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Conversion Rate Prediction in Search Engine Marketing

RAZIEH NABI-ABDOLYOUSEFI

Abstract

Search engines hold online auctions among search advertisers who are bidding for the
advertisement slots in the search engine results pages. Search engines employ a pay-
per-click model in which advertisers are charged whenever their ads are clicked by users.
If a user clicks on an ad and then takes a particular action, which the corresponding
advertiser has defined as valuable to her business, such as an online purchase, or signing
up for a newsletter, or a phone call, then the user’s action is counted as a conversion. A
naive estimate of the conversion rate (CR) of an ad is the average number of conversions
per click. The average number of clicks and the average position of the ad also affect its
conversion rate. However, all such ad statistics are heuristics at best. The challenge here
is that there is no performance statistics accrued for the newly created ads. In order
to get any kind of performance data, new ads have to be advertised first and precious
marketing dollars have to be spent. If CR estimates are precise, then advertisers can
manage their campaigns more effectively and can have a better return on their invest-
ments. Alternatively, one can use the available data for the existing ads and engineer
a set of features that best characterize conversions for an advertisement campaign in
general. We took the second approach and used probabilistic inference for extracting
text features. Using these text features, we built a prediction model to estimate the
true CRs of unknown ads. Our experiment results demonstrated that such text features
improved the accuracy of our predictions. Furthermore, hybrid models that combine
text and numeric features achieved a superior predictive power compared to using only
text features or only numeric features.

Keywords: Conversion (Rate), Sponsored Search Marketing, Online Advertising, Search
Engine Marketing, Textual Ads, CPC Online Model



Arama Motoru Pazarlama Dontigiim Orani Tahmini

RAZIEH NABI-ABDOLYOUSEFI
Oz

Arama motorlari, sonug sayfalarindaki reklam alanlar: i¢in teklif veren arama reklamcilar
arasinda cevrimici acik artirmalar yapmaktadirlar. Bu arama motorlar: reklam veren-
lerin reklamlarina tiklandiginda para 6dedikleri bir tiklama basina 6deme modeli kul-
lanirlar. Eger bir kullanici bir reklama tiklar ve satin alma, bir haber biiltenine kayit
olma veya telefonla arama gibi reklamci tarafindan 6nceden degerli olarak belirlenmis
bir eylemi gergeklestirse kullanicinin eylemi bir dontistiirme olarak sayilir. Bir reklamin
dontigtiirme oraninin sig bir tahmini tiklama basina ortalama dontistiirme sayisidir.
Tiklamalarin ortalama sayisi ve reklamin pozisyon baglamindaki ortalama sirasi da
doniistiirme orammi ayrica etkiler. Ote yandan, bu tiir istatistikler en iyi ihtimalle
sezgiseldir. Buradaki problem yeni olugturulan reklamlar i¢in bir performans istatistigi
mevcut olmamasidir. Halihazirda performansa iligkin bir veri alinabilmesi igin reklamlar
oncelikle yayinlanmal ve milyonlarca dolar harcanmahdir. Ote yandan, eger doniistiirme
orani tahminleri kesinse reklam verenler reklam kampanyalarinidaha iyi yonetebilir ve
yatirimlarinin karsihigini daha iyi alabilir. Varolan metotlara alternatif olarak onceki
reklamlar igcin varolan veriler kullanilabilir ve herhangi bir reklam kampanyasi igin
doniigtiirmeleri en iyi karakterize eden oznitelikler belirlenebilir. Bu caligmada ikinci
yaklagim ele alinmakta ve olasiliksal ¢ikarim metin bazli 6zniteliklerin ¢ikarilmas: icin
kullanilmaktadir. Bu metin bazl oznitelikler kullanilarak dogru doniigtiirme oraninin
tahmin edilebilmesi i¢in bir tahmin modeli gelistirilmistir. Deneysel sonuclar bu metin
bazli 6zniteliklerin tahmin dogrulugunu artirdigini gostermisgtir. Dahasi metinsel ve
sayisal Oznitelikleri birlegtiren hibrit modeller yalnizca metin bazli veya sayisal bazl
modellere nazaran daha iyi bir tahmin performansi géstermistir.

Anahtar Sozciikler: doniigtiirme (oran), sponsorlu arama pazarlama, online reklam,

arama motoru pazarlamasi, metinsel reklamlari, CPC online modeli
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Chapter 1

Introduction

1.1 Online Advertising Overview

Most advertisers use Internet to deliver their marketing messages to customers around
the world. This type of advertising is called Online Advertising or Internet Advertising.
Social media marketing, search advertising, contextual advertising, display advertising,
and video advertising are some examples of digital advertising on Internet. The online
advertising framework consists of a publisher who places the ads into its online content,
an advertiser who provides the publisher with the advertisements to be displayed on the
publisher’s content, agencies who place and control the ad copy, and an ad server which
delivers the ad and tracks the ad’s statistics.

Search Engine Marketing (SEM) is one of the most common forms of online adver-
tising. Search engines provide ad slots in search results pages (SERPs) for advertisers to
display their ads next to organic search results for a user query. In other words, search
engines sell their ad slots by running an auction among advertisers who are bidding
and competing for these slots. There are three main advertising models used by search

engines.
e Pay-per-Click (PPC): advertisers pay when their ads are clicked,
e Cost-per-Impression (CPM): advertisers pay when their ads are shown in SERPs,

and

e Cost-per-Action (CPA): advertisers pay when users carry out a designated action,

such as purchase of an item or signup to an online service.

PPC is widely used among search engines. In some contexts, Cost-Per-Click (CPC) is
also used to refer to the PPC model. There are two main concepts in a PPC model: (1)
advertiser is charged each time someone clicks on her ad, and (2) advertiser decides the
maximum amount she is willing to pay per each received click on her ad.

Currently, there are three major PPC networks: Google (through: Adwords), Mi-
crosoft (through: Adcenter), and Facebook (through: Ads). In order to define general

1



Chapter 1. Introduction 2

terms used in online advertising, we mostly use Google Ad Network as our reference! as

well as [1], [2], [3], and [4].

Google Ad Network mainly consists of a search network, a display network, and a
video network (Youtube). In this study, we deal only with the search networks. Google
provides a platform for advertisers called Adwords; to launch an advertisement in
Google search engine, advertiser must have an Adwords account.

After creating an account, the next step is to create search campaigns. A Campaign
is a set of ad groups that share a budget, that target a set of locations, and that have
a time schedule for ad delivery, which determines what days and times are suitable for
airing those ads. Campaigns are used to organize products or services that an advertiser
offers. Advertiser manages a collection of ads, keywords, and bids together in one
Adgroup. For a given product, advertiser picks a set of keywords that are most likely
to appear in user queries along with an auction bid per each keyword. In a PPC model,
a bid is an indicator of how much the advertiser is willing to pay for each user click.

When the campaign is launched, the search engine considers the ads in the campaign
for future user queries that match the advertiser’s specified keywords. In other words,
when a user searches for a query, the search engine looks for eligible ads that their
keywords match what the user is looking for. If the search engine determines that the
ad matches the user query, then the corresponding will be considered to be shown on
the SERP for the query.

When an ad is shown to a user, it is up to the user to decide whether to click on
it. The number of clicks received by an ad normalized by the times the ad is shown is
called Clickthrough-Rate (CTR). CTR for an ad represents users likelihood to click
on the ad. As an example, if an ad receives 1,000 impressions, where Impression refers

to how many times an ad has appeared on SERPs, and 20 clicks, its CTR value is 2%.

CTR,, - # received clicks

# ad views (impression)’

In PPC, the search engine gets paid on user click. On the other hand, advertisers
revenue depend on user’s action post click. When someone clicks on an ad and then takes
an action that is defined as valuable to advertiser’s business, such as online purchase, or
signing up in the website, or a call to the business from a mobile phone, a conversion
has occurred. Conversion Rate (CR) is the average number of conversions per each
click, Figure 1.1.

Managing bids for campaign keywords is challenging. Search auctions are com-
petitive and dynamic; new advertisers can come in to the market and can increase or
decrease their bids for changing the nature of competition constantly. In order to ease

the bid management burden, Google uses conversion optimizer for adjusting bids more

'Google AdWords Help Center,https://support.google.com/adwords/
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Impressions

Add more keywords

Improve your ads

Improve your landing page

Conversions

F1GURE 1.1: Impression refers to displaying an ad on a SERP. The number of ad clicks

divided by impression is CTR. A subset of the total number of clicks will result in

conversion. Total number of conversions divided by clicks is CR. For increasing the

number of impressions advertisers should use more precise and popular keywords. In

order to increase CTR, advertisers should improve ad quality. In order to improve CR,

advertisers should improve the landing page ( where the user clicks are directed to) and
make it relevant to user needs expressed as user queries.

efficiently. By using historical information about the campaign, conversion optimizer
computes the optimal CPC bid per ad each time it is eligible to appear. Advertiser still
pays per click but she no longer needs to adjust the bids manually.

Among the eligible ads to impress for a given user query, each search engine can
use a different method for assigning the set of eligible ads to the limited number of ad
slots. In first price auctions, ad position is exclusively determined by advertiser’s bid.
Ads with higher bids take higher positions. In second price auctions, advertisers pay
just enough to beat the competition. In other words, advertisers do not pay their full
bid amount, but they pay an amount that is equal to the next highest bid. Table 1.1
compares the position and the actual cost among four different advertisers in these two
types of auctions.

TABLE 1.1: First price and second price ad auctions. The illustration shows how ad
positions and actual costs are determined in each ad auction.

Advertiser | Real Bid" First Price Auction Second Price Auction
Actual Cost | Ad Position | Actual Cost Ad Position
A $4 $4 1 $3 1
B $3 $3 2 $2 2
C $2 $2 3 $1 3
D $1 $1 4 — —

¥
Indicates amount advertisers are willing to pay when a user clicks on their ads and visits their landing pages.
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In the aforementioned auctions, ad positions are determined solely by bids: the
highest bid gets the highest ad position. The main problem with this approach is that it
does not take the quality of the ads into account. The higher the bid is the more likely
it would get the better position regardless of whether the ad meets a quality standard.
To offer a quality of service to both advertisers and users, search engines should allocate
higher quality ads to higher ad positions. Google considers external and internal factors
that impact the quality of an ad and places a given ad in the most suitable position
within a SERP.

To track the quality of ads, Google computes a Quality Score for each ad. Main

factors that affect the quality of an ad are as follows:

e Expected CTR: An important factor in ranking the ads is CTR, which represents
users likelihood to click through. Google constantly explores ads by allocating
them to ad slots.

e Landing Page Quality: Relevance of the ad to the landing page increases its quality
score. If the ad matches the landing page text, it is considered relevant. External
factors such as whether the page loads fast, and whether the page is navigable also
affect the ad quality score.

e Ad Relevance (Ad Text): By analyzing the text and language in the ad, Google
determines how relevant the ad is to the search query.

e Ad Formats: Ad formats should contain information about advertiser’s business
like phone number, highlighted keywords relevant to queries, or website domains
in ad’s headline. They convey more information to users and make it more likely
that users would click on the ad. Consequently, the format is an important factor

in scoring the quality of an ad.

According to how the pairwise entities of CTR, landing page, ad text, and ad formats

interact, Google assigns a quality score to the ad as shown in Figure 1.2.

| Expected CTR|

% + Ad FormatsN

’ Landing Page ‘ — ’ Ad Relevance ‘

FIGURE 1.2: Main factors affecting ad’s quality.

Google ranks ads according to their Ad Rank scores, which is computed using
quality score and bid. Ad Rank controls both CPC value and ad position as illustrated
in Table 1.1. Suppose that ad ranks are computed and collected in the Ad Rank column
in Table 1.2. From Table 1.2, we can observe that although the ad A has the highest
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bid, it is not going to appear in a SERP. Advertisers pay the minimum amount that
is necessary to maintain their positions and it is always less than the amount they are
willing to pay, i.e., their real bid. The actual cost the advertiser will pay for a click
is the minimum amount needed to beat the Ad Rank of the ad position below. The
numbers in Table 1.2 are taken from the example given by Hal Varian, Google’s chief
economist?, and are made up values. The intention is to show how ad quality impacts
cost and position in Google’s version of a second price auction.

TABLE 1.2: Ranking the ads based on Ad Rank. The key components of Ad Rank are

ad’s bid and quality. This table represents how the auction system works and how ad

rank determines ad’s position and cost. In this scheme, users see the most relevant ads
and advertisers get the most value.

Ad | Real Bid | Ad Rank | Position | Actual Cost
C $2 20 1 $1.73

B $3 15 2 $2.68

D $1 8 3 $0.69

A $4 5 4 —

Return on Investment (ROI) is one of the most important performance metrics
in search marketing. There are several ways to determine ROI and the most simple and

frequently used method is to divide the net profit by the net cost.

Profit = Revenue — Cost,
Profit
ol .
i Cost

1.2 Goal and Motivations

Online advertising is a win-win game if and only if players are familiar with the game’s
rules. A search engine must have a good estimation of an ad’s expected CTR value in
order to display it in the correct position. The search engine’s revenue depends solely
on the aggregated clicks since advertisers are charged per user click in PPC model.
Consequently, predicting CTR is highly crucial to a search engine.

Advertisers, on the other hand, must think deeper and have a good perspective
of whether the user’s click would result in a conversion or not. Failing at conversion
prediction means a business failure since advertiser is charged for each received click but
the click may or may not lead to a conversion. From an advertiser’s perspective that
target conversions, predicting conversion likelihood before clicks is extremely crucial.

Conversion is a rare event. For a newly created ad, its CR potential is not known
in advance till enough users click, some of which may convert eventually. Advertisers

have to pay for these clicks whether those clicks convert or not. The challenge is that

Insights on the AdWords Auctions, http://www.youtube.com/watch?v=PjOHTFRaBWA
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advertisers do not know a-priori whether a keyword or an ad is likely to convert till it
does convert. Estimating CR in advance is essential from an advertiser point of view.
By having a promising approximation on CR, advertisers can reach a desirable ROI by
correcting the bid and maximum CPC on each keyword. The procedure is described as

follows:

What is a visitor’s worth?

Each visitor’s worth is equal to average profit x CR.

Example - Assume an average sale revenue of $150 and an average cost of $100, resulting
in a profit of $50 per sale. Suppose that out of 100 visitors to the website, only 2 of
them purchased the good resulting in a CR of 2%. Consequently, each visitor is worth

$50x0.02 = $1. The pay-per-click bid must be less than $1 in order to gain profit.

Calculating Max. CPC

Given ROI and each visitor’s worth of $a, maximum bid should be equal to a x (

ROI
1— 960 )-

Ezample - If the target ROI is 30% and each visitor’s worth is $1, the maximum bid
should be $1 x (1 —0.3) = $0.7.

A good estimation of CR helps the advertiser to manage her campaign more effi-
ciently and increase her ROI. In this study, we are interested in building a model for
predicting CR in a search campaign in general, or predicting the CR per keyword or the
CR per ad.

1.3 Outline

The goal of current chapter is to familiarize the reader with the terminology used in
online advertising and provide a general overview, and our motivation behind this study.
The rest of the thesis is structured as follows: a review of related works on online
advertising is discussed in Chapter 2. Essential theoretical basis is explained in Chapter
3. The formal definition of the problem and the methodology used for tackling the
problem of conversion rate estimation are given in Chapter 4. Experiment results are
provided in Chapter 5 along with a thorough analysis of the results. A summary of

conclusions along with potential expansions of the work is provided in Chapter 6.



Chapter 2

Literature Review

In this chapter, we review some of the works done in online advertising.

When a user submits a search query, the search engine tries to determine the most
relevant search keywords (which reside in adgroups) in search campaigns of many differ-
ent advertisers to the submitted query and display those ads (in the respective adgroups)
that are best responses to the user’s query. The “best” ads in PPC model are those that

maximize the expected revenue of the search engine.
E,q[revenue] x CTRyq x CPClyy.

CPClyq is the ad’s bid (in a first price auction) or the bid of the next-highest bidder (in
a second-price auction), which could be normalized by ad performance (see Table 1.2).

Revenue of the search engine is directly proportional to the advertiser’s bid. In
PPC model, those ads that receive more clicks and therefore have higher CTRs are more
profitable for search engines. The bids are known to the search engine in advance because
advertisers determine the bids for the keywords in their search campaigns. Therefore,
the problem of ranking the eligible ads in order to assign them to the available ad slots
from top to bottom reduces to finding the expected CTR of those ads. There is a rich
body of literature on CTR, prediction.

In [5], authors use a regression-based approach to estimate CTR for new ads. In
their approach, they do not take the search queries into consideration and train their
model independent of the queries issued.

In [6], authors state that true CTR is not what search engines should look for.
Instead, they need to determine the relative ranks of the top relevant ads for specific
query keywords. Building a ranking-based model in this context seems to be more
intuitive than a regression model. In this research, unlike [5], authors do not try to
predict CTR but to rank the ads in descending order of CTR. They propose a query-
dependent approach in order to estimate the ranks of the eligible ads. Taking user queries

into account largely affects whether the user would actually click on an ad. They first

7
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try to distinguish good ads from the bad ones and then select ads that have higher CTR.
They evaluated human expert tips for improving ad CTR such as displaying keywords in
the ad headline, a direct message to users, capitalizing every word in the ad description,
offering a free product, using action words, e.g., “Buy” or “Get”, and creating a sense
of urgency. Their experiment results on historical search logs suggest that the ads that
follow the expert tips have higher CTR. Using these tips in a ranking model, the ads with
higher ranking CTRs can easily be selected for display to users. The motivation of this
work is influenced by the work of [7], who proposed a ranking approach to collaborative
filtering.

In [7], authors discuss content-based filtering and collaborative filtering used by
recommender systems. In content-based filtering, items and users are represented using
a set of features derived from content such as product descriptions or user profiles.
Content-based approach matches the products of interest to a user. Conversely, the
collaborative filtering (CF) approach uses the user ratings per item rather than the
content information. In the latter, a recommendation is given to a user based on the
preference of other users. Consequently, the problem in CF is reduced to finding the
top-N items to recommend. In CF, one common approach is to first predict the rates
and then rank them accordingly. In this paper however, the authors proposed to rank
the ratings instead of predicting them. The methods they used were based on a greedy
heuristic and a random walk model.

From a search engine perspective, the task is to identify the top-most relevant ads
to a user query; therefore, one does not need to care about the exact CTR wvalues.
Hence, a ranking-based approach is more promising for carrying out the task. However,
this ranking approach is not easily applicable to the problem of conversion prediction.
Advertiser needs to know how much profit a chosen keyword will bring to her business.
Having a good approximation of CR per keyword can immensely benefit the advertiser
(as in only advertising for the keywords with higher CRs). A ranking approach is useful
when the advertiser wants to select a keyword for campaigning among a large set of
candidate keywords. In short, we are interested in finding a decent CR estimation per
keyword rather than ranking keywords among each other.

For search engine, placing relevant ads in higher positions boosts the revenue by
increasing the number of received clicks. Ads in lower positions are less likely to be
viewed by users and tend to lower CTRs. CTR of an ad typically decreases with display

position due to reduced visual attention!

. Consequently, placing the best performing
ads in top positions increases both the revenue and user satisfaction. On the other
hand, the impact of ad position on CR is not the same as on CTR. The impact of ad

position on CTR and CR is discussed in [8]. According to their findings, CTR decreases

'Eye Tracking Study, http://eyetrackingupdate.com/,
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as expected with position. However, contrary to conventional wisdom, the top positions
are associated with lower revenue relative to lower (and less expensive) positions. The
results in this paper suggest that the top positions have lower CRs compared to middle
positions.

To manage campaigns more efficiently, advertisers can vary campaign settings by
using different variants of keywords, bid choices, and text options. Then, they can
monitor user’s purchase behaviour in different campaign settings and finally pick the
best setting in performance. If advertisers can determine purchase intent in user queries,
they can handcraft more relevant search keywords to users. Discovering the latent
thematic structure among user queries uncovers the possible information needs of users
and help us to target users with purchase intent in an easy and more organized way. The
authors in [9] used a dynamic LDA-based topic model for learning the hidden themes
in search terms. Once themes are identified, advertisers can manage themes instead of
raw keywords. Our study uses the idea of discovering latent thematic structure as in [9]
to find out which keywords are more likely to convert and further use this information

to build a prediction model.



Chapter 3

Probabilistic Models

3.1 Topic Models and LDA

By the progressive rate of information in different domains (in forms of text archives,
image archives, and other forms of data), it is getting impossible to follow every proposed
and published information. We need tools to help us to organize & summarize these
vast amounts of information, make them easily accessible, and search through them.
Topic modeling is one of the interesting research areas in machine learning that provides
algorithmic tools to organize and exploit electronic archives. In fact, topic modeling is
an application of hierarchical Bayesian models applied to grouped data like documents
and images.

Topic modeling utilizes probabilistic models to generate a model for discovering the
hidden thematic structure in a set of unstructured collection of documents. In a col-
lection, documents contain different while overlapped subjects and themes. Using topic
models, we can uncover the hidden thematic structure in the collection and further inter-
pret each document based on the revealed hidden thematic pattern, which is called topic.
A topic is interpreted as a list words in a fixed vocabulary sorted based on probability
of their occurrence in the topic. In other words, a topic is a probability distribution of
terms in a fixed vocabulary for the collection. Topics are usually represented by their
top most probable words in them, since the vocabulary is sometimes so large.

Topic modelling is widely used to organize and arrange documents based on their
content and is applied in many contexts including newspaper archives [15], scientific
abstracts [25], and emails. Using topic modelling, we can find the trends within topics
([26] and [25]) and observe how words in a topic change through time [27]. Moreover,
we can model the connections between topics and see how similar or close the individual
topics are to each other [25]. Figure 3.1 demonstrates five random topics of a topic
model fit to JSTOR’s archive of the journal Science, [20].

10
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The model used to discover the topics over the collection in Figure 3.1 is Latent

Dirichlet Allocation (LDA).

computer chemistry cortex orbit infection
Highly probable words methods synthesis stimulus dust immune
number oxidation fig jupiter aids
two reaction vision line infected
principle product neuron system viral
design organic recordings solar cells
access conditions visual gas vaccine
processing cluster stimuli atmosphere  antibodies
advantage molecule recorded mars hiv
Less probable words important studies motor field parasite
Topic is mostly about: \vr i i i ;r
o » |“computer” I“chemistry”‘ ’“SGIIS&!JI'OHS “ "‘a,erospaace” “medicine”

FiGUrE 3.1: Five topics from a 50-topic model fit to Journal of Science from 1980-
2002. Each topic is represented with its 10 top most frequent words. The words in a
topic are thematically coherent.

3.1.1 Introduction to LDA

The basic intuition behind LDA is related to mixed membership models; a single doc-
ument is a mixture of a specific number of topics with corresponding proportions, [16].
The inputs to an LDA model are documents. Theoretically, a document is a sequence
of words. In LDA, documents are represented as bags of words (the position and order
of words in document are not taken into account). The output of LDA is the discovered
hidden structure of the inputs. The hidden structure is composed of topics exhibited
from documents, per-document topic distributions, and per-document per-word topic
assignments. The document’s topic distribution can further be used for labelling the
document and the topics information can be used for IR tasks.

LDA is a generative probabilistic model where we have two sets of variables: ob-
served variables, i.e., bags of words per document, and hidden varibales, i.e., distri-
bution of words per topic, distribution of topics per document, and topic assignments
per-document per-word. The documents are not labeled and topics are unknown. The
goal is to compute the conditional probability of hidden variables given the observed

variables which is called posteriori.
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FIGURE 3.2: An example of a Bayesian Network with five random variables. By apply-
ing chain rule to this graph, we can write the following joint distribution of variables:

5

P(zy,...,x5) H (z;|Parg(x;))

_ (1) x plos) x plasforsa) x plosles) x ploslea).

3.1.2 Graphical Representation of LDA

To have a better perspective of the variables involved in LDA and their relationships

and dependencies, LDA is represented as a directed graphical model, [17].

3.1.2.1 Bayesian Networks

Graphs are widely used to represent complex systems with large number of random
variables where nodes are random variables and edges represent probabilistic relations
among the random variables. A Bayesian Network (BN) is a directed acyclic graph,
G, whose nodes represent the random variables x1,...,x,. For each node z;, a condi-
tional probability distribution is defined as P(x;|Pargz;). The BN represents a joint

probability distribution via the chain rule as follows:
P(zy,...,2n) = [ | Plail Par(a:)). (3.1)

An example of a BN with five random variables along with the open form of joint
distribution is demonstrated in Figure 3.2.

By having the joint probability, we can answer different kinds of inferences and
queries on our graph model. For instance, given the states of some variables (evidences),
we want to find the state probability of other variables which is called conditional prob-

ability queries. In mathematical forms, if the state of a set of variables is known, E =
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a L
1
‘ 1
f \ Bi )
Zan L1 Topic(l. ....K)
~ e
Wan
Word (1, ....N)

Document (1, ..., D)

F1GURE 3.3: LDA is represented as a directed acyclic graph. The parameters o and

n are Dirichlet hyper-parameters. The distribution Sy for £ = 1,..., K represents

the k*" topic distribution over words with a Dirichlet prior with parameter 7. The

distribution ; for d = 1,..., D represents the d** document distribution over topics

with a Dirichlet prior with parameter «. The assignment Zg;, represents the topic

assignment for the n'?word in d** document. The observation Wa n represents the nth
word in d*" document.

xl x2 ;\CN xn

FI1GURE 3.4: Plates for representing replication.

e, and the query is to find the probability of a subset of other variables, y, then in order
to find the conditional probability query, we have to compute P(y|E = e).

There are algorithms for finding an exact or approximate solution to such queries,
like variable elimination, belief propagation, variational approximation, and random
sampling instantiations. We will elaborate more on the sampling techniques in Section
3.1.3 for finding an approximate solution to the conditional queries.

Assume that we have a collection of D documents where each document consists
of N vocabulary words. We are interested in detecting K topics using this document
collection. Figure 3.3 best illustrates the LDA in a graphical form where we have K
topics, D documents, and N words in each document; the plates in the graphical LDA
correspond to the replication operation in the plate notation as shown in Figure 3.4.

Assume that topic distributions (%), topic proportions per-document (6;), and topic

assignments per-word per-document (Zg,) are known. Using this LDA model, we can
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generate a document by generating words of the document as follows: we randomly sam-
ple a K-topic proportion that will compose the document. Each word of the document
is assigned to a topic. Using the topic proportion of the document, we sample a topic.
Once the topic is chosen, we can sample a word from the multinomial distribution of the
selected topic. The sampled word becomes the observed word. In this way, we generate
a whole set of documents for a text collection. This is why LDA is called a generative
probabilistic model.

Given the bayesian network in Figure 3.3, the joint probability of observed and

hidden variables is as follows:

K D N
1.0, 20 W) = ( TL o)) (TTot0ste) (TLoZanl0pWaslZams i) )
k=1

d=1 n=1
(3.2)

The joint probability of hidden and observed variables in Equation 3.2 can be com-

puted from the generative process.

e p(Bk|n) and p(f4]«): Topics and topic proportions are K-dimensional and N-

dimensional Dirichlet respectively.

p(Bln) = Dir(n), (3-3)
p(b4la) = Dir(a). (3.4)

Dirichlet distribution is presented in more detail in Section 3.1.2.2.

® p(Z4nl0q): Given the topic proportion 84 of document d, the probability of assign-
ing a topic Zg, to the ntword of the document d is the proportion of that topic

Zqn in 04 as shown in Figure 3.5.

p(Zd,n|0d) = 9d7zd7n. (3.5)

o p(Wyn|Zan,Pr:x): Given the topic assignment Zg,, of the nt" word of the doc-
ument d and the assigned topic’s distribution itself Sz, ,, the probability of the
word Wy, being observed is the proportion of the word W, in 87 4 38 shown in

Figure 3.5.

PWanlZan; Br:x) = B2y Wan- (3.6)

3.1.2.2 Dirichlet Distribution

Dirichlet distribution is named after one of the prominent mathematicians in 1800’s,

Johann Peter Gustav Lejeune Dirichlet. In Bayesian statistics, Dirichlet distribution
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gd Z
Gd ~ BZ W
\ ﬁzd_n anWan \

K topics N words

(A) Document d topic distribution. (B) Topic Zg,, word distribution.

F1cURE 3.5: Generation of a document using LDA.

(4) {ai} =01 () {ai} =1 (¢) {ai} =10

F1GURE 3.6: Dirichlet distributions for a 3-dimensional variable where the vertical

axis corresponds to the density value and the horizontal axes correspond to the plane

coordinates of the simplex. The distribution is a uniform distribution for o = 1. For

a > 1, the maximum lies somewhere near the center. For o < 1, the maximum lies
somewhere near the corners of the triangle.

is often used as a prior distribution and is denoted by Dir(«) and is parameterized
by a vector of positive and as. For a discrete n-dimensional random variable 6, 0 =
(01,...,0y) is distributed under Dirichlet distribution with parameter «, and the density

function p(#) is defined as follows:
6~ Dir(a) © pOla) = — 0> "1(0 € 9), (3.7)
B i=1

where B% = II:E%(Z))’ I'(n) = (n—1)!, and 1(0 € S) is the indicator function over the

probabilistic simplex S. A probabilistic simplex is a set of n-dimensional vectors that
sum to one; S ={r € R" :2; >0and ) ,a; =1}.

Dirichlet distribution is an exponential family distribution over a probabilistic sim-
plex (it is a distribution over probability distribution). For example in a three dimen-
sional space, the possible values for s lie on a triangle surface with 6; + 6 + 63 = 1.
With different values for as, different kinds of distributions can be obtained. Figure 3.6

demonstrates Dirichlet distributions for a 3-dimensional variable with three different as.
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One interesting property of Dirichlet distribution is conjugacy. If a data point
comes from a multinomial distribution, and the prior distribution of the parameter for
the data point (the vector of probabilities that generates the data point) is distributed
as a Dirichlet, then the posterior distribution of the parameter is also a Dirichlet. In

mathematical forms, we have:

0 ~ Dir(a),
Zn ~ Mult(9),
— p0|Z1.y) = Dir(a+n(Zi.n)), (3.8)

where Mult(f) denotes a multinomial distribution over § and n(Z;.n) denotes the total
number of topic assignments in a document per topic. For example, n1; = 3 means that

the 11th topic occurs 3 times in the document.

3.1.2.3 LDA Posteriori

Posterior or the conditional probability of the hidden variables given the observed vari-

ables is computed as:

p(B1:k,01:D, Z1.p, WD)

: 70: 7Z: W: =
p(B1:k,61:p, Z1.p|W1.D) 2 WiD)

(3.9)

The numerator is the joint probability of the observed and the hidden variables as in
Equation 3.2. The denominator is the probability of the observed variables. This factor

is the marginal probability of the observed variables and can be computed as follows:

p(Wi.p) = Z p(Bi:x,01:0, Z1:p, Wi.D). (3.10)

B1:k,01:D0,21:D

However, this summation is not tractable in practice because we have a very large
number of possible topical structures and the sum is over all possible assignments of
words in all documents to each topic. In Section 3.1.3, we discuss how to approximate

this factor.

3.1.3 Approximation of Posterior Inference

In summary, LDA infers the following values from a collection of documents:
e Per-word topic assignment Zg,,,
e Per-document topic proportions 64, and
e Per-topic word distributions .

The posterior expectations from the LDA model can be used to perform end-user tasks

such as finding similar documents, finding similar topics, and summarizing documents.
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There are different algorithms to approximate these posterior inferences, such as mean
field variational methods ([18] and [19]), expectation propagation ([21] and [22]), col-
lapsed variational inference ([23] and [24]). We used Markov chain Monte Carlo al-
gorithm ([30] and [31]) and collapsed Gibbs sampling (][25]) for doing the inferences.
There are evaluation metrics proposed in [28] and [29] for comparing the performance

of inferences.

3.1.3.1 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo is an algorithm to sample by using a markov chain from
a distribution that is intractable to directly sample from. A markov chain defines a

probabilistic transition model T'(xz — ) over states x such that:

for all x: ZT(x — ) =1 (3.11)

Given the current states z, the transition model determines the likelihood of the
transition from state z to state 2’. The next state 2’ becomes the current state, and the

process repeats. The temporal dynamics of this process is represented by:

PED (1) Z p )T (x — ). (3.12)

A markov chain is associated with a unique stationary distribution II, where the
probability of being in a state is the same as the probability of transitioning to this

state from a randomly sampled predecessor. Formally, we have:

PO =) = )T o)

:ZHxTx—m’). (3.13)

MCMC algorithm uses a markov chain T whose stationary distribution is close
enough to our target distribution P which is intractable to sample from directly. The
first step is to sample an initial state from an arbitrary distribution and then use the
transition model in Equation 3.12 for generating new state, i.e., a new sample. Since
the chain converges to a stationary distribution, we would eventually have a sample that
is very close to a sample from P. Samples at the beginning are far from P. We have
to repeat the process till it converges to the stationary distribution of the chain and
that would be the point where the real samples are being collected. This state is called
mixing. After this point, samples from the chain mixes are from stationary distribution
II. MCMC algorithm is summarized in Algorithm 1. Note that we can run multiple

markov chains in parallel in MCMC algorithm to speed up sampling process.
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Gibbs sampling is one of the most powerful sampling method for generating sam-
ples that are close to samples from the original distribution. The idea in Gibbs sampling
is to sample each variable given the current state of other variables. Algorithm 2 sum-

marizes the procedure in Gibbs sampling.

Initialize Sample z(©) from an arbitrary distribution;
repeat

Generate (1 from T(z®) — 2/) ;

Check if mixing has occurred (comparing window statistics in chain);
ti=t+1;

until mizing;

repeat

S = 0 (set of samples);

Generate z(*D from T'(z® — z');

S:=Sugztth .

t:=t+1;

until obtain enough samples;

Let S ={z[1],...,2[M]} (M collected samples);
Estimate FE, ~ 3 Z%:l x(M) (empirical expectation);

Algorithm 1: Markov Chain Monte Carlo (MCMC) algorithm.

Original distribution:  P(zy,...,z,);
Markov chain state space: all variables {z1,...,z,};
Initialize: z(©);
repeat
for i = 1:n do
Sample x; ~ P(x;|zr—_;)
(z_; indicates the set of all variables except for z;);
end
Set 2’ = x;
until obtain enough samples;

Algorithm 2: Realization of a Markov chain using Gibbs sampling.

3.1.3.2 LDA Posterior Approximation

The state space of Gibbs sampling on LDA posterior in Equation 3.9 includes 6 and z1.y
since words are observed and we assume that topics are fixed. For each document, the

sampling is done in two steps:

Step 1. Sample 0 given the current state of hidden variables Z1.ny and observations Wi.y.
According to the graphical representation of LDA in Figure 3.3, € is independent
of W given Z. Due to the conjugacy of Dirichlet (see Equation 3.8), 6 can be

sampled from the following distribution:

p(ﬁ]leN, Wl:N) = P(e’Z1N> = Dir(a + n(leN)), (314)
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where « is the hyper-parameter of 6 prior distribution and n(Z;.n) denotes assign-
ment counts per-topic in a document.
Step 2. Sample Z; given the value of other Z’s words and #. This conditional probability

can be written as (to be normalized afterwards):
p(Zi = zi|Z_i, Wi:n, 0) o< p(Z; = 2|0) x p(Wi = wi|Br.kc, Zs). (3.15)

A modified version of Gibbs sampling is called collapsed Gibbs sampling, which
converges faster than the normal Gibbs sampling. In collapsed Gibbs sampling, the state
space of Markov chain reduces to just Z1.y by marginalizing over the topic proportions
due to the fact that 6 is a conjugate prior for Z;.y. Therefore, the conditional probability

for sampling Z;.n takes the following form:
P(Z; = %) Z_i, WiN) < (Wi = wi|Z; = 2, Z—i, W_3)p(Zs = 2| Z—), (3.16)

where Z_; is the assignments of all Zj, such that k # i. The above proportion is derived

from the following property in probability theory:

P(B|A)P(A)

P(AIB) = =5

x P(BJA)P(A)
It is shown in [16] that the proportion in 3.16 can be rewritten in the following form:

n(_ti’; +n n(_d;)j +

() (di) ’
Zig T Nn n_; + Ko

p(Zi = zi|Z-i, Wi.N) (3.17)

n

where n(_uf])
one, n(_)l ;18 the total number of words assigned to topic j not including the current
(di)
—%,]
the current one, and n

is the total count of word ¢ assigned to topic j not including the current

one, n is the number of words from document d; assigned to topic j not including

(di)

=, is the total number of words in document d; not including the

current one.
Algorithm 3 provides the pseudocode for posterior approximation of LDA using

collapsed Gibbs sampling.



Chapter 3. Probabilistic Models 20

Parameters and Variables :

Symbol Definition Description
Zpxn | Zld,n] = 24y | Z[d,:] = per-word per-document topics assignments
Opxr | Old k] =04 0[d,:] = per-document topics proportions
Brxn | Blk,n] = Brn B[k, :] = per-topic words proportions

Fg Flk] = f fr = frequency of topics in the collection

D = length(Collection);
K = length(Topics);

N = length(Document);
Zpxn = zeros(D, N);
Op«x = zeros(D, K);
Brxn = zeros(K, N);
Fy = zeros(K);

Initialize:

for d = 1:D do

Z N = zeros(1,N);
for n = 1:N do

z < randomly assign a topic to word n;
ZNn] = z;

Opxx|d, z]+=1; # add 1 to the count of topic z in document d

Brx Nz, n]+=1; # add 1 to the count of word n in topic z

Fglz]+=1;

# add 1 to the count of topic z (keep the count of topic z in the whole collection)
end

Zpxnld,:] < Zn;

end

Posterior Approximation:
for d = 1:D do
for n = 1:N do

# remove word n from its associated topic
z = Zpxn|d,n]; # find assigned topic to word n

Opxk|d, z] -= 1; # subtract 1 from the count of topic z in document d
Brxn|z,n] -= 1; # subtract 1 from the count of wordn in topic z
Fglz] -=1;

# subtract 1 from the count of topic z (keep the count of topic z in the whole collection)

# assign new topic to word n based on Equation 3.17

5 BrxnHn]+
P = G (Bpld. ] + );

P, < normalize P,;
Znew — from distribution P, choose a topic;

# update the values
ZDXN[d7 n] = Znew;
ODXK[CL Znew]"i_:l;
B xn[Znew, n]+=1;
FK[Znew]+:1;

end

end
Algorithm 3: LDA and posterior approximation.
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Methodology

4.1 Problem Statement

The goal is to predict CR of keywords using a set of their features. A promising approach
is to train a predictor which learns how to predict CR of new keywords based on the
previous seen keywords. In machine learning, this predictor is called hypothesis h. For

further use, we utilize the following notations.

f(i) . " input variable, i.e., i keyword’s features,
y(i) gt target variable, i.e., ith keyword’s CR,

(f(i), y(i)) . a training example,

fi 4§t feature,
n : number of features,
m . number of training examples used for training.

Given training examples, the goal is to learn a function h : F' — Y such that h(f)
is a good predictor for the corresponding value of y. The process is depicted in Figure

4.1. In order to train our hypothesis, the next step is to extract a set of features.

4.2 Feature Extraction

There are many feature categories we can use. Determining the right set of features is

important to learn a good predictor.

4.2.1 Numeric Features

For keywords, we extract numeric features from data that are likely to result in better
prediction of conversions. We briefly describe these features.

e Clicks: Total number of user clicks,

21
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Learning
Algorithm
_f'l(i)_
fz(i) @ '
Keyword(k;) f@ = : = =) CR(k) = y¥
. = ()
(@
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FIGURE 4.1: How to apply the Learning algorithm (fj(z) represents the j** feature of
the i" keyword).

e Avg. CPC: Average amount that advertiser has been charged for user clicks. This
amount is the total cost of all clicks divided by the total number of clicks received.
Average CPC is not the same as maximum CPC (bid), which is the maximum
amount advertiser is willing to pay for a click. For example, if an ad receives two
clicks (the first costing $0.20 and the second costing $0.40), the average CPC for
those clicks is $0.30,

e Avg. position: Average of position in SERPs,
e Bounce rate: Percentage of users who visit the page and leave immediately without
taking any further action, and

e Quality score: Score given by the search engine to keyword. The score influences
both position and CPC.

4.2.2 Average CR of Keywords in Same Ad-group

The conversion of keywords in the same ad-group are similar. Therefore, a potential
feature that can predict the target CR. is to use CRs of all other keywords in the same
ad-group. A naive approach is to compute the average of all CRs in the ad-group. For
each keyword, this feature is calculated using all the keywords in the same ad-group

excluding the keyword.

4.2.3 Average CR of Keywords in Same Campaign

Similar to the previous feature, another potential feature is to average the CRs of all

other keywords in the same campaign.
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TABLE 4.1: Different match types for keywords in sponsored search advertising. The
definitions are from Google Adwords Support !.

Special Ad h
Match type S}If)ricljzl Example keyword seaicrk?ssy tia(‘zv‘f ‘o.n Example searches
include misspellings,
. . lated . .
Broad match | none java class online SYROLyIms, relate java tutorial
searches, and other
relevant variations
contain the modified
Broad match term (or close online class for
) +keyword . . . .
modifier +java +class +online| variations, but not java
synonyms) in any order
h d cl : .
Phrase " " ” - are @ PATase, aliet Ciose | vailable java
keyword java class online variations of that .
match class online
phrase
are an exact term and
Exact match | [keyword] [java class online] close variations of that | java class online
exact term
Negati _ h ithout .
ngtihlve -keyword -java ?}1: iZ?fr(lj s withon python tutorial

4.2.4 Match Types

There are three main match types for matching keywords to queries: broad match,
phrase match, and exact match. Each match type is explained in Table 4.1. The con-
version performance of keywords varies with match type. In order to accommodate the
preconditions for all match types, we leave keywords as they are without pre-processing

them (such as removing punctuation, or removing stop words).

4.2.5 Non-linear Features

Instead of working with linear features only, one can engineer non-linear features via
log(fi + 1) and f? where f; is the i'" feature. Fabricating non-linear features has two
main benefits: the number of features are increased and more complex functions can be

fit to the data.

4.2.6 Topic based Features

Documents are more than bags of words; each has a main theme that governs it. Key-
words are treated as short documents. If a keyword A results in a conversion, another
keyword B that shares the same thematic structure with A might result in conversion as
well. Topics or themes represent the hidden thematic structure of keywords, and they

can be extracted using LDA. For more information on LDA, refer to Section 3.1.
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FIGURE 4.2: A flow chart for choosing the right machine learning algorithm to use in
different application characteristics.

Once a K-topic model is computed on the keywords, each keyword will have a
corresponding topic distribution of K topics, i.e. K probability values that sum up to

1. This K dimensional feature is used in our CR model.

4.3 Model Construction

Figure 4.2 provides a general guideline on how to tackle machine learning problems. The
flow chart is provided by the scikit-learn community [32]. In our case, predicting CR is
a regression problem. The term regression refers to the fact that the target variable is
a continuous value (CR can take real values between zero and one). We use conversion
data to find an association between keyword features (input) and CR (output).

Given the notation above, fs are n-dimensional vectors in R™. For instance, fl(i)
might be the quality score of the i*" keyword in the training set. To perform supervised
learning, we must decide how to represent hypothesis h. We use a linear model to
approximate y as a linear function of f. Since we are using non-linear forms of our
basic features, our model also accommodates those cases where there is a non-linear

relationship between our CR target and keyword features.

h(f) = wo+wif1+ ... +wpfn,

n
= Zwlfz =< W,f>,

1=0

where w; is the weight and fo = 1 to simplify the notation and n is the size of our feature

space (excluding fp).
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In order to learn ws, we want to make h(f) as close as possible to y for our training

examples. Formally, we choose the following least-squares cost function J(w):
1 . .
_ = (D)) _ 4,(0))2
Jw) =5 2 mb() —y o)
1=

In order to minimize the cost function over w, one can use Gradient Descent
algorithm, which starts with some initial vector w and repeatedly performs the following

simultaneous update:

0
w; = w; —a—-4IJ(w), for j=0,..,n (4.1)
J J 8wj
where « is called the learning rate and controls the convergence rate. Algorithm 4

outlines the gradient descent algorithm.

Data: f(i) and y(i), fori=1,...,m;
Result: wj, for j =0,...,n;
Initialize vector of w; repeat
‘ wi = wj + a3 (y® — h(f(i)))f](-z); # simultaneous update for j = 0,...,n
until convergence;

Algorithm 4: Gradient Descent Algorithm.

In each step of the gradient descent update, the weights are updated according to
the gradient of the cost function with respect to all training examples. In other words,
the algorithm needs to scan through the entire training set before taking a single step.
It is a costly operation for a large training set and slows down the convergence. There is
a faster alternative to this algorithm, which is called Stochastic Gradient Descent.
In stochastic gradient descent, the update considers one training example at a time for
computing the gradient. Algorithm 5 outlines the stochastic gradient descent algorithm.

Data: f(i) and y(i), fori=1,...,m;

Result: wj, for j =0,...,n;

Initialize vector of w;

repeat

fori=1:m do
wj = wj +a x (Y — h(f(i)))fj(i); # simultaneous update for j = 0,...,n
end

until convergence;

Algorithm 5: Stochastic Gradient Descent algorithm.

We use the least-squares function as our cost function and use stochastic gradient
descent for the minimization of this cost function. In order to compare the CR prediction

of our model, we use the average CR of all keywords in the training set as the base model.
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Experiments

In this chapter, we present our experiment setup and the results of our empirical evalu-

ation.

5.1 Experiment Settings

5.1.1 Data Description

The search campaign data used in our experiments is from a SaaS startup that offers
courses online and corresponds the time period from Dec 2013 to July 2014. There are
52,000 keywords in 260 campaigns.

Figure 5.1 illustrates the relationship between some keyword attributes. As we
can see in Figure 5.1a, keywords with higher number of clicks tend to have low average
position (average position less than two). This is along with the fact that higher positions
attract more visual attention and result in getting more clicks. Figure 5.1b suggests that
for conversion rate, the effect of position is not the same as of clicks. Keywords with
relatively high CR tend to have average position of more than two.

Figure 5.1c reveals the average position versus quality score of keywords. The CR
performance is depicted in Figure 5.1d for campaigns, in Figure 5.1e for keywords. Figure
5.1f depicts the CR distribution of keywords.

The cumulative distributions of CR over keywords and campaigns are demonstrated
in Figure 5.2.

The plots in this section were drawn on a subset of data where keywords with less than
10 clicks were removed. There are many keywords with zero conversions, and this results

in the tighter probability distributions and plots.
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position is one. (b) Click conversion rate versus the average position over keywords.
(¢) Average position versus quality score of keywords. The position is determined by
the quality score given by the search engine, and the specific bid used for the keyword.
In cases where bids are the same for different keywords, the one with the higher quality
score gets a higher position. (d) Total conversion values in all the campaigns. (e) CR
of all keywords. (f) CR distribution over keywords.
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FIGURE 5.2: The plots in red are cumulative distributions where keywords with less
than or equal to a threshold are included. Where as in blue plots, the keywords with
CR greater than a threshold are included. The number of bins is set to 100 for these
plots. (a) Probability distribution of CR over campaigns. (b) Probability distribution
of CR over campaigns in logarithmic scale. (c¢) Probability distribution of CR, over
keywords. (d) Probability distribution of CR over keywords in logarithmic scale.

5.1.2 Pre-processing Data

5.1.2.1 Cleaning Data

Non-word characters were removed. Non-numeric characters from the numeric parts of
the data, e.g, % sign for bounce rate, were removed. Moreover, we want to estimate
the true CR, but in most of the cases the data contains a small number of clicks and

conversions. For keywords with too few clicks, the predicted CR might be far off from

the true CR. This results in much noise in our training and testing process. To address

this issue, we filtered out keywords with less than 10 clicks.

5.1.2.2 Scaling Attributes

Scaling features causes the algorithm to converge in less iterations. There are two main

approaches for scaling the attributes:

10°
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1. Min-max normalization: real data is linearly transformed such that the minimum

value is set to zero and the maximum value is set to one.

. fi—min(f)
1= naa(F) — min(7)

where min(f) and max(f) are the minimal and maximal values for each attribute re-
spectively. With this method of scaling, all values fall in between zero and one.

2. Z-score normalization: real data is linearly transformed such that the mean
of the transformed data is equal to zero with unit standard deviation. The Z-score
normalization is also called Gaussian normalization with zero mean and unit variance.
With this method of scaling, the whole data does not necessarily lies in a particular

interval. Each feature is scaled as follows:

where f denotes the mean value and ¢ denotes the standard deviation of the feature.
Both scaling methods were used for scaling our features. Our experiments suggested
that Z-score is a better scaling metric for our dataset. Since our data is very sparse,
a non-zero value is of great value while min-max normalization sets most of the values
to zero and makes CR prediction impractical. The mean and standard deviation per

feature in the training set were used for scaling the same feature in the testing set.

5.1.2.3 Training, Cross Validation, and Testing

We split the data into training and testing sets by a split ratio. Then, we trained the
model on the training set and tested it using the test set. Due to the sparsity of the
dataset, a large number of zero CRs can fall in one set while the other set contains more
non-zero values. This could affect the model and its accuracy. In order to address this
issue, we created a list of non-zero CRs and a list of zero CRs. Then, we divided each
of the lists into training and testing sets by the split ratio (the lists were shuffled before
the splits). Finally, we joined the training sets of zero CRs and non-zero CRs into one
final training set and one final testing set.

By splitting the data into two sets, the model we built correlated with the choice of
the training samples. As the training set changes, the model would change slightly. In
order to address this issue, we sampled the keywords for training and testing according
to the split ratio and then carried out the experiment for multiple times. We computed
the error in each experiment. The final reported error was the average of all errors. This
methodology is similar to k-fold cross validation but has a subtle difference. The k-fold
cross validation is used for validating the model and its parameters. It splits the training

set into training and validation sets. The error, however, is calculated on the untouched
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FicURrRE 5.3: Evaluating the performance of the model by comparing true CR and

predicted CR with respect to the line of equality. The features used for these plots were

numeric features, average CR of ad-group and campaign, topic-based, and nonlinear

features. The closer blue dots are to the line y = x, red line, the better the performance
of the model is.

testing set. Therefore, we run the experiment multiple times for different choices of the

training and testing sets and averaged the error over all the runs.

5.1.3 Evaluation Rules
5.1.3.1 Evaluation Protocols

Data was split into training and testing sets by a split ratio of 0.75 (75% of data went

into training set and the 25% remaining went into test set).

5.1.3.2 Evaluation Metrics

Mean squared error (MSE) and R? score were used as evaluation metrics for our model.
MSE measures the average of the squares of the difference between the estimate and the
actual value. R? score represents how well the observed outcomes are replicated by the
model as a proportion of the total variation of outcomes explained by the model. The
interested reader can refer to Appendix A for more details on MSE, R? score, and other

useful measures.

5.2 Experimental Results

The results of training a linear model using SGD regression function are given in Figure
5.3. It shows how well the model predicts the true CRs. Tables 5.1, 5.2, and 5.3 shown

the prediction errors made on a test set with different choices of features.
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TABLE 5.1: Performance evaluation of the model for a single feature.
Features SGD with regularization
MSE (*e-3) R? score %Improvement
CR 1.287 - -
Match Type 1.296 —0.008 —0.81
Topics (K =70, = 1) 1.198 0.068 6.83
Avg CR of ad-group 1.199 0.068 6.84
Avg CR of campaign 1.162 0.096 9.70
Numeric 1.058 0.178 17.80
TABLE 5.2: Performance evaluation of the model under Topic-model derivatives.
Features SGD with regularization
MSE (¥e-3) R? score %Improvement
CR 1.287 - —
Topics (K = 50,a = 0.01) 1.27 0.011 1.14
Topics (K =50, = 1) 1.206 0.062 6.18
Topics (K =70, = 1) 1.198 0.068 6.83
TABLE 5.3: Performance evaluation of the model under different choices of feature
combinations. The numeric features were always used in the combinations. The method
CR corresponds to the base model and it represents the average CR obtained in the
training set.
Features SGD with regularization
MSE (*e-3) R? score %Improvement
CR 1.287 - —
Numeric 1.058 0.178 17.8
+Topics (K =70, = 1) 1.039 0.192 19.20
1 i 2
+ Non-linear of numerics (f; and 1015 0.210 9113
log(fi +1))
+ Avg CR of ad-group & campaign 0.957 0.256 25.64
+ Avg CR of ad-group & campaign &
Topics (K = 70, = 1) & Non-linear 0-941 0268 26.81
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Conclusion

In this study, we built a prediction model to estimate true CRs of unknown keywords
based on the available statistics for existing keywords in an online campaign. We sepa-
rated the available data into two sets as training and testing for learning a model of CR.
The training set contained 75% of the whole data and was used to build the CR model.
The remaining part of the data was used for testing the performance of the model built.

We used a regression linearized learning model for predicting CR. In order to build
our CR model, we considered a set of parameters that affect CR of keywords. We used
stochastic gradient descent algorithm to learn the parameter weights.

Per keyword advertised for ample time, an advertisement broker, e.g., Google Ad-
words and Microsoft Bing provides quality score, bounce rate, average position, and
number of clicks. These data points can readily be used for the model. However for new
keywords, there is not much performance data available because they either have not
been advertised yet or they are advertised but there is not enough time passed to accrue
meaningful statistics. Since keywords consist of terms and terms are more likely to have
appeared in previous seen and advertised keywords, one can use the available statistics
for the terms instead. This insight led us to use probabilistic probabilistic inference
for extracting meaningful features on keywords. Advanced features such as thematic
structure (topical structure) improved the performance of our CR prediction model.

Advertisers themselves provide supervision by placing keywords with similar charac-
teristics in an ad-group or a campaign. An ad-group is a collection of ads and keywords.
We made use of this supervision by using average CR per ad-group and per campaign
as a keyword feature.

Since we used a linear regression hypothesis for our model, we increased the com-
plexity of our model by adding nonlinear features, e.g., by taking the logarithm (plus 1)
of a numeric feature and by taking the square of a numeric feature. Such nonlinearity
improved our model’s predictive power.

An interesting finding is on the performance of keyword match type. Each keyword

32
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has a match type. One could expect that the exactly matched keywords result in better
conversion since the keyword matches the user query exactly. Hence, it is more likely
that the user will convert. However, our results contradicted our naive expectation.
Keywords with match type as broad-match modifier (i.e., +keyword) tend to convert
much better than keywords with other match types.

Our major contribution to the field of performance marketing is that we constructed
a hybrid prediction model that combined text and numeric features per keyword. The
resulting CR model achieved a superior predictive power compared to using text features

only or to using numeric features only.
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Terms and Evaluation Metrics

A.1 Evaluation Metrics Used in Ranked Results

e Kendall Rank Correlation Coefficient (Kendall Tau Distance) [33]:

It counts the number of pairwise agreements and disagreements between two ranking
lists.

Let x1, 2o, ...,z, and y1,¥2, ..., yn be two different ranking lists for n objects. Pairs of
(xi,v:), (zj,y;) for 4,5 = 1,...,n are called concordant if the order of rankings are the
same for both of the elements. In mathematical terms, the two pairs are concordant if
x; > x; and y; > y; or if x; < x; and y; < y;. The pairs are called discordant if the
order of rankings are not the same for both of the elements. In mathematical terms, the
two pairs are discordant if x; > z; and y; < y; or if x; < z; and y; > y;. If z; = x;
or y; = y; they are neither concordant nor discordant. The Kendal Tau Coefficient is
defined as:

(number of concordant pairs) - (number of discordant pairs)

T =
(total pair combinations)

The value of 7 ranges from —1 to +1; 7 equals to 1 means perfect agreement between
two rankings. 7 equals to —1 means the two rankings totally disagree with each other;
one ranking is the reverse of the other. Total pair combinations is equal to n(n —1)/2.

Example: We have the following two ranking lists for five objects.

listy : 3,2,5,1,4
listy : 3,1,5,4,2

There are 52& = 10 pair combinations. Out of these 10 pairs, 6 are concordant and the

rest are discordant. In this case, 7 is equal to +0.2.

e Discounted Cumulative Gain (DCG) [34]:

34
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Using a graded relevance scale of documents in a search engine result set, DCG measures
the usefulness or gain of a document based on its position in the result list.
Let the ratings of n documents be 1,72, ...,7,. The Cumulative Gain (CG) and Dis-

counted Cumulative Gain (DCG) of a document at position p are defined as follows.

CGp:T1+T2+ -+ Ty,

DCG

i—2 10g2

P
An alternative formulation for DCG is > % [37]. Nowadays, Normalized-DCG
i=1

(NDCG) is more common and is computed from normalizing DCG at rank n by DCG
of ground truth rankings of documents.
Example: Consider the ground truth ranking of five documents, D; to D5, on 0 — 3

ranking scale as in Table A.1. NDCG is computed for an arbitrary ranking function.

TABLE A.1: Computation of NDCG.

Grand Truth Ranking Function
Document Order | Rating | Docuemnt Order | Rating
dy 3 ds 2
do 2 dy 3
ds 2 dy 1
dy 1 ds 0
ds 0 da 2
DCGg =3+ 1og2 1og3 + log4 log = 6.76,
DCOGrs =2+ 25 + o + oo = 6.49,

logs log logs log

NDCG,y = 33 = 0.96.

A.2 Evaluation Metrics Used in Regression Predictions

e Kullback-Leibler Divergence [35]:

Kullback-Leibler divergence or relative entropy is a non-symmetric measure of the dif-
ference between two probability distributions P and Q. The KL-divergence of Q from
P, denoted by Dgr(P||Q), is a measure of the information lost when Q is used to

approximate P. This evaluation metric is used in [5].
Drr(P||Q) = ZP x logs ( ) )

e Mean Squared Error (MSE) [36]:
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It measures the average of the squares of the difference between the estimator and what
is estimated. If Y is a vector of n predictions and Y is the vector of true values, MSE

is calculated using the following formula.

R
MSE == x> (Y; - Y;)”.
[
There are also other metrics related to MSE including MAE -Mean Absolute Error-
and RMSE -Root Mean Squared Error.

e Coefficient of Determination (R? score):

This measure illustrates how well observed outcomes are replicated by the model, as the
proportion of total variation of outcomes explained by the model. In other words, it
indicates how well data fits a statistical model. Consider a data set of n observations
where y; and f; denote the observed value and associated model value (predicted value)
for it" observation, respectively. The mean of observed values is § = % X il y;. Following
is the definition of coefficient of determination. RZ score of one indicla_tes that model

perfectly fits the data.
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