
Pseudorandom Sequence Generation Using

Binary Cellular Automata

A thesis submitted to the
Graduate School of Natural and Applied Sciences

by

Nihal Vatandaş

in partial fulfillment for the
degree of Master of Science

in
Electronics and Computer Engineering

Pseudorandom Sequence Generation Using Binary Cellular Automata

Nihal Vatandaş

Abstract

Random numbers are an integral part of many applications from computer simulations,

gaming, security protocols to the practices of applied mathematics and physics. As

randomness plays more critical roles, cheap and fast generation methods are becoming a

point of interest for both scientific and technological use.

Cellular Automata (CA) is a class of functions which attracts attention mostly due to the

potential it holds in modeling complex phenomena in nature along with its discreteness

and simplicity. Several studies are available in the literature expressing its potentiality

for generating randomness and presenting its advantages over commonly used random

number generators.

Most of the researches in the CA field focus on one-dimensional 3-input CA rules. In

this study, we perform an exhaustive search over the set of 5-input CA to find out the

rules with high randomness quality. As the measure of quality, the outcomes of NIST

Statistical Test Suite are used.

Since the set of 5-input CA rules is very large (including more than 4.2 billions of rules),

they are eliminated by discarding poor-quality rules before testing.

In the literature, generally entropy is used as the elimination criterion, but we preferred

mutual information. The main motive behind that choice is to find out a metric for

elimination which is directly computed on the truth table of the CA rule instead of the

generated sequence. As the test results collected on 3- and 4-input CA indicate, all rules

with very good statistical performance have zero mutual information. By exploiting this

observation, we limit the set to be tested to the rules with zero mutual information. The

reasons and consequences of this choice are discussed.

In total, more than 248 millions of rules are tested. Among them, 120 rules show out-

standing performance with all attempted neighborhood schemes. Along with these tests,

one of them is subjected to a more detailed testing and test results are included.

Keywords: Cellular Automata, Pseudorandom Number Generators, Randomness Tests

İkili Cellular Automata Fonksiyonları ile Rasgele Dizi Üretimi

Nihal Vatandaş

Öz

Rasgele sayılar simülasyonlardan şans oyunlarına, güvenlik protokollerinden uygulamalı

matematik ve fizik alanlarına kadar bir çok uygulamanın işleyişinde yer alan temel un-

surlardan biridir. Rasgele sayıların bilimsel ve teknolojik amaçlı kullanım alanı genişledikçe

hızlı ve ekonomik üretim yöntemleri de araştırmacılar için ilgi konusu olmaktadır.

Cellular Automata (CA), basit yapısının yanında tabiattaki kamaşık yapılı olayları mo-

dellemeye uygunluğuyla ön plana çıkmış bir çeşit ayrık fonksiyonlar grubudur. Rasgele

dizi üretmeye olan elverişliliğini ve yaygın olarak kullanılan rasgele sayı üreteçlerine üstün

gelen yönlerini açıklayan bir çok çalışma halihazırda literatürde yer almaktadır.

CA alanında ekseriyetle 3 girdi alan tek boyutlu fonksiyonlar üzerine araştırmalar bu-

lunuyor. Biz bu çalışmada, 5 girdi alan CA fonksiyonları üzerinde bir tarama yaparak

rasgele sayı üretme kabiliyeti yüksek olan fonksiyonları belirlemeyi hedefledik. Ölçü

olarak NIST tarafından hazırlanan istatistiksel test grubu sonuçlarını baz aldık.

5 girdi alan CA fonksiyonları kümesi 4,2 milyardan fazla fonksiyon içeren çok geniş bir

küme. Dolayısıyla fonksiyonları teste tabi tutmadan evvel iyi sonuç vermeyeceği tahmin

edilen fonksiyonların elenmesi gerekiyor.

Literatürde, bu tarz bir eleme söz konusu olduğunda entropi değerlerinin baz alındığını

görürüz. Fakat biz bu çalışmada karşılıklı bilgiyi (mutual information) esas aldık. Bu

değişikliğe gitmekteki asıl amaç, entropi gibi üretilmiş sayı dizisi üzerinde hesaplanan bir

ölçü yerine doğrudan fonksiyon üzerinde hesaplanan pratik bir ölçünün kullanılabilirliğini

araştırmaktı. 3 ve 4 girdi alan fonksiyonlardan edinilen verilere göre çok iyi istatistik-

sel nitelikte dizi üreten fonksiyonların tamamının karşılıklı bilgi değerinin sıfır olduğu

görülüyor. Bu gözlemden yola çıkarak, 5 girdi alan fonksiyonlar üzerinde sıfır karşılıklı

bilgiye sahip olmayı bir eleme kriteri olarak kullandık. Bu seçimin sebepleri ve sonuçları

da çalışmada geniş olarak incelendi.

Sonuç olarak, 248 milyonun üzerinde fonksiyon teste tabi tutuldu ve test sonuçları

sunuldu. Bunların arasından istisnai nitelikte iyi performans gösteren 120 fonksiyon

çalışmanın sonunda belirtildi. Ek olarak, 120 fonksiyon arasından seçilen bir fonksiy-

onun ayrıntılı istatistiksel incelemesine yer verildi.

Anahtar Sözcükler: Cellular Automata, Rasgele Dizi Üretimi

Acknowledgments

This study was initiated and continued under the supervision of Prof. Çetin Kaya Koç

until his departure from İstanbul Şehir University. I would like to express my deepest

gratitude to him for his encouraging guidance and support all through the time.

I am particularly grateful to my advisors Ahmet Bulut and İsmail Demirkan for their

generous help and patience with me.

I would like to thank İsa Sertkaya for his sincere support and advices. His willingness to

give his time so generously has been very much appreciated.

Finally, special thanks to Eren Yener from the IT department for his help in offering me

the resources in running the programs.

v

Contents

Declaration of Authorship ii

Abstract iii

Öz iv

Acknowledgments v

List of Figures ix

List of Tables x

1 Introduction 1

2 Random Number Sequences 4
2.1 Introduction . 4
2.2 Theoretical Approaches to Randomness 5

2.2.1 Information Theory . 5
2.2.2 Complexity Theory . 6
2.2.3 Computability Theory . 6

2.3 Random Number Generator Classification 7
2.3.1 Physical TRNGs . 8
2.3.2 Non-Physical TRNGs . 9
2.3.3 Pseudorandom Number Generators 10

2.3.3.1 Generic Design of Pseudorandom Number Generators . . 10
2.3.3.2 Cryptographically Secure Pseudorandom Number Gener-

ators . 11
2.3.4 Hybrid Random Number Generators 13

2.4 A Comparison between True and Pseudo RNGs 14
2.5 General Requirements on Random Number Sequences 14
2.6 Evaluation Criteria of PRNGs . 16
2.7 Statistical Test Suites . 17
2.8 NIST Test Suite . 18

2.8.1 Hypothetical Testing . 18
2.8.2 Tests in NIST Test Suite . 20

2.8.2.1 Frequency Test . 20
2.8.2.2 Block Frequency Test . 20
2.8.2.3 Runs Test . 21

vi

Contents vii

2.8.2.4 Longest Run of Ones in a Block 21
2.8.2.5 Binary Matrix Rank Test 21
2.8.2.6 Spectral Test . 22
2.8.2.7 Non-overlapping Template Matching Test 22
2.8.2.8 Overlapping Template Matching Test 22
2.8.2.9 Universal Statistical Test 23
2.8.2.10 Linear Complexity Test 23
2.8.2.11 Serial Test . 24
2.8.2.12 Approximate Entropy Test 24
2.8.2.13 Cumulative Sums Test . 24
2.8.2.14 Random Excursions Test 24
2.8.2.15 Random Excursions Variant Test 25

3 Cellular Automata 26
3.1 History of Cellular Automata . 26

3.1.1 von Neumann’s Work . 27
3.1.2 Conway’s Life . 28
3.1.3 Wolfram’s Work . 30

3.2 Cellular Automata and the Definitive Parameters 31
3.2.1 Lattice Geometry . 34
3.2.2 Cell Content . 35
3.2.3 Guiding Rule . 35
3.2.4 Neighborhood Scheme . 36

3.3 A Formal Definition of Cellular Automata 37
3.4 Elementary Rules . 39
3.5 Rule Families . 40
3.6 Producing Randomness via Cellular Automata 42

3.6.1 CA-Based PRNGs . 42
3.6.2 Balancedness . 44
3.6.3 Mutual Information . 44
3.6.4 Entropy . 45

4 Test Results 47
4.1 Output of a Statistical Test . 48
4.2 Testing Strategy . 48
4.3 Interpretation of the Test Results . 49

4.3.1 Rate of success over all trials . 49
4.3.2 Distribution of P-values . 50

4.4 Testing over a big space of functions . 50
4.5 Our Procedure . 51
4.6 Results and Observations . 52

4.6.1 Change in State Width . 53
4.6.2 Change in Neighborhood Scheme 53
4.6.3 Entropy vs. Statistical Quality . 58
4.6.4 Mutual Information vs. Statistical Quality 60
4.6.5 Entropy vs. Mutual Information 62
4.6.6 Overall Test Results of 4- and 5-input CA 66

Contents viii

4.7 The simplest rule: 1435932310 . 68

5 Conclusion 74

A Test Results for Rule 30 and Rule 45 77

B 120 Rules with their Shortest Boolean Formulae 80

Bibliography 85

List of Figures

2.1 Classification of RNGs . 8
2.2 General Structure of a TRNG . 9
2.3 General Structure of a PRNG . 10
2.4 General Structure of a Hybrid PRNG . 13

3.1 Evolution in Life . 29
3.2 Elementary Rules . 32
3.3 Rule 105 . 33
3.4 Lattice Styles . 34
3.5 Global and Local Functions . 36
3.6 Neighborhood Schemes . 37
3.7 Naming Convention for Neighborhood Schemes 38
3.8 A Rule Family . 41
3.9 Mutual Information . 45

4.1 Rule 30 . 54
4.2 Rule 45 . 55
4.3 Rule 101 . 56
4.4 Neighborhood Change in Elementary Rules 57
4.5 Entropy vs. Test Scores of 3B Rules . 58
4.6 Entropy vs. Test Scores of 4C Rules . 59
4.7 Mutual Information vs. Test Scores for 3B Rules 61
4.8 Mutual Information vs. Test Scores of 4C Rules 63
4.9 Mutual Information vs. Test Scores of 4D Rules 64
4.10 Entropy Histogram for 3B Rules . 65
4.11 Entropy Histogram for 4C Rules . 65
4.12 Entropy Histogram for 4D Rules . 66
4.13 Output of Rule 1435932310 . 69
4.14 P-value Distribution of Rule 1435932310 - I 72
4.15 P-value Distribution of Rule 1435932310 - II 73

A.1 Test results of Rule 30 for varying state widths. 78
A.2 Test results of Rule 45 for varying state widths. 79

ix

List of Tables

2.1 RNG Suggestions for Various Applications 14
2.2 Hypothetical Testing Outcomes . 19

3.1 Truth table of Rule 30. 40
3.2 Rules 75, 89, 45 and 101 . 40
3.3 Rule 184 . 44

4.1 Tests with Multiple P-values . 48
4.2 Test Results of Rule 101 . 56
4.3 3B Rules Ordered in Descending Entropy Values 59
4.4 4C Rules Ordered in Descending Test Scores 60
4.5 4C Rules Ordered in Descending Entropy Values 61
4.6 3B Rules Ordered in Descending Test Scores 62
4.7 4C Rules Ordered in Descending Test Scores 63
4.8 4D Rules Ordered in Descending Test Scores 64
4.9 Mutual Information vs. Entropy . 65
4.10 Test Results of 4C Rules . 67
4.11 Test Results of 5-input Rules . 68
4.12 Test Results of Rule 1435932310 - I . 70
4.13 Test Results of Rule 1435932310 - II . 71

B.1 List of 120 rules, part 1 . 81
B.2 List of 120 rules, part 2 . 82
B.3 List of 120 rules, part 3 . 83
B.4 List of 120 rules, part 4 . 84

x

Chapter 1

Introduction

Random numbers are an integral part of many applications from computer simulations,

statistical sampling, gaming to the practices of applied mathematics and physics. They

are becoming increasingly important as mathematical models involving probability and

statistics find wider use in science and technology. Beside the randomized algorithms

and probabilistic methods, a great deal of the current cryptographic protocols use ran-

domness in a crucial way that a failure in randomization could lead a failure in the whole

security system [1–3]. As randomness plays more critical roles, random number genera-

tion becomes a more tricky problem to consider especially on the issues of reliability and

production speed. Cheap and fast generation methods are becoming a point of interest

for both computational and security purposes.

Looking at the big picture, there are two basic methods for producing randomness and

the output sequence is named according to the chosen method of generation. When

producing true random numbers, the source of randomness is the nature itself, evoking the

philosophical question in mind if there exists a phenomenon as randomness in nature at

all. In case of generating pseudorandom numbers, a deterministic algorithm is employed

as the generator though this sounds quite contradictory to the very nature of randomness.

The second method leaves behind the existential discussion on randomness and directly

focuses on the practical needs and features that a desired random sequence must possess.

Both of these techniques have their own advantages and usage, that is, one of them is

not strictly preferred to the other.

True random numbers are more costly to generate for they require a specialized hardware

to extract randomness from a physical phenomenon in the nature. On the other hand,

pseudorandom sequences are completely produced in a digital environment, therefore

allow for fast and inexpensive products. A selection between the two is made according

1

Chapter 1. Introduction 2

to the utilization purpose. Actually, in many cases, true randomness is not necessary.

This opens a wide ground for use of pseudorandom number generators (PRNGs).

However, PRNG algorithms are not so easy to find [4]. The outcome of a good PRNG

is expected to fulfill certain requirements like uniform distribution, lack of correlation

and unpredictability, although not all of them are required for every application. For

example, unpredictability is a vital norm for cryptographic uses but not for Monte Carlo

simulations. But in all cases, statistical quality is a must. In some cases, a PRNG

algorithm is constructed on a suitable algebraic structure so that it produces sequences

with provably uniform distribution [5]. For the other cases, there are statistical test

suites such as NIST [6], DIEHARD [7], ENT [8] available to verify the statistical quality

of a generated sequence.

This study focuses on exploring the functions with good statistical quality among a

certain family of one dimensional binary Cellular Automata (CA) rules, namely the ones

with 3-, 4- and 5-input and adjacent neighborhood. The measure of statistical quality is

derived from the outcomes of NIST Statistical Test Suite.

CA is a class of functions that is mainly characterized with local interaction, parallel

evolution and its discreteness in time, space and value [9]. Since its first big rise in 1950s

with the work of von Neumann, it has been subjected to various mathematical and

physical analysis [10]. With its ability to express dynamic systems, CA shares a common

ground with many chief branches of science such as biology, physics, mathematics and

computer science. It gained popularity mostly due to the potential it holds in modeling

complex phenomena in nature along with its simplicity. In the later works, a strong

emphasis was paid to its extremely complex and varied behavior despite being a discrete

model of simple construction. This is the very quality that makes it a promising tool for

fast random number generation.

The studies on CA so far have provided various angles through how CA can be used

in modeling complex systems. The first suggestion of using CA in PRNG structure

came from Wolfram. In [9], Wolfram claims that the function known as Rule 30 has an

extraordinary potential of complexity therefore is a good candidate for random number

generation. Later, Serra et. al. proved that any LFSR can be modeled as a combination

of linear CA rules [11]. Hortensius showed that CA is very efficient in pseudorandom

number generation because of its superior architecture suitable for parallelization and

it is even better than LFSR, which is commonly preferred for low-cost generation [12,

13]. Also, higher dimensional examples have been studied. In [14], it was shown that

unsurprisingly two-dimensional CA performs better than one-dimensional CA in quality

of randomness. But whether the enhanced quality of randomness compensates for the

implementation complexity is a question. In the context of pseudorandom generation

Chapter 1. Introduction 3

problem, many other models with performance evaluations of some hybrid and uniform

models are available and presented in Chapter 3.

The general research trend in CA area, both in mathematics and computer science fields,

focuses more on one-dimensional 3-input CA rules and mostly elaborating on specific ex-

amples. Comprehensive conclusions are difficult to draw. This may be due to the fact

that despite the seventy years of analysis on several fronts, CA can still be considered as

yet not totally explored and it seems that its exploration is closely related with the devel-

opments in dynamic and complex system theories. However, there is evidence to suggest

that CA is quite promising for PRNG algorithms seeing its advantage over conventional

methods [15–17].

In this study, we perform an exhaustive search over the set of 5-input CA to find out the

rules with high randomness quality. Since the set of 5-input CA rules is very large, an

elimination is processed to discard the poor-quality rules before testing. In the literature,

generally entropy is used as the elimination criterion, but we preferred mutual informa-

tion. Since mutual information is not known to be used for elimination in any previous

study, the reasons and consequences of this choice are discussed via examples from 3- and

4-input rule sets. In total, more than 248 millions of rules are tested. Among them, 120

rules show outstanding performance with all attempted neighborhood schemes. Along

with these tests, one of them is subjected to a more detailed testing and test results are

included.

In the following, Chapter 2 provides the background information about random number

generation and randomness testing. In Chapter 3, we review CA, its definitive parameters

and the work done by using various forms of CA for PRNG constructions. The testing

strategy, the experimental setup and the obtained results are presented in Chapter 4.

Chapter 5 concludes with an overall assessment of the followed procedure and the test

results.

Chapter 2

Random Number Sequences

2.1 Introduction

Randomness is a controversial issue both philosophically and technically. Its existence

against hard determinism has long been a matter of debate while formalization problems,

like definition and measurability, lead to another track of discussion. Yet, randomness is

a part of everyday life that this hard-to-define word quickly associates with a number of

other words in our minds. Literally, randomness describes lack of pattern, arbitrariness

and unpredictability. Although defining formally such a notion that is identified with

disorder seems to be a contradictory act, several attempts have been made at conceptu-

alizing randomness.

Many natural phenomena might seem to happen randomly, without following an exact

rule. As human knowledge broadens and becomes able to read inner mechanism of

happenings in nature, randomness becomes more questionable. This discussion takes us

to the issue of whether the whole universe works deterministically. Initially one may even

give credit to the idea that the science can ever grow to be able to describe everything

in nature so that there remains no room for randomness. But with the laws of quantum

mechanics we know that the outcomes of certain physical experiments are unpredictable.

That is, some physical phenomena exist in nature that are believed to exhibit random

behavior and they can be exploited as a source of randomness.

Indeed on the practical side, there are innumerable suggested or in-use generation meth-

ods for obtaining random sequences. All the efforts in this area can be roughly classified

under two headings according to the utilized source to produce random sequences. One

method is directly extracting randomness from a physical phenomenon in nature as

mentioned above. The sequences generated in this way are called true random numbers.

4

Chapter 2. Random Number Sequences 5

Another way is to use a limited length of true random number sequence as a seed and

produce much longer seemingly random sequences via deterministic algorithms. The

output in this case is named as pseudorandom numbers.

Looking at the formalization efforts in the literature, one may come across with several

theories grounded over mathematics and computer science, each working on randomness

approaching through different notions like compressibility, patternlessness, etc. But, as it

will be clear in the following sections, many of the theories have either serious limitations

or they are not practical at all.

In this chapter, after a brief review of theoretical concepts defining randomness, we

study the classification of random number generators, general requirements of them and

evaluation criteria on them.

2.2 Theoretical Approaches to Randomness

The first known study for measuring randomness dates back to a century ago with Borel’s

normality property [18], and many other definitions and measures on randomness have

been introduced since then. Below is not a detailed history of the works put forth in

this realm, but a brief review of three prominent theories which talk about randomness

of a finite sequence. These approaches constitute the theoretical effort to conceptualize

(pseudo) randomness, yet none of the definitions stated below presents a constructive

method for generating random sequences.

2.2.1 Information Theory

Information theory, which is rooted on the probability theory, is quantifying the random-

ness of a finite sequence looking at its entropy. A finite string of numbers is considered

as the realization of a random variable of which outcomes could follow the values in the

string. Each unit of information (state of behavior) is decided over a finite alphabet. So

that the information in this discretized data could be measured in units and it is called

entropy. Entropy is calculated over the probability distribution of states. If certain states

occurs with high probability compared to the others, then the uncertainty decreases, in

return randomness decreases. By following this logic, a random sequence is accepted as

perfectly random when the information contents maximize, i.e. its entropy maximizes,

which happens in case of the uniform distribution. Thus, this theory directly associates

perfect randomness with the uniform distribution.

Chapter 2. Random Number Sequences 6

The information theory does not provide a deterministic procedure to produce random

strings starting from a shorter truly random sequence [19], which means that the gen-

eral practice of pseudorandom number generation does not fit with this theory. This is

because deterministically produced sequence of pseudorandom numbers in no way sym-

bolize a random variable in this framework, so we cannot meaningfully speak of a random

variable with the uniform distribution.

2.2.2 Complexity Theory

This concept, which is mainly developed by the works of Solomonoff, Kolmogorov and

Chaitin, views randomness of a data as its incompressibility or lack of pattern. In this

view, a set of data with little randomness is considered to be more structured, and

therefore it is expected to be generated via a short computer program. As randomness

of data increases, the shortest computer program needed to generate the data will be

more lengthy. To clarify the form of a “computer program”, a fixed universal Turing

machine must be specified.

This approach quantifies the complexity of a string as the length of the shortest program

that can produce it. The randomness occurs at the extreme case where the length

maximizes: a string is considered perfectly random provided that the string is shorter

than any program that can generate it. (The shortest computer program would be

at most as long as the string itself.) Unlike the first theory, this approach considers

randomness as a property of the string itself depending on the specified universal machine.

Measuring randomness in this way provides no practical guidance because there is no

algorithm known for computing the shortest program which produces a particular string

[20].

Just as in the first theory, this theory does not admit a pseudorandom sequence as

random because, the fact that it is generated deterministically from a shorter truly

random sequence directly implies failure in fulfillment of the required condition.

2.2.3 Computability Theory

The third approach, which is created with the works of Blum, Goldwasser, Micali and

Yao, evaluates randomness in a different view. This theory does not support a quantita-

tive approach, rather, it takes randomness of a string not as one of the string’s intrinsic

properties to be measured, but as a notion which is to be realized to the extent of the

observer’s ability. A string is considered random if it cannot be distinguished from a

uniformly distributed sequence by any efficient algorithm. Here, two points need to be

Chapter 2. Random Number Sequences 7

clarified to better understand the idea: computational distinguishability and the bounds

of efficiency.

Computational indistinguishability is central to the concept. Two objects are considered

as equivalent if the observer’s computational ability cannot distinguish them in any

efficient procedure. Efficient procedures are most generally associated with polynomial-

time algorithms, or algorithms with some other boundaries on computational resources.

Therefore, a string is considered as random if it cannot be distinguished from the uniform

distribution via any polynomial-time algorithm by means of computing resources of the

observer. In order to decide whether a sequence is random or not, one should make an

assumption on the computational power of the adversary or the observer.

This approach does not impose a strict measure on randomness or how to quantify it,

rather it defines the randomness subjective to the observer. The current practice of

producing pseudorandom sequences by stretching a shorter random seed does not fit

with either of the two theories (2.2.1 and 2.2.2) mentioned above [19]. As opposed to the

first two approach, generating a deterministically random sequence from a shorter true

random sequence is achievable in this complexity theory.

2.3 Random Number Generator Classification

Definition 2.1. A random bit generator is a device or algorithm which outputs a se-

quence of statistically independent and unbiased binary digits [20].

In literature, various terms like ‘random number generator’, ‘random bit generator’ are

generally used and occasionally they are being used interchangeably. As the former is

not restricted to the binary scope, it admits of much wider range of values. Therefore

one may take it as a more extensive term. However, in practice, a good bit generator

can be used as a number generator as well [20]. For example, to produce pseudorandom

numbers in the interval [0, n], taking blog nc + 1 bits and converting to integer works

without problem. One way to eliminate the integers exceeding n is simply to discard

them. With this claim, we also assumed that it is aimed to have random sequences with

uniform distribution in both practices. Actually, in order to produce sequences with

non-uniform distributions, the way to transform the uniformly distributed sequence into

the desired probabilistic distribution. So basically, the basic instrument to produce a

random sequence in any interval and with any distribution is a random bit generator

with uniform distribution. In the rest of this text, ‘random number ’, ‘random bit’ and

‘random sequence’ are all used interchangeably to refer to ‘random bit sequence’.

Chapter 2. Random Number Sequences 8

As we point out earlier there are two basic procedures for random number generation:

using a deterministic method for producing pseudorandom sequences and exploiting a

natural phenomenon for producing a true random sequence. A hybrid RNG mechanism

consists of a combination of the both methods so that it can reach a higher speed than

a TRNG and a higher entropy than a PRNG. Figure 2.1 maps out the types of RNGs

explained in the following sections.

	

TRNG	
(non-‐deterministic)	

RNG	

PTRNG	
(physical)	

	

PRNG	
(deterministic)	

NPTRNG	
(non-‐physical)	

	

HRNG	
(hybrid)	

Figure 2.1: Classification of RNGs

2.3.1 Physical TRNGs

A physical true random number generator (PTRNG) extracts randomness from a phys-

ical phenomenon which is scientifically guaranteed to produce unpredictable outcomes.

PTRNGs consist of a specialized hardware to sample from a physical source of entropy.

The sources are chosen among the ones which are easy to digitize, i.e. connect to a

computer such as the measurements on atmospheric noise, thermal noise, radiation, etc.

Physical TRNGs exploit unpredictable changes in the behavior of the element under

inspection. For example, [21] gathers randomness using the changes in the amplitude

of atmospheric noise. Likewise, [22] benefits from the unpredictability induced by the

differences in time elapsed between the emission of particles during a radioactive decay.

Use of hardware for digitizing the analog source is a slowing-down factor for PTRNGs.

As given on their websites, the effective speed of production is about 300 bytes per second

for [21] and 100 bytes per second for [22].

The analog input derived from the physical source is then converted to digital data so

that a raw random sequence is obtained as seen in Figure 2.2. The sequences produced

in this way are completely non-deterministic and irreproducible. However, this does

Chapter 2. Random Number Sequences 9

	

noise	
source	

post-‐processing	
on	 raw	 data	

analog	 signal	 digital	 data	

output	

Figure 2.2: General Structure of a TRNG

not mean that PTRNGs produce ‘true’ or ‘perfect’ instantiations of random sequences.

Typically, a filtering process is needed to follow the sampling to eliminate the patterns,

such as long strings of zeros and ones, which distort the uniform distribution so that the

final output appears more similar to a ‘statistically perfect’ random sequence than the

raw random sequence does.

2.3.2 Non-Physical TRNGs

A non-physical TRNG (NPTRNG) differs from a physical TRNG in the type of entropy

source it employs. Instead of a natural phenomenon that is scientifically proved to be

unpredictable, NPTRNGs use more practical sources like system data of a PC or the

information derived from human-computer interaction. Mouse movements of a computer

user, air turbulence inside the disk drive and environment noise in an office recorded

by a microphone might be entropy sources for NPTRNGs. Obviously, no theoretical

justification is available here rather, unpredictability stems from the complexity in the

inter-operation of several deterministic processes. These are cheap and fast methods to

use in cases where physical TRNGs are too costly or too slow to provide randomness.

NPTRNGs can provide irreproducible and high level of randomness, however design

details require special attention mainly for two reasons. First, TRNGs are generally

used for cryptographic purpose. Since the entropy source is a computer component,

the access to the source might be open to others in which case the prediction of the

outcomes might be possible. Second, the quality of the entropy source should be well-

analyzed since the behavior of a digital source depends on several factors. Assume that,

similar to a physical TRNG using atmospheric noise, a non-physical TRNG is built to

exploit background noise in a room. In such a case, some repeating noises (e.g., from the

fan of a computer), may cause certain periodic patterns to appear in the output sequence,

which in turn reduces the statistical quality of the produced sequence. Suggested designs

must consider such factors that weaken overall quality.

Chapter 2. Random Number Sequences 10

Comparing two types of TRNGs, it can be said that the entropy sources of PTRNGs are

more amenable to scientific analysis therefore more suitable for modeling TRNG mech-

anisms while non-physical TRNGs use rather environment-dependent sources which are

not easily analyzable. On the other side, NPTRNGs are favorable for ease of availability

and high throughput. A study on an NPTRNG [23], which uses the jitter of a ring oscil-

lator as its entropy source, reports a throughput speed of 18.5 Mbps with post-processing

on the raw sequence. The same study also states that their model satisfies the statistical

requirements without any post-processing and its throughput goes up to 125 Mbps.

2.3.3 Pseudorandom Number Generators

A PRNG is a deterministic algorithm which takes a finite length truly random bit string

as input and produces much longer seemingly random bit sequences. The input to the

PRNG is called the seed. Here, the word ‘deterministic’ refers to any method which

produces identical outputs given the same input.

The sequences generated by PRNGs are not random in the sense that they are completely

predetermined; but the algorithms designed for this purpose perform so good that their

outputs effectively appear random. So much so that some PRNG outputs have even

better statistical quality than truly random sequences.

2.3.3.1 Generic Design of Pseudorandom Number Generators

	 	

internal	
state	 selection	

function	

updating	
function	 sn+1 := φ(sn)	

rn := ψ(sn)	

rn	

output	
sn	

φ	

ψ	

s0	 (seed)	

Figure 2.3: General Structure of a PRNG

Figure 2.3 illustrates the functional model of a PRNG, whose activity could be summa-

rized as a two-step process. Let us name this two main functions as ϕ and ψ as seen in

Figure 2.3. The internal state is stored in memory and contains the data to be modified

at each time step.

Chapter 2. Random Number Sequences 11

The updating function ϕ continuously updates the content of the internal state in a

recursive way such that st+1 = ϕ(st) where t ∈ N and s0 is the seed. At time t = 0, the

internal state is derived from the seed s0, which is provided by the user.

The source of entropy is the seed assuming the PRNG algorithm being public. Indeed,

this assumption corresponds to the actual case, such that the unpredictability of the

whole output sequence becomes reduced to the unpredictability of the seed. It is, there-

fore, recommended to obtain the seed value from a truly random sequence to increase

entropy where unpredictability is vital as in cryptography and gambling applications.

This also means that in the cases where secrecy is required, it is the seed which must be

secured.

The seed has a life. Since it is a finite entropy source it must be renewed periodically.

The initial state may also be derived from a combination of the seed and some other

information, for example, a nonce or a personalization string. Note that, disclosure of

the additional information does not risk the security of the PRNG as long as the seed is

protected properly.

ψ is the selection function. At each time point t, ψ takes the internal state st as input

and produces the output sequence rt. ψ can be selected to output one bit at a time as

well as multiple bits at each time step. The selection function is needed especially to

prevent the correlation between successive initial states from appearing in the output

string.

PRNGs are favorable to TRNGs in that a large amount of output can be obtained in a

short time with low cost. The fact that there is no need for hardware devices to convert

analog signals is the major advantage for high-speed and low-cost generation. On the

other hand, PRNGs are inevitably periodic, meaning that the output sequence repeats

itself. But good algorithms have very long periods that this practical drawback can be

minimized. Therefore PRNGs are widely used for applications, such as simulation and

modeling, where high throughput and reproducibility are intended. But they are not

suitable for applications where unpredictability is the key to effectiveness.

2.3.3.2 Cryptographically Secure Pseudorandom Number Generators

It can be said that the practical conveniences that make PRNGs preferable are also the

ones that make them more vulnerable to security attacks which could exploit their de-

terministic nature. It should be noted that even though good PRNG algorithms exist,

they are not suitable for every application that needs randomization. In cryptographic

Chapter 2. Random Number Sequences 12

procedures, either truly random sequences are used for their unpredictability or a spe-

cial class of PRNG, named cryptographically secure PRNG (CSPRNG) is employed for

random number generation.

Definition 2.2. [24] A CSPRNG is an algorithm G that, upon receiving a random

number (the seed) i as input, outputs a sequence of pseudorandom bits a1, a2, a3, . . .

with the following properties:

1. The bits ai’s should be easy to generate such that each ai should be generated in

polynomial time in the length of the seed.

2. The bits ai’s should be unpredictable. Given the generator G and a1, a2, ..., as the

first s output bits, but not the seed i, it should be computationally infeasible to

predict the (s + 1)st in the sequence with better than 50-50 chance. Here, s is

polynomial in the length of the seed.

Definition 2.3. [20] A PRNG is said to be passing all polynomial time statistical tests

if no polynomial-time algorithm can correctly distinguish between an output sequence of

the generator and a truly random sequence of the same length with probability signifi-

cantly greater than 1/2.

The second condition of the definition 2.2 is called next-bit unpredictability. Next-bit

unpredictability can be set up on such a scenario: An adversary who get the first s

bits of a random sequence has only negligible probability over 1/2 in predicting the

(s+ 1)st bit. Deciding over negligibility could be done over assuming an adversary with

polynomial time computation power [25]. Obviously, predicting the next bit or previous

bit has the same difficulty from the statistical viewpoint. In [26], Yao proved that a

PRNG passes the next-bit test if and only if it passes all polynomial time statistical

tests.

The security of CSPRNGs relies on cryptographic primitives or mathematical problems

that are assumed to be intractable. Some examples of such problems can be listed

as the symmetric-key algorithm AES, the hashing algorithm SHA, the intractibility of

number-theoretic problems such as the quadratic residue problem as in Blum Blum Shub

algorithm and the discrete logarithm problem as in Blum-Micali algorithm. Based on the

intractibility assumptions, the security properties of CSPRNGs can be proved. On the

other hand, since the problems that the generators rely on are assumably intractable,

advances in science and technology leading a possible solution to the problems could

imply a compromise in the security of CSPRNGs.

Chapter 2. Random Number Sequences 13

CSPRNGs may be designed according to various objectives considering their function-

ality. They must be chosen according to the practical needs. In some practices, like

creating a nonce, the main focus is the uniqueness of the generated string rather than

its entropy. On the other hand, generating an encryption key mainly necessitates high

entropy. If the security is more sensitive issue, then a TRNG might be more suitable

solution than a CSPRNG.

2.3.4 Hybrid Random Number Generators

The hybrid RNG (HRNG) designs include a combination of deterministic and non-

deterministic methods. The deterministic part is as known from a PRNG mechanism

and the non-determinism comes from an additional entropy source. Figure 2.4 illustrates

a good abstraction of such a design.

	
internal	
state	 selection	

function	

updating	
function	

sn+1 := φ(sn, fn)	
rn := ψ(sn, en)	

rn	

output	
sn	

φ	

ψ	

s0	 (seed)	 en	

fn	

additional	
entropy	 	

additional	
entropy	 	

Figure 2.4: General Structure of a Hybrid PRNG

PRNGs are advantageous for their speed and statistical quality but in the case of a

pure PRNG, the entropy source is limited due to a finite initial state. Similarly, some

shortcomings of a pure TRNG is known to be the cost and the low speed of generation.

A hybrid RNG admits additional input at intermediate steps so that extra entropy is

introduced to the system. With this change on the design, an increased security level is

intended. However, whether the security increases or not depends on the unpredictability

and entropy of the additional input. Even if the additional input is a constant string

(that is, it has a weak randomness quality), the level of security will not drop below the

security level of the pure correspondent of the hybrid version.

In the literature, HRNG designs may also be classified as hybrid PRNG and hybrid

TRNG. In such a case, the distinction between hybrid PRNG and hybrid TRNG is

typically made according to the type of challenge that the strength of the security mainly

relies on [27].

Chapter 2. Random Number Sequences 14

Table 2.1: RNG suggestions for various applications

Application Recommended RNG
Lotteries and Draws TRNG
Games Gambling TRNG
Random Sampling (e.g., drug screening) TRNG
Simulation and Modeling PRNG
Security (e.g., generation of data encryption keys) TRNG

2.4 A Comparison between True and Pseudo RNGs

As stressed earlier, each type of RNG has its own utility, drawback and purpose. PRNGs

are favorable for the tasks which require only good statistical quality and high through-

put. PRNGs owe their advantage to the fact that they run solely on software level. This

makes PRNGs both a cheap and a fast way of producing randomness. Shortcomings of

the PRNGs are on the unpredictability side. Since PRNG mechanisms are deterministic

and public, all the burden of unpredictability is on the seed, because the seed is the only

secret part. Also, seed is the only source of entropy, which means that entropy source of

a pure PRNG is limited. Moreover pure pseudorandom sequences are reproducible and

inescapably periodic. Though reproducibility cannot be strictly said to be a disadvan-

tage and periodicity is curable to a large extent, these are not the properties intended

for cryptographic use. In case of CSPRNGs, security can be achieved in expense of sac-

rificing some of the production speed. All in all, PRNGs provide practical security and

they are vulnerable to various kind of attacks.

TRNGs are deemed quite inefficient according to throughput level compared to PRNGs

because use of hardware devices to sample from an analog source unavoidably causes

impractical, slow and expensive production. However, true random sequences are non-

periodic and irreproducible. Most importantly, truly random sequences provide theoret-

ical security, which is the best reason for using TRNGs.

Table 2.1 is taken from [21] in order to give the general account of selection schemes. It

helps to understand which type of RNG accommodates to which purpose.

2.5 General Requirements on Random Number Sequences

With no assumption on practical purpose, a random sequence is expected to contain all

possible values with equal probability and each part of the sequence must be independent

from its predecessors and successors. However, this represents an ideal case and not all

applications of randomness requires that high level of quality. Moreover, it is quite

Chapter 2. Random Number Sequences 15

nontrivial to prove that a RNG meet these requirements. To provide an insight into

which quality serves for which purpose, we can go into a formulation of the general

requirements. The first requirement (R1) is a sine qua non for all RNGs:

R1: A random sequence should show no statistical weaknesses [27].

The statistical quality of a RNG is generally examined via statistical test suites. A

statistical analysis over a binary random string involves an analysis of distribution of 1s

and 0s as well as distribution of substrings with more than one-bit-length, linearity of

the sequence, correlatedness. Therefore, the satisfaction of R1 is expected to prevent

replay attacks and correlation based attacks.

A good statistical quality alone may be suitable for random sequences used in stochastic

simulations and Monte Carlo integration but not in more sensitive procedures like key

generation or digital signature generation for security protocols. A sequence with good

statistical quality might be well predictable through a detailed inspection. In the sim-

plest case, the outcome of a linear function could be wholly recovered via mathematical

inspection when obtaining a certain finite part of the sequence. In general, making the

assumption that an adversary has some part of a hidden random sequence is not unrea-

sonable. Assume person A uses 256 bits of the random sequence r as a public key in

an asymmetric encryption protocol. When A sends this 256-bit public key to a message

receiver, some part of r will become revealed. So the remaining part of r will no longer

be secure to be used as a key if the generator’s output is predictable. For such sensitive

applications, unpredictability of the sequence is of vital significance.

R2: With the knowledge of a subsequence, it must have only a negligible probability to

obtain the predecessors or successors of the sequence than it has without the knowledge

of any subsequences [27].

R2 is a generalized condition on unpredictability of a sequence given some part of that

sequence. The following requirements elaborates on the circumstances that could lead

the exposure of any bits during the generation procedure. R3 and R4 are stated as they

appear in [27].

R3: Even the knowledge of the internal state shall not allow one to practically compute

‘old’ random numbers or even a previous internal state or to guess these values with

non-negligibly larger probability than without the knowledge of the internal state [27].

Chapter 2. Random Number Sequences 16

R3 is called backward upredictability and especially needed to keep the seed secret. It

requires that the correlation between the seed and the output sequence must be unde-

tectable.

R3 goes beyond predicting the output sequence, i.e., the output of the selection function

ψ as shown in figure 2.3, and draw attention to the possible information leakage arising

from predicting the internal state st. To meet R3, a RNG must have an uninvertible

updating function ϕ. Here, uninvertibility should not be taken in the strict sense, but in

the sense that recovering or predicting the preimage of any state st (which is equivalent to

ϕ(st−1) and may not be unique) must have a negligible probability within the capability

of a polynomial-time adversary.

R4: Even the knowledge of the internal state shall not allow one to practically compute

the next random numbers or to guess these values with non-negligibly larger probability

than without the knowledge of the internal state [27].

R4 is called forward unpredictability : With a secret seed and a public algorithm, the

future bits must be unpredictable even with the knowledge of previously generated bits.

A pure PRNG cannot meet R4, because its output is completely determined by the

internal state and the algorithm. Remember that the algorithm is always assumed to be

public. R4 comes into question only in the case of a hybrid PRNG. Adding a high-entropy

additional input to the system helps fulfill R4.

Considering a pure TRNG, there is no question as to whether R3 and R4 are fulfilled.

The fulfillment of R2 resolves predictability problem for a TRNG. The predictability of a

TRNG might happen if the source or the hardware used leaks information. A CSPRNG

is expected to fulfill all four requirements but for the other RNGs, it is decided according

to the application necessities as to which requirements should be fulfilled.

2.6 Evaluation Criteria of PRNGs

As the requirements of RNGs are summarized as statistical quality and unpredictability,

the evaluation criteria of RNGs center around these two concepts, as well.

Predictability is directly associated with the security of a RNG. Typically, the security

assessment of a pure PRNG is made based upon two points: the complexity of the

intractible problem that a PRNG algorithm relies on and the size of key space, which

determines the number of all possible guesses to find the seed or an internal state with

Chapter 2. Random Number Sequences 17

non-negligible probability. These two components together determine the cost of a brute-

force attack to be aimed for a pure PRNG in terms of time, depending on computational

power. However, security measures may change over time, a PRNG may have become

less secure as new attacks to the challenging problem lying at the heart of PRNG become

available. In case of a hybrid PRNG, the size of key space will be larger due to the added

entropy to the system.

On the TRNG side, unpredictability is directly tied with the entropy of the random

source that is used by a particular TRNG. Contrary to PRNGs, there is no risk of

unstable security bounds once the entropy source is analyzed thoroughly during the

design phase of the TRNG. So, it is more feasible to use a truly random sequence for

encrypting data which is to be protected over a long term. A detailed information over

security (predictability) analysis of RNGs can be found in [27].

In order to evaluate the statistical quality of a RNG, a commonly used method is to apply

statistical test batteries. Statistical tests are not to justify the sufficiency of a RNG, but

to provide a probabilistic interpretation about the behavior of a RNG by examining its

output. As pointed out earlier in Section 2.3, by transforming the output of a uniformly

distributed random bit sequence, it is possible to generate any random sequence within a

certain interval and with the desired distribution. Therefore, the main focus of statistical

tests is to detect deviations from the uniform distribution.

2.7 Statistical Test Suites

We expect a truly random sequence to exhibit certain features (e.g. including equal

amount of 1s and 0s) as well as to lack some other features (e.g. periodicity). This

means that there is a general idea of how an ideal random string should behave, this

enables us to determine a theoretical reference point as to show how a deterministically

generated string should be in order to look random. When expected properties from a

truly random sequence are clearly specified, each of the properties can be checked over a

candidate string, say R, so that a comparison can be made between R and a truly random

sequence. However, it is not possible to make a strict statement about randomness of

the candidate string R, since there is no limit to the extent of features to be checked for.

That is, there are infinitely many possible tests for randomness therefore, no finite set

of tests can be considered ‘complete’ to reach a strict judgment. Statistical test suites

are designed for the purpose of bringing together a list of properties of an ideal string as

extensively as possible.

Chapter 2. Random Number Sequences 18

One of the early attempts to build up a set of preconditions for a binary string to appear

random came from Golomb [28]. His study, known as Golomb’s Randomness Postulates,

contains three conditions, two of which are involved in the distribution of substrings and

the third one concerns the autocorrelation in the string.

Later, Knuth presented a larger set of statistical methods in his book [29] to check for

uniform distribution of binary strings. First published in 1969, this work is one of the

most popular and highly referenced one in its realm. However, it can no more said to

be an effective measure because it has been found out in time that some of the tests

approves weak-quality strings as random enough.

A comprehensive test suite of 15 statistical tests (named DIEHARD) was developed by

Marsaglia and his work including the codes implemented in C was published on a CD-

ROM in 1995 [7]. With the advancement of computer usage in scientific applications,

better-quality random numbers became important for sophisticated works in physics and

mathematics. DIEHARD test suite responded to emerging needs in the area and became

an important platform for development of even better statistical test suites.

Crypt-XS and ENT [8] are also among the outstanding examples of randomness tests

but we will focus on the Statistical Test Suite developed by National Institute of Stan-

dards and Technologies (NIST). This study uses outcomes of the NIST Test Suite as the

indicator of statistical quality.

NIST Test Suite was intended to serve as a comprehensive and up-to-date test suite

and created by using the previously worked examples as a scaffold. The test is quite

stringent and passing all the test is a strong indication of a good statistical quality even

for CSPRNGs. It can be used for all type of RNGs. In the next section, purpose of the

individual tests are presented. A detailed description of the tests with their mathematical

background can be found in [6].

2.8 NIST Test Suite

2.8.1 Hypothetical Testing

If randomness is taken as a probabilistic property rather than all-or-nothing property,

the characterization of a random sequence could also be made in probabilistic terms.

There are 15 statistical tests in the NIST test suite and each of them is designed to

verify/reject that a certain property of randomness is observed on the string R being

tested.

Chapter 2. Random Number Sequences 19

Table 2.2: Possible outcomes of a hypothetical testing.

TEST RESULT

ACTUAL CASE Accept H0 Accept Ha

Sequence is random (H0 is true) No error Type I Error
Sequence is not random (Ha is true) Type II Error No error

In hypothetical testing method, a test is conducted to experiment a null hypothesis H0.

The result of the test is either accepting or rejecting H0. If H0 is rejected, this means the

alternative hypothesis Ha, which is specified with reference to H0, is accepted as true.

For this operation, H0 is chosen as “The string R being tested is random.” and Ha is

“The string R being tested is not random.”

Test procedure goes as follows: The sequence R to be tested goes through calculation

steps and its statistical values are obtained. Then this value is compared to the reference

value which must be determined in advance according to the desired properties. These

reference values are calculated by mathematical methods and they shape a theoretical

target to achieve. In the comparison step, the critical value comes in question.

Critical value is a boundary which is exceeded by the test statistics with a very low

probability if H0 is true [6]. If the statistics of R reaches the reference value then H0

is accepted. Not only the reference value but also other values very close to it might

be satisfactory to accept H0. Here, the critical value determines the scope of acceptable

values to admit that H0 is correct.

As a natural consequence of probabilistic approach, there is always a risk of false decision.

If the reality and the test results are in contradiction then a false result will turn up. As

shown in the table 2.2 two kinds of errors are probable.

The probability of having a Type I error is called level of significance and generally

denoted by α. It indicates the probability that the test result reports that the sequence

being tested is not random when it is actually random. α is set to a fixed value prior to

start of the test by the practitioner. Likewise, the probability of having a Type II error

is denoted by β. It indicates the probability that the test result accepts the sequence at

hand as random when it is actually non-random. β is not fixed. α, β and the sample

size n are dependent such that specifying two of them directly determines the third one.

Generally, α and n are set before the test starts then the critical value is determined so

as to minimize β, in order to prevent the test results to offer a bad-quality sequence as

random.

The underlying logic behind the parameter specification and the overall reliability of the

testing method is as follows: A truly random sequence is used to set the reference values

Chapter 2. Random Number Sequences 20

then the critical value is determined. If the sequence R to be tested is actually random,

then the probability that the test result shows the opposite is very low, like 1% (namely

it is α percent). If the statistics of R exceeds the critical value, H0 is rejected because

exceeding the critical value while H0 is true is quite unlikely. Accordingly, H0 is either

false or at least doubtful.

After the test statistic of R is compared with the critical value, a P-value is calculated. P-

value gives the probability that a perfect random number generator produces a sequence

which is less random than R. A zero P-value indicates that the tested sequence R is

completely non-random. At the other extreme, when P-value is one, the sequence R

turns up to be perfectly random.

P-value summarizes the statistical knowledge gained through testing in a single value

and its comparison with α directly tells the test result. If P-value< α, H0 is rejected,

otherwise H0 is accepted as true.

2.8.2 Tests in NIST Test Suite

This section aims to give brief descriptions of each test and the deficiencies detected by

them but not includes mathematical background of the test designs. Detailed descrip-

tions are available in the documentation of the test suite [6]. In this section R is used to

denote the sequence being tested and n is used to denote the length of R in bits. They

are given as input to all the tests in the NIST test suite. This information will not be

repeated for each test description below. When a test requires any other input which is

to be determined by the practitioner, it is stated under the heading “Input Details”.

2.8.2.1 Frequency Test

Description: A binary truly random string is expected to contain approximately equal

amount of ones and zeroes. Frequency test checks if the ratio of ones to the length of

R is approximately 1/2. The sequences with too many ones or too many zeros fail the

test. The remaining tests in the NIST Test Suite are not conducted if R fails in this

most basic one.

Input Details: To obtain a healthy statistical result, n should be at least 100.

2.8.2.2 Block Frequency Test

Description: The test divides R into M -bit-long non-overlapping subsequences then

checks whether the frequency of ones is nearly M/2 within each block. If the Frequency

Chapter 2. Random Number Sequences 21

Test would be said to make a global check of frequency, then Block Frequency Test

can be said to do the same locally. This property is required for R with reference to the

assumption that every subsequence of a truly random sequence is also truly random. The

strings with approximately equal amount of ones and zeroes overall but with irregular

distribution (e.g., consisting long chains of zeroes or ones) are rejected by this test.

Input Details: M : length of subsequences in bits. M should be at least 20 and number

of subsequences should be no more than 100.

2.8.2.3 Runs Test

Description: A run is an uninterrupted chain of identical bits which is bounded in

both ends by the opposite bit. This test counts the number of runs of each length and

compare if it is as expected from a random sequence. It also checks the rate of oscillation

between two kind of runs. (Oscillation is used to refer a change from a run of ones to

a run of zeroes and vice versa.) An ideal random sequence of length n is expected to

have n/2 oscillations. Low rate of oscillation implies low number of runs and long chains.

This might be due to local sequential dependencies therefore reduces randomness.

2.8.2.4 Longest Run of Ones in a Block

Description: The test divides R into M -bit-long non-overlapping subsequences then

checks if the length of the longest run of ones is as expected from a random sequence.

The reference values are preset and given in a look-up table. There is no other check for

longest run of zeroes because a defect in the longest run of ones implies a defect in the

longest run of zeroes, as well. For the sake of the independence of individual tests in the

test suite, checking only one of them is sufficient.

Input Details: n should be at least 128. The block size M is set by the program in

accordance with n.

2.8.2.5 Binary Matrix Rank Test

Description: The sequence R is divided into parts to create 32 by 32 matrices as many

as possible. Each 32-bit-long subsequence is placed horizontally in a matrix as a row and

the rank of the resulting matrices are calculated. During the matrix formation step, the

unused bits at the end of the string are discarded. If a linear dependence exists in the

string R, an unlikely case for a random sequence, then the rank of the matrices will be

Chapter 2. Random Number Sequences 22

low. The test code contains pre-calculated rank distribution estimates that is expected

from a random sequence. Deviation from the reference distribution breeds failure.

Input Details: The number of matrices created should be at least 38. This implies a

lower bound of 38,912 bits on the length n of R.

2.8.2.6 Spectral Test

Description: Discrete Fourier spectrum of the sequence R is computed and peak points

in the spectrum are examined to detect the periodic features of R. If the sequence cannot

pass this test, this implies that repetitive patterns which are close to each other exist in

the sequence and therefore the sequence is not likely to be random.

2.8.2.7 Non-overlapping Template Matching Test

Description: The sequence R to be tested is first divided into 8 blocks of the same

length (the user has no choice on partitioning). Pre-defined strings of length m, for

various values of m, are present in the test code. Test practitioner selects one of them

by specifying the length m, then it is determined as the target string. The target string

is searched through 8 partitions to see how many times it appears in each of them.

Searching on partitions is carried out in the following manner: A window of length m is

sliding over the sequence by 1 bit at a time. Each time the part residing into the window

is checked whether it matches to the target string. If it does, counter of that partition

increases by 1 and the next time window slides by m bits. If not, then slides by 1 bit

and continues in this way until the window reaches the end of that partition.

Depending on m, several target strings are available and the test is repeated for each of

the target strings. A regular distribution of the target strings in 8 partitions are expected

to pass the test.

Input Details: m: the length of the target strings in bits. In the test code, templates

are designed for m values up to 10. 9 and 10 are recommended values for m. Also, the

number of blocks, which is fixed to 8 in the test code, can be changed to another value

less than 100.

2.8.2.8 Overlapping Template Matching Test

Description: To a large extent, this test works in the same way with Non-overlapping

Template Matching Test. The only operational difference is that the window slides by

Chapter 2. Random Number Sequences 23

not m bits but 1 bit if the string in window matches to the target string. There are also

some changes in parametrization. Partition size is fixed to 1032. In all partitions, the

test looks for the runs of ones of the specified length m and compare the results to the

expected values.

Input Details: n is recommended to be at least 106 bits.

m: the length of the target strings in bits. In the test code, templates are designed for

m values up to 10. 9 and 10 are recommended values for m. Also, the number of blocks

are set to 968, which explains the lower bound on n.

2.8.2.9 Universal Statistical Test

Description: This test is based on the assumption that random sequences are not

compressible. As an indicator of compressibility, distances between repetitions of all

possible strings of length L are examined. First Q blocks of length L are used to make

initialization for distance calculation. Then, log2 distance values are summed up to

compare to the reference values supplied in a look-up table. The reference values include

expected value and variance of the sum which are calculated for varying L values. If

there are so many repeating patterns in R, then the sum will be much higher than the

expected value. Consequently, the string R will fail the test for it is found out to be

compressible to a large extent.

Input Details: Parameter names are different than the other tests because this test

was originally taken from another test suite [30]. The original names of the parameters

mentioned in [30] are used in this document, too.

L: block size in bits. The test analyzes the repetition pattern of every possible string

of length L. L must be chosen between 6 and 16. Other parameters are initialized

accordingly.

Q: number of blocks to use at initialization step.

2.8.2.10 Linear Complexity Test

Description: Linear Complexity Test works on the idea that the shorter LFSR pro-

ducing a sequence gets, the more far away the resulting sequence gets from perfect

randomness. The string to be tested is first divided into blocks of length M , then each

block is subjected to Berlekamp-Massey algorithm [20] to find out the shortest LFSR

that produces it. Then the distribution of the complexity values are compared to the

expected values. If LFSR of a block is short, this implies a strong dependence on the

string and causes failure.

Chapter 2. Random Number Sequences 24

Input Details: M : the length of blocks in bits.

2.8.2.11 Serial Test

Description: A random sequence is expected to contain approximately the same amount

of each possible string of length m. To check for this property, the sequence to be tested

is searched in an overlapping manner (each time an m-bit window slides by 1 bit). The

frequencies of 2m m-bit strings are determined and compared to the theoretical target.

Input Details: m: the length of blocks in bits.

2.8.2.12 Approximate Entropy Test

Description: This test focuses on the frequencies of m-bit and m+ 1-bit strings to find

out joint distribution for m-bit strings. An approximate entropy depending on m is cal-

culated in intermediate steps. Small values of the approximate entropy imply regularity

while high values mean strong fluctuations. A small entropy value is an indicative of

non-uniform joint distribution, which is also a good reason to fail the test.

Input Details: m: the length of blocks in bits.

2.8.2.13 Cumulative Sums Test

Description: The binary sequence to be tested is converted to (+1,−1) sequence such

that zeroes in the sequence are changed to −1 and the ones stay the same. Over the new,

adjusted sequence, partial sum is computed and the absolute value of the partial sum at

each step is checked to find out its maximum. Note that all the tests in the test suite is

conducted provided that the sequence to be tested passes the Frequency Test. That is,

the overall sum of the adjusted sequence does not substantially deviate from zero. So, a

high value of the maximum indicates that, too many zeroes or too many ones are present

at least at one place of the sequence. So, a local non-uniformity can be detected in this

way and the sequence fails the test.

2.8.2.14 Random Excursions Test

Description: The sequence to be tested is converted from (0, 1) to (−1,+1) basis and

partial sum sequence is formed to find out number of cycles. A cycle is a subsequence

of the partial sum sequence which starts and ends with zero and includes no other zero

Chapter 2. Random Number Sequences 25

value inside. Over a length of 106-bit-long sequence, at least 500 cycles are expected,

otherwise the sequence directly fails the test. The values in a cycle indicates how much

the partial sum deviates from zero. Numbers with high absolute value and long cycles

are marks of too many zeroes or too many ones in the original string. A statistics is

obtained examining the contents of each cycle so that sequential dependencies in the

original sequence can be detected.

The test consists of eight parts: It calculates the distribution of each of the values

−4,−3,−2,−1, 1, 2, 3, 4 appearing in the partial sum sequence. And the test mainly

focuses on the cycles which visit these states and compares their amount to the expected

values.

Input Details: n is expected to be 106 bits.

2.8.2.15 Random Excursions Variant Test

Description: The sequence to be tested is converted from (0, 1) to (−1,+1) basis and

again, the partial sum sequence is computed to find out number of cycles. The test

consists of eighteen parts: It calculates the distribution of each of the values from -9 to

9 (excluding zero) appearing in the partial sum sequence. For a random sequence, the

cumulative sum should not exhibit a substantial deviation from zero. The number of

visits to each of these states are examined and compared to the expected values.

Input Details: n is expected to be 106 bits.

Chapter 3

Cellular Automata

3.1 History of Cellular Automata

The term Cellular Automata (CA)1 started to appear in scientific literature by 1950s,

although the history of conceptually similar works may be traced back to a few decades

earlier. The field, in the way it is known today, has essentially begun to be shaped

by the works of von Neumann and Ulam in 1940s. Since then, CA has been a prime

topic for discussions and research on self-organization and complex systems. Along with

its self-organizing nature, its underlying simplicity was making it a powerful tools for

conceptualizing complex systems in nature. Therefore, CA has become a useful mathe-

matical tool for interpreting dynamical behavior of large number of variables undergoing

simple local interactions.

Looking at the early studies, it is possible to say that the interest for CA has been mostly

kindled by the efforts to find answer to the computation-theoretic problems. Unlike the

generic automata, which are generally used for designing finite and the simplest model

that fulfills a specific purpose, CA allows designing infinite models. That makes it

a quite adequate tool to think over theoretical subjects such as Turing Machines and

computation universality [31].

The development of the notion has gone through certain stages, which were triggered

by prominent studies of von Neumann, Conway and Wolfram. As the experimental

and theoretical inspections –mostly in the realm of mathematics and computer science–

suggested, CA is seen to have an intrinsic potency justifying this interest and finds use

in several applications of chief scientific areas such as physics, biology and chemistry.

However the field still lacks a solid theoretical construction which reveals its strengths
1Throughout this text CA is used to abbreviate both singular and plural forms: cellular automaton

and cellular automata.

26

Chapter 3. Cellular Automata 27

and perhaps is waiting for an intuitional leap that help go beyond the current dynamical

and complex system theories.

3.1.1 von Neumann’s Work

von Neumann was the first to attract a great attention to CA. What motivated von

Neumann to study CA was a question he took up about biological evolution in nature.

von Neumann’s aim was designing a deterministic model which can display the necessary

logical interactions to simulate the evolution in living organisms.

With this motivation, he set out to construct a model capable of self-reproduction. Self-

reproduction might be summarized very roughly in the way that it is the quality of a

dynamical system which enables the ability to copy itself.

von Neumann was believing that a continuous model is more powerful than a discrete

one and only a highly complex model could be capable of representing the complexity in

a natural phenomenon. Therefore he first planned to construct a model in continuous

domain for his study.

Ulam, a Russian mathematician studying discrete applications of mathematics to biology,

suggested von Neumann using a discrete model to represent the transformations in nature

rather than a continuous one [32]. Taking advantage on that suggestion, von Neumann

decided on a two-dimensional CA arranged on an infinite-size grid with 29 states per

cell. That work would be the first CA design which is proven to be capable of self-

reproduction. This was also the first discrete model shown to be a universal computer.

von Neumann’s study initiated and substantially shaped the growth of the field. It can

be said that CA had been characterized by discrete structure with his study and had

become known for its ability to simulate complex systems in nature. Such a model was

certainly a valuable one since its discrete structure provides an exact computability [10].

Because, analyzing the behavior of complex phenomena in nature necessarily requires

computer simulations and a discrete model is quite useful for it causes no perturbation

due to approximations or round-off errors on digital environments.

Since von Neumann’s design was not claimed to be the simplest universal machine, it

also triggered an effort to discover whether simpler designs are possible. Actually von

Neumann himself had realized that this was possible during his study. Subsequently, CA

was examined with changes on its parameters as in von Neumann’s study and there have

been created similar discrete, self-reproductive CA examples in the following period.

CA had also been subjected to rigorous mathematical and physical analysis. During

the period of 1960s and 1970s, CA has become diversified up to various parameters.

Chapter 3. Cellular Automata 28

The resulting constructions were scrutinized in the context of chaotic and dynamical

systems, phase transitions and entropy in physics. Mathematicians generally connect

CA with differential equations as well as studying basic notions like invertibility and

completeness of a certain set of CA rules (i.e. CA functions) over a configuration space.

On the information theory side, CA’s ability of translating information was the point of

interest.

3.1.2 Conway’s Life

Nearly twenty years later than its first rise with von Neumann, CA gained a great

popularity by John H. Conway’s work. Conway was a mathematician researching in

pure math. As part of his interest in recreational mathematics, he was studying on

two dimensional CA models. His original objective was to find out a self-reproducible

universal machine design simpler than von Neumann’s example. His attempt became

successful and he constructed a self-reproductive model which was capable of simulating

a universal Turing machine. He named his model as “Game of Life”. It was published in

a science magazine in 1970. Unlike von Neumann’s construction, this one had a fairly

simple configuration as described below.

Game of Life was analogically designed to conceptualize the evolution of a living society

in nature. Its environment is an infinite orthogonal grid with square cells. Each cell can

exist in one of two states: alive or dead. In visual representation, alive cells are shown in

black and dead cells in white. Each cell’s future is decided by its eight neighbors: four

orthogonally and four diagonally adjacent cells.

The rules guiding the evolution in Life are as follows:

1. An alive cell keeps alive if it is surrounded by 2 or 3 live cells.

2. A live cell dies from isolation if it has less than two neighbors alive.

3. A live cell dies from overcrowding if more than three neighbors are alive.

4. A dead cell comes in to life if exactly three neighbors are alive.

Figure 3.1 shows an evolution in Life starting from the initial state (a). Each cell in a

state is subjected to the given rules to generate its next state. Once the initial state is

set out, Life starts its evolution. Applying the rules simultaneously to each cell in a state

generates the next state in time, i.e. the next generation, and it continues until reaching

a termination state.

Chapter 3. Cellular Automata 29

	

(a) t = 0
	

(b) t = 1
	

(c) t = 2
	

(d) t = 3

	

(e) t = 7
	

(f) t = 11
	

(g) t = 15
	

(h) t = 19

	

(i) t = 22

	

(j) t = 45

	

(k) t = 46

	

(l) t = 47

Figure 3.1: Figures show an evolution in Life starting from the initial state (a). The
configuration enters into a repetitive trend starting from t = 45. Figures are generated

via [33].

Termination state is all white if society completely dies out (which happens rarely). It

may settle down to a stable state which remains unchanged in the rest of the time or

there may be a set of states repeating themselves or, termination state may consist of

moving objects which grow without limit.

Following its publication in a science magazine, Game of Life gained a great popularity

among computer programmers. Many variations with different environments (for ex-

ample, on a hexagonal grid) and different rules specifying death and birth conditions

or defining more than two states per cell were created. Some of them shown to be

self-reproductive. Interesting patterns occuring in configurations were searched out and

examined thoroughly in science magazines.

What made Life so interesting and popular is that it was then one of the simplest

examples of self-organizing systems with these properties. However, this popularity did

not lead to a systematic exploration of CA dynamics but mostly stayed in a recreational

level [34]. Nevertheless, it arose questions in minds as to which extent CA rules are

Chapter 3. Cellular Automata 30

capable of simulating complexity in the nature. And, an extensive exploration of CA

had waited until Wolfram undertook the subject in 1980s.

3.1.3 Wolfram’s Work

von Neumann’s motivation was to find a specific example satisfying certain criteria,

namely universal computation and self-reproduction. On the other hand, Conway first

designed a CA rule which shows interesting behaviors then set out to explore its proper-

ties and finally it was shown to fulfill Neumann’s criteria by contribution of many others.

What Wolfram did was a more integrated study. He started off going over the structures

generated by one dimensional rules and end in a classification over the elementary rules

and extended his findings over larger rule spaces.

Wolfram’s first important study about CA [35] came into view in 1983. In this paper,

he studied a class of one dimensional CA which he named as the elementary CA rules,

choosing to start with the most simple type of CA before delving into the big picture.

The main emphasis in [35] is how simple rules create unexpectedly complex structures

as a result of self-organization.

Based on the level of disorder in the behavior of CA rules, Wolfram proposed a classifi-

cation that recognizes four groups within the elementary rules. This classification can be

extended to cover all one-dimensional CA rules, as well. The classes are the following:

• Class 1: The rules in this class are the simplest in behavior and converge fastest

among the four to a stable state. They converge to a homogeneous state, in

that, they show a resemblance to the continuous system with fixed-point attracting

states. Some examples to the rules in this class are Rule 32, Rule 160 and Rule

2322.

• Class 2: Rules enter into a periodic regime in a longer time compared to the first

class and indicate predictable behavior. Their analogous counterpart in continuous

systems are the ones with continuous limit cycles. Examples are Rule 4, Rule 108,

Rule 218 and Rule 250.

• Class 3: Rules in this class do not converge to any stable state, but continually

produce similar kind of patterns representing a random appearance overall. They

resemble to the continuous systems with strange attractors. Example rules are

Rule 22, Rule 30, Rule 126, Rule 150 and Rule 182.
2See the section 3.4 for naming conventions

Chapter 3. Cellular Automata 31

• Class 4: The fourth class produces structures propagating locally and a compli-

cated interaction appears where they cross each other. There is no obvious analogue

in continuous systems to the fourth class [10]. An example is Rule 110.

Figure 3.2 demonstrate the evolution of rules from different classes. Rules in the same

class display similar behavior with almost all initial states. Wolfram claims that, the

behavioral pattern of the Class 3 is convenient to produce pseudorandom sequences, and

the Class 4 more likely to include the rules with capability of universal computation.

Indeed, Rule 110 is known to be one of the simplest example of the universal computers.

Wolfram’s classification has come in for criticism about its practicality since it does

not based on any measurement or valuation metric. So indeed, Wolfram had arranged

this categorization by examining each rule’s behavior visually and individually. That

examination includes an entropy comparison of the rules as well, but there is no certain

boundaries between the classes. As a result, some of the rules displaying unusual behavior

do not precisely fall into any of the classes. Despite its arguable aspects, Wolfram’s

classification provides a useful approach to the subject and set ground for further and

better inspection of the rules, as can be deduced from the volume of studies following

Wolfram’s work.

Going beyond the elementary rules, Wolfram asserts that every process in nature should

be regarded as a “computation” under the guidance of simple rules and the capability of

universal computation draws an upper bound to the complexity of the computation in

nature. Therefore he believes that CA provides a very appropriate platform to construe

the phenomena in terms of computation in various branches of science from quantum

physics to biology and economics. Moreover, he has an idea that ultimately the whole

universe can be explained by a simple and short rule in the view of his computation-based

interpretation.

3.2 Cellular Automata and the Definitive Parameters

In the simplest form, a CA is an autonomous system with a regular (possibly infinite)

lattice of cells, which is spatially discrete, and updated its content in discrete time steps

according to a specific rule. Each cell contains a value within a predetermined set of

k values, so that possible combinations of state values determine the configuration (or

state) at a certain time. The configuration is updated at each time step. A cell’s content

at any time is determined by the previous contents of neighbor cells and optionally its

own content. This scenario portrays a local interaction between the cells in the same

Chapter 3. Cellular Automata 32

	

(a) Rule 110

	

(b) Rule 22
	

(c) Rule 30
	

(d) Rule 4
	

(e) Rule 108

(f) Rule 32
	

(g) Rule 126 (h) Rule 160

(i) Rule 232
	

(j) Rule 182 (k) Rule 218

	

(l) Rule 250

Figure 3.2: Time-space diagrams of rules from different classes are shown. (a) is
extended to present more iterations to demonstrate the behavior of Class 4 rules.

Chapter 3. Cellular Automata 33

	
(a) Rule 105

	

(b) Local Function: Rule 105

	

t	 =	 0	
t	 =	 1	
t	 =	 2	
t	 =	 3	

(c) Application of the rule

Figure 3.3: (a) shows evolution of Rule 105, of which truth table is given in (b).
Figure (c) shows how the rule is applied on a cell. Three cells marked with red dots in

the first row are inputs for the marked cell in the second row.

neighborhood. Proceeding in this way, the whole line of cells are modified at each time

step as each cell synchronously passes through this local interaction.

Figure 3.3(a) shows an example of binary, one dimensional, 3-neighborhood, finite CA

with a state length of 100 bits. There are four parameters that characterize a CA

construction. These are lattice structure, cell contents, neighborhood scheme and the

guiding rule. To scrutinize more, the number of variables characterizing a CA could be

increased however, the independency between the variables may be lost in that case. For

example, defining the lattice size also tells whether the CA is finite or infinite, so there

is no need to assign a new variable to indicate finiteness.

In Figure 3.3, the lattice is chosen to be a finite line of 100 cells. The cell content is either

Chapter 3. Cellular Automata 34

	 (a) Orthogonal Grid
	

(b) Hexagonal Grid
	

(c) Triangular Grid

Figure 3.4: Various lattice styles used in CA models

zero (marked with a white cell) or one (marked with a black cell). As seen in 3.3(c), each

row of cells represents the state at the respective time step and time proceeds downward.

At time t = 0 the state is called the initial state and given to the system as an input. In

this example, the initial state is all zero with a single one in the middle.

Figure 3.3(b) displays the guiding rule and Figure 3.3(c) demonstrates a restricted closer

look to the first few steps in 3.3(a). Each cell in a state is modified according to the

guiding rule and the newly generated state is written under the first one to obtain a

visualization of the evolution in time.

In order to determine the value of the cell which is marked with a red dot at time t = 1,

the three cells with red dot at time t = 0 are considered. The three-cell-combination is

mapped to a white cell in the figure 3.3(b), so the cell with the red dot at time t = 1 will be

white. All cells are modified in the same way. This operation can be run simultaneously

for each cell on a state at time t, because the values at time t only depends on the values

at time t − 1. So that the whole evolution can be computed quickly. This brings the

advantage of “parallelism” in CA.

3.2.1 Lattice Geometry

Figure 3.4 shows some possible grid structures used for two-dimensional CA3. Most

studied one is the orthogonal grid. In any lattice form shown above, both finite and

infinite styles are available. As a definitive variant of a CA, the lattice geometry is

intended also to give information about the dimension of the CA and the size of the

configurations.

CA with infinite lattice is also termed as tesellation automata in math literature. Infinite

models are favorable to work on theoretical problems. In math and information theory
3Figures are taken from [36] and [37].

Chapter 3. Cellular Automata 35

articles, it is also common to assume an infinite lattice for both finite and infinite cases.

In such a case, finiteness is implied by having a finite number of non-quiescent (see

Section 3.2.2) cells on the lattice at any time t. But this approach may be problematic

in application-oriented texts.

Also one may encounter some studies in literature which designs lattice structures as

graph. In that case cells become nodes of a graph and the edges determines the adjacent

cells.

3.2.2 Cell Content

Each cell on the lattice takes a value from a finite set of states at each discrete time step.

State values are generally chosen integers mod n, Zn = {0, 1, . . . , n − 1}. One of the

states is named as quiescent state, it is generally zero. Sometimes, it is required that the

local rule of the CA assigns the configuration with all quiescent cells to the quiescent state

(assign all-zero state to zero). This is to ensure that, a finite number of non-quiescent

cells in one configuration at time t result in a finite number of non-quiescent cells in the

following configuration at time t+1 during evolution. This property is generally required

for obtaining finite CA characteristic in infinite form.

In the literature, various state specifications can be encountered. Some designs have

different state sets for different cells, or they may consider real numbers instead of only

integer cell content [34]. There are some mathematical approaches to this issue such as

considering state set being taken as a finite field, i.e. Zn with a prime n.

3.2.3 Guiding Rule

CA constructions are mainly governed by the local function (or the local rule) that is

applied repeatedly to individual cells. Figure 3.3(b) shows the local function and Figure

3.3(c) shows that each cell is modified under the same local rule to obtain the next

generation. As in that example, if every cell is subjected to the same local rule, it is

called a uniform CA.

In Figure 3.5, it is seen that the aggregate impact of the local function on the configu-

ration at time t produces the configuration at time t+ 1. The function which maps one

configuration to the next in time is called the global function. Surely, the global function

is defined with reference to the local function.

While local rule may be chosen to be the same for all cells and for all time steps, one

can choose to apply different rules to different cells at a time according to some control

Chapter 3. Cellular Automata 36

	
t	 	

t	 +	 1	

Global	 Rule	 Local	 Rule	

Figure 3.5: Global and Local Functions

scheme. Such designs are called hybrid CA. Combinations of Rule 90 and Rule 150

were extensively studied in 1990s and it was proven that one of those combinations is

a necessary condition to have a maximal-length cycle in a linear hybrid CA design [38].

Yet, another approach is programmable CA, in which the local rule changes both spatially

and temporally according to a fixed guideline. A dynamic control on the rule selection

was also attempted [39].

There are many variations of CA in the literature such as CA with a real-valued local

function (continuous CA) [34], CA with a probabilistic local function (stochastic CA),

etc.

3.2.4 Neighborhood Scheme

A cell’s value on the next configuration is determined by some finite number of neighbor-

hood cells and optionally itself. Depending on the lattice structure, several combinations

may be possible. On a d-dimensional lattice, neighborhood cells are not only the adjacent

ones to the cell to be modified, they can be chosen some distance apart, too.

The number of cells in neighborhood scheme determines the number of input to the

local function. A commonly studied one is taking the adjacent cells with radius r, where

center is the cell to be modified. In that case, next state of the cell to be modified is

determined by its neighbor cells which are at most in r distance. In one dimensional

space, this approach creates a local function with (2r + 1) inputs as shown in Figure

3.6(a). Figures 3.6(b) and 3.6(c) show the 2-dimensional neighborhood scheme used by

von Neumann and Moore. The shaded area marks the input cells, the cell with the red

dot indicates the output cell. Figures 3.6(d) and 3.6(e) show the Moore neighborhood

in 3-dimensional CA4.

Boundary Conditions: If a finite lattice is to be used, in addition to the neighborhood

scheme, boundary conditions must be specified as well. The cells on the edge of the grid

have no neighborhood cells at least on one side. So when modifying the cells at the
4Figures 3.6(d) and 3.6(e) are taken from [36].

Chapter 3. Cellular Automata 37

	

r	

(a) r = 2
	 	 (b) von Neumann neigh-

borhood

	 	 (c) Moore neighborhood

	

(d) 3D Moore domain

	

(e) 3D Moore range

Figure 3.6: Neighborhood illustrations for 1-, 2- and 3- dimensional CA

boundary, state of the non-existent neighbors should also be known to determine the

next state of a boundary cell. This non-existent neighbor cell might be taken from the

opposite end of the grid so that a periodic, cyclic boundary is obtained. Another choice

is to assign a fixed value to all non-existent neighbors and use it throughout the whole

evolution. If this fixed value chosen to be the quiescent state, it is called null boundary.

Also a predetermined intermediate cell can be chosen as a boundary neighbor. This

scheme is then called intermediate boundary.

3.3 A Formal Definition of Cellular Automata

Definition 3.1. A Cellular Automaton is a quadruple (S, σ,N , `) such that

1. S is the set of values a cell can take.

2. σ is the local function.

3. N is the neighborhood scheme.

4. ` is the lattice size.

Remark: The scope of this study is limited to one dimensional CA only. The test

results to be presented in Chapter 4 belong to deterministic, binary and uniform CA

with finite line of cells. Also, the boundary condition is selected to be cyclic boundary

for all CA constructions. Accordingly, the formal definitions related to CA in this chapter

Chapter 3. Cellular Automata 38

	

t	 	

t	 +	 1	

(a) 3A

	
t	 	

t	 +	 1	

(b) 3B

	
t	 	

t	 +	 1	

(c) 3C

Figure 3.7: Naming Convention for Neighborhood Schemes

are made with reference to these specifications. So, a CA construction defined outside of

this frame (e.g., a multidimensional, hybrid CA) may not be concretely identified under

the following definitions.

Lattice Geometry: The lattice of a one dimensional finite CA can be defined as a

finite sequence. If the state length is `, then the sequence will consist of ` elements.

S` = {s0, s1, . . . , s`−1}

Cell Content: On a binary CA, cell content is limited to {0, 1} ⊂ N. So, a state at

time t will be defined as:

S`(t) = {s0(t), s1(t), . . . , s`−1(t)} ∈ {0, 1}`

where si(t) ∈ {0, 1} for every i ∈ {0, 1, . . . , ` − 1} and {0, 1}` denotes the set of all

possible binary sequences of length `.

Neighborhood Scheme:

For a one-dimensional CA with a k-input local function, a k-tuple is needed to denote

the neighborhood of a site. Let us denote a k-tuple neighborhood with Nk. There will be
only one 0 (zero) in the neighborhood Nk to mark the position of the cell to be modified.

The remaining elements will be integers indicating the distance of that cell to the cell to

be modified.

Chapter 3. Cellular Automata 39

Figure 3.7 demonstrates the abbreviations chosen for different neigborhood types. For

a 3-input local function which puts the output at center as in Figure 3.7(b), N3 =

(−1, 0, 1) ∈ Z3. If the output will be written at the leftmost cite as in Figure 3.7(a),

then the neighborhood will be N3 = (0, 1, 2) ∈ Z3. If the output will be written at the

rightmost cite as in Figure 3.7(c), then the neighborhood will be N3 = (−2,−1, 0) ∈ Z3.

Now, the neighborhood for a finite sequence with cyclic boundary can be defined as

follows:

Definition 3.2. Let S` be a finite sequence of length ` such that S` = {s0, s1, . . . , s`−1} ∈
{0, 1}`. Then the Nk-neighborhood of the site si on a cyclic boundary state is a k-tuple

such that

si+Nk
= (si+n1 (mod`), si+n2 (mod`), . . . , si+nk (mod`)) ∈ {0, 1}k ∀i ∈ {0, 1, . . . , `− 1}

Local Function: A local rule can be expressed as a look-up table or via its algebraic

formula. If the local function σ is coupled with a neighborhood Nk then it should be

defined from {0, 1}k to {0, 1}

Definition 3.3. A binary, uniform, cyclic boundary Cellular Automaton is a triple

(σ,Nk, `) such that

1. σ is the local function: σ : {0, 1}k → {0, 1}

2. ` is the length of the finite state with cyclic boundary condition.

3. Nk is the neighborhood scheme: Nk ∈ {(n1, . . . , nk)| nj ∈ Z, ∀j and ∃! i ∈ N such

that 1 ≤ i ≤ k and ni = 0}

Let S`(t) = {s0(t), . . . , s`−1(t)} ∈ {0, 1}` denote the configuration at any time t.

The evolution occurs as follows:

si(t+ 1) = σ(si+Nk
(t)) ∀i, t.

Global Function: The global function χ of a binary, uniform and cyclic boundary CA

(σ,Nk, `) is defined as χ : {0, 1}k → {0, 1}k.

3.4 Elementary Rules

Elementary Cellular Automaton is a class of one-dimensional binary CA which have the

neighborhood scheme as (-1,0,1). That is, each cell is updated according to the values

Chapter 3. Cellular Automata 40

Table 3.1: Truth table of Rule 30.

abc 111 110 101 100 011 010 001 000

σ(abc) 0 0 0 1 1 1 1 0

Table 3.2: Rules 75, 89, 45 and 101 form a family.

111 110 101 100 011 010 001 000
Rule 75 0 1 0 0 1 0 1 1
Rule 89 0 1 0 1 1 0 0 1
Rule 45 0 0 1 0 1 1 0 1
Rule 101 0 1 1 0 0 1 0 1

of two adjacent cells and itself. Considering the local functions, there are 22
3 possible

deterministic rules which take 3-bit input and output 1 bit. In order to uniquely name

this set of 256 local functions, such a way was followed in the literature, put the inputs

in binary descending order 111, 110, 101, ... Then read the outputs as a binary number

with the most significant bit coming from σ(111). The corresponding decimal number is

given to that function as a name. Rule number uniquely describes the function’s truth

table.

3.5 Rule Families

Figure 3.8 shows four CA evolution plotted down with different local rules. Figure 3.8(b)

is the mirror image or the reflection of Figure 3.8(a) and figure 3.8(c) is complement of

figure 3.8(a) in the sense that ones and zeros are swapped in the configuration. So Rule

45 is called the conjugate of Rule 75. Figure 3.8(d) is both reflection and conjugate

of figure 3.8(a). These four CA produce the same behavior pattern given the identical

initial state.

For any given CA rule, its reflection can be found by interchanging left and right neigh-

bors in the local function. Likewise, its conjugate can be found by interchanging ones

and zeros in the truth table. Its reflection-conjugate is obtained applying both proce-

dures. Therefore, in a binary one-dimensional k-neighbor CA space, it is possible to

group the rules so as to create rule families by collecting the ones that have the same

behavior. The family of a rule consists of the rule itself, its reflection, its conjugate and

its reflection-conjugate. As these four can be distinct rules, they might all be the same

or pairwise same, as well.

Reflection– The rule spaces with central neighborhoods, such as 3B or 5C, will have all

family members in the same space. But, a rule in 3A has its reflection in 3C. Likewise,

reflections of 4A will be in 4D and 4B will be in 4C.

Chapter 3. Cellular Automata 41

(a) Rule 75 (b) Rule 89

(c) Rule 45 (d) Rule 101

Figure 3.8: Space-time diagrams of a rule family is presented.

Let f be the function which maps a rule in 3A to its reflection in 3C. Since reflection

of a rule is unique, f is one-to-one. Also, the domain and the range of f have the same

number of functions, therefore f is onto hence, is a bijection. The rule pairs that are

matched to each other by f will be in the same family, because they produce the same

patterns.

So, in case of a behavioral analysis over the set of all 3-input rules (3A, 3B, 3C), examining

one of the set from 3A and 3C is enough to reach a general conclusion, since they exhibit

the same behaviour.

Conjugate– Let us denote the conjugate of a local rule σ as σc. Given the same initial

state, σ and σc produces the same output ones and zeros swapped. Hence the relation

between the two is σc(a) = σ(a) where a is a binary input.5

The conjugate of a rule is unique and has the same neighborhood scheme with the

original rule. Therefore, the conjugate of a rule is either itself or another rule in the

same neighborhood set.
5The bar over a binary variable denotes its conjugate such that 0 = 1 and 1 = 0.

Chapter 3. Cellular Automata 42

3.6 Producing Randomness via Cellular Automata

3.6.1 CA-Based PRNGs

CA was first proposed to generate randomness by Wolfram in a 1986-dated paper [9].

Wolfram especially pointed out Rule 30 among the elementary rules, emphasizing its

capability to produce complicated behavior even when it starts its evolution from quite

non-random initial states, like all zero but one bit set at the center of the state. He

preferred a plain model to express the idea of producing randomness via very simple

deterministic rules rather than elaborating on details of a concrete PRNG design. For

that design, a uniform, cyclic boundary CA is used as the updating function, and the

selection function always chooses the central bit of the internal state. The period of the

generated sequence is dependent on the state size and the seed. Its maximal period is

nearly 2
(`+1)/2 where ` is the state length. This PRNG passed a group of 7 statistical

tests (Knuth’s tests) and was found to have a better quality than LFSR and LCG of the

same length but no better than the binary expansions of π,
√

2 and e.

In some math articles, different selection functions are suggested to decrease periodicity

and linearity of the sequences. Sipper tried taking one bit of every 3 bits on the temporal

sequence and reported statistical advancement in [16].

In [40], Wolfram recommends using the PRNG based on Rule 30 to produce key stream

to be directly XORed with the plaintext in a stream cipher procedure. However, Meier

and Staffelbach [41] showed that the temporal sequence could be found out via a known-

plaintext attack and due to the property known as “the left toggle” of Rule 30, guessing

only the half of the seed reveals the whole history of the PRNG.

Moreover, [42] describes an inversion algorithm to recover the previous internal state

given the current one in Wolfram’s uniform Rule 30 design. Inversion is not only intended

to work on Rule 30 but other one dimensional uniform CA models. It is performed

through finding the best affine approximation of the local rule. Inverting one step back an

internal state of length ` takes O(`) time and 2`/2 time at the worst case. In [43, 44], it is

shown by using Walsh transformation that elementary rules are not correlation-immune,

therefore, a uniform CA design created with an elementary rule is not appropriate for

cryptographic purpose.

A good amount of articles comparing LFSR and CA-based PRNGs are available in

the literature, mainly because LFSR is also known for its simplicity and providing good

statistical quality in generating randomness. Hortensius showed that both a very popular

hybrid model of Rule 90/150 and Rule 30-based designs have better statistical quality

than the basic LFSR model of the same length [45].

Chapter 3. Cellular Automata 43

As expected, cyclic boundary is found to be better than fixed boundary [46] and two

dimensional CA better than one dimensional [14] in statistical quality.

Serra studied constructing a linear CA corresponding to a given LFSR [38]. He showed

that there exist a hybrid CA of Rule 90 and Rule 150 for any LFSR proving that they

are governed by the same primitive polynomial. Also, an algorithm was provided to

determine the control scheme of a hybrid 90/150 CA for a given LFSR. The isomorphism

between the spaces of LFSR and linear hybrid CA was proven assuming null boundary

on CA constructions. Later it was found out that the characteristic polynomial of a

linear CA with cyclic boundary is always factorizable, therefore can never be primitive.

That is, the maximum period cannot be achieved via a cyclic boundary linear CA.

Nandi and Chaudhuri examined the connection between algebraic structures and pro-

grammable CA (PCA) models created by using linear and affine functions. In [47], they

define the state transitions on a null-boundary PCA as even permutations, consequently

obtain an alternating group. Based on that group, they proposed symmetric block and

stream cipher schemes. However, later it was shown in [48, 49] that what they cre-

ated is not an alternating group and the proposed encryption scheme is vulnerable to

ciphertext-only attack.

In the realm of hybrid CA, the idea of using a genetic algorithm with a metric of entropy

to search for the efficient rules initiated a series of works [50–52]. These studies mostly

center around the use of rule 90, 105, 150 and 165 among the linear elementary rules. An

evaluation over four statistical tests reports that they perform better than the uniform

Rule 30 and a hybrid Rule 90/150 designs [51].

Shin et. al. [46] classify the elementary rules according to combinations of the logical

operators included in the shortest algebraic formula of a rule. They performed statistical

tests on each class and find out that the best statistical results are obtained from the

rules including XOR in their formula.

As an example of physical TRNG, Tkacik presents a construction which was also imple-

mented and used for a while within Motorola Company [53]. That PTRNG uses two ring

oscillators to clock a 43-bit LFSR and a 37-bit hybrid 90/150 CA. The outcomes are then

permuted and combined via an XOR operation to produce a pseudorandom string, which

possibly goes through a post-processing. The test results show that while the individual

outcomes of LFSR and CA mechanisms do not present a satisfactory statistical quality,

their combination behaves pretty close to the theoretical reference.

Chapter 3. Cellular Automata 44

Table 3.3: Rule 184: A balanced rule from 3-input CA set. There are
(
8
4

)
= 70

balanced rule for each neighborhood space of 3A, 3B and 3C.

abc 111 110 101 100 011 010 001 000

σ(abc) 0 1 0 1 1 1 0 0

3.6.2 Balancedness

One of the defining characteristic of an ideal random sequence is uniformity: every

possible value should appear in the sequence equally likely. That means, in a PRNG

mechanism, the outcome of the whole procedure (the combination of the updating and

selection functions) must yield approximately the same amount of 1s and 0s. Considering

Wolfram’s PRNG model suggested in [9], as well many other CA-based constructions,

the output is formed by directly taking the b`/2cst bit of each state. In order to bring an

equilibrium to the amounts of 1s and 0s in the internal state, the local function(s) used

should be balanced. Otherwise one of the values (0 and 1) will outnumber the other in

the internal state and similarly in the temporal sequence.

Definition 3.4. A Boolean function f : {0, 1}k → {0, 1} is said to be balanced if it

produces as many 1s as 0s over its input set.

3.6.3 Mutual Information

For producing pseudorandom sequences, balancedness is a basic requirement of local

functions to provide uniformity. So, if we are to choose good candidates from a pool of

rules, it is best to eliminate the unbalanced ones first. At one step further, an elimination

–just by looking at the local rules– can be made according to the requirement that

whenever a zero appears in the random sequence, the probability of having 0 or 1 should

be the same in the next bit. Similarly, for one. In that case, the joint distributions of

0 and 1 must be consulted over the local function. The mutual information is the very

tool needed.

Mutual information of two random variables X and Y indicates how much knowing one

of the variables’ state gives information about the state of the other. If X and Y are

independent, then their mutual information I(X;Y) will be zero.

Mutual information of X and Y can be calculated as follows:

I(X;Y) =
∑
x,y

PXY (x, y) log2

(
PXY (x, y)

PX(x) PY (y)

)
,

Chapter 3. Cellular Automata 45

	
X	
Y	

Figure 3.9: Random variables X and Y and Rule 232

where PX(x) and PY (y) denote the marginal probability distributions and PXY (x, y)

denotes the conditional probability of X = x given Y = y.

If the variables X and Y are specified as shown in the figure 3.9. Both variables can

take one of the two states: X,Y ∈ {0, 1}. I(X;Y) will give the correlation between two

adjacent cell on a vertical line on the space-time plot.

Let us calculate the mutual information of 3B Rule 232 shown in the figure 3.9. Since

Rule 232 is balanced, PX(x) = 1/2 ∀x ∈ {0, 1}. And, the function is defined for all 3-bit

inputs, hence PY (y) = 1/2, ∀y ∈ {0, 1} When Y = 0, X becomes zero 3 times over

the all input set, namely at 000, 001 and 100: σ(000) = 0, σ(001) = 0 and σ(100) = 0

Therefore PXY (0, 0) = 3/4 · 1/2 = 3/8. Similarly, PXY (0, 1) = 1/8, PXY (1, 0) = 1/8,

PXY (1, 1) = 3/8

I(X;Y) =
∑

x∈{0,1}

∑
y∈{0,1}

PXY (x, y) log2

(
PXY (x, y)

PX(x) PY (y)

)

= 2 ·
(

3/8 log2

(
3/8

1/2 · 1/2

))
+ 2 ·

(
1/8 log2

(
1/8

1/2 · 1/2

))
= 0.188722

A balanced local rule with I(X,Y) = 0 directly implies that PXY (x, y) = 0.25 ∀x, y ∈
{0, 1} for that rule. There are

(
4
2

)
·
(
4
2

)
= 36 rules with that property in the 3-input CA

space for each neighborhood of 3A, 3B and 3C.

3.6.4 Entropy

In the literature, especially where CA is examined in the context of physics and complex

systems, entropy keeps a crucial place for the analysis of CA rules. Various versions of

entropy are available especially in the information theory and physics-oriented articles.

Here, a definition of entropy which deals with probabilities is chosen.

Definition 3.5. n-bit entropy Sn of a binary string M is calculated as

Sn = −
2n−1∑
i=0

pi log2 pi

Chapter 3. Cellular Automata 46

where i is an n-bit string and pi is the observed probability of its occurence as a substring

in M .

This definition of entropy is used in [35] by Wolfram for measuring entropies of CA-based

PRNG outputs. It is also commonly used in CA studies since generally Wolfram’s work

is taken as reference. In [10], there are references to the studies which measures the

entropy similarly but on the internal states instead of the output of PRNG.

Chapter 4

Test Results

This chapter presents the statistical test results collected on 5-input CA. The results also

include information about 3 and 4-input rules. Our main motive is to detect the rules

with good statistical quality over the space of 5-input CA to see how many of them have

potential for random number generation. In the 5-input space there are 22
5 functions for

each of the 5 different neighborhood schemes. This implies 5 · 225 ≈ 2 · 1010 functions.

That is a huge space for an exhaustive search.

Looking at the research done so far, hybrid systems are found useful and better in

performance also more challenging against predictability attacks. In the elementary rule

space, the rules that gain the most attention are Rule 30 and the linear rules for they

allow an algebraic analysis over the models they created. Beside the elementary rules,

high entropy is the reason for preference.

Linear CA rules within a space can be specified directly without a need for an exhaustive

search over the space. However, the other rules requires individual exploration because

there is no quick way to find out the ones with good random behavior. Still, some metrics

– like entropy and mutual information or others – are known to be proportional with

unpredictable behavior to some extent [54]. Though these metrics do not directly point

out the good ones, they help to narrow down the set of candidates for an exhaustive

search.

3 and 4-input CA sets have reasonable sizes for an exhaustive search. 3-input CA has

256 functions with 3 different neighborhood scheme (3A, 3B, 3C) which makes a total

of 256 · 3 = 768 distinct rules. In the set of 4-input CA, there are 22
4 rules for each

neighborhood type, which sum up to 218. But 5-input CA space is very large with

22
5 · 5 = 232 · 5 rules. But most of these rules produces sequences that cannot fulfill even

47

Chapter 4. Test Results 48

Table 4.1: The tests in NIST Test Suite which return multiple p-values.

Test Name Number of p-values computed
Cumulative Sum 2
Random Excursions 8
Rand. Exc. Var. 18
Serial 2
Non-overlapping T. M. from 2 to 284 depending on block size

the basic qualities of a pseudorandom sequence. Hence, an elimination is necessary to

discard the poor-quality rules before testing.

In what follows, first details of the elimination process will be presented. Then sequences

are generated by the PRNG that Wolfram suggested in [9]. Then NIST Statistical Test

Suite is applied to all sequences respectively.

4.1 Output of a Statistical Test

The NIST Test Suite has 15 statistical tests. The sequence to be tested will be subjected

to all of them in return. Resultantly a p-value is computed for each individual test to

indicate the result. NIST Test Suite creates two files as the output of the whole test. One

of them presents p-values as well as computational information about the intermediate

steps of the tests, the other one only lists the p-values for ease of parsing. P-value above

the significance level implies success on that test. Some of the tests return more than

one p-value since they are constructed to check more than one target as shown in Table

4.1.

To pass a test which returns multiple p-values, all p-values must be above the significance

level. This is a quite stringent condition to satisfy if the block size is large. For example,

when the block size is taken to be 10 bits in Non-overlapping Template Matching Test,

all 284 p-values must indicate success to pass the test. If only one or two of them are

failure, then the PRNG may be tested with various other seeds, so that it will be clear

if the failure on that condition is a characteristic of the PRNG or not.

4.2 Testing Strategy

The appropriate approach when testing a particular PRNG is to apply the test suite

on various samples created via different seeds or taken from different portions of long

sequences. While it is well accepted that the tests must run more than once, it is not

clear how many trials should be done. NIST documentation [6] suggests determining the

Chapter 4. Test Results 49

number of trials according to the selected significance level. If the significance level α is

chosen to be 0.001, that means that we assumed that a random sequence may fail at most

once in 1000 trials. So, ideally the test should run 1000 times. If the test practitioner

makes only 100 tests, there might be no failure even when the tested PRNG was not

that good.

However, the approach taken in this study is not making a detailed analysis of a particular

PRNG but scanning the set of 5-input CA rules to make an approximate evaluation over

the set. 248,474,664 rules from the set of 5-input CA were tested for that purpose. It

was very difficult to test each rule several times considering the required computational

power and time for testing. Therefore the test suite run only once for the tested rules.

4.3 Interpretation of the Test Results

As stated in the test documentation, the outcome of the whole testing process may be

one of the three:

The tested RNG is considered successful if no anomaly is detected that lead a deviation

from randomness assumptions. The result is a failure if strong indication of non-random

patterns are detected. The test is inconclusive when the test results do not show any

clear sign of deviation from randomess. In that case, extra tests should be performed to

reach a conclusion.

There is no strict assessment scheme defined on the outputs but the documentation

of the NIST test suite suggests two strategies (given in the sections 4.3.1 and 4.3.2)

for interpretation of the results. A PRNG is considered successfully passed the test

if both methods return positive results. If just one of them is satisfied, it will be the

inconclusive case. Two failures indicate an obvious defect. These two evaluation methods

are explained in the following.

4.3.1 Rate of success over all trials

If the practitioner made 1000 trials for a particular PRNG, then for each test, there will

be a collection of 1000 p-values. Then a confidence interval is determined based on the

number of trials m := 1000 and the significance level α as (1−α)± 3

√
α (1−α)

m . The pass

rate should be greater than the lower bound for a test to be satisfied, that is:

#{P-values greater than or equal to α}
m

>

(
(1− α)− 3

√
α (1− α)

m

)

Chapter 4. Test Results 50

For each test, the above condition is checked and a conclusion is reached as a failure or

success.

4.3.2 Distribution of P-values

P-values range between zero and one. For a good PRNG, p-values of different samples on

the same test are expected to be uniformly distributed on the interval [0,1) [7]. Provided

that the number of test trials is more than 55, NIST recommends a goodness of fit test

to see how close the p-value distribution to the uniform distribution. In that case, the

following calculation is performed.

Let us assume we made m trials, that is there are m p-values. Divide the interval of

[0,1)∈ R into 10 evenly spaced subintervals such that [0.0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0).

Then count the number of p-values that fall within each interval. Let Fi be the number

of p-values that fall in the ith interval where i ∈ {1, . . . , 10}.

Over the p-value distribution, χ2 test will be applied and a new p-value will be calculated

as Pτ = Q(9/2, χ2/2) where

χ2 =

10∑
i=1

(Fi −m/10)2

m/10

and Q(a, x) is the incomplete gamma function which is defined as

Q(a, x) =
Γ(a, x)

Γ(x)
=

∫∞
x e−tta−1 dt∫∞
0 e−tta−1 dt

with Q(a, 0) = 1 and Q(a,∞) = 0. Pτ ≥ 0.0001 implies uniformly distributed p-values.

4.4 Testing over a big space of functions

If a rule with good statistical quality is to be chosen from a set, exhaustive search is the

most costly method to try. A relatively practical way could be computing entropies of

the generated sequences. Within a group of pseudorandom sequences, the ones with the

highest entropy are expected to score best on the statistical tests.

Also, entropy can be computed on a reasonably short sequence and generally it requires

much less operation on the sequence compared to a bunch of statistical tests. However,

if entropy is used to screening randomness capabilities of the rules beforehand, one still

needs to produce the sequences to reach a conclusion on the rules generating them.

Chapter 4. Test Results 51

A mathematical tool, which is similar to entropy in application, is the Walsh spectrum.

Similarity arises in that both Walsh spectrum and entropy are computed on the generated

sequence. In [55], Yuen stated that the Walsh spectrum of a sequence indicates its

uncorrelatedness and a good random sequence should have a flatter spectrum (spectrum

entries should have small absolute values). Martin used this method to select good rules

among the elementary rules [43]. During the selection process, Martin generated several

short sequences for each single rule to reach a decision about their spectra.

Is it possible to make any inference about the statistical quality of a sequence just

by looking at the local rule instead of producing sample sequences for measurements?

Though we can make some simple guesses by looking at the rule, this is still a hard

question. It is closely related to the classification problem on CA at one side, and to

measurability of randomness at the other side.

Langton [54] defined a parameter on CA rules, which is directly computed on the rule

table rather than the generated sequence. That parameter is calculated for each rule

separately, then it is compared to a critical value that depends on the number of inputs

given to the function and the number of values that a cell can attend. Accordingly,

an approximate conclusion can be reached about the behavior of the function (such as

approximately after how many iteration the function goes through a phase transition or

enters into a converging trend). Langton’s parameter gives sensitive results on larger

input and cell values like 5 or above for both [54].

4.5 Our Procedure

In the set of all Boolean functions defined from {0, 1}5 to {0, 1}, there are 22
5 functions.

If we consider all 5-input CA rules with adjacent neighborhood, 5 different neighborhood

schemes are possible: 5A, 5B, 5C, 5D, 5E. Rules of 5A writes the output at the place of

the leftmost bit taken as input, 5C writes the output at center and so on.

Over the space of 5-input CA rules, we made an elimination as described below to apply

NIST Statistical Tests on them:

1. Discard the two of the groups for they include reflection of others: Continue with

5A, 5B and 5C. This makes 3 · 232 rules to test. As mentioned in the previous

chapter, the rules in 5A - 5E and 5B - 5D produce the same patterns since one

group includes the reflections of the other group in its pair.

2. Remove the the unbalanced rules for sake of uniformity: The number of functions

decreases to 3
(
32
16

)
≈ 3 · 229.

Chapter 4. Test Results 52

3. As an elimination criterion, we selected mutual information. It is applied in the way

as described in Section 3.6.3. Choose the functions with zero mutual information:

This reduces the number of functions to 3
(
16
8

)2 ≈ 3 · 227.

4. Group the functions with their conjugates and discard one of them. (The one with

smaller rule number is kept.) There remained 82,824,885 rules in 5A, 82,824,889

rules in 5B and 82,824,890 rules in 5C.

The test is conducted on those 248 millions of functions. For generating random se-

quences, we have used Wolfram’s model in [9]. That is, the internal states are generated

via uniform CA with cyclic boundary and the selection functions chooses the central bit

from each state. Every rule is tested once with the same initial state, which is all zero

except the central bit.

4.6 Results and Observations

In the following, various figures and tables are presented based on the test results and

other measurements like entropy and mutual information. A short explanation is neces-

sary to clarify calculation details.

Entropy: Entropy is calculated as explained in Section 3.6.4. All entropy measurements

are performed on 8-bit basis. The sequences are generated by Wolfram’s model in [9]

with cyclic boundary. The width of the internal state is 64 bits. The first 100 bits of the

output were discarded and the next 2056 bits were used for calculation.

Mutual Information: Mutual information is calculated as described in Section 3.6.3.

There is no parameter for mutual information calculation beside neighborhood scheme

and number of inputs.

NIST Test Parameters: The tested sequences are generated by Wolfram’s model in [9]

with cyclic boundary. The statistical tests are conducted using different parameters for

different graphs. The parameter set will be specified as an 8-tuple (a, b, c, d, e, f, g, h),

where

a denotes the width of internal state of CA configuration,

b denotes the length of the generated sequence in bits,

c denotes the block size in the Block Frequency Test,

d denotes the window size in the Non-overlapping Template Matching Test,

Chapter 4. Test Results 53

e denotes the window size in the Overlapping Template Matching Test,

f denotes the block size in the Linear Complexity Test,

g denotes the block size in the Serial Test and

h denotes the block size in the Approximate Entropy Test.

In all of the tests, the significance level is taken as 0.01.

4.6.1 Change in State Width

In this study, all CA constructions are uniform and runs with cyclic boundary. The

selection function is fixed to choose the central bit of internal state at each time t. With

these conditions, two of the qualities that influence the statistical testing results are the

width of internal state and the length of the sequence.

There are 88 rule families in the elementary (3B) rules. Two of them, {30, 86, 135, 149}

and {45, 75, 89, 101}, are remarkably well in producing randomness. In the following,

test results of Rule 30 and Rule 45 are included as a representation of overall behaviour

of these two groups.

Testing is performed on the outcomes of the Rule 30- and Rule 45-based PRNGs with

varying state width and sequence length. Figures are provided to present the effect of

these changes on statistical quality of produced sequences. The internal state is taken

as all zero with an exception on the central bit. Test parameters are set to (–, –, 10000,

5, 9, 10, 16, 1000). Results of two tests (Random Excursions and Random Excursions

Variant) are omitted because they are not applicable on 500,000-bit-long sequences.

Figures 4.1 and 4.2 imply that an internal state with width less than 64-bit is not

satisfactory even for Rule 30 and 45. Two more graphs for each rule showing the results

for 1 millions and 5 millions of bits are added to Appendix A.

4.6.2 Change in Neighborhood Scheme

The effect of change in neighborhood scheme might be considered in the context of

selection function of PRNGs. Entropies are computed on the output strings generated

with a cyclic boundary, 100-bit wide internal states. These conditions imply a space-time

diagram covered on a cylindrical surface which has a perimeter of 100 bits.

If 3B neighborhood is taken as reference, 3A shifts each new state left by one bit and

3C shifts right by one bit. In this study the selection function is set to take a column

Chapter 4. Test Results 54

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(a) Rule 30, length: 500,000 bits

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(b) Rule 30, length: 10,000,000 bits

Figure 4.1: The horizontal axis shows increasing width of the internal state. The
only difference between Figure (a) and (b) is the length of the produced sequence. Test
scores are coded as 1 and 0, where 1 implies success and 0 implies failure on that test.

Chapter 4. Test Results 55

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(a) Rule 45, length: 500,000 bits

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(b) Rule 45, length: 10,000,000 bits

Figure 4.2: The horizontal axis shows increasing width of the internal state. The
only difference between Figure (a) and (b) is the length of the produced sequence. Test
scores are coded as 1 and 0, where 1 implies success and 0 implies failure on that test.

Chapter 4. Test Results 56

Figure 4.3: Rule 101 time-space diagram with 3B. The initial state has only one
bit set. The right side of the triangle shows quite regular behavior while the left side

appears to be more random.

Table 4.2: Test scores (out of 188) of Rule 101 with two different initial state. The
width of state is 100-bit.

TEST RESULTS

Initial State 3A 3B 3C
00 . . . 010 . . . 00 24 185 187
Random initial state 24 185 188

on the surface of the cylinder. As long as one uses a cyclic boundary, outcomes of 3A,

3B and 3C will be dependent. Therefore, it is not surprising to see the same group of

rules getting similar entropies with different neighborhood types. Figure 4.4 provides an

example of this situation.

On the other hand, although the differences in entropy values for varying neighborhood

schemes are small, there may be big differences in the test scores. For example, on the

space-time diagram of Rule 101 in Figure 4.3, left side appears more random while right

side of the triangle is quite regular. Therefore, both its entropy and test results are

low with 3A neighborhood when tested with the same initial state as seen in Table 4.2.

Entropy of Rule 101 with 3A neighborhood is lower than 3B and 3C but it is still among

the high values in 3A rule set. This might be due to two reasons. Entropy values are

computed on the first 2200 bits of the sequences while tests are conducted on 1,000,000

bits. Therefore the entropy value (as it is computed here) may not be a good indicator

of the overall statistical quality. Second, the type of entropy measure used in this study

may attain high values even for periodic sequences. Possibly, using an entropy measure

based on compressibility may reflect the decrease in test performance better.

Chapter 4. Test Results 57

0.0 0.2 0.4 0.6 0.8 1.0 1.2 8-bit entropy0

50

100

150

200

250

3A rule number

(a) 3-input CA rules with 3A neighborhood scheme

0.0 0.2 0.4 0.6 0.8 1.0 1.2 8-bit entropy0

50

100

150

200

250

3B rule number

(b) 3-input CA rules with 3B neighborhood scheme

0.0 0.2 0.4 0.6 0.8 1.0 1.2 8-bit entropy0

50

100

150

200

250

3C rule number

(c) 3-input CA rules with 3C neighborhood scheme

Figure 4.4: 8-bit entropies of 3-input CA rules with changing neighborhood schemes
are plotted. Some high-entropy rules are marked with bigger dots. Red dots identify
the rule families {30, 86, 135, 149} and {45, 75, 89, 101}. Green dots are used for {110,
124, 137, 193} and blue dots for {73, 109}. The marked rules are seen to have high

entropies in all neighborhood formats.

Chapter 4. Test Results 58

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

normalized entropy

n
o
r
m
a
li
z
e
d
s
u
c
c
e
s
s

Figure 4.5: The relation between entropy and test results of 3B CA rules is shown.
Every dot represents a function in 3B. Test results are computed with the parameters

(100, 1000000, 11000, 9, 9, 5000, 16, 13).

4.6.3 Entropy vs. Statistical Quality

The data plotted in Figure 4.5 is derived from 3B rules. Setting up the parameters as

specified, the test calculates 188 p-values within 15 tests. A normalized success rate

is computed for a function by dividing the number of p-values indicating success by

188. The y-axis shows that normalized success rate and the x-axis shows the normalized

8-bit entropy values. There are 256 points on the figure, which are clustered in two

regions. This is because both entropy and test scores indicate a sharp decrease after

the 8 rules at the top, as can be seen in Table 4.3. The right top corner has those best

8 rules and the remaining rules lie at the opposite edge indicating their unsatisfactory

performance on the test. There is no exceptional rule to the condition that superior

statistical performance comes with high entropy.

The 8 rules that perform best are belong to 2 families: {30, 86, 135, 149} and {45, 75, 89, 101}.
The rules which are reflections of each other (e.g., 30-86, 75-89) have the same entropy

and test scores because they produce the same sequence since the central bit is taken

from each state. But the outputs of conjugates (e.g., 30-135, 86-149) are not identical

because 1s and 0s are swapped in the generated sequence. Therefore conjugate pairs have

different entropy and test scores but their values are still close to each other, implying

their dependency.

Figure 4.6 shows the data of 602 rules which are selected randomly from the set of 4C

rules via Mathematica RandomSample function. The rules with the best performance

on the tests have entropies on the highest levels as shown in Tables 4.4 and 4.5. Though,

Chapter 4. Test Results 59

Table 4.3: The first 15 rules with the highest test score are listed with their entropy
values. The significant increase in both entropy and test scores passing from Rule 60
to Rule 149 is a clear indication of the correlation between the entropy and statistical

quality.

3B Rule Test Score 8-bit Entropy
75 188 1.277176
89 188 1.277176
30 186 1.268756
86 186 1.268756
45 185 1.280186
101 185 1.280186
135 185 1.266644
149 185 1.266644
60 8 0.503955
102 8 0.503955
153 8 0.503955
195 8 0.503955
11 5 0.611352
43 5 0.611352
47 5 0.611352

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

normalized entropy

n
o
r
m
a
li
z
e
d
s
u
c
c
e
s
s

Figure 4.6: The purple dots indicate 602 rules drawn randomly from the 4C rules.
Test parameters are (100, 1000000, 11000, 9, 9, 5000, 16, 13).

Chapter 4. Test Results 60

Table 4.4: Top 15 rules in the order of descending test scores. The maximum entropy
of the set is 1.27921. Entropy values –as in the form it is computed here– are not

directly proportional to the test success rate.

4C Rule Test Score 8-bit Entropy
21866 187 1.269254
17595 186 1.267411
42342 161 1.266932
26982 160 1.261183
31110 158 1.269383
6104 155 1.270204
18300 42 1.239885
49437 40 1.242584
23149 31 1.265360
51001 23 1.250871
16702 21 1.254586
42281 20 1.242353
11734 20 1.271686
59467 20 0.681210
5347 19 1.243937

there are many others, accumulated on the right bottom of the graph, with high entropy

and unsatisfactory results on the tests. That might be due to the ineffective entropy

measurement taken here.

The entropy is computed on the first 2200 bits of the sequences while tests are conducted

on 106 bits. When iterations are carried out for long enough, it is seen that some of the

rules converge immediately to a constant state or enter into a periodic trend while others

take more time before converging or never experience such a transition [54]. Those rules

on the right bottom corner may possibly show a good performance on the first 2200 bits

but over a 1 million evolution they start converging, therefore their test performance

deteriorate.

Computing the entropy on the range that the test is performed would be a better in-

dicator to see the relation between entropy and statistical quality. However, that will

bring a high computational burden for the elimination process. On the other hand, if

8-bit entropy over a short sequence is taken up as a quick elimination method over a big

space of functions, we will end up a crowded set of rules most of which will be discarded

after the testing step.

4.6.4 Mutual Information vs. Statistical Quality

Below figures are presented to give an idea about how good it is to choose the rules

with zero mutual information for testing to find out the ones with the best performance

Chapter 4. Test Results 61

Table 4.5: Top 15 rules in the order of descending entropies. The maximum test score
is 187. Most of the rules –including the top 3– placed in the right bottom corner of the

diagram in Figure 4.6.

4C Rule Test Score 8-bit Entropy
55589 1 1.279210
33630 17 1.271925
11734 20 1.271686
6104 155 1.270204
31110 158 1.269383
21866 187 1.269254
17595 186 1.267411
42342 161 1.266932
21673 0 1.266932
22910 16 1.266275
11801 13 1.266146
23149 31 1.265360
42021 8 1.263136
18401 13 1.261755
11689 12 1.261214
26982 160 1.261183

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

normalized mutual information

n
o
r
m
a
li
z
e
d
s
u
c
c
e
s
s

Figure 4.7: 3B functions are plotted with their test scores against mutual information
values. Mutual information is expected to fall as randomness quality gets better. Most
of the rules are located close to x-axis due to low test scores. The good ones are seen

to have I = 0.

on the statistical tests. For that purpose, the mutual information compared to the test

scores are plotted for 3B, 4C and 4D rules. The data that belongs to 3B shows the

performance of the whole set of 256 functions while 4C and 4D are represented by 602

randomly selected rules among the the whole set of 65,536 rules.

Figure 4.7 shows success rate of 3B rules compared to their mutual information (I) which

Chapter 4. Test Results 62

Table 4.6: The best 15 rules according to their test scores. The good 8 rules at the
top have zero mutual information. Overall, there are 36 rules in 3B that have zero

mutual information. One third of them are located at the top of the table.

3B Rule Test Score Mutual Information
75 188 0
89 188 0
30 186 0
86 186 0
45 185 0
101 185 0
135 185 0
149 185 0
60 8 0
102 8 0
153 8 0
195 8 0
1 5 1.939212
7 5 0.209446
11 5 0.209446

is computed according to Section 3.6.3. Within the set of elementary rules, there are 8

functions which are far better than the rest in testing performance (see Table 4.6). These

rules sit close to the point (0,1) and they have I = 0. Therefore, making an elimination

using I = 0 seems to work fine in the set of 3B CA. Such an elimination will give us all

rules with good randomness quality.

There are 42 rules in 4C group which pass every test and also have zero mutual in-

formation. None of those rules is present in the sample rule set. As Table 4.7 and

Figure 4.8 show, rules with better random behavior can be distinguished by their mutual

information.

There are 22 rules in 4D which pass every test and also have zero mutual information.

Only one of them is among the randomly chosen sample of 602 functions. There is one

more rule in the sample which scores 187 out of 188. Figure 4.9 and Table 4.8 show these

two rules as having I = 0. However, the third best rule in randomness quality does not

have zero mutual information. In case of discarding the rules with non-zero I, that one
will be eliminated.

4.6.5 Entropy vs. Mutual Information

Before testing the 5-input CA rules, an elimination is performed to narrow down the set

of rules to be tested. Only the rules with zero mutual information is selected for testing.

The general method, however, is to choose the rules with high entropy. The reason for

Chapter 4. Test Results 63

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

normalized mutual information

n
o
r
m
a
li
z
e
d
s
u
c
c
e
s
s

Figure 4.8: Mutual information vs. test scores of 602 rules with 4C neighborhood
are plotted. Rules are chosen randomly. It seems that zero mutual information is an

appropriate criterion to capture the good rules in 4C, too.

Table 4.7: Data belong to Figure 4.8. Entries are ordered in descending test scores.
Among the rule set, 6 rules are outstanding in terms of the test scores and they all have

zero mutual information.

4C Rule Test Score Mutual Information
21866 187 0
17595 186 0
42342 161 0
26982 160 0
31110 158 0
6104 155 0
18300 42 0.059652
49437 40 0.059652
23149 31 0.059652
51001 23 0.053956
16702 21 0.053956
42281 20 0.053956
11734 20 0.059652
59467 20 0.045566
5347 19 0.053956

Chapter 4. Test Results 64

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

normalized mutual information

n
o
r
m
a
li
z
e
d
s
u
c
c
e
s
s

Figure 4.9: Randomly selected 4D rules with their mutual information and test scores.
The best rules are seen to have I = 0.

Table 4.8: The best 15 rules among the randomly selected sample according to test
scores.

4D Rule Test Score Mutual Information
31110 188 0
17595 187 0
6104 156 0.045566
26985 88 0
26982 44 0
38935 44 0.053956
11734 42 0.053956
15587 42 0.059652
33630 40 0
7353 37 0
9159 35 0
17977 35 0.053956
18348 35 0
33085 32 0.053956
49437 30 0.142217

choosing mutual information is the simplicity of its computation on the rules. Contrary

to the entropy, mutual information is directly computed on the truth table of a rule, with

no operation on generated output. Figures 4.10, 4.11 and 4.12 are provided to show the

distribution of rules with zero mutual information according to their 8-bit entropies.

Referring to Figures 4.10, 4.11 and 4.12, the rules are divided into ten blocks based on

their entropy values. Table 4.9 shows the rate of rules which have zero mutual information

to all rules in that block of the histogram. The block numbers from 1 to 10 increase with

the increasing entropy values.

Chapter 4. Test Results 65

93.

101.

34.

14.

5.
8.7.

17.

2. 2.

8.

0.4 0.6 0.8 1.0 1.2
8 - bit entropy

20

40

60

80

100

number of rules

Figure 4.10: The figure shows two histograms combined. The purple one shows all
3B rules grouped according to their 8-bit entropy values. The blue one only shows
the rules with zero mutual information among them. The leftmost column is all blue,
meaning that all the functions within that interval have their mutual information zero.

12 918.

14 664.

9221.

5567.

4665.

3874.

2728. 2501.

7304.

2093.

277.
830. 643. 443. 426. 304. 260. 251.

756. 710.

0.4 0.6 0.8 1.0 1.2
8 - bit entropy

5000

10 000

15 000

number of rules

Figure 4.11: This figure presents the same kind of data with the figure 4.10 for the
rules in 4C. The pink histogram shows all 4C rules grouped according to their 8-bit
entropy values. The orange one only shows the rules with zero mutual information in

that block.

Table 4.9: Dividing the rules in 10 blocks according to their entropies, table shows
the rate of rules which have zero mutual information to the amount of rules in that
block. The block numbers from 1 to 10 increase with the increasing entropy values.

1 2 3 4 5 6 7 8 9 10
3B Rule 7.5% 16.8% 5.8% 14.2% 0% – – – – 100%
4C Rule 2.1% 5.6% 6.9% 7.9% 9.1% 7.8% 9.5% 10.0% 10.3% 33.9%
4D Rule 5.1% 4.3% 6.6% 6.4% 8.1% 7.8% 9.1% 10.5% 11.5% 20.4%

Chapter 4. Test Results 66

12 803.
13 123.

7980. 8113.

4566.

3588.

2720. 2704.

6848.

3090.

665. 568. 531. 527. 370. 281. 250. 285.
791. 632.

0.4 0.6 0.8 1.0 1.2
8 - bit entropy

2000

4000

6000

8000

10 000

12 000

14 000

number of rules

Figure 4.12: Entropy histogram for all 4D rules are shown in pink. The orange one
shows the amount of rules with zero mutual information in each block.

When choosing an elimination criterion, the goal is to find one which could narrow

down the set as much as possible while keeping the good rules within. As we know

from the earlier plots, 8-bit entropy selects the good rules as well as many others with

unsatisfactory test performance. Zero mutual information, on the other hand, seems to

be an efficient criterion though it may miss some good rules as shown in Table 4.8. Still,

the best rules have zero mutual information. Moreover, higher percentage of the rules

are selected as entropy increases, as Table 4.9 indicates.

Surely, the data presented so far provide no guarantee for mutual information to work

with the same efficiency on 5-input CA as it does on 3 and 4-input CA. However, since

entropy is a reliable indicator of randomness, the increase in the percentage seen in Table

4.9 may be considered as a positive factor on behalf of using zero mutual information as

an elimination criterion.

4.6.6 Overall Test Results of 4- and 5-input CA

If a categorization is to be made among the tests, roughly three groups may be distin-

guished1. Type-1 tests focus on the distribution of ones and zeroes on the overall string.

These are Frequency, Block Frequency, Cumulative Sums, Runs, Longest Run of Ones,

Random Excursions and Random Excursions Variant Tests. Type-2 tests work on the

substrings of certain length and their distribution. These are Non-overlapping T. M.,

Overlapping T. M., Approximate Entropy and Serial Tests. The most challenging is the

Non-overlapping T. M. Test since it makes 148 different checks on the sequence. Type-3
1This grouping is completely based on the views of the author and does not rely on any reference

study about the NIST Test Suite.

Chapter 4. Test Results 67

Table 4.10: The data is derived from the test results of 4-input CA rules. The first
row shows the number of functions that are selected for testing. The selected 4900 rules
have zero mutual information in their neighborhood type. The second row shows the
amount of functions that pass the Frequency Test. Note that passing the Frequency
Test is a must for proceeding the other tests. The third row shows the number of

functions that pass all tests.

4C Rules 4D Rules
Tested Functions 4900 4900
Frequency 848 899
All Tests 42 22
Block Frequency 828 844
Cum. Sum Forward 843 891
Cum. Sum Backward 844 890
Runs 396 228
Longest Run of Ones 321 185
Rank 335 321
Spectral 312 173
Non-overlapping T. M. 78 42
Overlapping T. M. 313 171
Linear Complexity 339 340
Universal 322 180
Serial 303 167
Approximate Entropy 305 166
Random Excursions 194 113
Rand. Exc. Variant 203 172

tests look for the correlation between different parts of the output string. These are

Linear Complexity, Spectral, Universal and Rank Tests.

Table 4.10 presents the number of rules that pass each one of the tests. Test parameters

are set as (100, 1000000, 11000, 9, 9, 5000, 16, 13).

Frequency and Cumulative Sum Tests check for mild conditions on the output sequence.

Compared to 4C, 4D rules are less successful on the other Type-1 tests. Similar results

are also seen in Type-2 tests, which check for more stringent conditions. Looking at

Type-3 tests, Rank and Linear Complexity scores are close for both 4C and 4D. These

two tests are looking for the linear dependency between the subsequences of the output

sequence. But in Spectral and Universal Tests, again many of the 4D rules are eliminated.

Table 4.11 presents some information derived from 5-input CA test results. The first

row shows the number of rules that are tested. After obtaining the set of rules with zero

mutual information, conjugates of the rules in the set are removed. Therefore the values

on the first row differs for each neighborhood type.

Test parameters for 5-input CA are (64, 39000, 400, 9, –, –, 12, 9). During the testing

process, the most time-consuming operation is generating the sequence. To test nearly

Chapter 4. Test Results 68

Table 4.11: The data is derived from the test results of 5-input CA rules. The first
row shows the number of functions that are selected for testing. The second row shows
the amount of functions that pass the Frequency Test. The third row shows the number
of functions that pass all tests. 5 tests in the NIST Test Suite cannot be applied due

to parameter restrictions.

5A Rules 5B Rules 5C Rules
Tested Functions 82,824,885 82,824,889 82,824,890
Frequency 11,445,493 10,578,610 12,456,946
All Tests 18,271 14,419 16,576
Block Frequency 10,764,890 9,687,158 11,599,210
Cum. Sum Forward 11,250,306 10,371,535 12,247,651
Cum. Sum Backward 11,223,704 10,347,984 12,223,965
Runs 1,608,756 2,067,360 1,946,528
Longest Run of Ones 2,207,804 1,617,890 1,578,562
Rank 6,042,984 6,023,546 6,228,668
Spectral 4,920,170 4,287,088 4,200,295
Non-overlapping T. M. 35,119 18,385 20,834
Serial 1,114,511 297,452 349,953
Approximate Entropy 488,307 143,000 252,195

248 millions of functions, sequence length and state width need to be reduced. Using

the specified parameters, Universal, Overlapping T. M., Linear Complexity, Random

Excursions and Random Excursions Variant Tests are not applicable. Therefore they

were omitted. This means that two tests from Type-1 and Type-3, one test from Type-2

were not applied.

Generally tests are applied on sequences with length at least 1 million bits. Passing all

the tests is quite challenging with 39,000-bit sequences because of the initial state used

in this study. The initial state is set to all zero except the central bit of the state. Using

a state of random bits gives chance to weak rules for passing more of the tests. Note that

only 2 rules (excluding the reflections and conjugates) among the 3B CA could generate

satisfactory results under these conditions.

There are 120 rules in 5-input CA which pass all the tests with all neighborhood types

5A, 5B and 5C. 114 of these rules have rule numbers such that in the binary format of

the rule number, every 4-bit chunks include 2 zeros and 2 ones. Now, we will present

statistical performance of one of these rules with 500 different initial states.

4.7 The simplest rule: 1435932310

The key advantage of producing random sequences via CA is their simplicity. Rule

30 owes its fame to its simlicity as well as its extraordinary potential for generating

randomness.

Chapter 4. Test Results 69

Figure 4.13: A random sequence generated by Rule 1435932310 is plotted as a
500x500 array. This sequence is produced with an 64-bit initial state which is all
zero except the central bit. Neighborhood scheme is 5C. The part in the plot is the

interval between 500,000th and 750,000th bits.

Among all 5-input CA which have zero mutual information, 120 rules passed all the

tests with all neighborhood types. In Appendix B, these rules are listed with their rule

numbers and the shortest Boolean formulae. The formulae are the shortest ones that

can be written in terms of the logical operators AND, OR, XOR and negation. They are

generated via [56].

A 5-input Boolean function requires at least 4 logical operators. Among 120 rules, there

are three rules with 4 operators and only one of them does not have any negation. It

has the rule number 1435932310. To present an individual example, we examined the

statistical performance of this rule with 500 different random initial states. Test data are

evaluated as described in Sections 4.3.1 and 4.3.2. The results are presented in Tables

4.12, 4.13 and in Figures 4.14, 4.15 .

Beside the statistical testing, using the sequence in an application (for example, in a

Monte Carlo integration) to compare its performance with truly random sequences or

directly plotting the sequence may give idea about its quality. Plotting is a useful way of

detecting spatial dependencies. Below in Figure 4.13, a plot of the sequence generated

by Rule 1435932310 is provided.

Chapter 4. Test Results 70

Table 4.12 shows the evaluation of the test results. According to the test parameters,

11 is the upper bound for failures that can be tolerated to be considered as successful in

the “Rate of Success” method. The second method require Pτ to be greater than 0.0001

for success. The rule gets the lowest scores from Approximate Entropy Test in both

evaluation schemes.

Table 4.13 shows the results of the tests which return multiple p-values. Their results

are determined using the “Rate of Success” method only. Our testing procedure requires

every p-value to imply success in order for the rule to be considered successful on that

test. This means that, we set the threshold at 100%. But it is quite common in the

literature to set lower thresholds. Therefore, results according to the lower rates are also

stated. Random Excursions and Random Excursions Variant Tests are evaluated over

311 trials because they were not applicable to the 189 of the sequences due to a reason

related with the structure of the tests.

Table 4.12: Test results of Rule 1435932310 according to the two evaluation schemes.
The central column shows the number of failures out of 500 trials. The leftmost column

is Pτ that is computed separately for each test on 500 p-values.

Rate of Success P-val Distr.

Test Name Result # Failures Result Pτ

Frequency Success 5/500 Success 0.187581

Block Frequency Success 3/500 Success 0.962688

Cum. Sum Forward Success 6/500 Success 0.686955

Cum. Sum Backward Success 6/500 Success 0.038565

Runs Success 6/500 Success 0.530120

Longest Run of Ones Success 8/500 Success 0.719747

Spectral Success 4/500 Success 0.914025

Rank Success 4/500 Success 0.055361

Overlapping T. M. Success 4/500 Success 0.715679

Linear Complexity Success 4/500 Success 0.502247

Universal Success 8/500 Success 0.206629

Approximate Entropy Success 11/500 Failure 0.000026

Chapter 4. Test Results 71

Table 4.13: Test results of Rule 1435932310. The tests which turn in multiple p-values
are evaluated based on the failure rate.

Treshold Serial Non-overl. Rand. Exc. Rand. Exc. V.

80% Success (8/500) Success (0/500) Success (1/311) Success (6/311)

90% Success (8/500) Success (0/500) Failure (29/311) Failure (16/311)

95% Success (8/500) Success (0/500) Failure (29/311) Failure (24/311)

100% Success (8/500) Failure (387/500) Failure (29/311) Failure (24/311)

Figures 4.14 and 4.15 show p-value distribution of 500 trials. The diagrams 4.15(e),

4.15(f), 4.15(g) and 4.15(h) belong to the tests returning multiple p-values. One of the

p-value is chosen for the plots for representation purpose.

Chapter 4. Test Results 72

49.

62.
57.

46. 44. 44.
40. 42.

64.

51.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(a) Frequency

51.

58.

51.
55.

49. 50.
48.

44.
46.

48.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

(b) Block Frequency

58.

50. 51.

45.

51.
49.

37.

58.

51. 50.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

(c) Cum. Sum Forward

56. 56.

50.

44.

58.

39. 39.

52.

68.

38.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(d) Cum. Sum Backward

56.
54.

46.

52. 52. 52.
54.

48.

43.
41.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

(e) Spectral

38.

63.

49. 49.
53. 52.

48.

42.

54.
52.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(f) Linear Complexity

44. 44.

56.
53. 54.

44.
46.

61.

50.
48.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

(g) Longest Run of Ones

68.

38.
43.

59.

52.
47. 47.

37.

54. 55.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(h) Rank

Figure 4.14: Distribution of 500 p-values for in each test of Rule 1435932310. Uniform
distribution is expected for success.

Chapter 4. Test Results 73

43.

57.

51.
48. 49.

43.

50.

64.

52.

43.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(a) Runs

47.

56.

42.

55.
52.

54.

44.
41.

55. 54.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

(b) Overlapping T. M.

57.

68.

48.
44.

52.

42.

52.

41.
44.

52.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(c) Universal

74.

58.

65.

59.

50.

40. 41.

50.

36.

27.

0.2 0.4 0.6 0.8 1.0

20

40

60

80

(d) Approximate Entropy

58.

40.

49.

59.

52.

47.

52.

46. 47.
50.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

(e) Serial

48.

43.

50.

62.

55.

63.

48.

38.

46. 47.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

(f) Non-overlapping T. M.

31. 32.

37.

31.
29.

35.

16.

36. 35.

29.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

(g) Random Excursions

30. 30.

37.

32.

28.

34. 34.

26. 25.

31.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

(h) Rand. Exc. Variant

Figure 4.15: Distribution of p-values for in each test of Rule 1435932310. Uniform
distribution is expected for success.

Chapter 5

Conclusion

CA is favorable for random number generation basically for its simplicity and speed. CA-

based PRNGs are generally constructed in hybrid form since hybrid designs are better

with regard to statistical quality, unpredictability and invertibility.

At the step of choosing CA rules for PRNGs, two approaches are common: either linearity

or high entropy is a reason for selection. Linear rules are preferred for they are analyzed

mathematically to a great extent so that their advantages and potentiality have been

observed well. On the other hand, high entropy rules are simple and useful, yet full

of surprise since they lack a comprehensive analysis. Therefore the second kind is not

recommended for security-purposed usage.

Most of the studies in this realm deals with the elementary rules. Basically there are two

rule in the elementary CA set which have outstanding performance in statistical tests.

4-input CA are not studied so much, but there are some examples. This study aimed to

research on 5-input CA to find out the rules eligible for random number generation.

In practice, it is possible to construct n-input linear rules with no search over the n-

input CA set. But, high-entropy rules need to be found out through exhaustive search

since there is no short-cut for constructing them or detecting them looking at their truth

tables. 3- and 4- input rule sets have reasonable sizes for making such an exhaustive

search. The set of 3-input CA has 256 rules and 4-input CA have 65,636 rules. 5-input

CA set has more than 4.2 billions of rules which makes it impossible to search over the

individual rules.

One of the methods to be followed in such a case is to eliminate the rules which have

bad randomness quality, then continue with a narrow set to perform exhaustive search.

In the literature, entropy is commonly used as a measure to indicate randomness quality.

Entropy is a measure to be applied on the generated sequence not on the CA rule itself.

74

Chapter 5. Conclusion 75

This study uses mutual information instead, which is computed directly on the rule’s

truth table. This choice implies that mutual information of a rule is used here as an

indicator of the randomness quality of the sequence which is to be generated by that

rule. To the best of our knowledge, such an approach on CA was only encountered in

some physics articles in 1990s. But those works assume higher values for number of

inputs to the rules and the number of different cell contents.

In this study, we first performed statistical tests on 3- and 4-input CA to see how good it

is to make an elimination basen on mutual information compared to entropy. Considering

the test scores collected on 3B, 4C and 4D CA, mutual information is an effective criterion

for discarding the rules with unsatisfactory performance on the statistical tests. An

evaluation over the number of p-values implying success on the tests shows that the

rules which have at least a success rate of 83% have zero mutual information. It should

be noted that, the data giving these results are collected on 3B rules and a randomly

chosen set of functions from 4C and 4D rules.

On the other hand, it is not possible to make a strict correlation between mutual infor-

mation and randomness quality based on the data used here for two reasons:

1. To reach a reliable conclusion about using mutual information as an indicator of

randomness quality, one option may be comparing it with entropy. To compute

the entropy of a sequence, there are several different measures available. Here, we

computed an 8-bit entropy on the first 2200 bits of the generated sequences. The

tests are performed on a sequence of 106 bits. Both entropy and mutual information

were useful to select the good rules as we observed. But it should also be considered

how well a high entropy (in the form it is computed here) corresponds to a high

randomness quality.

2. Another option to see if zero mutual information is a reliable criterion may be

comparing mutual information values with statistical test scores. It is also contro-

versial if a single test is enough to decide on the randomness quality. Note that, in

this study we performed the statistical tests once for each rule.

Running the test suite with several initial states is not possible in our case due to the

amount of rules to be tested. Though multiple testing is required to reach a conclusion

about statistical quality, we believe that a single test gives considerable information.

Because, generally a rule either passes most of the tests or fails in most of them. Also,

the initial state we used1 is commonly preferred for testing to see if a function is capable

of producing randomness even starting from a non-random state. It is quite challenging
1The central bit is set, all the others are zero.

Chapter 5. Conclusion 76

to pass all the tests under these conditions. Therefore the rules passing all statistical

tests are worthy of interest for generating randomness.

After making some other eliminations on 5-input CA, the tests were performed on 82

millions of functions from each of the 5A, 5B and 5C neighborhoods which sum up to

more than 248 millions of rules in total. Passing the frequency test was compulsory for

the other tests. For each neighborhood type, 10 - 12 millions passed the frequency test

and 14 - 18 thousands of rules passed all of the tests.

The relation between different neighborhood types seems trivial if cyclic boundary is used.

As we included in Section 4.6.2, same group of rules score high in all neighborhood types

and exceptions have rule-specific explanations. In the set of 5-input CA, the number of

rules passing all the tests differs by nearly 2000 or 4000 between different neighborhoods.

We cannot make any comment using the data we collected about whether this level of

difference arises from a substantial generalizable reason. A more comprehensive and

thorough research is required to reach a conclusion about this issue.

Leaving all questionable details behind, we ended up with 120 rules which pass all the

tests in all neighborhood schemes 5A, 5B and 5C. We believe these are the ones that

deserve attention on the subject of random sequence generation. Among them, we took

up the one with the shortest Boolean formula and tested it with several times (500 times)

with various random initial states, as NIST recommended. Its score is on a critical level

in Approximate Entropy test but it easily passed all the other tests which returns one

p-value. The tests returning multiple p-values are fulfilled if the target success rate is

set as 80%. If 95% is aimed, there will be two failures.

The testing process produced big data about 5-input CA rules. The part we presented

here is quite limited. More visualized data could be presented. But commenting on the

data is so hard since there is little information about these rules. Making a generalization

or directly reaching a conclusion on the subject requires more research in depth and a

strong dedication. Knowing this from the very beginning, we started such an empirical

study to present our observations gained through the process.

Considering the scope of this study, stating all rule numbers passing the tests or their

test scores may create a redundant data. Therefore we only presented 120 rules. Their

performance could be improved by efficient selection function combinations or hybrid

designs. We hope that what is included in this study could be useful for further RNG

studies.

Appendix A

Test Results for Rule 30 and Rule 45

Figures A.1 and A.2 present the effect of state width in test results for Rules 30 and

45. These diagrams can be compared with Figures 4.1 and 4.2 in Chapter 4 to see the

change in test results with varying sequence lengths.

77

Appendix A. Test Results for Rule 30 and Rule 45 78

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(a) Rule 30, length: 1,000,000 bits

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(b) Rule 30, length: 5,000,000 bits

Figure A.1: Test results of Rule 30 for varying state widths.

Appendix A. Test Results for Rule 30 and Rule 45 79

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(a) Rule 45, length: 1,000,000 bits

32 64 128 256
width HbitL

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Rank

FFT

Non-overlapping T.M.

Overlapping T.M.

Universal

Appr. Entropy

Serial

Linear Comlexity

(b) Rule 45, length: 5,000,000 bits

Figure A.2: Test results of Rule 45 for varying state widths.

Appendix B

120 Rules with their Shortest

Boolean Formulae

Tables B.1, B.2, B.3 and B.4 show 120 5-input CA rules that are mentioned in Section 4.7

as passing all tests with all neighborhood types. Boolean formulae are written in terms

of logical operations AND, OR and XOR, which are denoted as ∧, ∨ and Y, respectively.

Negation operator is denoted with ¬. These are the shortest formulae for each rule, as

provided by [56].

80

Appendix B. 120 Rules 81

Rule Number Shortest Boolean Formula

2845202858 (¬y ∨ (¬x ∧ w)) Y v Y (¬z ∨ (x Y (y ∨ ¬w)))

2778306202 ¬v Y ¬x Y ((w ∨ z) ∧ (y ∨ (¬x Y w)))

2774161754 x Y ¬v Y (¬y ∨ (¬z ∧ (x ∨ w)))

2774112602 v Y ((¬w ∧ (y Y z)) ∨ (y Y (x ∨ (y ∧ ¬z))))
2594597274 ((x ∧ y) ∨ (w ∧ z)) Y ¬v Y ((w Y z) ∨ (¬x ∧ ¬y))

2594593114 v Y ((¬z ∧ x) ∨ ((y Y w) ∧ (x Y ¬w Y z)))

2593548698 (y ∧ ¬z) Y ¬w Y ¬v Y (x ∨ (w ∧ (¬y Y z)))
2589354406 ¬z Y (x ∨ (¬w Y z)) Y ¬v Y (¬y ∨ (¬w ∧ (z ∨ x)))

2589349290 ¬y Y v Y (¬z ∨ (¬w ∧ (¬x Y y)))

2577033626 (¬x ∨ ¬y ∨ z) Y v Y (w ∨ (¬x ∧ ¬y))

2576771686 w Y ¬v Y ((¬x ∧ ¬y) ∨ (¬z ∧ (x ∨ ¬w)))

2573883046 y Y ¬z Y v Y ((w ∨ ¬z) ∧ (x ∨ (¬y Y w)))

2573817258 ¬v Y (¬w ∨ ¬z) Y (y ∨ (z ∧ ¬x))

2527685286 ¬x Y y Y ¬v Y ((w Y z) ∨ (y Y (x ∨ (y ∧ w))))

2527423078 ¬v Y ¬x Y ((¬y ∨ (¬w Y z)) ∧ (z ∨ (x Y w)))

2526696794 v Y ((x ∨ y) ∧ (¬z ∨ (x Y w)))

2523568486 w Y ¬y Y v Y (¬z ∨ x ∨ (¬y ∧ ¬w))

2523309670 w Y ¬v Y (¬x ∨ ¬y ∨ (¬w ∧ ¬z))
2523305382 (x ∨ ¬y) Y v Y ((¬y Y w) ∨ (¬z ∧ (¬x Y w)))

2522191206 y Y v Y ((w ∨ z) ∧ (¬y ∨ (¬x Y w)))

2509858198 (¬w ∨ (¬x ∧ y)) Y ¬v Y (z ∨ (x Y y))

2509679014 ¬v Y ((¬z ∨ (¬x Y w)) ∧ (x ∨ (¬y Y w)))

2509658474 v Y (¬w ∨ (¬z ∧ ¬x)) Y ((¬y ∨ w) ∧ (¬z ∨ ¬x))

2509592166 v Y ((w Y z) ∨ ((x Y w) ∧ (y ∨ z)))
2506726038 (x ∨ (y ∧ w)) Y w Y ¬v Y (¬z ∨ (x ∧ y))

2506725722 v Y ¬x Y ((¬z ∨ (y Y w)) ∧ (¬y ∨ (x Y w)))

2506708390 (¬x ∨ ¬w ∨ ¬z) Y ¬v Y (y ∨ (¬x ∧ (w Y z)))

2506529430 (¬y ∨ (¬x ∧ w)) Y ¬w Y ¬v Y (z ∨ (¬x Y y))

2506462554 x Y v Y ((y ∨ z) ∧ (¬x ∨ (¬y Y w)))

2476304742 ¬v Y z Y w Y (x ∨ ¬y ∨ (¬v ∧ z))

Table B.1: List of 120 rules, part 1

Appendix B. 120 Rules 82

Rule Number Shortest Boolean Formula

2099319166 (¬w ∧ (v Y (y ∨ (z Y x)))) ∨ ((¬y Y z) ∧ (¬w Y (¬v ∨ ¬x)))

2033260910 (¬y ∧ ¬z) Y w Y ((v Y (¬z ∨ ¬x)) ∨ (v Y (¬w ∨ (x Y y))))

1972442478 y Y ¬v Y ((y ∧ (¬x ∨ (v Y z))) ∨ (z Y (¬w ∨ (v ∧ ¬x))))

1966151022 (w ∧ ¬y ∧ ¬v) Y ¬z Y ((x ∧ (w Y z)) ∨ (v Y (¬y ∨ z)))
1964324958 ((z ∧ ¬x) ∨ (y ∧ (w Y v))) Y x Y (v ∨ (w ∧ (¬z Y x)))

1789499990 x Y (¬z ∨ (¬x ∧ y)) Y v Y (¬w ∨ (x Y y))

1788450214 ¬v Y z Y (¬x ∨ ¬w) Y (y ∨ (w ∧ (¬z ∨ ¬x)))

1788258646 y Y v Y ((x Y w) ∨ ((w Y z) ∧ (x ∨ y)))

1785096554 ¬v Y ((w Y (z ∨ x)) ∨ (w Y (x ∨ ¬y)))

1784060310 w Y (¬z ∨ (¬y ∧ ¬w)) Y ¬v Y (x ∨ (¬y Y (¬w ∨ ¬z)))
1784046998 (x ∧ ¬w) Y v Y ((y ∨ w) ∧ ((¬z Y x) ∨ (¬x Y y)))

1771460006 y Y ¬v Y ((¬x Y w) ∨ (¬z ∧ (y ∨ ¬w)))

1722116713 ¬v Y ¬x Y ((¬w ∨ z) ∧ (¬y ∨ (x Y w)))

1721390438 y Y ¬v Y ((¬w Y z) ∨ ((y Y z) ∧ (¬x ∨ w)))

1721341545 (z ∨ ¬x) Y ¬w Y ¬y Y v
1721326233 ¬w Y ¬v Y (¬y ∨ (¬z ∧ (x Y w)))

1718199958 w Y ¬v Y ((¬z Y x) ∨ (y ∧ (¬x ∨ ¬w)))

1718183274 ¬v Y (x ∨ y) Y (w ∨ (¬z ∧ ¬x))

1717937754 (w ∧ (z ∨ ¬x)) Y ¬v Y (y ∨ (¬z Y (x ∨ w)))

1717918038 ¬z Y ¬v Y ((¬w ∨ ¬z) ∧ (x ∨ (y Y w)))

1717212566 v Y ¬x Y ((¬w ∨ z) ∧ (¬y ∨ (¬x Y ¬w Y z)))

1716873897 (z ∨ (¬x ∧ ¬w)) Y ¬v Y (¬y ∨ (¬w Y (z ∨ ¬x)))

1705666138 ¬v Y ((¬y ∨ ¬w) ∧ ((¬z Y x) ∨ (¬x Y y)))

1705421401 v Y (y ∨ (¬x ∧ w)) Y (¬z ∨ (x ∧ y ∧ ¬w))

1705404073 ¬v Y ((¬y ∨ ¬w) ∧ (x ∨ (¬y Y ¬w Y z)))

1704614297 v Y (w ∨ (z ∧ ¬x)) Y (¬y ∨ (¬z ∧ (¬x ∨ ¬w)))

1701488230 ¬v Y ((¬w ∧ (¬z ∨ x)) ∨ ((z Y x) ∧ (y Y z)))

1701472617 w Y ¬v Y (x ∨ (z ∧ (¬y Y w)))

1701402217 (¬x ∧ (¬y ∨ ¬w)) Y v Y (w ∨ (y ∧ ¬z))
1701210534 (x ∨ ¬y ∨ w) Y v Y (¬w ∨ (¬z ∧ (x Y y)))

Table B.2: List of 120 rules, part 2

Appendix B. 120 Rules 83

Rule Number Shortest Boolean Formula

1701144918 ¬x Y ¬v Y ((¬x ∨ ¬w) ∧ (z ∨ (y Y w)))

1701139882 ¬v Y (y ∨ z) Y (¬x ∨ w ∨ ¬z)
1700440678 ¬v Y ((¬w ∨ (y Y z)) ∧ (¬z ∨ (¬x Y y)))

1700439654 (w ∧ (¬x ∨ ¬y)) Y ¬v Y (¬z ∨ (x Y ¬y Y w))

1700439446 ¬x Y ¬v Y ((w ∧ ¬z) ∨ (y ∧ (¬x ∨ ¬w)))

1700370790 z Y ¬v Y ((¬y Y w) ∨ (z ∧ (¬x Y w)))

1700161178 v Y ((z ∨ (¬y Y w)) ∧ (w ∨ (x Y y)))

1521117801 ¬z Y ¬v Y ((¬y ∨ (z Y x)) ∧ (z ∨ (¬x Y w)))

1521112665 (¬z ∧ (x ∨ ¬w)) Y ¬v Y (¬y ∨ (z Y x))

1520854614 (w ∨ (x ∧ ¬y)) Y ¬v Y (¬z ∨ (x Y (¬y ∨ ¬w)))

1520802217 ¬v Y ((w ∧ ¬z) ∨ (y Y (x ∨ (y ∧ ¬z))))
1520019113 (¬x ∧ y) Y ¬v Y ((¬y ∨ ¬z) ∧ (w ∨ (¬z ∧ x)))

1516935845 (¬y ∧ (¬z ∨ x)) Y ¬v Y (¬x ∨ (w ∧ (y Y z)))

1516874390 (¬z ∧ (x ∨ ¬y)) Y ¬v Y x Y (y ∨ w)

1516660054 (¬x ∧ y ∧ z) Y v Y (w ∨ (¬y Y (z ∨ ¬x)))

1515623833 (¬z ∧ (¬x ∨ w)) Y v Y (x ∨ (¬y ∧ w))

1515608406 v Y (x ∨ (¬w Y (¬y ∨ (¬w ∧ z))))
1504275045 y Y ¬x Y ¬v Y ((¬z Y x) ∨ (¬y Y w))

1504269670 (¬w ∧ (¬y ∨ z)) Y v Y (¬z ∨ (x ∧ (¬y Y w)))

1503291750 ¬z Y (w ∨ (z ∧ ¬x)) Y v Y (¬y ∨ (¬x Y (¬w ∨ ¬z)))
1500162405 z Y ¬x Y ¬v Y ((¬x Y y) ∨ (¬w Y z))

1499830618 (w ∧ (¬z ∨ ¬x)) Y v Y (y ∨ (¬x Y ¬w Y z))

1499092377 (z ∧ ¬x ∧ (¬y ∨ w)) Y v Y (y ∨ ¬w ∨ z)
1498782054 v Y ((y Y w) ∨ (z ∧ (x ∨ ¬y)))

1454024357 (y ∧ (x ∨ w)) Y ¬v Y (z ∨ (x Y y))

1454004838 ¬v Y ((¬x ∨ ¬y) ∧ (¬w ∨ (y Y z)))

1453955734 ¬z Y (w ∨ (¬z Y x)) Y ¬v Y (y ∨ (¬z ∧ (x ∨ ¬w)))

1452975461 z Y v Y ((¬y ∧ w) ∨ (¬x ∧ (¬w ∨ ¬z)))
1452907109 ¬y Y v Y (¬x ∨ w) Y (¬z ∨ (¬w ∧ (¬x ∨ y)))

1452693930 (y ∨ (¬w ∧ z)) Y ¬v Y (x ∨ (z Y (¬y ∨ ¬w)))

Table B.3: List of 120 rules, part 3

Appendix B. 120 Rules 84

Rule Number Shortest Boolean Formula

1452693094 v Y ((x ∧ y) ∨ (¬w Y (¬z ∨ ¬x)))

1452692889 ¬w Y ¬v Y ((¬y ∨ ¬w) ∧ (¬z ∨ x))

1449809497 (y ∨ w ∨ ¬z) Y ¬v Y (x ∨ (¬y Y w))

1449567658 ¬v Y ((¬w ∨ ¬z) ∧ (¬y ∨ (z Y x)))

1448765097 v Y ((z ∨ (¬y Y w)) ∧ ((¬z Y x) ∨ (y ∧ w)))

1448761945 v Y (x ∨ ((¬y Y z) ∧ (¬w Y z)))

1448715622 (z ∨ (¬y ∧ w)) Y ¬v Y (x ∨ (y Y (¬w ∨ ¬z)))
1448450393 w Y v Y ((¬w ∧ (x ∨ ¬y)) ∨ (¬z ∧ (¬x ∨ y)))

1437227606 y Y ¬v Y (z ∨ (¬y Y (x ∨ (¬y ∧ w))))

1436984665 (¬z ∧ (x ∨ ¬y)) Y v Y (y ∨ (¬x ∧ w))

1435937174 v Y (y ∨ (x ∧ w)) Y ((x ∨ w) ∧ (¬y ∨ ¬z))
1435932310 v Y ((x Y w) ∨ (y ∧ z))
1435932262 (¬w ∧ (¬y ∨ ¬z)) Y v Y (¬x ∨ (¬y Y z))
1435932054 v Y ((x Y w) ∨ (y ∧ (z ∨ ¬x)))

1435919973 ¬z Y v Y ((¬w ∨ z) ∧ (y ∨ (x Y w)))

1435916650 (x ∨ ¬w ∨ z) Y ¬v Y (y ∨ (¬w Y (¬z ∨ ¬x)))

1435855462 v Y ((¬z Y (¬x ∨ ¬w)) ∨ (¬z Y (y ∨ ¬w)))

1433033321 y Y x Y v Y ((y ∨ ¬w) ∧ (¬z ∨ x))

1432983898 (¬x ∧ ¬y) Y v Y ((¬y Y z) ∨ (¬w Y z))

1432786266 ¬z Y v Y ((w ∨ (¬y Y z)) ∧ (z ∨ (¬x Y y)))

1432708453 v Y (¬x ∨ w ∨ (y ∧ z))
1431999833 v Y ((y ∧ z) ∨ (x Y y) ∨ (¬w ∧ ¬z))
1431923050 (x ∨ y ∨ ¬w) Y ¬v Y (z ∨ (¬w Y (x ∨ ¬y)))

1431737766 ¬x Y ¬v Y ((¬z ∨ ¬x) ∧ (w ∨ (x Y y)))

1431726490 (x ∨ y ∨ w) Y ¬v Y (z ∨ (w Y (¬x ∨ ¬y)))

1431725401 v Y ((y ∧ w) ∨ (x Y y) ∨ (x Y ¬w Y z))

1431673493 v Y ((¬x ∧ ¬y) ∨ z ∨ (x ∧ ¬w))

1431672169 v Y ((x Y (y ∨ ¬w)) ∨ z ∨ (y ∧ ¬w))

1297700276 v Y ((z Y x Y (w ∨ v)) ∨ ((w ∨ ¬z) Y (¬y ∨ (v ∧ ¬x))))

861551811 (¬x ∧ (¬y ∨ ¬z)) Y w Y (y ∨ (z ∧ (¬w Y v)))

Table B.4: List of 120 rules, part 4

Bibliography

[1] I. Goldberg and D. Wagner. Randomness and the Netscape Browser. Dr. Dobb’s

Journal, 21:66–106, January 1996.

[2] N. Minar. Breakable Session Keys in Kerberos v4. cypherpunks mailing list, 1996.

message-ID: 199602200828.

[3] A. Biryukov, A. Shamir, and D. Wagner. Real Time Cryptanalysis of A5/1 on a

PC. In FSE: Fast Software Encryption, pages 1–18. Springer-Verlag, 2000.

[4] P. Hellekalek. Good random number generators are (not so) easy to find. Mathe-

matics and Computers in Simulation, 46(5-6):485–505, June 1998. ISSN 0378-4754.

[5] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally Equidis-

tributed Uniform Pseudo-Random Number Generator. ACM Transactions on Mod-

eling and Computer Simulation, 8(1):3–30, January 1998.

[6] A. L. Rukhin, National Institute of Standards, and Technology U.S. A Statistical

Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications. U.S. Dept. of Commerce, Technology Administration, National Insti-

tute of Standards and Technology, rev. edition, 2001.

[7] G. Marsaglia. The Marsaglia Random Number CDROM including the Diehard

Battery of Tests of Randomness. Web site at the Department of Statistics, Florida

State University, Tallahassee, FL, USA., 1995.

[8] J. Walker. ENT: A Pseudorandom Number Sequence Test Program. http://www.

fourmilab.ch/random/, 2008.

[9] S. Wolfram. Random Sequence Generation by Cellular Automata. Advances in

Applied Mathematics, 7(2):123–169, June 1986.

[10] A. Ilachinski. Cellular Automata: A Discrete Universe. World Scientific, 2001.

[11] M. Serra, D. M. Miller, and J. C. Muzio. Linear Cellular Automata and LFSRs are

Isomorphic. In Proceedings of Third Technical Workshop on New Directions for IC

Testing, pages 213–223, 1988.

85

http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/

Bibliography 86

[12] P. D. Hortensius. Parallel Computation of Non-Deterministic Algorithms in VLSI.

PhD thesis, University of Manibota, Winnipeg, Canada, 1987.

[13] P. D. Hortensius, R. D. McLeod, and H. C. Card. Parallel Random Number Genera-

tion for VLSI Systems Using Cellular Automata. IEEE Transactions on Computers,

38(10):1466–1473, 1989.

[14] M. Tomassini, M. Sipper, and M. Perrenoud. On the Generation of High-Quality

Random Numbers by Two-Dimensional Cellular Automata. IEEE Transactions on

Computers, 49(10):1146–1151, October 2000.

[15] M. Tomassini and M. Perrenoud. Cryptography with Cellular Automata. Appl. Soft

Comput., 1(2):151–160, 2001.

[16] M. Sipper and M. Tomassini. Generating Parallel Random Number Generators By

Cellular Programming. International Journal of Modern Physics C, 7:181–190, 1996.

[17] M. Sipper and M. Tomassini. Co-evolving Parallel Random Number Generators.

volume 1141 of Lecture Notes in Computer Science, pages 950–959. Springer, 1996.

[18] E. Borel. Leqons sur la Théorie des Fonctions. Gauthier-Villars, Paris, 1914.

[19] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness,

volume 17 of Algorithms and Combinatorics. Springer, 1998.

[20] A. Menezes, P. C. van Oorschot, and S A. Vanstone. Handbook of Applied Cryptog-

raphy. CRC Press, 1996.

[21] M. Haahr. True Random Number Service. www.random.org, 1998.

[22] J. Walker. HotBits: Genuine Random Numbers, Generated by Radioactive Decay.

https://www.fourmilab.ch/hotbits/, 1996.

[23] Ü. Güler and S. Ergün. A high speed, fully digital IC random number generator.

AEU - International Journal of Electronics and Communications, 66(2):143 – 149,

2012.

[24] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of

Pseudo-Random Bits. SIAM J. Comput., 13(4):850–864, 1984.

[25] M. Geisler, M. Krøigård, and A. Danielsen. About Random Bits. 2004.

[26] A. C. Yao. Theory and Application of Trapdoor Functions. In Foundations of

Computer Science, 1982. SFCS ’08. 23rd Annual Symposium on Foundations of

Computer Science, pages 80–91, November 1982.

www.random.org
https://www.fourmilab.ch/hotbits/

Bibliography 87

[27] Ç. K. Koç. Cryptographic Engineering. Springer Publishing Company, Incorporated,

2008. ISBN 0387718168, 9780387718163.

[28] S. W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills, CA,

USA, 1981. ISBN 0894120484.

[29] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algo-

rithms. Addison-Wesley, 1969.

[30] U. M. Maurer. A universal statistical test for random bit generators. Journal of

Cryptology, 5(2):89–105, 1992.

[31] H. V. McIntosh. What has and What hasn’t Been Done with Cellular Automata.

1990.

[32] W. A. Beyer, P. H. Sellers, and M. S. Waterman. Stanislaw M. Ulam’s Contributions

to Theoretical Theory. Letters in Mathematical Physics, (10):231–242, 1985.

[33] Conway’s Game of Life. http://www.kongregate.com/games/shaman4d/

conways-game-of-life.

[34] S. Wolfram. A New Kind of Science. Wolfram Media, January 2002.

[35] S. Wolfram. Statistical Mechanics of Cellular Automata. Reviews of Modern Physics,

55(3):601–644, 1983.

[36] 3D Moore Neighbourhood. http://cell-auto.com/neighbourhood/.

[37] Two-Dimensional Cellular Automata. http://radicalart.info/AlgorithmicArt/

grid/cellular/2D/.

[38] M. Serra, T. Slater, J. C. Muzio, and D. M. Miller. The Analysis of One-Dimensional

Linear Cellular Automata and Their Aliasing Properties. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on CAD, 9(7):767–778, July

1990.

[39] S. Uei Guan and S. K. Tan. Pseudorandom Number Generation with Self-

Programmable Cellular Automata. IEEE Trans. on CAD of Integrated Circuits

and Systems, 23(7):1095–1101, 2004.

[40] S. Wolfram. Cryptography with Cellular Automata. In Lecture Notes in Computer

Sciences on Advances in Cryptology—CRYPTO 85, volume 218, pages 429–432.

Springer-Verlag New York, Inc., 1986.

[41] W. Meier and O. Staffelbach. Analysis of Pseudo Random Sequence Generated by

Cellular Automata. In EUROCRYPT, pages 186–199, 1991.

http://www.kongregate.com/games/shaman4d/conways-game-of-life
http://www.kongregate.com/games/shaman4d/conways-game-of-life
http://cell-auto.com/neighbourhood/
http://radicalart.info/AlgorithmicArt/grid/cellular/2D/
http://radicalart.info/AlgorithmicArt/grid/cellular/2D/

Bibliography 88

[42] Ç. K. Koç and A. M. Apohan. Inversion of Cellular Automata Iterations, 1997.

[43] B. Martin. A Walsh Exploration of Elementary CA Rules. Journal of Cellular

Automata, 3(2):145–156, 2008.

[44] B. Martin and P. Solé. Pseudo-random Sequences Generated by Cellular Automata.

CoRR, abs/0807.3865, 2008.

[45] P.D. Hortensius, R.D. McLeod, and H.C. Card. Parallel Random Number Gener-

ation for VLSI Systems Using Cellular Automata. Computers, IEEE Transactions

on, 38(10):1466–1473, October 1989.

[46] S. H. Shin and K. Y. Yoo. Analysis of 2-State, 3-Neighborhood Cellular Automata

Rules for Cryptographic Pseudorandom Number Generation. pages 399–404. IEEE

Computer Society, 2009.

[47] S. Nandi, B. K. Kar, and P. P. Chaudhuri. Theory and Applications of Cellular

Automata in Cryptography. IEEE Trans. Comput., 43(12):1346–1357, December

1994.

[48] B. Murphy, S. R. Blackburn, and S. Murphy. Comments on “Theory and Applica-

tions of Cellular Automata in Cryptography”, 1997.

[49] M. J. Mihaljev’c. Security Examination of a Cellular Automata Based Pseudo-

random Bit Generator Using an Algebraic Replica Approach. In Applied Algebra,

Algebraic Algorithms and Error-Correcting Codes, volume 1255 of Lecture Notes in

Computer Science, pages 250–262. Springer Berlin Heidelberg, 1997.

[50] N. H. Packard. Adaptation toward the edge of chaos. In Dynamic Patterns in

Complex Systems, pages 293–301. World Scientific, 1988.

[51] M. Sipper and M. Tomassini. Generating Parallel Random Number Generators By

Cellular Programming. International Journal of Modern Physics C, 7:181–190, 1996.

[52] M. Tomassini, M. Sipper, M. Zolla, and M. Perrenoud. Generating High-quality

Random Numbers in Parallel by Cellular Automata. Future Gener. Comput. Syst.,

16(2-3):291–305, December 1999. ISSN 0167-739X.

[53] T. E. Tkacik. A Hardware Random Number Generator. In CHES, pages 450–453,

2002.

[54] C. G. Langton. Computation at the Edge of Chaos: Phase Transitions and Emergent

Computation. Phys. D, 42(1-3):12–37, June 1990. ISSN 0167-2789.

[55] C. K. Yuen. Testing Random Number Generators by Walsh Transform. IEEE

Transactions on Computers, 26(4):329–333, 1977. ISSN 0018-9340.

Bibliography 89

[56] Boolean Oracle. http://boolean-oracle.swtch.com/.

http://boolean-oracle.swtch.com/

