ulusal Yapı Standardı [7]

2016 yılında yürürlüğe giren yönetmelik kolon-kiriş birleşimlerini, basit, rijit ve yarı rijit olarak üç gruba ayırır. Birleşimler nihai dayanımlarına göre veya başlangıç elastik rijitliklerine ve Bjorhovde sınıflandırmasına göre sınıflandırılır. Boyutsuz moment parametresini ($m^1 = M/M_{pb}$) ve θ_p 'nin plastik dönme kapasitesi olduğu boyutsuz dönme parametresini ($\theta^1 = \theta/\theta_p$) temel alır. Birleşim sınıflandırması için kullanılan sınırlar Çizelge 2.1'de gösterilmiştir.

Çizelge 2.1 : Birleşimlerin sınıflandırma sınırları.

Birleşim	Dayanım	Rijitlik
Rijit	$m^1 \ge 0.7$	$m^1 \ge 2.5 \theta^1$
Yarı rijit	$0.7 > m^1 > 0.2$	$2.5\theta^1 > m^1 > 0.5\theta^1$
Mafsallı	$m^1 \le 0.2$	$m^1 \leq 0.5 \theta^1$

Rijit birleşimler: Yüksek katlı yapılarda rijitlik gereklilikleri bu birleşimlerin kullanılmasını zorunlu kılabilir. Rijit birleşimler kolonlara önemli miktarda moment aktarır ve birleşimdeki deformasyonların çok küçük kaldığı varsayılır. Yatay ötelenmesi tutulmamış çerçevelerde stabilite için gerekli olan ve aynı zamanda yanal yüklere direnç sağlayan katkılar vardır. Tamamen kaynaklı birleşimler, rijit kolon kiriş birleşimi olarak da kabul edilebilir.

Mafsallı birleşimler: Yalnızca bazı eksantriklik derecelerinde kaymayı transfer ettiği varsayılır. Çerçeve analizlerinde mafsallı bağlantılar olarak kabul edilebilir ve yalnızca kesme kuvvetinin kirişten kolona transferi için kontrol edilmesi gerekir.

Yarı rijit birleşimler: Yukarıda belirtilen iki tip arasında yer almaktadır. Gerçekte, mafsallı birleşimler, yarı rijit birleşimlerde olduğu gibi bir dereceye kadar dönme rijitliğine sahiptir. Birleşimlerin moment-dönme ilişkisi, özel tasarım için yapılan deneylere veya uzmanlarca sunulan, testlerden elde edilen ilişkiye dayanarak belirlenmelidir. En basit analiz yöntemi, iki doğrulu veya doğrusal olmayan moment dönme özelliklerine sahip eşdeğer bir dönme yayı olarak birleşimi idealleştirmek olacaktır.

2.1.9 Çin Binaların Deprem Tasarımı Standardı [8]

2002 yılında basılan yönetmeliğe göre yapının sismik analizini yaparken, rijit, yarı rijit ve esnek birleşimlerin kullanılabilir. Daha sonra, sisteminde doğru iç kuvvetlerin belirlenebilmesi için, yatay ötelenmesinin tutulup tutulmamasına göre birleşimlerin rijitliğinin dikkate alınması gerekir.

2.2 Birleşim Davranışının Modellenmesi

Yapısal analizlerde kullanılan yöntemler, kolon-kiriş birleşim bölgesi davranışının en doğru şekilde modellenmesini hedeflemektedir. Son yıllarda yaşanan gelişmelerle birlikte birleşim davranışının belirlenmesi, matematiksel olarak ifade edilmesi ve modellenmesi konularında literatür de birçok deneysel ve analitik çalışmalar yapılmış ve bu araştırmaların sonuçları yönetmeliklere de yansımıştır.

Panel bölgesi, kiriş kolon birleşimlerinde, Şekil 2.2'de gösterildiği gibi, kolon başlıkları ve süreklilik levhaları tarafından sınırlanan bölgedir. Bir deprem sırasında panel bölgeleri, moment dayanımlı çerçevelerin enerji yayma kapasitesine katılabilecek elastik olmayan deformasyonlara maruz kalabilir. Gelişmiş yapısal analiz yöntemleri, kolon kiriş birleşim bölgesi davranışının gerçekçi şekilde analizlere yansıtılmasını gerektirir. Bu amaçla yapısal analiz modelinde kayma bölgesi (panel bölgesi), kolon başlığı ve birleşimler Şekil 2.18'de görüldüğü gibi ayrı ayrı modellenebilir. Panel bölgesi kayma deformasyonunun etkisini doğrudan analitik modelde kullanmak için literatürde, Krawinkler ve Scissors iki modelleme prosedürü yaygın olarak kullanılmıştır. Scissors modeli önemli bir hassasiyet kaybına yol açmadan verilen iki adet dönme yaylı basitleştirilmiş model de literatürde sıklıkla kullanılmaktadır. Krawinkler modelinde ise, kiriş uçlarındaki yayların haricinde kullanılan iki dönme yayı, birleşim elemanlarının yanı sıra kolon başlığı eğilmesini ve kayma bölgesi deformasyonunu da yansıtacak şekilde düzenlenir [33].

Şekil 2.18 : Krawinkler ve Scissors modeli.

Moment dönme ilişkilerinin matematiksel ifadesi olarak yarı rijit birleşimli çelik çerçevelerin analizlerinde moment dönme ilişkisini ifade eden eğriler matematiksel olarak Şekil 2.19'da gösterildiği gibi çeşitli şekillerde dikkate alınabilir. Birleşimlerin modellenmesinde kullanılan yayların moment dönme ilişkileri, istenilen hassasiyet seviyesine göre seçilecek çeşitli matematiksel ifadeler yardımıyla tariflenebilir. Bu matematiksel ifadeler gerçekte gözlenen davranışa yakınlaştıkça analiz programlarının iş yükü artmaktadır.

Şekil 2.19 : Moment dönme eğrisinin matematiksel ifadeleri.

Kolon-kiriş birleşim davranışının belirlenmesi literatürde beş başlık altında incelenebilir;

- Matematik modeller
- Analitik modeller
- Mekanik modeller
- Sonlu eleman modeller
- Deneysel modeller

2.2.1 Matematik modeller

Matematik modeller esas olarak moment-dönme eğrisinin matematiksel gösteriminin parametrelerini kiriş-kolon birleşimlerinin geometrik ve mekanik özellikleri açısından ifade etmek için kullanılan ampirik formülasyonlara dayanmaktadır. Birleşimlerin moment-dönme ilişkilerini belirlemek için en yaygın kullanılan yaklaşım, deneysel verileri regresyon analizleri ile birleşimin geometrik ve mekanik özelliklerini ifade eden bir eğri uydurmaktır. Bu ifadelere bazı eğri uydurma sabitleri ile matematiksel fonksiyonlar vasıtasıyla birleşimlerin moment ve dönme değerlerini doğrudan ilişkilendiren matematiksel modeller denir. Bu formülasyonlar, örneğin deneysel testler, sonlu eleman modelleri, analitik modeller veya mekanik modeller aracılığıyla elde edilen verilerin regresyon analizleri kullanılarak elde edilebilir [34].

Farklı birleşim geometrilerinin moment dönme davranışı üzerindeki etkilerini belirlemek için bu yaklaşımı kullanan; Frye ve Morris (1975) [35], Don Nixon ve ark. (1976) [36], Ang. ve Morris (1984) [37] ve Attiogbe-Morris (1991) [38] tarafından yapılmıştır. Bu çalışmalar, standartlaştırılmış fonksiyonların mevcut deneysel verilere uyması için yapılmıştır. Frye-Morris modeli (1975) [35] ve Attiogbe-Morris modeli (1991) [38] deneysel sonuçlara dayanan ampirik modeller hakkında örnek olarak kabul edilebilir [35, 38].

2.2.2 Analitik modeller

Analitik modeller, çeşitli yazarlar tarafından elastik yapısal analiz ve limit tasarımının temel kavramları aracılığıyla başlangıç dönme rijitliğini ve nihai moment kapasitesini

elde etmek için oluşturulur ve kullanılır. Öncelikle deneysel gözlemlere dayanarak, deforme olabilirlik kaynakları ve birleşimlerin göçme mekanizmalarının tanımlanması gerekir. Daha sonra, başlangıç dönme rijitliğini tahmin etmek için elastik analiz kullanılırken, nihai moment kapasitesi sanal iş yöntemi ile iç işler ve dış işler arasındaki dengeye bağlı olarak elde edilir. $(M - \theta)$ ilişkilerinin formülasyonu, öngörülen başlangıç rijitliği ve nihai moment kapasitesine dayanarak sağlanır [34].

Analitik modeller, birleşimin rijitlik ve dayanım parametrelerini sınır durum (limit) analizler kullanarak moment dönme davranışını elde eder. Buradaki rijitlik parametresi birleşimin dönme rijitliği ve dayanım parametresi ise birleşimin moment taşıma kapasitesidir. Bu modele örnek olarak Akma çizgileri metodu gösterilebilir.

Bu yaklaşımı benimseme örnekleri arasında, bulonlu uzatılmış alın levhalı birleşimler için Yee ve Melchers (1985) [39] modeli ve korniyerli birleşimler için Kishi ve Chen modelini (1990) [40] gösterilebilir.

2.2.2.1 Akma çizgileri metodu

Tasarım prosedürlerinde, alın levhası ve kolon başlığı eğilme dayanımları, akma çizgisi analizi kullanılarak belirlenir. Akma çizgisi analizi sanal iş yöntemi veya enerji yöntemi ile gerçekleştirilebilir: Sanal iş yöntemi, çelik levhaların analizi için tercih edilen yöntemdir, alın levhası ve kolon başlığı eğilme dayanımı için tahmin denklemlerini geliştirmek için kullanılmıştır. Sanal iş yöntemi, levha dayanımı için bir üst sınır çözümü ile sonuçlanan bir enerji yöntemidir. Bir levhanın akma çizgisi kontrol eden modeli belirlemek için, çeşitli akma çizgisi modelleri düşünülmelidir. En düşük göçme yükünü üreten model en düşük üst sınır çözümü olarak kabul edilir. Bir alın levhası veya kolon başlığının dayanımını belirlemek için akma çizgisi teorisinin uygulanması üç temel adımı gerektirir:

- bir akma çizgisi modeli varsayımı,
- iç ve dış işler için denklemlerin üretimi ve
- iç ve dış iş eşitliğinin çözümü.

Bu tasarım prosedürleri temel olarak, Oklahoma Üniversitesi ve Virginia Politeknik Enstitüsünde yürütülen araştırmalara dayanmaktadır. Akma çizgisi analizi, alın levhası ve kolon başlığı eğilmesinde kullanılır. Geçmiş yıllarda yapılan çalışmalarda, alın levhalı bulonlu birleşimlere ait çok sayıda akma çizgisi modeli araştırmaları için Srouji vd., (1983) [41]; Borgsmiller vd., (1995) [42]; Meng, (1996) [43] ve Sumner (2003) örnek gösterilebilir [**?**].

2.2.3 Mekanik modeller

Mekanik veya yaylı modeller, münferit elemanların davranışını temsil eden bir dizi rijit ve deforme olabilen bileşen kullanarak düğüm noktasını modeller. Her biri, ampirik ilişkilerden elde edilen belirli bir rijitlik ve dayanım ile karakterize edilen elastik bir yay ile temsil edilir. Bu yayların paralel ve/veya seri olarak bağlanarak, birleşimin global rijitliği hesaplanır. Mekanik modellerde, birleşimler rijit ve/veya esnek elemanlardan oluşacak şekilde işlenir. İlgili esnek elemanların veya yayların rijitliği, ampirik formüller kullanılarak belirlenir. Bu modele örnek olarak Bileşen Metodu gösterilebilir.

Bu modeli ilk benimseme girişimleri arasında çift gövde korniyerli birleşimler için Wales ve Rossow (1983) [44], alın levhalı birleşimler için Kennedy ve Hafez (1984) [45] ve her türlü korniyerli birleşim için Chmielowiec ve Richard (1987) [?] sayılabilir. O zamandan beri, birleşimlerin davranışını incelemek ve yapı analizine etkilerini araştırmak amacıyla; Pucinotti (2001) [46], Simões da Silva ve Girão Coelho (2001) [47] ve Urbonas ve Daniunas (2006) [48] gibi değerli araştırmalar da yapılmıştır.

2.2.3.1 Bileşen metodu

Bir düğüm noktası genellikle bir bütün olarak kabul edilir ve buna göre incelenir; Bileşen metodunun orijinalliği herhangi bir birleşimi ayrı ayrı temel bileşenler kümesi olarak düşünmektir. Bileşen metodu, düğüm noktası davranışını belirleyen temel bileşenlerin uygun şekilde tanımlanması koşuluyla, çoğu birleşim tipolojisine uygulanabilir. Birleşim davranışın genel tahmini aşağıdaki sekiz bileşenle ifade edilir:

- Bileşen metodunun uygulanması, aşağıdaki adımları gerektirir:
- Düşünülen birleşim için aktif bileşenlerin tanımlanması
- Her bir temel bileşen için rijitlik ve / veya dayanım özelliklerinin değerlendirilmesi (başlangıç dönme rijitliği, tasarım dayanımı, deformasyon eğrisi)

• Tüm bileşenlerin birleştirilmesi ve tüm birleşimin rijitliği ve / veya dayanım özelliklerinin değerlendirilmesi (başlangıç dönme rijitliği, tasarım dayanımı, deformasyon eğrisi)

Mekanik bir modele dayalı deneysel modellerin geliştirilmesinin bir örneği olarak Faella ve ark. (1997) [49], bileşen yaklaşımı kullanarak uzatılmış alın levhalı kiriş-kolon birleşimlerinin hem eğilme dayanımı hem de dönme rijitliğini öngörmüştür.

2.2.4 Sonlu eleman modeller

Sayısal simülasyon, deneysel sonuçların eksikliğinin üstesinden gelmenin bir yolu olarak kullanılmaya başlandı. Birleşim davranışını incelemek için sonlu eleman kullanımı, 1970'lerin başlarında, yapısal sorunları çözmede bilgisayarların kullanılması belirginleştikçe başladı.

Deneysel testlerin maliyeti çok yüksek olabilir; bu nedenle, birleşim elemanları tüm detay parçaları ile 3 boyutlu olarak sonlu elemanlarla modellemesi kullanılabilir. Bu özellikler ABAQUS ve ANSYS gibi sonlu eleman programlarında mevcuttur, ancak doğrusal olmayanlıkların karmaşık etkileşimi önemli yakınsama problemleri doğurur ve ayrıca doğru bir modele ulaşmak, bu gelişmiş analiz tekniklerinin kullanımıyla bile her zaman mümkün olmayabilir. Ayrıca elemanların malzeme ve geometrik doğrusal olmayanlığı, temas yüzeyi tanımı, sürtünme davranışının ifadesi ve ön gerilme gibi davranış özelliklerinin kullanılan yazılıma çok hassas bir şekilde dikte edilmesi bu metodun en önemli zorluklarındandır.

Örnekler arasında Bose vd. (1972) [50], Krishnamurthy ve Graddy (1976) [51], Gebbeken ve ark. (1994) [52], Yu ve diğ. (2008) [53] ve Diaz ve diğ. (2011) [54] gösterilebilir.

2.2.5 Deneysel modeller

Yarı rijit birleşim davranışı hakkında bilgi edinmenin en doğru yolu fiziksel testlerdir. Laboratuvarda deneyler yapılması, özellikle testler, birleşim elemanlarının farklı geometrik özelliklerine sahip tüm birleşim tiplerini, özellikle farklı levha kalınlıkları, farklı birleşen kolon-kiriş elemanları, farklı kalitede kaynak tipleri, farklı sayıda bulon kullanımı ve bulonlarda bulunan sürtünme ve öngerilme değerlerinde meydana gelen değişiklikleri kapsaması durumunda pratik olmayabilir. Bu zorluklara rağmen, araştırmacılar bu birleşimlerin uygulama ve gelecekteki araştırma çabaları için davranışlarının bir veri bankasını oluşturmak için bu çalışmaları sürdürür. Sonuç olarak, kiriş-kolon birleşimlerinde mevut deneysel verilerden yararlanmaya ve gerçek anlamda faydalanmaya ihtiyaç vardı, böylece araştırmacılar ve tasarımcılar çelik çerçeve analizinde ve tasarımında birleşim davranışlarının gerçekçi gösterimini kullanabilirler.

1984 yılında, 1950 ve 1983 yılları arasında yapılan 230 test sonucunun moment dönme eğrilerini topladı. Goverdhan veri bankasını dijital hale getirildi (1984) [55]. Bu veri bankası çift gövde korniyerli, tek gövde korniyerli, kısa alın levhalı ve uzun alın levhalı birleşimler üzerinde yapılan testleri içermektedir.

Çelik kolon-kiriş birleşimleriyle ilgili ilk Avrupa veri bankası 1985 yılında geliştirilmiştir. Nethercot (1985) [56], 1951 ve 1985 yılları arasında 70'den fazla deneysel çalışma için bir literatür taraması yaptı. Nethercot veri bankası, Goverdhan tarafından gövdesinde korniyer olan ve olmayan t-stub(yarım I kesit) birleşim testlerini içerir.

ABD'de, Kishi ve Chen (1986) [57], 1936'dan 1986'ya kadar dünyanın dört bir yanından 303'ün üzerinde deneysel test toplayan çelik birleşim veri bankasını (SCDB) geliştirdi. Tek gövde korniyerli birleşimler, çift gövde korniyerli birleşimler, üst ve alt başlık korniyerli birleşimler ve alın levhalı birleşimleri SCDB veri bankasına dahil edilmiştir.

1992 yılında, çelik birleşimleriyle ilgili ikinci Avrupa veri bankası Arbed Recherches (1991) ve Aachen Üniversitesi (1992) [58] tarafından SERICON isimli Avrupa da yapılmış test sonuçlarını kapsayan veri bankası geliştirilmiştir.

2.3 Birleşim Davranışının Modellenmesi ile ilgili Geçmiş Çalışmalar

2.3.1 Lui ve Chen (1986) in çalışması [9]

Esnek birleşimlere sahip çelik çerçevelerin doğrusal olmayan davranışları üzerine yapılan en eski çalışmalardan biri Lui ve Chen tarafından yapılmıştır. Çalışma

esas olarak kolon-kiriş elemanının ve birleşim elemanlarının formülasyonuna dayandırılmıştır. Sayısal örnekler de teyit edildi. Kiriş-kolon elemanının formülasyonu güncellenmiş bir Lagrangian yaklaşımına dayanıyordu. Birleşimin doğrusal olmayan davranışını üstel bir moment-dönme eğrisi fonksiyonu tarafından kullanıldı. Birleşim davranışının, çelik çerçevelerin genel stabilitesini ve nihai dayanım davranışını etkilediği ve tamamen rijit ve ideal mafsallı birleşimlerin gerçekte olmadığı bildirildi.

2.3.2 Lui ve Chen (1987) in çalışması [10]

Benzer bir çalışma Lui ve Chen tarafından yanal ötelenmesi tutulmuş ve tutulmamış çerçeveler için esnek düğüm noktalarına sahip çelik çerçeve analizinde yapılmıştır. Birleşimlerin moment-dönme davranışını temsil eden birkaç matematiksel model tartışıldı, ancak en iyisinin olmadığı ve her birinin kendine göre avantaj ve dezavantajları olduğu sonucuna varıldı. Birleşim davranışının çerçevenin maksimum yük taşıma kapasitesine etkisi olmadığı, ancak esnek birleşimleri olan çerçevelerin daha fazla deformasyona sahip olduğu görülmüştür. Yatay ötelenmesi tutulmuş çerçevelerde, ötelenmeler önemli ölçüde azalmış ve birleşimler doğrusal olmayan davranış göstermemiştir. Böylece, doğrusal elastik bir çerçeve analizi, servis yükü aralığında yüklenen esnek bir şekilde bağlanmış çerçeveler için yeterli olduğu ifade edildi.

2.3.3 Elnashai ve Elghazouli (1994) nin çalışması [11]

Yarı rijit çelik çerçevelerin tasarımı ve sismik davranışı hakkında Elnashai ve Elghazouli tarafından detaylı bir çalışma yapılmıştır. Rijit ve yarı rijit kiriş-kolon birleşimleri olan 2 katlı tek açıklıklı çerçevenin yarısı test edilmiştir. Monotonik, çevrimsel ve dinamik testlerden elde edilen sonuçlar analitik modelden elde edilen sonuçlarla karşılaştırıldı. yarı rijit birleşimlere sahip çerçevelerin yeterli deprem dayanımı gösterdiği, bu yüzden sünek ve kararlı bir histeretik davranış sergiledikleri hem deneysel hem de analitik çalışmalarla ifade edildi.

2.3.4 Gupta ve Krawinkler (1999) in çalışması [12]

Gupta ve Krawinkler tarafından moment dayanımlı çelik çerçevelerin deprem yükleri altındaki davranışları üzerine detaylı bir çalışma yapmıştır. Her üç SAC binası (3,

9 ve 20 katlı binalar) üç deprem bölgesi (Los Angeles, Seattle ve Boston) için değerlendirildi. Bu çalışmada performansa dayalı deprem tasarımın gelişiminde ilerlemeye katkıda bulunmak ve moment dayanımlı çelik çerçeveli yapılarının deprem davranışını incelemeyi amaçlanmıştır. Zaman tanım alanında analiz için, 7 set 20 adet yer hareketi kaydı (Los Angeles için 3 set, Seattle için 2 set ve Boston için 2 set) kullanılmıştır. Moment dayanımlı çelik çerçevelerin çok esnek olduğu, P- Δ etkisinin yapıların tepkisi üzerinde büyük etkisi olabileceği bildirildi. Ayrıca, Northridge sonrası yapılar için kat ötelenme açısı taleplerinin Northridge öncesi yapılar için olanlara benzer olduğu belirtildi.

2.3.5 Maison ve Kasai (2000) in çalışması [13]

SAC projesinde depremselliği yüksek bölgelerde yarı rijit (kısmi dayanımlı) birleşimli çerçevelerin performansının değerlendirilmesi için yapılan analitik çalışma da Maison ve Kasai [13] dokuz adet Northridge depremi öncesi yapılan kaynaklı moment dayanımlı çerçeve incelenmiştir. Bu çerçeveler, orjinal kiriş ve kolon boyutları sabit tutulup, birleşim özellikleri parametrik olarak değiştirilerek incelenmiştir. Bu çalışmada yatay yük taşıyan sistemin, sadece dış (perimeter) çerçeveler olduğunun belirtilmesi önemlidir. Ayrıca, kullanılan yapıların gerçeğe uygun tasarımları gerektiği kadar yansıtmadığı çalışmada da belirtilmiştir. Yatay yük sadece dış çerçevelerle taşındığında kiriş kesitleri çok büyük olmaktadır. İncelenen üç, dokuz ve yirmi katlı çerçevelerin depremselliği düşük, orta ve yüksek bölgelerde bulunduğu kabul edilmiştir. Analizler sırasında üç farklı birleşim rijitliği 30EI/L, 10EI/L, 5EI/L, üç farklı birleşim kapasitesi $1.0M_{pb}, 0.66M_{pb}, 0.33M_{pb}$ ve iki farklı pekleşme oranı 1.1, 1.4 göz önüne alınmıştır. Çalışma sırasında, 171 farklı çerçevenin elastik olmayan statik itme analizi ve dinamik analizi yapılmıştır. Dinamik analizler, 50 yıllık süre içinde aşılma olasılığı %2 ve %10'nu yansıtacak şekilde ölçeklendirilen 20 farklı deprem yer hareketi kullanılarak yapılmıştır. Birleşim özelliklerinin, yapının doğal periyoduna, taban kesme kuvvetine, kat ötelemesine, toplam enerji sönümlendirme kapasitesine ve birleşim dönme talebine etkisi incelenmiştir.

Bu detaylı çalışmada yazarlar aşağıdaki sonuçları elde etmişlerdir.

• Çerçevelerin akma dayanımları ve akma sonrası rijitlikleri, birleşimin akma momenti ve akma sonrası rijitliğinden doğrudan etkilenmektedir. Bunun yanında çerçevelerin elastik rijitlikleri ise, birleşimin rijitliğinden çok fazla etkilenmemektedir.

- Rijitlik oranları 30, 10 ve 5 olan yarı rijit birleşimli (kısmi dayanımlı) çerçevelerin doğal titreşim periyodu, rijit birleşimli çerçevelerden sırasıyla 1.05, 1.16 ve 1.33 kat daha büyük olmuştur.
- Az katlı yapılarda, kat öteleme açıları ve birleşim dönmeleri diğer çerçevelerden daha büyük olmuştur.

2.3.6 Yemez (2007) in çalışması [14]

Yazar, I-kirişin kutu kesit kolona yarım I elemanı ile bulonlu birleşimini tek yönde ve çift yönde tekrarlı yükleme koşulları altında davranışına odaklanmıştır. Tersinir tekrarlı yükleme performansları değerlendirilirse her iki birleşim de yeterli dayanım seviyesinde yüksek plastik dönme ve kabul edilebilir enerji yutma kapasitesi sağlamıştır. Dolayısıyla bu birleşimler yarı rijit kısmen güçlü birleşimler olarak depremselliği düşük olan bölgelerde moment aktaran çelik çerçevelerde veya yüksek depremsel bölgelerde çaprazlı çerçeveler ile takviyeli çelik çerçevelerde kullanılabilir olduğunu göstermiştir.

2.3.7 Peker (2009) in çalışması [15]

Çelik yapılarda uygulamada sık kullanılan zayıf eksen kolon-kiriş çerçeve birleşimlerinin davranışını açıklamaya yönelik, sayısal ve İTÜ Yapı ve Deprem Laboratuvarında deneysel bir araştırma gerçekleştirilmiştir. Çoğunlukla yarı rijit olarak bilinen zayıf eksen birleşimlerinin rijit davranış da sergilebileceğini göstermiştir. Ayrıca yazar zayıf eksen birleşimlerinin yarı rijit olarak modellenmesi için bir sayısal model önermiştir.

2.4 Birleşim Dönme Kapasitesi

Moment dayanımlı birleşimlerin bir başka sınıflandırması da dayanımlarıyla ilgilidir. Bir "tam dayanımlı" birleşim, en azından bağladığı elemanların nihai eğilme dayanımına ulaştırabilen bir birleşimdir. Bir "kısmi dayanımlı" birleşim, bağlandığı elemanlarınkinden daha düşük bir tasarım dayanımına sahiptir. Moment dayanımlı bir birleşimin dönme kapasitesi de önemli olabilir. Şekil 2.20, kolon-kiriş birleşiminin moment-dönme diyagramını göstermektedir. Tasarım amaçları için, gerçek bağlantı davranışı, aşağıdaki özelliklerin ayırt edilebildiği bir iki doğrulu diyagramla gösterilebilir:

- Birleşimlerin tasarım dayanımı;
- Küçük momentlere maruz kaldığında birleşim rijitliği;
- Nihai momentlere maruz kaldığında birleşim rijitliği;
- Birleşimlerin dönme kapasitesi

Birleşimlerin çerçeve davranışı üzerindeki etkisi, kısmi dayanımlı ve yarı rijit bağlantılar için ayrı olarak ele alınır. Çaprazlı çerçeveler genel olarak dayanım koşullarına göre tasarlanır ve yatay ötelenmesi tutulmamış çerçeveler (moment çerçeveleri) genellikle stabilite ve yer değiştirme şartlarına göre tasarlanır. Bu nedenle, kısmi dayanımlı birleşimler esasen çaprazlı çerçeveler için ve yarı rijit birleşimli moment çerçeveleri için uygulanabilir.

Şekil 2.20 : Birleşimin dönme kapasitesi [25].

Yarı rijit birleşimli sistemler de doğrusal elastik olmayan analizin sağlanması için, düğüm noktalarının yeterli dönme kapasitesinin kontrol edilmesi gerekir. Belirli bir mafsal tipi için mevcut dönme kapasitesi, sistem incelemelerinden elde edilen bu mafsal için gerekli dönme kapasitesi ile karşılaştırılmalıdır. Bir düğüm noktasının mevcut dönme kapasitesi, bileşenlerinin şekil değiştirme kapasitesine dayanarak belirlenebilir. Bileşenlerin sünekliği, düğüm noktasının sünek davranışını kesin olarak etkiler.

Birleşimlerin mevcut dönme kapasitesinin belirlenmesi için çeşitli modeller kullanılabilir (Tschemmemegg ve diğerleri, 1997, Jaspart, 1991). Bu modeller farklı araştırma yöntemleriyle elde edildi, hepsi test sonuçlarına ile kontrol edildi ve bu nedenle mevcut dönme kapasitesinin güvenli ve doğru tahminlerini sağladılar [25].

2.4.1 AISC yönetmeliği [1]

Yapının düğüm noktalarında plastik mafsallar oluşup sistemin bu şekilde enerji sönümlemesine izin verilmez. Bu sebeple yarı rijit birleşimlerin sahip olması gereken dönme kapasitesine ait herhangi bir bilgi mevcut değildir. Öte yandan rijit birleşimlerin sahip olması gereken süneklik düzeyi, yapısal sistemin türüne ve deprem tasarımına göre değişmektedir. Örneğin süneklik düzeyi yüksek moment dayanımlı çelik çerçevelerde birleşimlerin sünek davranabilmesi için dönme kapasitesi θ_u , 0.04 radyan'dan, süneklik düzeyi sınırlı olan moment dayanımlı çelik çerçevelerde ise, 0.02 radyan'dan büyük olmalıdır.

2.4.2 Eurocode yönetmeliği [2]

Doğrusal elastik olmayan analizlerde, plastik mafsal konumundaki bir düğüm noktası yeterli dönme kapasitesine sahip olması gerektiğini savunur.

- Tasarım yöntemleri sadece S235, S275 ve S355 çelik sınıfları için ve bağlı elemanda ki N_{Ed} eksenel kuvvetinin tasarım değerinin, kesitinin plastik tasarım dayanımının %5'ini aşmadığı düğüm noktaları için geçerlidir.
- Düğüm noktasının tasarım momenti dayanımı $M_{j,Rd}$ 'nin, bağlı elemanın kesitinin tasarım plastik momenti dayanımı $M_{pl,Rd}$ 'nin en az 1.2 katı olması koşuluyla, bir düğüm noktasının dönme kapasitesinin kontrol edilmesi gerekmez.

3. YER DEĞİŞTİRME ARTTIRMA KATSAYISI

Bu bölümde etkin göreli kat ötelenmelerinin elde edilmesinde kullanılan *Yer Değiştirme Arttırma Katsayısı*, *C*d'yi daha iyi kavrayabilmek için diğer tepki değiştirme katsayıları da geçmişte yapılan çalışmaları ile özetlenecektir. Böylece konunun daha sağlıklı ve anlaşılır bir şekilde ele alınması amaçlanmaktadır. Tepki değiştirme katsayılarının kullanılması ile büyük olasılıkla, yönetmelikle uyumlu bir yapıda tasarım depreminde dahi akma gözlenecektir. Elastik olmayan tepkinin ölçeği ve dağılımı, tepki özellikleri, yapıdaki rijitlik ve kütlenin yapısı ve zemin özellikleri gibi birçok faktöre bağlı olacaktır. Tepki değiştirme katsayılarının kullanılmasının arkasındaki ana sebep, tasarımın ekonomik bir şekilde yapılması talebidir. Statik elastik analiz prosedürlerinin tepki değiştirme katsayılarını tahmin etmekte yetersiz olmakla birlikte, statik elastik prosedürler, tasarım mühendisi için aşağıdakileri içeren bir takım nedenlerden dolayı önemlidir:

- Kullanımı kolaydır ve tasarımcının yapısal dinamikleri derinlemesine kavramasını gerektirmez (bunun bir dezavantaj olduğu söylenebilir).
- Tasarımı daha kesin yöntemlerle daha sonra değerlendirmek üzere bir yapı ortaya koymak için (ön tasarım) kullanılabilir.
- Az katlı, düzenli binaların tasarımı için yeterli kesinliğe sahip iç kuvvetlerin tahminlerini sağlayabilir.

Taşıyıcı sistem davranış katsayısının (R) bağlı olduğu parametrelerden bahsetmeden önce (R) katsayısının yapısal davranış açısından anlamı daha açık şekilde ifade edilmelidir. Şekil 3.1'de şematize edilmiş olan genel yapı davranışına ait tipik Taban kesme kuvveti (V) - Yer değiştirme (Δ) grafiği görülmektedir. Burada V_e yapının elastik kalması durumunda sistemde oluşacak taban kesme kuvvetini, V_d tasarım için kullanılan taban kesme kuvvetini göstermektedir.

Şekil 3.1 : Genel yapı davranışı.

3.1 Taşıyıcı Sistem Davranış Katsayısı

Tepki değiştirme katsayısı, R, belirtilen yer hareketi altında tamamen doğrusal elastik bir tepki veren yapıda gelişecek olan maksimum yanal kuvvet V_e 'nin, dayanmak üzere tasarlandığı yanal kuvvet V_d 'ye oranını temsil eder.

$$R = \frac{V_{\rm e}}{V_{\rm d}} \tag{3.1}$$

R katsayısı, başlangıç akmasını aşan ve yapısal sistemin nihai yük yer değiştirmesine yaklaşmak için yeterince büyük olan yer değiştirmelerde sönümleme, dayanım fazlalığı ve yapısal sistemde doğal olan(içsel) sünekliği hesaba katmayı amaçlayan ampirik bir tepki azaltma faktörüdür [59]. İyi detaylandırılmış sismik çerçeve sistemlerinin çökme olmadan büyük elastik olmayan deformasyonları sürdürebilir (sünek davranış) ve tasarım dayanımından daha fazla bir yanal dayanım gösterir (genellikle rezerv dayanım olarak adlandırılır) [30].

Mühendislik uygulamaları bu yapısal davranış olgusundan yararlanmıştır. Bazı önemli varsayımlar ve deneyimlerle birlikte, "*R*" faktörü ilk kez ATC-3-06'da [60] 1978'de tanıtılmaktadır, bunun için %5 sönümlü bir ivme tepki spektrumu kullanılarak tasarım

taban kesme kuvvetini (V_d) hesaplamak için elastik analiz ile hesaplanan taban kesme kuvvetini (V_e) azaltmak için kullanılır.

1980'lerin ortasında, Berkeley California Üniversitesi 'ndeki deneysel bir araştırma programından elde edilen veriler, yönetmelikle uyumlu çelik çapraz çerçeveli yapıların sismik tepkisine ilişkin geliştirilmiş bir anlayış geliştirmek ve tepki değiştirme katsayıları için taslak bir formülasyon önermek için kullanıldı. Taban kesme kuvveti-çatı yer değiştirme ilişkileri, biri merkezi ve biri dış merkez olarak desteklenmiş çelik çerçeve sisteminin deprem simülatörü testinden elde edilen veriler kullanılarak elde edildi. Kuvvet Yer Değiştirme eğrileri, her deprem simülasyonu ve her model için maksimum taban kesme kuvvetine karşılık gelen zamanda tepe yer değiştirmesinin çizilmesiyle geliştirilmiştir. Her test için, deprem simülatör platformlarının ivme-tepki geçmişi sonuçlarını kullanılarak elastik ivme tepki spektrumu üretildi. Berkeley araştırmacıları, deneysel verileri kullanarak *R* 'yi dayanım fazlalığı, süneklik ve viskoz sönümleme olan üç faktörün ürünü olarak tanımladılar:

$$R = R_{\rm S} R_{\mu} R_{\xi} \tag{3.2}$$

Bu denklemde R_S dayanım fazlalığı katsayısı, R_{μ} süneklik azaltma katsayısı ve R_{ξ} sönüm katsayısıdır. Dayanım fazlalığı katsayısı, akma seviyesindeki (V_y) maksimum taban kesme kuvvetinin, tasarım taban kesme kuvvetine (V_d) oranı olarak hesaplandı. Süneklik azaltma katsayısı, elastik tepki için taban kesme kuvveti (V_e) 'yi akma taban kesme kuvvetine (V_y) bölünerek hesaplandı. Sönüm katsayısı 1'e ayarlandı. Uygulamalı Teknoloji Konseyi tarafından yürütülen çalışmalar [30], üç faktörün ürünü olarak ifade edilen *R* için yeni bir formülasyonu desteklemektedir:

$$R = R_{\rm S} R_{\mu} R_{\rm R} \tag{3.3}$$

burada R_S bir dayanım katsayısı; R_{μ} periyoda bağlı bir süneklik katsayısı; ve R_R bir bağlılık katsayısıdır. Bu formülasyon, bağlılık katsayısı dışında, Berkeley araştırmacıları tarafından önerilenlere benzerdir. Burada, dayanım katsayısı R_S , Denklem 3.4'de ifade edildiği gibi bir sistemin belirgin bir akma dayanımının, tasarım

dayanımına oranı, süneklik faktörü R_{μ} ise, Denklem 3.5'de ifade edildiği gibi nihai elastik dayanım talebinin belirgin bir akma dayanımına oranı olarak tanımlanmaktadır.

$$R_{\rm S} = \frac{V_{\rm y}}{V_{\rm d}} \tag{3.4}$$

$$R_{\mu} = \frac{V_{\rm e}}{V_{\rm y}} \tag{3.5}$$

Bağlılık katsayısı, bir yapının düşeyde her bir ana aksı doğrultusunda birden fazla sismik çerçeve kullanan sistemlerinin güvenilirliğini değerlendirmek için önerilmektedir. Sönüm katsayısı R_{ξ} , ilave viskoz sönümleme araçlarının (yapısal olmayan elemanlar) etkisini hesaba katmak için tasarlanmıştır. Bu gibi viskoz bir sönümleme katsayıları, akma anındaki bir çerçevede yer değiştirmeleri azaltmak için kullanılabilir ancak kuvvet taleplerini orantılı olarak azaltmayabilir, (doğrusal olmayan davranış sergileyen çerçeve sistemindeki yer değiştirmeleri azaltmak için kullanılabilir, ancak özellikle yüksek sönümlü çerçevelerde kuvvet taleplerini orantılı olarak azaltmayabilir). Tepki değiştirme katsayıları kuvvet temelli tasarım prosedürleriyle kullanıldığından sönümleme katsayısı yeni formülasyondan çıkarılmıştır [30].

3.2 Dayanım Fazlalığı Katsayısı

Bir yapının gerçek dayanımı, tasarım dayanımından daha yüksektir. Bu durum, genel tasarım basitleştirmelerinden kaynaklanmaktadır, ancak modern bilgisayar destekli araçlar, mühendisin yapıyı, inşa edilen duruma yakın bir şekilde modellemesine ve tasarlamasına olanak sağlamaktadır. Yine de tasarım süreci boyunca, malzemelerin gerçek dayanımının hesapta kullanılan dayanımdan daha yüksek olması, yönetmeliklerdeki sınır koşulları (güçlü kolon-zayıf kiriş koşulu, en kesit koşulları, göreli kat ötelemeleri sınırları), yük ve malzeme katsayıları, yapısal olmayan elemanların katkısının gözardı edilmesi, yükleme anında sistemde oluşan yeniden dağılım gibi önemli basitleştirmeler ve varsayımlardan kaynaklanır. Bu varsayımlar ve tasarım uygulamaları genellikle güvenli tarafta kalacak şekilde ihtiyatlı bir tasarıma kayma eğilimindedir bu sebepten de sonuç olarak gerçek dayanım tasarım dayanımından
yüksektir. Denklem 3.6'de dayanım fazlalığı katsayısı Şekil 3.1'de verilen genel yapı davranışı üzerinden tarifi verilmiştir.

$$\Omega = \frac{V_{\rm y}}{V_d} \tag{3.6}$$

3.2.1 Dayanım fazlalığı katsayısı ile ilgili geçmiş çalışmalar

3.2.1.1 Freeman [16]

1990'da yapılan bu çalışmada yazar, ikisi 4. derece deprem bölgesinde, diğeri 3.derece deprem bölgesinde inşa edilmiş üç katlı üç çelik moment çerçevesi için dayanım fazlalığı katsayılarını sırasıyla 1.9, 3.6 ve 3.3 olarak hesaplamıştır.

3.2.1.2 Osteraas ve Krawinkler [17]

Bu çalışmada, UBC yönetmeliğine uygun olarak tasarlanan çelik çerçevelerin dayanım fazlalığı, süneklik kapasiteleri ve süneklik talepleri incelenmiştir. Çeşitli çerçeve boyutlarına ve yüksekliğine sahip moment çerçeveleri, çevre çerçeveleri ve çaprazlı çerçeveler sabit bir üçgen yük dağılımı kullanılarak doğrusal elastik olmayan statik analize tabi tutulmuştur. Moment çerçeveleri için dayanım fazlalığı katsayılarını araştırmıştır.

3.2.1.3 Balendra ve Huang [18]

Yazarlar, rijit ve yarı rijit birleşimleri olan 3, 6 ve 10 katlı çelik çerçeveleri X ve V tipi çaprazlarla destekledi; moment dayanımlı çerçeveler için 1.9 - 8.0, X çaprazlı çerçeveler için 2.3- 5.6 arasında değişen dayanım fazlalığı katsayıları rapor etmiştir. Çalışmanın bir başka sonucu da, rijit birleşimler yarı rijit birleşimlerle değiştirilmesi durumunda, moment dayanımlı çerçevelerin dayanım fazlalığı katsayıları %50 civarında azalırken, süneklik katsayıları %25'ten daha fazla artmıştır.

3.3 Süneklik Azaltma Katsayısı

Belirli bir yer hareketine veya yanal yüklemeye maruz kalan yapısal sistemin yaşadığı elastik olmayan deformasyonun derecesi, yer değiştirme süneklik oranı " μ " (süneklik

talebi) oranıyla verilir ve maksimum mutlak göreli yer değiştirmenin akma yer değiştirmesine oranı olarak tanımlanır.

$$\mu = \frac{u_{\text{max}}}{u_{\text{y}}} \tag{3.7}$$

Yer değiştirme süneklik oranı genellikle yer değiştirme sünekliği olan ' $u_{max} - u_y$ ' ile karıştırılır.

"Süneklik Azaltma Katsayısı", bazı çalışmalarda "dayanım azaltma katsayısı" olarak adlandırılan (elastik sonrası davranış nedeniyle dayanım talebindeki azalma), R_{μ} , sistemi elastik tutmak için gereken kuvvet $F_{y} (\mu = 1)$ yanal akma dayanımının, yer değiştirme sünekliği oranını μ daha düşük veya önceden belirlenmiş bir hedef süneklik oranı μ_{i} durumundaki $F_{y} (\mu = \mu_{i})$ yanal akma dayanımına oranı (gerçek süneklik/var olan süneklik) olarak tanımlanır.

$$R_{\mu} = \frac{F_{y}(\mu = 1)}{F_{y}(\mu = \mu_{i})}$$
(3.8)

Özellikle uzun periyotlu yani "yer değiştirmeye duyarlı" yapılarda bu bileşen, sistemin sünekliğine eşit olarak alınmaktadır [19]. Süneklik Bileşeni ile süneklik arasındaki ilişkiyi keşfetmek adına araştırmacıların yaptığı çok sayıda çalışma ve sonucunda türetilmiş birçok bağıntı mevcuttur. Belirli bir yer hareketi için, süneklik azaltma katsayısı R_{μ} , yapı periyodunun, sönümün, davranış tipinin ve yer değiştirme süneklik oranının bir fonksiyonu olarak Denklem 3.9'deki gibi tanımlanır. Öncelikle titreşim periyodundan ve elastik olmayan deformasyon seviyesinden ve sistemin sönümleme ve histeretik davranışından çok daha az derecede etkilenir.

$$R_{\mu} = R_{\mu} \left(T, \mu_i \right) \tag{3.9}$$

 R_{μ} tanımından (Denklem 3.8), yapının periyoduna veya uygulanan yükleme türüne bakılmaksızın, elastik olarak çalışan sistemler için ($\mu_i = 1$) süneklik azaltma katsayısının durumunu sağlaması gerektiği açıktır:

$$R_{\mu} = R_{\mu} \left(T, \mu = 1 \right) = 1 \tag{3.10}$$

Doğal periyodunun sıfıra yakınsadığı çok rijit yapılar için $(T \rightarrow 0)$, yapı yere göre herhangi bir yanal ötelenme yaşamayacak, fakat aynı anda hareket edecektir. Bu nedenle, herhangi bir yer hareketi için, bu sistemlerdeki elastik olmayan dayanım talebi elastik dayanım talebiyle aynıdır, bu nedenle *Süneklik Azaltma Katsayısı* aşağıdaki denklem ile ifade edilir:

$$R_{\mu} = R_{\mu} \left(T = 0, \mu_i \right) = 1 \tag{3.11}$$

Hakim titreşim periyodunun büyük olduğu, çok esnek sistemler için $(T \rightarrow \infty)$, sistemin dayanımından bağımsız olarak, sistemin maksimum göreli yer değiştirmesi, maksimum yer değiştirmesine yakınlaşır. Herhangi bir yer ivmesi için, elastik olmayan dayanım talebi F_y ($\mu = \mu_i$), elastik dayanım talebi F_y ($\mu = 1$) 'ye eşittir, bu nedenle *Yer Değiştirme Süneklik Oranı* $\mu = u_{max}/u_y$ oranına eşittir ve bu sistemler için *Süneklik Azaltma Katsayısı* aşağıdaki denklem ile ifade edilir:

$$R_{\mu} = R_{\mu} \left(T \to \infty, \mu_i \right) = \mu \tag{3.12}$$

Miranda ve Bertero sistemin yatay dayanımı ile yer değiştirme süneklik talebi arasındaki değişimi Şekil 3.2'deki gibi ifade edilmektedir [61].

Şekil 3.2 : Sistemin yatay dayanımı ile yer değiştirme süneklik talebi arasındaki değişim.

3.3.1 Süneklik azaltma katsayısı ile ilgili yapılan çalışmalar

3.3.1.1 Newmark ve Hall [19]

El Centro ve Kaliforniya deprem kaydından elde ettikleri elastik ve elastik olmayan tepki spektrumuna dayanarak yazarlar şunları gözlemlemiştir:

- Periyotları yüksek ve orta periyot spektral bölgelerine gelen yapıların elastik yer değiştirme değerinin elastik ötesi yer değiştirme değerine neredeyse eşit olduğunu (Δ_{max} ⊆ Δ_e),
- Literatürde *Eşit Yer Değiştirme Kuralı* olarak bilinen bu kural, depreme dayanıklı yapıların tasarım felsefesinin dayanak noktasını oluşturmaktadır. Yapının elastik ötesi davranışının, yaklaşık da olsa, elastik davranışına bakılarak tahmin edilebiliyor olması, sistemin ne kadar sünek tasarlanması gerektiğinin yani deprem enerjisinin ne kadarının elastik dayanımla ne kadarının elastik olmayan deformasyonlarla tüketilebileceğinin görülmesine imkan sağlamıştır.
- Çok küçük periyot bölgesinde, elastik ve elastik olmayan sistemler aynı kuvvete maruz kaldığı,
- Gözlemlerinin bir sonucu olarak yazarlar, elastik spektrumlardan elastik olmayan spektrumları elde etmek için bir prosedür önermişlerdir.
- Orta periyotlu yapılarda ise enerjinin korunumu prensibi gereği, elastik sistemde monotonik yükler etkisinde oluşan kuvvet-deformasyon ilişkisinin, elastik ötesi durumda, pekleşmesiz elasto-plastik davranışa benzer olacağı sonucuna varılmıştır.

Özetle, sistemler periyotlarına bağlı olarak üç bölüme ayrılmıştır. Düşük periyotlu yapıların rijitliği çok yüksek olacağından ivmeye, orta periyotlu yapıların hıza, uzun periyotlu yapıların ise yer değiştirmeye duyarlı olduğu sonucu ortaya çıkmıştır. Çalışma sonucu birçok periyot aralığı için farklı R_{μ} değerleri elde edilmiş ve belirli bir periyodun üzerindeki yapıların süneklik bileşeni (R_{μ}) değerleri eşit yer değiştirme kuralına uygun şekilde yer değiştirme sünekliği katsayısına (μ) eşit çıktığı görülmüştür.

3.3.1.2 Lai ve Biggs [20]

Bu çalışmada, tasarım, 20 yapay yer hareketi için hesaplanan ortalama elastik olmayan spektruma dayandırılmıştır. 0.1s ile 10s arasında eşit aralıklarla değişen 50 doğal periyod ile yapılan analizler sonucu katsayılara karşılık gelen süneklik azaltma katsayılarını formüle etmiştir.

3.3.1.3 Miranda [21]

Bu çalışmada ise, kaya zemin üzerinde kaydedilen çeşitli depremlere ait 124 yer hareketi kullanılarak, alüvyon ve yumuşak zeminler içeren 3 zemin sınıfı koşulları, %5 sönüm oranına sahip ve yer değiştirme süneklik oranları 2 ile 6 arasında değişen tek serbestlik dereceli sistemler üzerinde analizler yapılmıştır. Çalışma ayrıca, deprem büyüklüğünün ve mesafenin sonuçlara etkisinin önemsiz olduğunu, zemin koşullarının süneklik azaltma faktörü üzerinde önemli bir etkisi olduğunu göstermiştir.

3.4 Eşit Yer Değiştirme ve Eşit Enerji Prensipleri

Elastik bir tasarım spektrumundan elde edilen taban kesme kuvveti katsayısı ile tasarım deprem kuvvetini hesaplamak için, bölgesel yer ivmesi çarpanı ve yapısal kütle çarpılır. Bununla birlikte, nihai sınır durum için deprem bölgelerindeki nadir depremlerin PGA(en büyük yer ivmesi)'sı dikkate alındığında, bu tür kuvvetler önemli ölçüde büyük olacaktır. Bu tür depremler bir yapının ömrü boyunca oluşabileceği veya olamayacağı için, tüm yapıların bu kadar yüksek bir talebi karşılayacak şekilde tasarlanması, kaynakların israfi olacaktır. Bu, elastik olmayan sismik tasarım kavramını tetikledi. Modern sismik tasarım uygulamalarında, deprem tasarım kuvveti elastik talebin altında kalmaktadır. Bu, bir yapının bir servis sınır durumu depreminde esasen elastik kalacağı ve maksimum olarak düşünülmüş bir nihai sınır durum depremine plastik olarak tepki vereceği anlamına gelir. Bir sınır durumu vuku bulduğunda yapının güvenliğini sağlamak için, dayanımını kaybetmeden istenen elastik olmayan bir yer değiştirme seviyesine deforme olmak üzere tasarlanmıştır.

Yapıların dayanımını kaybetmeden elastik sınırın ötesinde deforme olma kabiliyeti, nihai yer değiştirmenin, (Δ_u) , ilk akmadaki yer değiştirmeye, (Δ_y) oranı olarak tanımlanan yer değiştirme sünekliği oranı ile ölçülür. Elastik olmayan deprem tasarım dayanımı, yapının sünekliğinin bir fonksiyonudur ve tasarım deprem kuvvetindeki herhangi bir azalma, süneklik talebini artırarak telafi edilmelidir. Bu nedenle, F_e kuvveti tarafından tam olarak tarif edilen elastik talebin aksine, elastik olmayan talep, bir akma kuvveti F_y ve bir yer değiştirme sünekliği ile açıklanmaktadır.

Şekil 3.3 'te gösterildiği gibi, elastik olmayan kuvvet talebini ve yer değiştirme sünekliğini ilişkilendirmek için iki farklı yaklaşım kullanılır.

Şekil 3.3 : Eşit yer değiştirme ve eşit enerji prensipleri.

Eşit yer değiştirme prensibi, elastik olmayan bir sistemin nihai yer değiştirmesinin, aynı başlangıç rijitliği olan bir elastik sistemin yer değiştirmesine eşit olduğunu belirtir. Eşit yer değiştirme prensibine göre, elastik ve elastik olmayan talep arasındaki oran, yer değiştirme sünekliği oranına eşittir ($R_{\mu} = \mu$). Bu daha uzun periyotlu esnek yapılar için tartışmalı olarak geçerlidir. Aşırı bir örnek olarak, sonsuz esnek yapılar için maksimum yer değiştirme, elastik olmayanlık seviyesine bakılmaksızın her zaman tepe yer değiştirmesine eşittir. Öte yandan, eşit enerji ilkesi, elastik bir sistem tarafından dağıtılan enerjinin ve onun elastik olmayan karşılığına eşittir. Böylece süneklik azaltma katsayısı $R_{\mu} = \sqrt{2\mu - 1}$ 'e eşittir, burada μ elastik olmayan sistemin yer değiştirme sünekliği oranıdır. Ekonomik ve uygulanabilir tasarım ancak yapıda sınırlı hasar oluşmasının baştan kabul edilmesi ile yapılabilecektir. Buna göre tasarlanmış bir yapı elasto-plastik davranış gösterecektir [62].

3.5 Yer Değiştirme Arttırma Katsayısı

ASCE 7-16 'da [63] azaltılmış deprem yüklerine göre hesaplanan göreli kat ötelemelerini, etkin göreli kat ötelemelerine $\frac{C_d}{I}$ oranı ile çarparak dönüştürmektedir. Burada; *I*, bina önem katsayısı, C_d ise Yer Değiştirme Arttırma Katsayısı olarak adlandırılan katsayısı, yapının elastik ötesi davranışı esnasında yaptığı en büyük yer değiştirme değerinin, tasarıma esas alınan yatay kuvvetler altında yapmış olduğu yer değiştirme değerine oranı olarak tanımlanmaktadır. Diğer bir ifadeyle C_d katsayısı, yapının elastik durumdaki yer değiştirme değerinden, elastik ötesi durumdaki yer değiştirme değerini (deprem esnasında yapıda meydana gelen gerçek yer değiştirme değeri) elde etmek için kullanılmaktadır.

Depreme dayanıklı yapı tasarımı, belirli farklarla bütün deprem yönetmeliklerinde, yapının güçlü yer hareketlerine maruz kaldığında hasar almasını, ancak göçmemesini öngörerek yapılmaktadır. Yapının ömrü boyunca belki de hiç karşılaşmayacağı depremlerin etkisi altında elastik davranış göstermesi, yani hiç hasar almaması, ekonomik ve akılcı olmadığından arzu edilen bir tasarım yaklaşımı değildir. Kabul gören tasarım yöntemi, yapının üzerine gelen yükleri, elastik aralıkta tutmak yerine bir miktar elastik ötesi deformasyon yaparak karşılaması, başka bir deyişle elastik ötesi enerji tüketme kapasitesini kullanmasıdır. Bu amaçla yapı, elastik tasarım spektrumlarından elde edilen ve taşıyıcı sistemin süneklik düzeyine, malzeme türüne, taşıyıcı sistemin yapısına, dinamik özelliklerine ve yapının kullanım amacına bağlı olarak değişen bir katsayıyla azaltılarak, doğrusal elastik olmayan deprem yüklerine göre boyutlandırılır. Yönetmeliklerde "*Taşıyıcı Sistem Davranış Katsayısı*" na (*R*) bağlı olarak belirlenen "*Deprem Yükü Azaltma Katsayısı*",(R_a) bahsi geçen elastik deprem yüklerini azaltmak amacıyla kullanılmaktadır.

Sonuç olarak, şiddetli bir deprem yer hareketi sırasında yapıların elastik olmayan yer değiştirmelere maruz kalması beklenir. Yapılar, genel olarak, tasarımın gerektirdiğinden daha fazla bir dayanıma sahiptir. Bu dayanım fazlalığı, deprem yer hareketi sırasındaki süneklik talebini azaltır ve daha önce de bahsedildiği gibi çeşitli kaynaklardan sağlanabilir.

Deprem yönetmelikleri her bir yapısal sistem için *Dayanım Fazlalığı Katsayısı* Ω_0 kullanır; bu, gerçek kuvvetin V_y , tasarım kuvvetine V_d , bölünmesiyle gösterilir (Şekil 3.1). Bu nedenle, *Taşıyıcı Sistem Davranış Katsayısı R*, yapının dayanım fazlalığı ve süneklik azaltma katsayılarının çarpımı haline gelir (Denklem 3.13).Yine benzer

prensiple, C_d , katsayısı dayanım fazlalığı Ω_0 ve yer değiştirme süneklik oranının çarpımı olarak ifade edilebilir(Denklem 3.14).

$$R = \frac{V_e}{V_d} = \frac{V_e}{V_y} \times \frac{V_y}{V_d} \Rightarrow R = R_\mu \times \Omega_0$$
(3.13)

$$C_{\rm d} = \frac{\Delta_{\rm max}}{\Delta_{\rm d}} = \frac{\Delta_{\rm max}}{\Delta_{\rm y}} \times \frac{\Delta_{\rm y}}{\Delta_{\rm d}} \Rightarrow C_{\rm d} = \mu \times \Omega_0 \tag{3.14}$$

Eğer yapı, tasarım depremi altında V_y 'ye karşılık gelen kat ötelenmesinde tamamen elastik kalırsa $(\delta = \delta_e)$, *R* kat ötelenmelerinin oranına (azaltılmış/etkin) eşittir.

Moment dayanımlı çelik çerçeveler için R ve Ω_0 , ASCE 7-16 da hiçbir yapı yükseklik sınırı olmaksızın, sırasıyla 8 ve 3 olarak verilmiştir. Bu, süneklik azaltma katsayısı (R_{μ}) , 2,67 anlamına gelir. Bu kısa açıklama temelinde, ASCE 7-16, tasarım depremi altında elastik olmayan ötelenmenin (δ) tasarım ötelenmesine, δ_e/R , oranı olarak C_d 'yi tanımlar. Böylece, C_d aşağıdaki gibi R katsayısının bir parçası haline gelir [23].

$$C_{\rm d} = \frac{\delta}{\delta_{\rm e}} R \tag{3.15}$$

Türkiye Bina Deprem Yönetmeliği ise moment dayanımlı çelik çerçeveler için *Taşıyıcı* Sistem Davranış Katsayısı ve Dayanım Fazlalığı Katsayısı için sırasıyla 8 ve 3 olarak vermiştir. Buradan da Süneklik Azaltma Katsayısı 2,67 anlamına gelir. Fakat TBDY-2018 azaltılmış deprem yüklerine göre hesaplanan göreli kat ötelemelerini, etkin göreli kat ötelemelerine dönüştürülmesi amacıyla R/I oranını kullanılmaktadır. Burada; I, Bina Önem Katsayısı, R ise Taşıyıcı Sistem Davranış Katsayısı dır.

Taşıyıcı sistem bakımından aynı özelliklere sahip yapılara ait *Taşıyıcı Sistem Davranış Katsayısı ve Dayanım Fazlalığı Katsayısı* her iki yönetmelik için farklılık göstermezken, azaltılmış göreli kat ötelemeleri'ni, etkin göreli kat ötelemeleri'ne dönüştüren katsayılar arasındaki farklılık göze çarpmaktadır. Tasarım mühendisi, güvenlik konusunda temkinli olduğu kadar yapının maliyetini de göz önünde bulundurmalı, gereğinden büyük kesitler seçmemelidir. Özellikle, süneklik düzeyi yüksek çelik çerçeveler'in tasarımında kesitler seçilirken etkin göreli kat ötelemeleri şartının belirleyici olduğu göz önüne alındığında, bu farklılık daha da önemli hale gelmektedir.

Son yayınlanan ATC-63 proje raporunda [27] C_d , yapıdaki gerçek elastik olmayan yer değiştirme talebini hesaplamanın kolay bir yolunu sağladığı ve genellikle R 'den daha küçük olduğu belirtilmiştir. Şekil 3.4'te C_d 'de dahil olmak üzere binalar için deprem performans katsayılarını inceler.

Yatay Yer Değiştirme (Tepe Yer Değiştirmesi)

Şekil 3.4 : FEMA P695'e göre genel yapı davranışı [27].

3.5.1 Yer değiştirme arttırma katsayısı ile ilgili yapılan çalışmalar

3.5.1.1 Uang ve Maarouf [22]

1994 yılında yayınlanan çalışma, deprem tasarım yönetmelikleri, öngörülen tasarım deprem kuvveti seviyesindeki elastik analizden hesaplanan ötelemeleri, bir yer değiştirme arttırma katsayısı (DAF) ile elastik analizden hesaplanan ötelemeleri arttırarak, büyük depremlerde meydana gelen maksimum tepe ve kat ötelemelerini edildiğine dikkat çeker. Bazı deprem tasarım hükümlerinin karşılaştırılması, hem UBC hem de NEHRP'deki ötelenme arttırma katsayısının sırasıyla $3R_w/8$ ve C_d 'ye eşit olan yer değiştirme arttırma katsayısının çok düşük olduğunu ve ihtiyatlı olmayan ötelenme tahminlerine yol açabileceğini göstermiştir. Dört farklı tip binanın sismik tepkilerinin analitik bir incelemesi, büyük depremlerde oluşan ötelemelerin UBC veya NEHRP yaklaşımı tarafından öngörülenlerden çok daha yüksek olduğunu doğrulamıştır. Yer değiştirme arttırma katsayısının, en büyük yer değiştirmelerin tahmin edilmesi için en azından deprem yükü azaltma katsayısına (UBC'de R_w ve NEHRP'de R) yükseltilmesi

önerilir. Yapı ve depremin hakim periyodu arasındaki oranın, akma mekanizmalarının tipleri ve yapısal dayanım fazlalığının DAF üzerindeki etkileri de sunulmuştur.

UBC ve NEHRP'de kullanılan yer değiştirme arttırma katsayıları hükümlerde önerilen değerlerden düşüktür ve bu nedenle ihtiyatlı olmadığı belirtilmiştir. Bu çalışma, DAF'ın sırasıyla çatı ya da kat ötelenmesini tahmin etmek için FRF'den biraz daha az ve DAF'den önemli ölçüde daha büyük olabileceğini göstermiştir. Bununla birlikte, sadelik için, FRF'ye eşit bir DAF'ın, büyük depremlerde meydana gelebilecek maksimum kat ötelenmesi ve çatı ötelenmesini tahmin etmek için kullanılması tavsiye etmiştir.

3.5.1.2 Şeker, Akbaş, Shen ve Öztürk [23]

Yazarlar 2013 yılında, yer değiştirme arttırma katsayısı 5.5 ve 8.0 alarak, 4,9 ve 20 katlı moment dayanımlı çelik çerçeveli yapılar doğrusal olmayan statik ve dinamik analizlerle moment dayanımlı çerçevelerin yer değiştirme arttırma katsayıları hesaplamıştır. Dinamik analizlerde tasarım depremi (50 yılda aşılma olasılığı %10) ve en büyük deprem (50 yılda aşılma olasılığı %2) spektrumlarına ölçekli gerçek deprem kayıtları kullanılmıştır. Ayrıca kirişlerde doğrusal olmayan kesit davranışı için pekleşmesiz ve %5 pekleşmeli modeller kullanılmıştır. Bulunan sonuçlar Çizelge3.1'de gösterilmiştir.

	Tasarım Depremi				En büyük Deprem			
	SH	= 0	SH = %5		SH = 0		SH = %5	
Tasarım C_d	5.5	8.0	5.5	8.0	5.5	8.0	5.5	8.0
4 katlı	3.75	3.82	3.50	4.60	6.48	6.81	6.66	6.66
9 katlı	3.14	3.31	3.13	3.38	6.50	6.39	6.40	6.39
20 katlı	2.50	2.01	2.50	2.01	4.54	3.22	4.55	3.76

Cizelge 3.1 : Ortalama yer değiştirme arttırma katsayıları.

3.5.1.3 Mohammadi ve Kordbagh [24]

2017 yılında yapılan çalışmada, ötelenme, yüksek bina tasarımında baskın bir özelliktir ve yapısal sistemlerin seçimini etkileyebileceği belirtilmiştir. Yapısal hasarı kontrol etmek için gerçek ötelemelerin güvenilir bir tahmini hayati önem taşıdığından, karmaşık ayrıntıları göz önünde bulundurarak ötelenmeyi tahmin etmek dikkate değerdir. Güçlü depremler sırasında kat ötelenmesini tahmin etmek için, deprem tasarım hükümleri genellikle elastik tasarım ötelemelerini arttırmak için bir ötelenme büyütme katsayısı (C_d) belirtir. Bu yönetmeliklerin çoğunda, C_d miktarı, çubuk eleman modellerinden panel bölgesi etkilerini göz önünde bulundurmadan hesaplanır. Bu nedenle, mevcut makalede panel bölgesinin kat ötelenme ve C_d üzerindeki etkisi araştırılmıştır. C_d , kat sayısından bağımsız olduğu için, 4 katlı çerçeve, panel bölgesinin farklı kalınlıklarına sahip özel çelik moment çerçeveleri için ölçüt olarak kullanılır. Panel bölgesinin etkisi C_d için bir düzeltme katsayısı olarak sağlanır. Sonuçlar, panel bölgesinin analitik modellerde dikkate alınması gerektiğini göstermektedir. Aksi takdirde, kat ötelenmesi % 35'e kadar küçümsenmiş olacaktır. Son olarak, panel bölgesi kalınlığının bir fonksiyonu olarak C_d üzerindeki panel bölgesi etkilerini dikkate almak için Denklem3.17 'de gösterilen bir ilişki elde edilmiştir.

$$\alpha = 0.0136 \left(\frac{d_{\rm c}}{t_{\rm p}}\right) + 0.777 \tag{3.16}$$

burada d_c kolon kesitinin yüksekliği, t_p ise panel bölgesi kalınlığıdır.

$$C_{\rm d}^* = \alpha \times C_{\rm d} \tag{3.17}$$

4. PARAMETRİK ÇALIŞMA

Yarı rijit birleşimli çelik çerçevelerin yer değiştirme arttırma katsayılarının belirlenebilmesi için belli parametreler ile bir dizi analizin yapılması gerekir. Bu kapsamda seçilen az, orta ve yüksek katlı binalar SAC (SEAOC,ATC,CUREe) projesi kapsamında kullanılan ve detayları FEMA 355-C [64] teknik dokümanında verilen bina tipolojilerinden yararlanılmıştır. Planda ve düşey kesitte herhangi bir düzensizlik içermeyen 3, 9 ve 20 katlı üç tipik moment dayanımlı çelik çerçeveli binalar rijit birleşim kabulü ile TBDY-2018 [4] yönetmeliğinin tasarım şartları uyarınca kesitleri seçilmiştir. Kesit seçimi için amerikan geniş başlıklı profiller tercih edilmiştir, bu profillerin Avrupa profillerinden avantajı daha çok kesit sayısının fazla olmasıdır, bu sebeple de tasarımda daha optimize edilmiş elemanlar seçilebilmiştir.

4.1 Parametrik Çalışmada Kullanılacak Yapılar

Parametrik çalışma için binalar, deprem yüklerinin tamamının yapının dış akslarında bulunan çerçevelerle taşındığı binalardır. Tasarlanan örnek binaların hepsi planda düzenli bir aks sistemine sahiptir. Yatay yükler bir doğrultuda çaprazlı çerçevelerle, bir doğrultuda ise moment dayanımlı çelik çerçevelerle taşınmaktadır. Bu çalışmanın amacı, yarı rijit birleşimli moment dayanımlı çelik çerçevelerin birleşim dönme rijitliğinin yapının yer değiştirmesi üzerine ilişkisini incelemek olduğundan, binaların çaprazlı çerçeve doğrultusunun tasarımı ve davranışı tez kapsamının dışında tutulmuştur. Dolayısıyla sadece moment dayanımlı çelik çerçeveler tasarlanmış ve doğrusal olmayan analizlerle incelenmiştir.

3 katlı yapı, y doğrultusunda 6, x doğrultusunda 4 eşit açıklıktan oluşmaktadır. Toplamda $36 \times 54 = 1944m^2$ 'lik bir kat alanına ve $3 \times 4 = 12m$ 'lik yüksekliğe sahiptir. 9 katlı yapı her iki doğrultuda 5 açıklıklı kare bir plana sahiptir. Toplamda $45 \times 45 = 2025m^2$ 'lik bir kat alanına ve $9 \times 4 = 36m$ 'lik yüksekliğe sahiptir. 20 katlı yapı, y doğrultusunda 6, x doğrultusunda 5 eşit açıklıktan oluşmaktadır. Toplamda $30 \times 36 = 1080m^2$ 'lik bir kat alanına ve $20 \times 4 = 80m$ 'lik yüksekliğe sahiptir.

3 ve 9 katlı yapılar 1.8*m*, 20 katlı yapı ise yaklaşık 1.5*m* arayla yerleştirilen ikincil kirişlerle döşemelerden gelen ölü ve hareketli yükleri ana kirişlere aktarmaktadır.

Her üç yapının plan ve analizlerde kullanılan A ve G akslarındaki çerçevelerin düşey kesitleri Şekil 4.1, Şekil 4.2 ve Şekil 4.3 'de verilmiştir. Üç yapının da iç açıklıklarındaki kirişler, uçları mafsallı ve sadece düşey yük taşımaktadırlar. Yapılar birbirine dik doğrultularda sadece dış çerçevelerle yatay yük taşımaktadır. Yapının y doğrultusunda merkezi çaprazlı çerçeveler kullanılırken x doğrultudaki deprem yükleri sadece moment aktaran çerçeveler tarafından taşınmaktadır. Özetle, 3 katlı yapı için, x doğrultusundaki tasarım depremi için, yapının kütlenin yarısı A aksındaki çerçeve tarafından diğer yarısı G aksındaki çerçeve tarafından taşınmaktadır.

Şekil 4.1 : 3 katlı yapının plan ve A,G aksı kesiti.

Şekil 4.2 : 9 katlı yapının plan ve A,F aksı kesiti.

Şekil 4.3 : 20 katlı yapının plan ve A,G aksı kesiti.

4.2 Moment Dayanımlı Çelik Çerçeveli Sistemlerin Tasarımı

Tasarım ve analiz hesaplarında, ayrıntıları ÇYTHYE'de [3] açıklanan Yük ve Dayanım Katsayıları ile Tasarım Yöntemi (YDKT) kullanılmıştır. Binaların tasarımında kullanılan yükleme kombinasyonlarının belirlenmesinde, TBDY-2018 [4]

ve ÇYTHYE [3] yönetmeliği dikkate alınmıştır. Tasarım ve analizler SAP2000 [65] yazılımında yapılmıştır.

Plan ve kesitleri yukarıda gösterilen yapıların sadece tek doğrultuda ve dış cephesi moment çerçevesi olup iç kısımdaki sistem sadece düşey yük taşımak üzere düşünülmüştür. Bu sebeple yapıdaki moment çerçevelerinin yatay yükler altındaki davranışının incelemek için iki boyutlu çerçeveleri dikkate almak yeterli olacaktır. Burada dikkat edilmesi gereken husus moment çerçevelerinin diğer doğrultuda bulunan düşey yük taşıyıcı sistem ile olan etkileşimidir bu davranış Şekil 4.4' deki gibi modellenebilir. İki boyutlu sistemi gerçek üç boyutlu sisteme eşdeğer hale getirmek amacıyla kullanılan yaslanan kolonlar, iki ucu mafsallı kolon ve kirişlerle teşkil edilmektedir. Dolayısıyla yatay yönde herhangi bir taşıyıcı özelliğe sahip olmadığı halde iç açıklıklarındaki P- Δ etkilerini eşdeğer sisteme aktarmaktadır.

Şekil 4.4 : Yaslanan kolonların modellenmesi [28].

Yapıların her biri ofis binası olarak düşünülmüştür. Normal katlarda; ölü yük $5kN/m^2$, hareketi yük $2.5kN/m^2$, çatı katında ise; ölü yük $4kN/m^2$, hareketli yük $1kN/m^2$ alınmıştır. Bütün yapılarda aynı harita spektral ivme katsayıları kullanılmıştır.

Kısa periyot harita spektral ivme katsayısı, $S_{\rm S} = 1.5$,

1.0 saniye periyot için harita spektral ivme katsayısı, $S_1 = 1.0$,

Yerel zemin etki katsayıları, $F_{\rm S} = 0.90$ ve $F_1 = 0.80$,

Bu durumda tasarım spektral ivme katsayıları S_{DS} ve S_{D1} ;

 $S_{\rm DS} = S_{\rm S} \times F_{\rm S} = 1.5 \times 0.9 = 1.35,$

 $S_{\text{D1}} = S_1 \times F_1 = 1.0 \times 0.8 = 0.80$, olarak elde edilmiştir. Bu veriler ışığında yatay tasarım elastik spektrumu Şekil 4.5 'de gösterilmiştir.

Şekil 4.5 : Yatay tasarım elastik spektrumu.

Düşey deprem etkisi ise $E_d^{(z)} = (2/3) S_{DS} G$ şeklinde sabit yüklere dahil edilerek,

$$G(1.2 + 0.3(2/3)1.35) = 1.47G,$$

G(0.9 - 0.3(2/3)1.35) = 0.63G, şeklinde dikkate alınmıştır.

Bina taşıyıcı sisteminin sabit ve hareketli yükler ile deprem ve rüzgar kuvvetleri altında analizleri sonucunda elde edilen iç kuvvetler, ÇYTHYE 5.3.1, TBDY 4.4 ve TBDY 9.2.5'e uygun olarak, aşağıdaki şekilde birleştirilmişlerdir. Yatay doğrultuda etkiyen ve stabilite analizinde başlangıç kusurlarının etkisini hesaba katmak amacıyla tanımlanan fiktif yükler, hem yatay, hem de düşey yükleri içeren yük birleşimlerinde dikkate alınmıştır.

Düşey yük birleşimleri için;

1.4G

1.2G+1.6Q

Düşey yük ve deprem etkisi birleşimleri için;

- $1.47G + 0.5Q \pm E_{\rm d}$
- $1.47G + 0.5Q \pm 0.3E_{\rm d}$

 $0.63G\pm E_{\rm d}$

 $0.63G\pm0.3E_{\rm d}$

Burada *G* sabit yükleri, Q hareketli yükleri, E_d ise ilgili doğrultudaki deprem yükünü tarif eder.

Yapılar ofis binası olarak tasarlandığı için *Bina Önem Katsayısı,* I = 1.0 olarak alınmıştır.

Binaların taşıyıcı sistemi, deprem etkilerinin tamamının moment aktaran süneklik düzeyi yüksek çelik çerçevelerle karşılandığı bina olduğu için; *Taşıyıcı Sistem Davranış Katsayısı*, R = 8 ve *Dayanım Fazlalığı Katsayısı*, D = 3 alınmıştır. Bu çalışma az,orta ve yüksek katlı yapılarda bir değerlendirme yapmayı amaçladığı için yönetmeliğin, bina yükseklik sınıfı koşulu dikkate alınmamıştır.

Gevrek malzemeden yapılmış dolgu duvarları ile çerçeve elemanlarının aralarında esnek derzler yapılması, cephe elemanlarının dış çerçevelere esnek bağlantılarla bağlanması veya dolgu duvar elemanının çerçeveden bağımsız olması durumu dikkate alınmış ve λ katsayısı binanın göz önüne alınan deprem doğrultusundaki hakim titreşim periyodu için DD-3 deprem yer hareketinin elastik tasarım spektral ivmesi'nin, DD-2 deprem yer hareketinin elastik tasarım spektral olarak tanımlanan katsayı : $\lambda = 0.26/0.65 = 0.4$ olarak hesaplanmıştır. κ çelik binalar için 0.5 alınmıştır. Etkin göreli kat ötelemesi ise;

 $\lambda \frac{\delta_{i,\max}}{h_i} \leq 0.016 \kappa \rightarrow \frac{\delta_{i,\max}}{h_i} \leq 0.02$ oranı ile kontrol edilmiştir.

Şekil 4.6 'de 3 katlı, Şekil 4.7 'da 9 katlı, Şekil 4.8 'de 20 katlı rijit birleşimli olarak tasarlanan yapıya ait göreli kat ötelemesi gösterilmiştir. Çizelge 4.1 'de 3 katlı yapının, Çizelge 4.2 'de 9 katlı yapının ve Çizelge 4.3 'de 20 katlı yapının kesitleri verilmiştir.

Şekil 4.6 : 3 katlı rijit birleşimli yapının etkin göreli kat ötelemesi.

Kat	Dış Kolon	İç Kolon	Kiriş
3	W27x102	W27x114	W18x40
2	W27x114	W27x129	W21x62
1	W27x114	W27x129	W21x62

Çizelge 4.1 : 3 katlı yapının kesitleri.

Şekil 4.7 : 9 katlı rijit birleşimli yapının etkin göreli kat ötelemesi.

Kat	Dış Kolon	İç Kolon	Kiriş
9	W27x258	W27x281	W18x65
8	W27x258	W27x281	W18x65
7	W27x281	W27x307	W27x94
6	W27x281	W27x307	W27x94
5	W27x336	W27x368	W27x114
4	W27x336	W27x368	W27x114
3	W27x539	W27x539	W27x129
2	W27x539	W27x539	W27x129
1	W27x539	W27x539	W27x129

Çizelge 4.2 : 9 katlı y	yapının kesitleri.
-------------------------	--------------------

Şekil 4.8 : 20 katlı rijit birleşimli yapının etkin göreli kat ötelemesi.

Kat	Dış Kolon	İç Kolon	Kiriş
20	W27x281	W27x281	W21x83
19	W27x281	W27x281	W21x83
18	W27x281	W27x281	W21x83
17	W27x281	W27x281	W21x83
16	W27x307	W27x307	W24x94
15	W27x307	W27x307	W24x94
14	W27x307	W27x307	W24x94
13	W27x307	W27x307	W24x94
12	W27x336	W27x336	W27x94
11	W27x336	W27x336	W27x94
10	W27x336	W27x336	W27x94
9	W27x336	W27x336	W27x94
8	W27x368	W27x368	W27x102
7	W27x368	W27x368	W27x102
6	W27x368	W27x368	W27x102
5	W27x368	W27x368	W27x102
4	W27x539	W27x539	W27x114
3	W27x539	W27x539	W27x114
2	W27x539	W27x539	W27x114
1	W27x539	W27x539	W27x114

Çizelge 4.3 : 20 katlı yapının kesitleri.

EKA 'da 3,9 ve 20 katlı yapıların yarı rijit birleşimli 3,9 ve 20 katlı yapıların etkin göreli kat ötelemesi grafikleri verilmiştir.

TBDY-2018'nin etkin göreli kat ötelemeleri şartına göre tasarlanan iki boyutlu çerçeveler SAP2000 [65] analiz programı kullanılarak oluşturulmuştur. Çerçevelerin 1. doğal titreşim periyotları Çizelge 4.4 'de verilmiştir.

	Rijit	20 EI/L	15.5 EI/L	11 EI/L	8 EI/L
3 katlı	1.23 sn	1.44 sn	1.46 sn	1.51 sn	1.81 sn
9 katlı	2.14 sn	2.43 sn	2.50 sn	2.60 sn	2.73 sn
20 katlı	3.57 sn	4.17 sn	4.27 sn	4.44 sn	4.65 sn

Çizelge 4.4 : Yapıların hakim titreşim periyotları.

4.3 Birleşim Dönme Rijitliklerinin Seçimi ve Modellenmesi

Tez çalışması kapsamında moment dayanımlı çelik çerçevelerin birleşim dönme rijitliği parametresi olarak Bölüm 3'te (3) detaylı olarak anlatılan AISC 360-16 yönetmeliğine uygun şekilde 5 ayrı dönme rijitliği seçilmiştir. Bu seçimi Şekil 4.9 'de de görüldüğü üzere, sonsuz rijit duruma ek olarak, rijit durumun alt sınırı ve mafsallı durumun üst sınırını eşit açı ile bölen 2 adet dönme rijitliği ve en düşük yarı rijit birleşim dönme rijitliği için ise Eurocode yönetmeliğinde yatay ötelenmesi tutulmuş çerçevelerde yarı rijit birleşimler için üst sınır olan 8 EI/L kullanılmıştır.

Şekil 4.9 : Parametrik çalışmada kullanılan birleşim dönme rijitlikleri.

Şekil 4.10'da, Link elemanlar ayrı birer eleman olarak tanımlanmıştır. Ayrıca, Link elemanı modellemesinde önemli bir nokta uzunluk tanımıdır. Tüm çerçeve analizlerinde, Link elemanı uzunluğu 10 cm olarak seçilmiştir. Bu varsayımın referansı, bazı gerçek birleşimlerin ve bunların yaklaşık uzunluklarının gözlemlenmesi olmuştur. Link elemanlarının yüklenmesi ise, kirişlerin tasarımında kullanılan aynı düşey yükler Link elemanlarına etkitilmiştir.

Bu çalışma kapsamında daha önce de bahsedildiği gibi yarı rijit birleşimlerin davranışını güçlü eksende eğilme yönetmektedir ve doğrusal olmayan kuvvetlerin sadece güçlü eksen momenti ile birleşim davranışını etkilediği varsayılmıştır.

Şekil 4.10 : Link elemanlar.

Kolonlar da ASCE 41-13 [66] yönetmeliğinin önerdiği eksenel kuvvet-eğilme momenti etkileşimli doğrusal olmayan davranış modeli kullanılmıştır. Kirişlerin doğrusal olmayan davranışı için Şekil 4.11 'de gösterilen kesitlerin güçlü eksende eğilme davranışını modellendiği moment-dönme ilişkisi ifade edilmiştir.

Şekil 4.11 : Kiriş elemanların doğrusal olmayan eğilme davranışı modeli.

Yarı rijit birleşimlerin modellenmesinde kullanılan link elemanların eğilme davranışı Şekil 4.12 'de gösterilmiştir. Burada dikkat çeken husus birleşimlerin kirişlerinden güçlü olduğudur. Bu grafikte $M_{\rm pb}$ birleşimin bağlandığı kirişin plastik moment kapasitesini, $\theta_{\rm cy}$ ise birleşimin akma anındaki dönmesini göstermektedir. Birleşimler için 0.02 dönme değerinde nihai moment kapasitesine ulaştığı kabul edilmiştir. Birleşimlerin nihai dönme değerleri için ise TBDY-2018 yönetmeliğinin süneklik düzeyi yüksek kirişlerde kontrollü hasar için öngördüğü plastik dönme miktarıdır. Birleşimlerin pekleşme miktarı ise TBDY-2018 yönetmeliğince yapılan birleşimlerin boyutlandırılmasında kullandığı pekleşme katsayısı olarak kabul edilmiştir.

Şekil 4.12 : Yarı rijit birleşimlerin doğrusal olmayan eğilme davranışı modeli.

5. ÇERÇEVELERİN YER DEĞİŞTİRME ARTTIRMA KATSAYISININ BELİRLENMESİ

5.1 Doğrusal Olmayan Statik İtme Analizi

Doğrusal elastik olmayan statik itme analizinde yapıya monotonik olarak artan yatay kuvvet modelleri uygulanır ve yapısal elemanların doğrusal olmayan davranışları izlenir. Elemanlarda akma gözlendikçe yapının yatay rijitliği azalır. Bu, yapının yük taşıma kapasitesinin bir kısmını kaybetmesine neden olur. Bu yükleme önceden belirlenmiş bir tepe yer değiştirmesine ulaşılana kadar adım adım devam ettirilir. Tüm adımlar sırasında yapının taban kesme kuvveti ve tepe yer değiştirmesi kaydedilir. Taban kesme kuvvetine karşı tepe yer değiştirmesi olarak çizilen grafik ötelenme eğrisini gösterir başka bir deyişle yapının kapasite eğrisidir.

Yapıların kapasiteleri hakkında fikir sahibi olmak amacıyla, yapılar tek modlu doğrusal elastik olmayan statik itme analizine tabi tutulmuştur. İtme analizi, temel olarak, çok serbestlik dereceli sistemlerin deprem esnasındaki tepkisinin, eşdeğer tek serbestlik dereceli sistemlerin tepkisiyle benzer olacağı kabulüne dayanmaktadır. Bu dönüşüm, aynı zamanda, yapının depreme verdiği tepkinin tek bir mod (hakim titreşim modu) tarafından kontrol edildiği ve deprem boyunca sabit kaldığıdır. Literatürdeki çalışmalar, bu kabullerin, 1. modun hakim olduğu yapılarda doğruya çok yakın sonuçlar verdiğini göstermiştir.

5.1.1 Kapasite spektrumu metodu

Kapasite Spektrumu Yöntemi adı altında Sigmund Freeman'ın geliştirdiği ve daha sonra ayrıntılı olarak ATC-40 [67] dokümanında yer alan yöntemdir. Yapısal kapasite ve deprem talebi arasında açık bir karşılaştırma yapmak için, kapasite spektrumu metodu gibi yenilikçi yöntemler geliştirilmiştir. Bu metot, yapının kapasitesini (ötelenme eğrisi) yapıdaki taleplerle (tepki spektrumları) karşılaştıran performansa dayalı bir sismik analiz tekniğidir. İki eğrinin grafiksel kesişimine, talebin temsil ettiği bir depremde yapının muhtemel tepkisine "performans noktası" denir. Kapasite Spektrumu Metodu, yapının belirli bir deprem altındaki olası davranışını basit bir grafiksel olarak tahmin etmek için bir araçtır. Bu metodun grafiksel ve sezgisel doğasını takip etmeyi kolaylaştırmak için, talep spektrumları, geleneksel spektral ivme ve periyot formatı yerine, ivme-yer değiştirme tepki-spektrumu (ADRS) olarak bilinen, spektral ivme ile spektral yer değiştirme olarak sunulur.

Bir binanın doğrusal elastik olmayan itme analizi normalde binanın tabanındaki kesme kuvveti ile tepe yer değiştirmesi arasındaki ilişkiyi gösterir. Taban kesme kuvvetini spektral ivmelere ve tepe yer değiştirmelerini ise eşdeğer spektral yer değiştirmelere dönüştürerek, yer değiştirme alanına karşı ivme alanında bir kapasite spektrumu elde edilebilir. Böyle bir kapasite spektrumu, ADRS formatındaki tepki spektrumu ile birlikte çizilebilir ve bu kapasite spektrumunu tepki spektrumunu kesiştiği nokta performans noktası olarak isimlendirilir. Bu nokta spektral ivme ve spektral yer değiştirmenin, ilgili yapıda bir depremde meydana gelebilecek hasarın tahmin edilmesini sağlar. Yöntemi açıklamak için, Şekil 5.1 elastik olmayan talep spektrumu ile birlikte elasto-plastik olarak tepki veren bir yapının kapasite spektrumunu göstermektedir.

Şekil 5.1 : Kapasite spektrumu metod ile deprem performansı değerlendirmesi.

Kapasite eğrisinin ve talep spektrumunun buluştuğu nokta, gereken performans noktasıdır ve yapının kapasite eğrisi, bu deprem seviyesindeki göçmenin önlenmesi gereksinimini karşılamak için ilgili elastik olmayan talep spektrumunu kesmelidir. Yapının bir depremde elastik kalması için ise, kapasite spektrumu o deprem için elastik tepki spektrumunu elastik aralığında (yani akma noktasından önce) kesmelidir.

Zarifliği ve sadeliğine rağmen, kapasite spektrumu metodu temel olarak iki nedenden dolayı eleştirilmiştir: sıfır noktasından maksimum yer değiştirmeye kadar ki sekant rijitliği, eşdeğer doğrusal sistemin rijitliğinin zayıf bir temsilidir; ve belirtilen eşdeğer sönüm değerlerinin, elastik olmayan tepki spektrumlarının tutarsız bir şekilde temsil ettiği görülmektedir. Bu konu son zamanlarda dikkat çekmiş ve yer değiştirme tahmininin tutarlılığını iyileştirmek için çaba gösterilmektedir.

5.1.1.1 Kapasite eğrisinin elde edilmesi

Elde edilen ötelenme eğrisinin, çerçevenin deprem performansını belirleyebilmek için öncelikle eşdeğer tek serbestlik dereceli sistemin kapasite eğrisine dönüştürülmesi gerekmektedir. İlgili düğüm noktasına ait hakim titreşim modunun yer değiştirme değeri ve modal katılım çarpanı kullanılarak çok serbestlik dereceli sisteme ait yer değiştirme değerleri tek serbestlik dereceli sisteme ait spektral yer değiştirme değerlerine dönüştürülmüştür. Birinci moda ait modal sözde ivme değerlerini elde etmek için Denklem 5.1'de gösterildiği gibi taban kesme kuvveti değerleri etkin kütleye bölünmüştür [4].

$$a_1 = \frac{V_{t1}}{m_{t1}} \tag{5.1}$$

Burada;

 V_{t1} : İtme analizi sırasında yapının tepesinde elde edilen birinci moda ait taban kesme kuvveti,

 m_{t1} : Modal etkin kütle.

Birinci moda ait modal yer değiştirme değerlerini elde etmek için ise Denklem 5.2'de gösterildiği gibi birinci moda ait yer değiştirme birinci modun modal genliğine ve katkı çarpanına bölünmüştür.

$$d_1 = \frac{u_{\rm n1}}{\phi_{\rm n1}\Gamma_1} \tag{5.2}$$

Burada;

 u_{n1} :İtme analizi sırasında yapının tepesinde elde edilen birinci moda ait yer değiştirme değeri,

 ϕ_{n1} : Yapının tepesinde elde edilen birinci moda ait mod şekli genliği,

 Γ_1 : Birinci moda ait modal katkı çarpanıdır.

5.1.1.2 Talep eğrisinin elde edilmesi

Seçilen tasarım spektrumunun ivme-yer değiştirme spektrumu formuna dönüştürülmesiyle talep eğrisi elde edilir. Modal tek serbestlik dereceli sistemde en büyük yer değiştirme, Denklem 5.3'te gösterildiği gibi doğrusal olmayan spektral yer değiştirme olarak tanımlanır:

$$S_{\rm d1} = C_R S_{\rm de} \tag{5.3}$$

Burada;

 S_{de} : Elastik tasarım spektral yer değiştirme değeri,

 $C_{\rm R}$: Spektral yer değiştirme oranı'nı göstermektedir.

Spektral yer değiştirme oranı Denklem 5.4 ve Denklem 5.5'de tarif edilmiştir.

$$C_{\rm R} = 1 \qquad \qquad T_{\rm l} > T_{\rm B} \qquad (5.4)$$

$$C_{\rm R} = \frac{1 + (R_{\rm y} - 1)\frac{T_{\rm B}}{T_{\rm 1}}}{R_{\rm y}} \ge 1 \qquad T_{\rm 1} \le T_{\rm B}$$
(5.5)

Elastik tasarım spektral yer değiştirme değeri ise Denklem 5.6'daki gibi tarif edilir.

$$S_{\rm de} = \frac{T^2}{4\pi^2} S_{\rm ae} \tag{5.6}$$

5.1.2 3 Katlı yapının yer değiştirme arttırma katsayısının kapasite spektrumu yöntemi ile elde edilmesi

Aşağıda TBDY-2018'e göre tasarlanan 3 katlı rijit birleşimlere sahip yapının doğrusal elastik olmayan spektral yer değiştirme değerinin belirlenmesi amacıyla yapılan hesap adımları özetlenmiştir. Yerel zemin sınıfı olarak ZB seçilmiş ve kısa periyot tasarım

spektral ivmesi $S_{DS} = 1.35$ ve 1.0 saniye periyot için tasarım spektral ivmesi $S_{D1} = 0.80$ olarak hesaplanmıştır.

$$T_{1} = 1.23 \text{ sn}, T_{L} = 6.00 \text{ sn}, T_{A} = 0.2 \frac{S_{D1}}{S_{DS}} = 0.12 \text{ sn ve } T_{B} = \frac{S_{D1}}{S_{DS}} = 0.59 \text{ sn}$$

$$T_{B} \le T_{1} \le T_{L} \text{ olduğundan}; S_{a1} = \frac{S_{D1}}{T_{1}} = \frac{0.80}{1.23} = 0.65 \text{ g}$$

$$S_{ae1} = 0.65 \times 9.81 = 6.38 \text{ m/s}^{2}$$

$$S_{de} = \frac{T^{2}}{4\pi^{2}} S_{ae} = \frac{1.23^{2}}{4\pi^{2}} \times 6.38 = 0.245 \text{ m}$$

$$T_{1} > T_{B} \text{ olduğundan}; C_{R} = 1 \Rightarrow S_{d1} = S_{de} = d_{1}$$

Elde edilen yer değiştirme değeri, eşdeğer tek serbestlik dereceli sisteme ait olduğundan yapının gerçek yer değiştirme değeri Denklem 5.2 kullanılarak elde edilebilir;

$$d_1 = 0.245 \text{m}; \phi_{n1} = 0.040; \Gamma_1 = 33.79$$

 $u_{n1} = d_1 \phi_{n1} \Gamma_1 \Rightarrow u_{n1} = 0.245 \times 0.040 \times 33.79 = 0.3311 \text{m} \rightarrow 33.11 \text{cm}$

Bu değer 50 yılda aşılma olasılığı %10 olan tasarım depreminin yapıdan talep ettiği yer değiştirme değerini göstermektedir. C_d katsayısının hesaplanmasında kullanılan tasarım yer değiştirmesi (Δ_d), tasarıma esas alınan taban kesme kuvvetine karşılık gelen tepe yer değiştirmesi olup, Şekil 6.1'de verilmiş olan kapasite eğrisinden elde edilmiştir. Bu veriler ışığında yer değiştirme arttırma katsayısı C_d ;

$$C_{\rm d} = \frac{u_{n1}}{\Delta_{\rm d}} = \frac{33.11}{5.45} = 6.07$$
 olarak elde edilir.

Şekil 5.2 : 3 katlı yapıya ait kapasite spektrumu ve talep spektrumu.

5.1.3 9 Katlı yapının yer değiştirme arttırma katsayısının kapasite spektrumu yöntemi ile elde edilmesi

Aşağıda TBDY-2018'e göre tasarlanan 9 katlı rijit birleşimlere sahip yapının, aynı yerel zemin sınıfı ve spektral ivme değerleri kullanılarak, doğrusal elastik olmayan spektral yer değiştirme değerinin belirlenmesi amacıyla yapılan hesap adımları özetlenmiştir;

$$T_{1} = 2.14 \text{sn}, T_{L} = 6.00 \text{sn}, T_{A} = 0.2 \frac{S_{\text{D1}}}{S_{\text{DS}}} = 0.12 \text{sn ve } T_{\text{B}} = \frac{S_{\text{D1}}}{S_{\text{DS}}} = 0.59 \text{sn}$$

$$T_{\text{B}} \le T_{1} \le T_{\text{L}} \text{ olduğundan}; S_{a1} = \frac{S_{\text{D1}}}{T_{1}} = \frac{0.80}{2.14} = 0.37 \text{g}$$

$$S_{ae1} = 0.37 \times 9.81 = 3.67 \text{m/s}^{2}$$

$$S_{de} = \frac{T^{2}}{4\pi^{2}} S_{ae} = \frac{2.14^{2}}{4\pi^{2}} \times 3.67 = 0.426 \text{m}$$

$$T_{1} > T_{\text{B}} \text{ olduğundan}; C_{\text{R}} = 1 \Rightarrow S_{d1} = S_{de} = d_{1}$$

Elde edilen yer değiştirme değeri, eşdeğer tek serbestlik dereceli sisteme ait olduğundan yapının gerçek yer değiştirme değeri Denklem 5.2 kullanılarak elde edilebilir;

$$d_1 = 0.426 \text{m}; \phi_{n1} = 0.024; \Gamma_1 = 59.90$$

$$u_{n1} = d_1 \phi_{n1} \Gamma_1 \Rightarrow u_{n1} = 0.426 \times 0.024 \times 59.90 = 0.6124 \text{m} \rightarrow 61.24 \text{cm}$$

Bu değer 50 yılda aşılma olasılığı %10 olan tasarım depreminin yapıdan talep ettiği yer değiştirme değerini göstermektedir. C_d katsayısının hesaplanmasında kullanılan tasarım yer değiştirmesi (Δ_d), tasarıma esas alınan taban kesme kuvvetine karşılık gelen tepe yer değiştirmesi olup, Şekil 6.17'de verilmiş olan kapasite eğrisinden elde edilmiştir. Bu veriler ışığında yer değiştirme arttırma katsayısı C_d ;

 $C_{\rm d} = \frac{u_{n1}}{\Delta_{\rm d}} = \frac{61.24}{12.50} = 4.90$ olarak elde edilir.

Şekil 5.3 : 9 katlı yapıya ait kapasite spektrumu ve talep spektrumu.

5.1.4 20 Katlı yapının yer değiştirme arttırma katsayısının kapasite spektrumu yöntemi ile elde edilmesi

Aşağıda TBDY-2018'e göre tasarlanan 20 katlı rijit birleşimlere sahip yapının, aynı yerel zemin sınıfı ve spektral ivme değerleri kullanılarak, doğrusal elastik olmayan spektral yer değiştirme değerinin belirlenmesi amacıyla yapılan hesap adımları özetlenmiştir;

$$T_{1} = 3.57 \text{sn}, T_{L} = 6.00 \text{sn}, T_{A} = 0.2 \frac{S_{D1}}{S_{DS}} = 0.12 \text{sn ve } T_{B} = \frac{S_{D1}}{S_{DS}} = 0.59 \text{sn}$$

$$T_{B} \le T_{1} \le T_{L} \text{ olduğundan}; S_{a1} = \frac{S_{D1}}{T_{1}} = \frac{0.80}{3.57} = 0.22 \text{g}$$

$$S_{ae1} = 0.22 \times 9.81 = 2.20 \text{m/s}^{2}$$

$$S_{de} = \frac{T^{2}}{4\pi^{2}} S_{ae} = \frac{3.57^{2}}{4\pi^{2}} \times 2.20 = 0.710 \text{m}$$

$$T_{1} > T_{B} \text{ olduğundan}; C_{R} = 1 \Rightarrow S_{d1} = S_{de} = d_{1}$$

Elde edilen yer değiştirme değeri, eşdeğer tek serbestlik dereceli sisteme ait olduğundan yapının gerçek yer değiştirme değeri Denklem 5.2 kullanılarak elde edilebilir;

$$d_1 = 0.710 \text{m}; \phi_{n1} = 0.020; \Gamma_1 = 66.93$$

 $u_{n1} = d_1 \phi_{n1} \Gamma_1 \Rightarrow u_{n1} = 0.710 \times 0.020 \times 66.93 = 0.9504 \text{m} \rightarrow 95.04 \text{cm}$

Bu değer 50 yılda aşılma olasılığı %10 olan tasarım depreminin yapıdan talep ettiği yer değiştirme değerini göstermektedir. C_d katsayısının hesaplanmasında kullanılan

tasarım yer değiştirmesi (Δ_d), tasarıma esas alınan taban kesme kuvvetine karşılık gelen tepe yer değiştirmesi olup, Şekil 6.33'de verilmiş olan kapasite eğrisinden elde edilmiştir. Bu veriler ışığında yer değiştirme arttırma katsayısı C_d ;

 $C_{\rm d} = \frac{u_{n1}}{\Delta_{\rm d}} = \frac{95.04}{17.78} = 5.34$ olarak elde edilir.

Şekil 5.4 : 20 katlı yapıya ait kapasite spektrumu ve talep spektrumu.

5.2 Zaman Tanım Alanında Doğrusal Olmayan Dinamik Analiz

Yapının doğrusal olmayan davranışını incelenmek üzere zaman tanım alanında doğrusal olmayan dinamik analizler yapılmıştır. Dinamik analizler statik analizlerden farklı olarak monotonik bir yükleme modeli yerine yapıyı doğrudan yer hareketine maruz bırakmaktadır. Bu da yapının gerçek depremlerdeki davranışına daha yakın bir tepkiyi ölçme imkanı verir. Bu dinamik analizde yapıda dikkate alınması gereken sönümün etkisi Rayleigh sönümüyle tanımlanmıştır. Her bir çerçevenin kütle ve rijitlikle orantılı sönüm parametreleri için birinci ve kütle katılım oranının %95'i bulduğu periyotlar kullanılarak, bu iki periyot arasındaki sönüm oranın %5'den düşük olduğu duruma göre belirlenmiştir.

Şekil 5.5'de doğal frekans-sönüm oranı ilişkisi, Rayleigh sönümü ile gösterilmiştir. Rayleigh sönümünde sönüm matrisi **C**, kütle matrisi **M** ve rijitlik matrisi **K**'nın ve Denklem 5.7'de ifade edildiği gibi doğrusal bir fonksiyonudur.

Şekil 5.5 : Doğal frekans sönüm oranı ilişkisi ve Rayleigh sönümü.

$$\mathbf{C} = a_0 \mathbf{M} + a_1 \mathbf{K} \tag{5.7}$$

Burada a_0 ve a_1 sırasıyla kütle ve rijitlik matrisi katsayıları olup doğal frekanslara bağlı olup Denklem 5.8'deki gibi tanımlanmaktadırlar.

$$a_0 = \zeta \frac{2\omega_i \omega_j}{\omega_i + \omega_j}, \qquad a_1 = \zeta \frac{2}{\omega_i + \omega_j}$$
(5.8)

Burada ω_i ve ω_j , *i* ve *j* modlarının açısal frekansları ve ζ ise bu modların sahip olduğu sönüm oranıdır [68].

5.2.1 Deprem kayıtlarının seçimi ve ölçeklendirilmesi

Bu çalışmada kullanılan gerçek yer hareketleri seçilirken ATC 63 (2009) [27] yönetmeliğinde önerilen depremler arasından faya uzak depremler kayıtları dikkate alınmıştır. Bu yönetmeliğe göre yer hareketlerinin seçiminde aşağıdaki kriterler göz önüne alınmalıdır.

- büyük magnitüdlere sahip deprem kayıtlarını kullanmayı, $M_w \ge 6.5$,
- hem doğrultu atımlı (strike-slip), hem de ters atımlı (reverse) kaynak mekanizmasına sahip deprem kayıtları kullanmayı,
- sert zeminde kaydedilmiş deprem kayıtları kullanmayı ($V_{\rm S} > 180m/s$),
- her depremden belirli kayıt sayısı kullanmayı (bir deprem için en fazla iki kayıt),
- güçlü deprem kayıtları kullanmayı, PGA > 0.2g ve PGV > 15cm/s.

Ayrıca ATC 63 (2009) [27] deprem kayıtlarının seçimini, tüm yapı tiplerine uygun olmasını ve farklı deprem bölgelerinde kullanılabilir olmasını göz önüne alarak yapmıştır. Çizelge 5.1'de $(V_S)_{30}[m/sn]$, PGA[g], PGV[cm/sn] olmak üzere, özellikleri verilen deprem kayıtları PEER veri tabanından [69] alınmış ve yatay elastik tasarım spektrumuna ölçeklenmiştir. Parametrik çalışmada iki boyutlu çerçeve sistemler kullanıldığı için TBDY-2018 [4] yönetmeliği uyarınca seçilen tüm kayıtlara ait spektrumların ortalamasının $0.2T_p$ ve $1.5T_p$ periyotları arasındaki genliklerinin, tanımlanan tasarım spektrumunun aynı periyot aralığındaki genliklerinden daha küçük olmaması koşulu göz önünde bulundurularak, deprem yer hareketlerinin genlikleri ölçeklendirilmiştir. Ölçeklendirilen gerçek deprem kayıtlarının ölçeklendirme katsayıları deprem kayıt numaraları ile EK B'de Çizelge B.1 olarak verilmiştir.

Deprem İsmi	Yıl	Büyüklük	Mekanizma	$(V_{\rm S})_{30}$	PGA	PGV
San Fernando	1971	6.61	Ters	316.46	0.21	19
Friuli_ Italy-01	1976	6.50	Ters	505.23	0.35	31
Imperial Valley-06	1979	6.53	Doğrultu	196.25	0.38	42
Superstition Hills-02	1987	6.54	Doğrultu	316.64	0.45	36
Northridge-01	1994	6.69	Ters atımlı	355.81	0.52	63
Northridge-01	1994	6.69	Ters atımlı	325.60	0.48	45
Kobe_ Japan	1995	6.90	Doğrultu	256.00	0.24	38
Kocaeli_ Turkey	1999	7.51	Doğrultu	281.86	0.36	59
Hector Mine	1999	7.13	Doğrultu	726.00	0.34	42

Çizelge 5.1 : Seçilen yer hareketi kayıtları.

5.2.2 Yer değiştirme arttırma katsayısının zaman tanım alanında doğrusal olmayan dinamik analiz ile elde edilmesi

 C_d katsayının hesaplanabilmesi için daha önce de bahsedildiği gibi depremin yapıdan talep ettiği yer değiştirme değerine ihtiyaç vardır. Doğrusal olmayan dinamik analiz sonucunda kullanılan her bir depremin en büyük tepe yer değiştirmesi bize depremlerin yer değiştirme talebini verecektir. Daha sonra elde edilen yer değiştirme talepleri tasarım yer değiştirme değerine oranlanarak C_d katsayısı elde edilir.

6. ANALİZ SONUÇLARI

Bu bölümde parametrik çalışma kapsamında yapılan statik ve dinamik analizlerin sonuçları verilecektir. Statik analizlerde yapıların eksenleri tepe yer değiştirmesi ve taban kesme kuvveti olan kapasite eğrileri gösterilecektir. Dinamik analizlerde ise yapıların kapasite eğrisi grafikleri üzerinde ki durumları işaretlenecektir. Statik analiz sonuçları ilgili yapıya ait farklı birleşim dönme rijitlikleri ile karşılaştırmalı olarak verilmiştir. Ayrıca dinamik analiz sonuçlarının yorumlanmasında açıklık getirmesi adına sonuçlar taban kesme kuvvetinin yapının etkin kütlesine oranı olan taban kesme kuvveti oranı ile tepe yer değiştirmesinin yapı yüksekliğine oranı olan tepe yer değiştirme oranı olarak gösterilmiştir. Bu iki grafik yan yana verilerek yapı davranışının daha iyi anlaşılması hedeflenmiştir. Doğrusal olmayan dinamik analiz sonuçlarının daha doğru değerlendirilmesi amacı ile iki eş zamanlı durum ve bir de literatürde sıkça karşılaşılan eş zamanlılık prensibine uymayan duruma ait sonuçlar gösterilecektir. Burada eş zamanlı olmayan durumdan kasıt dinamik analizde iki uç sonucun aynı anda oluşmadığıdır.

Eş zamanlı durumlar;

- yapının en büyük tepe yer değiştirmesi değerine ulaştığı andaki taban kesme kuvveti; Durum-1 olarak isimlendirilmiştir.
- yapının en büyük taban kesme kuvveti değerine ulaştığı andaki tepe yer değiştirmesi; Durum-2 olarak isimlendirilmiştir.

Eş zamanlı olmayan durum ise;

yapının en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti;
 Durum-3 olarak isimlendirilmiştir.

Doğrusal olmayan statik ve dinamik sonuçlar bir arada verilerek statik sonuçlardaki kesinlik ile dinamik sonuçlardaki saçılım göstermek amaçlanmıştır.

6.1 3 Katlı yapıların doğrusal olmayan statik analiz sonuçları

3 katlı çerçevelerin bütün birleşim dönme rijitliği parametrelerini kapsayan kapasite eğrileri Şekil 6.1'de gösterilmiştir.

Şekil 6.1 : 3 katlı çerçevelerin kapasite eğrileri.

Bu karşılaştırmalı grafikten aşağıdaki yorumlar yapılabilir;

- Beklendiği üzere, birleşim rijitliği azaldıkça yapının elastik rijitliğinde azalma görülmektedir.
- Birleşim rijitliğinde ki azalmadan dolayı, yapı rijitliği azaldıkça yapıda oluşan ilk akmalar, daha az bir dayanımda oluşmaktadır.
- Birleşim rijitliğinde ki azalmadan dolayı, yapı rijitliği azaldıkça yapının elastik yer değiştirme sınırı artmaktadır.
- Birleşim rijitliği azaldıkça, yapı dayanımında azalma durumuna geçmeden önceki nihai yer değiştirmesinde küçük bir artış gözlenmiştir.
6.2 3 Katlı yapıların doğrusal olmayan dinamik analiz sonuçları

3 katlı rijit birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.2'de, Durum-2 sonuçları Şekil 6.3'de, Durum-3 sonuçları ise Şekil 6.4'de gösterilmiştir.

Şekil 6.2 : Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.3 : Rijit birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.4 : Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

3 katlı yarı rijit (20 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.5'de, Durum-2 sonuçları Şekil 6.6'de, Durum-3 sonuçları ise Şekil 6.7'de gösterilmiştir.

Şekil 6.5 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.6 : Yarı rijit (20 EI/L) birleşimli çerçevenin,en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.7 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

Şekil 6.8 : Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.9 : Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

3 katlı yarı rijit (11 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.11'de, Durum-2 sonuçları Şekil 6.12'de, Durum-3 sonuçları ise Şekil 6.13'de gösterilmiştir.

Şekil 6.11 : Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.12 : Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

3 katlı yarı rijit (8 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.14'de, Durum-2 sonuçları Şekil 6.15'de, Durum-3 sonuçları ise Şekil 6.16'de gösterilmiştir.

Şekil 6.14 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.15 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.16 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

6.3 9 Katlı yapıların doğrusal olmayan statik analiz sonuçları

9 katlı çerçevelerin bütün birleşim dönme rijitliği parametrelerini kapsayan ötelenme eğrileri Şekil 6.17'de gösterilmiştir.

Şekil 6.17 : 9 Katlı çerçevelerin kapasite eğrileri.

Bu karşılaştırmalı grafikten aşağıdaki yorumlar yapılabilir;

- Beklendiği üzere, birleşim rijitliği azaldıkça yapının elastik rijitliğinde azalma görülmektedir.
- Birleşim rijitliğinde ki azalmadan dolayı, yapı rijitliği azaldıkça yapıda oluşan ilk akmalar, daha az bir dayanımda oluşmaktadır.
- Birleşim rijitliğinde ki azalmadan dolayı, yapı rijitliği azaldıkça yapının elastik yer değiştirme sınırı artmaktadır.
- Birleşim rijitliği azaldıkça, yapı dayanımında azalma durumuna geçmeden önceki nihai yer değiştirmesinde küçük bir artış gözlenmiştir.

6.4 9 Katlı yapıların doğrusal olmayan dinamik analiz sonuçları

9 katlı rijit birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.18'de, Durum-2 sonuçları Şekil 6.19'de, Durum-3 sonuçları ise Şekil 6.20'de gösterilmiştir.

Şekil 6.18 : Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.19 : Rijit birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.20 : Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

9 katlı yarı rijit (20 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.21'de, Durum-2 sonuçları Şekil 6.22'de, Durum-3 sonuçları ise Şekil 6.23'de gösterilmiştir.

Şekil 6.21 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.22 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

9 katlı yarı rijit (15.5 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.24'de, Durum-2 sonuçları Şekil 6.25'de, Durum-3 sonuçları ise Şekil 6.26'de gösterilmiştir.

Şekil 6.24 : Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.25 : Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

9 katlı yarı rijit (11 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.27'de, Durum-2 sonuçları Şekil 6.28'de, Durum-3 sonuçları ise Şekil 6.29'de gösterilmiştir.

Şekil 6.27 : Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.28 : Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

9 katlı yarı rijit (8 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.30'de, Durum-2 sonuçları Şekil 6.31'de, Durum-3 sonuçları ise Şekil 6.32'de gösterilmiştir.

Şekil 6.30 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.31 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.32 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

6.5 20 Katlı yapıların doğrusal olmayan statik analiz sonuçları

20 katlı çerçevelerin bütün birleşim dönme rijitliği parametrelerini kapsayan ötelenme eğrileri Şekil 6.33'de gösterilmiştir.

Şekil 6.33 : 20 Katlı çerçevelerin kapasite eğrileri.

Bu karşılaştırmalı grafikten aşağıdaki yorumlar yapılabilir;

- Beklendiği üzere, birleşim rijitliği azaldıkça yapının elastik rijitliğinde azalma görülmektedir.
- Birleşim rijitliğinde ki azalmadan dolayı, yapı rijitliği azaldıkça yapıda oluşan ilk akmalar, daha az bir dayanımda oluşmaktadır.
- Birleşim rijitliğinde ki azalmadan dolayı, yapı rijitliği azaldıkça yapının elastik yer değiştirme sınırı artmaktadır.
- Birleşim rijitliği azaldıkça, yapı dayanımında azalma durumuna geçmeden önceki nihai yer değiştirmesinde küçük bir artış gözlenmiştir.

6.6 20 Katlı yapıların doğrusal olmayan dinamik analiz sonuçları

20 katlı rijit birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.34'de, Durum-2 sonuçları Şekil 6.35'de, Durum-3 sonuçları ise Şekil 6.36'de gösterilmiştir.

Şekil 6.34 : Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.35 : Rijit birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.36 : Rijit birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

20 katlı yarı rijit (20 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.37'de, Durum-2 sonuçları Şekil 6.38'de, Durum-3 sonuçları ise Şekil 6.39'de gösterilmiştir.

Şekil 6.37 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.38 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.39 : Yarı rijit (20 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

0.0

0.00

0.02

0.04

0.06

0.08

20 katlı yarı rijit (15.5 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.40'de, Durum-2 sonuçları Şekil 6.41'de, Durum-3 sonuçları ise Şekil 6.42'de gösterilmiştir.

6

5

0

0

2

3

4

değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.41 : Yarı rijit (15.5 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

20 katlı yarı rijit (11 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.43'de, Durum-2 sonuçları Şekil 6.44'de, Durum-3 sonuçları ise Şekil 6.45'de gösterilmiştir.

Şekil 6.43 : Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.44 : Yarı rijit (11 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

20 katlı yarı rijit (8 EI/L) birleşimli çerçevelerin; Durum-1 sonuçları Şekil 6.46'de, Durum-2 sonuçları Şekil 6.47'de, Durum-3 sonuçları ise Şekil 6.48'de gösterilmiştir.

Şekil 6.46 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı taban kesme kuvveti ve oranları (Durum-1).

Şekil 6.47 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük taban kesme kuvvetine karşı tepe yer değiştirmesi ve oranları (Durum-2).

Şekil 6.48 : Yarı rijit (8 EI/L) birleşimli çerçevenin, en büyük tepe yer değiştirmesine karşı en büyük taban kesme kuvveti ve oranları (Durum-3).

6.7 Yer değiştirme arttırma katsayıları

Bu bölümde yukarıda detaylı bir şekilde verilen doğrusal olmayan statik ve dinamik analiz sonuçları neticesinde elde edilen yer değiştirme arttırma katsayıları (C_d) gösterilmiştir. C_d katsayıları daha önce de belirtildiği gibi yapının elastik ötesi davranışı esnasında yaptığı en büyük yer değiştirmenin tasarım yer değiştirmesine oranıdır. Burada tasarım yer değiştirmesi olarak, hem birleşim dönme rijitliğinin rijit olduğu kapasite eğrisinden elde edilen yer değiştirme değerleri dikkate alınarak hesaplanan rijit durumların C_d katsayısı (Şekil 6.49 ve Şekil 6.50) hem de yapıların kendi yarı rijit birleşim dönme rijitlikleri için çizilen kapasite eğrisinden elde edilen yer değiştirme değerleri dikkate alınarak yarı rijit durumların C_d katsayısı (Şekil 6.51 ve Şekil 6.52) hesaplanmıştır.

Çalışmada hesaplanan C_d katsayıları yapıların hem rijit tasarım yer değiştirmesine oranla hem de kendi kapasite eğrilerinden hesaplanan tasarım yer değiştirmesine (yarı rijit tasarım yer değiştirmesi) oranları ile verilmiştir. Burada yapıların birleşim rijitliğinin tasarım yer değiştirmene dolayısıyla yer değiştirme sünekliği ile arasındaki değişimi gözlemek için her iki tasarım yer değiştirmesi ile C_d katsayısı hesaplanmıştır. Sonuçları istatistiksel olarak da yorumlayabilmek için, Çizelge 6.1'de statik analizlerin rijit kapasite eğrilerinden elde edilen C_d katsayılarının sonuçları, Çizelge 6.2'de statik analizlerin yarı rijit kapasite eğrilerinden elde edilen C_d katsayılarının sonuçları, Çizelge 6.3'de dinamik analizlerin rijit kapasite eğrilerinden elde edilen C_d katsayılarının sonuçları ve Çizelge 6.4'de dinamik analizlerin yarı rijit kapasite eğrilerinden elde edilen C_d katsayılarının sonuçları yarı rijit kapasite

Şekil 6.49 : Statik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayıları.

Çizelge 6.1 : Statik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının normal dağılım istatistiksel sonuçları.

Ortalama	6.50
Standart Sapma	0.799
Ortalama + Standart Sapma	7.30
% 5 Kümülatif Dağılım	5.185
% 95 Kümülatif Dağılım	7.815

Doğrusal elastik olmayan statik analizlerde, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının

- 3 katlı yapıda, birleşim dönme rijitliği azaldıkça 6.07 'den 7.61 'e arttığı,
- 9 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.90 'dan 6.61 'e arttığı,
- 20 katlı yapıda, birleşim dönme rijitliği azaldıkça 5.34 'den 7.13 'e arttığı gözlenmektedir.
- Tüm yapılar için ise C_d katsayısı ortalama 6.50 olarak hesaplanmıştır.

Şekil 6.50 : Statik analizlerle, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayıları.

Çizelge 6.2 : Statik analizlerle, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının normal dağılım istatistiksel sonuçları.

Ortalama	4.84
Standart Sapma	0.607
Ortalama + Standart Sapma	5.45
% 5 Kümülatif Dağılım	3.845
% 95 Kümülatif Dağılım	5.842

Doğrusal elastik olmayan statik analizlerde, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının

- 3 katlı yapıda, birleşim dönme rijitliği azaldıkça 6.07 'den 4.86 'ya azaldığı,
- 9 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.90 'dan 3.86 'ya azaldığı,
- 20 katlı yapıda, birleşim dönme rijitliği azaldıkça 5.34 'den 4.31 'e azaldığı gözlenmektedir.
- Tüm yapılar için ise C_d katsayısı ortalama 4.84 olarak hesaplanmıştır.

Şekil 6.51 : Dinamik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan C_d
katsayıları.

Çizelge 6.3 : Dinamik analizlerle, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının normal dağılım istatistiksel sonuçları.

Ortalama	5.15
Standart Sapma	0.490
Ortalama + Standart Sapma	5.64
% 5 Kümülatif Dağılım	4.346
% 95 Kümülatif Dağılım	5.959

Doğrusal elastik olmayan dinamik analizlerde, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının

- 3 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.95 'den 5.95 'e arttığı,
- 9 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.22 'den 5.24 'e arttığı,
- 20 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.63 'den 5.22 'ye arttığı gözlenmektedir.
- Tüm yapılar için ise C_d katsayısı ortalama 5.15 olarak hesaplanmıştır.

Şekil 6.52 : Dinamik analizlerle, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayıları.

Çizelge 6.4 : Dinamik analizlerle, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının normal dağılım istatistiksel sonuçları.

Ortalama	3.86
Standart Sapma	0.565
Ortalama + Standart Sapma	4.42
% 5 Kümülatif Dağılım	2.929
% 95 Kümülatif Dağılım	4.787

Doğrusal elastik olmayan statik analizlerde, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının

- 3 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.95 'den 3.80 'e azaldığı,
- 9 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.22 'den 3.06 'ya azaldığı,
- 20 katlı yapıda, birleşim dönme rijitliği azaldıkça 4.63 'den 3.15 'e azaldığı gözlenmektedir.
- Tüm yapılar için ise C_d katsayısı ortalama 3.86 olarak hesaplanmıştır.

7. SONUÇLAR VE ÖNERİLER

7.1 Genel Değerlendirme

Bu çalışmada en yaygın çelik taşıyıcı sistemlerden biri olan süneklik düzeyi yüksek moment dayanımlı çelik çerçevelerin yer değiştirme arttırma katsayıları bulunmuştur. Süneklik düzeyi yüksek çelik çerçevelerin tasarımında etkin göreli kat ötelemeleri belirleyici unsur olması sebebiyle tasarımda kesit seçimini dolayısıyla yapı maliyetini doğrudan etkilemektedir. Ayrıca tasarımda genellikle dikkate alınmayan birleşim rijitliği yapının davranışını değiştirmektedir. Etkin göreli kat ötelenmelerinin belirlenmesi için kullanılan yer değiştirme arttırma katsayısının belirlenmesi için 3, 9 ve 20 katlı çelik çerçeveler beş farklı birleşim rijitliği için, 18 adet 50 yılda aşılma olasılığı %10 olan tasarım depremi kayıtları kullanılarak yapılan doğrusal olmayan dinamik ve doğrusal elastik olmayan statik itme analizlerine tabi tutulmuştur. Doğrusal elastik olmayan analizlerin sonuçları üzerinden yapıların elastik ötesi davranışı ve deprem kayıtları kullanılarak, depremlerin yapılardan ne kadar yer değiştirme talep ettiği belirlenmiş, *Yer Değiştirme Arttırma Katsayıları* hesaplanmıştır.

3 katlı yapılar için bulunan sonuçlar aşağıda maddeler halinde özetlenmiştir.

- Birleşim rijitliğindeki azalma yapıların elastik rijitliğini azaltmıştır.
- Birleşim rijitliğindeki azalma yapıların ilk akma noktasını daha az bir dayanımda ve daha fazla bir tepe yer değiştirmesinde meydana getirmektedir.
- Rijit birleşimli çerçevelerin dinamik analiz sonuçları ise, en büyük tepe yer değiştirmenin olduğu durumda (Durum-1), ortalama %2 civarında bir tepe yer değiştirmesi oranına karşılık %25 civarında bir taban kesme kuvveti oranı görülmektedir. En büyük taban kesme kuvvetinin olduğu durumda (Durum-2) ise, %50 civarında bir taban kesme kuvveti oranına karşılık ortalama %1.7 civarında bir tepe yer değiştirmesi oranı meydana gelmektedir.

- Yarı rijit birleşimli çerçevelerin dinamik analiz sonuçları ise, rijitlik azaldıkça, en büyük tepe yer değiştirmenin olduğu durumda (Durum-1), ortalama %2.1'den %2.5'e artan bir tepe yer değiştirmesi oranına karşılık %25 civarında bir taban kesme kuvveti oranı görülmektedir. En büyük taban kesme kuvvetinin olduğu durumda (Durum-2) ise, %50 civarında bir taban kesme kuvveti oranına karşılık ortalama %1.5 civarında bir tepe yer değiştirmesi oranı meydana gelmektedir.
- Statik analizler sonucu, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 6.07'den 7.61'e arttığı görülmektedir.
- Dinamik analizler sonucu, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.95'den 5.95'e arttığı görülmektedir.
- Statik analizler sonucu, birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 6.07'den 4.86'ya azaldığı görülmektedir.
- Dinamik analizler sonucu, birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.95'den 3.80'e azaldığı görülmektedir.

9 katlı yapılar için bulunan sonuçlar aşağıda maddeler halinde özetlenmiştir.

- Birleşim rijitliğindeki azalma yapıların elastik rijitliğini azaltmıştır.
- Birleşim rijitliğindeki azalma yapıların ilk akma noktasını daha az bir dayanımda ve daha fazla bir tepe yer değiştirmesinde meydana getirmektedir.
- Rijit birleşimli çerçevelerin dinamik analiz sonuçları ise, en büyük tepe yer değiştirmenin olduğu durumda (Durum-1), ortalama %1.7 civarında bir tepe yer değiştirmesi oranına karşılık %20 civarında bir taban kesme kuvveti oranı görülmektedir. En büyük taban kesme kuvvetinin olduğu durumda (Durum-2) ise, %40 civarında bir taban kesme kuvveti oranına karşılık ortalama %1 civarında bir tepe yer değiştirmesi oranı meydana gelmektedir.
- Yarı rijit birleşimli çerçevelerin dinamik analiz sonuçları ise, rijitlik azaldıkça, en büyük tepe yer değiştirmenin olduğu durumda (Durum-1), ortalama %1.7 'den %1.9 'a artan bir tepe yer değiştirmesi oranına karşılık %17 civarında bir taban kesme kuvveti oranı görülmektedir. En büyük taban kesme kuvvetinin olduğu

durumda (Durum-2) ise, %40 civarında bir taban kesme kuvveti oranına karşılık ortalama %0.9 civarında bir tepe yer değiştirmesi oranı meydana gelmektedir.

- Statik analizler sonucu, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.90'dan 6.61'e arttığı görülmektedir.
- Dinamik analizler sonucu, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.22'den 5.24'e arttığı görülmektedir.
- Statik analizler sonucu, birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.90'dan 3.86'ya azaldığı görülmektedir.
- Dinamik analizler sonucu, birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirme ile hesaplanan C_{d} katsayısının 4.22'den 3.06'ya azaldığı görülmektedir.

20 katlı yapılar için bulunan sonuçlar aşağıda maddeler halinde özetlenmiştir.

- Birleşim rijitliğindeki azalma yapıların elastik rijitliğini azaltmıştır.
- Birleşim rijitliğindeki azalma yapıların ilk akma noktasını daha az bir dayanımda ve daha fazla bir tepe yer değiştirmesinde meydana getirmektedir.
- Rijit birleşimli çerçevelerin dinamik analiz sonuçları ise, en büyük tepe yer değiştirmenin olduğu durumda (Durum-1), ortalama %1.5 civarında bir tepe yer değiştirmesi oranına karşılık %8 civarında bir taban kesme kuvveti oranı görülmektedir. En büyük taban kesme kuvvetinin olduğu durumda (Durum-2) ise, %27 civarında bir taban kesme kuvveti oranına karşılık ortalama %0.4 civarında bir tepe yer değiştirmesi meydana gelmektedir.
- Yarı rijit birleşimli çerçevelerin dinamik analiz sonuçları ise, rijitlik azaldıkça, en büyük tepe yer değiştirmenin olduğu durumda (Durum-1), ortalama %1.5'den %1.7'ye artan bir tepe yer değiştirmesi oranına karşılık %8 civarında bir taban kesme kuvveti oranı görülmektedir. En büyük taban kesme kuvvetinin olduğu durumda (Durum-2) ise, %25 civarında bir taban kesme kuvveti oranına karşılık ortalama %0.4 civarında bir tepe yer değiştirmesi oranı meydana gelmektedir.
- Statik analizler sonucu, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 5.34'den 7.13'e arttığı görülmektedir.

- Dinamik analizler sonucu, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.63'den 5.22'ye arttığı görülmektedir.
- Statik analizler sonucu, birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirme ile hesaplanan C_{d} katsayısının 5.34'den 4.31'e azaldığı görülmektedir.
- Dinamik analizler sonucu, birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirme ile hesaplanan C_d katsayısının 4.63'den 3.15'e azaldığı görülmektedir.

Tüm yapılar için;

- Statik ve dinamik doğrusal olmayan analizlerde birleşim rijitliği azaldıkça, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayıları, sabit tasarım yer değiştirmesine karşı (rijit birleşimli yapının tasarım yer değiştirmesi), nihai yer değiştirmenin artması sonucu artmıştır.
- Statik ve dinamik doğrusal olmayan analizlerde birleşim rijitliği azaldıkça, yarı rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayıları, nihai yer değiştirmenin artmasına karşı, tasarım yer değiştirmesinin (yarı rijit birleşimli yapının tasarım yer değiştirmesi) daha fazla artması sonucu azalmıştır.
- Bu durum, birleşim rijitliği azaldıkça, rijit tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının artması, yapıların kendi tasarım yer değiştirmesi ile hesaplanan C_d katsayılarının ise azalması, birleşim rijitliğinin azalması yapıların süneklik talebinin azaldığını göstermiştir.
- Statik analizler sonucu, ortalama 4.84 olarak bulunan C_d katsayısı AISC ve TBDY-2018 yönetmeliklerinin sırasıyla kullandığı 5.50 ve 8.00 değerinden daha düşüktür.
- Dinamik analizler sonucu, ortalama 3.86 olarak bulunan C_d katsayısı AISC ve TBDY-2018 yönetmeliklerinin sırasıyla kullandığı 5.50 ve 8.00 değerinden daha düşüktür.
- Sonuçlar çelik çerçeveli bir yapıda birleşim rijitliğinin yapının davranışını değiştirdiğini, dolayısı ile çelik çerçeveli yapılar için önemli bir tepki değiştirme katsayısı olan yer değiştirme arttırma katsayısının değiştirdiği anlaşılmaktadır.

 Bulunan yer değiştirme arttırma katsayılarındaki farklılık, moment dayanımlı bir çelik çerçevenin doğrusal olmayan değerlendirmesi yapılması durumunda yapıda kullanılan birleşimlerin rijitliklerinin göz ardı edilmemesi gerektiğini göstermektedir.

7.2 Gelecek Çalışmalara Yönelik Öneriler

Yarı rijit birleşimli çerçevelerin davranışlarının daha doğru tespit edilebilmesi için farklı özelliklere sahip çerçevelerin yer değiştirme taleplerinin sonlu eleman modeller ve tam ölçekli deneylerle incelenmesi gerekmektedir. Çelik çerçeveli yapıların yer değiştirme arttırma katsayıları için, birleşimlerin çevrimsel yükler altında deney ve simulasyonlarının yapılması gerekmektedir. Ayrıca farklı yükseklik sınıfındaki yapıların farklı taşıyıcı sistem davranış katsayıları ile tasarımı ile tasarlanmış moment dayanımlı çelik çerçevelerin de doğrusal olmayan analizlerle elastik olamayan en büyük ötelenme talepleri tespit edilmeli daha sonra yer değiştirme arttırma katsayıları arasında bir ilişki kurulmalıdır.

KAYNAKLAR

- [1] American Institute of Steel Construction, Reston, Virginia, (2016). Specification for Structural Steel Buildings, AISC 360-16.
- [2] Eurocode 3: Design of steel structures Part 1-8: Design of joints, Londen: UK: British Standered Institution., bs en 1993-1-8;2005 sürüm.
- [3] T.C. Çevre ve Şehircilik Bakanlığı, Ankara, (2018). Çelik Yapıların Tasarım, Hesap ve Yapım Esaslarına Dair Yönetmelik.
- [4] **TBDY**, (2018). Türkiye Bina Deprem Yönetmeliği, Ankara.
- [5] Standards Association of Australia, (2015). Building Code of Australia primary referenced Standard.
- [6] Canadian Institute of Steel Construction, (2015). CISC Code of Standard Practice for Structural Steel, 8th edition sürüm.
- [7] Bureau of Indian Standards, (2016). National Building Code of India 2016, 1 sürüm.
- [8] National Standard of the People's Republic of China, Beijing, (2001). Code for Seismic Design of Buildings.
- [9] Lui, E. ve Chen, W.F. (1986). Analysis and behaviour of flexibly-jointed frames, *Engineering Structures*, 8(2), 107–118.
- [10] Lui, E. ve Chen, W. (1987). Steel frame analysis with flexible joints, *Journal of Constructional Steel Research*, 8, 161–202.
- [11] Elnashai, A. ve Elghazouli, A. (1994). Seismic behaviour of semi-rigid steel frames, *Journal of Constructional Steel Research*, 29(1-3), 149–174.
- [12] Gupta, A. ve Krawinkler, H. (1999). Seismic demands for the performance evaluation of steel moment resisting frame structures, resreport 132, Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University.
- [13] Maison, B.F. ve Kasai, K. (2000). Seismic Performance of 3 and 9 Story Partially Restrained Moment Frame Buildings, techreport SAC/BD-99/16, SAC Joint Venture.
- [14] **YEMEZ, K.** (2007). Experimental Study on the Behaviour of an I-Beam to SHS-Column by T-Stub Bolted Connection, phdthesis, Boğaziçi University.

- [15] **PEKER, K.** (2009). Zayıf Eksen Kolon-Kiriş Birleşimlerinin Çevrimsel Yükler Etkisinde Davranışı, phdthesis, İstanbul Teknik Üniversitesi.
- [16] Freeman, S. (1990). On the Correlation of Code Forces to Earthquake Demands, 4th U.S.-Japan Workshop On Improvement of Build. Struct. Des. And Constr. Practices.
- [17] Osteraas, J. ve Krawinkler, H. (1990). Strength and Ductility Considerations in Seismic Design, techreport 90, John A. Blume Earthquake Engineering Center, Stanford University, California.
- [18] Balendra, T. ve Huang, X. (2003). Overstrength and Ductility Factors for Steel Frames Designed According to BS 5950, *Journal of Structural Engineering*, 129(8), 1019–1035.
- [19] Newmark, N. ve Hall, W. (1973). Seismic Design Criteria for Nuclear Reactor Facilities, resreport 46, Building Practices for Disaster Mitigation, National Bureau of Standards, U.S.
- [20] Lai, S.P. ve Biggs, J. (1980). Inelastic Response Spectra for Aseismic Building Design, *Journal of Structural Engineering*, 106(ST6).
- [21] Miranda, E. (1993). Site-Dependent Strength-Reduction Factors, Journal of Structural Engineering, 119(12), 3503–3519.
- [22] Uang, C.M. ve Maarouf, A. (1994). Deflection Amplification Factor for Seismic Design Provisions, *Journal of Structural Engineering*, 120(8), 2423–2436.
- [23] Şeker, O., Akbas, B., Shen, J. ve Ozturk, A.Z. (2013). Evaluation of deflection amplification factor in steel moment-resisting frames, *The Structural Design of Tall and Special Buildings*, 23(12), 897–928.
- [24] Mohammadi, M. ve Kordbagh, B. (2017). Quantifying panel zone effect on deflection amplification factor, *The Structural Design of Tall and Special Buildings*, 27(5), e1446.
- [25] Charalambos C Baniotopoulos, M.I. (2000). Semi-Rigid Joints in Structural Steelwork, Springer.
- [26] E. Cosenza, A. De Luca, C. ve Faella (1989). Inelastic Buckling of Semi-Rigid Sway Frames, *Elsevier Applied Science*, *Chapter 9*, 297–333, structural Connections Stability and Strength.
- [27] Applied Technology Council (ATC), Redwood City, California, (2009). Quantification of Building Seismic Performance Factors.
- [28] Foutch, D.A. ve Yun, S.Y. (2002). Modeling of steel moment frames for seismic loads, *Journal of Constructional Steel Research*, 58(5-8), 529–564.
- [29] Taranath, B.S. (2012). Structural Analysis and Design of Tall Buildings Steel and Composite Construction, Taylor & Francis Group.
- [30] Applied Technology Council (ATC), Redwood City, California, (1995). Structural Response Modification Factors, ATC-19 Project Report.

- [31] Wai-Fah Chen, N.K. ve Komuro, M. (2011). Semi-Rigid Connections Handbook, J. Ross Publishing.
- [32] Faridmehr, I., Tahir, M.M. ve Lahmer, T. (2016). Classification System for Semi-Rigid Beam-to-Column Connections, *Latin American Journal of Solids and Structures*, 13(11), 2152–2175.
- [33] **AKSOYLAR, N.D.** (2009). Yarı rijit birleşimli çelik çerçevelerin deprem performansının değerlendirilmesi, *Doktora Tezi*, Yıldız Teknik Üniversitesi.
- [34] C. Faella, V. Piluso, G.R. (2000). Structural Steel Semirigid Connections (theory, design and software), CRC Press.
- [35] **Frye, M.J. ve Morris, G.A.** (1975). Analysis of Flexibly Connected Steel Frames, *Canadian Journal of Civil Engineering*, 2(3), 280–291.
- [36] Nixon, D. ve Adams, P.F. (1976). Discussion: Analysis of flexibly connected steel frames, *Canadian Journal of Civil Engineering*, *3*(2), 349–350.
- [37] Ang, K.M. ve Morris, G.A. (1984). Analysis of three-dimensional frames with flexible beam-column connections, *Canadian Journal of Civil Engineering*, 11(2), 245–254.
- [38] Attiogbe, E. ve Morris, G. (1991). Moment-Rotation Functions For Steel Connections, *Journal of Structural Engineering*, 117(6), 1703–1718.
- [39] Yee, Y.L. ve Melchers, R.E. (1986). Moment-Rotation Curves for Bolted Connections, *Journal of Structural Engineering*, *112*(3), 615–635.
- [40] Kishi, N. ve Chen, W.F. (1990). Moment-Rotation Relations of Semirigid Connections with Angles, *Journal of Structural Engineering*, 116(7), 1813–1834.
- [41] Srouji R., K.A. ve Murray, T. (1983). Extended Unstiffened Moment End-Plate Connection Tests, resreport FSEL/MBMA 83-05, Fears Structural Engineering Laboratory, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma.
- [42] Borgsmiller J.T., Sumner E.A., M.T. (1995). Yield-Line Analysis of End-Plate Connections with Bolt Force Predictions, resreport CE/VPI-ST-95/13, Department of Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
- [43] Meng, R.L. (1996). Design of Moment End-Plate Connections for Seismic Loading, *Doktora Tezi*, Virginia Polytechnic Institute and State University.
- [44] Wales, M.W. ve Rossow, E.C. (1983). Coupled Moment-Axial Force Behavior in Bolted Joints, *Journal of Structural Engineering*, 109(5), 1250–1266.
- [45] Kennedy, D.J.L. ve Hafez, M.A. (1984). A study of end plate connections for steel beams, *Canadian Journal of Civil Engineering*, 11(2), 139–149.

- [46] **Pucinotti, R.** (2001). Top-and-seat and web angle connections: prediction via mechanical model, *Journal of Constructional Steel Research*, 57(6), 663–696.
- [47] da Silva, L.S. ve Coelho, A.M.G. (2001). An analytical evaluation of the response of steel joints under bending and axial force, *Computers & Structures*, 79(8), 873–881.
- [48] Urbonas, K. ve Daniūnas, A. (2006). Behaviour of semi-rigid steel beam-to-beam joints under bending and axial forces, *Journal of Constructional Steel Research*, 62(12), 1244–1249.
- [49] Faella, C., Piluso, V. ve Rizzano, G. (1997). A new method to design extended end plate connections and semirigid braced frames, *Journal of Constructional Steel Research*, 41(1), 61–91.
- [50] Bose, S., McNeice, G. ve Sherbourne, A. (1972). Column webs in steel beam-to-column connexions part I—Formulation and verification, *Computers & Structures*, 2(1-2), 253–279.
- [51] Krishnamurthy, N. ve Graddy, D.E. (1976). Correlation between 2- and 3-dimensional finite element analysis of steel bolted end-plate connections, *Computers & Structures*, 6(4-5), 381–389.
- [52] Gebbeken, N., Rothert, H. ve Binder, B. (1994). On the numerical analysis of endplate connections, *Journal of Constructional Steel Research*, 30(2), 177–196.
- [53] Yu, H., Burgess, I., Davison, J. ve Plank, R. (2008). Numerical simulation of bolted steel connections in fire using explicit dynamic analysis, *Journal of Constructional Steel Research*, 64(5), 515–525.
- [54] Díaz, C., Victoria, M., Martí, P. ve Querin, O.M. (2011). FE model of beam-to-column extended end-plate joints, *Journal of Constructional Steel Research*, 67(10), 1578–1590.
- [55] Goverdhan, A.V., (1984), A collection of experimental moment–rotation curves and valuation of prediction equations for semi-rigid connections.
- [56] **Nethercot, D.A.** (1985). Steel beam-to-column connections: a review of test data and its applicability to the evaluation of joint behaviour in the performance of steel frames, **resreport RP338**, CIRIA.
- [57] Kishi N., .C.W. (1986). Steel connection data bank program, resreport CE-STR86-18, West Lafayette: School of Civil Engineering, Purdue University.
- [58] Weynand, K. (1992). SERICON I databank on joints building frames, resreport 463–474, COST C1 first state of the art workshop.
- [59] Federal Emergency Management Agency (FEMA), Washington, D.C., (2003). Nehrp Recommended Provisions For Seismic Regulations For New Buildings And Other Structures (Fema 450).

- [60] Applied Technology Council (ATC), Redwood City, California, (1978). Tentative Provisions for the Development of Seismic Regulations for Buildings, ATC 3-06 Project Report.
- [61] **Miranda, E. ve Bertero, V.V.** (1994). Evaluation of Strength Reduction Factors for Earthquake-Resistant Design, *Earthquake Spectra*, *10*(2), 357–379.
- [62] **Dhakal, A.P.R.P.** (2011). Structural Design for Earthquake Resistance Past, Present and Future, **Teknik Rapor**, Department of Civil and Natural Resources Engineering University of Canterbury.
- [63] **ASCE**, (2016). Minimum design loads and associated criteria for buildings and other structures, ASCE Standard ASCE/SEI 7-16, Reston, Virginia.
- [64] Venture, S.J., (2000). State of the Art Report on Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking - FEMA-355C, Federal Emergency Management Agency.
- [65] **Computers ve Structures**, (2017), SAP2000, Structural Analysis Program, 1975, Berkeley, Kaliforniya, ABD.
- [66] ASCE (2014). Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, Virginia 20191.
- [67] Applied Technology Council (ATC). Seismic Evaluation and Retrofit of Concrete Buildings.
- [68] Chopra, A.K. (2015). Yapı Dinamiği; Teori ve Deprem Mühendisliği Uygulamaları, Palme Yayınevi.
- [69] **PEER**, (2017), Pasific Earthquake Engineering Research Center Strong Ground Motion Database, https://ngawest2.berkeley.edu/.

EKLER

EK A : Yarı Rijit Birleşimli Yapıların Etkin Göreli Kat Ötelemeleri **EK B :** Seçilen Deprem Kayıtlarının Ölçeklendirilmesi

Şekil A.1 : 3 katlı yarı-rijit (20EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.2 : 3 katlı yarı-rijit (15.5EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.3 : 3 katlı yarı-rijit (11EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.4 : 3 katlı yarı-rijit (8EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.5 : 9 katlı yarı-rijit (20EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.6 : 9 katlı yarı-rijit (15.5EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.7 : 9 katlı yarı-rijit (11EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.8 : 9 katlı yarı-rijit (8EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.9 : 20 katlı yarı-rijit (20EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.10 : 20 katlı yarı-rijit (15.5EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.11 : 20 katlı yarı-rijit (11EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil A.12 : 20 katlı yarı-rijit (8EI/L) birleşimli yapının etkin göreli kat ötelemesi.

Şekil B.1 : 3 katlı yapılar için H1 doğrultusunda ölçeklendirilmiş ivme kayıtları.

Şekil B.2 : 3 katlı yapılar için H2 doğrultusunda ölçeklendirilmiş ivme kayıtları.

Şekil B.3 : 9 katlı yapılar için H1 doğrultusunda ölçeklendirilmiş ivme kayıtları.

Şekil B.4 : 9 katlı yapılar için H2 doğrultusunda ölçeklendirilmiş ivme kayıtları.

Şekil B.5 : 20 katlı yapılar için H1 doğrultusunda ölçeklendirilmiş ivme kayıtları.

Şekil B.6 : 20 katlı yapılar için H2 doğrultusunda ölçeklendirilmiş ivme kayıtları.

Yapı	Deprem İsmi	<i>H</i> ₁ Doğrultusu	<i>H</i> ₂ Doğrultusu
3 Katlı	San Fernando	3.111	5.005
	Friuli_ Italy-01	2.410	2.008
	Imperial Valley-06	1.874	1.868
	Superstition Hills-02	1.833	2.172
	Northridge-01	1.153	0.937
	Northridge-01	1.486	1.291
	Kobe_Japan	2.261	2.309
	Kocaeli_ Turkey	1.804	1.276
	Hector Mine	2.704	1.630
9 Katlı	San Fernando	3.575	5.2953
	Friuli_ Italy-02	3.8273	3.0988
	Imperial Valley-07	2.1129	2.5278
	Superstition Hills-03	2.0301	2.2771
	Northridge-01	1.1821	1.0653
	Northridge-01	1.6089	1.6475
	Kobe_ Japan	2.1794	2.5325
	Kocaeli_ Turkey	1.7837	1.384
	Hector Mine	3.0076	1.7911
20 Katlı	San Fernando	2.7738	5.1501
	Friuli_Italy-03	5.8127	5.3278
	Imperial Valley-08	2.0782	2.8068
	Superstition Hills-04	2.7206	2.6095
	Northridge-01	1.5982	1.8928
	Northridge-01	2.3047	2.3956
	Kobe_ Japan	2.6837	3.4791
	Kocaeli_ Turkey	1.5092	1.5324
	Hector Mine	3.1639	2.3577

Çizelge B.1 : Seçilen yer hareketi kayıtlarının ölçeklendirme katsayıları.

ÖZGEÇMİŞ

Ad Soyad: Ahmet Karabacak

Doğum Tarihi ve Yeri: 1993, Konya

E-Posta: ahmet7k@gmail.com

ÖĞRENİM DURUMU:

- Lise: 2011, Konya Atatürk Lisesi
- Lisans: 2016, Eskişehir Osmangazi Üniversitesi, İnşaat Mühendisliği
- Y. Lisans: 2019, İstanbul Teknik Üniversitesi, Deprem Mühendisliği

MESLEKİ DENEYİMLER VE ÖDÜLLER:

- Soyut İnşaat 2013-2016, Yarı-zamanlı mühendislik uygulamaları
- 2014-2016 tarihlerinde Eskişehir Osmangazi Üniversitesi İnşaat Mühendisliği bölüm temsilciliği
- 2014 yılında TAV İnşaat Emaar Square projesinde saha stajı
- 2015 yılında Alarko Holding merkez ofis, arazi geliştirme grubunda ofis stajı
- Erdemli Proje Müşavirlik 2016- Halen , Yapı Tasarım Mühendisi
- Bu tez 42127 numaralı İTÜ Bilimsel Araştırma Projesi kapsamında kabul edilmiştir.