
Low-Complexity Supervised Learning for

Gesture and Shape Recognition

A thesis submitted to the

Graduate School of Natural and Applied Sciences

by

Sait Celebi

in partial ful�llment for the

degree of Master of Science

in

Electronics and Computer Engineering

�Science is what we understand well enough to explain to a computer. Art is everything

else we do.�

Donald Knuth

Low-Complexity Supervised Learning for Gesture and Shape

Recognition

Sait Celebi

Abstract

Classi�cation is a machine learning task in which the objective is to categorize given

samples according to their attributes. Gesture Recognition (GR) and Shape Recognition

(SR) are two classi�cation examples. Some daily-life applications of these include Hand

Gesture Recognition (HGR) and Optical Character Recognition (OCR).

GR is a challenging classi�cation problem often used in human-computer interaction

applications to provide a natural interface between user and computer. Since the same

gesture might be performed with di�erent speeds, Dynamic Time Warping (DTW) is

needed to �nd the optimal alignment between two time sequences. Oftentimes a pre-

processing of sequences is required to remove variations between the reference gestures

and the test gestures. We discuss a set of pre-processing methods to make the gesture

recognition mechanism robust to these variations. DTW computes a dissimilarity mea-

sure by time-warping the sequences on a per sample basis by using the distance between

the current reference and test sequences. However, all body joints involved in a gesture

are not equally important in computing the distance between two sequence samples. We

propose a weighted DTW method that weights joints by optimizing a discriminant ratio.

SR is another classi�cation problem with increasing number of applications from OCR

to pedestrian detection. Decision tree is a good choice of classi�er for shape recognition

because it is easy to implement and visualize and has lower computational complexity.

Bagging randomized decision trees as random forests increases the accuracy rates if the

trees are weakly correlated. We propose using random rectangles in combination with

random forests and test our method on OCR and GR datasets. We show that the

accuracy of our method is similar to the OCR state-of-the-art and better than the GR

state-of-the-art, while executing signi�cantly faster, which makes our proposed method

a good �t for real-time object/shape recognition. Then discuss how a simple feature

such as a random rectangle can perform similar to the complex statistical and structural

features designed for shape recognition. Finally we analyze the e�ect of our parameters.

Keywords: Gesture Recognition, Dynamic Time Warping, Kinect, Shape Recognition,

Random Forests, Decisin Trees

Hareket ve �ekil Tan�ma için Az Karma³�kl�kl� Gözetimli Ö§renme

Sait Celebi

Öz

S�n��and�rma, verilen örnekleri özelliklerini kullanarak kategorize etme i³ini yapan makine

ö§renmesi görevidir. Hareket Alg�lama (HA) ve �ekil Alg�lama (�A) iki adet s�n��and�rma

örne§idir. El Hareketlerini Alg�lama (EHA) ve Optik Karakter Tan�ma (OKT) bu alan-

lardaki günlük hayatta kar³�la³�lan baz� uygulamalard�r.

EHA, genellikle insan-bilgisayar etkile³imi uygulamalar�nda kullan�lan, insan ve bilgisa-

yar aras�nda do§al bir arayüz sunan zor bir s�n��and�rma problemidir. Ayn� el hareketi

farkl� h�zlarda uygulanabilece§i için, Dinamik Zaman Bükmesi (DZB) iki tane zaman

dizisi aras�ndaki en iyi uyu³may� bulmak için kullan�l�r. Ço§u zaman referans ve test

örneklerindeki farkl�l�klardan dolay� bir ön-i³leme mekanizmas� gereklidir. Hareket tan�-

man�n bu tip farkl�l�klardan ba§�ms�z olarak iyi çal�³abilmesi için birkaç ön-i³leme metodu

gereklidir. DZB, hali haz�rda bulunan test örne§iyle tüm referans örneklerini tek tek tüm

parçalar�n� uyu³turmaya çal�³arak bir farkl�l�k ölçütü hesaplar. Fakat bir el hareketini al-

g�larken vücudun tüm parçalar�n�n a§�rl�§� e³it de§ildir. Bu çal�³mada vücut parçalar�n�

bir farkl�l�k oran�n� optimize ederek a§�rlakland�rmay� öneriyoruz. Son olarak, ön-i³leme

ve a§�rl�kland�rma yöntemlerimizi klasik DZB ve tekni§in bilinen en iyi durumu ile

k�yasl�yoruz.

�A, OKT'den yaya alg�lamaya kadar uzanan artan say�da uygulamalara sahip di§er bir

s�n��and�rma problemidir. Karar a§açlar� uygulamas� kolay oldu§u için, görselle³tir-

ilebilmesi mümkün oldu§u için ve hesaplama kar�³�kl�§� az oldu§u �A için uygun bir

s�n��and�r�c� seçimidir. E§er s�n��and�rma için birden fazla birbiriyle az ili³kili karar

a§ac� beraber kullan�l�yorsa (rastgele orman) s�n��and�rma kalitesi artar. Bu çal�³mada

rastgele orman s�n��and�r�c�lar�n� resimlerden rastgele seçti§imiz dikdörtgen özellikleriyle

kullan�yoruz. Metodumuzu karakter tan�ma ve hareket tan�ma datasetleriyle test ediy-

oruz. Görülüyor ki bu yöntem ³uana kadar bilinen en iyi yöntemlerle yakla³�k do§rulukta

çal�³maktad�r. Bunun yan�nda bunlara k�yasla çok daha h�zl� çal�³maktad�r ki bu özelli§i

bu yöntemi gerçek zamanl� nesne ve ³ekil tan�ma uygulamalar�na uygun k�lmaktad�r.

Rastgele dikdörtgenler gibi basit tan�mlay�c�lar�n kar�³�k istatistiksel ve yap�sal tan�m-

lay�c�lara göre ne kadar da ³a³�rt�c� ³ekilde iyi çal�³t�§� üzerine tart�³�yoruz. Son olarak

da sistemde kulland�§�m�z parametreleri analiz ediyoruz.

Anahtar Sözcükler: Hareket Tan�ma, Dinamik Zaman Bükmesi, Kinect, �ekil Tan�ma,

Rastgele Orman, Karar A§açlar�

This thesis is lovingly dedicated to my mother for her constant love

to me throughout my life.

vi

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Tarik Arici for his con-

tinuous support, motivation, enthusiasm, and time. His guidance helped me throughout

the duration of the research conducted and the writing of this thesis.

Besides my advisor, I would like to thank to the rest of my thesis committee: Prof.

Ahmet Bulut and Prof. Bugra Gedik for their helpful and constructive comments.

I thank my fellow lab-mates in Istanbul Sehir University, Data Science Group: Ali Selman

Aydin, Erkan Bilmez and Talha Tarik Temiz for the sleepless nights we were working

together before deadlines, and for all the fun we have had in the last two years.

Also, I would like to thank all Sehir University members who participated in our ges-

ture database recordings and patiently performed all the gestures that helped in our

experiments.

Most importantly, I would like to thank my family, for their constant support without

knowing a bit what I was doing on my thesis at the time.

vii

Contents

Declaration of Authorship ii

Abstract iv

Öz v

Acknowledgments vii

List of Figures ix

List of Tables xi

1 Robust Gesture Recognition Using Feature Pre-Processing andWeighted
Dynamic Time Warping 1
1.1 Introduction . 1
1.2 Related Work . 3
1.3 Data Acquisition and Feature Pre-processing 3
1.4 Dynamic Time Warping for Gesture Recognition 5

1.4.1 Boosting The Reliability of DTW 8
1.4.2 Weighted DTW . 9

1.5 Results . 11
1.6 Conclusion . 14

2 Low-Complexity Shape Recognition Using Random Forest Classi�ers
with Random Rectangle Features 16
2.1 Introduction . 16
2.2 Shape Features for Recognition . 17
2.3 Decision Tree Based Classi�cation . 19

2.3.1 Decision Trees and Random Forests 19
2.3.2 Random Forest Classi�ers For Recognition 22
2.3.3 Viola-Jones Object Detection Framework 24

2.4 Random Forest Classi�ers with Random Rectangle Features 25
2.4.1 Rectangle Feature As A Linear Combination 27

2.5 Experiments . 28
2.5.1 Optical Character Recognition Results 29
2.5.2 Gesture Recognition . 34

2.6 Conclusion . 35

Bibliography 36

viii

List of Figures

1.1 Kinect joints. 4
1.2 Camera A is used to record the ground-truth reference gestures with per-

pendicular angles, Camera B is used to record a rotationally distorted test
sequence. β is the desired angle to rotate the skeleton in Y axis. After
this rotation, the skeleton will be rotated in other axes if needed until it
will be perpendicular to all axes. 4

1.3 Two skeletons with di�erent orientations (Left: Ground-truth reference
frame, Right: Rotationally distorted test frame due to improper body
orientation) . 5

1.4 DTW used to match two sequences, reference sequence and test sequence. 5
1.5 Accumulated cost matrix of two sequences R and T with sizes N and M ,

respectively. Global constraint region, R, Sakoe-Chiba band [49], is shown
with gray color. 7

1.6 Predecessor nodes used in Bellman's principle where nl ∈ [1 : N], ml ∈
[1 : M] and l ∈ [2 : L]. Note that (nl−1,ml−1) ∈ {(nl − 1,ml), (nl,ml −
1), (nl − 1,ml − 1)}. 8

1.7 Two sample reference gestures in the gesture database: Right Hand Push
Up and Left Hand Wave. 10

1.8 Discriminant ratios for with and without pre-processed gesture samples
using the rotationally distorted gesture database. Note that the discrimant
ratios are increased, on average, 42% with the proposed pre-processing
method. There are 21 gesture samples in each gesture class. The gesture
classes are, namely, Both Hands Pull Down, Both Hands Push Up, Left
Hand Pull Down, Left Hand Push Up, Left Hand Swipe Left, Left Hand
Swipe Right, Left Hand Wave, Right Hand Pull Down, Right Hand Push
Up, Right Hand Swipe Left, Right Hand Swipe Right, Right Hand Wave,
respectively. 13

2.1 An example data instance . 19
2.2 Univariate decision tree . 20
2.3 Multivariate decision tree . 20
2.4 Example Viola-Jones features relative to the detection window. The sum

of the pixel intensities in the grey rectangular regions are subtracted from
the white rectangular regions. 24

2.5 Cascaded application of classi�ers enable focusing on object-like regions. . 24

ix

List of Figures x

2.6 Visualization of a decision tree up to the fourth depth level trained on
OCR data. The thickness of the edges connecting nodes is proportional
to the number of images associated with the receiving node. The average
of all training images at a node is displayed. The brightness of the circle
below the average image is inversely proportional to the entropy at that
node: the higher the entropy the darker the color of the circle. 26

2.7 Sample digits from the MNIST database 29
2.8 Accuracy as the number of trees is increased 31
2.9 The e�ect of the number of candidate rectangles per each split node . . . 31
2.10 Accuracy versus maximum tree depth using a random forest of �ve ran-

domized trees. 32
2.11 Average per-tree accuracy versus maximum tree depth 33
2.12 Accuracy versus number of trees using di�erent features 33
2.13 The characters in order b,e,t,y . 35

List of Tables

1.1 Confusion matrix for the conventional DTW. 13
1.2 Confusion matrix for the weighted DTW in [47]. 14
1.3 Confusion matrix for our proposed weighted DTW. 14
1.4 Accuracies of the three methods. Note that not only six gesture classes

given in Table 1.1, 1.2, and 1.3 are used, but all eight gesture classes are
taken into consideration. 14

1.5 Overall performance comparison using the rotationally distorted and re-
laxed gesture database. 15

2.1 Classi�cation times (milliseconds) on an example image of size 28× 28. . . 30
2.2 Classi�cation accuracies on the MNIST test set. 31
2.3 Gesture recognition accuracies . 35

xi

Chapter 1

Robust Gesture Recognition Using

Feature Pre-Processing and

Weighted Dynamic Time Warping

1.1 Introduction

Interacting with computers using human motion is commonly employed in human-computer

interaction (HCI) applications. One way to incorporate human motion into HCI applica-

tions is to use a prede�ned set of human joint motions i.e., gestures. Gesture recognition

has been an active research area [20, 32, 47, 66], and involves state-of-the-art machine

learning techniques in order to work reliably in di�erent environments. A variety of

methods have been proposed for gesture recognition including Dynamic Time Warping

[47], Hidden Markov Models [20], Finite State Machines [23], hidden Conditional Ran-

dom Fields (CRFs) [61] and orientation histograms [19]. In addition to these, there are

methods employed in gesture recognition that are not view-based. Examples of these are

the use of Wii controller (Wiimote) [50] and DataGlove [44].

DTW measures similarity between two time sequences which might be obtained by sam-

pling a source with varying sampling rates or by recording the same phenomenon occur-

ring with varying speeds [64]. After DTW was introduced in 1960s [10], it has been used

in solving di�erent problems such as speech recognition to warp speech in time to be able

to cope with di�erent speaking speeds [2, 41, 49], data mining and information retrieval

to deal with time-dependent data [1, 45], curve matching [18], online handwriting recog-

nition [59], hand shape classi�cation [28]. In gesture recognition, DTW time-warps an

observed motion sequence of body joints to pre-stored gesture sequences [16, 28, 46, 62].

Although we present the theory of the general DTW and its implementation issues,

1

Chapter 1. Gesture Recognition 2

in this paper we focus more on its application to gesture recognition. Comprehensive

surveys about the general DTW algorithm can be found in [40, 52].

The conventional DTW algorithm is basically a dynamic programming algorithm, which

uses an iterative update of DTW cost by adding the distance between mapped elements of

the two sequences at each iteration step. The distance between two elements is oftentimes

the Euclidean distance, which gives equal weights to all dimensions of a sequence sample.

However, depending on the problem a weighted distance might perform better in assessing

the similarity between a test sequence and a reference sequence. For example in a typical

gesture recognition problem, body joints used in a gesture can vary from gesture class

to gesture class. Hence, not all joints are equally important in recognizing a gesture.

With Microsoft's launch of Kinect in 2010, and release of Kinect SDK in 2011, numerous

applications and research projects exploring new ways in human-computer interaction

have been enabled. Some examples are gesture recognition [47], touch detection using

depth data [65], human pose estimation [25], implementation of real-time virtual �xtures

[48], real-time robotics control applications [58] and the physical rehabilitation of young

adults with motor disabilities [15].

We propose a weighted DTW algorithm that uses a weighted distance in the cost com-

putation. The weights are chosen so as to maximize a discriminant ratio based on DTW

costs. The weights are obtained from a parametric model which depends on how ac-

tive a joint is in a gesture class. The model parameter is optimized by maximizing the

discriminant ratio. By doing so, some joints will be weighted up and some joints will

be weighted down to maximize between-class variance and minimize within-class vari-

ance. As a result, irrelevant joints of a gesture class (i.e., parts that are not involved

in a gesture class) will contribute to the DTW cost to a lesser extent, while keeping the

between-class variances large.

Our system �rst extracts body-joint features from a set of skeleton data that consists of

six joint positions, which are left and right hands, wrists and elbows. We have observed

that the gestures in our training set, which have quite di�erent motion patterns, require

the use of all or a subset of these six joints only. These obtained skeleton features are

used to recognize gestures by matching them with pre-stored reference sequences. Pre-

processing is needed to suppress the noise due to di�erent body and camera orientations,

and di�erent body sizes. After pre-processing is done, the matching is performed by

assigning a test sequence to a reference sequence with the minimum DTW cost. By

removing the variations in the data, the DTW cost becomes more reliable in classi�cation

as demonstrated by the increase in the discriminant ratio values.

Chapter 1. Gesture Recognition 3

1.2 Related Work

One commonly used technique for gesture recognition is using HMMs for modeling ges-

ture sequences. HMMs are especially known for their application to speech recognition,

gesture recognition, bioinformatics, etc. HMMs are statistical models for sequential data

[7, 8], and therefore can be used in gesture recognition [20, 30, 57]. The states of an HMM

are hidden and state transition probabilities are to be learned from the training data.

However, de�ning states for gestures is not an easy task since gestures can be formed

by a complex interaction of di�erent joints. Also, learning the model parameters i.e.,

transition probabilities, requires large training sets, which may not always be available.

On the other hand, DTW does not require training but needs good reference sequences

to align with.

Using a weighting scheme in DTW cost computation has been proposed for gesture

recognition [47]. The method proposed in [47] uses DTW costs to compute between and

within class variations to �nd a weight for each body joints. These weights are global

weights in the sense that there is only one weight computed for a body joint. However,

our proposed method computes a weight for each body joint and for each gesture class.

This boosts the discriminative power of DTW costs since a joint that is active in one

gesture class may not be active in another gesture class. Hence weights has to be adjusted

accordingly. This helps especially dealing with within-class variation. To avoid reducing

the between-class variance, we compute weights by optimizing a discriminant ratio using

a parametric model that depends on body joint activity. In the next section we discuss

data acquisition and feature pre-processing.

1.3 Data Acquisition and Feature Pre-processing

We use Microsoft Kinect sensor [53] to obtain joint positions. Kinect SDK tracks 3D

coordinates of 20 body joints given in Figure 1.1 in real time (30 frames per second).

Since the machine learning algorithm uses depth images to predict joint positions, the

skeleton model is quite robust to color, texture, and background.

We have observed that only six out of the 20 joints contribute in identifying a hand

gesture: left hand, right hand, left wrist, right wrist, left elbow and right elbow. A

feature vector consists of 3D coordinates of these six joints and is of dimension of 18 as

given below

fn = [X1, Y1, Z1, X2, Y2, Z2, . . . X6, Y6, Z6], (1.1)

Chapter 1. Gesture Recognition 4

Hand Right

Wrist Right

Hand Left

Wrist Left

Elbow Left
Elbow Right

Head

Shoulder Right

Foot Right

Shoulder Left

Foot Left

Ankle Left
Ankle Right

Knee LeftKnee Right

Hip LeftHip Right

Hip Center
Spine

Shoulder Center

Figure 1.1: Kinect joints.

Figure 1.2: Camera A is used to record the ground-truth reference gestures with
perpendicular angles, Camera B is used to record a rotationally distorted test sequence.
β is the desired angle to rotate the skeleton in Y axis. After this rotation, the skeleton

will be rotated in other axes if needed until it will be perpendicular to all axes.

where n is the index of the skeleton frame at time tn. A gesture sequence is the concate-

nation of N such feature vectors.

After N feature vectors are concatenated to create the gesture sequence, they are pre-

processed before the DTW cost computation. The pre-processing consists of three stages.

First stage is the normalization stage which translates all skeletons to the center of the

�eld of view. This could be done by subtracting the hip center joint position from the

other joint positions. Note that the reference frames are already recorded at the center

of the �eld of view. The second pre-processing stage removes the rotational distortion

caused by di�erent orientations of human bodies. Contrary to the reference gestures,

where trained performers are used, it is highly possible to have di�erent orientations

or positionings of users with respect to camera in real-life cases. Such occasions are

problematic for gesture recognition since they will result in rotationally distorted skeleton

frames. To cope with these occasions, our pre-processing system rotates the skeleton

frames if necessary, such that the skeleton frames will be orthogonal to the principal axis

Chapter 1. Gesture Recognition 5

Figure 1.3: Two skeletons with di�erent orientations (Left: Ground-truth reference
frame, Right: Rotationally distorted test frame due to improper body orientation)

Figure 1.4: DTW used to match two sequences, reference sequence and test sequence.

of the camera. To this end, we de�ne two vectors by using spatial coordinates of the right

shoulder, left shoulder and hip center which are obtained from Kinect sensor. Using these

two vectors, we calculate the three angles, α, β, θ, of the skeleton with respect to the

camera's coordinate system, and compute the rotation matricesRα
x,R

β
y,R

θ
z, respectively.

The rotation is then applied using these angles with the appropriate order. See an

example rotation in Y axis with Rβ
y in Figure 1.2. The third and the last pre-processing

stage is the elimination of variations in the feature vectors due to di�erent skeleton

ratios (broad-shouldered, narrow-shouldered). All feature vectors are normalized with

the distance between the left and the right shoulders to account for the variations due

to a person's size. Note that the reference sequences are recorded with people who has

average skeleton ratios. Next, we present a more detailed discussion on DTW.

1.4 Dynamic Time Warping for Gesture Recognition

DTW is a template matching algorithm to �nd the best match for a test pattern out of

the reference patterns, where the patterns are represented as a time sequence of features.

In Figure 1.4 we show an example matching of two sequences.

Let R = {r1, r2, . . . , rN}, N ∈ N and

T = {t1, t2, . . . , tM},M ∈ N be reference and test sequences (sequence of set of joint

positions in our case), respectively. The objective is to align the two sequences in time

via a nonlinear mapping (i.e., warping or alignment). Such a warping path can be

illustrated as an ordered set of points as given below

p = (p1, p2, . . . , pL), pl = (nl,ml),

Chapter 1. Gesture Recognition 6

where pl = (nl,ml), denotes mapping of rnl
to tml

. pl ∈ [1 : N]× [1 : M] for l ∈ [1 : L],

where L is the number of mappings. The total cost D of a warping path p between R

and T with respect to a distance function d(ri, tj), i ∈ [1 : N] and j ∈ [1 :M], is de�ned

as the sum of all distances between the mapped sequence elements

Dp =
L∑
l=1

d(rnl
, tml

), (1.2)

where Dp is the total cost of the path p and d(ri, tj) measures the distance between

elements ri and tj . For gesture recognition, distance can be chosen as the distance

between the corresponding joint positions (3D points) of the reference gesture, R, and

the test gesture T.

A mapping can also be viewed as a path on a two-dimensional (2D) grid, also known

as the cost matrix, which is of size N × M (see Figure 1.5), where grid node (ri, tj)

denotes the distance between ri and tj . The node (r1, t1) which starts the alignment by

matching the �rst sequence elements is conventionally placed on the left-bottom corner

of the grid. Each path p on the 2D grid (i.e., the cost matrix) is associated with a total

cost D given in Eq. (1.2). Note that among all possible paths, we are mostly interested

in the path which makes the total accumulated cost minimum while satisfying the desired

constraints. Hence, optimal path denoted by p∗ is the path with the minimum total cost.

The DTW distance between two sequences is de�ned by the distance associated with a

total cost D given in Eq. (1.2) using the optimal path, i.e.:

DTW(R,T) = Dp∗(R,T). (1.3)

The optimal path speci�es the optimal alignment between two sequences and is computed

by �nding the path that minimizes the total cost. One way to �nd the minimum cost path

is to test every possible path on the 2D grid from the left-bottom corner to the right-top

corner. However, this has exponential complexity. Dynamic programming reduces the

complexity by taking advantage of Bellman's principle [9]. Bellman's optimality principle

states that the optimal path from the starting grid node (r1, t1) to the ending node

(rN , tM) through an intermediate point (rn, tm) can be expressed as the concatenation

of the optimal path from (r1, t1) to (rn, tm), and the optimal path from (rn, tm) to

(rN , jM). This implies that if we are given the optimal path from (r1, t1) to (rn, tm), we

only need to search for the optimal path from (rn, tm) to (rN , tM) rather than searching

for paths from (r1, t1) to (rN , tM). We will use Bellman's principle in the total cost

computation with dynamic programming.

Chapter 1. Gesture Recognition 7

Figure 1.5: Accumulated cost matrix of two sequences R and T with sizes N and M ,
respectively. Global constraint region, R, Sakoe-Chiba band [49], is shown with gray

color.

Some well-known restrictions on the warping path have been proposed to eliminate unre-

alistic correspondences between the sequences [40, 49]. The most fundamental constraints

which are applied in various topics as well as gesture recognition, are the following:

(i) Boundary conditions: p1 = (1, 1), pL = (N,M).

(ii) Step size condition: pl+1 − pl ∈ {(0, 1), (1, 0), (1, 1)} for l ∈ [1 : L− 1].

The boundary conditions require the whole reference sequence to be mapped to the whole

test sequence, and can be modi�ed if this is not strictly desired. The step size condition

requires that only one element of both sequences can be skipped at each cost computation

step of Bellman's principle. Hence, optimal path can progress from a restricted set of

predecessor nodes as shown in Figure 1.6. Since all the elements are ordered in time, the

set of predecessor nodes are to the left and bottom of a current node.

First, let's de�ne C(nl,ml) as below

C(nl,ml) = DTW(R(1 : nl),T(1 : ml)). (1.4)

Note that C(N,M) is equal to DTW(R,T). Let's further assume that the total costs

of the optimal paths to three predecessor nodes denoted by (nl − 1,ml), (nl,ml − 1),

and (nl − 1,ml − 1) have been computed. Since the (l − 1)th position of the path (i.e.,

(nl−1,ml−1)) is restricted to be one of these three nodes on the 2D grid, Bellman's

principle leads to

C(nl,ml) = min{C(nl,ml − 1),

C(nl − 1,ml),

C(nl − 1,ml − 1)}+ d(rnl
, tml

). (1.5)

Chapter 1. Gesture Recognition 8

Figure 1.6: Predecessor nodes used in Bellman's principle where nl ∈ [1 : N],ml ∈ [1 :
M] and l ∈ [2 : L]. Note that (nl−1,ml−1) ∈ {(nl−1,ml), (nl,ml−1), (nl−1,ml−1)}.

Finally, the minimum cost path aligning two sequences has cost DTW(R,T), and the

test sequence is matched to the reference sequence that has the minimum cost among all

reference sequences.

Although Eq. (1.5) outputs the minimum cost between two sequences, it does not output

the optimal path. To �nd the optimal path, which can be used to map test sequence

elements to reference sequence elements, one needs to backtrack the optimal path starting

with the �nal node. Note that if the boundary condition is satis�ed, i.e., the whole

test sequence is mapped to the whole reference sequence, than (nL,mL) = (N,M) and

(n1,m1) = (1, 1).

1.4.1 Boosting The Reliability of DTW

Global constraints de�ne a set of nodes on the 2D grid to be searched for �nding the

optimal path. Imposing global constraints not only reduces the DTW computational

complexity, but also increases the reliability of DTW's dissimilarity measure by omitting

unrealistic paths. We used a well-known global constraint region, Sakoe-Chiba band

[49] given in Figure 1.5. The Sakoe-Chiba band e�ectively limits the warping amount,

i.e., slowing down or speeding up of a sequence in time. For example a gesture can be

performed with di�erent speeds in time depending on the performer but it is logical to

expect that there is a limit to how slow or how fast a gesture is performed.

Another problem that degrades DTW's reliability in gesture recognition is due to un-

known beginning and ending times of gesture samples. A gesture in a test sequence can

often begin later or end sooner than the gesture in the reference sequence stored for that

gesture class. Boundary conditions assume that all gestures start at the beginning of the

sequence and �nish at the ending of the sequence. Hence, imposing boundary conditions

in such cases decreases the reliability of DTW costs. To boost the reliability, we relaxed

Chapter 1. Gesture Recognition 9

the boundary conditions by changing the total cost given in Eq. (1.2) as below

Dp =

L∑
l=1

αld(rnl
, tml

), (1.6)

where αl is a weight that is equal to 1 everywhere except the regions close to the starting

node (i.e., left-bottom node denoted by (r1, t1)) and the ending node (i.e., right-top node

denoted by (rN , tM)). To infer the proximity of the current node to starting and ending

nodes the length of the path, ||pl|| =
√
n2l +m2

l , is utilized. The distance terms coming

from the beginning and ending of the sequence is weighted down by computing αl from

the below formula

αl =

||pl||
τ if ||pl|| < τ

L−||pl||
τ if L− ||pl|| < τ

1 otherwise,

(1.7)

where L is the length of the longest path and τ is a threshold value.

1.4.2 Weighted DTW

The conventional DTW computes the dissimilarity between two time sequences by align-

ing the two sequences based on a sample based distance as in Eq. (1.5). If the sequence

samples are multi-dimensional (18 dimensional for the gesture recognition problem), us-

ing an Euclidean distance gives equal importance to all dimensions. We propose to use

a weighted distance in the cost computation based on how relevant a body joint is to

a speci�c gesture class. The relevancy is de�ned as the contribution of a joint to the

motion pattern of that gesture class. To infer a joint's contribution to a gesture class

we compute its total displacement (i.e., contribution) during the performance of that

gesture by a trained user:

Cgj =
N∑
n=2

Distj(fgn−1, f
g
n), (1.8)

by where g is the gesture index, j is the joint index and n is the skeleton frame number.

Distj() computes the displacement of jth joint's two consecutive coordinates in feature

vectors fgn−1, and fgn. By summing up these consecutive displacements one can �nd the

total displacement of a joint in a selected reference gesture.

After the total displacements are calculated, we �lter out the noise (e.g, shaking, trem-

bling) and threshold them from the bottom and the top. This prevents our parametric

weight model to output too high or low weights as given below

Chapter 1. Gesture Recognition 10

Figure 1.7: Two sample reference gestures in the gesture database: Right Hand Push
Up and Left Hand Wave.

Cgj =

Ca if 0 ≤ Cgj < T1
Cg

j−T1
T2−T1 (Cb − Ca) + Ca if T1 ≤ Cgj < T2

Cb otherwise,

(1.9)

where Ca and Cb are threshold values.

Using the total displacement (i.e., contribution) values of joints, the weights of class g

are calculated via

wgj =
1− e−βC

g
j∑

k

(
1− e−βC

g
k

) , (1.10)

where wgj is joint j's weight value for gesture class g. Note that in this formulation a

joint's weight value can change depending on the gesture class. For example, for the

right-hand-push-up gesture, one would expect the right hand, right elbow and right

wrist joints to have large weights, but to have smaller weights for the left-hand-push-up

gesture.

To incorporate these weights into the cost, the distance function d(rn, tm) becomes a

weighted average of joints distances between two consecutive frames and is de�ned to be

d(rn, tm) =
∑
j

Distj(rn, tm)w
g
j , (1.11)

which gives the distance between nth skeleton frame of reference gesture R and mth

skeleton frame of test gesture T, where R is a sequence known to be in gesture class g

and T is an unknown test sequence.

The weights are obtained from the model given in Eq. (1.10), which has a single parame-

ter β. Our objective is to choose a β value that minimizes the within-class variation while

Chapter 1. Gesture Recognition 11

between-class variation is maximized. Between-class variation maximization and within-

class variation minimization can be achieved by making irrelevant joints contribute less

to the cost (e.g., reducing the weights of right hand in left-hand-push-up gesture) and

not reducing (or possibly increasing) the weights of joints that can help to discriminate

di�erent gestures. We try to achieve this goal by maximizing a discriminant ratio sim-

ilar to Fisher's Discriminant Ratio [27]. To this end, we de�ne Dg,h(β), as the average

weighted DTW cost between all samples of gesture class g and gesture class h using

weights calculated with given β. Then between-class dissimilarity is the average of all

Dg,h(β)'s (h 6= g) as the following:

DB(β) =
∑
g

∑
h
h6=g

Dg,h(β). (1.12)

Within-class dissimilarity is the sum of within-class variances Dg,g(β) for all g,

DW (β) =
∑
g

Dg,g(β). (1.13)

The discriminant ratio of a given β, R(β), is then obtained by

R(β) =
DB(β)

DW (β)
. (1.14)

The optimum β, β∗, is chosen as the one that maximizes R:

β∗ = argmax
β

R(β). (1.15)

1.5 Results

We tested the performance of our feature pre-processing and proposed weight distribution

method on our three discrete gesture databases to show the improvements separately:

(i) Rotationally distorted gesture database: In this database we recorded a set of noisy

gestures in terms of the rotational orientation of the body with respect to the Kinect

sensor in X,Y and Z axes (See Figure 1.2). The gestures are performed by trained users.

This database is designed in order to see the e�ect of pre-processing on the recognition

performance. It has 12 di�erent gesture classes and 21 gesture samples per gesture

class. (ii) Relaxed gesture database: In this database there is no intentionally generated

rotational distortion, instead, these gesture samples are performed more relaxed in terms

of the movement of other body parts out of the active joints. For example in one sample of

Chapter 1. Gesture Recognition 12

this database, performer scratches his head with his left hand while he performs the right-

hand-push-up gesture. This database has 8 gesture classes and 1116 gesture samples

in total. (iii) Rotationally distorted and relaxed gesture database: In this database

performers recorded gestures relaxed in terms of both rotation and body movement.

This database has 12 gesture classes and 198 gesture samples in total. We use this

database to show the overall performance of the system. All the three databases are

created using Microsoft Kinect Sensor. The databases are available online at http:

//mll.sehir.edu.tr/mvaa2013.

In addition to these databases, there is a set of reference samples per gesture class,

performed properly by trained users without any rotational distortion and without any

undesired movements. These reference samples are used in learning the total distance

measures of each joint in each class, which is required by our weight model in Eq. (1.10).

Two sample reference gestures are shown in Figure 1.7.

38 participants joined the gesture recording event. It took approximately one week

to �nish all the recordings. All participants performed 12 di�erent gesture classes 6

per sample. Bad records, approximately 30% percentage of all recorded gestures, due

to a bad gesture performance or Kinect's human-pose recognition failure, were manually

deleted by using an OpenGL based gesture visualizer. The physical factors (e.g., distance

from the Kinect sensor to the user, illumination in the room) are kept constant during

the recording for all records. Each gesture sample includes 20 joint positions per frame,

and although we did not use in this work, the time di�erence between two consecutive

frames. The gesture databases used in the experiments, source code for visualization

of gestures, source code used to produce the results in this paper and more results are

publicly available1. We are hoping that the databases can be used in testing other gesture

recognition algorithms as well.

In the �rst experiment, we test our pre-processing method using the rotationally distorted

gesture database. We �rst calculated the discriminant ratios (See Eq. 1.14) of 21 samples

for each 12 gesture class without using any of the pre-processing methods. Then, we used

the same gesture samples to calculate the discrimant ratios again, but this time using

our proposed pre-processing methods. Note that uniform weights were used in order to

see the performance of the pre-processing method alone. The e�ect of pre-processing on

the discriminant ratio can be seen in Figure 1.8.

In the second experiment we compared our weighted DTW algorithm against the con-

ventional DTW method and a weighted DTW method proposed by [47] using the relaxed

gesture database. The confusion matrices for the three algorithms for six chosen gesture

1http://mll.sehir.edu.tr/mvaa2013

http://mll.sehir.edu.tr/mvaa2013
http://mll.sehir.edu.tr/mvaa2013
http://mll.sehir.edu.tr/mvaa2013

Chapter 1. Gesture Recognition 13

BH Pull Down BH Push Up LH Pull Down LH Push Up LH Swipe L LH Swipe R LH Wave RH Pull Down RH Push Up RH Swipe L RH Swipe R RH Wave
0

5

10

15

20

25

30

35

Gesture class

D
is

c
ri
m

in
a
n
t
ra

ti
o

Without pre−processing

With pre−processing

Figure 1.8: Discriminant ratios for with and without pre-processed gesture samples
using the rotationally distorted gesture database. Note that the discrimant ratios are
increased, on average, 42% with the proposed pre-processing method. There are 21
gesture samples in each gesture class. The gesture classes are, namely, Both Hands
Pull Down, Both Hands Push Up, Left Hand Pull Down, Left Hand Push Up, Left
Hand Swipe Left, Left Hand Swipe Right, Left Hand Wave, Right Hand Pull Down,
Right Hand Push Up, Right Hand Swipe Left, Right Hand Swipe Right, Right Hand

Wave, respectively.

Table 1.1: Confusion matrix for the conventional DTW.

R
H
pu

sh
up

L
H
pu

sh
up

R
H
pu

ll
do
w
n

L
H
pu

ll
do
w
n

R
H
sw

ip
e
L

L
H
sw

ip
e
R

RH push up 93.9 0 0 2.3 3.8 0
LH push up 2.4 94.6 0.6 0 2.4 0
RH pull down 0 0 98.6 1.4 0 0
LH pull down 2 0 0.7 97.3 0 0
RH swipe L 0 0.8 0 4 95.2 0
LH swipe R 5.6 0 2.1 22.6 0.7 69

classes are given in Table 1.1, 1.2, and 1.3. After creating the confusion matrices, we

computed the overall recognition accuracies according to the following formula:

A = 100 · Trace(C)∑m
i=1

∑n
j=1C(i, j)

, (1.16)

where A denotes the accuracy, and C denotes the confusion matrix.

Our proposed method outperforms the weighted DTW method in [47] by a large margin

as given in Table 1.4. The reason is that their weights are global weights, i.e., a joint's

weight is independent of the gesture class. However, in our proposed method a joint

can have a di�erent weight depending on the gesture class we are trying to align with.

This degree of freedom in computing the associated DTW cost increases the reliability

of DTW cost signi�cantly.

In the third and the last stage, we tested the overall performance of our system using

the rotationally distorted and relaxed gesture database. The purpose of this operation

Chapter 1. Gesture Recognition 14

Table 1.2: Confusion matrix for the weighted DTW in [47].

R
H
pu

sh
up

L
H
pu

sh
up

R
H
pu

ll
do
w
n

L
H
pu

ll
do
w
n

R
H
sw

ip
e
L

L
H
sw

ip
e
R

RH push up 96.2 1.5 0 0.8 1.5 0
LH push up 3 97 0 0 0 0
RH pull down 0 1.4 98.6 0 0 0
LH pull down 2 0 0 98 0 0
RH swipe L 0 2.4 0 2.4 95.2 0
LH swipe R 7.8 0 0 25.3 0.7 66.2

Table 1.3: Confusion matrix for our proposed weighted DTW.
R
H
pu

sh
up

L
H
pu

sh
up

R
H
pu

ll
do
w
n

L
H
pu

ll
do
w
n

R
H
sw

ip
e
L

L
H
sw

ip
e
R

RH push up 100 0 0 0 0 0
LH push up 0 100 0 0 0 0
RH pull down 0 0 100 0 0 0
LH pull down 0 0 0 100 0 0
RH swipe L 0.8 0 0 0 99.2 0
LH swipe R 0 0 0 0 2.8 97.2

Table 1.4: Accuracies of the three methods. Note that not only six gesture classes
given in Table 1.1, 1.2, and 1.3 are used, but all eight gesture classes are taken into

consideration.

Method Accuracy
Classical DTW 84.41 %
State-of-the art 86.56 %
Proposed method 97.13 %

is to determine the overall improvement of the pre-processing and the weighting on the

recognition performance using a larger database. These experiments clearly demonstrate

the performance boost provided by our proposed techniques. The results are given in

Table 1.5.

1.6 Conclusion

We have developed a weighted DTW method to boost the discrimination capability of

DTW's cost, and shown that the performance increases signi�cantly. The weights are

based on a parametric model that depends on the level of a joint's contribution to a

Chapter 1. Gesture Recognition 15

Table 1.5: Overall performance comparison using the rotationally distorted and re-
laxed gesture database.

Method Accuracy
Traditional DTW 62.41 %
Pre-processing + Traditional DTW 76.26 %
Weighted DTW 84.13 %
Pre-processing + Weighted DTW 96.64%

gesture class. The model parameter is optimized by maximizing a discriminant ratio,

which helps to minimize within-class variation and maximize between-class variation.

We have also developed a pre-processing method to cope with real life situations, where

di�erent body shapes and user orientations with respect to the depth sensor may occur.

Chapter 2

Low-Complexity Shape Recognition

Using Random Forest Classi�ers

with Random Rectangle Features

2.1 Introduction

Shape recognition is an important problem encountered in various applications such as

optical character recognition, gesture recognition, medical analysis, and drawing appli-

cations [3, 38, 42]. Large number of shape classes, high level of within-class variation,

and low level of between-class variation exacerbates the problem. Large number of shape

classes necessitates a larger set of training samples to learn which variation in the train-

ing dataset contributes to between-class variation. Hence, a good recognition algorithm

learns the e�ect of (combination of) attributes on between-class variation and values

attributes accordingly in performing the classi�cation task. High level of within-class

variance requires the features to be invariant to some extent to certain transformations

and deformations. This requires the features used to be at least partially invariant to

these variations. A low level of between-class variation requires the use of features with

strong discrimination power or a cascaded application of relatively weaker features (e.g.,

boosting with Adaboosting) and a larger database to learn such discriminative features.

Hence, shape recognition requires a good learning algorithm using either strong features

or many weak features. Strong features such as gradient-based statistical features or

structural features can be used, but they often have high computational complexity and

computing some of these feature can be as di�cult as the original classi�cation problem.

To achieve fast execution times for real-time applications or low-cost implementations,

16

Chapter 2. Shape Recognition 17

weak features are utilized. To increase the accuracy of the classi�er, cascaded computa-

tion of weak features is required. A good example for cascaded learning is the Viola-Jones

framework for object detection, which uses a degenerate decision tree [60]. Another ex-

ample is bagging of decision trees to increase the accuracy and reduce the variance [55].

In this paper, we use random forest classi�ers with random rectangle features. Although

rectangular features are used in [60] for detection, and random forest classi�ers are used

in many recognition applications with more complex features [12, 17], we propose to use

random forest classi�ers in combination with random rectangle features consisting of a

single rectangle. We discuss how partial invariance, and stability is achieved with our

random rectangle features as compared to other types of features, and how these two

properties are related with cascaded learning characteristics of decision trees in Sections

2 and 3. We further discuss how the parameters of a decision tree and a random forest

classi�er can be optimized to achieve high accuracy, fast execution, and low computa-

tional complexity in Sections 4 and 5 by evaluating our proposed method on gesture

recognition and optical character recognition. Shape recognition applications in con-

sumer products require more e�cient use of computation and memory resources without

sacri�cing on the quality. Our proposed method can enable applications in various �elds

requiring shape recognition with low memory and time budgets, due to its high accuracy,

low complexity, and scalability.

2.2 Shape Features for Recognition

Features used in shape recognition can be loosely divided into statistical and structural

shape descriptors. Statistical features are direction features utilized within a statistical

framework. For example, the histogram of gradients in a locality is used as a descriptor

for the orientation. These local gradient histograms can be aggregated via clustering to

create global histograms so that not only local but global descriptors are also used as

features [33, 35, 37]. Statistical features are invariant to within-class variations such as

scaling, rotation, and illumination change [33, 36]. Directions are usually computed after

low-pass �ltering (e.g., Gaussian �ltering), which is performed to remove random varia-

tion and improve accuracy. A commonly used type of structural feature is (silhouette)

contour descriptors which measure curvature, concavity, convexity, shape-part structure

[21]. However, contour features are sensitive to nonlinear variations, structural changes,

and articulation [5]. Contour features have lower dimensionality compared to the sta-

tistical features, and structural variations that degrade the feature quality can have a

signi�cant overall impact. Skeleton features are another form of structural features which

extract the skeleton of the shape. Skeleton features perform better than contour features

under structural variations but skeleton stability is often a problem and matching of

Chapter 2. Shape Recognition 18

skeleton graphs is still an open research area [6, 11, 24, 51]. Since statistical and struc-

tural features are fairly independent descriptors, using statistical and structural features

in combination improves the recognition performance [34, 35, 56]. Although statistical

and structural features are invariant up to an a�nity, they are sensitive to image degra-

dation. Moreover, statistical and structural features may not always be stable since both

statistical and structural features are complex features and require an algorithm working

on intensity image data. Oftentimes, a preprocessing (normalization) stage is needed

to correct for translation, slant, and rotation. These steps may reduce the robustness

due to noise, blur, and illumination changes, etc. On the other hand, random rectangle

features are more stable and primitive as compared to statistical and structural features

at the expense of being partially invariant.

Important attributes of tree-based rectangle features are (i) cascaded learning, corre-

sponding to increasing structure and complexity (ii) partial-invariance, most samples

of a given class will more likely give similar responses to similar features as they move

down the tree (iii) stability to noise and other randomness since rectangle features do

not depend on orientation or other intensity-gradient based features.

Statistical features such as Scale Invariant Feature Transform (SIFT) descriptors are

invariant to image translation, scaling, rotation, and partially invariant to local a�ne

distortion and illumination changes [37]. SIFT features uses Di�erence of Gaussians

(DoG) function applied in scale space to �nd key points as feature candidates, which are

reduced in the later processing stages. Gradient based descriptors compute quantized

gradient histograms on Gaussian smoothed images. Although statistical features are

invariant to certain variations, they might not be stable under nonlinear deformations

and also require preprocessing stages such as normalization. Hence, statistical features

are sensitive to degradation in intensity data such as blur, noise, compression artifacts

or distortions in shape due to articulation or human errors, etc. Structural features need

contour or skeleton extraction, and detection of structural parts. This task might as

well be as complicated as detecting the whole structure, i.e., the shape. For example,

recognizing a hole or a line independently may be more di�cult than recognizing them

jointly as in character "d".

Rectangle features on the other hand are not invariant to translation, scaling, rotation,

and projective perturbations in general. However, they are partially invariant and the

degree of partial invariance increases with the area of rectangle. If we consider rotation

as an example, the area of the shape that resides in a rectangle will vary as the shape

is rotated but will vary to a lesser extent if the rectangle is enlarged. At the early

stages of a decision tree, larger rectangle features are selected as splitting features, which

improves the invariance. This is expected since at lower tree levels class label entropy will

Chapter 2. Shape Recognition 19

1 2 3 4 5

1
2

3
4

5

Figure 2.1: An example data instance

be larger, therefore same class samples will have high variance compared to same class

samples that reside on tree nodes at higher tree levels. Cascaded learning in the form of a

tree, will tend to favor larger rectangle features in lower levels. However at higher levels,

due to the learning process, entropy of the class label c will be smaller and learning will

become a more di�cult problem, necessitating more "complex" rectangle features that

are smaller or more oriented, i.e., thinner in the horizontal or vertical direction.

2.3 Decision Tree Based Classi�cation

2.3.1 Decision Trees and Random Forests

Decision trees are nonlinear classi�ers and therefore aim at learning complex boundaries

in the feature space using a training data set. The partitions formed by these boundaries

are desired to be pure in the sense that each partition contains same class members.

Classi�cation of a future sample reduces to �nding out which partition the sample lies

in, and predicting the class label using the training data in that partition. If the feature

space is under-partitioned, the partitions may not be pure enough to accurately predict

the class label. On the other hand if the feature space is over-partitioned, partition

boundaries might not re�ect the true boundaries imposed by the data-generation process,

and be a�ected by noise and other random variations in data. Under-partitioning, and

over-partitioning corresponds to under-�tting and over-�tting respectively, which are

terms used in classi�cation literature. The under-partitioning leads to a high bias error

with low variance in class prediction, and the over-partitioning case leads to a poor

generalization performance.

Decision trees ask discriminative questions successively to infer the class of a data sample,

and these questions are structured as a tree. Each tree node asks a question about

Chapter 2. Shape Recognition 20

F T

F T

1 2 3 4 5

1
2

3
4

5

1

2 3

4 5

2

F T

6 7

F T

8 9

5

6

9

8

Figure 2.2: Univariate decision tree

F T

1

2 3

1 2 3 4 5

1
2

3
4

5

2

3

Figure 2.3: Multivariate decision tree

the features of a data sample1. The goal in the training phase is to choose the most

discriminative question to ask at each node. The training data set associated with each

tree node is split according to each data sample's answer. A binary decision tree asks

YES/NO questions and therefore the training set associated with each node is split

into two. A question can be about a single attribute or a combination of attributes

of a data sample. The two question types lead to univariate or multivariate decision

trees, respectively. The most discriminative question out of a speci�ed set of questions

is found as the maximizer of some purity measure such as the negative total entropy

in the post-split data sets. A new data sample is classi�ed by sending it down the

tree by routing it according to its answers to the questions along its path from the

root node to the leaf node. The leaf node predicts the class label using its training

samples. Consider the training data samples shown in Figure 2.1. Let I denote a space

of 2D points I = (x1, x2). Each I ∈ I has a class label c(I) ∈ C = {+,−}. If single

feature questions are learnt from the training data set, a univariate decision tree of

depth four such as the one given in Figure 2.2 can be obtained. However, if questions

involve linear combinations of attributes, a multivariate tree that consists of a single

node as given in Figure 2.3 can be learnt, and the partitions formed by the decision

tree is also shown. As can be seen from the �gures, a univariate tree can only split the

feature space at a node with a boundary that is orthogonal to the feature axes, resulting

in space partitions that are hyperrectangles with sides parallel to the axes. However,

1A data sample can be a multi-dimensional vector rather than a scalar value, and each component of
a data vector is called an attribute of that data sample. A question can involve a single attribute, or a
combination of attributes. The �rst type of question is called a univariate feature, and the second type
of question is called a multivariate feature. In this paper, we use feature and question interchangeably.

Chapter 2. Shape Recognition 21

more discriminative questions can be asked using a linear combination of attributes,

which splits the data space using hyperplanes, resulting in complex polyhedral space

partitions. Since univariate questions are more restricted and therefore generally less

discriminative than multivariate questions, univariate trees tend to be larger, i.e., more

univariate questions are needed to be asked to learn a discrimination boundary between

samples of di�erent classes.

Although multivariate trees can lead to a better partitioning of the data space, their

training is more involved. Selecting attributes to be used in a linear combination for

constructing a multivariate question is a di�cult problem since the number of linear

combinations grow exponentially with the attribute size. Moreover, choosing the com-

bination weights is also a problem [14]. For example to classify an image sample, all

combinations of attributes (i.e., pixels) grows exponentially with the number of pixels in

the image.

Training decision trees by maximizing a purity function at each node is a greedy heuris-

tic which causes sensitivity: a small change in the training data set may result in a

very di�erent decision tree and data space partitioning. This means the classi�cation

performance depends on the particular instance of training data set leading to poor gen-

eralization performance. To reduce variance, bagging is used to train more than one

decision trees on variants of the training set. Predictions of trees can be aggregated by

letting each tree vote for a class and making the �nal decision in favor of the majority

class. Another typical aggregation technique is to create histograms for each leaf node

reach in tree t to approximate the probability distribution over the class labels Pt(c|I),
and compute the average histogram of all trees.

To improve the bagging performance, random forests reduce correlations between trees

by randomization in their training. Randomization is achieved by randomly selecting

a set of feature candidates for split decisions in addition to bootstrap techniques to

create variants of the training set for each tree. Hence, randomization enforces each tree

classi�er ask di�erent questions about the shape which improves the learning-from-data

process. Below is a binary decision tree learning algorithm for a random forest

1. Randomly propose K splitting questions Q = {Qi} if size of data set I is large

enough

2. Split the set of examples I into left and right subsets according to their answer to

each question

Il(Qi) = {I|Qi(I) = YES} (2.1)

Ir(Qi) = I\Il(Qi) (2.2)

Chapter 2. Shape Recognition 22

3. Choose the question Qi that maximizes a purity measure P

Q∗ = argmax
Qi

P (Qi) (2.3)

P (Qi) = −
∑

s∈{l,r}

|Is(Qi)|
|I|

H(Is(Qi)), (2.4)

where negative entropy is used as the purity measure on the class label histograms

derived from two split example sets, which are weighted with the cardinality of the

two sets.

4. Recurse for left and right example subsets Il(Q∗) and Ir(Q∗) if the depth in the

tree has not exceeded a pre-de�ned maximum value.

The above algorithm randomly proposes K questions as candidates for splitting the

examples, exits if a maximum number of depth in the tree is achieved or the pre-split

example set does not have enough elements.

2.3.2 Random Forest Classi�ers For Recognition

Randomized decision trees and forests have been used in multi-class classi�cation prob-

lems due to their low complexity and high accuracy[31, 39, 54]. Using random forest

classi�ers, real-time performance can be achieved in di�cult computer vision and ma-

chine learning problems such as human-pose recognition or gesture recognition [26, 55].

In [55], random forests are used to classify each depth pixel into intermediate body parts

that are spatially localized near skeletal joints of interest. Pixel classi�cation into 31 in-

termediate body parts transforms the human-pose recognition problem into a multi-class

problem that can be e�ciently solved using random forests in real-time. The features

used in split decisions are depth di�erences of two pixels in the locality of the current

pixel to be classi�ed. The two pixels used in this bivariate feature are obtained by o�-

setting the current pixel x, and the o�set values are normalized using the current pixel's

depth resulting in depth invariant features as given below.

fθ(I,x) = dI(x+
u

dI(x)
)− dI(x+

v

dI(x)
), (2.5)

where dI(x) is the depth at pixel x in image I. u and v represent the two-dimensional

o�set vectors, which are depth-normalized by 1
dI(x)

. Bivariate features have weak discrim-

inatory power (e.g., if the above pixel is checked and found out to be in the background,

the pixel can belong to the head or the two shoulders). Although these features have

weak discriminatory power, cascaded use of these features as in the form of a decision tree

Chapter 2. Shape Recognition 23

reduces the bias of the classi�er, i.e., a decision tree classi�er accurately disambiguates

the body parts. Moreover, using an ensemble of randomized decision trees (i.e., random

forest), the variance of the classi�er is reduced and the accuracy increases. This system

runs at 200 frames per second on consumer hardware thanks to low-complexity depth

features and random forest classi�ers which enable parallel implementation.

Per-pixel random forest classi�ers are recently used in hand shape recognition on depth

image data and tested on American Sign Language (ASL) and hand gesture datasets [26].

High accuracy rates are reported without resorting to the use of color images. Similar

to [55] as discussed above, random forest classi�ers are used on depth images, and the

same bivariate depth feature in (2.5) is used for making discriminative split decisions at

split nodes.

Recognizing the shape (i.e., human skeleton) in parts (i.e., body joints/parts) necessi-

tates per-pixel classi�cation because more than one classes (i.e., body parts) will exist

in the same image. Hence, there are segments in the image with di�erent class labels.

To recognize each segment using more than one pixel, one needs to know where the seg-

ments are located, and their boundaries, etc. Therefore, a per-pixel based classi�cation

signi�cantly simpli�es the algorithm. However, the number of classi�cation problems

to be solved increases by the number of pixels. When there is one shape in the image

or detection has already been priorly performed to �nd the region of interest, shape

classi�cation can be performed on the whole image without requiring per-pixel classi�-

cation. Moreover, a bivariate feature as in (2.5) might not be reliable when the shape

structure involves thin structural details oriented in varying directions, which makes the

bivariate feature less invariant to structural and "pose" changes, or image degradations.

We tailored the technique in [55] for Optical Character Recognition (OCR) by using

per-pixel random forest classi�cation together with bivariate features given in (2.5). The

error rate was unacceptably high around 40% on the MNIST digit database. However,

the same technique applied to Gesture Recognition (GR) on American Sign Langugage

(ASL) dataset using only static ASL letters achieved a recognition rate of 85% using only

depth data, which is signi�cantly higher than the state-of-the-art recognition rates (e.g.

75% achieved in [43], see Section 2.5.2 for details). The better performance of per-pixel

classi�cation with bivariate features on GR is due to a lesser degree of �ne details and

structural variations in the hand gestures compared to hand-written digits which can

have high degree of structural variation and �ne details.

Chapter 2. Shape Recognition 24

Figure 2.4: Example Viola-Jones features relative to the detection window. The sum
of the pixel intensities in the grey rectangular regions are subtracted from the white

rectangular regions.

1

32

4 5

TF

6 7

{no face}

{no face}

{no face} {face}

TF

TF

Figure 2.5: Cascaded application of classi�ers enable focusing on object-like regions.

2.3.3 Viola-Jones Object Detection Framework

To improve the robustness, one can utilize features in the form of a �lter that aggregates

local information in its support. For example statistical features exploit pyramid �lter-

ing schemes by using steerable �lters. Steerable �lters can be oriented according to the

structural details and can extract more useful information about orientation and shape

in a locality [22]. Haar wavelets are examples of such �lters. Haar wavelets are used in

many applications for recognizing and detecting shapes in the image [4, 63, 67]. First

used in face detection, and then used in object detection in general, Viola-Jones features

are Haar-like features and compute di�erences of intensities in rectangular regions (see

Figure 2.4 for some examples features) [60]. With the use of an image representation

called the integral image, Viola-Jones features can be computed in constant time inde-

pendent of feature scale (i.e., rectangle size). Viola-Jones features consist of adjacent

rectangular regions, and the total intensities inside adjacent rectangular regions are ei-

ther summed or subtracted to compute the feature value. Adaboosting is used to train a

weak classi�er at each boosting stage. A weak classi�er is constrained to use a single fea-

ture. As a result, classi�er selection at each boosting stage reduces to a feature selection

process. Each classi�er is trained to have a low false negative rate of approximately 0%

and a false positive rate of 40%. These classi�ers are applied in cascade. Sub-windows

Chapter 2. Shape Recognition 25

rejected by a classi�er at any stage of the cascade is not processed further thanks to

the very low false negative rate. This method successively discards non-object regions

and spends more processing time on regions that resemble the object of interest (see

Figure 2.5), thereby achieving real-time execution. The classi�cation structure of the

Viola-Jones method is essentially a degenerate decision tree, in which the left nodes are

always leaf nodes and are labeled NO. There exists a single leaf node labeled YES and

it requires more computation to reach, compared to any other node in the tree.

In object detection the goal is to detect the object inside the image, and the object

can be present at any scale and at any spatial location. Hence, the cascaded weak

classi�ers has to process various sub-windows in the image using classi�ers of varying

scale. This means Viola-Jones features of di�erent sizes need to be evaluated at di�erent

spatial locations in the image. On the other hand object recognition assumes object

detection has been performed before. Hence, the scale and the location is approximately

known. In this sense recognition is a simpler problem compared to detection. But object

recognition in general is a multiclass classi�cation problem while object detection is a

binary classi�cation problem. Object detection algorithms such as Viola-Jones object

detection framework take advantage of this by utilizing (weak) single-feature classi�ers

with low false negatives. The degenerate structure of the decision tree enables early

termination for a NO label, which means that regions that are not object-like are reliably

labeled early in the process. This is possible because in detection there are two classes

and each classi�er in the cascade is trained for achieving a low false negative rather than

both low false negative and low false positive. However, in recognition there are more

than two classes and it is di�cult to �nd a (weak) single-feature classi�er to recognize

a class and create a leaf node for early termination. Hence, a degenerate decision tree

would not be a good �t for an object recognition task. Cascaded application of more

than one weak classi�ers will be needed to recognize an object leading to more balanced

decision trees.

2.4 Random Forest Classi�ers with Random Rectangle Fea-

tures

We use random forest classi�ers with random rectangle features for shape recognition.

Random forest classi�ers have lower computational complexity compared to other clas-

si�ers such as support vector machines (SVMs), neural networks, or nearest-neighbor

type classi�ers [55]. Random forest classi�ers with bivariate features fail to learn the

shape structure when there are thin details in the structure because the bivariate (two

Chapter 2. Shape Recognition 26

Figure 2.6: Visualization of a decision tree up to the fourth depth level trained on
OCR data. The thickness of the edges connecting nodes is proportional to the number
of images associated with the receiving node. The average of all training images at
a node is displayed. The brightness of the circle below the average image is inversely
proportional to the entropy at that node: the higher the entropy the darker the color

of the circle.

pixel) feature may not be stable due to variations in the thin structural parts. For ex-

ample using bivariate features for hand-written digit recognition performs poorly with

an accuracy rate of 60%. However, rectangle features are more insensitive to in-class

variations due to the aggregation of pixels inside a feature's rectangular region. We use

a simple feature that consists of a single rectangle, which is even more primitive than

the Viola-Jones features. Viola-Jones �lters employ simple to complex single-feature

classi�ers starting from two-rectangle features to more complex features involving more

rectangles and their various additive or subtractive combinations. This is required be-

cause Viola-Jones detection framework uses a degenerate decision tree whose NO-branch

is always a leaf node detecting the non-existence of the searched shape. Hence, the false

negative rate has to be kept extremely low, which requires asking more and more dif-

�cult questions (i.e., more complex features as combinations of rectangles). However,

a balanced decision tree will continue asking questions both on the YES and the NO

branch. Therefore the questions do not need to become di�cult: cascaded application

of more primitive features will be able to perform successive splits and purify the label

distribution.

A rectangle feature is a multivariate feature that uses a combination (summation) of all

pixel intensities in a rectangle given by

Chapter 2. Shape Recognition 27

fr(I) = rT I, (2.6)

where I is a vector of image pixels, and r is a vector of zeros except nonzero elements

of value one corresponding to the pixels inside the rectangle. A rectangle feature can be

computed in constant time independent of its size using the integral image [60]. At each

split node a set of random features {fr(I)} and threshold candidates {T} are created

and out of the corresponding binary questions

{Q = (fr(I) < T) ? YES : NO}, (2.7)

the best question is chosen. An example decision tree up to depth level four trained on

OCR data set is shown in Figure 2.6. The red rectangle shows the best split rectangle

depicted on the average image, which is the average of all images at that node. The data

sets are puri�ed at the higher depth levels and the average images start to resemble one

of the ten digits.

2.4.1 Rectangle Feature As A Linear Combination

The best split rectangle feature is a multivariate feature which is a linear combination

of attributes (e.g., pixels) with all coe�cients equal to one. There are two important

problems in �nding a good linear combination of attributes. The �rst is selecting the

attributes to be included in the linear combination, and the second is learning their co-

e�cients. To select the attributes there are two basic approaches: Sequential Forward

Selection (SFS) and Sequential Backward Selection (SBS). SFS is a bottom up search

method that starts with zero attributes and adds the attribute that causes the biggest

increase in the purity measure until a stopping criteria is met. On the other hand, SBS

is a top down search method for attribute selection. To learn the coe�cients of the

linear combination, techniques such as Recursive Least Squares (RLS) which minimizes

mean-squared error over the training data or CART which explicitly searches for a set of

coe�cients that maximize a purity measure is utilized. Both attribute selection and co-

e�cient learning applied without any restriction will lead to general multivariate features

that are not the sum of pixels in a rectangular area.

To be able to use rectangle features in combination with the integral image, we �x all

coe�cients to be one and randomly select attributes by creating a set of random rectangle

features rather than a top down or a bottom up search technique. This randomization

also improves the accuracy of the random forest classi�er by reducing the correlation

between trees. The best rectangle is chosen as the purity maximizer and then re�ned

Chapter 2. Shape Recognition 28

by perturbing its top-left and bottom-right corners. A typical corner perturbation can

be a one pixel horizontal/vertical shift in the two-dimensional space, which results in a

set of 25 perturbed rectangle candidates. The split rectangle feature is determined by

re�nement iterations using the corner perturbation technique. Rectangle re�nement can

produce discriminative rectangles, e.g., the split rectangle of the rightmost node at depth

level 2 as given in Figure 2.6, which most likely separates 4's and 9's in its data set.

Below is the algorithm for training a single tree using random rectangle features.

1. Randomly propose a set of rectangle features {r} and a set of candidate threshold

{T} for each r in {r}

2. Create a question Qi for each r and T

3. Split the set of examples I into left and right subsets according to their answer to

each question

Il(Qi) = {I|Qi(I) = YES} (2.8)

Ir(Qi) = I\Il(Qi) (2.9)

4. Choose the question Qi that maximizes a purity measure P

Q∗ = argmax
Qi

P (Qi) (2.10)

P (Qi) = −
∑

s∈{l,r}

|Is(Qi)|
|I|

H(Is(Qi)), (2.11)

5. Create a new set of questions Q by perturbing left-top and right-bottom corners

of r∗ of Q∗

6. Find Q∗∗ in Q by maximizing the purity measure

7. Go to step 5 until an exit criteria holds

8. Recurse for left and right example subsets Il(Q∗∗) and Ir(Q∗∗) if the depth in the

tree has not exceeded a pre-de�ned maximum value.

2.5 Experiments

In this section we describe the experiments performed to evaluate our Random Forest

Classi�er with Random Rectangle Features (RFCwRRF) method. We apply our method

to Optical Character Recognition (OCR) and Gesture Recognition (GR), and evaluate

Chapter 2. Shape Recognition 29

the accuracy rate with respect to parameters such as number of trees, maximum depth,

data set size, number of random rectangles used as split candidates at each node, etc.

Unless otherwise stated, in all experiments the parameters of our RFCwRRF method

are set as 20 trees of maximum depth 14, 100 candidate rectangles with 20 candidate

thresholds per rectangle at each split node.

2.5.1 Optical Character Recognition Results

Figure 2.7: Sample digits from the MNIST database

We use the MNIST database for OCR, which is a digit database that consist of 60,000

training samples and 10,000 test samples [29]. Sample images from the database is

given in Figure 2.7. Each sample is a 28 × 28 gray-scale image. We scaled the training

database up by 4x by applying moderate rotational and a�ne transformations randomly.

Increasing the database size helps with the over�tting problem, which is exacerbated

by having deep trees (of maximum depth 14). Also, randomization more e�ectively

reduces the correlation between the trees and therefore the accuracy of the forest classi�er

increases. Visualization of a trained tree is given in Figure 2.6.

Computation speeds and required memory space is important in analyzing the perfor-

mance of a classi�er, especially if the goal is to design a cost-e�ective real-time classi�er.

We compared our classi�cation times against the classi�cation times of the state-of-the-

art given in [35]. We implemented the k-nearest-neighbor (k-NN) classi�er on our system

and used k-NN's classi�cation time as a reference point in the comparison: by using the

ratio between our k-NN classi�cation time and the time given in [35], we updated other

classi�cation times in [35] accordingly.

The classi�cation times are given in Table 2.1. [35] reports classi�cation times using four

di�erent features. A principal component analysis (PCA) based feature, a 4-orientation

gradient feature, an 8-orientation gradient feature, and pixel intensity. Our proposed

RFCwRRF method implementation uses the image pixel intensities only. Rectangle

features may as well operate on multi-dimensional features derived from the image data.

And it is possible to extend the integral image technique to multi-dimensional data (e.g.

gradient) to improve the accuracy of the classi�er. However, our goal was to achieve a fast

Chapter 2. Shape Recognition 30

classi�er with accuracy rates similar to the state-of-the-art. Hence, RFCwRRF results

are given for intensity features (raw pixel data) only, while the other classi�er results are

given for all the four features. k-NN is the most expensive in terms of computation and

memory resources since it has to compute the distance between a new image and all the

(60K) training images in the database. Our result is about 40 times faster than the MLP

(multilayer perceptron) classi�er, which is the fastest among the classi�ers in the table.

The SVC (support vector classi�er) is considerably slower than the other classi�ers. This

is because the number of support vectors is very large slowing SVC down to the level of

k-NN classi�er.

Table 2.1: Classi�cation times (milliseconds) on an example image of size 28× 28.

Classi�er Time
RFCwRRF 0.010
k -NN 49.66
Per-pixel RFC 7.832
MLP 0.402
RBF 0.518
PC 0.437
LVQ 0.719
LQDF 0.463
SVC-poly 8.098
SVC-rbf 31.589

Table 2.2 reports the accuracy of each classi�er on the MNIST test set. RFCwRRF

has an accuracy rate of 98.01%, which is slightly less than the highest accuracy classi-

�er. The best performing classi�er (SVC-rbf) which is a support vector classi�er, has a

98.59% accuracy, while requires 3158.9 times more computation (see Table 2.1 and 2.2).

Per-pixel random forest classi�er (RFC) performs signi�cantly lower than the rest. This

is due to the use of bivariate features which have a signi�cantly lower discrimination

power on the thin details of digits and structural variation in hand-writings as discussed

in Section 2.3.2. Moreover, per-pixel RFC requires high computational resources com-

parable to support vector classi�ers since pixels rather than the whole image need to be

classi�ed.

Figure 2.8 shows accuracy as the number of trees is increased. The improvement slows

down around 7 trees but accuracy increases approximately monotonically up to 30 trees.

The maximum accuracy (98.01%) is reached with the maximum number of trees.

Figure 2.9 shows the e�ect of the number of candidate rectangles used during training on

the test classi�cation accuracy. The accuracy of a single tree trained with 300 candidates

has 1.2% higher average accuracy compared to a tree trained with 50 candidates. The

accuracy di�erence between the two con�gurations does not change signi�cantly with

increasing number of trees. One might expect that using 300 candidate rectangles at each

Chapter 2. Shape Recognition 31

Table 2.2: Classi�cation accuracies on the MNIST test set.

Classi�er Accuracy
k -NN 96.34
RFCwRRF 98.01
Per-pixel RFC 60.74
MLP 98.09
RBF 97.47
PC 98.36
LVQ 97.21
LQDF 98.03
SVC-poly 98.31
SVC-rbf 98.59

0 5 10 15 20 25 30
95.5

96

96.5

97

97.5

98

98.5

Number of Trees Trained

A
c
c
u
ra

c
y

Figure 2.8: Accuracy as the number of trees is increased

split node will increase the correlation between the trees, hence the accuracy will improve

to a lesser extent with increasing number of trees in the forest. However, Figure 2.9

shows that the accuracy di�erence only slightly decreases. Since the number of possible

rectangles in a 28× 28 image is 142884, increasing number of candidate rectangles from

50 to 300 does not have a signi�cant impact on the correlation between the trees. Hence,

the accuracy increases with the number of trees similarly in both training con�gurations.

3 4 5
94.5

95

95.5

96

96.5

97

Number of trees

A
c
c
u
ra

c
y

50 candidate rectangles

300 candidate rectangles

Figure 2.9: The e�ect of the number of candidate rectangles per each split node

Chapter 2. Shape Recognition 32

Increasing the maximum depth increases the number of parameters to be learnt (i.e.,

more questions to be asked), which gives more degrees of freedom to partition the feature

space. However if the training set is not large enough, some split decisions may not be

reliable and partitions may have too few training samples. Figure 2.10 shows accuracy

as the maximum tree depth is increased using a random forest of �ve decision trees on

two di�erent training sets: 60k and 180k images. On the 60k training set, the accuracy

goes down after maximum depth 12. However, on the 180k training set, accuracy of

the forest keeps increasing despite a slowing down in the increase. This shows that

increasing the maximum depth causes over�tting to training data rather than learning

generalizable relations about the data distribution when 60k images are used. To avoid

a decrease in the forest accuracy, more number of trees can be used as compared to

�ve trees used to obtain the plot. Figure 2.11, gives the average per-tree accuracy on

the training and testing sets for both 60k and 180k training sets. For both training

sets when maximum depth is set to eight, both training and testing set accuracies are

close but low, indicating that there is bias in P̂t(c|I). However, as the maximum depth

is increased training accuracy increases while testing accuracy converges, which shows

that additional tree parameters (questions) are used to over�t the classi�er to training

data. The gap between testing and training accuracies is less using 180k training images,

which shows the e�ectiveness of our arti�cially warped images in learning. There may

be potential to increase the training set size even further by using a richer set of warping

types.

8 10 12 14
93

93.5

94

94.5

95

95.5

96

96.5

Maximum Depth

A
c
c
u
ra

c
y

60k training images

180k training images

Figure 2.10: Accuracy versus maximum tree depth using a random forest of �ve
randomized trees.

In Figure 2.12, a mixed set of features including features other than our single random

rectangle feature is compared. Below we list the types of features used.

• Single rectangle features: Randomly created single rectangle features.

Chapter 2. Shape Recognition 33

8 10 12 14
88

90

92

94

96

98

100

Maximum Depth

A
c
c
u
ra

c
y

train−60k

test−60k

train−180k

test−180k

Figure 2.11: Average per-tree accuracy versus maximum tree depth

• Double rectangle features: Two random rectangles and random combination of

the two rectangles by adding or subtracting the summed intensities of the rectan-

gles. This is a generalization of two-rectangle Viola-Jones features by removing the

adjacency requirement.

• Single rectangle features mixed with Viola-Jones type two-rectangle features: Two

horizontally or vertically oriented, adjacent rectangles as Viola-Jones type features

in addition to single random rectangle features.

3 4 5 6 7 8
93.5

94

94.5

95

95.5

96

96.5

97

Number of trees trained

A
c
c
u
ra

c
y

300 double rectangle

150 single rectanlge + Viola−Jones

300 single rectangle

150 single rectangle

Figure 2.12: Accuracy versus number of trees using di�erent features

In Figure 2.12, accuracy of the forest classi�er as the number of trees changes, is given for

single rectangle features using 300 and 150 candidates, double rectangle features using

300 candidates, and single rectangle features mixed with Viola-Jones features (150 can-

didates for each). We can see that the accuracy is lower when double rectangle features

are used as opposed to single rectangle features (see the accuracy plots for 300 double

and single rectangle features). This might seem counter intuitive in the sense that double

rectangle features are more complex features as compared to single rectangle features,

and hence can be expected to discriminate the classes better. The reason is that the

Chapter 2. Shape Recognition 34

number of possible double rectangle features Nd is much larger than the number of pos-

sible single rectangle features Ns, i.e., Nd = N2
s . To �nd good double rectangle features,

more candidates needs to be tried. Hence, discriminative power of complex features goes

down if the number of candidates is not increased accordingly2. By the same reason, the

accuracy with 150 single rectangle candidates is lower than 300 single rectangle candi-

dates using a small number of trees. However, as the number of trees in the forest grows,

150 single rectangle candidates outperforms 300 single rectangle candidates in terms of

accuracy. Using 150 feature candidates instead of 300 feature candidates, the correlation

between the decision trees goes down (i.e., tree nodes are more likely to ask di�erent

questions), hence the forest aggregation improves the accuracy faster as the number of

trees is increased. This tradeo� can be used to achieve a speci�ed accuracy depending

on the execution time requirements of the system, which determines the number of trees

used. It is also important to note that using two-rectangle Viola-Jones features does not

improve the performance. This is due to the fact that decision trees perform cascaded

learning, and single rectangle features can achieve the same learning power as more com-

plex features, but probably with more number of learning stages (i.e., tree nodes). We

also experimented with using 45 degrees rotated rectangles, which also did not improve

the accuracy. More complex features such as Viola-Jones features, or rotated rectangles

may help with a detection algorithm, which requires a signi�cantly low false positive

to cut down the computational complexity, but for a recognition problem they do not

perform better than a simple feature such as a single rectangle.

2.5.2 Gesture Recognition

For testing our RFCwRRF method on gesture recognition, we use the publicly available

ASL dataset. We only use the 24 static letters out of the 26 letters, since our focus is

shape recognition, not motion patterns in an image sequence. We only use the depth

images as input to our classi�er but color images can as well be used with our method,

as discussed above in using rectangle features on multi-dimensional gradient histogram

data.

We compare our method with per-pixel random forest classi�er as before, and also with

Pugeault[43], which uses a random forest classi�er on statistical features obtained by

Gabor �lters at four scales and four orientations. The accuracy results of the three

methods are given in Table 2.3. Using RFC with statistical features performs the worst

2Breiman proposes a logarithmic relation between the number of candidate features and the number
of all possible features [13]. Given that Nd = N2

s , the number of candidate double rectangle features
at each split node has to be twice as large as compared to the single rectangle features. We did not
run experiments for 600 double rectangle candidates per node, as this slowed down the training phase
tremendously.

Chapter 2. Shape Recognition 35

although it uses the color images in addition to the depth images, and the other two

methods operate on depth images only. Per-pixel RFC achieves 85% accuracy which

improves Pugeault's results by about 10%. This is in contrast to the OCR results in

which per-pixel RFC performed considerably worse. This is because the gesture images

do not contain �ne structures and thin details as compared to digit images, although

there is a signi�cant structural variation in the gesture samples depending on the person.

RFCwRRF performs the best among the three methods, achieving an accuracy score of

91.3%.

Figure 2.13: The characters in order b,e,t,y

Table 2.3: Gesture recognition accuracies

Accuracy
Pugeault (color + depth) 75
Per-pixel RFC 85.04
RFCwRRF 91.33

2.6 Conclusion

We proposed using random rectangles as features for training random forest classi�ers.

Our rectangle features consist of a single rectangle which have a low computational

complexity and can be computed in constant time. We compared our proposed method

with other techniques that use rectangle based features and random forest classi�ers

in classi�cation problems involving object/shape detection and recognition. We further

studied the e�ect of classi�er and feature parameters as well as the training dataset size

on the performance.

Bibliography

[1] N. H. Adams, M. A. Bartsch, J. Shifrin, and G. H. Wake�eld. Time series alignment

for music information retrieval. In ISMIR, 2004.

[2] T. B. Amin and I. Mahmood. Speech Recognition using Dynamic Time Warping.

In International Conference on Advances in Space Technologies, 2008.

[3] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees.

Neural computation, 9(7):1545�1588, 1997.

[4] C. Bahlmann, Y. Zhu, V. Ramesh, M. Pellkofer, and T. Koehler. A system for tra�c

sign detection, tracking, and recognition using color, shape, and motion information.

In Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, pages 255�260. IEEE,

2005.

[5] X. Bai, X. Yang, D. Yu, and L. J. Latecki. Skeleton-based shape classi�cation

using path similarity. International Journal of Pattern Recognition and Arti�cial

Intelligence, 22(04):733�746, 2008.

[6] R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of de-

formable shapes. Vision Research, 38(15):2365�2385, 1998.

[7] L. Baum. An inequality and associated maximization technique in statistical esti-

mation for probabilistic functions of Markov processes. Inequalities, 3:1�8, 1972.

[8] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A Maximization Technique Occur-

ring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The

Annals of Mathematical Statistics, 41:164�171, 1970.

[9] R. Bellman. The theory of dynamic programming. Bull. Amer. Math. Soc,

60(6):503�515, 1954.

[10] R. Bellman and R. Kalaba. On adaptive control processes. Automatic Control, IRE

Transactions on, 4(2):1�9, 1959.

36

Bibliography 37

[11] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

24(4):509�522, 2002.

[12] A. Bosch, A. Zisserman, and X. Muoz. Image classi�cation using random forests and

ferns. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference

on, pages 1�8. IEEE, 2007.

[13] L. Breiman. Random forests. Machine learning, 45(1):5�32, 2001.

[14] C. E. Brodley and P. E. Utgo�. Multivariate decision trees. Machine learning,

19(1):45�77, 1995.

[15] Y.-J. Chang, S.-F. Chen, and J.-D. Huang. A kinect-based system for physical

rehabilitation: A pilot study for young adults with motor disabilities. Research in

Developmental Disabilities, 32(6):2566 � 2570, 2011.

[16] A. Corradini. Dynamic time warping for o�-line recognition of a small gesture

vocabulary. In Recognition, Analysis, and Tracking of Faces and Gestures in Real-

Time Systems, 2001. Proceedings. IEEE ICCV Workshop on, pages 82�89. IEEE,

2001.

[17] R. Díaz-Uriarte and S. A. De Andres. Gene selection and classi�cation of microarray

data using random forest. BMC bioinformatics, 7(1):3, 2006.

[18] A. Efrat, Q. Fan, and S. Venkatasubramanian. Curve matching, time warping, and

light �elds: New algorithms for computing similarity between curves. Journal of

Mathematical Imaging and Vision, 27(3):203�216, 2007.

[19] W. T. Freeman and M. Roth. Orientation histograms for hand gesture recognition.

In International Workshop on Automatic Face and Gesture Recognition, pages 296�

301, 1994.

[20] D. Gehrig, H. Kuehne, A. Woerner, and T. Schultz. Hmm-based human motion

recognition with optical �ow data. In IEEE International Conference on Humanoid

Robots (Humanoids 2009), Paris, France, 2009.

[21] L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt. Shape representation and

classi�cation using the poisson equation. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 28(12):1991�2005, 2006.

[22] H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and C. Anderson.

Overcomplete steerable pyramid �lters and rotation invariance. In Computer Vi-

sion and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer

Society Conference on, pages 222�228. IEEE, 1994.

Bibliography 38

[23] P. Hong, T. S. Huang, and M. Turk. Gesture modeling and recognition using �nite

state machines. In Proceedings of the Fourth IEEE International Conference on

Automatic Face and Gesture Recognition 2000, FG '00, pages 410�, Washington,

DC, USA, 2000. IEEE Computer Society.

[24] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images

using the hausdor� distance. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 15(9):850�863, 1993.

[25] H. P. Jain, A. Subramanian, S. Das, and A. Mittal. Real-time upper-body human

pose estimation using a depth camera. In Proceedings of the 5th international confer-

ence on Computer vision/computer graphics collaboration techniques, MIRAGE'11,

pages 227�238, Berlin, Heidelberg, 2011. Springer-Verlag.

[26] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun. Randomized decision forests for

static and dynamic hand shape classi�cation. In Computer Vision and Pattern

Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on,

pages 31�36. IEEE, 2012.

[27] S.-J. Kim, A. Magnani, and S. P. Boyd. Robust Fisher Discriminant Analysis. In

Neural Information Processing Systems, 2005.

[28] A. Kuzmanic and V. Zanchi. Hand shape classi�cation using dtw and lcss as similar-

ity measures for vision-based gesture recognition system. In EUROCON, 2007. The

International Conference on" Computer as a Tool", pages 264�269. IEEE, 2007.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278�2324, 1998.

[30] H.-K. Lee and J. Kim. An hmm-based threshold model approach for gesture recogni-

tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(10):961

�973, oct 1999.

[31] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recog-

nition. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 2, pages 775�781. IEEE, 2005.

[32] R. Liang and M. Ouhyoung. A real-time continuous gesture recognition system for

sign language. In Automatic Face and Gesture Recognition, 1998. Proceedings. Third

IEEE International Conference on, pages 558�567. IEEE, 1998.

[33] K.-L. Lim and H. Galoogahi. Shape classi�cation using local and global features.

In Image and Video Technology (PSIVT), 2010 Fourth Paci�c-Rim Symposium on,

pages 115�120, 2010.

Bibliography 39

[34] C. Liu, Y. Liu, and R. Dai. Preprocessing and statistical/structural feature ex-

traction for handwritten numeral recognition. Progress of Handwriting Recognition,

World Scienti�c, Singapore, pages 161�168, 1997.

[35] C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten digit recognition:

benchmarking of state-of-the-art techniques. Pattern Recognition, 36(10):2271�2285,

2003.

[36] D. Lowe. Object recognition from local scale-invariant features. In Computer Vision,

1999. The Proceedings of the Seventh IEEE International Conference on, volume 2,

pages 1150�1157 vol.2, 1999.

[37] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2):91�110, 2004.

[38] S. Mitra and T. Acharya. Gesture recognition: A survey. Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(3):311�

324, 2007.

[39] F. Moosmann, B. Triggs, F. Jurie, et al. Fast discriminative visual codebooks using

randomized clustering forests. Advances in Neural Information Processing Systems

19, pages 985�992, 2007.

[40] M. Müller. Information retrieval for music and motion, volume 6. Springer Berlin,

2007.

[41] C. Myers and L. Habiner. A comparative study of several dynamic time-warping

algorithms for connected-word. Bell System Technical Journal, 1981.

[42] M. Naf, O. Kubler, R. Kikinis, M. Shenton, and G. Székely. Characterization

and recognition of 3d organ shape in medical image analysis using skeletonization.

In Mathematical Methods in Biomedical Image Analysis, 1996., Proceedings of the

Workshop on, pages 139�150. IEEE, 1996.

[43] N. Pugeault and R. Bowden. Spelling it out: Real-time asl �ngerspelling recogni-

tion. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International

Conference on, pages 1114�1119. IEEE, 2011.

[44] D. Quam. Gesture recognition with a dataglove. In Aerospace and Electronics

Conference, 1990. NAECON 1990., Proceedings of the IEEE 1990 National, pages

755 �760 vol.2, may 1990.

[45] T. Rath and R. Manmatha. Word image matching using dynamic time warping. In

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 2, pages II�521 � II�527 vol.2, june 2003.

Bibliography 40

[46] J. Rekha, J. Bhattacharya, and S. Majumder. Shape, texture and local movement

hand gesture features for indian sign language recognition. In Trendz in Information

Sciences and Computing (TISC), 2011 3rd International Conference on, pages 30

�35, dec. 2011.

[47] M. Reyes, G. Dominguez, and S. Escalera. Feature weighting in dynamic time

warping for gesture recognition in depth data. In Computer Vision Workshops

(ICCV Workshops), 2011 IEEE International Conference on, pages 1182 �1188,

nov. 2011.

[48] F. Ryden, H. J. Chizeck, S. N. Kosari, H. King, and B. Hannaford. Using kinect and a

haptic interface for implementation of real-time virtual �xtures. In Robotics Sciences

and Systems, Workshop on RGB-D: Advanced Reasoning with Depth Cameras,, Los

Angeles� June 2011.

[49] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken

word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on,

26(1):43 � 49, feb 1978.

[50] T. Schlömer, B. Poppinga, N. Henze, and S. Boll. Gesture recognition with a

wii controller. In Proceedings of the 2nd international conference on Tangible and

embedded interaction, TEI '08, pages 11�14, New York, NY, USA, 2008. ACM.

[51] T. B. Sebastian and B. B. Kimia. Curves vs. skeletons in object recognition. Signal

Processing, 85(2):247�263, 2005.

[52] P. Senin. Dynamic time warping algorithm review. Information and Computer

Science Department University of Hawaii at Manoa Honolulu, USA, 2008.

[53] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

and A. Blake. Real-time human pose recognition in parts from single depth images.

In CVPR, volume 2, page 7, 2011.

[54] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image cate-

gorization and segmentation. In Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on, pages 1�8. IEEE, 2008.

[55] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,

and R. Moore. Real-time human pose recognition in parts from single depth images.

Communications of the ACM, 56(1):116�124, 2013.

[56] J. F. G. Srikantan and S. Srihari. Handprinted character/digit recognition using a

multiple feature/resolution philosophy. In Proc. Fourth Int'l Workshop Frontiers in

Handwriting Recognition, pages 57�66, 1994.

Bibliography 41

[57] T. Starner and A. Pentland. Real-Time American Sign Language Recognition from

Video Using Hidden Markov Models. In International Symposium on Computer

Vision, 1996.

[58] J. Stowers, M. Hayes, and A. Bainbridge-Smith. Altitude control of a quadrotor

helicopter using depth map from microsoft kinect sensor. In Mechatronics (ICM),

2011 IEEE International Conference on, pages 358 �362, april 2011.

[59] C. Tappert, C. Suen, and T. Wakahara. The state of the art in online handwriting

recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

12(8):787�808, 1990.

[60] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-

ceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I�511.

IEEE, 2001.

[61] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell. Hidden

conditional random �elds for gesture recognition. In Computer Vision and Pattern

Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1521 �

1527, 2006.

[62] T. Wenjun, W. Chengdong, Z. Shuying, and J. Li. Dynamic hand gesture recognition

using motion trajectories and key frames. In Advanced Computer Control (ICACC),

2010 2nd International Conference on, volume 3, pages 163 �167, march 2010.

[63] J. Whitehill and C. W. Omlin. Haar features for facs au recognition. In Automatic

Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on,

pages 5�pp. IEEE, 2006.

[64] Wikipedia. Dynamic Time Warping. http://en.wikipedia.org/wiki/Dynamic_

time_warping, 2012. [Online;accessed 01-August-2008].

[65] A. D. Wilson. Using a depth camera as a touch sensor. In ACM International

Conference on Interactive Tabletops and Surfaces, ITS '10, pages 69�72, New York,

NY, USA, 2010. ACM.

[66] A. D. Wilson and A. F. Bobick. Parametric Hidden Markov Models for Gesture

Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21:884�900, 1999.

[67] P. I. Wilson and J. Fernandez. Facial feature detection using haar classi�ers. J.

Comput. Sci. Coll., 21(4):127�133, Apr. 2006.

http://en.wikipedia.org/wiki/Dynamic_time_warping
http://en.wikipedia.org/wiki/Dynamic_time_warping

