<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ DEPREM MÜHENDİSLİĞİ VE AFET</u> <u>YÖNETİMİ ENSTİTÜSÜ</u>

KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK TÜRÜ ZEMİNE OTURAN DÖRTGEN PLAKLARIN SERBEST TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ

YÜKSEK LİSANS TEZİ

Şennur ELMACI

Deprem Mühendisliği Anabilim Dalı

Deprem Mühendisliği Programı

EYLÜL 2019

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ DEPREM MÜHENDİSLİĞİ VE AFET</u> <u>YÖNETİMİ ENSTİTÜSÜ</u>

KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK TÜRÜ ZEMİNE OTURAN DÖRTGEN PLAKLARIN SERBEST TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ

YÜKSEK LİSANS TEZİ

Şennur ELMACI (802121038)

Deprem Mühendisliği Anabilim Dalı

Deprem Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Engin ORAKDÖĞEN

EYLÜL 2019

İTÜ, Deprem Mühendisliği ve Afet Yönetimi Enstitüsü'nün 802121038 numaralı Yüksek Lisans Öğrencisi Şennur ELMACI, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK TÜRÜ ZEMİNE OTURAN DÖRTGEN PLAKLARIN SERBEST TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Prof. Dr. Engin ORAKDÖĞEN İstanbul Teknik Üniversitesi	
Jüri Üyeleri :	Dr. Öğr. Ü. Akif KUTLU İstanbul Teknik Üniversitesi	
	Dr. Öğr. Ü. Ahmet GÜLLÜ Gedik Üniversitesi	

Teslim Tarihi :13 Eylül 2019Savunma Tarihi :23 Eylül 2019

Anneme ve babama,

ÖNSÖZ

Bu tez çalışması esnasında birikim ve vaktini benimle paylaşan hocam Sayın Prof. Dr. Engin ORAKDÖĞEN'e en kalbi duygularımla teşekkürlerimi arz ederim.

Tez çalışmam boyunca gerekli kolaylık ve anlayışlarını esirgemeyen İstanbul Rölöve ve Anıtlar Müdürlüğü personellerinden; eski Müdür Sayın Salman ÜNLÜGEDİK'e, Müdür Sayın Olcay AYDEMİR'e, Müdür Yardımcısı Sayın Halime Nevhiz KOYUKAN'a, Müdür Yardımcısı Sayın Hasan KARAKAYA'ya, Yüksek Mimar Sevinç ÇELİK'e ve diğer çalışanlarına teşekkür eder, değerli aileme saygı ve şükranlarımı sunarım.

Tez çalışmamda kullandığım SapTranform yazılımını hazırlayan ve benimle paylaşan Dr. Müh. Onur AVCIOĞLU'na ayrıca teşekkür ederim.

Eylül 2019

Şennur ELMACI (İnşaat Mühendisi)

İÇİNDEKİLER

<u></u>	yfa
ONSOZ	. . vi i
IÇINDEKILER	ix
ÇÎZELGE LÎSTESÎ	X
ŞEKİL LİSTESİ	xii
SEMBOL LÍSTESÍ	xvi
ÖZET	. xix
SUMMARY	.xxi
1.GİRİŞ	1
1.1 Yapı Zemin İlişkisi	1
1.2 Yapı Zemin Etkileşim Modelleri	1
1.2.1.Bir parametreli zemin modeli	1
1.2.1.1.Winkler modeli	1
1.2.2. İki parametreli zemin modelleri	3
1.2.2.1. Filenenko-Borodich modeli	3
1.2.2.2. Hetenyi zemin modeli	4
1.2.2.3. Pasternak zemin modeli	5
1.2.2.4. Vlasov modeli	6
1.3 Çalışmanın Amacı ve Kapsamı	8
2. SAP 2000 PROGRAMI İLE ZEMİN ELEMANIN RİJİTLİK MATRİSİN	ÍN
DOĞRULAMASI	9
2.1 Sonlu elemanlar Yöntemi	9
2.2 SAP2000 Programında Zemin Elemana ait Sonlu Eleman Matris	
Formülasyonu	10
2.3. SAP2000 Programında iki parametreli zemine oturan plak elemanın	
tanımlanması	11
3. DOĞRULAMA ÖRNEKLERİ	23
3.1 ÖRNEK 1	23
3.2 ÖRNEK 2	36
3.3 ÖRNEK 3	48
4. DIS ZEMINLI KARE PLAKTA SERBEST TİTRESİM	
KAREKTERISTIKLERININ BELIRLENMESI	
4.1 ÖRNEK 1	59
4 2 ÖRNEK 2	63
4 3 İki Parametreli Zemine Oturan Dörtgen Plağın Genişletilmemiş Zemine	
Oturması Hali İle Genişletilmiş Zemine Oturması Halinde Snektral Analizinin	
Karçılaştırılmaşı	66
5 SONIC VF DFČFRI FNDİRMF	
3. 30110 γ. ΤΕ DEGERLEI (DIRME)	ور 19
іха і і тарыдан. Ö7сесміs	10. 29
♥ℤ₲₽₷₽₽₩₩₿₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	03

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 3.1: Yayılı yüklü plata çökme ve eğilme momenti değerlerinin önceki
çalışmalarla karşılaştırılması34
Çizelge 3.2: Bu çalışma ile (Çelik, 1996) arasındaki göreceli fark (Çizelge 3.1)34
Çizelge 3.3 : Tekil yükle yüklü plakta çökme ve eğilme momenti değerlerinin
önceki çalışmalar ile karşılaştırılması
Çizelge 3. 4 : Bu çalışma ile (Çelik, 1996) arasındaki göreceli fark (Çizelge 3.3)35
Çizelge 3.5 : Analiz sonucu okunan periyodlardan frekansların bulunması
Cizelge 3. 6 : İzotrop zemine oturan bir metre kalınlığındaki basit mesnetli kare
plakta boyutsuz frekans değerleri ve önceki çalışmalarla karşılaştırma
Cizelge 3.7 : İzotrop zemine oturan 2 metre kalınlığındaki basit mesnetli kare plakta
boyutsuz frekans değerleri ve önceki çalışmalarla karşılaştırma
Cizelge 3.8 : İzotrop zemine oturan 1 metre kalınlığındaki ankastre mesnetli kare
plakta boyutsuz frekans değerleri ve önceki çalışmalarla karşılaştırma
Cizelge 3. 9 : Keyfi doğrultuda ortotrop zemine oturan ankastre mesnetli kare plakta
boyutsuz frekans değerleri(Bu çalışma)
Cizelge 3. 10 : Keyfi doğrultuda ortotrop zemine oturan ankastre mesnetli kare
plakta boyutsuz frekans değerleri (Kutlu, 2007)
Cizelge 3. 11 : Cizelge 3.9 ile Cizelge 3.10 arasındaki göreceli fark
Cizelge 3. 12 : Keyfi doğrultuda ortotrop zemine oturan iki kenarı basit mesnetli iki
kenarı ankastre mesnetli kare plakta boyutsuz frekans değerleri (Bu çalışma)51
Cizelge 3. 13 : Keyfi doğrultuda ortotrop zemine oturan iki kenarı basit mesnetli iki
kenarı ankastre mesnetli kare plakta boyutsuz frekans değerleri (Kutlu, 2007)52
Cizelge 3. 14 : Cizelge 3.12 ile Cizelge 3.13 arasındaki göreceli fark
Çizelge 3. 15 : Keyfi doğrultuda ortotrop zemine oturan basit mesnetli kare plakta
boyutsuz frekans değerleri(Bu çalışma)53
Cizelge 3. 16 : Keyfi doğrultuda ortotrop zemine oturan basit mesnetli kare plakta
boyutsuz frekans değerleri (Kutlu, 2007)
Çizelge 3. 17 : Çizelge 3.15 ile Çizelge 3.16 arasındaki göreceli fark
Çizelge 4.1: İzotrop ve genişletilmiş bir metre kalınlığındaki plak ile bu
çalışmadaki (Çizelge3.6) frekans değerlerinin karşılaştırılması60
Çizelge 4.2: İzotrop ve genişletilmiş iki metre kalınlığındaki plak ile bu
çalışmadaki (Çizelge 3.7)' deki frekans değerlerinin karşılaştırılması 61
Çizelge 4.3 : İzotrop ve genişletilmiş bir metre kalınlığındaki plak ile bu
çalışmadaki (Çizelge 3.8)'daki frekans değerlerinin karşılaştırılması62
Çizelge 4. 4 : Keyfi doğrultuda ortotrop genişletilmiş zemine oturan plakta boyutsuz
frekans değerleri
Çizelge 4. 5 : Bölüm 3.3 deki Çizelge 3.9 ile Çizelge 4.4 ün göreceli farkı64
Çizelge 4. 6 : Bölüm 3.3 deki Çizelge 3.12 ile Çizelge 4.4 ün göreceli farkı64

Çizelge 4.7 : Bölüm 3.3 deki Çizelge 3.15 ile Çizelge 4.4 ün göreceli farkı	55
Çizelge 4.8 : İki parametreli zemine oturan dörtgen plakta spektral analiz sonucu	
bulunan eğilme momenti değerlerinin karşılaştırılması	74
Cizelge 4. 9 : İki parametreli zemine oturan dörtgen plakta spektral analiz sonucu	
bulunan ilk 3 moda ait perivod değerlerinin karsılastırılması	17

ŞEKİL LİSTESİ

		<u>Sayfa</u>
Şe	ekil 1.1: Winkler Zemin Modeli	2
Şe	ekil 1.2 : Winkler modeli ile gerçek davranış farkı gösterimi	3
Şe	ekil 1.3 : Üniform yüklü elastik gerçek davranış gösterimi	3
Şe	ekil 1.4 : Filenenko-Borodich Modeli.	4
Şe	ekil 1.5: Hetenyi Modeli	5
Şe	ekil 1.6: Pasternak zemin modeli	6
Şe	ekil 1.7: Vlasov tipi zemin modeli	7
Şe	ekil 2. 1 : Plak elemanın sonlu elemanlara ayrılmış modeli Z=1 m	12
Şe	ekil 2. 2 : Zemin elemanın sonlu elemanlara ayrılmış modeli Z=0 m	12
Şe	ekil 2.3: Plak elemanın malzeme özelliklerinin tanımlanması	13
Şe	ekil 2.4: Zemin elemanın malzemesinin tanımlanması	13
Şe	ekil 2.5: Zemin elemanın malzemesinin tanımlanması	14
Şe	ekil 2. 6 : Zemin elemanın Ortotrop malzeme olarak tanımlanması	15
Şe	ekil 2.7: Zemin elemanın malzeme özelliklerinini tanımlanması.	15
Şe	ekil 2.8: Plak elemanın kesit özelliklerinin tanımlanması	16
Şe	ekil 2.9: Zemin elemanın kesit özelliklerinin tanımlanması.	17
Şe	ekil 2. 10 : Joint Constraint tanımlanması	18
Şe	ekil 2. 11 : Equal Constraint seçilerek Translation Z yönünde harekete izin	
	verilmesi	18
Şe	ekil 2. 12 : SapTransform programının veri giriş ekranında z koordinatına gör	e
	ayırma	19
Şe	ekil 2. 13 : _C.s2k uzantılı dosya	19
Şe	ekil 2. 14 : SapTransform ile eşitleme yapılan dosyanın SAP2000 programınd	a
	import komutu ile açılması.	20
Şe	ekil 2. 15 : Zemin yatak katsayısının tanımlanması.	20
Şe	ekil 2. 16 : Plak ve zemin elemanın kenarlarına mesnet ataması yapılması	21
Şe	ekil 3.1: Tekil yük ve düzgün yayılı yüklü iki parametreli zemine oturan pla	k23
Şe	ekil 3. 2 : Plak ve zemin plan gösterimi.	24
Şe	ekil 3. 3 : Plak ve zeminin sonlu eleman ağı gösterimi	24
Şe	ekil 3. 4 : Plak görünümü z=1 m kotu.	25
Şe	ekil 3. 5 : Plak altındaki genişletilmiş zemin görünümü z=0 m kotu	25
Şe	ekil 3. 6 : Plak ve zemin modeli 3d görünümü	25
Şe	ekil 3. 7 : Tekil yükle yüklü plak görünümü	26
Şe	ekil 3. 8 : Düzgün yayılı yükle yüklü plak görünümü	26
Şe	ekil 3. 9 : Plak elemanın malzeme özellikleri	27
Şe	ekil 3. 10 : Zemin elemanın malzeme özelliklerinin tanımlanması	27
Şe	ekil 3. 11 : Iki parametreli zemin elemana kayma modülü tanımlanması	28
Şe	ekil 3. 12 : Plak elemanın kesit özellikleri.	29
Şe	ekil 3. 13 : Zemin elemanın kesit özelliklerinin tanımlanması.	29

Şekil 3. 14 : Iki parametreli zemin elemana zemin yatak katsayısı tanımlanması	30
Şekil 3. 15 : Yayılı yükle yüklenmiş dış zeminli iki paramtreli zemine oturan plak	
modelinin şekil değiştirmiş hali	31
Şekil 3. 16 : Yayılı yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak	
modelinde çökme değeri	31
Şekil 3. 17 : Yayılı yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak	
modelinde M11 eğilme momenti değeri	32
Şekil 3. 18 : Tekil yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak	
modelinin şekil değiştirmiş hali	32
Şekil 3. 19 : Tekil yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak	
modelinde çökme değeri	33
Şekil 3. 20 : Tekil yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak	
modelinde M11 eğilme momenti değeri	33
Şekil 3. 21 : Plak elemanın malzeme özelliklerinin tanımlanması	37
Şekil 3. 22 : Zemin elemanın malzemesinin tanımlanması.	38
Şekil 3. 23 : Zemin malzemesinin ortotrop seçilmesi	38
Şekil 3. 24 : Zeminin 2. Parametresi kayma modülünün tanımlanması	39
Şekil 3. 25 : Plak elemanın kesit özelliklerinin tanımlanması	40
Şekil 3. 26 : Zemin elemanın kesit özelliklerinin tanımlanması	41
Şekil 3. 27 : Zemin ve plak eşitlemesi-Joint constraints	42
Şekil 3. 28 : Equal Constraint seçilerek Translation Z yönünde harekete izin	
verilmesi	42
Şekil 3. 29 : Zeminin 1. parametresi yatak katsayısının tanımlanması	43
Şekil 3. 30 : SAP 2000 programında iki parametreli zemine oturan kare plak modeli	
gösterimi	44
Şekil 3. 31 : SAP2000 programında Modal analiz seçimi	44
Şekil 3. 32 : Zemin malzeme özelliğinin tanımlanması	49
Şekil 3. 33 : Zemin elemanın ortotropi açısının tanımlanması	49
Şekil 3. 34 : İzotrop zemine oturan plakta 1. Mod şekli ve periyodu	54
Şekil 3. 35 : İzotrop zemine oturan plakta 2.Mod şekli ve periyodu	55
Şekil 3. 36 : İzotrop zemine oturan plakta 3.Mod şekli ve periyodu	55
Şekil 3. 37 : İzotrop zemine oturan plakta 4.Mod şekli ve periyodu	56
Şekil 3. 38 : 15 derece ortotrop zemine oturan plakta 1.Mod şekli ve periyodu	56
Şekil 3. 39 : 15 derece ortotrop zemine oturan plakta 2.Mod şekli ve periyodu	57
Şekil 3. 40 : 15 derece ortotrop zemine oturan plakta 3.Mod şekli ve periyodu	57
Şekil 3. 41 : 15 derece ortotrop zemine oturan plakta 4.Mod şekli ve periyodu	58
Şekil 4.1: Genişletilmiş zemine oturan kare plak modeli 3d görünümü	59
Şekil 4. 2 : Plağın birim hacminin ağırlığının girilmesi.	66
Şekil 4.3 : Analizin xy düzleminde seçilmesi	67
Şekil 4. 4 : Response spektrum seçilmesi.	67
Şekil 4. 5 : TSC-2018 Function Type tanımlanması.	68
Şekil 4. 6 : Response Spectrum TSC-2018 Function Tanımlanması	68
Şekil 4. 7 : Load Case Data - Response Spectrum	69
Şekil 4. 8 : Load cases-Response Spektrum tanımı.	70
Şekil 4. 9 : Response Spectrum SPEKTRA seçilerek analiz yapılması	70
Şekil 4. 10 : Case/Combo Name:SPEKTRA durumunda M ₁₁ ve M ₂₂ momentlerin	
okunması.	71
Şekil 4. 11 : Genişletilmemiş zemine oturan plakda spektral analiz sonucu M_{11} =6.62	2
KN.m.	71

Şekil 4. 13 : Genişletilmemiş zemin durumu spektral analiz sonucu M ₁₂ =2.48 k	KN.m.72
Şekil 4. 14 : Genişletilmiş zemin durumu spektral analiz sonucu M_{11} =4.99 kN.	m73
Şekil 4. 15 : Genişletilmiş zemin durumu spektral analiz sonucu M ₂₂ =4.96 kN.	m73
Şekil 4. 16 : Genişletilmiş zemin durumu spektral analiz sonucu M_{12} =0.17 kN.	m74
Şekil 4. 17 : Genişletilmemiş zemine oturan kare plakta 1. Mod	75
Şekil 4. 18 : Genişletilmemiş zemine oturan kare plakta 2. Mod	75
Şekil 4. 19 : Genişletilmemiş zemine oturan kare plakta 3. Mod	76
Şekil 4. 20 : Genişletilmiş zemine oturan kare plakta 1. Mod	76
Şekil 4. 21 : Genişletilmiş zemine oturan kare plakta 2. Mod	77
Sekil 4. 22 : Genisletilmis zemine oturan kare plakta 3. Mod	77

SEMBOL LÍSTESÍ

x, y, z	: Kartezyen koordinatlar
u, v, w	: Plak yüzeyinde koordinatlar doğrultusundaki yer değiştirmeler
Mx, My	: Eğilme momentleri
a, b	: Dikdörtgen plağın kenar uzunlukları
h	: Plak kalınlığı
q	: Yayılı yük gösterimi
E, v, G	: Elastisite modülü, Poisson's oranı, Kayma modülü
Gx, Gy	: Zemin kayma modülleri
k	: Zemin modülü
[]	: Matris gösterimi
D	: Plak eğilme rijitliği
С	: Zemine ait elastik yataklanma katsayısı
CT	: Zemine ait kayma parametresi
[C]	: Zemin elastik yataklanma matrisi
[C _T]	: İki parametreli zeminde kayma parametresi matrisi
Н	: Sıkışabilen zemin tabakası kalınlığı
Т	: Membran kuvveti

KEYFİ DOĞRULTUDA ORTOTROP PASTERNAK TÜRÜ ZEMİNE OTURAN DÖRTGEN PLAKLARIN SERBEST TİTREŞİM KARAKTERİSTİKLERİNİN BELİRLENMESİ VE SPEKTRAL ANALİZİ

ÖZET

Yapı sistemlerinin analiz ve tasarımında temel zemini önemli bir parametredir. Zemin özelliklerinin üst yapı analizinde ve tasarımında göz önüne alınması çeşitli kabullere davanmakta, genellikle sert ve orta sert zeminlerde zemin güvenlik gerilmesi belirli bir düzeyin üzerindeyse üst yapının mesnetleri ankastre olarak alınmakta, ayrık olarak yapılan temel hesaplarında genellikle güvenlik gerilmesinin aşılıp aşılmadığının kontrolu ile yetinilmektedir. Zemin taşıma gücünün daha zayıf olması halinde ise zeminin özellikleri hesaba dolaylı olarak katılmaktadır. Üst yapıdan temele aktarılan en elverişsiz kesit zorları tekil, sürekli veya radye temel olarak tasarlanan temel sistemine aktarılarak genellikle Winkler hipotezi kabulü ile elastik zemine oturan temel hesabı yapılabilmektedir. Winkler hipotezinde zemin gerilmelerinin ilgili noktadaki çökmelerle orantılı olduğu kabul edilmekte, zemindeki ilgili noktaya komşu bölgelerin etkileşimi gözardı edilmektedir. Zemin özelliklerinin dikkate alınmasının gerekli olduğu radye veya kazıklı temel sitemine sahip yüksek yapılarda ise zemin özellikleri üst yapı ile birlikte modellenerek hesaplara katılabilmektedir. Sözkonusu hesaplarda Winkler, Pasternak, Vlasov, Kerr gibi nispeten basit zemin modellerinin yanında özellikle kazıklı temel sistemlerinde temel altı zemini de üst yapı ile birlikte modellenerek yapı zemin etkileşimi daha gerçekçi şekilde gözönüne alınabilmektedir.

Bu çalışmada zeminin komşu bölgelerindeki etkileşimi de dikkate alan Pasternak türü zemine oturan plakların statik yükler altındaki davranışı ile serbest titreşim özellikleri incelenmiş ve son olarak aynı plakların tasarım spektrumuna göre spektral analizi yapılmıştır.

Bu tezin amacı akademik ortamda yapı mühendisliği problemlerinin çözümünde güvenilir bir şekilde kullanılan SAP2000 programı yardımı ile Pasternak türü zemine oturan dörtgen plak problemlerinin çözülmesidir. Gerilme-şekil değiştirme bağıntılarının ve denge denklemlerinin sadece kayma etkilerinin olduğu düzlem şekildeğiştirme elemanının benzerliğinden yararlanılarak, Pasternak zemin elemanı, düzlem şekildeğiştirme elemanı olarak modellenmiştir. Her iki fiziksel probleme ait denklemler bir katsayı farkı ile benzer olup düzlem şekil değiştirme zemin elemanının kayma modülü olarak zeminin kayma modülü alınmıştır. SAP2000 programı malzeme olarak ortotrop malzemeleri de dikkate alabildiğinden çeşitli doğrultularda ortotrop zemine oturan plakların çözümü de kolaylıkla yapılabilmektedir.

Pasternak türü zemini dikkate alan çalışmalarda araştırmacılar genellikle kendi geliştirdikleri sonlu eleman yazılımlarıyla analizleri gerçekleştirmektedir.

Daha önceden yapılan benzer çalışmalarda (Avcıoğlu, 2015, Hamarat, 2012) Pasternak zemin eleman, hazırlanan genel amaçlı yazılıma eklenmiş veya zemin için yine elastik özelliklerin uygun şekilde kullanılması ile ortotrop plak elemana benzetilerek kullanılmıştır. Bu çalışmada ise pasternak zemin elemana ait rijitlik matrisi sadece kayma etkilerinin bulunduğu düzlem şekil değiştirme elemanına ait matrisle katsayı farkı ile benzer olduğundan, hesaplarda bir yaklaşıklık bulunmamaktadır. Bu şekilde bir benzerlikle elde edilen Pasternak zemin elemanı SAP2000 programının her türlü esnekliğine sahip olduğundan, Winkler zemine oturan yapı sistemlerinin hesabı, Pasternak zeminine oturan yapı sistemlerinin hesabını da içerecek şekilde genişletilmiş olmaktadır. Ayrıca bir API(Aplication Programming İnterface) yazılımı kullanılmak sureti ile her adımdaki zeminin elastik özellikleri yenilenerek ardışık yaklaşım gerektiren Vlasov zemine oturan yapı sistemlerinin hesabı da SAP2000 programından yararlanılarak yapılabilir (Hamarat, 2012). Böylelikle aynı bölgede inşa edilen yapı sistemlerinin statik veya dinamik yükler altındaki etkileşimi de kolaylıkla göz önüne alınabilir.

Tezde özel olarak ortotrop pasternak zemine oturan kare plakların statik davranışı ile serbest titreşim özellikleri incelenmiştir. Öncelikle literatürde daha önceden çözülmüş örnekler ile modellemenin doğruluğu gösterilmiş daha sonra da benzer çalışmalarda gözönüne alınmayan temel zemininin temel dışında da devam etmesi durumunda plak titreşim karakteristiklerindeki ve spektral analizindeki değişimler irdelenmiştir.

Tez beş bölümden oluşmaktadır. Birinci bölümde yapı zemin etkileşim modelleri tanıtılmış ve çalışmanın amaç ve kapsamı açıklanmıştır.

İkinci bölümde iki parametreli zeminde, zemin elemana ait matris formulasyonu verilmiş, SAP 2000 programında iki parametreli zemine oturan plak elemanın modellenmesi anlatılmıştır.

Üçüncü bölümde daha önceki çalışmalardan 3 adet sayısal örnek ele alınmış, SAP 2000 programında modellenmiştir. İlk örnekte iki parametreli zemine oturan tekil yüklü ve yayılı yüklü plak davranışı incelenmiş, çökme ve eğilme moment değerleri önceki çalışmalar ile karşılaştırılmıştır. İkinci örnekte iki parametreli izotrop zemine oturan kare plağın farklı mesnet koşullarında serbest titreşim analizi yapılmış ve önceki çalışmalar ile karşılaştırılmıştır. Üçüncü örnekte ortotrop zemine oturan kare plağın farklı mesnet koşullarında serbest titreşim analizi yapılmış ve zeminin ortotropi açısı değişimine bağlı olarak frekans değerleri incelenmiş ve önceki çalışmalar ile karşılaştırılmıştır.

Dördüncü bölümde üçüncü bölümde yer alan sayısal örneklere daha önceki çalışmalardan farklı olarak plak dışı zemin eklenerek modellenmiş, serbest titreşim analizi yapılmış, dış zeminli ve dış zeminsiz olarak frekans değerleri çizelgeler ile karşılaştırılmıştır. Ayrıca bir örnek ile iki parametreli dış zeminli ve dış zeminsiz plak durumunda spektral analiz yapılmış ve eğilme momentleri karşılaştırılmıştır.

SPECTRAL ANALYSIS AND DETERMINATION OF FREE VIBRATION CHARACTERISTICS OF QUADRATIC PLATES RESTING ON ARBITRARY ORTHOTROP TWO PARAMETER ELASTIC FOUNDATION

SUMMARY

In modern design and analysis of structures, the superstructure-foundation-soil interaction has to be taken into account in a sophisticated way, which is sufficiently accurate but simple enough for practical purposes. The concept of a plate resting on an elastic foundation has been an important tool for the modeling and analysis of structural, highway, geotechnical and railroad engineering problems. Extensive research in this area has been reported in the literature.

In order to model soil behavior, several approaches have been developed in the past. The oldest, most famous and most frequently used soil model is the one adviced by Winkler (1867), in which the beam-supporting soil is modelled as a series of closely spaced, mutually independent, linear elastic vertical springs. The Winkler model has been extensively used to solve many soil-foundation interaction problems and has given satisfactory results for many practical problems. In that method, it is assumed that deflection at each point is proportional to the pressure applied at the point and completely independent of the pressures or deflections occuring at the neighbouring points along foundation. In the Winkler model, the properties of soil are described only by the parameter k, which represents the stiffness of the vertical spring. One of the major disadvantages of this model is that a plate undergoes rigid body displacements without any bending moments and shear forces in it when subjected to uniform loads. Moreover, the use of the Winkler model involves difficulties in determining the value of k. Discontinuous nature of Winkler's model gives rise to the development of various forms of two-parameter elastic foundation models. Some of the major two-parameter elastic foundation models are Filonenko-Borodich model (1940), Hetenyi model (1946, 1950), Pasternak model (1954), Vlasov model (1966). Filonenko-Borodich, Hetenyi, Pasternak and Vlasov have attempted to make the classical Winkler model more realistic by postulating a two-parameter model. Their model takes into account the effect of shear interaction among adjacent points in the foundation. In these models, the first parameter represents the stiffness of the vertical spring, as in the Winkler model, whereas the second parameter is introduced to account for the coupling effect of the linear elastic springs. It is worth mentioning that the interaction enabled by this second parameter also allows the consideration of influence of the soil on either side of plate. In this model, the first and second parameters have to be determined experimentally. Vlasov and Leont'ev (1966) have introduced another arbitrary parameter, γ , dependent on soil material and thickness of the soil layer. However, they did not report the method of determining this parameter. In the work of Vallabhan and Daloglu (1999), it has been shown how the soil parameter, γ , can be estimated using an iterative computational procedure for plates. These three-parameter models constitute a generalization of two-parameter models, the third parameter being used to make them more realistic and effective. When the γ parmeter is determined, the first and second parameters of soil can be easily calculated. One of the basic features of the three-parameter models is the flexibility and convenience that they offer in the determination of the level of continuity of the vertical displacements at the boundaries between the loaded and unloaded surfaces of the soil.

In this study, static and dynamic analysis of rectangular plates resting on two parameter elastic foundation are examined. In dynamic analyses, free vibration characteristics are obtained first for the comparison of the results from literature and then spectral analyses are performed to observe the behaviors against inertia forces. SAP2000 program is used to perform analysis. A subordinate macro is coded with VBA (Visual Basic for Applications) language is used to add equal displacements (constraints) to the SAP2000's \$2K file after the SDB file is created. The study is composed of five sections.

In the first section, informations about one and two parameter foundation models are given. Content and aim of this study are explained at the end of the first section.

In the second section, finite element method is explained, the formulations of two parameter foundation are given. Then how the two parameter foundation is modelled at SAP2000 program is shown. The first parameter of soil, soil elastic bedding coefficient or so called Winkler parameter k, is represented by springs at SAP2000 model. The springs are created by area springs feature at SAP2000 program and soil elastic bedding coefficient is entered as the spring coefficient. The second parameter of soil, is represented by plane strain element with shear deformations only that have orthotropic material features at SAP2000 program and it is called as soil element. The elastic modules of plane strain elements given as equal to zero and G_{13} and G_{23} shear parameters are given as equal to G_x and G_y soil modules respectively. G_{12} shear module of plane strain element given as zero. The soil finite element nodes are restrainted to make only vertical displacements at SAP2000 program. The plate finite element and soil finite element are modelled very close to each other and then vertical displacements of their nodes are equilized by constraints. A subordinate macro has been developed in order to equalize vertical dispalcements by adding the constarints block to the existing \$2K file automatically. By using the orthotropic material and material angle properties of SAP2000 program, it is also shown how to analyze the plates on orthotropic two parameter elastic foundation.

In the third section, rectangular foundations which is solved in the previous studies, is solved again on SAP 2000 and the results are shown in tables to compare with previous studies. In the first example, Displacements are obtained and bending moments of concentrically and uniformly loaded plates resting on two parameter foundation obtained. Second example is free vibration analysis of square plate with isotropic foundation. Third example is free vibration analysis of square plate interacting with arbitrary orthotropic foundation.

In the fourth section, the samples were modeled by adding the external foundation to the numerical samples in the third chapter, free vibration analysis is performed, and the frequency values with and without external foundation are compared with the tables. In addition, bending moments were compared with a sample with two parameters with and without external foundation in spectral analysis.

1.GİRİŞ

1.1 Yapı Zemin İlişkisi

Zemin üzerine oturan yapının zemin ile etkileşimi araştırmacılar için önemli bir konu olmuştur. Çünkü yapı sistemleri zeminin davranışından etkilenmektedir. Bu nedenle, yapı sistemi ile zeminin birlikte incelenmesi gerekmektedir. Bu etkileşimi tespit edebilmek için gerçeğe en yakın zemin yapı modeli oluşturulmaya çalışılmalıdır.

1.2 Yapı Zemin Etkileşim Modelleri

Zemin ortamı homojen değildir ve farklı doğrultularda farklı davranışlar sergiyebilmektedir. Zeminin malzeme özellikleri, kohezyon, basınç gibi bir çok değişkene göre farklılık göstermektedir. Bu nedenle zeminin davranışını tespit etmek oldukça zor olmaktadır. Literatürde zeminin davranışının tespiti için bazı idealleştirmeler yapılarak zemin modelleri oluşturulmuştur.

1.2.1.Bir parametreli zemin modeli

1.2.1.1.Winkler modeli

Zeminin elastik davranışı ile ilgili ilk önemli çalışma Winkler tarafından yapılmıştır. Winkler modelinde zeminin birbirine sonsuz yakın, elastik ve lineer yaylardan oluştuğunu kabul edilmiştir. Buna göre w(x, y) düşey doğrultuda çökme olarak alınırsa zemin direnci,

$$p(x,y) = k.w(x,y)$$
 (1.1)

olarak alınır.

Burada k, elastik yay katsayısı olup, çökme bir birim olduğunda, birim genişlikteki birim alana gelen tepki kuvvetini ifade eder. Elastik yay katsayısı k, uygulamada yatak katsayısı veya zemin parametresi olarak da adlandırılır.

Winkler hipotezine göre zemine etkiyen kuvvetler yalnız etkidiği noktada çökme meydana getirirler. Dolayısıyla her bir yay komşu yayların yükleme durumundan etkilenmez. Bu durum zeminin tamamen süreksiz bir ortam şeklinde dikkate alındığını gösterir. Oysaki elastik tabakanın yüzeyinde herhangi bir noktada oluşan yer değiştirme sadece o noktaya etki eden kuvvetten değil, diğer noktalardaki kuvvetlerden de etkilenir. Winkler modeli ile ilgili bir diğer husus yatak katsayısı olarak tanımlanan parametrenin nasıl hesaplanacağı konusudur. Bu konu ile ilgili farklı sonuçlar veren çeşitli bağıntılar mevcuttur.

Şekil 1.1'de Winkler Zemin Modeli'ne göre çeşitli yüklemeler için yerdeğiştirme durumları gösterilmiştir. Bu şekilde (a) ile düzgün yayılı olmayan yük durumunda zeminin yerdeğiştirmesi, (b) ile tekil yük durumunda zeminin yerdeğiştirmesi, (c) ile rijit tabaka ile aktarılan yük altında zeminin yerdeğiştirmesi, (d) ile düzgün yayılı yük altında zeminin yerdeğiştirme durumu gösterilmiştir.

Şekil 1.1: Winkler zemin modeli.

Bağımsız yay yaklaşımı, Winkler yönteminin en büyük sorunudur. Çünkü gerçekte zemin üzerindeki yük altındaki yayı ve etrafındaki yayları etkiler.

Şekil 1. 2 : Winkler modeli ile gerçek davranış farkı gösterimi.

Şekil 1.3 : Üniform yüklü elastik gerçek davranış gösterimi.

Bu zemin modeli gerçeği yansıtmamasına rağmen pek çok zemin problemi için yeterli yaklaşım sağladığından en çok kullanılan zemin modelidir. Uygulamadaki basitliği nedeni ile tercih edilmektedir.

1.2.2. İki parametreli zemin modelleri

Winkler zemini, birbirinden bağımsız yaylar kabulu ile yayların yatay yönde hareketi yok sayıldığından ikinci bir parametre olarak yatay hareketini de hesaba dahil etmek amacı ile çeşitli modeller hazırlanmıştır. Bunlardan bazıları aşağıda açıklanmaya çalışılmıştır.

1.2.2.1. Filenenko-Borodich modeli

Bu modelde (1940) yüzeyde ince bir zar tabakası kabulu ile ortamın sürekliliği sağlanmıştır. Herhangi bir dış yük durumunda yüzeyde gerilmeler meydana gelerek yayların birbirinden etkilenmesi sağlanmaktadır.Burada zeminin tepki fonksiyonu,

$$p(x, y) = kw(x, y) - T \nabla^2 w(x, y)$$
 (1.2)

şeklindedir.

T Membran kuvveti ve ∇^2 Laplace operatörü olmak üzere,

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
(1.3)

Bir boyutlu problemler için (1.2) ifadesi;

$$p(x) = kw(x) - T\frac{d^2w(x)}{dx^2}$$
(1.4)

şeklinde olur.

Şekil 1.4'te Filenenko-Borodich Modeline göre, çeşitli yükleme durumları için yerdeğiştirmeler gösterilmiştir. (a) yüksüz durum, (b) tekil yük altında zeminin yer değiştirmesi, (c) rijit bir tabaka ile aktarılan yük altında zeminin yer değiştirmesi, (d) yayılı yük altında zeminin yer değiştirmesi gösterilmektedir.

Şekil 1.4 : Filenenko-Borodich modeli.

1.2.2.2. Hetenyi zemin modeli

Hetenyi Modeli'nde (1946, 1950), Winkler yayları üzerine üç boyutlu problemlerde elastik plaka, iki boyutlu problemlerde kiriş ilave ederek zemin ortamının sürekliliği sağlanmıştır. Zeminin tepki fonksiyonu;

$$p(x, y) = kw(x, y) - D \nabla^2 w(x, y)$$
(1.5)

ifadesi ile verilmektedir. Burada k zemin yatak katsayısı, D ise plak rijitliği olmak üzere,

$$D = \left(\frac{E_p h^3}{12 (1 - v^2)}\right)$$
(1.6)

Bir boyutlu sistemlerde zeminin tepki fonksiyonu,

$$p(x) = kw(x) - D \frac{d^2 w(x)}{dx^2}$$
(1.7)

şeklindedir.

Şekil 1.5: Hetenyi modeli.

1.2.2.3. Pasternak zemin modeli

Bu modelde (1954), winkler yayları üzerinde sıkışmayan bir kesme tabakası tanımlanarak, yay elemanları arasında kayma gerilmesinin varlığı sağlanmıştır. Bu kesme tabakası sadece yatay olarak kayma şekil değiştirmesi yapan düşey elemanlardan oluşmaktadır. Bu kayma tabakasının x, y düzleminde izotropik olduğunun kabul edilmesi halinde, kayma tabakasının kayma modülleri arasında,

Gx = Gy = Gp bağıntısı geçerlidir.

Gp: Zemin kayma modülü

Pasternak zemin modeli için zemin tepki fonksiyonu,

$$P(x,y) = kw(x,y) - Gp. \nabla^2 w(x,y)$$
 (1.8)

şeklindedir.

Şekil 1.6: Pasternak zemin modeli.

Pasternak tipi zemin modeli ile Filonenko-Borodich tipi zemin modeli mukayese edildiğinde aralarındaki tek farkın T ve Gp parametreleri olduğu görülmektedir. Bu sebeple bu iki zemin modeli birbirine yakın çökme değerleri vermektedir.

1.2.2.4. Vlasov modeli

Vlasov ve Leont'ev (1966) bu modelde zemin tabakasını x-z düzleminde zemin kolonları olarak tanımlamışlardır. Bu zemin kolonunda yer değiştirmeler,

u(x,z): x-z düzlemindeki yatay deplasman

w(x,y):x-z düzleminde düşey deplasman

Ø(z) fonksiyonu: w(x) yer değiştirmelerinin derinlik boyunca değişimini veren yaklaşım fonksiyonu,

$$u(x,z) = 0$$
, $w(x,z) = w(x) \cdot O(z)$ (1.9)

ifadesi ile tanımlanmıştır.

Bu modelde zeminin tepki fonksiyonu,

$$P(x,y) = kw(x,y) - 2t. \nabla^2 w(x,y)$$
(1.10)

şeklindedir.

2t: Zeminin kayma parametresi

k ve t zemin parametreleridir.

Şekil 1.7: Vlasov tipi zemin modeli.

Vlasov ve Leont'ev (1966) zemindeki düşey deformasyon değişimini gösteren, γ olarak tanımladıkları bir başka parametreyi ortaya atmışlardır. γ parametresinin belirlenmesiyle yatak katsayısı (k) ve kayma parametresi (2t) değerlerinin deneysel zorluk olmaksızın hesaplanmasının mümkün olduğunu göstermişler ancak γ parametresinin hesabı ile ilgili bir herhangi bir şey belirtmemişlerdir.

Vallabhan ve Das (1988), yayılı yükle yüklenmiş elastik zemine oturan kirişler için zeminin yerdeğiştirme fonksiyonunu karakterize eden γ parametresinin hesabı için bir yöntem sunmuşlardır. Elastik zemini, birbiri ile bağlantılı olan k, 2t, γ parametreleri ile tanımladıkları için kendi modellerini değiştirilmiş Vlasov modeli ya da üç parametreli zemin model olarak adlandırmışlardır.

Vlasov zemin modelinde zemin parametreleri, zemin elastik özelliklerine ve sıkışabilen zemin tabaka kalınlığına bağlı olarak hesaplanabilmektedir.

1.3 Çalışmanın Amacı ve Kapsamı

Yapıların üst yapı analizi yapılmaktadır ancak üzerine oturduğu zemin ile etkileşimi konusu önemli bir problem olmaktadır. Bu çalışmanın amacı iki parametreli ortotrop zemine oturan dörtgen plakların dinamik etkiler altında davranışının incelenmesidir. Bunun için bir sonlu elemanlar programı olan SAP 2000'de modelleme yapılarak incelemeler yapılmıştır. Plak ve zemine ait sonlu elemanlar iki ayrı tabaka halinde verildiğinden, plak ve zemin elemanların ortak bölgelerinde düğüm noktalarının yer değiştirmelerinin eşitlenmesi gerekmektedir. SAP 2000 ortamında her bir düğüm noktasının seçilerek yapılması gereken bu işlem çok uzun ve zahmetli olduğundan, programın .\$2k dosyasından okuma yapacak ilgili düğüm noktasındaki deplasmanları constraint seçeneği ile eşitleyen yardımcı bir yazılımdan yararlanılmıştır (Avcioğlu, 2015).

Öncelikle iki paramtereli zemine oturan tekil yükle yüklü ve yayılı yükle yüklü bir plakta analiz yapılarak eğilme momenti ve deplasman değerleri önceki çalışmalarla karşılaştırılmıştır. Daha sonra izotrop zemin üzerine oturan kare plağın serbest titreşim altında dinamik analizi yapılarak bulunan frekans değerleri, (Kutlu, 2007) tezi ile karşılaştırılmıştır. Sonra ortotrop zemin üzerine oturan kare plağın, zeminin farklı ortotropi açılarında frekansları incelenerek (Kutlu, 2007) ile karşılaştırma yapılmıştır. Önceki çalışmalarla yakın sonuçlar elde edildiği gösterilerek hazırlanan modelin doğruluğu gösterilmiştir.

Plak altına plak ile aynı en ve genişlikte zemin tanımlanarak doğrulama örnekleri yapılmıştır. Gerçekte zemin plak altında kesintiye uğramadan sürekli olarak devam etmektedir. Bunun için benzer çalışmalarda göz önüne alınmayan temel zemininin temel dışında da devam etmesi durumu gözönüne alınmıştır. Analiz yapılarak plağın periyot ve frekans değerleri incelenmiştir. Dış zeminli ve dış zeminsiz olarak çıkan sonuçlar karşılaştırılmıştır. Çalışmada ayrıca Türk Deprem Yönetmeliği 2018 de öngörülen tasarım spektrumuna göre spektral analiz yapılmıştır.

2. SAP 2000 PROGRAMI İLE ZEMİN ELEMANIN RİJİTLİK MATRİSİNİN DOĞRULAMASI

2.1 Sonlu Elemanlar Yöntemi

Karmaşık mühendislik problemlerinin çözümünde, bilgisayar teknolojisi oldukça kolaylık sağlamaktadır. Çözüm yöntemlerinden biri olan sonlu eleman metodu ile sonlu sayıda bilinmeyenli lineer denklem takımının çözümü yapılabilmektedir.

Bu yöntem sonlu serbestlik dereceli iki veya üç boyutlu elemanlar kullanarak karışık sistemlerin çözümüne imkan sağlamaktadır. Sürekli bir sistem sonlu sayıda elemanlara bölünür. Bu elemanların yalnız düğüm noktalarından birbirine bağlı olduğu kabul edilir. Eleman yüzeylerinin şekil değiştirmesi ise düğüm noktalarının sonlu sayıdaki deplasman bileşenleri ve bunların koordinat değişkenlerine göre bazı türevlerinden oluşan uç deplasmanlarına bağlı fonksiyonlarının lineer kombinezonu olarak belirlenebilir. Bu şekil değiştirme durumuna ait yüklemenin ise yalnız uç deplasmanları doğrultusundaki uç kuvvetlerinden oluştuğu kabul edilir. Uç kuvvetleri ile uç deplasmanları arasındaki matris bağıntıları birim deplasman durumlarını tanımlayan deplasman fonksiyonlarından veya elemanda, dengede iç kuvvet durumlarından hareket edilerek enerji teoremlerinden yararlanıp tayin edilebilir. Sisteme gelen yüklerinde yalnız düğüm noktalarından etkiyebileceği kabulü sonucunda yayılı dış etkiler de düğüm noktalarına etkiyen uç kuvvetlerine dönüştürülür.

Sonuç olarak sistemin çözümü düğüm noktalarında uç deplasmanları doğrultusunda denge denklemleri anlamındaki lineer denklem takımının çözümüne indirgenmektedir.

Sonlu elemanlar yönteminin inşaat mühendisliğinde uygulama alanlarından biri de plak sistemlerinin hesabıdır. Özellikle radye temellerin boyutlandırılmasında Winkler tipi zemine oturan dikdörtgen sonlu elemanlar tanımlayarak bu yöntem geniş ölçüde kullanılmıştır. Bu çalışmada iki parametreli zemin karakteristikleri ve bu tür zemine oturan dörtgen plakların çözümü incelenmiştir.

2.2 SAP2000 Programında Zemin Elemana ait Sonlu Eleman Matris Formülasyonu

SAP2000 programı kütüphanesinde bulunan düzlem gerilme ve düzlem şekil değiştirme elemanı, kompozit malzeme durumunda tabakalı formülasyonu kullanmaktadır. Bu formülasyon da düzlem içi şekil değiştirmelerle birlikte kalınlık doğrultusundaki kayma şekil değiştirmeleri de göz önüne alınmaktadır. Düzlem şekil değiştirme durumunda, kompozit malzeme özelliği olarak üç doğrultudaki elastisite modülleri ve poisson oranları sıfır olarak, düzlem içindeki ve iki doğrultudaki kayma modülleri sıfırdan farklı değerler olarak girildiğinde elemanda sadece kalınlık doğrultusunda kayma gerilmeleri ve elemanda düşey yönde uç kuvvetleri oluşmaktadır. Söz konusu iki doğrultudaki düzlem içi kayma modülleri, iki parametreli zeminin kayma modülleri olarak girildiğinde ise elde edilen eleman rijitlik matrisi, iki parametreli ortotrop zemin elemanın eleman rijitlik matrisine dönüşmektedir. Düzlem içinde ve iki doğrultudaki zemin kayma modülleri eşit olarak verilirse, izotrop zemine ait rijitlik matrisi elde edilmektedir. Böylelikle zeminin ikinci parametresine diğer bir deyişle Pasternak parametresine ait rijitlik matrisi kolaylıkla elde edilebilmektedir. Elde edilen matriste bilinmeyenler sadece düğüm noktalarının çökmeleridir. İki parametreli zeminin birinci parametresine diğer bir deyişle Winkler parametresine ise SAP2000 programındaki alan yayı tanımlama (area springs) özelliği ile temsil edilmektedir. Pasternak parametresine ait gerilme şekil değiştirme bağıntıları düzlem içi gerilme şekil değiştirme bağıntıları ile birlikte aşağıda verilmiştir. Söz konusu elemanda elastisite modülleri ve Poisson oranları sıfır olarak alındığından düzlem içi şekil değiştirmeler sıfır olmaktadır.

$$\begin{bmatrix} \gamma_{zx} \\ \gamma_{zy} \end{bmatrix} = \begin{bmatrix} \frac{\partial_{ux}}{\partial_z} + \frac{\partial_{uz}}{\partial_x} \\ \frac{\partial_{uy}}{\partial_z} + \frac{\partial_{uz}}{\partial_y} \end{bmatrix}$$
(2.1)

$$[\tau] = \begin{bmatrix} \tau_x \\ \tau_y \end{bmatrix} = \begin{bmatrix} G_1 & G_3 \\ G_3 & G_2 \end{bmatrix} x \begin{bmatrix} \frac{\partial_{ux}}{\partial_z} + \frac{\partial_{uz}}{\partial_x} \\ \frac{\partial_{uy}}{\partial_z} + \frac{\partial_{uz}}{\partial_y} \end{bmatrix}$$
(2.2)

Pasternak tipi zemin elemanda $G_3=0$, $u_x=u_y=0$ ve $u_z=w$ alındığında, söz konusu gerilme-şekil değiştirme bağıntısı Denklem 2.3'de verildiği gibi olur.

$$[\tau] = \begin{bmatrix} G_1 & 0\\ 0 & G_2 \end{bmatrix} \begin{bmatrix} \frac{\partial w}{\partial_x}\\ \frac{\partial w}{\partial_y} \end{bmatrix}$$
(2.3)

Elemana ait denge denklemi ise, Denklem 2.4'teki gibidir.

$$P + G_1 \frac{\partial^2 w}{\partial x^2} + G_2 \frac{\partial^2 w}{\partial y^2} - kw = 0$$
(2.4)

 $G_1=G_2=G$ olması halinde yani zeminin homojen kabul edilmesi durumunda denge denklemi Denklem 2.5 veya Denklem 2.6 gibi olur.

$$P + G\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) - kw = 0$$
(2.5)

$$P = kw - G\nabla^2 w \tag{2.6}$$

2.3 SAP2000 Programında İki Parametreli Zemine Oturan Plak Elemanın Tanımlanması

SAP2000 programı (Structural Software for Analysis and Design) ile yapıların sonlu elemanlar yöntemiyle doğrusal ve doğrusal olmayan üç boyutlu sistemlerin statik ve dinamik analizleri yapılabilmektedir.

İki parametreli zeminde birinci parametre zemin yatak katsayısı, ikinci parametre ise zemin kayma modülüdür.

Sap2000 programında modelleme için öncelikle plak eleman modellenmektedir. Plak elemanın bir metre altına da aynı geometrideki zemin eleman girilmektedir. Örneğe uygun olarak sonlu sayıda eleman ağı kullanılmştır (Şekil 2.1 ve Şekil 2.2).

	🔇 Х-Ү	Plane (© Z=0								
) 	A) 	(B) 112	0	0	6	0	0	(i) 158	0	120	8
	181	182	103	194	103	198	107	108	103	110	
D-	100	101	102	108	104	105	106	107	108	109	- 17
_	111	112	113	114	110	116	117	118	119	120	
	121	122	123	124	125	128	127	128	128	130	
<u> </u>	78	79	80	81	82	83	84	85	86	87	12
	191	132	133	134	105	138	137	138	131	548	
9—	67	68	82	70	**	72	73	74	75	76	-"
	141	142	542	144	143	148	547	148	141	191	
	181	182	153	154	195	155	187	158	191	100	
-	45	46	47	48	413	50	81	82	53	54	
	181	182	163	194	103	188	187	168	103	170	
)—	54	35	36	37	38	39	40	41	42	43	-++
	171	172	173	174	178	176	177	178	174	180	
9—	25	24	25	26	27	28	29	50	151	52	32
~	181	182	183	184	185	185	187	188	199	199	22
	181	182	193	194	195	195	187	198	291	201	
_	. →×	2	5	4		6	7		9	10	11

Şekil 2. 1 : Plak elemanın sonlu elemanlara ayrılmış modeli Z=1 m.

Şekil 2. 2 : Zemin elemanın sonlu elemanlara ayrılmış modeli Z=0 m.

Öncelikle SAP2000 menüsünden *Define* \longrightarrow *Materials* ile plak elemanın malzeme özellikleri tanımlanmaktadır (Şekil 2.3).
Material Name and Display Color plak Material Type Concret Material Grade Material Notes M	dify/Show Notes	ak elemanın bin acim ağırlığı bu ana girilir.
Weight and Mass Weight per Unit Volume Mass per Unit Volume 2.5493	KN, m, C V	
Isotropic Property Data Modulus Of Elasticity, E Poisson, U Coefficient Of Thermal Expansion, A Shear Modulus, G	25000000. 0.3 9.900E-06 9615385.	
Other Properties For Concrete Materials Specified Concrete Compressive Strength, fc Expected Concrete Compressive Strength Lightweight Concrete Shear Strength Reduction Factor	27579.032 27579.032	
Switch To Advanced Property Display	zel	

Şekil 2. 3 : Plak elemanın malzeme özelliklerinin tanımlanması.

Daha sonra zemin elemanının malzeme özellikleri tanımlanmaktadır.

Define — *Materials* menusünden *Add New Materials* ile Şekil 2.4'teki menüye ulaşılmakta, buradan "*Region*" ve "*Material Type*" Şekil 2.4'teki gibi girilmektedir.

Region	User	~
Material Type	Other	~
Standard	User	
Grade		

Şekil 2. 4 : Zemin elemanın malzemesinin tanımlanması.

Açılan menüden en altta bulunan kutucuk (*Switch to Advanced Property Display*) seçilmektedir (Şekil 2.5).

Material Name and Display C	olor	MAT		
Material Type		Uther	~	
Material Notes	[Modify/S	Show Notes	
Weight and Mass			Units	
Weight per Unit Volume	76.97		KN, m, C $\qquad \checkmark$]
Mass per Unit Volume	7.849			
Isotropic Property Data				
Modulus Of Elasticity, E			2.000E+08	
Coefficient Of Thermal Expa	nsion, A		6.500E-06	
Shear Modulus, G			76923077.	
		Γ	"Switch to	Advanced
			Property Di	Auvanceu Isplay"
			açılır.	opiay
Switch To Advanced Prope	rty Display			

Şekil 2. 5 : Zemin elemanın malzemesinin tanımlanması.

Buradan açılan menüden *Directional Symmetry Type* olarak *Ortotropik* malzeme seçildikten sonra aynı menüde *Modify/Show Material Properties* komutu tıklanmaktadır (Şekil 2.6).

Buradan açılan "*Material Property Data*" penceresinde zemin elemanın ikinci parametresi olan kayma modulüne ait değerler Şekil 2.7 de görüldüğü şekilde tanımlanabilmektedir.

Ortotrop zemin elemanın ikinci parametreleri, düzlem şekil değiştirme elemanın G_{13} ve G_{23} doğrultularındaki kayma modülü olarak alınmaktadır.

 G_x ve G_y kayma modülleri, G_{12} ve G_{23} alanına girilmektedir. İzotrop malzemede $G_{12}=G_{23}$ eşit değer alınmaktadır. Ortotrop malzemede ise G12 ve G23 değerleri farklı olarak girilmektedir.

Material Name	Zemin			
Material Grade				
Material Notes		Modify/Show		
Options				Zemin eleman
Material Type		Other	\sim	ortotrop malzeme
Directional Symmet	гу Туре	Orthotropic	✓	olarak seçilmekte
Display Color				
Material Propert	ies are Temp	erature Dependent		
Mod	fv/Show Ma	erial Properties		

Şekil 2.6: Zemin elemanın ortotrop malzeme olarak tanımlanması.

	Material Type	Symmetry Type
zemin	Other	Orthotropic
Modulus of Elasticity	Weight and Mass	Units
E1 0.	Weight per Unit Volume 0.	KN, m, C 🗸 🗸
E2 0.	Mass per Unit Volume 0.	
E3 0.	Advanced Material Property Data	
Poisson	Nonlinear Material Data	Material Damping Properties
U12 0.	Time Dependent Properties	Thermal Properties
U13 0.		
U23 0.		
U23 0.		
U23 0. Coeff of Thermal Expansion A1 0.		
U23 0. Coeff of Thermal Expansion A1 0. A2 0.		
U23 0. Coeff of Thermal Expansion A1 0. A2 0. A3 0.		
U23 0. Coeff of Thermal Expansion A1 0. A2 0. A3 0.	Gx ve Gy kayma	a
U23 0. Coeff of Thermal Expansion A1 0. A2 0. A3 0. Shear Modulus G12	Gx ve Gy kayma modülleri, sırası	a ile
U23 0. Coeff of Thermal Expansion A1 0. A2 0. A3 0. Shear Modulus G12 G13 228937.73	Gx ve Gy kayma modülleri, sırası G13 ve G23 olar	a ile rak bu
U23 0. Coeff of Thermal Expansion A1 A1 0. A2 0. A3 0. Shear Modulus G12 G13 228937.73 G23 228937.73	Gx ve Gy kayma modülleri, sırası G13 ve G23 olar alana girilmekte	a ile rak bu dir.

Şekil 2. 7 : Zemin elemanın malzeme özelliklerinini tanımlanması.

Plak elemanın kesit özelliklerinin tanımlanması,

Define — Section Properties — Area Sections ile açılan menüde, Section *Type* bölümünden Shell seçilmektedir. Buradan Add New Section açıldıktan sonra plak kesiti "*Plate Thick*" olarak tanımlanmaktadır. Malzeme ismi daha önceden oluşturulan "plak" olarak seçilmektedir (Şekil 2.8).

Section Name	plak		Display Color	
Section Notes	Modify/	Show		Plak kalınlığ
Туре		Thickness		bu alana
O Shell - Thin		Membrane	1.	girilmektedi
O Shell - Thick		Bending	1.	8
O Plate - Thin		Material		
Plate Thick		Material Name	+ plak	~
O Membrane		Material Angle	0.	
O Shell - Layered/Nonlinear	,	Time Dependent Prope	erties	
Modify/Show La	ayer Definition	Set Time	Dependent Properties	
Concrete Shell Section Design	Parameters	Stiffness Modifiers	Temp Dependent Properties	
Modify/Show Shell D	esign Parameters	Set Modifiers	Thermal Properties	

Şekil 2.8: Plak elemanın kesit özelliklerinin tanımlanması.

Zemin elemanın kesit özelliklerinin tanımlanması,

Define — Section Properties — Area Sections ile açılan menüde Section Type bölümünden Plane seçilmektedir. Buradan Add New Section açıldıktan sonra zemin elemanın türü "düzlem şekil değiştirme elemanı (Plane Strain)" olarak seçilmektedir.

Zemin elemanın tabaka kalınlığı bir birim olarak tanımlanmaktadır. Malzeme ismi daha önceden oluşturulan "zemin" olarak seçilmektedir (Şekil 2.9).

×	Plane Section Data		×	
	Section Name Section Notes	zemin Modify/Show Display Color		
	Type ○ Plane-Stress ④ Plane-Strain ✓ Incompatible Mode	\$	Zemir "Plane seçilm	n elamanı e strain" nektedir.
	Material Material Name	+ zemin	~	
	Material Angle Thickness Thickness	0.		Zemin tabaka kalınlığı 1 birim olarak girilmektedir.
	Stiffness Modifiers	Temp Dependent Properties		
	ОК	Cancel		

Şekil 2.9: Zemin elemanın kesit özelliklerinin tanımlanması.

Tanımlanan malzeme ve kesit özellikleri plak ve zemin eleman seçilerek Assign komutu ile plak ve zemin elemana atanmaktadır.

Plak eleman ile zemin elaman arasındaki bağlantıyı sağlamak için SAP2000 programında *Equal Consantrait* özelliği ile eşitleme yapılmaktadır. Bu sayede plak ve zemin elemanın düşey yönde aynı hareketi yapması sağlanmaktadır. *Equal Consantrait* ile sadece global z doğrultusunda harekete izin verilmektedir.

Define — Joint Constraints — Choose Constraint Type to Add bölümünden Equal seçilir (Şekil 2.10).

		Choose Constraint Type to Add
EQUAL_1_1001	^	Equal 🗸
EQUAL_10_1010		
FOUAL 101 1101		Click to:
EQUAL_102_1102		
EQUAL_103_1103		Add New Constraint
EQUAL_104_1104		Modify/Show Constraint
EQUAL_105_1105		
EQUAL 107 1107		Delete Constraint
EQUAL_108_1108		
	h.4	
EQUAL_106_1106 EQUAL_107_1107 EQUAL_108_1108		Delete Constraint

Şekil 2. 10 : Joint constraint tanımlanması.

Aynı menüde *Add New Constraints* komutu açılmakta, buradan sadece *Translation Z* seçilmektedir (Şekil 2.11).

🔀 Equal Constraint	×
Constraint Name	EQUAL_1_1001
Coordinate System	GLOBAL V
Constrained DOFs	
Translation X	Rotation X
Translation Y	Rotation Y
Translation Z	Rotation Z
ОК	Cancel

Şekil 2. 11 : Equal constraint seçilerek translation Z yönünde harekete izin verilmesi.

Joint Constraint işlemini daha hızlı ve hatasız yapabilmek için SapTransform yazılımı kullanılmış ve plak ve zemin aynı düşey yer değiştirme yapacak şekilde modellenmiştir. Bu işlem aşağıda açıklanmaktadır.

Hazırlanan model kaydedildikten sonra SAP 2000 programının içinde oluşan dosyalardan .*\$2k* uzantılı dosya, SapTransform program dosyaları içine atılmaktadır. Bu program içinde yer alan *"WindowsFormAplication3"* bulunmakta ve çalıştırılmaktadır. Açılan menüde *"Z koordinatına göre ayırma 0.5"* seçeneği tıklanmaktadır (Şekil 2.12).

				Uygulama Araçları	Debug							
P	ayla	ş	Görünüm	Yönet								
	>	sap t	rasns yeni >	sap_transform →	engin hoca diya	fram >	Windo	wsForm	sApplicat	ion3 > bin >	Debug	
6		^	Ad	^		Değiş	tirme ta	arihi	Tür		Boyut	
	5		Window	wsFormsApplicatio	on3	7.12.2	018 16:	55	Uygula	ma	1	4 KB
	1		Window	wsFormsApplicatio	on3.exe	7.11.2	018 16:	34	XML Co	onfiguration		1 KB
	7		Window	wsFormsApplicatio	on3.pdb	7.12.2	018 16:	55	PDB Do	osyası	3	2 KB
	*		🔳 Window	wsFormsApplicatic	on3.vshost	7.12.2	018 16:	55	Uygula	ma	24	4 KB
	*		Window	wsFormsApplicatio	on3.vshost.exe	7.11.2	018 16:	34	XML Co	onfiguration		1 KB
r	*											
	*							_				
'V	*		🖷 Form1				-		×			
J	*											
n	*											
у	*			txt dosyasın	idan okuma							
1	*			Zkoordinatin	a core avirma	0.5						
е	*			2 Roordinatin	a golo ayinna	0.0						
-	1											
	<u>_</u>											
	7											

Şekil 2. 12 : SapTransform programının veri giriş ekranında z koordinatına gore ayırma.

Sap transform içine atılan dosyanın ismi eşitleme yapıldıktan sonra otomatik olarak _*C.s2k* uzantılı olarak kaydedilmektedir (Şekil 2.13).

Sap_transf	orm 🕨	• \$ j	Ara: sap	p_transform	Q
üzenle 🔻 📄 Aç	Bununla paylaş 🔻 Yaz Yeni klasör				2
🗸 Sık Kullanılanlar 🗂	Ad			Değiştirme tarihi	Tür
🗼 Karşıdan Yüklem	🛗 plak			25.04.2019 12:35	Metin
📃 Masaüstü	plak_C.s2k			25.04.2019 12:35	S2K D
📃 Son Yerler	plak.\$2k			25.04.2019 12:31	\$2K D

Şekil 2. 13 : _C.s2k uzantılı dosya.

🗙 SAI	P: 🗋	New Model	Ctrl+N			
File		Open	Ctrl+O	Dis	play Design Options Tools Help	211 4
	H	Save	Ctrl+S		🖤 دَوْ ا 3-d xy xz yz rt rz tz nv 🔾 🖉	50 2 1
k	B	Save As	Ctrl+Shift+S			
-	5	Import	•		SAP2000 MS Access Database .mdb File	
•	1	Export	F	XLS	SAP2000 MS Excel Spreadsheet .xls File	
1		Upload to CSI Cloud			SAP2000 .s2k Text File	
N		Batch File Control		-	SAP2000 .XML File	
X		Create Video			CIS/2 STEP File	
		Drint Setup for Graphics		SONE	Steel Detailing Neutral File	
		Print Graphics	Ctrl+P		FrameWorks Plus File	

Şekil 2. 14 : SapTransform ile eşitleme yapılan dosyanın SAP2000 programında Import komutu ile açılması.

_C.s2k uzantılı dosya SAP2000 programından Import komutu ile açılmaktadır (Şekil 2.14). Bu yeni dosya ile plak ve zeminin aynı (x,y) koordinatındaki düğüm noktalarının Z doğrultusunda aynı deplasmanı yapan bir model elde edilmiş olmaktadır. SapTransform programı yardımı ile hızlı ve pratik olarak düğüm noktaların eşit deplasman yapması sağlanmış olmaktadır.

Zemin elemanın birinci parametresi k zemin modülü, *Assign Area Spring* menüsünden zemin yatak katsayısı olarak "*Spring stiffness per unit area*" alanına girilmektedir (Şekil 2.15).

Assign Springs to Area Object Face		×
Spring Type		
 Simple 		
Spring Stiffness per Unit Area	45787.55 kN/	m/m²
Simple Spring Resists	Tension and Compression v	
C Link Property	•	Zemin vatak katsavısı bu alana
Local 2 Axis Angle from Default Orientati	on	girilir
Spring Location (Area Object Face)		Simi.
Area Object Face	Тор ч	
Area Object Edge Number		
Spring Tension Direction		
\bigcirc Parallel to Area Object Local Axis		
Normal to Specified Area Object Face	Inward v	
O User Specified Direction Vector		
Coordinate System		
Local 1 Component		
Local 2 Component		
Local 3 Component		
Options		
 Add to Existing Springs 		
Replace Existing Springs		

Şekil 2. 15 : Zemin yatak katsayısının tanımlanması.

Plak ve zemin elemanın kenarlarına mesnet ataması örneğe uygun olarak yapılmaktadır (Şekil 2.16). Bu çalışmada basit mesnet, ankastre mesnet veya iki kenarı basit iki kenarı ankastre mesnet kullanılmıştır.

💢 Assign Joint Restraints	\times
Restraints in Joint Local Directions	
✓ Translation 1 Rotation about 1	
✓ Translation 2 Rotation about 2	
✓ Translation 3 Rotation about 3	
Fast Restraints	
OK Close Apply	

Şekil 2. 16 : Plak ve zemin elemanın kenarlarına mesnet ataması yapılması.

Tüm model oluşturulduktan sonra analizi yapılmakta ve sonuçlar incelenmektedir.

3. DOĞRULAMA ÖRNEKLERİ

3.1 Örnek 1

Daha önce (Çelik, 1996), (Vallabhan ve ark., 1994)'de çözümü yapılan iki parametreli zemine oturan tekil yüklü ve düzgün yayılı yüklü plak, bu çalışmada SAP2000 programında plak ve zemin elemanı modellenerek yeniden çözülmüş, deplasman ve eğilme moment değerleri karşılaştırılmıştır. Bu örnekle SAP2000 programında oluşturulan modelin doğru çalıştığının gösterilmesi amaçlanmaktadır.

Plağın Elastisite modülü E=20685000 kN/m²

Poisson oranı: 0,2

Plak kalınlığı: 15,24 cm

Plak boyutları: 9,144 x 12,192 m²

Zemin kalınlığı: 1 m

Zemin boyutları: 27,43 x 30,48 m²

Plak ortasında tekil yük: 133,34 kN

Plak üzerinde yayılı yük: 23,94 kN/m²

Şekil 3.2 : Plak ve zemin plan gösterimi.

Şekil 3. 3 : Plak ve zeminin sonlu eleman ağı gösterimi.

Plak ve zemin eleman Sap2000 programında modellenmiştir. X doğrultusunda bir eleman kenarı 0.9144 m, y doğrultusunda 1.016 m olacak şekilde sonlu elemanlara ayrılmıştır (Şekil 3.3).

Plak eleman üzerine 133,34 kN tekil yük ve 23,94 kN/m² yayılı yük örneğe uygun olarak Şekil 3.7 ve Şekil 3.8 de görüldüğü gibi ayrı ayrı atanmıştır.

Şekil 3.5 : Plak altındaki genişletilmiş zemin görünümü Z=0 m kotu.

Şekil 3. 6 : Plak ve zemin modeli 3D görünümü.

Şekil 3.8 : Düzgün yayılı yükle yüklü plak görünümü.

SAP2000 programında modelleme aşamaları aşağıda anlatılmaktadır.

Öncelikle plak ve zemin elemanın malzeme özellikleri tanımlanmıştır (Şekil 3.9 ve Şekil 3.10).

General Data Material Name and Display Color m_plak			
Material Type Concrete	~		
Material Grade			
Material Notes Mo	dify/Show Notes		
Weight and Mass	Units		Plak birim bacim
Weight per Unit Volume 0.	KN.m.C. V		
Mass per Unit Volume 0.	rad, and C		agirligi 0 alınmıştır.
Isotropic Property Data			
Modulus Of Elasticity, E	20685000.		Plagin Elastisite modul
Poisson, U	0.2		$E=20685000 \text{ kN/m}^2$
Coefficient Of Thermal Expansion, A	9.900E-06		Poisson Oranı: 0,2 alınmıştır
Shear Modulus, G	8618750.		
Other Properties For Concrete Materials			
Specified Concrete Compressive Strength, fc	27579.032		
Expected Concrete Compressive Strength	27579.032		
Lightweight Concrete			
Shear Strength Reduction Factor			
Switch To Advanced Property Display			
OK Cano	cel		

Şekil 3.9: Plak elemanın malzeme özellikleri.

Material Name m_zemin			
Material Grade			
Material Notes	Modify/Show		
Options			
Material Type	Concrete	\sim	Zemin malzen
Directional Symmetry Type	Orthotropic	\sim	çeşidi ortotrop
Display Color			seçilmiştir.
Material Properties are Temp	erature Dependent		
Modify/Show Ma	terial Properties		

Şekil 3. 10 : Zemin elemanın malzeme özelliklerinin tanımlanması.

İki parametreli zeminin 2. Parametresi G zemin kayma modülü (Çelik, 1996)'da yer alan C_T değerinin iki katı alınarak,

Define — *Materials* menüsünden "*ortotrop*" malzeme seçilerek açılan *Material Property Data* menüsünden G_{13} ve G_{23} bölümüne girilmiştir. Malzeme izotrop olduğundan $G_{13}=G_{23}=G$ olarak alınmıştır (Şekil 3.10, Şekil 3.11).

Material Name		Material Type Symmetry Typ	e
zemin		Other Orthotropic	
Modulus	of Elasticity	Weight and Mass	Units
E1	0.	Weight per Unit Volume 0.	KN, m, C \sim
E2	0.	Mass per Unit Volume 0.	
E3	0.	Advanced Material Property Data	
Poisson		Nonlinear Material Data	amning Properties
U12	0.	Time Dependent Properties	amping Properties
U13	0.	nine bependent Properties	
U23	0.		
Coeff of	Thermal Expansion		
A1	0.	Gx ve Gy kayma modülleri	
A2	0.	$G_{13}=G_{23}=G_{01}$ olarak bu alana	
A3	0.	girilmistir.	
Chanell		8	
O12			
G12	0.		
G13	26905.91		
	26905.91		
G23			

Şekil 3. 11 : Iki parametreli zemin elemana kayma modülü tanımlanması.

Daha sonra plak elemanın kesit özellikleri tanımlanmıştır. Plak türü *"Plate Thick* "seçilmiş ve plak kalınlığı 15,24 cm olarak tanımlanmıştır (Şekil 3.12).

Section Name plak		Display Color		
Section Notes M	odify/Show			
уре	Thickness			Plak kalınlığı
O Shell - Thin	Membrane	0.1524		15.24 cm
O Shell - Thick	Bending	0.1524		girilmistir
O Plate - Thin	Material			giriiniştir.
Plate Thick	Material Name	+ m_plak	1	
O Membrane	Material Angle	0.		
O Shell - Layered/Nonlinear	Time Dependent Properti	ies.		
Modify/Show Layer Definition	Set Time D	ependent Properties		
oncrete Shell Section Design Parameters	Stiffness Modifiers	Temp Dependent Properties		
Modify/Show Shell Design Parameters	Set Modifiers	Thermal Properties		

Şekil 3. 12 : Plak elemanın kesit özellikleri.

Zemin elemanın malzeme özellikleri Şekil 3.13 deki gibi malzeme türü *Plane Strain* zemin kalınlığı 1 metre olarak tanımlanmıştır.

Section	Name	zemi	n		
Section N	otes		Modify/Show	·	
			Display Color		
Туре					
O Plane	-Stress				
Plane	-Strain				
✓ Incon	npatible Modes	S			
Material					
Material	Name	+ zem	in	~	
Material	Angle		0.		
Thickness					
Thicknes	s		1.		
Stiffness N	lodifiers	Temp D	ependent Prop	erties	
0.111	difiers	T		ies	

Şekil 3. 13 : Zemin elemanın kesit özelliklerinin tanımlanması.

SapTransform yazılımı kullanılarak Bölüm 2.3 de açıklandığı gibi plak ve zemin aynı düşey yer değiştirme yapacak şekilde eşitleme yapılmıştır.

İki parametreli zeminin birinci parametresi k zemin yatak katsayısı (Çelik, 1996)'de yer alan Cz değeri alınarak SAP2000 programında,

Assign \longrightarrow Area \longrightarrow Area Springs menüsünden Spring Stiffness Per Unit Area bölümüne girilmiştir (Şekil 3.14).

	💢 Assign Springs to Area Object Face			×	
	Spring Type				
	 Simple 				Zeminin 1.
	Spring Stiffness per Unit Area		27206.589	kN/m/m²	Parametresi k
	Simple Spring Resists	Tension and Co	ompression v		(zemin vatak
	C Link Property	+			katsavisi) bu
1	Local 2 Axis Angle from Default Orienta	tion			alana girilmiştir.
	Spring Location (Area Object Face)				
	Area Object Face		Тор ч		
	Area Object Edge Number				
	Spring Tension Direction				
	O Parallel to Area Object Local Axis				
	Normal to Specified Area Object Face		Inward v		
	\bigcirc User Specified Direction Vector				
	Coordinate System				
	Local 1 Component				
	Local 2 Component				
	Local 3 Component				
	Options				
	 Add to Existing Springs 				
	Replace Existing Springs				
	 Delete Existing Springs 				
	Peret Form	to Default Values			
	Keset rom	rto Delault values			
	ОК	Close Ap	oply		

Şekil 3. 14 : Iki parametreli zemin elemana zemin yatak katsayısı tanımlanması.

Plak ve zemin elemanın dış kenarlarına mesnet konulmamıştır.

(Çelik, 1996) ve diğer bazı çalışmalar Vlasov zemine aittir. Karşılaştırma için söz konusu tezlerdeki son adıma ait zemin parametreleri, zemin yatak katsayısı ve Pasternak zemin parametresi olarak alınıp karşılaştırmalar yapılmıştır.

Şekil 3. 15 : Yayılı yükle yüklenmiş dış zeminli iki paramtreli zemine oturan plak modelinin şekil değiştirmiş hali.

Şekil 3. 16 : Yayılı yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak modelinde çökme değeri.

Şekil 3. 17 : Yayılı yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak modelinde M₁₁ eğilme momenti değeri.

Şekil 3. 18 : Tekil yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak modelinin şekil değiştirmiş hali.

Şekil 3. 19 : Tekil yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak modelinde çökme değeri.

Şekil 3. 20 : Tekil yükle yüklenmiş dış zeminli iki parametreli zemine oturan plak modelinde M₁₁ eğilme momenti değeri.

Çizelge 3. 1 : Yayılı yüklü plak	ta çökme ve eğilme	e momenti değ	erlerinin ö	önceki
çalışmalarla karşılaştırılması.				

Yayılı Yük 23.94 kN/m2	H(m)	3,048	6,096	9,144	15,24
	Cz(k yay katsayısı) Kn/m3	27206,59	13757,63	9377,96	5964,21
(Calik 1996)	2xCt(G kayma modülü) kN/m	26905,91	50410,87	70586,50	104664,46
(Çelik, 1990)	v(cm) çökme (Simetri merkezind	0,0872	0,1526	0,1893	0,2212
	Mx (kNm/m) (Simetri merkezind	0,0529	0,2880	0,4109	0,4671
	Cz(k yay katsayısı) Kn/m3	27192,24	13757,28	9430,36	6366,16
(Vallabhan ve	2xCt(G kayma modülü) kN/m	13413,51	25141,05	34753,00	47366,79
ark. <i>,</i> 1994)	v(cm) çökme (Simetri merkezind	0,0853	0,1524	0,1890	0,2070
	Mx (kNm/m) (Simetri merkezind	0,0445	0,3113	0,4224	0,4892
	Cz(k yay katsayısı) Kn/m3	27206,59	13757,63	9377,96	5964,21
Bu caluema	2xCt(G kayma modülü) kN/m	26905,91	50410,87	70586,50	104664,46
bu çalışına	v(cm) çökme (Simetri merkezind	0,0900	0,1500	0,1900	0,2200
	Mx (kNm/m) (Simetri merkezind	0,0554	0,2916	0,4130	0,4670

Çizelge 3. 2 : Bu çalışma ile (Çelik, 1996) arasındaki göreceli fark (Çizelge 3.1).

H(m)	3,048	6,096	9,144	15,24
v(cm)	0,03	0,02	0,00	0,01
Mx (kNm/m)	0,05	0,01	0,01	0,00

Yayılı yüklü çizelge 3.1'de (Çelik, 1996) ile yapılan karşılaştırmada, çökmede göreceli farkın % 3 ile % 1 arasında olduğu görülmektedir. Eğilme momentinde ise % 5 ile % 0 arasında değiştiği yani farkın çok küçük olduğu görülmektedir (Çizelge 3.2).

Tekil Yük 133,34 kN	H(m)	3,048	6,096	9,144	15,24
	Cz(k yay katsayısı) Kn/m3	31898,08	24256,05	23737,98	23710,59
(Calik 1996)	2xCt(G kayma modülü) kN/m	18913,08	23597,82	24035,56	24060,66
(Çelik, 1990)	v(cm) çökme (Simetri merkezind	0,0818	0,0845	0,0846	0,0846
	Mx (kNm/m) (Simetri merkezind	15,0470	14,5630	14,5100	14,5100
	Cz(k yay katsayısı) Kn/m3	31610,54	23918,17	23376,20	23350,30
(Vallabhan ve	2xCt(G kayma modülü) kN/m	9565,47	11959,06	12193,10	12205,06
ark., 1994)	v(cm) çökme (Simetri merkezind	0,0480	0,0975	0,0975	0,0975
	Mx (kNm/m) (Simetri merkezind	12,5440	12,5440	12,5440	12,5440
	Cz(k yay katsayısı) Kn/m3	31898,08	24256,05	23737,98	23710,59
De esterne	2xCt(G kayma modülü) kN/m	18913,08	23597,82	24035,56	24060,66
Bu çalışma	v(cm) çökme (Simetri merkezind	0,0900	0,0900	0,0900	0,0900
	Mx (kNm/m) (Simetri merkezind	15,1590	14,5230	14,5290	14,5220

Çizelge 3.3 : Tekil yüklü plakta çökme ve eğilme momenti değerlerinin önceki çalışmalar ile karşılaştırılması.

Çizelge 3.4: Bu çalışma ile (Çelik, 1996) arasındaki göreceli fark (Çizelge 3.3).

H(m)	3,048	6,096	9,144	15,24
v(cm)	0,10	0,06	0,06	0,06
Mx (kNm/m)	0,01	0,00	0,00	0,00

Tekil yüklü çizelge 3.3'de (Çelik, 1996) ile yapılan karşılaştırmada ise çökmede göreceli farkın % 10 ile % 6 arasında olduğu görülmektedir. Eğilme momentinde ise % 1 ile % 0 arasında değiştiği yani farkın çok küçük olduğu görülmektedir (Çizelge 3.4). Bu sonuçlardan, bu çalışmada oluşturulan plak zemin modelinin uygun olduğu görülmektedir.

3.2 Örnek 2

Bu örnekte (Kutlu, 2007)'deki İzotrop zeminli, dört tarafı basit mesnet ve dört tarafı ankastre mesnetli kare plakta serbest titreşim analizi örneği ele alınmış, çıkan frekans değerleri çizelgelerde karşılaştırılmıştır.

Kare plakta;

Elastisite modülü : $E=25GPa=25.10^{6}$ kN/ m²

Poisson oran: : v = 0.3

Plak genişlik : a = 10 m

Plak kalınlık : h=1 m, h=2 m

Plak rijitliği $D = Exh^3 / [12x(1-\vartheta^2)]$

Boyutsuzlaştırılmış açısal frekans: $\dot{\omega} = (\omega . a^2)/\pi^2 . \sqrt{(\rho. h)/D}$

Zemin parametreleri k ve G,

 $\phi_1 = ka^4/D$ $\phi_2 = Ga^2/D$ biçiminde boyutsuzlaştırılmıştır.

φ₁= Boyutsuz zemin (yatak katsayısı) modülü

 ϕ_2 = Boyutsuz kayma modülü

k: Zemin modülü

G:Yaylar arasındaki kayma deformasyonunu temsil eden parametre

G sıfır olursa winkler zemin modeli temsil edilmiş olur.

Plak kalınlığı h=1 metre için

Plak rijitliği D= $25.10^{6} . 1^{3} / [12. (1-0.3^{2})] = 2289377.289$ kN.m

Plak kalınlıgı h=2 metre için

Plak rijitliği $D = 25.10^6 .2^3 //[12. (1-0.3^2)] = 18315018.32 \text{ kN.m}$

Bu örneğin SAP2000 programında modelleme aşamaları aşağıda anlatılmaktadır.

Plak elemanı 10x10 sayıda sonlu elamanlara ayrılmıştır. 1 m altına zemin eleman tanımlanıp 10x10 sonlu elemanlara bölünmüştür. Çevresine örneğe uygun olarak mesnetleri atanmıştır. Serbest titreşim karekteristiği inceleneceğinden herhangi bir yük tanımlanmamıştır.

Öncelikle plak elemanın malzeme özellikleri *Define* — *Materials* — *Add New Material* menüsünden tanımlanmıştır (Şekil 3.21).

 💢 Material Property Data		Х	
General Data Material Name and Display Color plak Material Type Concrete Material Grade	/Show Notes Units KN, m, C	Plak bi ağırlığı bu alan Plak Elas 25.10 ⁶ kl oranı 0,3 girilmişt	rim hacim 25 kN/m ³ a girilmiştir. stisite Modülü N/m ² , poisson bu alana ir.
Modulus Of Elasticity, E Poisson, U Coefficient Of Thermal Expansion, A Shear Modulus, G	25000000. 0.3 9.900E-06 9615385.		
Other Properties For Concrete Materials Specified Concrete Compressive Strength, fc Expected Concrete Compressive Strength Lightweight Concrete Shear Strength Reduction Factor	27579.032		
Switch To Advanced Property Display OK Cancel			

Şekil 3. 21 : Plak elemanın malzeme özelliklerinin tanımlanması.

Zemin elemanın malzeme özellikleri Define ---- Materials ---- Add New

Material menüsünden	aşağıdaki	menu açılır	(Şekil	3.22).
---------------------	-----------	-------------	--------	--------

Region	User	~
Material Type	Other	~
Standard	User	
Grade		

Şekil 3. 22 : Zemin elemanın malzemesinin tanımlanması.

Şekil 3.22'deki gibi malzeme çeşidi *User* seçildikten sonra açılan menüde, *Directional Symetry Type* komutu tıklanıp, burdan açılan menüde "*Orthotropic*" malzeme seçilerek *Modify/Show Material Properties* sekmesi açılmıştır (Şekil 3.23).

Material Name zemin		Zamin alaman
Material Grade		malzeme çeşid
Material Notes	Modify/Show	ortotrop olrak seçilmiştir.
Material Type	Other	~
Directional Symmetry Type	Orthotropic	
Display Color		
Material Properties are Tem	perature Dependent	
Modify/Show Ma	aterial Properties	

Şekil 3. 23 : Zemin malzemesinin ortotrop seçilmesi.

Bu menüde G_{13} , G_{23} kayma modülü, zemin izotrop olduğundan $G_x=G_y=G$ olmaktadır. Bu nedenle hesaplanan G değeri G_{13} ve G_{23} alanına girilmiştir (Şekil 3.24).

Material I	Name	Material Type	Symmetry Type
zeminni	nnn	Other	Orthotropic
Modulus	of Elasticity	Weight and Mass	Units
E1	0	Weight per Unit Volume 0	KN, m, C 🗸 🗸
E2	0	Mass per Unit Volume 0	
E3	0	Advanced Material Property Data	
Poisson		Nonlinear Material Data	Material Damping Properties
U12	0	Time Dependent Properties	
U13	0		
U23	0		
Coeff of	Thermal Expansion		
A1	0		
A2	0		
A3	0		
Shear Mo	odulus		
G12	0	Zemin kayma modülü (G
G13	228937.729	bu alana girilmiştir.	
G23	228937.729		

Şekil 3. 24 : Zeminin ikinci parametresi kayma modülünün tanımlanması. k ve G değeri bulunurken,

Plak rijitliği $D = Exh^3 / [12x(1-\vartheta^2)]$ formülü ile bulunur.

Zemin parametreleri k ve G doğrulama yapılacak örnekte,

 $\phi_1 = ka^4/D$ $\phi_2 = Ga^2/D$ biçiminde boyutsuzlaştırılmıştır.

 ϕ_1 = Boyutsuz zemin (yatak katsayısı) modülü

 ϕ_2 = Boyutsuz kayma modülü

Hesaplanan D plak rijitliği değeri ve çizelgede verilen ϕ_1 boyutsuz zemin modülü değeri k= ϕ_1 .D/a⁴ formülünde yerine yazılarak k zemin yatak katsayısı değeri bulunmuş ve SAP2000 programındaki yay katsayısı bölümüne girilmiştir (*Spring Stiffness per unit area*).

Hesaplan D plak rijitliği değeri ve çizelgede verilen ϕ_2 boyutsuz zemin kayma modülü değeri G= ϕ_2 .D /a² formülünde yerine yazılarak G zemin kayma modülü bulunmuş ve SAP2000 programındaki G₁₃, G₂₃ bölümüne girilmiştir (*Shear Modulus*).

Section Name Section Notes	plak Modify/Shov	N	Display Color	Plak kalınlığı 1 m olar
Type Shell - Thin Shell - Thick Plate - Thin Plate Thick Membrane Shell - Layered/No	Plak çeşidi plate th olarak bu alana gir	Thickness Membrane Bending Material Material Name ick gle	1. 1. + plak 0.	
Modify/Sho	ow Layer Definition	Set T	ime Dependent Properties	
Concrete Shell Section De Modify/Show S	esign Parameters	Stiffness Modifiers	Temp Dependent Prop Thermal Proper	ties

Daha sonra plak elemanın kesit özellikleri tanımlanmıştır (Şekil 3.25).

Şekil 3. 25 : Plak elemanın kesit özelliklerinin tanımlanması.

Plak elemanın çeşidi "*Plate Thick*" seçilmiştir. Plak kalınlığı için verilen örneğe uygun olarak 1 metre ve 2 metre olarak seçilmiştir.

Zemin elemanın kesit özellikleri tanımlanmıştır (Şekil 3.26).

)	Plane Section Data ×	
	Section Name zemin Section Notes Modify/Show Display Color	
	TypeZemin elemanın malzeme tipi○ Plane-StressPlane strain (Düzlem şekil değiştirme elemanı) olarak seçilmiştir.	
	Material Zemin Material Name + Zemin Zemin elemanın kalınlığı 1 birim olarak bu alan birim olarak bu alan girilmiştir. Birimiştir.	
	Thickness Thickness 1. Stiffness Modifiers Set Modifiers Thermal Properties	
	OK Cancel	

Şekil 3. 26 : Zemin elemanın kesit özelliklerinin tanımlanması.

Plak ve altındaki zeminin bütün noktalarının aynı hareketi yapması için SAP 2000 programının *Joint Constraints* özelliği ile sonlu elemanlara ayrılmış bütün birleşim noktaları yalnızca z doğrultusunda harekete izin verecek şekilde modelleme yapılabilmektedir (Şekil 3.27, Şekil 3.28).

💢 Define Constraints	×
Constraints EQUAL_1001 EQUAL_10_1010 EQUAL_100_1100 EQUAL_101_1101 EQUAL_102_1102 EQUAL_103_1103 EQUAL_104_1104 EQUAL_105_1105 EQUAL_106_1106 EQUAL_107_1107 EQUAL_108_1108	Choose Constraint Type to Add Equal ~ Click to: Add New Constraint Modify/Show Constraint Delete Constraint
EQUAL_109_1109 V	OK Cancel

Şekil 3. 27 : Zemin ve plak eşitlemesi-Joint constraints.

Equal Constraint		×
Constraint Name	EQUAL_1_1001	
Coordinate System	GLOBAL V	
Constrained DOFs		
Translation X	Rotation X	
Translation Y	Rotation Y	
Translation Z	Rotation Z	
ОК	Cancel	

Şekil 3. 28 : Equal Constraint seçilerek Translation Z yönünde harekete izin verilmesi.

Ancak Bölüm 2.3'de açıklandığı gibi *Joint Constraint* işlemini daha hızlı ve hatasız yapabilmek için SapTransform yazılımı kullanılmış ve plak ve zemin aynı düşey yer değiştirme yapacak şekilde modellenmiştir.

Zemin yatak katsayısı için tüm zemin seçilip *Assign* — Area Area Spring menüsünden hesaplanan k değeri girilmiştir (Şekil 3.29).

💢 Assign Springs to Area Object Face	
Spring Type	katsavısı bu alan girilmistir.
 Simple 	1
Spring Stiffness per Unit Area	45787.5458 kN/m/m ²
Simple Spring Resists Tension a	and Compression v
 Link Property + 	
Local 2 Axis Angle from Default Orientation	
Spring Location (Area Object Face)	
Area Object Face	Top v
Area Object Edge Number	
Spring Tension Direction	
O Parallel to Area Object Local Axis	
Normal to Specified Area Object Face	Inward v
 User Specified Direction Vector 	
Coordinate System	
Local 1 Component	
Local 2 Component	
Local 3 Component	
Options	
 Add to Existing Springs 	
Replace Existing Springs	
 Delete Existing Springs 	
Reset Form to Default Va	Apply

Şekil 3. 29 : Zeminin birinci parametresi yatak katsayısının tanımlanması.

Şekil 3. 30 : SAP2000 programında iki parametreli zemine oturan kare plak modeli gösterimi.

Plak ve zemin modeli uygun bir şekilde tamamlandıktan sonra analiz yapılmıştır (Şekil 3.31).

Case Name	Tune	Status	Action	Click to:
DEAD	Linear Static	Not Run	Do not Run	Run/Do Not Run Case
MODAL	Modal	Not Run	Run	Show Case
				Delete Results for Case
		Run/Do Not Run All		
		Delete All Results		
			Show Load Case Tree	
nalysis Monitor Option	s			Model-Alive
Always Show				Run Now
Never Show				

Şekil 3. 31 : SAP2000 programında modal analiz seçimi.

Plağın serbest titreşim periyodu ilk 4 mod için okunmuştur (Çizelge 3.5).

	T(Periyot, s)	w =2π/T (Frekans, 1/s)		
1. Mod	0,02436	257,7997		
2. Mod	0,01278	491,3928		
3. Mod	0,01278	491,3928		
4. Mod	0,00895	701,6760		

Cizelge 3.5: Analiz sonucu okunan periyodlardan frekansların bulunması.

Okunan periyot değerleri ile w = $2\pi/T$ (Frekans) formülü ile frekanslar bulunmuştur Bulunan frekanslar $\omega = (\omega . a^2)/\pi^2$. $\sqrt{(\rho. h)}/D$ formülü ile boyutsuzlaştırılmış frekansa dönüştürülmüştür. Boyutsuzlaştırılmış frekans değerleri Çizelgelerde önceki çalışmalar ile karşılaştırılmıştır.

Çizelge 3. 6 : İzotrop zemine oturan bir metre kalınlığındaki basit mesnetli kare plakta boyutsuz frekans değerleri ve önceki çalışmalarla karşılaştırma.

Mod	T(Periyot, s)	w =2π/T (Frekans, 1/s)	ώ (Boyutsuz frekans)	(Kutlu, 2007)	(Xiang ve ark., 1994)	Zhou ve ark.(2004)
1.mod	0,0244	257,7997	2,7591	2,7870	2,7842	2,7756
2.mod	0,0128	491,3928	5,2592	5,3120	5,3043	5,2954
3.mod	0,0128	491,3928	5,2592	5,3120	5,3043	5,2954
4.mod	0,0090	701,6760	7,5098	7,7349	7,7287	7,7279
1.mod	0,0169	371,8176	3,9794	3,9825	3,9805	3,9566
2.mod	0,0112	559,7148	5,9904	6,0146	6,0078	5,9757
3.mod	0,0112	559,7148	5,9904	6,0146	6,0078	5,9757
4.mod	0,0084	751,1962	8,0398	8,2274	8,2214	8,1954

Çizelge 3.6'de birinci bölümde ;

D plak rijitliği: 2289377,289 kN.m Plak h:1 m, a:10 m, $\emptyset 1=200$ k= 45787,546 kN/m³ G=228937,73 kN/m² $\emptyset 2=10$

Çizelge 3.6'de ikinci bölümde ;

D plak rijitliği: 2289377,289 kN.m Plak h:1 m, a:10 m, \emptyset 1= 1000 k= 228937,73 kN/m³ G=228937,73 kN/m² \emptyset 2= 10

Dört tarafı basit mesnetli plakta serbest titreşim analizi yapılmış ve önceki çalışmalar ile karşılaştırma yapılmıştır. Çizelge 3.6''nın ilk bölümünde $\phi_1=200$, $\phi_2=10$ olan kare plakta (Kutlu, 2007) ile yapılan karşılaştırmada, boyutsuz frekanslardaki

göreceli fark sırasıyla % 1, % 1, % 1, % 3 olmaktadır. Çizelge 3.6'nın ikinci bölümünde ϕ_1 =1000, ϕ_2 = 10 olan kare plakta boyutsuz frekanslardaki göreceli fark sırasıyla 0.0007, 0.004, 0.004, 0.023 olmaktadır.

Mod	T(Periyot, s)	₩ =2π/T (Frekans, 1/s)	ώ (Boyutsuz frekans)	(Kutlu, 2007)	(Xiang ve ark., 1994)	Zhou ve ark.(2004)
1.mod	0,0086	728,5383	3,8987	3,8587	3,8567	3,7111
2.mod	0,0061	1022,8013	5,4734	5,4134	5,4043	5,2285
3.mod	0,0061	1022,8013	5,4734	5,4134	5,4043	5,2285
4.mod	0,0042	1481,1321	7,9260	7,8991	7,8938	7,7191
1.mod	0,0011	5980,9524	32,0061	17,9905	17,9910	4,6127
2.mod	0,0010	6038,4615	32,3139	20,0874	20,0920	7,2934
3.mod	0,0010	6038,4615	32,3139	20,0874	20,0920	7,2934
4.mod	0,0010	6097,0874	32,6276	22,5936	21,9550	10,3140

Çizelge 3.7 : İzotrop zemine oturan 2 metre kalınlığındaki basit mesnetli kare plakta boyutsuz frekans değerleri ve önceki çalışmalarla karşılaştırma.

Çizelge 3.7'de birinci bölümde;

D plak rijitliği: 18315018,31 kN.m Plak h:2 m, a:10 m, $\emptyset 1=1000$ k= 1831501,83 kN/m³ G= 1831501,83 kN/m² $\emptyset 2=10$

Çizelge 3.7'de ikinci bölümde ;

D plak rijitliği: 18315018,31 kN.m Plak h:2 m, a:10 m, \emptyset 1= 100000 k= 183150183,2 kN/m³ G= 1831501,83 kN/m² \emptyset 2= 10

Çizelge 3.7'nin birinci bölümünde plak kalınlığı h=2 m, boyutsuz zemin parametreleri ϕ_1 =1000, ϕ_2 = 10 olan plakta boyutsuz frekanslarda (Kutlu, 2007) ile yapılan karşılaştırmasında göreceli fark sırasıyla % 1, % 1, % 1, % 0 olmaktadır. Çizelge 3.7'nin ikinci bölümünde plak kalınlığı h=2 m, boyutsuz zemin parametreleri ϕ_1 =100000, ϕ_2 =10 olan kare plakta boyutsuz frekans değerlerinde oldukça büyük fark görülmektedir. Önceki çalışmalardan (Kutlu, 2007) 10x10 elaman ağında çıkan sonuçları ile yapılan karşılaştırmada göreceli fark sırası ile % 56, % 47, % 47, % 36 olmaktadır.

h/b oranı 0,1-0,2 aralığında olan orta kalınlıktaki plaklarda Winkler parametresinin 1000'den büyük değerleri için Mindlin Teorisi doğru sonuçlar vermemektedir. Çünkü Mindlin teorisinde zemin plağın ortalama düzlemine etkimektedir. Artan plak kalınlığı ve Winkler parametresi nedeni ile bu kabul anlamsız olmaktadır. Winkler parametresinin büyümesiyle birlikte eğilme modlarına ait frekanslar çok büyümektedir. Bununla birlikte Mindlin Teorisinde gözönüne alınmayan, düzlem içi etkilerine bağlı frekanslar, temel rijitliğinin değişmesinden etkilenmezler. Bu nedenle kalın plak teorisini gözönüne alan üç boyutlu çözümler Winkler zemin parametresinin büyük değerleri için anlamlı sonuçlar vermektedir. Ancak plağın kalın plak teorisine göre üç boyutlu olarak modellenmesi durumunda da bu çalışmada verilen zemin eleman kolaylıkla kullanılabilir.

	T(Periyot, s)	₩ =2π/T (Frekans, 1/s)	ώ (Boyutsuz frekans)	(Kutlu, 2007)	(Zhou ve ark., 2004)
1.mod	0,0178	352,4130	3,7718	3,7895	3,7748
2.mod	0,0098	641,4709	6,8655	6,8229	6,8041
3.mod	0,0098	641,4709	6,8655	6,8229	6,8041
4.mod	0,0072	872,2222	9,3351	9,3949	9,3762
1.mod	0,0139	452,7758	4,8459	3,9825	4,8164
2.mod	0,0090	701,6760	7,5098	6,0146	7,4134
3.mod	0,0090	701,6760	7,5098	6,0146	7,4134
4.mod	0,0069	916,7883	9,8121	8,2274	9,8160

Çizelge 3. 8 : İzotrop zemine oturan 1 metre kalınlığındaki ankastre mesnetli kare plakta boyutsuz frekans değerleri ve önceki çalışmalarla karşılaştırma.

Çizelge 3.8 de ;

D plak rijitliği: 2289377,29 kN.m Plak h:1 m, a:10 m, $\emptyset 1=100$ k= 22893.7729 kN/m³ G= 228937,729 kN/m² $\emptyset 2=10$ Çizelge 3.8 de ; D plak rijitliği: 2289377,29 kN.m Plak h:1 m, a:10 m, $\emptyset 1=1000$ k= 228937,729 kN/m³ G= 228937,729 kN/m²

Ø2=10

Çizelge 3.8'ün birinci bölümünde plak kalınlığı h=1 m, zemin parametreleri ϕ_1 =100, ϕ_2 = 10 olan plakta boyutsuz frekanslarda (Kutlu, 2007) ile yapılan karşılaştırmada göreceli fark sırasıyla % 0, % 1, % 1, % 1 olmaktadır.

Çizelge 3.8'ün ikinci bölümünde plak kalınlığı h=1 m, zemin parametreleri ϕ_1 =1000, ϕ_2 =10 olan kare plakta boyutsuz frekans değerlerinin, (Kutlu, 2007)'in 10x10 elaman ağı ile çıkan sonuçları ile yapılan karşılaştırmada göreceli fark sırası ile % 20, % 22, % 22, % 18 olmaktadır. Ancak (Zhou ve ark., 2004) tezi ile yapılan karşılaştırmada göreceli fark sırası ile % 1, % 1, % 1, % 0 olmaktadır.

Görüldüğü gibi önceki çalışmalarla yakın sonuçlar elde edilmiştir.

3.3 Örnek 3

(Kutlu, 2007)'de yer alan keyfi doğrultuda ortotrop zeminle etkileşim halindeki kare plakta serbest titreşim analizi örneği SAP2000 programında modellenmiştir. Zeminin plak eksenlerinden farklı olarak keyfi doğrultularda ortotrop olması halinde serbest titreşim frekansı incelenmiştir.

Kare plakta,

Elastisite modülü : $E= 25 \text{ GPa} = 25.10^6 \text{ kN/m}^2$

Poisson oran1 : v = 0,3

Plak genişlik : a =10 m

Plak kalınlık : h=1 m

Plak rijitliği $D = Exh^3/12x(1-\vartheta^2)$

Zemin parametreleri,

 ϕ_1 =100, boyutsuzlaştırılmış zemin yatak katsayısı

 $\phi_{2x}=10$, Boyutsuzlaştırılmış kayma modülü (Zeminin bir doğrultusunda)

 ϕ_{2y} =70, Boyutsuzlaştırılmış kayma modülü (Zeminin ϕ_{2x} e dik diğer doğrultusunda)

$$\phi_1 = ka^4/D$$
 $\phi_2 = Ga^2/D$

Boyutsuzlaştırılmış Açısal Frekans değerleri $\dot{\omega} = (\omega. a^2/\pi^2) \cdot \sqrt{(\rho. h)/D}$

Formülü ile bulunmuş ve çizelgede gösterilmiştir.

Bu örnekteki model SAP2000 programında oluşturulurken Örnek 3.2'de yapılan bütün işlemler yapılmıştır. Burada farklı olan zemin malzemesinin ortotropik olması ve bunun tanımlanmasıdır.
Zeminin ortotropi açısının tanımlanması için, *Define — Section Properties Area Sections* menüsünde Section type olarak "*Plane*" seçilmiş ve *Add New section* menüsü açılmıştır (Şekil 3.32).

Sections	Select Section Type To Add
ASEC1	Plane ~
None PLAK ZEMIN	Click to:
	Add New Section
	Add Copy of Section
	Modify/Show Section
	Delete Section
	ОК
	Cancel

Şekil 3. 32 : Zemin malzeme özelliğinin tanımlanması.

Açılan menüde Section type bölümüne "*Plane-Strain*" seçildi, malzeme ismi olarak daha önce malzemesi tanımlanan "*zemin*" seçilmiş ve zemin eleman kalınlığı 1 metre olarak tanımlanmıştır. Bu kısımda farklı olarak "*material angle*"(malzeme ortotropi) açısı girilmiştir (Şekil 3.33).

Section Name	ZEMIN		
Section Notes	Modify/Show		
	Display Color		
Туре			
O Plane-Stress			
Plane-Strain			
Incompatible Mode	! S		
Material			7 : 1
Material Name	+ ZEMIN	\sim	Zemin elemanin
Material Angle	15		malzeme açısı bu
		~>	alana girilmiştir.
INICKNESS			
Thickness	1.		
Stiffness Modifiers	Temp Dependent Properties		Zamin alamanın
Set Modifiers	Thermal Properties	X	
			kaliniigi i birim
OK	Canaal		olarak gırılmiştir.

Şekil 3. 33 : Zemin elemanın ortotropi açısının tanımlanması.

Bu örnekte zemin farklı doğrultularda ortotropik olduğundan 0, 15, 30, 45, 60,75, 90 derece malzeme açıları için plak serbest tireşim analizi incelenmiştir. (Kutlu, 2007)'deki frekanslar ile karşılaştırma yapılmıştır.

1.durum: Keyfi doğrultuda ortotrop zemine oturan ankastre mesnetli kare plakta bu çalışmada bulunan boyutsuz frekans değerlerinin, (Kutlu, 2007) ile karşılaştırılması

Çizelge 3.9: Keyfi doğrultuda ortotrop zemine oturan ankastre mesnetli kare plakta boyutsuz frekans değerleri (Bu çalışma).

Mod	O=O	O =15	O =30	O =45	O =60	O =75	O =90
1. mod	4,5537	4,5445	4,5322	4,5231	4,5322	4,5445	4,5537
2. mod	7,2899	7,3376	7,4681	7,5520	7,4681	7,3376	7,2899
3. mod	8,4651	8,4016	8,2673	8,1767	8,2673	8,4016	8,4651
4. mod	10,4856	10,4368	10,3564	10,3246	10,3564	10,4368	10,4856
5. mod	11,2773	11,4308	11,8124	12,2428	11,8124	11,4308	11,2773
6. mod	13,1532	13,0510	12,7297	12,3326	12,7297	13,0510	13,1532
7. mod	13,7450	13,7169	13,7169	13,7169	13,7169	13,7169	13,7450
8. mod	14,7074	14,6753	14,6433	14,6115	14,6433	14,6753	14,7074
9. mod	15,9272	16,1182	16,5549	16,8453	16,5549	16,1182	15,9272
10. mod	17,1461	17,0159	16,8876	17,1461	16,8876	17,0159	17,1461

Çizelge 3. 10 : Keyfi doğrultuda ortotrop zemine oturan ankastre mesnetli kare plakta boyutsuz frekans değerleri (Kutlu, 2007).

Mod	O=0	O =15	O =30	O =45	O =60	O =75	O =90
1. mod	4,5782	4,5706	4,5551	4,5473	4,5551	4,5706	4,5782
2. mod	7,2448	7,2968	7,4228	7,5056	7,4228	7,2968	7,2448
3. mod	8,4754	8,4156	8,2737	8,183	8,2737	8,4156	8,4754
4. mod	10,5988	10,5284	10,4323	10,3948	10,4323	10,5284	10,5988
5. mod	11,2388	11,4219	11,8307	12,2261	11,8307	11,4219	11,2388
6. mod	13,2810	13,1606	12,8309	12,4641	12,8309	13,1606	13,281
7. mod	14,0166	14,0001	13,9793	13,9745	13,9793	14,0001	14,0166
8. mod	15,0828	15,0506	14,9799	14,9417	14,9799	15,0506	15,0828
9. mod	16,0314	16,2371	16,7664	17,3932	16,7664	16,2371	16,0314
10. mod	18,0272	17,8671	17,697	17,4953	17,697	17,8671	18,0272

Çizelge 3.9 ile Çizelge 3.10 karşılaştırıldığında boyutsuz frekans değerlerinin birbirine yakın değerler olduğu görülmektedir. Göreceli farkın % 0 ile % 5 arasında değiştiği, ortalama farkın % 1 olduğu, görülmektedir (Çizelge 3.11).

0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,02	0,02	0,02	0,02	0,02	0,02	0,02
0,03	0,03	0,02	0,02	0,02	0,03	0,03
0,01	0,01	0,01	0,03	0,01	0,01	0,01
0,05	0,05	0,05	0,02	0,05	0,05	0,05

Çizelge 3. 11 : Çizelge 3.9 ile Çizelge 3.10 arasındaki göreceli fark.

2.durum: Keyfi doğrultuda ortotrop zemine oturan iki kenarı basit mesnetli iki kenarı ankastre mesnetli kare plakta bu çalışmada bulunan boyutsuz frekans değerlerinin, (Kutlu, 2007) ile karşılaştırılması

Çizelge 3. 12 : Keyfi doğrultuda ortotrop zemine oturan iki kenarı basit mesnetli iki kenarı ankastre mesnetli kare plakta boyutsuz frekans değerleri (Bu çalışma).

Mod	O =0	O =15	O =30	O =45	O =60	0 =75	O =90
1. mod	4,0587	4,0538	4,0514	4,0637	4,0909	4,1184	4,1311
2. mod	6,9435	6,9435	6,8375	6,5960	6,3349	6,1494	6,0771
3. mod	7,3457	7,3376	7,4268	7,6552	7,9167	8,1077	8,1867
4. mod	9,7128	9,6709	9,5881	9,5337	9,5337	9,5881	9,6570
5. mod	11,0185	11,1835	11,2773	10,8233	10,3404	9,9575	9,7693
6. mod	11,7300	11,6084	11,5685	12,0453	12,4931	12,5164	12,5164
7. mod	13,2049	13,1019	12,9255	12,7297	12,5867	12,8269	12,9255
8. mod	13,5237	13,5783	13,7169	13,8869	14,0613	14,1799	14,2400
9. mod	15,6673	15,8521	16,0796	15,6309	1,4969	14,4544	14,2702
10. mod	16,2743	16,1959	16,2350	16,0031	16,0031	16,1182	16,2743

Mod	O=O	O =15	O =30	O =45	O =60	0 =75	O =90
1. mod	4,0625	4,0596	4,058	4,0714	4,1024	4,1355	4,1497
2. mod	6,9526	6,9577	6,8593	6,6188	6,3586	6,1694	6,1012
3. mod	7,3974	7,3856	7,4704	7,705	7,974	8,1791	8,2553
4. mod	9,8303	9,7774	9,6842	9,6255	9,6216	9,6627	9,7117
5. mod	11,0743	11,2419	11,417	10,9443	10,4518	10,0676	9,8968
6. mod	11,9076	11,7828	11,6764	12,1861	12,6763	12,9173	12,9198
7. mod	13,5154	13,4331	13,2615	13,0847	12,9599	13,0251	13,1512
8. mod	14,0002	14,0399	14,1285	14,2663	14,439	14,5809	14,4412
9. mod	15,9305	16,133	16,6114	15,9489	15,2354	14,6746	14,648
10. mod	17,2441	17,104	16,6769	16,8226	16,8271	16,9458	17,0973

Çizelge 3. 13 : Keyfi doğrultuda ortotrop zemine oturan iki kenarı basit mesnetli iki kenarı ankastre mesnetli kare plakta boyutsuz frekans değerleri (Kutlu, 2007).

Çizelge 3.12 ile Çizelge 3.13 karşılaştırıldığında boyutsuz frekans değerlerinin birbirine yakın değerler olduğu görülmektedir. Göreceli farkın ortalama % 4 olduğu, görülmektedir (Çizelge 3.14).

Çizelge 3. 14 : Çizelge 3.12 ile Çizelge 3.13 arasındaki göreceli fark.

0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,02	0,01	0,01	0,01	0,01	0,03	0,03
0,02	0,02	0,03	0,03	0,03	0,02	0,02
0,03	0,03	0,03	0,03	0,03	0,03	0,01
0,02	0,02	0,03	0,02	1,64	0,02	0,03
0,06	0,05	0,03	0,05	0,05	0,05	0,05

3. durum: Keyfi doğrultuda ortotrop zemine oturan basit mesnetli kare plakta bu çalışmada bulunan boyutsuz frekans değerlerinin, (Kutlu, 2007) ile karşılaştırılması

Mod	O=0	O =15	O =30	O =45	O =60	O =75	O =90
1. mod	3,5394	3,5301	3,5098	3,5007	3,5098	3,5301	3,5394
2. mod	5,6816	5,7545	5,9271	6,0552	5,9271	5,7545	5,6816
3. mod	7,0602	6,9868	6,8029	6,6746	6,8029	6,9868	7,0602
4. mod	8,7975	8,7403	8,6503	8,6170	8,7289	8,7403	8,7975
5. mod	9,4533	9,6293	10,0618	10,5515	10,0618	9,6293	9,4533
6. mod	11,5884	11,4502	11,0912	10,6518	11,0912	11,4502	11,5884
7. mod	11,8751	11,8751	11,8961	11,9172	11,8961	11,8751	11,8751
8. mod	12,9754	12,9255	12,8514	12,8024	12,8514	12,9255	12,9754
9. mod	14,1799	14,3617	14,8701	15,0701	14,8701	14,3617	14,1799
10. mod	15,3454	15,2410	15,1040	15,4868	15,1040	15,2410	15,3454

Çizelge 3. 15 : Keyfi doğrultuda ortotrop zemine oturan basit mesnetli kare plakta boyutsuz frekans değerleri (Bu çalışma).

Çizelge 3. 16 : Keyfi doğrultuda ortotrop zemine oturan basit mesnetli kare plakta boyutsuz frekans değerleri (Kutlu, 2007).

Mod	O=O	O =15	O =30	O =45	O =60	O =75	O =90
1. mod	3,5716	3,5616	3,5413	3,531	3,5413	3,5616	3,5716
2. mod	5,7530	5,8207	5,9895	6,1075	5,9895	5,8207	5,753
3. mod	7,1451	7,0716	6,8915	6,7678	6,8915	7,0716	7,1451
4. mod	9,0773	8,9905	8,8897	8,8529	8,8897	8,9905	9,0773
5. mod	9,5259	9,7388	10,1921	10,66	10,1921	9,7388	9,5259
6. mod	11,7673	11,635	11,2704	10,8333	11,2704	11,635	11,7673
7. mod	12,3922	12,3767	12,3633	12,3644	12,3633	12,3767	12,3922
8. mod	13,5439	13,5073	13,4237	13,3776	13,4237	13,5073	13,5439
9. mod	14,3389	14,558	15,1249	15,8173	15,1249	14,558	14,3389
10. mod	16,4937	16,3091	16,1287	15,8801	16,1287	16,3091	16,4937

Çizelge 3.15 ile Çizelge 3.16 karşılaştırıldığında boyutsuz frekans değerlerinin birbirine yakın değerler olduğu görülmektedir. Göreceli farkın ortalama % 3 olduğu, görülmektedir (Çizelge 3.17).

0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,03	0,03	0,03	0,03	0,02	0,03	0,03
0,01	0,01	0,01	0,01	0,01	0,01	0,01
0,02	0,02	0,02	0,02	0,02	0,02	0,02
0,04	0,04	0,04	0,04	0,04	0,04	0,04
0,04	0,04	0,04	0,04	0,04	0,04	0,04
0,01	0,01	0,02	0,05	0,02	0,01	0,01
0,07	0,07	0,07	0,03	0,07	0,07	0,07

Çizelge 3.17 : Çizelge 3.15 ile Çizelge 3.16 arasındaki göreceli fark.

Keyfi doğrultuda ortotrop iki parametreli zemine oturan kare plakta serbest titreşim analizi yapılmış, bulunan boyutsuz frekans değerlerinin önceki çalışmalarla yakın değerler olduğu görülmüştür. Bu nedenle hazırlanan SAP2000 modelinin uygun olduğu söylenebilmektedir.

Şekil 3. 34 : İzotrop zemine oturan plakta 1. mod şekli ve periyodu.

Şekil 3. 35 : İzotrop zemine oturan plakta 2. mod şekli ve periyodu.

Şekil 3. 36 : İzotrop zemine oturan plakta 3. mod şekli ve periyodu.

Şekil 3. 37 : İzotrop zemine oturan plakta 4. mod şekli ve periyodu.

Şekil 3. 38 : 15° ortotrop zemine oturan plakta 1. mod şekli ve periyodu.

Şekil 3. 39 : 15° ortotrop zemine oturan plakta 2. mod şekli ve periyodu.

Şekil 3. 40 : 15° ortotrop zemine oturan plakta 3. mod şekli ve periyodu.

Şekil 3. 41 : 15° ortotrop zemine oturan plakta 4. mod şekli ve periyodu.

3 adet doğrulama örneği ile bu çalışmada hazırlanan SAP2000 programındaki modellerin doğruluğu gösterilmiştir.

Şimdi aynı örnekler üzerine, daha önceki çalışmalarda yapılmayan plak altına genişletilmiş zemin eklenerek sonuçlar yeniden incelenecektir.

4. DIŞ ZEMİNLİ KARE PLAKTA SERBEST TİTREŞİM KAREKTERİSTİKLERİNİN BELİRLENMESİ

4.1 Örnek 1

Bölüm 3.2'de doğrulama örneği izotrop zeminli, dört tarafı basit mesnet ve dört tarafı ankastre mesnetli kare plakların serbest titreşimi incelenmiştir. Aynı örnekte, zemin eleman her kenarından 10'ar metre genişletilmiştir.

Şekil 4.1: Genişletilmiş zemine oturan kare plak modeli 3D görünümü.

Bölüm 3.2'deki doğrulama örneği malzeme ve kesit tanımları aynı şekilde oluşturulmuştur. Plak ile zemin arasına mesnet konulmamıştır. Bu sayede gerçek davranışa en yakın sonuç elde edilmeye çalışılmıştır. Zemin elemanın dış kenarları basit mesnetlidir. Aşağıda genişletilmiş zemine oturan plakta serbest tireşim analizi sonucu elde edilen frekans değerleri ile bu çalışmada bölüm 3.2 'deki genişletilmemiş zemine oturan plakta serbest tireşim analizleri sonucu elde edilen frekans değerleri.

Mod	T(Periyot, s)	₩ =2π/T (Frekans, 1/s)	Dış zeminli plakta ώ	Dış zeminsiz plakta ώ
1.mod	0,03572	175,81	1,8817	2,7591
2.mod	0,02561	245,22	2,6245	5,2592
3.mod	0,02561	245,22	2,6245	5,2592
4.mod	0,019	330,53	3,5375	7,5098
1.mod	0,01882	333,69	3,5714	3,9794
2.mod	0,01569	400,25	4,2838	5,9904
3.mod	0,01569	400,25	4,2838	5,9904
4.mod	0,01326	473,60	5,0688	8,0398

Çizelge 4.1 : İzotrop ve genişletilmiş bir metre kalınlığındaki plak ile bu çalışmadaki Çizelge 3.6'daki frekans değerlerinin karşılaştırılması.

Çizelge 4.1'de birinci bölümde;

D plak rijitliği: 2289377,289 kN.m Plak h:1 m, a:10 m, $\emptyset 1=200$ k= 45787,545 kN/m³ G= 228937,729 kN/m² $\emptyset 2=10$

Çizelge 4.1 de ikinci bölümde;

D plak rijitliği: 2289377,289 kN.m Plak h:1 m, a:10 m, $\emptyset 1=1000$ k= 228937,729 kN/m³ G= 228937,729 kN/m² $\emptyset 2=10$

İzotrop ve genişletilmiş zemine oturan bir metre kalınlığındaki plakta serbest titreşim analizi yapılmış ve bölüm 3.2'deki çizelge 3.6 ile karşılaştırma yapılmıştır. Çizelge 4.1'in birinci bölümündeki ϕ 1=200, ϕ 2= 10 parametreli zemine oturan kare plakta yapılan karşılaştırmada boyutsuz frekanslardaki göreceli fark sırasıyla % 26, % 50, % 50, % 54 olmaktadır. Çizelge 4.1'in ikinci bölümündeki ϕ 1=1000, ϕ 2=10 parametreli zemine oturan kare plakta boyutsuz frekanslardaki göreceli fark sırasıyla % 7, % 23, % 23, % 32 olmaktadır.

Mod	T(Periyot, s)	₩ =2π/T (Frekans, 1/s)	Dış zeminli plakta ώ	Dış zeminsiz plakta ώ
1.mod	0,00944	665,25	3,5600	3,8987
2.mod	0,00796	788,94	4,2219	5,4734
3.mod	0,00796	788,94	4,2219	5,4734
4.mod	0,00681	922,17	4,9349	7,9260
1.mod	0,00105	5980,95	32,0061	32,0061
2.mod	0,00104	6038,46	32,3139	32,3139
3.mod	0,00104	6038,46	32,3139	32,3139
4.mod	0,00103	6097,09	32,6276	32,6276

Çizelge 4. 2 : İzotrop ve genişletilmiş iki metre kalınlığındaki plak ile bu çalışmadaki Çizelge 3.7'deki frekans değerlerinin karşılaştırılması.

Çizelge 4.2'de birinci bölümde;

D plak rijitliği: 18315018,3 kN.m Plak h:2 m, a:10 m, $\emptyset 1=1000$ k= 1831501,83 kN/m³ G= 1831501,83 kN/m² $\emptyset 2=10$

Çizelge 4.2'de ikinci bölümde ;

D plak rijitliği: 18315018,3 kN.m Plak h:2 m, a:10 m, $\emptyset 1=100000$ k= 183150183,2 kN/m³ G= 1831501,83 kN/m² $\emptyset 2=10$

İzotrop ve genişletilmiş zemine oturan iki metre kalınlığındaki plakta serbest titreşim analizi yapılmış ve bölüm 3.2'deki çizelge 3.7 ile karşılaştırma yapılmıştır. Çizelge 4.2'nin birinci bölümündeki ϕ 1=1000, ϕ 2=10 parametreli zemine oturan kare plakta yapılan karşılaştırmada boyutsuz frekanslardaki göreceli fark sırasıyla % 6, % 17, % 17, % 33 olmaktadır. Çizelge 4.2'nin ikinci bölümündeki ϕ 1=100000, ϕ 2=10 parametreli zemine oturan kare plakta boyutsuz frekanslardaki göreceli fark bulunmamaktadır.

Mod	T(Periyot, s)	₩ =2π/T (Frekans, 1/s)	Dış zeminli plakta ώ	Dış zeminsiz plakta ώ
1.mod	0,04520	138,94	1,4870	3,7718
2.mod	0,02981	210,67	2,2547	6,8655
3.mod	0,02981	210,67	2,2547	6,8655
4.mod	0,0208	301,92	3,2314	9,3351
1.mod	0,01882	333,69	3,5714	4,8459
2.mod	0,01569	400,25	4,2838	7,5098
3.mod	0,01569	400,25	4,2838	7,5098
4.mod	0,01326	473,60	5,0688	9,8121

Çizelge 4. 3 : İzotrop ve genişletilmiş bir metre kalınlığındaki plak ile bu çalışmadaki Çizelge 3.8'deki frekans değerlerinin karşılaştırılması.

Çizelge 4.3'de birinci bölümde;

D plak rijitliği: 2289377,29 kN.m Plak h:1 m, a:10 m, $\emptyset 1=100$ k= 22893,773 kN/m³ G= 228937,73 kN/m² $\emptyset 2=10$ Çizelge 4.3'de ikinci bölümde ; D plak rijitliği: 2289377,29 kN.m Plak h:1 m, a:10 m, $\emptyset 1=100$ k= 228937,73 kN/m³ G= 228937,73 kN/m² $\emptyset 2=10$

İzotrop ve genişletilmiş zemine oturan bir metre kalınlığındaki plakta serbest titreşim analizi yapılmış ve bölüm 3.2'deki çizelge 3.8 ile karşılaştırma yapılmıştır. Çizelge 4.3'ün birinci bölümündeki ϕ_1 =100, ϕ_2 =10 parametreli zemine oturan kare plakta yapılan karşılaştırmada boyutsuz frekanslardaki göreceli fark sırasıyla % 67, % 81, % 81, % 77 olmaktadır. Çizelge 4.3'ün ikinci bölümündeki ϕ_1 =1000, ϕ_2 =10 parametreli zemine oturan kare plakta boyutsuz frekanslardaki göreceli fark sırasıyla % 21, % 40, % 40, % 47 olmaktadır.

Boyutsuz frekanslardaki karşılaştırma sonucunda genişletilmiş zemine oturan plakta genişletilmemiş zemine oturan plağa göre daha küçük frekans değerleri elde edildiği gözlenmiştir.

4.2 Örnek 2

Bölüm 3.3'teki doğrulama örneği keyfi doğrultuda ortotrop zemine oturan kare plakların serbest titreşim analizi ele alınmıştır. Bu örnekte zemin eleman, her kenarından 10'ar metre genişletilmiş ve çözümler yeniden incelenmiştir.

Yine Bölüm 3.3'teki doğrulama örneğindeki, malzeme ve kesit tanımlamaları aynı şekilde tanımlanmıştır. Gerçekte plak ile zemin arasında mesnet bulunmadığından, plak ile zemin arasına mesnet konulmamıştır. Bu sayede gerçek davranışa en yakın sonuç elde edilmeye çalışılmıştır. Genişletilmiş zemin elemanın kenarları basit mesnetlidir. Bu bölümde genişletilmiş zemine oturan plakta serbest titreşim analizi sonucu bulunan frekans değerleri, bölüm 3.3'te yer alan genişletilmemiş zemine oturan plakta serbest titreşim analizi sonucu bulunan frekans değerleri ile kaşılaştırılmıştır.

Çizelge 4.4'te keyfi doğrultuda ortotrop genişletilmiş zemine oturan plakta serbest titreşim analizi sonucu elde edilen boyutsuz frekans değerleri gösterilmektedir.

		-	liekuns de	genen.				
Mod	0=0	O =15	O =30	O =45	O =60	O =75	O =90	
1. mod	1,9003	1,8949	1,8806	1,8717	1,8806	1,8949	1,9003	
2. mod	2,6853	2,7333	2,8229	2,8699	2,8229	2,7333	2,6853	
3 mod	2 8628	2 8180	2 7216	3 6618	2 7216	2 8180	2 8628	

Cizelge 4. 4 : Keyfi doğrultuda ortotrop genişletilmiş zemine oturan plakta boyutsuz frekans değerleri

1. mod	1,9003	1,8949	1,8806	1,8717	1,8806	1,8949	1,9003
2. mod	2,6853	2,7333	2,8229	2,8699	2,8229	2,7333	2,6853
3. mod	3,8628	3,8189	3,7216	3,6648	3,7216	3,8189	3,8628
4. mod	4,2034	4,2702	4,3058	4,3002	4,3058	4,2702	4,2034
5. mod	4,7534	4,8459	5,1862	5,4957	5,1862	4,8459	4,7534
6. mod	6,3111	6,2640	6,2234	6,0335	6,2234	6,2640	6,3111
7. mod	6,7755	6,6482	6,3229	6,2119	6,3229	6,6482	6,7755
8. mod	7,0602	7,3217	7,4931	7,4764	7,4931	7,3217	7,0602
9. mod	7,7434	7,7703	8,2268	8,7517	8,2268	7,7703	7,7434
10. mod	8,8438	8,8206	8,7745	8,8322	8,7745	8,8206	8,8438

0,82	0,82	0,83	0,83	0,83	0,82	0,82
0,92	0,91	0,90	0,90	0,90	0,91	0,92
0,75	0,75	0,76	0,76	0,76	0,75	0,75
0,86	0,84	0,83	0,82	0,83	0,84	0,86
0,81	0,81	0,78	0,76	0,78	0,81	0,81
0,70	0,70	0,69	0,69	0,69	0,70	0,70
0,68	0,69	0,74	0,75	0,74	0,69	0,68
0,70	0,67	0,65	0,65	0,65	0,67	0,70
0,69	0,70	0,67	0,63	0,67	0,70	0,69
0,64	0,63	0,63	0,64	0,63	0,63	0,64

Çizelge 4.5: Bölüm 3.3'teki Çizelge 3.9 ile Çizelge 4.4'ün göreceli farkı.

Keyfi doğrultuda ortotrop genişletilmiş zemine oturan kare plakta serbest titreşim analizi yapılmış ve bulunan boyutsuz frekans değerleri ile bu çalışmada bölüm 3.3'te yapılan genişletilmemiş zemine oturan ankastre mesnetli plakta serbest titreşim analizi sonucu elde edilen boyutsuz frekans değerleri karşılaştırılmıştır. Çizelge 4.4 ile çizelge 3.9 arasında yapılan karşılaştırmada boyutsuz frekanslardaki göreceli farkın ortalama % 75 olduğu görülmüştür (Çizelge 4.5).

2.durum:

Cizelge 4.6 :	Bölüm 3.3"	teki Çizelge	3.12 ile Q	Cizelge 4.4'ün	göreceli farkı.
, ,		, ,	,		0

_							
	0,72	0,73	0,73	0,74	0,74	0,74	0,74
	0,88	0,87	0,83	0,79	0,77	0,77	0,77
	0,62	0,63	0,66	0,71	0,72	0,72	0,72
	0,79	0,77	0,76	0,76	0,76	0,77	0,79
	0,79	0,79	0,74	0,65	0,66	0,69	0,69
	0,60	0,60	0,60	0,67	0,67	0,67	0,66
	0,64	0,65	0,69	0,69	0,66	0,63	0,62
	0,63	0,60	0,59	0,60	0,61	0,64	0,67
	0,68	0,68	0,65	0,56	-1,38	0,60	0,59
	0,59	0,59	0,60	0,58	0,58	0,59	0,59

Keyfi doğrultuda ortotrop genişletilmiş zemine oturan kare plakta serbest titreşim analizi yapılmış ve bulunan boyutsuz frekans değerleri ile bu çalışmada bölüm 3.3 de yapılan genişletilmemiş zemine oturan iki kenarı basit iki kenarı ankastre mesnetli plakta serbest titreşim analizi sonucu elde edilen frekans değerleri karşılaştırılmıştır. Çizelge 4.4 ile çizelge 3.12 arasında yapılan karşılaştırmada boyutsuz frekanslardaki göreceli farkın ortalama % 66 olduğu görülmüştür (Çizelge 4.6).

3.durum:

-							
	0,60	0,60	0,60	0,61	0,60	0,60	0,60
	0,72	0,71	0,71	0,71	0,71	0,71	0,72
	0,59	0,59	0,59	0,58	0,59	0,59	0,59
	0,71	0,69	0,67	0,67	0,68	0,69	0,71
	0,66	0,66	0,64	0,63	0,64	0,66	0,66
	0,59	0,59	0,56	0,55	0,56	0,59	0,59
	0,55	0,56	0,61	0,63	0,61	0,56	0,55
	0,59	0,55	0,53	0,53	0,53	0,55	0,59
	0,59	0,60	0,58	0,53	0,58	0,60	0,59
	0,54	0,53	0,53	0,55	0,53	0,53	0,54

Çizelge 4.7 : Bölüm 3.3'teki Çizelge 3.15 ile Çizelge 4.4'ün göreceli farkı.

Keyfi doğrultuda ortotrop genişletilmiş zemine oturan kare plakta serbest titreşim analizi yapılmış ve bulunan frekans değerleri ile bu çalışmada bölüm 3.3 de yapılan genişletilmemiş zemine oturan basit mesnetli plakta serbest titreşim analizi sonucu elde edilen frekans değerleri karşılaştırılmıştır. Çizelge 4.4 ile çizelge 3.15 arasında yapılan karşılaştırmada boyutsuz frekanslardaki göreceli farkın ortalama % 61 olduğu görülmüştür (Çizelge 4.7).

Boyutsuz frekanslardaki karşılaştırma sonucunda genişletilmiş zemine oturan plakta genişletilmemiş zemine oturan plağa göre ortalama % 63 daha küçük frekans değerleri elde edildiği gözlenmiştir.

4.3 İki Parametreli Zemine Oturan Dörtgen Plağın Genişletilmemiş Zemine Oturması Hali İle Genişletilmiş Zemine Oturması Halinde Spektral Analizinin Karşılaştırılması

Bölüm 3.3'de çizelge 3.15 ile verilen 0 derece ortotrop zeminli dört tarafı basit mesnetli kare plakta serbest titreşim analizi örneği için spektral analiz yapılmıştır.

Bunun için SAP2000 programının *Define* menüsünden *Material* kısmına gelinir ve daha önceki örnekte sıfır alınan plak birim hacim ağırlığı *"Weight per Unit Volume"* 25 kN/m³ olarak giriilir (Şekil 4.2).

Material Name and Display Color	plak		
Material Type	Concrete	~	
Material Grade			
Material Notes	Modify	y/Show Notes	
Weight and Mass		Units	
Weight per Unit Volume 25.		KN, m, C \sim	
Mass per Unit Volume 2.54	193		
isotropic Property Data			
Modulus Of Elasticity, E		25000000.	
Poisson, U		0.3	
Coefficient Of Thermal Expansion, A		9.900E-06	
Shear Modulus, G		9615385.	
Other Properties For Concrete Material	ls		
Specified Concrete Compressive Stre	ength, fc	27579.032	
Expected Concrete Compressive Stre	ength	27579.032	
Lightweight Concrete			
Shear Strength Reduction Factor			

Şekil 4. 2 : Plağın birim hacminin ağırlığının girilmesi.

Analyze –Set Analysis Options bölümünden Plane Grid - XY Plane seçilir (Şekil 4.3). Spektral analizin XY düzleminde yaptırılması sağlanır.

			RY 🗆 RZ	
Fast DOFs	Diana Frama	Plane Orid	Space Trues	ОК
Space Frame				Cancel
TTTT				Solver Options
	XZ Plane	XY Plane		
Tabular File	lly save VML Evo	al or Microsoft Av	oceee tabular file aft	ar analysis
Automatics	iny save Ame, exci			
Automatica File name				
Automatica File name				

Şekil 4.3 : Analizin xy düzeleminde seçilmesi.

E Edit View	Defi	ine Draw Select Assign A Materials	Analyze	Display Design	Options xy xz yz	Tools	Help	- -				П	hM	- nd	
📜 X-Y Plane	•	Section Properties	·												
	•?	Mass Source													
	(****)	Coordinate Systems/Grids			<u> </u>	9	9	9	0	9	9	9	9	9	
	\Rightarrow	Joint Constraints			~										
		Joint Patterns			©							_		-	
	7	Groups			<u></u>										
	22	Section Cuts													
	<	Generalized Displacements			o					_					
	°f _x	Functions	· r	Response Spectrun	1										
	20 20	Load Patterns	1	Time History											
	10 D	Load Cases	~ 55	Power Spectral Der	isity		_	_	_	_		_		_	
	+E	Load Combinations		Steady States.		1									
	m	Moving Loads	<u> </u>		0										
		Named Property Sets	· -		o										
		Pushover Parameter Sets													
		Harried Sets			0-							-			
					\sim										

Şekil 4. 4 : Response spektrum seçilmesi.

Define menüsünün Function bölümünden Response Spektrum seçilir (Şekil 4.4).

Şekil 4. 5 : TSC-2018 Function Type tanımlanması.

Açılan menüden Türkiye Bina Deprem Yönetmeliği 2018 (TBDY-2018) TSC-2018 Function Type olarak seçilir ve DEPREM olarak isimlendirilir (Şekil 4.5).

Şekil 4. 6 : Response Spectrum TSC-2018 Function Tanımlanması.

Define Load Cases Add New Load Case ile açılan menüden Load Case Name: SPEKTRA Load Case Type: Response Spectrum Modal Combination: SRSS

Load Name: *U3* Function: *DEPREM* Scale Factor: *3*,27 alanları tanımlanır. (Şekil 4.7).

Scale Factor 9,81/3=3,27 alınmıştır. Yatay depremin 1/3' ü düşey deprem olarak hesaplarda kullanılmaktadır.

DEKTRA		Notes	Load Case Type	
SPERTRA	Set Def Name	Modify/Show	Response Spectrum	✓ Design
odal Combination			Directional Combination	
○ cac	GM	IC f1 1.	SRSS	
SRSS	CH		O CQC3	
O Absolute	GM	IC 12 0.	Absolute	
GMC	Periodic + Rigid	Type SRSS V	Scale Factor	
NRC 10 Percent			Mass Source	
O Double Sum			Previous (MSSSRC1)	
odal Load Case			Diaphragm Eccentricity	
Use Modes from this Modal Load	d Case	MODAL V	Eccentricity Ratio	0
Standard - Acceleration Load	ding		Looon noky radio	
Advanced - Displacement Ine	ertia Loading		Override Eccentricities	Override
bads Applied				
Load Type Load Name	Function Scale Fac	ctor		
Load Type Load Name Accel U3	Function Scale Fac	ctor		
Load Type Load Name Accel U3 Accel U3	Function Scale Fac ✓ DEPREM ✓ 3.27 DEPREM 3.27 3.27	Add		
Load Type Load Name Accel U3 Accel U3	Function Scale Fail ✓ DEPREM ✓ 3.27 ØEPREM 3.27 3.27	Add		
Load Type Load Name Accel U3 Accel U3	Function Scale Fail ✓ DEPREM ✓ 3.27 ØEPREM 3.27 3.27	Add		
Load Type Load Name Accel U3 Accel U3	Function Scale Fai V DEPREM > 3.27 DEPREM 3.27	Add Modify Delete		
Load Type Load Name Accel U3 Accel U3 Accel U3 Accel U3	Function Scale Fai DEPREM > 3.27 DEPREM 3.27 Image: state	Add Modify Delete		
Accel U3 Acc	Function Scale Fai DEPREM > 3.27 DEPREM 3.27 Image: state	Add Modify Delete		

Şekil 4.7 : Load Case Data - Response Spectrum.

oad Cases		Click to:
Load Case Name	Load Case Type	Add New Load Case
DEAD	Linear Static	
MODAL	Modal	Add Copy of Load Case
SPEKTRA	Response Spectrum	
		Modify/Show Load Case
		Delete Load Case
		Display Load Cases
		Show Load Case Tree

Şekil 4.8 : Load cases-Response Spektrum tanımı.

Case Name	Type	Status	Action	Click to:
	Linear Static	Not Run	Do not Run	Run/Do Not Run Case
MODAL	Modal	Not Run	Run	Show Case
SPEKTRA	Response Spectrum	Not Run	Run	Delete Results for Case
				Run/Do Not Run All
				Delete All Results
				Show Load Case Tree
alysis Monitor Option	s			Model-Alive
Always Show				Pup Now

Şekil 4. 9 : Response Spectrum SPEKTRA seçilerek analiz yapılması.

📜 Display Shell Stresses				×
Case/Combo	Component Type			
Case/Combo Name SPEKTRA ~	 Resultant Forces 		Shell Layer Stresses	
	○ Shell Stresses		Shell Layer Strains	
	O Shell Strains	(O Concrete Design	
Multivalued Options				
Envelope Max	C			
Envelope Min	Component	0.000	0.148	
Step	O F11	• M11	0 V13	
	○ F22	O M22	○ V23	
Contour Range	○ F12	O M12	○ VMax	
Automatic Contour Range O User Defined Contour Range	○ FMax	O MMax		
Minimum Value for User Contour Range	○ FMin	O MMin		
Maximum Value for User Contour Range	○ FVM			
Stress Averaging				
○ None				
At All Joints				
Over Objects and Group: Set Groups				
Miscellaneous Options				
Show Deformed Shape				
Show Continuous Contours (Enhanced Graphics)				
Reset Forr	n to Default Values			
Reset Form to 0	Current Window Settings			
ОК	Close Apply			

Şekil 4. 10 : Case/Combo Name:SPEKTRA durumunda M11 ve M22 momentlerin okunması.

Bulunan M₁₁, M₂₂, ve M₁₂ eğilme moment değerleri aşağıda gösterilmektedir.

Şekil 4. 11 : Genişletilmemiş zemine oturan plakta spektral analiz sonucu M_{11} =3,75 kN.m.

Şekil 4. 12 : Genişletilmemiş zemin durumu spektral analiz sonucu M_{22} =3,76 kN.m.

Şekil 4. 13 : Genişletilmemiş zemin durumu spektral analiz sonucu M_{12} =0,04kN.m.

Aynı işlemler genişletilmiş zemin durumu için de tekrarlanmış ve sonuçlar aşağıda gösterilmektedir.

Şekil 4. 14 : Genişletilmiş zemin durumu spektral analiz sonucu M_{11} =10,55 kN.m.

Şekil 4. 15 : Genişletilmiş zemin durumu spektral analiz sonucu M_{22} =8,02 kN.m.

Şekil 4. 16 : Genişletilmiş zemin durumu spektral analiz sonucu M_{12} =0.02 kN.m.

Çizelge 4. 8 : İki parametreli zemine oturan dörtgen plakta spektral analiz sonucu bulunan eğilme momenti değerlerinin karşılaştırılması.

	Genişletilmemiş zeminli (Kn.m)	Genişletilmiş zeminli (Kn.m)
M11	3,75	10,55
M22	3,76	8,02
M12	0,04	0,02

Dış zeminli ve dış zeminsiz durumda spektral analiz yapılması sonucunda kesit tesirleri incelendiğinde genişletilmiş zemine oturan plaktaki kesit tesirlerinin genişletilmemiş zemine oturan zemine oturan plaktaki kesit tesirlerinden daha büyük değerler olduğu görülmüştür (Çizelge 4.8).

Genişletilmemiş zemine oturan kare plak için serbest titreşim analizi sonucu bulunan ilk 3 moda ait periyod değerleri aşağıda gösterilmektedir.

Şekil 4. 17 : Genişletilmemiş zemine oturan kare plakta birinci mod.

Şekil 4. 18 : Genişletilmemiş zemine oturan kare plakta ikinci mod.

Şekil 4. 19 : Genişletilmemiş zemine oturan kare plakta üçüncü mod.

Genişletilmiş zemine oturan kare plak için serbest titreşim analizi sonucu bulunan ilk üç moda ait periyod değerleri de aşağıda gösterilmektedir.

Şekil 4. 20 : Genişletilmiş zemine oturan kare plakta birinci mod.

Şekil 4. 21 : Genişletilmiş zemine oturan kare plakta ikinci mod.

Şekil 4. 22 : Genişletilmiş zemine oturan kare plakta üçüncü mod.

Çizelge 4.9: İki parametreli zemine oturan dörtgen plakta spektral analiz sonu	ıcu
bulunan ilk 3 moda ait periyod değerlerinin karşılaştırılması.	

	Genişletilmemiş zeminli	Genişletilmiş zeminli
1. Mod	0,018	0,035
2. Mod	0,011	0,025
3. Mod	0,009	0,017

Genişletilmiş zemine oturan plaktaki ilk üç moda ait periyodların genişletilmemiş zemine oturan plaktaki periyodlardan daha büyük olduğu görülmektedir (Çizelge 4.9). Tasarım spektrumunda rijit bölgede kaldığı, görülmektedir. Daha büyük periyodlar daha büyük S_a değerinin olmasını bu da daha büyük kesit tesirlerinin oluşmasına neden olur. Bu da genişletilmiş zemine oturan plakta spektral analiz sonucu moment değerlerinin Çizelge 4.8'de görüldüğü gibi daha büyük olması anlamına gelmektedir.

Yapılan inceleme sonucunda, genişletilmiş zemine oturan plaktaki spektral analiz sonucu çıkan periyod ve kesit tesirlerinin genişletilmemiş zemine oturan zemine oturan plaktaki durumdan daha büyük değerler olduğu görülmüştür. Genişletilmiş zemine oturan plaktaki modal analiz sonucu çıkan frekans değerlerinin genişletilmemiş zemine oturan zemine oturan plaktaki frekans değerlerinden daha küçük değerler olduğu görülmüştür.

5. SONUÇ VE DEĞERLENDİRME

Bu çalışmada keyfi doğrultuda ortotrop pasternak zemine oturan dörtgen plakların plak dışındaki zeminin etkileri de dikkate alınarak dinamik karekteristikleri belirlenmiş ve spektral analizi yapılmıştır. Bu analizlerde SAP2000 Programı kullanılmıştır. Hesaplarda zeminin kütlesi ihmal edilmiştir.

SAP2000 programı ile Winkler zemini, yaylarla (zemin yatak katsayısı) temsil edilebilmektedir. Ancak Pasternak zemini direk olarak temsil edilememektedir. Pasternak zeminin temsili için, sadece kayma şekil değiştirmelerinin gözönüne alındığı, SAP2000 program kütüphanesindeki düzlem şekil değiştirme elemanından (Plain strain), yararlanılmıştır. Bölüm 2.2'de belirtildiği gibi, sadece kayma şekil değiştirmelerinin göz önüne alındığı düzlem şekil değiştirme elemanının gerilme şekil değiştirme bağıntıları ve denge denklemleri, pasternak zeminine ait gerilme şekil değiştirme bağıntıları ve denge denklemleri ile katsayısı farkı ile aynıdır. Bu katsayılar da sadece kayma şekil değiştirmelerinin gözönüne alındığı düzlem şekil değiştirme elemanında kayma modülü, Pasternak zemininde ise pasternak sabiti (2t, G) olarak temsil edilir.

Yapılan incelemeler sonucunda, plak dışındaki zeminin dikkate alınmadığı örneklerde yapılan karşılaştırmada literatürde yapılan çalışmalar ile uyumlu sonuçlar elde edilmiştir. Dış zemin göz önüne alınmayan bu çalışmadaki örnekler ile dış zemin dikkate alınan durumda yapılan karşılaştırmada; dış zeminli durumda boyutsuz frekanslardaki göreceli farkın izotrop zeminde ortalama %33, ortotrop zeminde ise ortalama %68 daha küçük değerler olduğu görülmüştür. Bu da periyodun daha büyük olduğu anlamına gelmektedir. Spektral analizde ise periyodların tasarım spektrumunda rijit bölgede kaldığı, periyod ve kesit tesirlerinin dış zeminli plakta daha büyük değerler olduğu görülmüştür.

Gerçek durumda zemin plak altında sürekli olarak devam etmektedir. Bu nedenle dış zeminli plağın gerçeğe daha yakın davranışı temsil ettiği söylenebilmektedir.

KAYNAKLAR

- Avcıoğlu, O. (2015). İki Parametreli Zemine Oturan Betonarme Yapıların Doğrusal Olmayan Hesabı ve Görsel Tabanlı Bir Bilgisayar Yazılımı, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
- Çelik, M. (1996). Plak Sonlu Elemanlarda Kayma Şekil Değiştirmelerinin Göz Önüne Alınması ve İki Parametreli Zemine Oturan Plakların Hesabı İçin Bir Yöntem, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.)
- Hamarat, M. A. (2012). İki Parametreli Zeminler Üzerine Oturan Yapı Sistemlerinin Dinamik Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul.
- Kutlu, A. (2007). Keyfi Doğrultuda Ortotrop Pasternak Zeminine Oturan Mindlin Plaklarının Serbest Titreşimlerinin Karışık Sonlu Elemanlarla Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul.
- Ozgan, K., Daloğlu, A. T. (2008). Application of the Modified Vlasov Model to the free vibration analysis of thick plates resting on elastic foundations, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- Ozgan, K., Daloğlu, A. T. (2008). Application of the Modified Vlasov Model to the free vibration analysis of thick plates resting on elastic foundations, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- Ozgan, K., Daloğlu, A. T. (2012). Free Vibration Analysis of Thick Plates on Elastic Foundations Using Modified Vlasov Model with Higher Order Finite Elements, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- Ozgan, K., Daloğlu, A. T. (2008). Effect of transverse shear strains on plates resting on elastic foundation using modified Vlasov model, Air Force Academy, Yes-ilyurt, Istanbul, Turkey, Faculty of Engineering, Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
- Özmen, G., Orakdöğen, E., Darılmaz, K. (2018). Örneklerle SAP2000 v20, Birsen Yayınevi, İstanbul.
- **TBDY**. (2018). Türkiye Bina Deprem Yönetmeliği, 18 Mart 2018, Resmi Gazete Sayı : 30364 (Mükerrer)

- SAP2000 V.18 Structural Analysis Program CSI Computers and Structures İnc., Berkeley, California.
- Vallabhan, C.V.G., Straughan, W.T., DAS. Y.C. (1994). Refined Model of Analysis of Plates of Elastic Foundations, Journal of Engineering Mechanics Vol. 117, No12, pp. 2830-2844
- Xiang, Y., Wang, C.M., Kitipornchai, S. (1994). Exact Vibration Solution For Initially Stressed Mindlin Plates On Pasternak Foundations, International Journal Of Mechanical Sciences
- Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K. (2004). Three-Dimensional Vibration Analysis Of Rectangular Thick Plates On Pasternak Foundation, International Journal Of Numerical Methods In Engineering

ÖZGEÇMİŞ

Ad Soyad	: Şennur ELMACI
Doğum Yeri ve Tarihi	: Sinop / 1985
Adres	: Kütahya
E-Posta	: sennur_elmaci@hotmail.com
Lisans	: Trakya Üniversitesi