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Optimal Ship Navigation and Algorithms for Stochastic Obstacle

Scenes

İbrahim ARI

Abstract

This thesis is comprised of two different but related sections. In the first section, we

consider the optimal ship navigation problem wherein the goal is to find the shortest path

between two given coordinates in the presence of obstacles subject to safety distance and

turn-radius constraints. These obstacles can be debris, rock formations, small islands, ice

blocks, other ships, or even an entire coastline. We present a graph-theoretic solution on

an appropriately-weighted directed graph representation of the navigation area obtained

via 8-adjacency integer lattice discretization and utilization of the A∗ algorithm. We

explicitly account for the following three conditions as part of the turn-radius constraints:

(1) the ship’s left and right turn radii are different, (2) ship’s speed reduces while turning,

and (3) the ship needs to navigate a certain minimum number of lattice edges along a

straight line before making any turns. The last constraint ensures that the navigation

area can be discretized at any desired resolution. We illustrate our methodology on an

ice navigation example involving a 100,000 DWT merchant ship and present a proof-

of-concept by simulating the ship’s path in a full-mission ship handling simulator at

Istanbul Technical University.

In the second section, we consider the stochastic obstacle scene problem wherein an

agent needs to traverse a spatial arrangement of possible-obstacles, and the status of

the obstacles may be disambiguated en route at a cost. The goal is to find an algorithm

that decides what and where to disambiguate en route so that the expected length of the

traversal is minimized. We present a polynomial-time method for a graph-theoretical

version of the problem when the associated graph is restricted to parallel avenues with

fixed policies within the avenues. We show how previously proposed algorithms for the

continuous space version can be adapted to a discrete setting. We propose a gener-

alized framework encompassing these algorithms that uses penalty functions to guide

the navigation in realtime. Within this framework, we introduce a new algorithm that

provides near-optimal results within very short execution times. Our algorithms are

illustrated via computational experiments involving synthetic data as well as an actual

naval minefield data set.

Keywords: Graph theory, shortest path, ship navigation, probabilistic path planning,

stochastic dynamic programming, Markov decision process, Canadian traveler’s problem



Optimal Gemi Navigasyonu ve Stokastik Engelli Ortamlar için

Algoritmalar

İbrahim ARI

Öz

Bu tez araştırması iki farklı fakat alakalı bölümden oluşmaktadır. Birinci bölümde,

optimal gemi navigasyon problemini göz önüne aldık. Bu problemde amaç, engellerin

bulunduğu bir alanda emniyet mesafesi ve dönüş-yarıçapı kısıtı altında verilen iki ko-

ordinat arasında en kısa yolu bulmaktır. Bahsi geçen engeller enkaz, kaya formasyon-

ları, küçük adalar, buz blokları, diğer gemiler ve hatta tüm kıyı şeridi olabilir. Gemi

navigasyon problemi için 8-komşulu tamsayı örgü ayrıklaştırması üzerinde graf-teori ta-

banlı bir çözüm sunduk ve A* algoritmasından faydalandık. Sunduğumuz çözümde,

dönüş-yarıçapı kısıtı için şu üç koşulu açıkça hesaba katılmıştır: (1) gemilerin iskele

(sol) ve sancak (sağ) dönüş yarıçapları farklı olması, (2) dönüşlerde geminin hızının

düşmesi, (3) dönüş yapmadan önce belirli bir mesafe aynı doğrultuda gitmesidir. Üçüncü

kısıt navigasyon alanının istenilen çözünürlükte ayrıklaştırmasına imkan tanır. Optimal

(ayrık) yol belirlendikten sonra keskin dönüşleri, gerçek gemi dönüşlerine benzetmek için

yumuşatma işlemi yaptık. Bu metodolojimizi 100.000 DWT ticari bir geminin buzlu

denizlerdeki navigasyonu örneği üzerinde test ettik ve İstanbul Teknik Üniversitesi’nde

bulunan Tam Donanımlı Köprü-üstü (TDK) Simülatöründe konsept-ispatını sunduk.

İkinci bölümde, stokastik engelli ortamlar problemini göz önüne aldık. Bu problemde

bir ajan, olası-engellerin olduğu bir bölgede hedef bir konuma ulaşmak için yol almalıdır

ve yolculuk esnasında olası-engellerin belirsizliği bir ücret karşılığında giderilebilir. Bu-

radaki amaç, gidilen yolu en kısa yapacak şekilde hangi engelin neresinden belirsizlik

gidermenin yapılacağını belirleyen bir algoritma bulmaktır. Bu problemin belirli poli-

tikalar altındaki paralel caddelerle kısıtlanmış durumu bağlamındaki graf-teori tabanlı

versiyonu için polinom-zamanlı bir yöntem sunduk. Bunun yanında, problemin sürekli

ortamlardaki versiyonu için sunulan algoritmaların nasıl ayrık ortamlara uyarlanacağını

gösterdik. Bu kısımda, navigasyon kılavuzu olarak penaltı fonksiyonlarını kullanan al-

goritmaları kapsayacak şekilde genel bir çatı önerdik. Bu çatı içerisinde, çok kısa koşma

süresinde optimala yakın değerler veren yeni bir algoritmayı tanıttık. Bu algoritmamızı,

sentetik veri üzerinde olduğu gibi gerçek deniz mayın tarlası verisi üzerinde de hesapla-

masal deneylerle test ettik.

Anahtar Sözcükler: Graf teori, en kısa yol, gemi navigasyonu, rassal yol planlama,

stokastik dinamik programlama, Markov karar süreci, Kanadalı gezgin problemi
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Öz v

Acknowledgments vii

List of Figures x

List of Tables xi

1 Optimal Ship Navigation with Safety Distance and Realistic Turn Con-
straints 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Optimal Ship Navigation Problem . . . . . . . . . . . . . . . . . . . . 4

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Safety Distance Constraints . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Lattice Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Ship-Turn Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.4 The A∗ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.5 Smoothing the Optimal Path . . . . . . . . . . . . . . . . . . . . . 13

1.5 Ice Navigation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Simulator Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Summary, Conclusions, and Future Research . . . . . . . . . . . . . . . . 18

2 Algorithms for Stochastic Obstacle Scenes 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The Stochastic Obstacle Scene Problem: Continuous vs. Discrete Settings 23

2.2.1 Deciding Where to Disambiguate: Single Disk Case . . . . . . . . 23

2.2.2 Deciding Where to Disambiguate: Two Disks Case . . . . . . . . . 25

2.2.3 Discretization of the Continuous Setting: An Example . . . . . . . 27

2.3 Definition of the Stochastic Obstacle Scene Problem . . . . . . . . . . . . 27

2.3.1 Continuous SOSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Discrete SOSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Discretized SOSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 A Polynomial Algorithm for Discrete SOSP on Parallel Graphs . . . . . . 29

viii



Contents ix

2.5 Discrete Adaptation of the Simulated Risk Disambiguation Algorithm . . 30

2.5.1 Adaptation to Discrete SOSP . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Adaptation to Discretized SOSP . . . . . . . . . . . . . . . . . . . 32

2.6 Discrete Adaptation of the Reset Disambiguation Algorithm . . . . . . . . 33

2.7 Generalizing SRA and RDA: Penalty-Based Algorithms and DTA . . . . . 34

2.7.1 Illustration of the Algorithms . . . . . . . . . . . . . . . . . . . . . 36

2.8 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8.1 Environment A (The COBRA Data) Experiments . . . . . . . . . 40

2.8.2 Environment B Experiments . . . . . . . . . . . . . . . . . . . . . 41

2.8.3 Environment C Experiments . . . . . . . . . . . . . . . . . . . . . 43

2.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Impact of Cost Change in Parallel Graphs 47

Bibliography 48



List of Figures

1.1 Buffer zone polygon calculation algorithm. . . . . . . . . . . . . . . . . . . 7

1.2 Two illustrations of buffer zone polygon calculation. . . . . . . . . . . . . 8

1.3 Calculation of γr. Observe that γr + 2γr/
√

2 = 1090. . . . . . . . . . . . . 9

1.4 Illustration of the edges emanating from vertex (50,50) with an east-bound
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Illustration of the edges emanating from vertex (50,50) with a northeast-
bound direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Smoothing of right and left turns. . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Illustration of ice categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Ice navigation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Illustration of the JMS full-mission ship handling simulator main bridge
(source: JMS manual). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.10 Manually navigated path inside the full-mission ship handling simulator.
The path is labeled by the ship’s instantaneous speed. . . . . . . . . . . . 19

1.11 Comparison of the graph-theoretical shortest path (dashed line) and the
manually navigated path (solid line). . . . . . . . . . . . . . . . . . . . . . 19

2.1 A continuous SOSP instance with a single disk. . . . . . . . . . . . . . . . 24

2.2 A continuous SOSP instance with two disks. . . . . . . . . . . . . . . . . . 26

2.3 A lattice discretization of the SOSP instance in Figure 2.2. Edges inter-
secting the disks are shown in bold. . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Illustration of the RD, SR, DT, and optimal algorithms on the problem
instance shown in Figure 2.3, this time with disk radii taken as 4.5 non-
diagonal lattice edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Illustration of the COBRA data. In the figure, gray intensity scale of
disks reflects marks of each disk with darker colors indicating a higher
mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 An instance in Environment C and s − t traversals as dictated by RDA
and DTA respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



List of Tables

1.1 Notation characterizing our ship navigation model. . . . . . . . . . . . . . 5

2.1 Optimal disambiguation points and corresponding expected lengths for
different ρ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Scaled and shifted center coordinates and marks of COBRA disks. Disks
in the first nine rows are false obstacles whereas the ones in the last four
rows (shown in bold) are true obstacles. . . . . . . . . . . . . . . . . . . . 38

2.3 Cobra data simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Environment B simulation results. . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Environment C simulation results. . . . . . . . . . . . . . . . . . . . . . . 43

xi



Chapter 1

Optimal Ship Navigation with

Safety Distance and Realistic

Turn Constraints

1.1 Introduction

Seaborne shipping is a major form of transportation that accounts for about 90% of

world’s trade. As of 2011, there are more than 100,000 seagoing commercial ships in

the world transporting over 8,000 million tons of cargo each year [1]. As the world’s

population grows and countries increase their participation in international commerce,

seaborne shipping continues to expand as a low cost, acceptable risk, and environment

friendly form of transportation. In this chapter, we consider a ship navigation problem

wherein the objective is find the (time-wise) shortest path from a given starting point

s to a termination point t in the presence of obstacles subject to (i) safety distance and

(ii) turn-radius constraints. We define an obstacle as any region in any shape or size

that the ship needs to avoid in its s − t voyage. These obstacles can be debris, rock

formations, small islands, ice blocks, other ships, or even an entire coastline. We assume

that the obstacles are static, i.e., they do not move or change shape during the ship’s

navigation, and we do not take into consideration environmental effects such as winds,

waves, or sea currents. Our methodology involves directed 8-adjacency integer lattice

discretization of the navigation area and utilization of the A∗ algorithm on the resulting

graph.

A novel aspect of our research is that we account for the following three real-world ship

navigation phenomena as part of the turn-radius constraints: (1) the ship’s port (left)

and starboard (right) turn radii are different, (2) ship’s speed reduces while turning,

and (3) the ship needs to navigate a certain minimum number of lattice edges along

a straight line before altering course. The third constraint ensures that the navigation

1
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area can be discretized at any resolution needed. These three constraints together will

be referred to as the ship-turn constraints. In addition, we fully parameterize turn-radius

and safety distance constraints in the following sense: (i) different (left and right) turn-

radii and turn-speed can be specified based on the particular characteristics of the ship,

and (ii) safety distances can be defined at the obstacle level based on the nature of the

obstacle. Implementation of our methodology requires non-trivial modifications to the

underlying graph in order to preserve optimality. These modifications include making

certain number of copies of each vertex, defining an appropriate neighborhood structure,

and assigning edge lengths accordingly. Once the optimal (discrete) path is determined,

we smoothen it to emulate the actual (continuous) navigation of the ship. We illustrate

our methodology on an ice navigation example in a full-mission ship handling simulator

with a 100,000 DWT full-load-condition tanker ship and present a proof-of-concept by

simulating the ship’s actual path. Here, DWT stands for deadweight tonnes, which is a

measure of how much the tanker can carry safely including cargo, fuel, fresh water, and

passengers [2].

There exists a vast amount of literature on deterministic shortest paths and ship navigation—

both in continuous and discrete settings. For the most part, continuous-space studies

on ship navigation involve complex differential equations and/or calculus of variation

with curvature constraints. These types of approaches typically do not scale well in the

presence of a large number of arbitrarily-shaped obstacles and ship-turn constraints. Ex-

isting discrete-space studies, on the other hand, impose overly simplistic turn constraints

while ignoring safety distance requirements. To our knowledge, ours is the first study in

the literature that accounts for safety distance and the ship-turn constraints as described

above in a graph-theoretical framework that also allows for full parametrization of these

constraints.

The rest of this chapter is organized as follows: Section 1.2 provides an overview of

previous work on ship navigation (both in continuous and discrete settings) and reviews

existing studies on turn constraints. Section 1.3 formally defines the optimal ship navi-

gation problem. Section 1.4 presents our navigation methodology in detail including the

lattice discretization, modeling of the safety distance and turn constraints, and smooth-

ing of the optimal path. Section 1.5 demonstrates our approach on an ice navigation

example and Section 1.6 provides the output of a full-mission ship handling simulator.

Summary, conclusions, and directions for future research are presented in Section 1.7.

1.2 Previous Work

In many real-world applications, a challenging yet critical task is to find shortest paths for

wheeled vehicles, aircrafts, and ships in different terrains subject to various operational

constraints. Hence, path planning problems and deterministic shortest paths in general
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have been studied extensively; particularly within the fields of transportation science,

operations research, artificial intelligence, and robotics. Arguably, the most commonly

used shortest path methods in the literature are the Dijkstra’s Algorithm [3] and the A∗

Algorithm [4, 5].

Dubins’ car [6] is an example of a forward-moving wheeled vehicle with a maximum

turn angle. (Note that this turn angle is with respect to the vehicle’s present direction

and that a maximum turn angle constraint can be converted to an equivalent minimum

turn-radius constraint.) Path planning problems for Dubins’ car were primarily studied

within the context of non-holonomic path planning [7]. These types of problems are

typically modeled as partial differential equation systems in continuous space and solved

by numerical methods. This solution approach, however, is not effective in general due

to the difficulty in incorporation of real-world physical constraints [8]. The rapidly-

exploring random tree (RRT) method of LaValle [9] is an effective continuous-space

algorithm for Dubins’ car that can handle a wide range of environmental constraints.

However, the path obtained by the RRT method is not necessarily optimal as it is based

on generation of random way-points over the course of navigation [10]. To our knowledge,

there are currently no available non-holonomic models that can be utilized for application

of the RRT method for ship navigation. In addition, incorporating asymmetric left and

right turn constraints as well as decreased speeds during turns into RRT seem to be

rather difficult.

Ship navigation in the presence of obstacles is inherently a continuous-space problem.

However, incorporation of realistic operational constraints in a continuous setting is a

challenging task. Therefore, previous researches on this topic primarily focused on dis-

cretization of the navigation area in various ways. A major advantage of a discretization

approach is that it allows for utilization of well-established and extremely rich machinery

of graph theory and network flows. For instance, the work of Fagerholt et al. [11] on ship

navigation utilizes a visibility graph discretization where the graph is constructed only

partially during the solution process for improved efficiency. The study by Lee et al.

[12], on the other hand, uses pre-specified way points for discretization and employs

a modified depth-first search algorithm. Neither of these studies consider any turn or

safety distance constraints.

Regarding turn constraints for ships, their incorporation in a continuous setting requires

nonlinear maneuvering equations [13–15] and is difficult in general [16]. In graph-

theoretical settings, generic maximum turn angle constraints in the literature seem to

be limited to symmetric one-edge ahead turn constraints. However, such a limitation

implies that resolution of the navigation area is essentially dictated by the turn-radius,

which in turn, eliminates any possibility of working with a finer resolution for improved

accuracy. These one-edge ahead turn constraints were modeled in various ways such as

(1) vertex replication [17–21], (2) modification of the Dijkstra’s Algorithm [22, 23], and

(3) transformation of the original graph [24–29]. A comparison of the vertex replication
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method and modified Dijkstra’s Algorithm for road networks can be found in Vanhove

and Fack [30]. Our methodology is based on the vertex replication technique where

we split each vertex into copies labeled by the direction the ship is coming from as

well as the distance traveled. Thus, immediate navigation history is incorporated into

the present location, which in turn enables enforcement of the ship-turn constraints as

defined in Section 1.1.

A research area closely related to ours is mission planning for routing of military aircraft

and unmanned aerial vehicles [31, 32]. Some of these studies also consider minimum turn

radius constraints [25, 33–35]. Such mission planning studies, however, are not read-

ily adaptable to ship navigation problems due to the fact that ships differ considerably

from aircrafts and aerial vehicles with respect to their technological and operational con-

straints. In particular, aerial mission planning research often takes into account limited

fuel storage constraints, which fundamentally changes the structure of the underlying

problem and makes it computationally intractable [25]. On the other hand, such fuel

capacity constraints do not typically exist in ship navigation.

1.3 The Optimal Ship Navigation Problem

In this section, we formally define the optimal ship navigation problem in the presence of

obstacles, or the OSN problem in short. Without loss of generality, we assume that the

navigation area is rectangular. In addition, we only consider polygon-shaped obstacles.

This should not be seen as a limitation since a polygon approximation can be used to

represent any geometric shape at any level of accuracy [36]. We also assume that these

polygons are non-self-intersecting as self-intersecting polygons can easily be transformed

into non-self-intersecting ones without changing the geometric shape of the obstacle that

the polygon represents. Nonetheless, we allow for non-convex and overlapping polygons.

The terms polygon and obstacle shall be used synonymously in the rest of this work. The

notation in Table 1.1 characterizes our ship navigation model. In the model, one mile

refers to one nautical mile, which corresponds to 1.151 (land) miles or 1.852 kilometers.

Ship’s speed is expressed in knots, with one knot representing a speed of one nautical

mile per hour.

For any obstacle p ∈ P , its buffer zone Bp is defined as the region whose boundary is

comprised of points that are dp meters away from the closest point on the obstacle’s

boundary. In our model, we require that the ship does not enter the buffer zone of any

obstacle, which we call the safety distance constraint. The ship’s left and right turning

diameters are defined as `×cl and `×cr respectively where ` is the ship’s length between

perpendiculars (LBP) in meters. LBP refers to the length of the ship along the water

line from the forward-surface of the stem to the after-surface of the sternpost. This

method for specifying a ship’s turn radius is typical in seaborne navigation [37]. The
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ship’s turning angle at any point (with respect to its present direction) is constrained

to be upper bounded by that of the curvature of the circle with respective left and right

turn diameters.

Table 1.1: Notation characterizing our ship navigation model.

Notation Description

A The (rectangular) navigation area
Ax Length of the navigation area in nautical miles
Ay Width of the navigation area in nautical miles
P The set of (polygon-shaped) obstacles indexed by p
Rp Region associated with obstacle p
Bp Buffer zone associated with obstacle p
dp Safety distance in meters associated with obstacle p
s Starting point
t Termination point
` Ship’s length between perpendiculars (LBP) in meters
cr Ship’s right turn coefficient
cl Ship’s left turn coefficient
k Ship’s speed in knots while straight navigation
k′ Ship’s speed in knots while turning such that k′ < k

The Optimal Ship Navigation (OSN) Problem is then defined as follows: Given a set of

obstacles P inside the navigation area A, a starting point s and a destination point t,

find the time-wise shortest s− t path for a ship with straight (non-turn) speed k, turn

speed k′, LBP `, left-turn coefficient cl, and right-turn coefficient cr subject to safety

distance and ship-turn constraints. Note that due to reduced turning speeds, time-wise

shortest paths are likely to be different than Euclidean-distance shortest paths.

1.4 Methodology

In this section, we first present an algorithm that computes safety buffer zones around

each obstacle. We then describe our lattice discretization and explain implementation

of the ship-turn constraints. Next, we illustrate how the optimal (discrete) path can be

smoothed in order to emulate the actual (continuous) navigation of the ship.

1.4.1 Safety Distance Constraints

As mentioned earlier, this chapter assumes that (polygon-shaped) obstacles inside the

navigation area are static. In reality, however, obstacles such as ice blocks or anchored

ships may move slightly due to environmental conditions such as winds, waves, or sea

currents. Unexpected changes in these conditions may also cause a certain deviation

in the ship’s planned course. In addition, it might be the case that vicinity of an

obstacle is unsafe due to the nature of the obstacle. For instance, under-water sections

of icebergs are sometimes dangerous for close-by ship navigation. Due to these reasons,
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even though obstacles are assumed to be static, we allow for a buffer zone around each

obstacle. These zones are defined as the regions whose boundary is comprised of points

that are dp meters away from the closest point on obstacle p’s boundary.

Our methodology for computing buffer zones is based on defining a sequence of uniformly-

spaced vertices for each pair of edges in the original polygon such that the safety distance

constraint is satisfied. The outcome of the process is another polygon that satisfies the

safety distance constraint at all points, which we call the buffer zone polygon and denote

by Bp for obstacle p. A step angle, denoted by δ, is used to determine the number of

vertices to be defined for each pair of edges. The step angle δ is taken as 3 degrees in

our implementation. As an example, suppose the angle between one pair of edges for an

obstacle is 120 degrees, meaning that the angle between these edges’ normal vectors is

60 degrees. For the resulting buffer zone polygon, we define uniformly-spaced 60/3 = 20

vertices in total corresponding to this edge pair. Provided in Figure 1.1 is a pseudo-code

of our algorithm for buffer zone polygon calculation and illustrated in Figure 1.2 are

two examples. In the rest of this chapter, we will only be concerned with buffer zone

polygons as what the ship needs to avoid in its s− t voyage are these buffer zones—not

the actual obstacles.

1.4.2 Lattice Discretization

As discussed earlier, identification of the shortest path in the OSN problem in a contin-

uous setting is a rather difficult task. Therefore, we consider a discrete approximation

of the continuous setting on a subgraph of the 8-adjacency integer lattice. In particular,

this discretization is the directed graph G = (V,E) whose vertices are all of the pairs

of integers i, j such that 1 ≤ i ≤ xmax and 1 ≤ j ≤ ymax, where xmax and ymax are

given integers. There are directed edges between all pairs of the following four types of

vertices: (1) (i, j) and (i+1, j) with unit length, (2) (i, j) and (i, j+1) with unit length,

(3) (i, j) and (i + 1, j + 1) with length
√

2 units, and, (4) (i + 1, j) and (i, j + 1) with

length
√

2 units. One vertex in G is designated as the starting point s, another vertex

in G is designated as the termination point t. The ship is to traverse from s to t in

G, only using edges whose start and end vertices are both outside of buffer polygons of

any obstacle in P. Consistent with our lattice discretization, we only consider 45-degree

turns in this work.

Unit (i.e., non-diagonal) edge length in the lattice, denoted by α, is determined by a

one-mile-resolution-factor f such that α = 1/f . For instance, f = 20 implies that one

(nautical) mile corresponds to 20 unit edges with α = 1/20 = 0.05 miles, or about 93

meters. Diagonal edge length is then computed as
√

2α ' 131 meters. Now, suppose

that the navigation area is Ax = 12 miles by Ay = 8 miles. With f = 20, xmax and ymax

can be computed as xmax = f × Ax = 240 and ymax = f × Ay = 160. This setup shall

be used in our subsequent illustrations and examples.
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Buffer Zone Polygon Calculation Algorithm for Obstacle p
Input: Set of clock-wise ordered vertices Wp indexed by wi = 1, . . . , |Wp|, safety
distance dp ∈ R+, step angle δ.
Output: Set of vertices WBp corresponding to the buffer-zone polygon Bp.
Begin

Initialize WBp := ∅
Set n := |Wp|
Define w0 := wn and wn+1 := w1 (boundary conditions)
For i := 1 to n do

Set w̃0 := wi, w̃1 := wi−1 and w̃2 := wi+1

Set ~e1 := w̃0 − w̃1 and ~e2 := w̃0 − w̃2

Compute unit vectors ~u1 and ~u2 for ~e1 and ~e2, respectively
Compute direction vectors −→τ1 and −→τ2 that are rotations of ~u1 and ~u2 by angle

π/2 and

−π/2, respectively
Set θ := angle between ~τ1 and ~τ2

If θ < π and θ > δ
Set φ := θ
Set ~τ := ~τ2

While φ ≥ 0
Set ~τ := Vector ~τ rotated counter-clockwise by δ degrees.
Set w̃ := w̃0 + dp ×−→τ
Put w̃ in WBp

Set φ := φ− δ
End while

Else (θ ≥ π or θ ≤ δ)
Set w̃ := w̃0 + dp × (~τ1 + ~τ2)
Put w̃ in WBp

End if
End for

End

Figure 1.1: Buffer zone polygon calculation algorithm.

1.4.3 Ship-Turn Constraints

As mentioned earlier, our definition of ship-turn constraints is comprised of the following:

(1) the ship’s left and right turn radii are different, (2) ship’s speed reduces while turning,

and (3) the ship needs to navigate a certain minimum number of lattice edges along a

straight line before altering course. In order to illustrate how these constraints can be

implemented in practice, we shall use a typical 100,000 DWT merchant ship as a running

example with the following characteristics: LBP ` = 232 meters, right-turn coefficient

cr = 4.7, left-turn coefficient cl = 4.1, cruising speed k = 10.0 knots, and turning speed

k′ = 8.0 knots [37].
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(a) Calculation with θ < π.

 

(b) The resulting buffer zone polygon.

 

  

              

 

    
     

   

     

    

    

    

    

    

     

     

(c) Calculation with θ > π.

 

(d) The resulting buffer zone polygon.

Figure 1.2: Two illustrations of buffer zone polygon calculation.

Right-turn diameter for the above ship is calculated as ` × cr = 232 × 4.7 ' 1, 090

meters whereas the left-turn diameter is given by ` × cl = 232 × 4.1 ' 951 meters.

In order to determine the number of edges in the lattice discretization corresponding

to right and left turns, we first find the smallest octagons that fully contain circles

with the right and left-turn diameters respectively. Edge lengths of these octagons are

computed using elementary geometry as illustrated in Figure 1.3 for the right turn.

Let γr and γl denote the edge length of the octagon corresponding to the right and

left turns respectively. From the figure, we observe that γr + 2γr/
√

2 = 1090, which

implies γr = 1090/(1 +
√

2) ' 452 meters. Likewise, γl = 951/(1 +
√

2) ' 394 meters.

For a right turn, 452 meters correspond to 452/93 ' 4.86 or about 5 unit edges, and

452/131 ' 3.45 or roughly 4 diagonal edges. Similarly, for a left turn, 394 meters
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correspond to 394/93 ' 4.24 or about 4 unit edges, and 394/131 ' 3 diagonal edges.

Thus, a right turn on the integer lattice consists of the following three steps: (1) navigate

at least 5 unit or 4 diagonal edges, (2) make a 45-degree right turn, and (3) navigate

again at least 5 unit 4 diagonal edges to complete the turn. Similarly, for a left turn, the

ship needs to navigate at least 4 unit or 3 diagonal edges in the lattice, make a 45-degree

left turn, and navigate again at least 4 unit or 3 diagonal edges. Each one these edge

sequences before and after the turn shall be referred to as a “leg”. It is important to

note that the second leg of a turn can also be the first leg of the next turn.

Figure 1.3: Calculation of γr. Observe that γr + 2γr/
√

2 = 1090.

Having determined the minimum number of edges for right and left turns, the next

task is to carefully define a new graph G′ = (V′,E′) over which the turn-constrained

navigation shall take place. Graph G′ is constructed in such a way that it contains all

legal paths and no illegal ones in order to preserve optimality. In this context, optimality

is with respect to the underlying integer lattice—clearly, the optimal path on the lattice

is not guaranteed to be optimal in the original continuous space. At this point, we

observe that there are three types of edges in E′:

1. One-Hop Edges (“1H”): Edges representing straight (non-turn) navigation. These

correspond to usual unit or diagonal (or simply one-hop) edges in E.

2. Right-Turn Edges (“RT”): Edges representing one leg of a right turn.

3. Left-Turn Edges (“LT”): Edges representing one leg of a left turn.

The ship navigates at the normal speed k = 10 knots (18,520 meters per hour) along

1H edges, and at the reduced speed k′ = 8 knots (14,816 meters per hour) along the RT

and LT edges. Thus, time length of a unit 1H edge is 3600 × 93/18520 ' 18 seconds,

and time length of a diagonal 1H edge is 3600 × 131/18520 ' 25.5 seconds. On the

other hand, time length of a non-diagonal RT edge is 3600×93×5/14816 ' 113 seconds
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whereas time length of a diagonal RT edge is 3600 × 131 × 4/14816 ' 127.3 seconds.

Likewise, time length of a non-diagonal LT edge is 3600× 93× 4/14816 ' 90.4 seconds

whereas time length of a diagonal RT edge is 3600×131×3/14816 ' 95.5 seconds. Our

objective in the OSN problem is to find the time-wise shortest path. Thus, in the rest

of the chapter, we will exclusively be concerned with time lengths, which we denote by

ϕ(u, v) for (u, v) ∈ E′.

Our methodology for constructing G′ is based on the idea of vertex replication where each

vertex is split into copies labeled by the direction which the ship is coming from as well

as the edge type. There are eight different directions (E,W,N,S,NE,SE,NW,SW), and

three edge types, resulting in a total of 24 copies of each vertex in V. For convenience,

coordinate information of each vertex copy v′ ∈ V′ will be augmented by the direction

and the edge type information. As an example, we consider vertex copies corresponding

to the lattice coordinate x = 50, y = 50 for each one of the three E′ edge types with

an east-bound direction. Figure 1.4 illustrates these copies and the edges emanating

from them. The first vertex copy we examine is (50,50,W,1H), which represents one-

hop straight navigation from west to east, i.e., from (49,50) to (50,50). Since one-hop

is not sufficient for any turns, we define only three edges emanating from this vertex

copy corresponding to further straight (non-turn) navigation with the following three

end vertices:

1. (51,50,W,1H): The corresponding edge represents one-hop straight navigation. Edge

length is 18 seconds.

2. (55,50,W,RT): The corresponding edge represents first leg of a right turn. Edge

length is 113 seconds.

3. (54,50,W,LT): The corresponding edge represents first leg of a left turn. Edge

length is 90.4 seconds.

Second vertex copy we consider is (50,50,W,RT)—representing 5 unit-edge navigation

from west to east, that is, from (45,50) to (50,50). This much distance is sufficient for

both right and left turns as well as further straight navigation. Therefore, we define six

edges emanating from this vertex copy with the following six end vertices:

1. (51,50,W,1H): The corresponding edge represents one-hop straight navigation. Edge

length is 18 seconds.

2. (55,50,W,RT): The corresponding edge represents first leg of a right turn. Edge

length is 113 seconds.

3. (54,50,W,LT): The corresponding edge represents first leg of a left turn. Edge

length is 90.4 seconds.
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(a) One-hop edges (b) Right turn edges

(c) Left turn edges

Figure 1.4: Illustration of the edges emanating from vertex (50,50) with an east-bound
direction.

4. (54,54,SW,RT): The corresponding edge represents first leg of a right turn. Edge

length is 127.3 seconds.

5. (53,53,SW,LT): The corresponding edge represents first leg of a left turn. Edge

length is 95.5 seconds.

6. (54,46,NW,RT): The corresponding edge represents first or second leg of a right

turn. Edge length is 127.3 seconds.

Third vertex copy we consider is (50,50,W,LT)—representing 4 unit-edge navigation

from west to east, that is, from (46,50) to (50,50). This much distance is sufficient

for a left turn as well as further straight navigation, but not long enough for a right

turn. Therefore, we define five edges emanating from this vertex copy with the same

end vertices as the first five vertices above for the (50,50,W,RT) copy. The sixth edge

with the end point (54,46,NW,RT) is excluded as it would result in an illegal move. As

a second set of example edge calculations, Figure 1.5 illustrates the process for the same

lattice coordinate of x = 50, y = 50, this time with a northeast-bound direction.

Vertex copies for other directions and edges emanating from them are defined in a similar

manner as above. In general, for any vertex copy, the following emanating edges need

to be defined for each one of the 8 directions for the listed three edge types:
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(a) One-hop edges (b) Right turn edges

(c) Left turn edges

Figure 1.5: Illustration of the edges emanating from vertex (50,50) with a northeast-
bound direction.

1. 1H Edges: Three straight navigation edges (one 1H, one RT, one LT edge).

2. RT Edges: Three straight navigation edges (one 1H, one RT, one LT edge), two

45-degree left turn edges (one RT, one LT), and one 45-degree right turn RT edge

for a total of six edges.

3. LT Edges: Three straight navigation edges (one 1H, one RT, one LT edge) and two

45-degree left turn edges (one RT, one LT) for a total of five edges.

For a vertex copy, observe that for each one of the 8 directions, there are a total of 14

emanating edges. Thus, |V′| = 24|V| and |E′| = (8× 14)|V|. In our example setting, we

let the starting point for the navigation be (1,80) and the termination point be (240,80).

A desirable feature of our methodology is that it allows for specifying an initial direction

at the starting point and an approach direction at the destination point. For instance, if

the ship is required to approach the termination point from the NW direction, the A∗ al-

gorithm can be terminated as soon as any one of the (240,80,NW,1H), (240,80,NW,RT),

or (240,80,NW,LT) vertices is permanently labeled. In our implementation, we specify

an west-east direction at the starting point and allow for an arbitrary approach direc-

tion at the termination point. Thus, we start the algorithm at the vertex (1,80,W,1H)

and terminate the algorithm whenever any vertex copy at the (240,80) coordinate is

permanently labeled.
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We conclude this section by pointing out to the following fact regarding optimality of our

methodology: the A∗ algorithm that we use to find the shortest s−t path on G′ correctly

identifies the optimal path (with our choice of the heuristic function) as discussed below.

In addition, via careful definition of the edges in E′, we ensure that this graph embeds

all possible legal traversals and no illegal paths. Thus, A∗ algorithm stands proven and

no separate optimality proof is needed.

1.4.4 The A∗ Algorithm

The OSN problem requires finding a deterministic shortest path on the graph G′, which

can be computed by the well-known (heap implementation of) Dijkstra’s algorithm.

When it can be used, the A∗ algorithm [4, 5, 38] is an alternative to Dijkstra’s algorithm,

which has the same worst-case complexity, but empirically runs faster. In A∗, the

guidance of a heuristic function, which roughly reflects the distance from the respective

vertices to the destination, helps to guide the algorithm to make a more goal-oriented

search than the search performed in Dijkstra’s algorithm. In the most general case, A∗

is not guaranteed to terminate with an optimal solution, but if the heuristic function

h it uses is admissible, i.e., never overestimates the actual shortest distance, then A∗

indeed terminates with an optimal solution [38].

In the setting of the graph G′, which is embedded in the plane, an admissible heuristic

function is the time-length of the line segment from every vertex to t with the non-

turn navigation speed of k knots (“as the crow flies;” in the absence of any and all

obstacles). Moreover, this heuristic function is valid in the sense that if h(t) = 0 and,

for all (u, v) ∈ E′, h(u) ≤ h(v) +ϕ(u, v). This latter inequality can be seen as a triangle

inequality. Note that if h is valid, then for all v ∈ V′, h(v) turns out to be a lower bound

on the shortest v, t path distance. In this case, the A∗ algorithm can be coded much

more simply as re-labeling of vertices is never necessary.

1.4.5 Smoothing the Optimal Path

Due to the nature of our lattice discretization, any (45-degree) right or left turn on the

lattice looks artificial and is infeasible in reality as no ship can manoeuver this path

exactly. Thus, once the optimal (discrete) path is determined, any such turn needs to

be smoothed such that the smoothed paths are consistent with the ship’s real-world turn

dynamics. This, in turn, allows for emulating the actual (continuous-space) navigation

of the ship. There has been some research on path smoothing using post-processing

techniques such as curve fitting and creating the smoothed path directly [39, 40]. In

this work, we employ a more natural and realistic-looking smoothing method that takes

advantage of the special structure of the underlying problem. Specifically, we smoothen
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the turns by replacing the inner halves of the turn legs with the arc segment of the turn

circle. This process is illustrated in Figure 1.6 for right and left turns respectively.

(a) Right turn

(b) Left turn

Figure 1.6: Smoothing of right and left turns.

1.5 Ice Navigation Example

Sea ice covers about 7% of world’s oceans [41]. Of particular interest is the sea ice

in the Arctic region as recent studies reveal that the Arctic sea ice is decreasing at a

much faster rate than previously forecasted [42]. This phenomena has been primarily

attributed to two reasons: (1) global warming (the rate of warming at the Arctic region

is twice the globally-averaged), and (2) feedback of the atmospheric circulation and

oceanic circulation change [43].

Northern Sea Route (NSR) through the Arctic region links the Atlantic and Pacific

oceans and allows for maritime transport between Europe, North America, and Asia.

What makes NSR critical for world’s international trade is that it provides a route

between Europe and Asia that is 9,000 km shorter than the Panama Canal route and

17,000 km shorter than traveling around Cape Horn, South America [44]. Yet, usage of

NSR has been limited so far primarily due to the fact that it has never been ice-free,

even during the summer months [42]. However, with the rapid melting of the Arctic

sea ice, NSR could soon open to intercontinental shipping. That being the case, ship

navigation in waters with partially-melted ice poses significant safety risks. In fact, Ho

[42] states that “Before the Arctic routes can reliably be used on a large scale for transit

by shipping along its passages, more investments are required on infrastructure and the

provision of marine services to ensure the safe and secure transit of shipping”.



Chapter 1. Optimal Ship Navigation with Safety Distance and Realistic Turn
Constraints 15

In this section, we provide an ice navigation example that illustrates how our method-

ology can be applied to optimal ship navigation in ice-covered waters. Our goal is to

lay groundwork for further studies on this topic as it is posed to become a new research

area with the opening of the NSR for international seaborne transportation. It is highly

likely that a methodology such as ours for finding shorter routes in icy waters will not

only result in considerable fuel savings and decreased capital costs, but also reduce ships’

negative environmental impact on the delicate Arctic ecology.

Sea ice categorization is typically based on the percentage of the ocean surface it covers.

International standards identify seven categories of sea ice: (1) ice-free, (2) open water,

(3) very open ice, (4) open ice, (5) close ice, (6) very close ice, and (7) consolidated

ice [45]. These categories are illustrated in Figure 1.7(adapted from [45]. Our example is

based on an open ice navigation area, which roughly corresponds to an ice concentration

of 4/10.

(a) Consolidated ice: ice
concentration is 10/10.

(b) Very close ice: ice con-
centration is 9/10.

(c) Close ice: ice concen-
tration is 7/10.

(d) Open ice: ice concen-
tration is 4/10.

(e) Very open ice: ice con-
centration is 1/10.

(f) Open water: ice con-
centration is less than
1/10.

(g) Ice-free: no ice
present.

Figure 1.7: Illustration of ice categories.

In our example, we continue to use the previous setup where the navigation area A is

a 12 by 8 miles rectangular region. Resolution factor f is taken as 20, which implies

that xmax = 240 and ymax = 160 in the integer lattice discretization. For each ice block,

we set the buffer zone safety distance dp to 150 meters. In order to simulate open ice

formation, we construct random Voronoi tiles [46] as follows: We first sample 100 points

from a uniform distribution in the range [1,240]x[1,160]. Then we compute the Voronoi

tiles for these points. Next, we manually designate roughly 40 of these tiles as ice blocks

and the remaining ones as ice-free regions so that our navigation area resembles open

ice. We leave it future research to devise an automated methodology for generation of

random ice fields. Figure 1.8(a) depicts the ice formation and the navigation area used

in our example. Figure 1.8(b) shows the buffer zones around each ice block and the
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shortest path with one-edge ahead symmetric 45-degree turn constraints. Figure 1.8(c)

illustrates the smoothed shortest path with ship-turn constraints. In this particular

example, the shortest path with the ship-turn constraints differs dramatically from the

one with simple one-edge ahead turn constraints—illustrating unsuitability of existing

approaches for ship navigation.

1.6 Simulator Application

Similar to aircrafts, automated navigation systems are available for merchant ships

(Tokyo Keiki Inc. (http://www.tokyokeiki-usa.com/categories/view/6) and Yoko-

gawa autopilots (http://www.yokogawa.com/ydk/mr/marine/pilot/index.htm) are two

examples of such systems). However, these autopilot systems are designed primarily for

navigation in open waters. In restricted waterways or in the presence of close-by ob-

stacles, the common practice is to switch to hand-steering mode due to safety concerns

and limited maneuvering capability. Therefore, the optimal path obtained above for our

ice navigation example needs to be traversed manually by a qualified helmsman in a

real-world application. In this section, we present a proof-of-concept by having an expe-

rienced oceangoing captain hand-steer the graph-theoretic path and thereby simulate the

ship’s actual path in a full-mission ship handling simulator (FMSHS). Our purpose with

this simulation is to illustrate real-world feasibility of our graph-theoretical methodology

and gain insight into any limitations it might have.

FMSHSs are utilized throughout the world not only for educational and training activ-

ities, but also for fulfilling research and development objectives of maritime industry.

Some examples of FMSHS research activities are as follows: analysis of environmental

and maneuvering difficulties in new port constructions, port approaching, real-time nav-

igation in the presence of obstacles, and berthing/unberthing maneuvers. The FMSHS

we use is Japanese Marine Science (JMS) branded and equipped with sophisticated in-

struments same as a real ship bridge. As a full mission simulator, it is capable of fully

simulating behavioral and physical aspects of a bridge operation as well as performing

advance maneuvers in restricted waterways. The simulator system consists of two inde-

pendent bridges called the main bridge (shown in Figure 1.9) and the secondary bridge.

The navigation instruments on the main bridge are connected to a computer system.

The secondary bridge is used primarily for radar navigation purposes. The computer-

generated navigation imagery is projected to a large oval screen by seven CRT projectors

with a 240-degree viewing angle from port wing to starboard wing.

Figure 1.10 shows the manually navigated path inside the FMSHS labeled with the

ship’s instantaneous speed, and Figure 1.11 compares the manually navigated path to

our graph-theoretical shortest path. We observe that the manual path closely (but

not exactly) follows the graph-theoretical path while avoiding buffer zones at all times.
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(a) Navigation area and open ice formation

(b) Buffer zones around each ice block and the shortest path
with symmetric one-edge ahead 45-degree turn constraints

(c) The shortest path with ship-turn constraints and smoothing

Figure 1.8: Ice navigation example.
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Figure 1.9: Illustration of the JMS full-mission ship handling simulator main bridge
(source: JMS manual).

Such a slight difference is somewhat to be expected considering the human element in

the process, but the crucial observation here is that, at least in our example, the graph-

theoretical path seems to be consistent with the complex navigation and turn dynamics

of the merchant ship under consideration. However, we do notice a limitation of our

model: we observe that the ship’s speed is a continuous quantity between about 8 and

10 knots as opposed to being exactly 8 knots while turning and 10 knots while straight

navigation. Such a discrepancy in navigation speeds might perhaps become an issue in

mission-critical applications, but its impact is likely to be less dramatic in a commercial

seaborne shipping setting.

1.7 Summary, Conclusions, and Future Research

This research is concerned with a graph-theoretical approach to the optimal ship nav-

igation problem wherein the objective is to find the shortest path between two given

coordinates in a lattice-discretized navigation area in the presence of obstacles subject

to safety distance and ship-turn constraints. The latter constraint consists of the follow-

ing: (1) the ship’s left and right turn radii are different, (2) ship’s speed reduces while

turning, and (3) the ship needs to navigate a certain minimum number of lattice edges

before making any turns—so that the navigation area can be discretized at any desired

resolution. We present a geometry-based algorithm for computing safety buffer zone

polygons corresponding to each obstacle. In order to facilitate implementation of the

ship-turn constraints, we define a new graph where the lattice vertices are split into 24

copies that incorporate immediate navigation history, that is, direction and edge type

information. In particular, the type of an edge specifies whether the ship was performing

a straight (non-turn) navigation, or, making a right or left turn before arriving at the

edge’s end vertex. For each one of these vertex copies, we carefully define outgoing edges

that represent all legal traversals while avoiding any illegal moves. Once the optimal
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Figure 1.10: Manually navigated path inside the full-mission ship handling simulator.
The path is labeled by the ship’s instantaneous speed.

Figure 1.11: Comparison of the graph-theoretical shortest path (dashed line) and the
manually navigated path (solid line).
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(discrete) path is determined, we smoothen it using geometry to emulate the actual

(continuous) navigation of the ship.

The field application we present to illustrate our methodology is a 100,000 DWT mer-

chant ship navigation in ice-covered waters. We simulate the actual navigation of the

ship in a full-mission ship handling simulator to demonstrate real-world feasibility of

our approach. Finding shorter routes in icy waters using a methodology such as ours

is likely to result in not only fuel and capital savings, but also reduce ships’ negative

impact on the environment.

In what follows, we propose several directions for future research. In this work, we

ignore environmental effects such as winds, waves, or sea currents. Such conditions, on

the other hand, often play a significant role in ship navigation. We plan to incorporate

such environmental constraints in our future research. In addition, we assume that the

obstacles inside the navigation area are static, that is, they do not move or change shape

as the ship navigates. Even though certain obstacles fit this assumption (such as islands

or rock formations), it is likely the case that obstacles such as ice blocks or other ships

change location over the course of the ship’s voyage. We plan to investigate how our

methodology can be adapted to handle such a scenario. Moreover, even though the

shortest path we find is guaranteed to be optimal (in our discrete setting), it is limited

to 45-degree turns on the integer lattice. There exist several studies in the literature

that propose algorithms for finding feasible paths with arbitrary turn angles without

constraining the traversals to grid edges—though without any optimality guarantees

(see, e.g., [47]). We intend to investigate how such approaches can be adapted for ship

navigation in the presence of environmental and ship-turn constraints.



Chapter 2

Algorithms for Stochastic

Obstacle Scenes

2.1 Introduction

We consider a probabilistic path planning problem wherein an agent needs to quickly

navigate from one given point to another through an arrangement of arbitrarily-shaped

regions which are possibly obstacles. At the outset, the agent is given the respective

probabilities that the regions are truly obstacles. These probabilities are referred to

as the region’s mark. When situated on a region’s boundary, the agent has the option

to disambiguate it, i.e., learn at a cost if it is truly an obstacle. The central question

is to find an algorithm that decides what and where to disambiguate en route so as

to minimize the expected length of the traversal. We call this problem the continu-

ous Stochastic Obstacle Scene Problem (SOSP), which is a minor modification of the

problem as introduced in [48]. Also described in that work is a graph-theoretic analog

of this problem, which the authors call the Canadian Traveler’s Problem (CTP). In

CTP, the goal is to find the minimum expected length path over a finite graph whose

edges are marked with their respective probabilities of being traversable, and each edge’s

status can be discovered dynamically when encountered. SOSP and CTP have practi-

cal applications in important probabilistic path planning environments such as robot

navigation in stochastic domains ([49–51]), minefield countermeasures ([52, 53]), and

adaptive traffic routing ([54, 55]). In fact, both problems as well as closely related ones

have gained considerable attention recently—see, e.g., Nikolova and Karger [56], Eyerich

et al. [57], Likhachev and Stentz [58], Xu et al. [59], Aksakalli and Ceyhan [60].

There are no efficiently computable optimal policies known for SOSP or CTP and many

similar problems have been shown to be intractable [48, 61]. The fundamental difficulty

in obtaining a tractable model, even in the discrete setting, is that in order for the

agent to consider any action at any location, it needs to take into account what it has

21
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learned about the status of all of the potential obstacles. Thus, exponentially many such

possibilities need to be incorporated when constructing the state space. The reader is

referred to [62] and the references therein for a review of the literature that includes the

history and development of the problems that fall under the SOSP and CTP umbrella.

Regarding suboptimal algorithms for continuous SOSP, of particular interest are the

simulated risk disambiguation algorithm (SRA) of [63] and the reset disambiguation

algorithm (RDA) of [62]. The idea behind SRA is to temporarily pretend, i.e., simulate,

that the ambiguous obstacles are riskily traversable for the sole purpose of deciding

where to disambiguate next. RDA, on the other hand, is an efficient algorithm for the

SOSP that is provably optimal for a restricted class of SOSP, and it has been shown to

perform relatively well for general instances of the problem.

The contributions of this chapter are as follows:

1. Even though discrete SOSP (i.e., CTP) is intractable in general, we present a

polynomial-time algorithm when the associated graph is restricted to parallel

graphs. This presentation has two purposes: first, it illustrates the difficulty of

discrete SOSP even in extremely simple settings, and second, it shows an alternate

interpretation of the reset disambiguation algorithm.

2. We show how the simulated risk and reset disambiguation algorithms for continu-

ous SOSP can be adapted to the discrete and lattice-discretized versions.

3. We propose a generalized framework encompassing the simulated risk and reset

disambiguation algorithms that uses penalty functions to guide the agent’s naviga-

tion in realtime. Within this framework, we introduce a new algorithm where the

navigation is guided by taking into account the distance from the current location

to the termination point in addition to the disambiguation cost and true-obstacle

probabilities of risk regions. We call this the DT Algorithm (DTA) where DT

stands for “distance to termination”. We present computational experiments that

involve synthetic data as well as an actual naval minefield data set in order to illus-

trate our algorithms. Our experiments indicate that DTA provides near-optimal

results with minimal computational resources.

Our presentation of the algorithms involve disk-shaped regions and the discretization

of the continuous setting is done on an integer lattice. It should be noted that these

algorithms can easily be modified for regions with different shapes as well as for different

discretization techniques. In fact, the algorithms can be generalized for discrete SOS

problems on arbitrary graphs in a relatively straightforward manner.

The rest of this chapter is organized as follows: Section 2.2 presents two simple SOSP

examples and compares their continuous and discrete versions. Section 2.3 formally

defines the continuous, discrete, and (lattice) discretized SOSP. Section 2.4 presents
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a polynomial-time exact method for computing the optimal solution for discrete SOSP

when the associated graph is restricted to parallel avenues and fixed policies exist within

the avenues. Sections 2.5 and 2.6 review SRA and RDA respectively and present their

adaptations to discrete and discretized SOSP. Section 2.7 generalizes these two algo-

rithms as penalty-based navigation strategies and introduces the DT algorithm. Sec-

tion 2.8 presents computational experiments that compare the performance of DTA

against SRA and RDA. Summary and conclusions are presented in Section 2.9.

2.2 The Stochastic Obstacle Scene Problem: Continuous

vs. Discrete Settings

The SOS problem is inherently a continuous-space problem. Specifically, in an appro-

priate terrain on land or in sea, an agent can navigate along arc segments associated

with the possibly-obstacle disks. However, a major challenge in the continuous version

of the problem is to decide where exactly a disk needs to be disambiguated to achieve

the shortest expected length. In fact, Section 2.2.1 below illustrates that in a simple case

with only one disk, the optimal disambiguation point is a function of the disk’s mark

and its computation requires finding the root of a rather complex nonlinear equation.

Furthermore, Section 2.2.2 illustrates via an example with two disks that the optimal

disambiguation point of a particular disk does not only depend on this disk’s mark, but

also on the location and mark of the other disks present in the obstacle field. Thus,

optimal disambiguation points are not readily computable for all but the most trivial

instances of continuous SOSP.

2.2.1 Deciding Where to Disambiguate: Single Disk Case

Consider an instance of continuous-space SOSP with only one disk, as shown in Figure

2.1. In this instance, the starting point is S = (0, 0) and the termination point is

T = (4, 0). The disk is centered at (2, 0) with a radius of 1. The cost of disambiguation

is taken as zero. If the mark associated with this disk is ρ = 0, then the optimal

disambiguation point is C = (1, 0). Consequently, a disambiguation algorithm that

dictates disambiguating at C would traverse S,C,D, T with a total length of 4 units.

On the other hand, if ρ = 1, then, the optimal disambiguation point is intersection point

of the tangent line from S to the disk, which is denoted by A. The coordinates of A can

be computed using geometry as follows: the secant line SCE is related to the tangent

line SA by |SA|2 = |SC||CE|. Thus, we get |SA| =
√

3. Since ŜAE is a right angle,

we have |SA||AE| = |SE||AH|, which yields |AH| =
√

3
2 . Furthermore, since SHA is a

30− 60− 90o triangle, we have |SH| = 1
2 . Thus, A = (1

2 ,
√

3
2 ) ≈ (1.5, 0.866).
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Figure 2.1: A continuous SOSP instance with a single disk.

The optimal disambiguation point for an arbitrary ρ ∈ (0, 1) can be computed using

geometry and some algebra as follows: Let E(P ) be the expected length of the traversal

when the disk is disambiguated at point P = (u, v). Thus, the task is to determine the

optimal disambiguation point P ∗ where

P ∗ = (u∗, v∗) = arg min
u∈(1,1.5)

v=
√

1−(u−2)2

E(P = (u, v))

First, note that ĈEA = B̂ED = 60o, so ÂEB = 60o and therefore |arcAB| = π
3 .

Moreover, |BT | = |SA| =
√

3, which yields |arcAB|+ |BT | = π
3 +
√

3 ≈ 2.7792. Thus,

for ρ ∈ (0, 1), for any point P on the arc segment arcCA, we have

E(P ) = |SP |+ (1− ρ)|PT |+ (ρ)(|arcPA|+ |arcAB|+ |BT |)

= |SP |+ (1− ρ)|PT |+ (ρ)(|arcPA|+ 2.7792)

=
√
u2 + v2 + (1− ρ)(

√
(4− u)2 + v2) + (ρ)

(
2.7792 + (

π

3
− arctan(

v

2− u
))
)

(2.1)

Substituting v =
√

1− (u− 2)2, we get

=
√
u2 + 1− (u− 2)2 + (1− ρ)

(√
(4− u)2 + 1− (u− 2)2

)
+(ρ)

(
2.7792 +

(
π

3
− arctan

(√1− (u− 2)2

2− u

)))

=
√

4u− 3 + (1− ρ)
(√

13− 4u
)

+ (ρ)

(
2.7792 +

(
π

3
− arctan

(√−u2 + 4u− 3

2− u

)))

Thus, given a specific ρ ∈ (0, 1), E(P ) is a function of a single variable, u, which we

denote by E(u). Observe that E(u) is a convex function, which indicates its unique

minimum can be found by setting the following derivative to zero:
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d

du

(
E(u)

)
=

2√
4u− 3

+ (1− ρ)
( −2√

13− 4u

)
− (ρ)

( (−u+2)√
−u2+4u−3

(2− u) +
√
−u2 + 4u− 3(

1 + −u2+4u−3
(2−u)2

)
(2− u)2

)

The last term can be simplified as (ρ)
(

1√
(u−1)(3−u)

)
, yielding d

du

(
E(p(u))

)
as

=
2√

4u− 3
+ (1− ρ)

( −2√
13− 4u

)
− (ρ)

( 1√
(u− 1)(3− u)

)
=

[√
(4u− 3)(13− 4u)(u− 1)(3− u)

]−1[
2
√

4u− 3(13− 4u)(u− 1)(3− u)

−2(1− ρ)
√

13− 4u(4u− 3)(u− 1)(3− u)− ρ
√

(u− 1)(3− u)(4u− 3)(13− 4u)
]

Thus we have the following result: For ρ ∈ (0, 1), the optimal disambiguation point is

P ∗ = (u∗,
√

1− (u∗ − 2)2) where u∗ is the unique solution of the following equation in

the interval (1, 1.5):

0 = 2
√

4u− 3(13− 4u)(u− 1)(3− u)− 2(1− ρ)
√

13− 4u(4u− 3)(u− 1)(3− u)

−ρ
√

(u− 1)(3− u)(4u− 3)(13− 4u) (2.2)

Using MATLAB, we tabulated ρ versus (u∗, v∗) for several different values of ρ in Table

2.1. It can be seen that the closer ρ is to 1, the closer the optimal disambiguation point

is to A = (1.5, .87).

Table 2.1: Optimal disambiguation points and corresponding expected lengths for
different ρ’s

ρ (u∗, v∗) E(u∗, v∗)
0 (1, 0) 4
.5 (1.06, .34) 4.33
.75 (1.15, .53) 4.44
.9 (1.27, .68) 4.49
1 (1.5, .87) 4.51

2.2.2 Deciding Where to Disambiguate: Two Disks Case

In this section, we illustrate the fact that the optimal disambiguation point of a particular

disk does not just depend on this disk’s mark, but also on the location and mark of the

other disks present in the obstacle field.

Consider the SOSP instance with two disks in Figure 2.2. In this instance, the starting

point is S = (0, 0) and the termination point is T = (8, 0). The first disk is centered
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at (2, 0) and the second at (6, 0), both with a radius of 1. The cost of disambiguation

is taken as zero. Let x1, x2 be the first and second disks, respectively, and ρ1, ρ2 be

the marks of these disks. Furthermore, let W1,2 denote the walk associated with the

algorithm that calls for first disambiguating x1 and then x2 regardless of the outcome

of the disambiguation. Now, let P ∗ = (u∗1, v
∗
1) and Q∗ = (u∗2, v

∗
2) be the optimal dis-

ambiguation points associated with W1,2. If ρ1 = 0, ρ2 = 0, then P ∗ = C = (1, 0) and

Q∗ = G = (5, 0). However, if ρ1 = 0, ρ2 = 1, then P ∗ = F and Q∗ = H. Thus, the

optimal disambiguation point for x1 associated with the policy W1,2 depends on the

location and mark of x2.

Figure 2.2: A continuous SOSP instance with two disks.

In fact, we can compute the optimal disambiguation point P ∗ associated with W1,2 as

follows:

E(W1,2(P,Q)) = |SP |+ (1− ρ1)
(
|PQ|+ (1− ρ2)|QT |+ (ρ2)(|arcQHJ |+ |JT |)

)
+(ρ1)

(
|arcPAB|+ |BQ|+ (1− ρ2)|QT |+ (ρ2)(|arcQHJ |+ |JT |)

)
Due to the fact that P and Q are points on x1 and x2 respectively, it holds that

v1 =
√

1− (u1 − 2)2 and v2 =
√

1− (u2 − 6)2. For this reason, E(p1,2(P,Q)) can

be expressed as a function of u1 and u2 similar to equation (2.1). One can then compute

partial derivatives of E(W1,2(u1, u2)) with respect to u1 and u2 and determine the roots

in the interval (1,1.5) for u1 and (5,6) for u2 to obtain P ∗ and Q∗. That is,

(u∗1, u
∗
2) = arg min

u1∈(1,1.5)
u2∈(5,6)

E(W1,2(u1, u2)) (2.3)

Note that Q∗ is computed in (2.3) as it is needed to determine P ∗ in an expected sense.

Once x1 is disambiguated, a new Q∗ needs to be re-calculated as in the single disk case

based upon the actual outcome of the disambiguation. It should also be noted that the

solution of (2.3) involves nontrivial geometric calculations and solving a highly nonlinear

system with two equations in two unknowns, namely, u∗1 and u∗2.
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2.2.3 Discretization of the Continuous Setting: An Example

Given the challenges associated with the continuous version of SOSP, we consider a

lattice discretization of the problem for convenience and ease of computation. As an

illustration, a lattice discretization of the SOSP instance in Figure 2.2 is shown in

Figure 2.3 where one unit distance is represented by three non-diagonal lattice edges.

In the figure, edges intersecting the disks are shown in bold. The endpoints of these

edges that are outside of the disks are designated as the disambiguation points of the

corresponding disk. A desirable feature of the lattice discretization is that its resolution

can be increased or decreased as needed to achieve a desired balance between accuracy

and computational burden.

Figure 2.3: A lattice discretization of the SOSP instance in Figure 2.2. Edges inter-
secting the disks are shown in bold.

Even in the lattice-discretized version of the problem, finding an algorithm to minimize

the total expected traversal length is a challenging task. This difficulty arises from the

fact that in order for the agent to decide its action at any given location, it needs to

take into account what it has learned about the status of all of the potential obstacles

(true, false, or ambiguous respectively), and exponentially many such possibilities need

to be incorporated into the agent’s decision.

2.3 Definition of the Stochastic Obstacle Scene Problem

This section formally defines the continuous, discrete, and lattice-discretized SOS prob-

lems respectively.
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2.3.1 Continuous SOSP

Without loss of generality, we shall consider SOS problems with disk-shaped possible-

obstacles. We formally define this problem as follows: Consider a marked point process

on a particular region R in R2—this region shall be called the obstacle field. This process

generates random detections XT , XF ⊆ R (respectively called true and false detections),

and random marks ρT : XT → [0, 1) and ρF : XF → (0, 1]. When observing a realization

of this process, the agent only sees X := XT
⋃
XF and ρ := ρT

⋃
ρF . We assume that,

for all x ∈ X, ρ(x) is the probability that x ∈ XT . We also assume that whether or

not any one x ∈ X is in XT is independent of any other x′ ∈ X. For every detection

x, the possibly obstacle region Dx is an open disk centered at x with radius r(x) > 0,

for a given function r : X → R>0. For any x ∈ X, the probability ρ(x) shall be referred

to as the “mark” of the associated disk Dx. That is, mark of a disk is essentially the

probability that this disk is a true obstacle and not a false one. Given a starting point

s ∈ R and a destination point t ∈ R, the agent seeks to traverse a continuous s, t curve

in (
⋃
x∈XT

Dx)C of shortest achievable arclength (here, C denotes the set complement

operator).

We further suppose that there is a dynamic learning capability. Specifically, for all

x ∈ X, when the curve is on the boundary ∂Dx, the agent has the option to disambiguate

x, that is, learn if x ∈ XT or not. For a given cost function c : X → R≥0, it is assumed

that such a disambiguation shall result in a cost c(x) being added to the overall length of

the curve. We assume that there is a limit K on the number of available disambiguations.

How the agent should route the continuous s, t traversal curve—and where and when the

disambiguations should be performed—to minimize the expected length of this curve is

called the continuous SOSP.

2.3.2 Discrete SOSP

The discrete analogue of the above problem, which we call the discrete SOSP, is defined

as follows: Let G = (V,E) be an undirected graph with designated vertices s, t ∈ V, and

suppose there is a function ` : E → R≥0 assigning a length to each edge; the goal here

is to find a shortest s, t traversal (walk) in G. However, not all of the edges may indeed

be traversable. In particular, for a given subset E′ ⊆ E of edges, called stochastic edges,

there is a function ρ : E′ → [0, 1) such that, for each edge e ∈ E′, ρ(e) is the probability

that e is not traversable, independent of the other edges. As in the continuous setting,

ρ(e) shall be referred to as the “mark” of the edge e. For clarity of notation, marks of

disks in the continuous setting and marks of edges in the discrete setting shall both be

denoted by ρ. Edges in E \E′ are deterministic in the sense that they are known a priori

to be traversable. For any edge e ∈ E′, when the traversal is at an endpoint of e, the

agent has the option to disambiguate e—learning whether e is traversable—at a cost
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c(e) added to the length of the traversal, for some function c : E′ → R≥0. Edges cannot

be traversed until it is known that they are traversable, and the traversability status of

each edge is static and will never change over the course of the traversal. Of course, if

the agent follows any particular policy then the traversal is still random (and will unfold

depending on the results of the disambiguations, so the traversal will have distribution

specified through ρ). The agent’s goal, however, is to find an optimal algorithm in

the sense of having shortest expected length. As in the continuous version, we assume

that there is a limit K on the number of available disambiguations. Finding such an

optimal algorithm is the discrete SOSP (also known as the Canadian Traveler’s Problem

(CTP) in the literature). To avoid infinite expected length, we assume the existence of

a (possibly very long) s, t path consisting of edges from {e ∈ E′ : ρ(e) = 0} ∪ (E \ E′).

2.3.3 Discretized SOSP

As mentioned earlier, optimal disambiguation algorithms are not readily computable for

all but the most trivial instances of continuous SOSP. We therefore consider a discrete

approximation which is, for simplicity and convenience, on a subgraph of the integer

lattice Z2. Specifically, it is the graph G whose vertices are all of the pairs of integers i, j

such that 1 ≤ i ≤ imax and 1 ≤ j ≤ jmax, where imax and jmax are given integers. There

are edges between all pairs of the following four types of vertices: (1) (i, j) and (i+ 1, j)

with unit length, (2) (i, j) and (i, j + 1) with unit length, (3) (i, j) and (i + 1, j + 1)

with length
√

2, and, (4) (i + 1, j) and (i, j + 1) with length
√

2. One vertex in G is

designated as the starting point s, another vertex in G is designated as the termination

point t. The agent is to traverse from s to t in G, only through edges that do not intersect

any true or ambiguous obstacles. If an edge intersects any ambiguous obstacle, then a

disambiguation may be performed from either of the edge’s endpoints that is outside of

the obstacle. As before, the goal is to develop a policy that minimizes the expected length

of the traversal by effective exploitation of the disambiguation capability (the terms

solution and policy shall be used interchangeably). We call this lattice discretization

as Discretized SOSP, which, in effect, is a special case of discrete SOSP with statistical

dependency among the edges.

2.4 A Polynomial Algorithm for Discrete SOSP on Parallel

Graphs

The discrete SOS problem has been shown to be NP-hard [61]. In this section, however,

we present a polynomial algorithm when the problem is restricted to parallel graphs.

We call a graph G = (V,E) parallel if V = {s, t}, and all edges in E have both s and

t as endpoints. Without loss of generality, the policies that need to be considered in
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this case consist of an ordering on E wherein the edges are disambiguated in this order

until a traversable edge is found, at which point that edge is traversed. We shall assume

that if an edge is disambiguated and found to be traversable, then it will be traversed

immediately. The remark below gives a polynomial-time method for discrete SOSP on

parallel graphs with K = ∞. An efficient algorithm for the problem when K is finite

can be found in Blatz et al. [64].

Remark 1. Discrete SOSP on parallel graphs can be solved in O(|E| log |E|) as opposed

to the brute-force approach in O(|E|!). Specifically, the policy that orders the edges by

h(e) := `(e) +
c(e)

1− ρ(e)
(2.4)

for all e ∈ E is optimal.

2.5 Discrete Adaptation of the Simulated Risk Disambigua-

tion Algorithm

This section adapts the simulated risk disambiguation algorithm (SRA) in [63] intro-

duced for continuous SOSP to discrete and lattice-discretized SOSP (an earlier version

of this section’s research appeared in [65]).

2.5.1 Adaptation to Discrete SOSP

In our framework, the traversal never uses edges while they are still ambiguous or are

known to be non-traversable. The key intuition behind SRA is—for the sole purpose

of deciding where to disambiguate next—to temporarily pretend (simulate) that the

ambiguous edges are riskily traversable.

Under this simulation of risk, for any s, t walk W , its risk length is defined as

`r(W ) := − log
∏

e∈(W∩E′)

(1− ρ(e)).

This negative logarithm of the probability that W is permissibly traversable is a measure

of the risk in traversing W—if the agent were willing to take on risk. Note that the agent

might revisit a vertex over the course of the traversal, making the final trajectory a walk

(and not a path).

An undesirability function is any function g : R≥0 × R≥0 → R which is monotonically

nondecreasing in its arguments; that is to say, for all r1, r2, z1, z2 ∈ R≥0 such that r1 ≤ r2

and z1 ≤ z2, it holds that g(r1, z1) ≤ g(r2, z2). The number g(`e(W ), `r(W )) is thought

of as a measure of the undesirability of W in the sense that, if the agent were required
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to traverse from s to t in G under the simulation of risk and without a disambiguation

capability, the agent would select the walk

φg := arg min
s−t walks W

g(`e(W ), `r(W )).

The simplest undesirability functions are the linear ones where g(r, z) := r + α · z for

some given constant α > 0, and it is these undesirability functions that we restrict our

attention. To find φg in this particular case, we just need to find a deterministic shortest

s− t path in G via e.g, Dijkstra’s algorithm where each edge in E is weighted as follows:

wSRAD (e) := `e(e) + 1e∈E′ · α log(1− ρ(e))−1 (2.5)

where `e(e) is the edge’s Euclidean length (which is either 1 or
√

2), and 1 is the indicator

function (taking value 1 or 0 depending on whether its subscripted expression is true or

false). The (adapted) SRA for discrete SOSP associated with the linear undesirability

function g(r, z) = r + α · z would have the agent do the following:

1. Find the shortest s, t path in G with respect to the edge weights wSRAD . Start from

s and traverse this walk until its first ambiguous edge e is encountered at vertex

v.

2. At this point (since the agent cannot traverse an ambiguous edge) disambiguate

e.

3. If e was just discovered to be traversable, remove it from E′. If e was discovered

to be non-traversable, set ρ(e) := 1.

4. Repeat this procedure using v as the new s until t is reached or there are no more

disambiguations left, in which case the shortest unambiguously permissible path

to t is taken.

For a fixed α > 0, denote by pα the s, t walk traversed under SRA. Observe that pα

is an s, t-walk-valued random variable, since its realization depends on the outcomes of

the dictated disambiguations. We will denote by Epα the expected length of this walk.

In our implementation, the values of α minimizing E`epα are computed numerically

by evaluating E`epα for a mesh of α values—starting at αmin = 2 and incrementing

successively by αmesh = 5 units until α is large enough that no disambiguations are

performed.
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2.5.2 Adaptation to Discretized SOSP

We now show how SRA can be adapted to discretized SOSP. Again, under simulation

of risk, for any s, t walk W , its risk length is defined as

`r(W ) := − log
∏

Di:Di∩W 6=∅

(1− ρi).

Using a linear undesirability function in the form of g(r, z) := r + α · z for some given

constant α > 0, we need to find a deterministic shortest s, t path in G where each edge

in E is weighted as follows:

wSRALD (e) := `ce(e) +
1

2

|X|∑
i=1

#comp(e\Di) · 1e∩Di 6=∅ ·
(
α log(1− ρi)−1

)
(2.6)

where #comp(·) is the number of connected components of its argument. SRA for

discretized SOSP would have the agent do the following:

1. Find the shortest s, t path in G with respect to the edge weights wSRALD . Start from

s and traverse this walk until its first ambiguous edge e is encountered at vertex

v, with edge e intersecting disk Di.

2. At this point (since the agent cannot enter an ambiguous disk) disambiguate Di.

3. If Di was just discovered to be a false obstacle, remove disk Di’s center point Xi

from X. If Di was discovered to be true obstacle, set ρi := 1.

4. Repeat this procedure using v as the new s until t is reached or there are no more

disambiguations left, in which case the shortest unambiguously permissible path

to t is taken.

Note that the navigation strategies for discrete and discretized SOSP as dictated by

SRA share the following characteristic: The agent first finds the shortest s − t path

with respect to a certain edge weight function; wSRAD for discrete SOSP and wSRALD for

discretized SOSP. Next, the agent navigates this path until the first ambiguous edge or

disk is encountered. At this point, a disambiguation is performed. Based on the outcome

of the disambiguation, either the edge or disk is removed from the set of stochastic edges

or possible-obstacles, or, its mark is set to 1. This procedure is repeated using the current

vertex as the new s until t is reached. We call this the NDR navigation strategy where

NDR stands for “navigate-disambiguate-repeat”.
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2.6 Discrete Adaptation of the Reset Disambiguation Al-

gorithm

The reset disambiguation algorithm (RDA) introduced in Aksakalli et al. [62] for the

continuous SOS problem is provably optimal for a particular variant of the problem,

called the reset variant. It is also optimal for a restricted class of instances for the

original SOSP. Otherwise, the algorithm is generally suboptimal but, it is both effective

and efficiently computable. In what follows, we describe the idea behind RDA and

present its adaptation to discrete and discretized SOSP respectively.

In discrete SOSP, traversability status of stochastic edges are fixed and they never change

until the s− t navigation is completed. In the reset variant, however, each time an edge

e ∈ E′ is disambiguated, its status is governed by independent Bernoulli trials with prob-

ability ρ(e). If at a given time a disambiguation determines that e is traversable, then

the agent may traverse e immediately, and e remains traversable until the agent reaches

the other end point. Otherwise, immediately after each disambiguation of e, the status

of e is “reset” and it becomes ambiguous again. Assuming that K = ∞, an optimal

policy in this reset setting can be determined by the following observation: if an optimal

policy dictates at any time that e is disambiguated, and if the disambiguation finds that

e is non-traversable, then, by Bellman’s Principle of Optimality, the optimal policy will

dictate that e be disambiguated again. The reason is that, with the resetting of e, the

agent’s current state is identical to the agent’s state right before the first disambigua-

tion of e. Thus, e must be repeatedly disambiguated until it is traversable. Hence, the

number of disambiguations needed is a geometric random variable with expected value
1

1−ρ(e) . This indicates that under an optimal policy, the agent may view e as if it was

deterministically traversable at a cost c(e)
1−ρ(e) . This cost is defined to be ∞ if ρ(e) = 1

regardless of c(e), and it is in addition to the edge’s Euclidean length `e(e). Thus, the

optimal policy in the reset variant of discrete SOSP boils down to finding a deterministic

s− t path in G where the edge weights are defined as follows:

wRDAD (e) := `e(e) + 1e∈E′ ·
c(e)

1− ρ(e)
. (2.7)

The idea in reset disambiguation algorithm is to use the weights wRDAD (for the reset

variant) in exactly the same fashion as SRA (for the original non-reset problem) using

the NDR navigation strategy. It is easy to see that adaptation of RDA for discretized

SOSP can be achieved by using the weight function below under the NDR navigation

strategy:

wRDALD (e) := `e(e) +
1

2

|X|∑
i=1

#comp(e\Di) · 1e∩Di 6=∅ ·
( c(e)

1− ρ(e)

)
(2.8)
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Per equation (2.7), the reset disambiguation algorithm for discrete SOSP on a parallel

graph with only stochastic edges would dictate that the edges are disambiguated in

increasing order of `e(e) + c(e)
1−ρ(e) . On the other hand, per Theorem 1, this is precisely

the optimal policy for the problem! That is, despite the fact that RDA is suboptimal

for discrete SOSP in general, it is indeed optimal when the problem is restricted to

parallel graphs. This observation essentially indicates that RDA can be interpreted in

two different ways: It can either be seen as using the optimal edge weights of the reset

variant, or it can be seen as using the optimal edge weights for parallel graphs in the

original non-reset version—both within the paradigm of the NDR navigation strategy. It

should be noted that either interpretation of the RD algorithm stands as an interesting

idea in design of suboptimal algorithms for challenging optimization problems:

• Consider a variant of the original problem for which an efficient optimal algorithm

can be computed, and then use this algorithm as a suboptimal algorithm for the

original problem, or

• Consider a special case of the original problem for which an efficient optimal al-

gorithm can be computed, and then use this algorithm as a suboptimal algorithm

for the original problem.

Even more interestingly, in the case of the RD algorithm for SOSP, both ideas result

in exactly the same suboptimal algorithm, and it performs rather well for the original

problem.

2.7 Generalizing SRA and RDA: Penalty-Based Algorithms

and DTA

The ideas behind the simulated risk and reset disambiguation algorithms for discrete

SOSP are fundamentally different: SRA is based on the idea of temporarily pretending

that ambiguous edges are riskily traversable. On the other hand, RDA is based on the

idea of using the optimal weights of a reset variant in the original non-reset version (or the

optimal weights for parallel graphs on arbitrary instances). However, a common feature

they share is that both algorithms employ the NDR strategy, though with different

weight functions. In this section, we show how this framework can be generalized to

allow for different weight functions, hence new algorithms, to potentially improve upon

both SRA and RDA as well as address their respective shortcomings as discussed below.

We first observe that the weight functions used by SRA and RDA can be generalized as

follows for discrete SOSP using the notion of “penalty functions”:

wFD(e) := `e(e) + 1e∈E′ · F (e), (2.9)
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and as follows for discretized SOSP:

wFLD(e) := `e(e) +
1

2

|X|∑
i=1

#comp(e\Di) · 1e∩Di 6=∅ · F (e). (2.10)

In SRA, the penalty function F is specified as FSR(e) := α log(1 − ρ(e))−1 whereas it

is defined as FRD(e) := c(e)
1−ρ(e) for RDA. For the purpose of generalizing this idea, we

define “a penalty-based disambiguation algorithm” as deployment of the NDR navigation

strategy with the weight function wFD(e) for discrete SOSP and wFLD(e) for discretized

SOSP with an arbitrary (nonnegative) penalty function F (e).

A major downside of SRA is that it needs to “fine-tune” the penalty term via the α

parameter for improved performance. The best value of this parameter is essentially

found by brute-force. Thus, a clear advange of RDA over SRA is the lack of a fine-

tuning parameter that results in significant computational savings. [62] illustrates, via

computational experiments, that performance of RDA is comparable to that of SRA

whereas run time of SRA is about 60 times greater than that of RDA. Thus, it can be

argued that FRD is a “better” penalty function compared to FSR. A reasonable question

at this point is if there exist penalty functions even better than FRD in the sense that

the NDR navigation strategy with these functions result in shorter expected traversal

lengths compared to those obtained by FRD. Of course, FSR and FRD are special, as

the first one is motivated by the idea of risk simulation whereas the latter is provably

optimal in the case of parallel graphs. However, it is not unreasonable to expect that a

different penalty function other than FSR and FRD may outperform them.

Before we attempt to answer this question, we point out a limitation of RDA. Despite its

good performance and lack of need for a fine-tuning parameter, a significant limitation of

the weight function FRD, hence RDA, is that it cannot be used when the disambiguation

cost is zero. In many practical applications of SOSP, however, the disambiguation cost

can be zero. A simple example is an instance of the problem where a disambiguation can

be performed visually with a clear line of sight. Thus, in our quest for better penalty

functions, we would like to be able to address this limitation.

A reasonable approach to handle zero disambiguation cost is to have the cost as an

additive term in the penalty function. Furthermore, any meaningful penalty function

needs to be monotonically nondecreasing in c(e) and ρ(e) for stochastic edges in discrete

SOSP and for edges that intersect possible-obstacles in discretized SOSP. With these

two observations in mind, we experimented with a large number of penalty functions

with an additive cost term that are also monotonically nondecreasing in c(e) and ρ(e).

We also tried penalty functions that account for different metrics in the obstacle field.

One particular metric we considered was the distance of an edge’s midpoint to the ter-

mination point t, which we denote by dt(e). Our experiments included an actual naval
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minefield dataset, as discussed in Section 2.8, as well as synthetic data that possess simi-

lar characteristics to this minefield dataset. After extensive computational experiments,

we observed that one particular penalty function consistently outperformed FRD and

other functions in most instances. This penalty function is presented below:

FDT (e) := c(e) +
( dt(e)

1− ρ(e)

)− log(1−ρ(e))
(2.11)

This function includes a dt(e) term and therefore it is called FDT . The disambiguation

algorithm that uses the FDT penalty function with the NDR navigation strategy is called

the DT Algorithm (DTA). In particular, DTA uses the weight below for discrete SOSP:

wDTAD (e) := `e(e) + 1e∈E′ ·
(
c(e) +

( dt(e)

1− ρ(e)

)− log(1−ρ(e)))
(2.12)

and the weight below for discretized SOSP:

wDTALD (e) := `e(e)+
1

2

|X|∑
i=1

#comp(e\Di)·1e∩Di 6=∅·
(
c(e)+

( dt(e)

1− ρ(e)

)− log(1−ρ(e)))
. (2.13)

2.7.1 Illustration of the Algorithms

We now illustrate applications of the RD, SR, DT, and the optimal algorithms on the

simple discretized SOSP instance shown in Figure 2.3, this time taking disk radii as 4.5

non-diagonal lattice edges. For consistency with our definition of discretized SOSP, this

instance is scaled as follows: The starting point is taken as s = (2, 6), termination as

t = (26, 6); first disk center as (8,6), and second disk center as (20,6). Marks of the first

and second disks are taken as 0.2 and 0.1 respectively, and cost of disambiguation is taken

as 0.4. The optimal algorithm we utilize is the BAO∗ Algorithm. Introduced in [66],

BAO∗ improves upon the AO∗ Algorithm by efficiently exploiting the problem structure

and searches only a very small fraction of the solution space. Consequently, the algorithm

uses significantly less computational resources compared to AO∗ and stochastic dynamic

programming. Superimposed walks as dictated by RDA are displayed in Figure 2.4(a).

These walks are described below.

• Start at vertex s and disambiguate the first disk x1 at vertex A. If x1 is found

to be a false obstacle, traverse to B and disambiguate x2 at that vertex. If x2 is

found to be a false obstacle as well, directly traverse to t. If x2 is found to be true,

traverse to t while avoiding x2; namely, via vertices C, D, E, and F .

• If x1 is found to be a true obstacle, traverse to vertex D while avoiding x1 and

disambiguate x2 at D. If it is found to be a false obstacle, traverse to t via vertex

F . If x2 is found true, traverse to t via vertices E and F while avoiding x2. Total

expected traversal length is 26.83 units.
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Superimposed walks as dictated by the SR, DT, and BAO∗ Algorithms are displayed in

Figure 2.4(b) and explained below.

• Start at vertex s and disambiguate the first disk x1 at vertex A. If x1 is found

to be a false obstacle, traverse to B and disambiguate x2 at that vertex. If x2 is

found to be a false obstacle as well, directly traverse to t. If x2 is found to be true,

traverse to t while avoiding x2; namely, via vertices C, D, E, and F . Note that

these walks are exactly the same as in RDA.

• If x1 is found to be a true obstacle, traverse to vertex C while avoiding x1 and

disambiguate x2 at C. If it is found to be a false obstacle, traverse to t via vertex

F . If x2 is found true, traverse to t via vertices D, E and F while avoiding x2.

Total expected traversal length is 26.34 units.

The main difference between RDA and the other algorithms is that if x1 is disambiguated

and found to be a true obstacle, RDA dictates disambiguation of x2 at vertex D whereas

the other algorithms dictate its disambiguation at vertex C, resulting in a 0.49 units

decrease in the expected traversal length. Thus, in this particular case, RDA fails to

find the optimal policy while SRA and DTA do not.

2.8 Computational Experiments

This section empirically compares the performances of SR, RD, and DT algorithms.

The specific application domain we consider is maritime minefield navigation, which

has received considerable attention from scientific and engineering communities recently

[53, 67]. A particular instance we consider is a U.S. Navy minefield dataset (called

the COBRA data) that first appeared in Witherspoon et al. [53] and was later referred

to in Fishkind et al. [63], Priebe et al. [68, 69], Ye and Priebe [70], Ye et al. [71],

and Aksakalli et al. [62]. The COBRA data is illustrated in Figure 2.5 and tabulated

in Table 2.2. This dataset has a total of 39 disk-shaped possible-obstacles: 12 of these

disks are mines (i.e., true obstacles) and the remaining ones are clutter (that is, false

obstacles). For convenience, original data coordinates were scaled and shifted so that

disk centers are inside the region [10, 90] × [10, 90]. The starting point is s = (54, 80)

and the termination point is t = (54, 10) with disk radius taken as r = 5.

Our experiments were conducted in the following three simulation environments:

Environment A: The actual COBRA data.

Environment B: COBRA-like instances with 12 true and 27 false disk-shaped obsta-

cles. Centers of these 39 disks were randomly sampled from the uniform distribu-

tion over the region [10, 90] × [10, 90]. To make the disk layout more formidable
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(a) Superimposed walks as dictated by RDA. In this particular case, RDA fails to find the optimal
policy.

(b) Superimposed walks as dictated by SRA, DTA, and the optimal algorithm BAO∗.

Figure 2.4: Illustration of the RD, SR, DT, and optimal algorithms on the problem
instance shown in Figure 2.3, this time with disk radii taken as 4.5 non-diagonal lattice

edges.

Table 2.2: Scaled and shifted center coordinates and marks of COBRA disks. Disks
in the first nine rows are false obstacles whereas the ones in the last four rows (shown

in bold) are true obstacles.

x-coord. y-coord. ρ x-coord. y-coord. ρ x-coord. y-coord. ρ

46.13 39.61 0.0731 50.49 24.26 0.1033 83.62 16.33 0.1165
30.21 54.62 0.1379 56.83 20.50 0.1527 44.87 66.45 0.1668

47.88 34.51 0.1718 40.55 76.93 0.1939 43.43 26.22 0.2575

21.93 53.22 0.3309 69.82 51.65 0.4353 65.64 11.08 0.4412
37.36 29.94 0.4917 29.47 37.21 0.5215 59.42 20.11 0.5418

38.90 57.22 0.5609 32.07 31.37 0.5745 45.71 24.83 0.5831
86.12 15.83 0.5902 52.01 56.80 0.5994 41.14 27.41 0.6200
8.43 74.26 0.6399 37.00 43.89 0.6416 72.53 18.22 0.6527

22.98 40.29 0.6543 70.33 18.61 0.6564 29.78 32.15 0.6566

63.54 24.81 0.1887 64.04 37.65 0.5149 27.00 37.97 0.5280
46.07 71.00 0.5609 65.16 64.01 0.5653 37.36 18.03 0.6108

39.43 70.31 0.6171 75.51 42.83 0.6189 76.11 55.73 0.6405
38.29 44.20 0.6444 28.16 64.10 0.6567 64.55 50.98 0.8515
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Figure 2.5: Illustration of the COBRA data. In the figure, gray intensity scale of
disks reflects marks of each disk with darker colors indicating a higher mark.

in this environment, it was conditioned that the zero-risk s− t path length was at

least 130 units. Here, the zero-risk s− t path is defined as the shortest s− t path

over the integer lattice that avoids all stochastic edges, i.e., the edges intersecting

any disks.

Environment C: Instances with 40 true and 100 false disk-shaped obstacles. As in

Environment B, centers of the false obstacles were randomly sampled from the

uniform distribution over the region [10, 90]×[10, 90]. Centers of the true obstacles,

however, were sampled from a V-shaped obstacle-placement window, as described

in Section 2.8.3.

In Environments B and C, marks of the true obstacles were sampled from Beta(2,6)

(with a mean of 0.75) and marks of the false ones were sampled from Beta(6,2) (with

a mean of 0.25). Also, the starting and termination points were taken as s = (50, 100)

and t = (50, 1) respectively for both of the environments. In addition, in all three

environments, the navigation area was considered to be the 8-adjacent integer lattice

over [1, 100] × [1, 100] with disk radius being r = 5. This setup ensures that there is

always an admissible path from s to t.
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Computing the expected length of a walk in all three variants of the SOS problem

requires computation of walk lengths for each possible outcome of any disambiguations

performed. Thus, complexity of computing expected walk length of any policy is O(2K).

In other words, even though a penalty-based algorithm can be executed efficiently in

realtime, computation of the expected length of the associated walk is exponential in K.

In Environments A and B, we compare performances of SRA, RDA, and DTA and we

only consider cases where K = 1 or K = 2. In Environment C, we let K = ∞ and we

compare performances of only RDA and DTA (SRA is not included in the comparison

due to its excessive run times required for meshing of the α parameter). Our goal in

Environment C is two-fold: (1) compare RDA and DTA in the presence of an unlimited

disambiguation capability, and (2) compare performances of these algorithms when true

obstacles are placed strategically inside the navigation area. Regarding the first goal,

computation of the expected walk length for unlimited K is computationally infeasible

due to the exponential nature of the process. For this reason, instead of the expected

walk length, we compare RDA and DTA based on the lengths of the actual s−t walks as

dictated by the respective algorithms. Within the context of the second goal, Aksakalli

and Ceyhan [60] consider the problem of identifying optimal obstacle placement patterns

in SOSP that maximize traversal length of the navigating agent in a game-theoretic

sense. Our second goal therefore is a rather interesting analysis from a game theory

point of view as what we investigate is whether performance of our disambiguation

algorithms is affected by specific location of the true obstacles as determined by an

obstacle placing agent.

Another particular characteristic we would like to investigate is the sensitivity of the

performances of the navigation algorithms to the cost of disambiguation. For this pur-

pose, we consider 7 different disambiguation costs (c = 0, 1, 2, 4, 6, 8, 10) in each one of

the above environments where it is assumed that disambiguation cost is the same across

all the disks.

2.8.1 Environment A (The COBRA Data) Experiments

This section compares the performances of the SR, RD, and DT algorithms for the

COBRA data. In this section only, we also include the optimal policy in the comparison

where this policy is obtained via the BAO∗ Algorithm. Comparison results are presented

in Table 2.3. On a 3.8 gigaHertz personal computer, execution time of both the RD and

DT algorithms was 0.312 seconds per run on the average for whereas that of the SR

algorithm was 18.5 seconds per run. Total run time required for computation of the

optimal policy in Table 2.3, on the other hand, was 11 days and 17 hours. In the table,

expected length of the optimal policy is denoted by EOPT (c) for a disambiguation cost

of c. The expected length of the policy corresponding to the best α value for SRA is

denoted by ESRA(c) whereas expected lengths of the policies obtained by RDA and DTA
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are denoted by ERDA(c) and EDTA(c) respectively. Percent deviation of the expected

walk lengths found by the suboptimal algorithms from that of the optimal policy is

denoted by %DO(c) superscripted by the algorithm name. For instance, %DORDA(c) =
ERDA(c)−EOPT (c)

EOPT (c)
∗ 100.

Table 2.3: Cobra data simulation results.

K c EOPT (c) ERDA(c) EDTA(c) ESRA(c) %DORDA(c) %DODTA(c) %DOSRA(c)

1 0 80.02 - 80.17 80.02 - 0.18 0.00

1 81.02 105.33 81.17 81.02 30.00 0.18 0.00
2 82.02 82.17 82.17 82.02 0.18 0.18 0.00

4 84.02 84.02 84.17 84.02 0.00 0.17 0.00

6 86.02 86.02 86.17 86.02 0.00 0.17 0.00
8 88.02 88.17 88.17 88.02 0.17 0.17 0.00

10 90.02 90.17 90.17 90.02 0.16 0.16 0.00

2 0 75.47 - 80.25 77.37 - 6.34 2.51

1 77.47 102.72 78.63 78.47 32.59 1.50 1.29
2 79.47 82.36 79.74 79.57 3.64 0.33 0.13

4 81.77 84.58 81.94 81.78 3.44 0.21 0.01

6 83.97 83.99 84.15 83.99 0.02 0.21 0.02
8 86.18 86.43 86.36 86.19 0.28 0.20 0.02

10 88.39 88.63 88.56 88.40 0.28 0.20 0.01

As expected, SRA shows somewhat better performance compared to DTA (and especially

RDA) as it finetunes the penalty term via the α parameter, though it runs about 60

times slower compared to either algorithms. RDA is not even applicable for c = 0, and it

shows the worst performance at %DORDA(1) = 30 for K = 1 and, %DORDA(1) = 32.59

for K = 2 respectively. However, %DORDA(c ≥ 6) is below 0.3 for both K’s.

In comparison, for K = 1, %DODTA(c ≥ 0) is below 0.2 whereas for K = 2, median

%DODTA(c ≥ 0) is merely 0.21. Also, maximum %DODTA(c ≥ 1) is 1.5 whereas

maximum %DORDA(c ≥ 1) is significantly higher at 32.59. In addition, the difference

between %DORDA(c ≥ 1) and %DOSRA(c ≥ 1) is never more than 0.21. Thus, in

general, solutions obtained by DTA compare favorably to both the optimal solutions as

well as those obtained by SRA for the COBRA data. The same observation holds for

RDA, but only when c ≥ 6.

2.8.2 Environment B Experiments

This section compares performances of RDA, DTA, and SRA on COBRA-like instances

with 12 true and 27 false disk-shaped obstacles where disk centers were randomly sam-

pled from the uniform distribution over the region [10, 90]× [10, 90]. We generated 100

of such instances where the zero-risk s − t path length was conditioned to be at least

130 units.

Comparison results including means and standard deviations of the expected lengths

along with the zero-risk lengths are presented in Table 2.4. Let ERDAmean(c) and ERDAstd (c)

denote the mean and standard deviation of the expected lengths of the solutions obtained
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by RDA for disambiguation cost c. For all the c,K combinations considered, we observe

that EDTAmean < ERDAmean and that EDTAstd < ERDAstd . Interestingly, the difference in the means

increases as c decreases.

Table 2.4: Environment B simulation results.

K c Zero-Risk ERDA(c) EDTA(c) ESRA(c) RDA-DTA DTA-SRA

mean std mean std mean std mean std mean mean

1 0.00 134.08 4.80 - - 121.34 12.70 118.16 7.16 - 3.18

1.00 134.08 4.80 130.04 13.99 121.52 12.11 118.97 6.92 8.52 2.55

2.00 134.08 4.80 127.85 14.04 122.18 11.86 119.94 6.86 5.67 2.24

4.00 134.08 4.80 124.89 10.46 123.35 9.74 121.85 6.69 1.54 1.50

6.00 134.08 4.80 126.04 10.47 125.32 9.71 123.71 6.44 0.72 1.61

8.00 134.08 4.80 127.48 10.09 126.60 7.50 125.50 6.14 0.87 1.11

10.00 134.08 4.80 128.42 7.48 128.34 7.24 127.14 5.72 0.08 1.20

2 0.00 134.08 4.80 - - 114.12 7.13 112.32 5.26 - 1.80

1.00 134.08 4.80 122.14 11.07 115.23 6.67 113.84 5.23 6.91 1.39

2.00 134.08 4.80 121.10 11.06 116.48 6.64 115.25 5.25 4.62 1.22

4.00 134.08 4.80 120.47 8.46 118.93 6.95 117.89 5.42 1.54 1.04

6.00 134.08 4.80 121.90 7.53 121.36 7.11 120.39 5.59 0.53 0.97

8.00 134.08 4.80 123.78 7.36 123.41 6.79 122.77 5.67 0.37 0.63

10.00 134.08 4.80 125.72 6.83 125.59 6.72 124.98 5.60 0.13 0.61

We now digress briefly and consider how EOPT (c) changes if c is increased by δ >

0 units. For K = 1, if the optimal policy requires a disambiguation, then it holds

that EOPT (c + δ) = EOPT (c) + δ, which can easily be shown by contradiction. For

K ≥ 2, let us consider a special case where the optimal policy requires exactly K

disambiguations regardless of the outcomes of previous disambiguations (such a scenario

is likely to be the case when K is small and number of possible-obstacles is large). In

that case, if c is increased by δ units, then in the best possible scenario, it would hold

that EOPT (c + δ) = EOPT (c) + δ (this can also be shown by contradiction). However,

EOPT (c) + δ is merely a lower bound for EOPT (c + δ). Appendix A provides a simple

parallel graph example where the optimal expected length increases by 2.22 units when

the cost is increased by 2 units. Another example is the COBRA data: for K = 2, when

the disambiguation cost is increased from 4 to 6, the optimal expected length increases

from 81.77 to 83.97, which is a 2.2 units increase. We conjecture that for any discrete

SOS problem instance for which the optimal policy dictates at least one disambiguation,

it holds that EOPT (c+ δ) ≥ EOPT (c) + δ.

Back to the simulation results, a close inspection reveals a rather peculiar behavior

regarding RDA. For K = 1, ERDAmean(1) ≈ 130 whereas ERDAmean(2) ≈ 128 and ERDAmean(4) ≈
125. A similar behavior is exhibited for K = 2. The observation that ERDAmean decreases

as the disambiguation cost increases (where in fact it should be the opposite) suggests

the following: the penalty function FRD(e) = c(e)
1−ρ(e) is perhaps not providing “the right

amount of penalty” to guide the navigation when c is relatively small. An alternative

interpretation is that performance of RDA seems to improve as the disambiguation cost

increases. The fact that %DORDA is below 0.3 only when c ≥ 6 for the COBRA data is

another indication that RDA requires relatively high disambiguation costs for adequate

performance. This behavior, on the other hand, can be seen as an important limitation
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of RDA—which is in addition to the limitation that this algorithm cannot be used in

the case of zero disambiguation cost.

In contrast, for all the c,K combinations considered, EDTAmean strictly increases as c in-

creases. Thus, DTA does not seem to suffer from the limitation of RDA mentioned

above. In addition, median difference between EDTAmean and ESRAmean is merely 1.3 units for

the entire Table 2.4.

2.8.3 Environment C Experiments

This section compares performances of RDA and DTA on instances with 40 true and 100

false disk-shaped obstacles in the presence of an unlimited disambiguation capability.

Centers of the false obstacles were randomly sampled from the uniform distribution

over the region [10, 90] × [10, 90]. Similar to what was done in Aksakalli and Ceyhan

[60], centers of the true obstacles were sampled from a V-shaped obstacle placement

window with a vertical width of 10 units. Top left corner of this window was taken

as (x, y) = (10, 70), with the remaining corner points being (50,40), (90,70), (90,60),

(50,30), and (10,60).

Comparison results for 100 randomly generated such instances are presented in Table 2.5.

In the table, actual traversal lengths of the policies obtained by RDA and DTA are

denoted by ARDA(c) and ADTA(c) respectively. These lengths are calculated by using the

actual status information of disks as the agent navigates and performs disambiguations

in the obstacle field. Number of instances for which the actual traversal lengths exceed

the zero-risk path lengths are shown in columns labeled “#Exceed”.

Table 2.5: Environment C simulation results.

K c Zero-Risk ARDA(c) ADTA(c) ARDA(c)− ADTA(c)

mean std mean std #Exceed mean std #Exceed mean

∞ 0 159.91 5.79 - - - 141.23 19.47 2 -

1 159.91 5.79 208.20 68.20 70 145.45 18.15 2 62.76

2 159.91 5.79 210.20 70.98 64 148.14 17.26 2 62.06

4 159.91 5.79 185.10 65.14 32 152.11 15.52 2 32.99

6 159.91 5.79 171.55 50.43 18 154.63 9.90 1 16.92

8 159.91 5.79 162.51 31.82 7 157.00 8.64 1 5.51

10 159.91 5.79 160.57 20.36 4 157.99 7.18 0 2.58

Similar to the simulation results in Environment B, we observe that ARDAmean decreases

as the disambiguation cost increases, this time even more drastically. For instance,

ARDAmean(1) ≈ 208 whereas ARDAmean(10) ≈ 161. This indicates that performance of RDA

detoriates significantly for small c in this particular simulation environment. In addition,

ARDA#Exceed(1) = 70 out of 100 instances. Likewise, ARDA#Exceed(2) = 64 and ARDA#Exceed(4) =

32, which are all relatively high values. On the other hand, ADTA#Exceed never exceeds

2 for any of the cost values considered. One other observation is that ARDAmean always

exceed the corresponding zero-risk length mean, which essentially suggests that, on the
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average, RDA does not provide any improvement over the zero-risk path in actual s− t
traversals. In contrast, ADTAmean is always smaller than the corresponding zero-risk length

mean, thereby providing the navigating agent a strict improvement over the zero-risk

path on the average. In fact, the difference between ARDAmean and ADTAmean can be as high

as 62.76 units (for c = 1), though this difference reduces as the disambiguation cost

increases. Regarding the standard deviations, ADTAstd is considerably smaller compared to

ARDAstd for all the cost values considered. That is, in general, DTA provides substantially

better policies compared to RDA on the average (especially for smaller c) while having

a much smaller standard deviation. Also in favor of DTA is the observation that ADTAmean

strictly increases as c increases.

Illustrated in Figure 2.6 is a problem instance in Environment C and the s− t traversals

as dictated by RDA and DTA respectively for c = 2. In this particular case, zero-risk

length is 156.78 whereas ARDA = 204.54 and ADTA = 131.12. It appears from the figure

that RDA gets trapped inside the elbow-like region of the V-shaped area whereas DTA

quickly finds the passage on the left side of the V-shape and then directly traverses to t.

2.9 Summary and Conclusions

The stochastic obstacle scene (SOS) problem is a challenging stochastic optimization

problem that has practical applications in important domains such as robot navigation

in stochastic environments, minefield navigation, and adaptive traffic routing.

Two previously introduced suboptimal algorithms for the SOS problem are the Simulated

Risk (SR) and Reset Disambiguation (RD) algorithms. SRA is based on the idea of

temporarily pretending that ambiguous regions are riskily traversable. On the other

hand, the idea behind RDA is to use the optimal navigation strategy in a reset variant

as a suboptimal strategy in the original problem. In this chapter, we adapt SRA and

RDA originally proposed for continuous SOSP to discrete and lattice-discretized SOSP.

We then present a polynomial-time method when the associated graph is restricted to

parallel graphs. Having identified this method, we make a rather interesting observation

that the optimal edge weights in this parallel graph special case is the same as the

weights in the reset variant of the original problem, and hence RDA. This connection

stands as an alternative interpretation of RDA.

Both SRA and RDA employ a navigate-disambiguate-repeat (NDR) strategy guided by

particular penalty functions. A major downside of SRA is that it needs to fine-tune the

penalty term via brute-force to achieve reasonable performance levels. RDA does not

require such a fine-tuning parameter, yet, it has a significant limitation in the sense that

it cannot be used when the disambiguation cost is zero.
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(a) Navigation dictated by RDA

(b) Navigation dictated by DTA

Figure 2.6: An instance in Environment C and s − t traversals as dictated by RDA
and DTA respectively.
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In an attempt to address respective shortcomings of SRA and RDA, we first propose

a generalized framework encompassing these algorithms that uses penalty functions to

guide the navigation in realtime. Within this framework, we introduce a new suboptimal

algorithm called the DT algorithm that uses a new penalty function that takes into

account edge distances to the termination point. DTA addresses limitations of both SRA

and RDA in that it does not require a fine-tuning parameter and it can be used even with

a zero disambiguation cost. Computational experiments involving an actual minefield

dataset called the COBRA data suggest that DTA provides near-optimal results with

minimal computational resources. In the meantime, simulations involving COBRA-like

synthetic data indicate a rather subtle weakness of RDA: performance of this algorithm

depends heavily on the disambiguation cost. In particular, RDA requires relatively large

costs for acceptable performance. In contrast, DTA did not suffer from this weakness in

our experiments and consistently gave superior results regardless of the cost.

At this point, a critical observation needs to be made: Despite the fact that DTA

performed remarkably well for COBRA and COBRA-like problem instances in our sim-

ulations, it may or may not perform at the same level on obstacle fields with different

topologies or with non-circular obstacle regions. Further research on instances with dif-

ferent characteristics is required in order to confirm that high performance of DTA is

consistent across various problem settings. To that end, it might as well be the case

that perhaps a different penalty function outperforms that of DTA in certain problem

environments. Nonetheless, the NDR strategy guided by appropriate penalty functions

seems to be an efficient and effective algorithmic framework for SOSP, and our study

should be seen as a show case of this framework using the DT penalty function on an

important real-world variant of the problem.



Appendix A

Impact of Cost Change in Parallel

Graphs

This section provides an example of a parallel graph for which optimal policy changes

when the disambiguation cost changes. The parallel graph in this simple instance has

two edges e1 and e2 with respective lengths `1 = 1.55, `2 = 3.97 and marks ρ1 = 0.55,

ρ2 = 0.08. Two different costs are considered: c = 2 and c = 4 where c1 = c2 = c. Note

that there are only two feasible policies in this case, which are denoted by P1 = {e1, e2}
and P2 = {e2, e1}. In particular, P1 dictates disambiguation of e1 and then e2, whereas

the ordering in P2 is the opposite. For c = 2 and c = 4, expected length calculations

corresponding to policies P1 and P2 are shown below where the optimal policies are

marked with an asterisk for the respective costs:

• EP ∗1 (2) = 2 + (1− .55)(1.55) + .55(2 + (1− .08)(3.97)) = 5.81,

• EP2(2) = 2 + (1− .08)(3.97) + .08(2 + (1− .55)(1.55)) = 5.87,

• EP1(4) = 4 + (1− .55)(1.55) + .55(4 + (1− .08)(3.97)) = 8.91,

• EP ∗2 (4) = 4 + (1− .08)(3.97) + .08(4 + (1− .55)(1.55)) = 8.03.

Interestingly, when cost is increased from 2 to 4, policy P1 is no longer optimal. Thus,

the optimal disambiguation sequence changes when the cost changes. In this particular

case, EP1(4) = 8.91 = EP1(2) + 3.1. In addition, again when cost is increased from

2 to 4, the optimal expected length increases from 5.81 to 8.03, which is a 2.22 units

increase.
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