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Exploring the Power of Supervised Learning Methods for Company

Name Disambiguation in Microblog Posts

Na�ye Polat

Abstract

Entity disambiguation is the task of identifying the real world entity that was referred

to/mentioned in a context. Ambiguous references to entities may occur due to varia-

tions of how an entity is referenced (BT, British Telecom) or inherent ambiguities of the

names used for entities (Orange Telecom vs. fruit orange), and misspellings (Best Buy vs.

BestBuy). Ambiguities in company names however come with a price, when it comes to

�nding information about the company on the Web. Recently, tracking social media for

brand management has become a very important part of the process in marketing, public

relations, and product marketing. Therefore, resolving references to real world objects

has become an important part of social media analytics systems. In this thesis, we study

di�erent machine learning algorithms for entity disambiguation in micro-blogging posts.

We show that with the carefully selected set of features, supervised learning techniques

would improve the disambiguation quality signi�cantly.

Keywords: Information Retrieval, Text Mining, Machine Learning, Natural Language

Processing, Data Mining, Online Reputation Management, Twitter, Social Media, Name

Ambiguity



Tweet Metinlerinde �irket �simleri Belirsizlik Problemini Ö§retici ile

Ö§renme Yöntemlerinin Gücü ile Çözme

Na�ye Polat

Öz

Varl�§�n belirsizli§ini giderme, varl�§�n içerik içerisinde as�l kastetti§i varl�§� bulma i³lev-

idir. Varl�§�n belirsizlik problemi çe³itli nedenlerden dolay� meydana gelebilir. Örne§in,

bu problem varl�§�n referans verilme çe³itlili§inden kaynaklanabilir. Ya da varl�k için

kullan�lan kelimelerin belirsizli§inden kaynaklanabilir. Son olarak, bu belirsizlik hatal�

yaz�mlardan kaynaklanabilir. �irket isimlerindeki belirsizlikler, ³irket hakk�nda Web üz-

erinde bilgi aramas� yap�lmas� söz konusu oldu§unda önemli olabilir. Son zamanlarda,

marka yönetimi için sosyal medyan�n takip edilmesi pazarlama, yerel ili³kiler ve ürün

pazarlamas�nda ³irket hakk�nda ad�mlar�n at�lmas� noktas�nda önemli olmaktad�r. Bu

çal�³mada Tweet metinleri üzerinde belirsizli§i giderme problemi için farkl� makine dili

ö§renimi algoritmalar� uygulad�k. Çal�³mam�zda dikkatli seçilen özellik setleri ile, ö§retici

ile ö§renme tekniklerinin belirsizlik probleminin çözümünde katk� sa§lad�§�n� gösterdik.

Anahtar Sözcükler: Bilgi Geri Al�m�, Metin Madencili§i, Veri Madencili§i, Makine

Dili Ö§renimi, Varl�§�n Belirsizlik Problemi
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Chapter 1

Introduction

1.1 Motivation

Ambiguities in company names are very common. A company name may refer to any-

thing. This is meaningful; because, companies intentionally prefer ambiguous brand

names in order to improve their marketing and branding strategy. For instance Apple

and Blackberry are both company names as well as fruit names. Similarly, Chanel is

a person name and a cosmetics company name. Avon may refer to another cosmetics

company or a town in Ohio. This situation leads to new challenges, when it comes to

�nding information about a company on the Web. Companies track Twitter and other

microblogging/blogging sites for brand awareness. Twitter [1] has rapidly gained world-

wide popularity, with 500 million users since 2012, generating over 340 million tweets

daily and keeping over 1.6 billion search queries per day [2]. Users can share short mes-

sages (tweets) on any subject. Usually, users share their good and bad experiences with

company and products so that the people in their networks are aware of the brand and

its shortcomings or excellence. Thus, analysing such messages can help exploring the

important social circumstances. Hence, identifying the tweets referring to products and

companies is an important tool to manage brand awareness on social media.

Online Reputation Management, Social Media Monitoring, and Opinion Mining from

social media are some research areas that focus on users' views on social media on

di�erent types of entities. These tasks are challenging as the company and product

names are often ambiguous. For example, the company Apple Inc. shares its name with

the fruit apple which again could have a number of di�erent meanings depending on the

context, for example, information about the story of Adam, Eve and the serpent. If the

content analysis that companies use are not able to disambiguate between the content

related to the company versus the content related to the namesakes, the data they are

1



Chapter 1. Introduction 2

tracking will be erroneous and irrelevant. Therefore, analysts spend a huge amount of

time to identify to �lter irrelevant social media content.

In this study, we focus on �nding relevant tweets to a company in the context of the

WePS-3 data set [3], where we are given a set of companies, and for each company, a

set of tweets which may or may not be related to the company. The tweets contain the

company name, as a keyword. Firstly, it is bene�cial to explore the research challenges

to better understanding the problem.

1.2 Research Challenges

Limited Content: Tweet messages are very short, that have 140 characters at max-

imum, so they contain very little information. From this aspect, Twitter di�ers from

the traditional user media. For example, Facebook users do not have any space scarcity

problem. They share their feelings and opinions with the rich text format. Therefore,

analysing such content to obtain company relevant information is easier in comparison

to Twitter data. Analysing tweet data for tweet classi�cation problem is a very di�cult

task. For instance:

SmebdY cMe keeP mE coMPanYY !! CaNt sLeePP !!!

I just became the mayor of dunkin donuts in Crystal City on

@foursquare!http://4sq.com/cksPC1

Assume that these tweets are considered for whether they are related to CME Inc. and

Dunkin Donats Inc., it is very challenging to classify the �rst tweet as `false'and the

second tweet as `true'. When we remove company keywords from tweet content (In this

study, we remove company keyword names from tweet text in order to prevent bias),

the remaining parts are mostly meaningless and insu�cient to solve tweet classi�cation

problem.

Due to the content limitation, it is almost impossible to solve company disambiguation

problem using only tweet content. This forces us to use external resources as company

pro�les implicitly.

Misspellings and weak content: Tweet messages use a speci�c language, often with

incorrect grammar and speci�c abbreviations that make analysing the tweet content

di�cult. In other words, since tweet content is informal, Twitter users generate their
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content without doing spell checking that leads to erroneous content. Also, like other

social websites, Twitter is used for the purpose of sharing opinions. Since users want

to share their ideas instantly, they use some abbreviations and symbols that are very

di�cult to interpret for Tweet analyser. Below example show some misspellings of the

given tweet:

@gabeyskanker your tellin mehh i dnt evn noe what this hype is about im only gunna

cme on dis agen wen fb is totallyy DEAD :| just like bebo

Moreover, tweets are being generated in conversational mode, the quality of the content

information is far away from revealing satisfying information about tweet relevancy or

irrelevancy regarding a given company. Below examples show the weak content of tweets.

Both of the sample tweets are relevant with to the mentioned companies. However,

constructing such a classi�er is a challenging task in order to identify those tweets as

related.

I told you! (@ Dunkin' Donuts) http://4sq.com/6gy4zT

@BigBuilder @Lennar You're welcome. Stay well.

As we mention in the next sections, as a result of the weak and mistaken content, we

could not obtain convenient results when we use more user based categorical features.

Also, we face with the same situation when we use company review pro�les.

Inconsistency between Training and Testing Data:

In our data set [3], we have trial, training, and testing companies each have non-

overlapping organization names. In other words, we have di�erent organizations in trial,

training, and testing categories. Therefore, the characteristics of data in each group is

di�erent from others.

In [4], the relatedness factor is explained as one of the company classi�cation technique.

The relatedness factor is de�ned as:

relatedness =

(
Number of tweets in Set ∈ Company

Number of tweets in the Set

)
(1.1)

The relatedness factor is signi�cant due to demonstrate the characteristic properties of

our training and testing data. When we apply (1.1) for our training (including Trial
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Data set) and testing data, the obtained results are represented in Table 1.1 where T

represents Tweets, and R Value represents relatedness value.

Table 1.1: Relatedness Values for Training and Testing Data

Data Set # of True T # of False T # of Unknown T R Value

Training 9884 13248 523 0.414

Testing 7717 13076 2299 0.371

As you see from Table 1.1, the relevancy of training tweets is greater than testing tweets.

That means, our training data mostly includes relevant keywords about the correspond-

ing company in comparison to testing data set. Therefore, the extracted features from

training data might not be compatible with the test data. In the Experiments section,

we show that sophisticated capable classi�ers which consider on multiple features do not

provide good results as we expect. We conclude that one of the reason might be di�erent

characteristics of the training and testing data. This also may cause over�tting problem,

since the learned patterns may not have been suitable for testing data.

1.3 Our Approach

In order to overcome the problem that tweets contain little information, we use external

resources to enrich the information for an organization. More speci�cally, we generate

several pro�les for each company which contains richer information. For each com-

pany, we construct twelve di�erent pro�les automatically. The �rst seven pro�les have

essentially sets of keywords, which are related to the company in some way. On the

other hand, the remaining pro�les explicitly contains unrelated keywords. The names of

the related pro�les are `Company Home Page Pro�le',`Company Wikipedia Page Pro-

�le', `Company Review Page Pro�le',`Company Wikipedia Page Kullback-Leibler Pro-

�le', `Company Wikipedia Page Noun Phrase Pro�le', `Company Wikipedia Page Term

Frequency Pro�le',`Company Wikipedia Page Latent Semantic Indexing Pro�le'. On the

other hand, `Company Wikipedia Disambiguation Page Pro�le', `Company Wikipedia

Disambiguation Page Kullback-Leibler Pro�le', `Company Wikipedia Disambiguation

Page Noun Phrase Pro�le', `Company Wikipedia Disambiguation Page Term Frequency

Pro�le', and `Company Wikipedia Disambiguation Page Latent Semantic Indexing Pro-

�le'contains company irrelevant keywords. In order to analyse the in�uence of keyword

set size, we construct those pro�le vectors as including 100, 250 and 500 di�erent sets of

keyword.
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Then, we perform feature extraction to obtain both numerical and categorical features.

Our numerical features include several similarity measures and the number of di�erent

meanings of the company name feature which shows the intensity of the company name

ambiguity. As similarity features, we compute Wikipedia cosine similarity, Wikipedia

Disambiguation cosine similarity, Review cosine similarity, Wikipedia Kullback-Leibler

Divergence cosine similarity, Wikipedia Term Frequency cosine similarity, Wikipedia La-

tent Semantic Indexing cosine similarity, and Kullback-Leibler [5] Divergence asymmetric

similarity. For cosine similarity features [6], we compute similarity between each tweet

vector of a certain organization and the corresponding organization pro�le vector. Also,

in order to compute Kullback-Leibler Divergence distance similarity, we use asymmetric

distance approach between each of the organization tweet and that organization. As cat-

egorical features, we extract some user based features from tweet itself such as unigram,

url. Lastly, we generate our feature vector by combining all of above features.

Then, we employ several supervised classi�ers for previously unseen companies, by train-

ing the features of the classi�er. We build those classi�ers both on several combinations

of the extracted features and all features. With all features, we get the best accuracy

using Majority Voting classi�er[7] that includes LADTree[8], BFTree [9] and Multilayer

Perceptron[10] as classi�ers. Then we perform feature extraction using Attribute Se-

lected Classi�er[11] that chooses most important features for classi�cation task. Using

only those selected features, we conduct some additional experiments.

Then we employ Threshold Algorithm and Simple Approach Algorithm as alternative

methods. In Threshold Learning approach, the similarity threshold between a tweet and

a company pro�le is learned from historical data. This learned threshold value is then

used in classi�cation of unseen tweets as related or unrelated. Surprisingly, the algorithm

produces better results, although the approach is simpler. We do Threshold experiment

for Company Wikipedia Page Pro�le, Company Wikipedia and Wikipedia Disambigua-

tion Page Pro�le (Two Pro�le Approach), Company Review Page Pro�le, Company

Wikipedia Page Noun Phrase Pro�le, Company Wikipedia Page Kullback-Leibler Pro-

�le, Company Wikipedia Page Term Frequency Pro�le, and Company Wikipedia Page

Latent Semantic Indexing Pro�le with di�erent sets of keyword. For Threshold Approach,

we obtain the best result using Company Wikipedia Page Pro�le that includes 100 key-

word set. Also, this result outperform other classi�ers that we tested. The Threshold

approach improves the accuracy by approximately 11% over our baseline algorithm. (We

initially employ Baseline Algorithm using weighted bag of keywords from Twitter. The

approach produces 59,7% accuracy.) Since, we get our data set from WePS-3 competi-

tion data set that was held in 2010, we have a chance to compare our results with other
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competitors' results. Among all participants, we get the third best result in the WePS-

3 Evaluation System. As compared our systems with WePS-3 participant system, our

system's performance (71%) is less than the system of Yerva (83%) and Yoshida (75%).

Also, Simple Approach Algorithm produces more accurate results as similar to Threshold

Experiment did. In this experiment we follow simple approach. For each company, top

100 key words that have the highest tf-idf values are obtained. Then, we make an as-

sumption that if a certain tweet includes one of the corresponding company pro�le vector

term, the tweet would be related with the company; otherwise it would be unrelated. As

we get the best accuracy with Company Wikipedia Page Pro�le that includes top 100

keywords for Threshold Learning approach, we employ Simple Approach Algorithm only

using Company Wikipedia Page Pro�le.

Lastly, we employ Entity Ranking algorithm [12] that uses two language techniques

named Entity Mention Language and Review Language respectively. As Entity Mention

Language, we use two pro�les, one is company related pro�le and the other is company

unrelated pro�le. For each company, we generate company page pro�le, noun phrase

pro�le, term frequency pro�le, Kullback-Leibler pro�le and Latent Semantic Indexing

pro�le using both company Wikipedia page and company Wikipedia disambiguation

pages with di�erent size of keyword sets. As Review Language Model, we use all review

corpus obtained from company training and testing review pro�les. We obtain the best

performance with Company Latent Semantic Indexing pro�le. The experimental results

show the signi�cant improvement of accuracy (9.5%) over our baseline approach.

1.4 Comparison with Other Systems

Our task mainly falls under Information Retrieval whose goal is to match unstructured

short text (query) against unstructured document text. However, our problem is not

suitable to directly employ standard Information Retrieval models such as tf.idf. The

standard tf.idf scheme assumes that the query is short and the document is long. In

our problem, we have a company pro�le vector (long) including di�erent sets of keyword

and a tweet message (short) for that company. If we consider each tweet as a query

and a pro�le vector as a document, we need to rank and �nd the best query for a given

document. However, we are interested in �nding relevant tweets for a given company

rather than �nding the best tweet. We use tf.idf technique for the purpose of assigning

a weight for each word, which represents the importance of that word in the company

pro�le. Also, while assigning weight to the tweet pro�le keywords, we consider each tweet

as a document, and each word in the tweet document as a query, then we compute the

weight of the word for each tweet document.
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Our problem is also di�erent from entity matching problem that aims to �nd the com-

patibility between two structured objects. Our problem is harder than entity matching

problem, because the entity matching problem seeks an attribute correspondence between

two structured objects. However, there is no any attribute correspondence between a

tweet and a company pro�le. For example, there is no company attribute such as the

location of a company or founder of a company that can be always extracted from all

tweet content or company pro�le content. In contrast, as mention in above examples in

the Introduction section, tweet content is quite unstructured and far away from having

well-de�ned attributes.

Moreover, our problem is di�erent from Information Extraction tasks whose goal is to

extract structured data such as organization name, people name from unstructured text.

Our tweet text is unstructured; however, as we mention above paragraph, there is no

any valid structured information all tweets in the data set. The same situation is also

valid for company review page. In review texts, there might be no prede�ned structural

information about a certain organization. For company Wikipedia page, since Wikipedia

content is more formal, we can say to be had a kind of informational structure, but it is

clear that, this might not be true for company review page. For example, company review

pages do not have to contain any information about organization location. Therefore,

our task is more challenging in comparison to Information Extraction tasks, since if

our tweet content or both tweet and company pro�le content contained such structural

information, the correspondence between tweet text and company text content might

have been detected easily. That would lead to label such those tweets as `true'easily.

1.5 Our Contributions

We use a highly rich company pro�le set with di�erent sets of keyword to see their

in�uence on our classi�cation task. In addition to company home pages and company

Wikipedia pages that are commonly used as external resources, we construct Company

Wikipedia Disambiguation Page Pro�le, Company Review Page Pro�le. In addition,

we generate noun phrase pro�le, Kullback-Leibler pro�le, term frequency pro�le, and

Latent Semantic Indexing pro�le using both Wikipedia company page, and Wikipedia

company disambiguation pages, and, we use these pro�les in di�erent ways to improve

the accuracy of our classi�cation task. At a high level, we aim to obtain relevant and

irrelevant keywords about a certain company.

We construct Company Wikipedia Page Noun Phrase Pro�le and Company Wikipedia

Disambiguation Page Noun Phrase Pro�le that include only noun and noun phrases
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to see whether removing verbs from company pro�le make a good contribution to our

classi�cation task or not. In this way, we aim to bring nouns into the forefront.

We generate Company Wikipedia Page Kullback-Leibler Pro�le and Company Wikipedia

Disambiguation Page Kullback-Leibler Pro�le to assign weights to words in order to select

the most important keyword set for that text. We make a bit change to the Kullback-

Leibler distance approach and computed word weights in the company web page text.

As Company Wikipedia Page Latent Semantic Indexing Pro�le and Company Wikipedia

Disambiguation Page Latent Semantic Indexing Pro�le, we use Latent Semantic Indexing

unsupervised algorithm approach that uses Singular Value Decomposition method from

Linear Algebra approach to �nd the most related sets of keyword in a document corpus.

We generate Company Latent Semantic Indexing pro�les using Wikipedia company page

and Wikipedia disambiguation pages. Latent Semantic Indexing algorithm succeeds to

�nd most relevant keywords for our classi�cation task.

In order to compare the similarity between related and unrelated company pro�les with

a tweet, we use Company Wikipedia Page Pro�le, Company Wikipedia Disambiguation

Page Pro�le, Company Review Pro�le, Company Wikipedia Page Noun Phrase Pro-

�le, Company Wikipedia Page Kullback-Leibler Pro�le, Company Wikipedia Page Term

Frequency Pro�le, and Company Wikipedia PageLatent Semantic Indexing Pro�le and

extract our cosine similarity features. In addition, we use Kullback-Leibler asymmetric

distance to measure company pro�le-tweet similarity and we extract Kullback-Leibler

distance as our other similarity feature.

In addition to the above numerical features, we extract commonly known tweet features

like is capital or unigram. Alternatively, we consider whether a name of the organization

in a given tweet has organization prepositions such as `at ', `for ', and `of 'in front of it.

If so, this might be a strong indicator about tweet relevancy with a given company.

We do Attribute Selection to identify the most important features that have a big in-

�uence on our classi�cation task. As di�erent from other tweet-company classi�cation

approaches, the optimal set of classi�ers that produce the best accuracy for our classi-

�cation task are selected and combined by a fusion method based on Majority Voting.

This shows better performance than using individual classi�ers.

We also employ Threshold approach and Simple Approach algorithm onWePS-3 data set.

The obtained results are surprisingly over our expectations. Threshold-based method

provides approximately 71% accuracy performance, and Simple Approach algorithm

achieves 70% accuracy with cheaper computational cost. When we compare our sys-

tem with WePS-3 participant system, our system's performance is lower than only two
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participants (Yerva (83%) and Yoshida (75%)), but higher than remaining participants.

(see Table 4.20)

As distinct from other tweet-company classi�cation methods, we use a similar algorithm

(i.e. `Entity Ranking') that is performed by [12] for their entity matching problem. In

Entity Ranking Algorithm, two language models called `Entity Mention Language'and

`Review Language'are used. The intuition behind this model is that for a given tweet,

each word in the tweet is chosen with α probability from Entity Mention Language and

(1- α) probability from Review Language. Entity Mention Language uses two distinct

pro�les: one is related with a given entity and the other is unrelated. Since we have two

pro�les, the algorithm computes the probability values of Entity Mention Language and

Review Language. Then, the algorithm assigns the tweet as `true'or `false'depending on

the returned pro�le values. More speci�cally, if the computed probability of the company

unrelated pro�le is lower than the company related pro�le, the tweet is labelled as `true',

otherwise it is labelled as `false'(i.e., it is not related to the company).

For Entity Ranking algorithm, we construct our related and unrelated company pro�les

as Wikipedia page pro�le, term frequency pro�le, Kullback-Leibler pro�le, noun phrase

pro�le, and Latent Semantic Indexing pro�le from both Wikipedia company page and

Wikipedia disambiguation pages with di�erent keyword sets. Latent Semantic Indexing

pro�le outperforms other pro�les. Entity Ranking algorithm also outperforms over our

baseline approach by approximately 9.5%. Statistical t-test also shows that the improve-

ment over baseline is signi�cant.

The rest of the study is organized as follows. Section 2 summarizes related work. Section

3 gives a more precise problem de�nition, presents our technique and gives more details

on the classi�cation techniques we used. Section 4 gives details on the experimental

evaluation of our methods. Finally Section 5 concludes the thesis.
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Related Work

2.1 Company Disambiguation

• For this task, the research of Yerva et al. [13] shows the best performance in the

competition. In this paper, authors focus on determining whether given tweets

are related or unrelated with a certain company. The company pro�le including

related or unrelated key words about company is created.

For the tweet classi�cation task, the content of the tweet is compared to the content

of the pro�le. Yerva and his colleagues use a rich variety of company pro�les for

this task. These are:

� Homepage: The WePS-3 Web site has URL of the company home pages.

They crawl all the relevant links up to a depth level=2 from starting page in

order to generate a pro�le that captures most of the keywords about company.

In the pro�le the stemmed version of the keywords are stored.

� Metadata Pro�le: HTML standards can provide a few meta tags, and these

meta tags include some key words that are relevant to a given company.

� Category Pro�le: Information about the category of the company provides

relevant information about its entity. These kinds of keywords may not be in

company home page, and they can be obtained via use of Wordnet.

� GoogleSet Pro�le: Google Set is a good source in order to obtain a common

knowledge about a company. This also allows to obtain relevant words about

similar and competitive companies.

� User Feedback Positive: In case of companies where sample ground truth

is available, they infer the keywords from the tweets (in the training set)

belonging to the company and construct User Feedback Positive Pro�le.

10
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� Negative Feedback Pro�le: This pro�le includes keywords that do not

belong to the certain company. Gathering such words is a very challenging

task. The Wikipedia Disambiguation Pages may help for some of the entities.

This information may also be obtained via tweets that do not belong to this

company in the training set.

After extracting entity pro�le features, tweet speci�c features and some heuristic

features, Naive Bayes classi�er is trained on these features. For each company in

the training set, the conditional distribution of the related and unrelated classes

are computed. Then, for an unseen tweet t, using the feature extraction function,

the feature values are obtained. Whether the tweet is related to a certain com-

pany or not is determined based on the following: if the posterior probability of

related class is higher than the posterior probability of unrelated class, the tweet

is assumed to belong to company, and vice versa. With this approach, they get

0.83 accuracy, and demonstrate the best performance in the competition. Simi-

larly, we use a highly rich company pro�le set with di�erent sets of keyword. For

each company, we construct twelve di�erent pro�les automatically, i.e., the �rst

seven of the pro�les are related to the company, and the remaining pro�les con-

tain unrelated keywords. For our problem, we use Wikipedia company page and

Wikipedia company disambiguation pages to construct company pro�le vectors.

In order to create company pro�les, we use di�erent following approaches. The

one is extracting all words from Wikipedia company page and Wikipedia com-

pany disambiguation pages and assigning weight to them via tf.idf term weight-

ing scheme, and the second is extracting noun and noun phrases (noun phrase

approach) from those pages and giving weight by tf.idf approach. Our other ap-

proaches are Kullback-Leibler word weighting scheme, term frequency weighting

scheme, and Latent Semantic Indexing weighting scheme, which are used in order

to extract company related and unrelated keywords. Like User Feedback Negative

Pro�le, we use company Wikipedia disambiguation pages to include unrelated key-

words about a corresponding company. Moreover, we pick company review pages

and parse them to obtain company related keywords. This pro�le can be assumed

as User Feedback Pro�le; since company review pages may obtain both positive and

negative comments about a corresponding company. Similarly, we extract features

from entity pro�les and tweet itself, then we employ several supervised learning

algorithms on those features.

• In another study, Yerva [14] and his colleagues construct user pro�les by integrat-

ing content from two di�erent social networks Twitter and StackOver�ow. They

demonstrate that the content published on user's social networks may help for en-

tity disambiguation problem considerably. When they compare their system with
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the standard classi�er that classi�es a tweet only based on tweet keywords and

company pro�le keywords, their system's classi�cation accuracy increase notice-

ably.

While generating a user pro�le, they use di�erent techniques. These are Term Pop-

ularity, Tf-Idf, Semantic Concepts and Categories, Topic Modeling (The top topics

related to the user generated content extracted using Latent Dirichlet Algorithm).

User's Twitter content is enriched with those pro�les. Based on the Conditional

probability values of P(C|Mi) and P(C−|Mi) where C represents company entity

pro�le andMi represents tweet enhanced content by user pro�les (either Twitter or

StackOver�ow), they determine whether a tweet belongs to the given company or

not. Since most of the tweets have not been posted by the users in WePS-3 dataset,

they do not use WePS-3 data set. From 5 million tweets that they gather, they

choose a tweet that include one of the six company words: apple, oracle, apache,

subway, seat, orange. For each of those 6 keywords, they manually annotate a

total of 100 tweets as `true'or `false'. This manual annotation acts as a ground

truth for their problem. Their improvement table shows that for given companies

and tweets, they reach 0.74 accuracy using user's Twitter pro�le and 0.77 accuracy

using user's StackOverFlow pro�le (The accuracy performance of the baseline algo-

rithm is 0.53). While constructing our external pro�les, we use similar techniques

that are employed in this paper. In order to create Wikipedia Company Page

Term Frequency Pro�le, we use term popularity approach to give weight for words

that are on the Wikipedia pages. Moreover, for Company Wikipedia Page Pro�le

and Company Wikipedia disambiguation Page Pro�le, we use tf.idf term weighting

scheme. Similarly, in order to �nd top most related topics from document corpus,

we use Latent Semantic approach that produces good results like Latent Dirichlet

approach.

• In this study, Yerva et al. [15] de�ne a relatedness factor which is the percentage of

tweets that belong to a given company. It helps them to understand the many limi-

tations of the basic pro�le-based classi�er. To overcome that, he and his colleagues

inspect the messages from the Twitter stream, which contain the company name

as a keyword. For each company, by inspecting the Twitter stream, they study the

word frequency distributions. They observe that if they have a knowledge about

all or top k of words, and if they know that whether these words contribute as

positive or negative evidence, this would help them to classify many more tweets

accurately. For this purpose, they use an active stream learning pro�le. According

to the algorithm, from the inspected tweets, which overlap with the basic pro�le

can accurately be classi�ed. All words co-occuring with pro�le keywords in these

tweets can be added to the pro�le. For tweets that do not overlap with the basic
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pro�le are classi�ed according to the relatedness factor. As a result of the related-

ness classi�cation, they have two sets of tweets either belonging or not belonging

to a given company. For these sets , keywords above certain threshold are added

to the pro�le as negative evidence keywords. They use WePS-3 data set for the

above approach.The experimental studies demonstrate that the new classi�er that

identi�es many more keywords by inspecting the twitter streams improves the ac-

curacy signi�cantly. Similarly, we use relatedness factor to show the number of

non-overlapping pro�le-tweet for our Entity Ranking Algorithm. Based on the re-

sult of this factor, we come to a conclusion that since our company related pro�les

and company unrelated pro�les have limited keyword set, our considerable amount

of company tweets do not overlap with a corresponding company pro�le.

• In a related study, Yerva [4] Yerva and his colleagues look into the reasons for

why some of the companies underperformed with their previous approaches. They

observe that companies which do not demonstrate considerable success have mid-

range relatedness factor. They generated a so called`perfect pro�le'by using the

words inferred from the entire test set. By comparing the current pro�le to the

perfect pro�le they observe that errors could occur in three di�erent ways. The �rst

is `missing words error'i.e. the current pro�le may not contain words appearing in

the perfect pro�le. The second is `words weights error'i.e. the di�erences in word

weights in the current and perfect pro�le can result in an error. The last is `wrongly

placed words error'referring to words that are marked as a positive evidence for

classi�cation can act a negative evidence. In order to reduce those errors, they use

some error reduction techniques. Statistical analysis show that these techniques

can increase the accuracy of companies that have a bad performance earlier. Like

Yerva and his colleagues, we analyse companies whose performance are under our

expectation. Similarly, we observe that missing words error and wrongly placed

words error might have lowered our accuracy results. As a future work, we plan to

use several approaches that might prevent to such those errors, which are explained

in the Conclusion chapter.

• In WePS-3 competition, the second most accurate system ITC-UT team (Yoshida

et al. 2010) reaching an accuracy of 0.75. They employ two steps. In the �rst step,

they categorize each organization name in the training data into 3 or 4 classes based

on the ratio of the accurately tweets and incorrectly tweets. For this categorization,

six binary features are used e.g Is the query identical to the entity name? or

Does Wikipedia have disambiguation page for the query? In the second step, for

each category, tweet categorization is done based on the simple heuristic rules like

whether entity name consists of two or more words. Their intuition is that company

names in the data set are usually either organization-like-names (McDonald's),
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or general word-like names (Pioneer), and organization-like-names lead to higher

percentage of tweets related to a given company than general-word-like names do.

We use similar binary features like does a company tweet includes company name

as capital or not, and similar heuristic features that are used in this paper. Also,

similarly, we use number of alternative meanings feature that shows the number

of other meanings of a company which is obtained from Wikipedia disambiguation

page of that company. More clearly, this information gives a precise information

about company name ambiguity. In other words, if the number of other meanings

of a corresponding company is high, the company has a high ambiguity and it seems

general word-like names. As we mention in Experiments and Evaluation section,

this feature makes a good contribution to the classi�cation task.

• In [16], company tweets in WePS-3 are clustered as true or false according to the

term expansion methodology. This methodology aims to enrich term representation

of tweets. They use four di�erent techniques: (1) Self-term expansion methodology

(replacing terms of a tweet with a set-of co-related terms), (2) Term Expansion

Methodology (in addition to the �rst approach, Wikipedia information is used for

enriching process), (3) Term Expansion Methodology with Positive examples that

uses the second enriching methodology with additional exclusive positive samples,

and (4) is Full Term Expansion Methodology. For this purpose, they consider

two types of company names, the �rst is generic (company names that tend to be

very ambiguous), and the second is speci�c (company names that tend to be less

ambiguous). Based on the experiments, they conclude that Full Term Expansion

Methodology perform well on clustering tweets that belong to generic company

names, and Term Expansion Methodology perform well on clustering tweets that

belong to speci�c company names. In order to solve company name ambiguity,

they employ clustering technique, which is di�erent from our classi�cation task.

However, similarly, we use external source as Wikipedia company Web pages in

order to generate company pro�le vector. Di�erently, while construction pro�le

vector, we do not compute co-related relationship between terms i.e., pairwise

mutual information as they computed in our task.

• In [17], the main approach is based on the idea of representing the information

of a company in the form of a unique pro�le. This pro�le consists of a bag of

stemmed words with their associated weights and which are obtained using a rep-

resentation based on a fuzzy combination of criteria. Then, they employ the tweet

disambiguation method by computing a comparison function between the company

pro�le and tweet content. Lastly, an unsupervised threshold is used for categorizing

each tweet as related or unrelated to the company. They test their application with

the WePS-3 Online Reputation Management corpus, and they get 0.69 accuracy.
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Di�erent from us, they use only a single pro�le i.e., company home page, and they

use a di�erent approach in order to construct company pro�le (In our task, we

use tf.idf term weighting scheme, Kullback-Leibler term weighting scheme, term

frequency term weighting scheme, and Latent Semantic Indexing term weighting

scheme to give weight to Web page words). They use a set of heuristic rules to

de�ne the importance of a term in Web page. The examples of those rules are,

word frequency counts in titles, emphasized text segments, in the beginning and

end of the document, and in the whole document.

• In [18], they use WePS-3 Online Reputation Management data set in order to solve

the disambiguation problem. Both supervised (Maximum Entropy Classi�er) and

semi-supervised method (Label Propagation) are used, and they have considerable

accuracy of 0.75.

• In [19], authors focus on a bootstrapping method to classify the tweets by collecting

external company website information. Co-occurring words in each tweet are used

as features. To compute the relevance of each word to a given company, they

compute the pointwise mutual information between the word and the target's label

i.e. `related'or `unrelated'.

• The research of [20] is based on some heuristics that use the named entities and

external sources such as Wikipedia, DBPedia and the company home page for

certain company names.

2.2 Entity Disambiguation

• The disambiguation problem also appears, when users are looking for Web pages

of a speci�c individual person using the individual's name as a query. For instance,

when a user query consists of a person name, search engine returns a ranked list

of Web pages that correspond not only to the individual's interest but also to

questioned person's namesakes. If a user is interested in Web pages of a particular

person, he has to manually disambiguate the returned Web pages. If a user's

interest is in the Web pages related to the someone other than the famous person,

the user may have to scan through pages of search results in order to �nd relevant

results which seems very challenging. In [21], authors focus on disambiguation

problem for people search on the Web. In order to solve the problem, the direct

solutions based on extracting features from Web pages such as n-grams, named

entities, hyperlinks are developed. Since, direct features may not be su�cient in

order to come up with correct clustering, indirect similarity computation is done.
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Indirect similarity of Webpage pairs is computed using Web co-occurence statistics,

which are collected using a set of queries which were submitted to a search engine

such as Yahoo. These indirect features are used by a skyline based classi�er, that

learns how to convert the indirect similarity-based features to a `merge'or `do not

merge'decision. Direct and indirect similarities are then combined to form overall

similarity that is used to label the graph G = (V,E) where V represents the set of

Webpages to be clustered and E represents the set of edges, and an edge is created

per each distinct pair of Webpages. The clustering step clusters the Web pages

based on the collected similarities. The labelled graph G is partitioned into its

clusters using the correlation clustering. After correlation clustering is applied, the

result frequently consists of a few large clusters and several singleton 1-Web page

clusters. There can be true or false 1-Web page clusters. Therefore, the second

step in the clustering process aims to re�ne false singleton clusters. The approach

is as follows, �rstly the similarities between this one page Web page cluster and the

remaining Web pages are computed. If their similarity exceeds a certain threshold

that is estimated per queried name by exploiting the number of clusters, the Web

pages are merged with another cluster.

Each resulting cluster is processed to summarize the content of the cluster, then

clusters are ranked to decide the order while they are presented to the user. Lastly;

in each cluster, Web pages are ranked. Therefore, the results are presented to the

user in the form of clusters corresponding to namesakes. Our problem is di�erent

from person disambiguation problem. For our task, the set of organization names

in the training and test corpora are di�erent. The model could not be trained for

a certain organization.

• In [22] , the author disambiguation problem is studied. The problem arises when

entities in a database contain references to other entities. References can be am-

biguous due to di�erences in the descriptions of the same entity and errors in data

entries. More clearly, the disambiguation problem often arises when multiple tables

are merged to create a single table. The authors also emphasize that recent sur-

veys show researchers who are working on data mining projects spend more time

for data cleaning and data preprocessing in the case of merging information from

heterogeneous sources in a single database. To this end, besides feature based sim-

ilarity methods that analyse similarity of entity groups, quality of disambiguation

can be signi�cantly improved by additional semantic information. Relationship-

Based Reference Disambiguation approach is used in this paper. It exploits not

only features but also relationships among entities for the purpose of disambigua-

tion. Relationship-Based Reference Disambiguation approach views the database
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as a graph of entities that are linked to each other via relationships. After iden-

tifying a set of entities (choices) by using feature-based method for a reference to

be disambiguated, then graph theoretic techniques are used to discover and anal-

yse relationships between the reference entity and a set of candidate entities. The

generic approach, �rstly connections between entities which the reference appears

in and matching the candidate entities are discovered. Then, the strength of the

discovered connections is measured in order to rank the matching candidates and

choose the top one.

• In [23], they develop an algorithm that aims to solve disambiguation problem in

e-mails using graphs. When an informal nickname is used or when the mentioned

person does not appear in e−mail header, it is di�cult to �nd out which person is

referred. Therefore, resolving the reference to a person name is an important task

for entity name extraction. For this task, the dataset includes those names that

are in the header, but can not be matched to the text because they are referred to

using initials. Nicknames refer to name mentions including common nicknames, or

American names that are adopted by persons with foreign language names. Based

on a name mention in an e-mail message m, it is formulated a query distribution

Vq, and then a ranked list of person nodes is retrieved. In this task, a base-line

method is used, and graph walk method provides more accurate results than the

baseline.

2.3 Entity Matching

• In [24], the SHINE approach is proposed. This approach is based on linking the

named entities in Web text with heterogeneous information networks that consist of

multi-type interconnected objects. Their approach is the �rst probabilistic model

for this purpose. The probabilistic approach uses entity popularity model (meaning

the popularity of an entity) and entity object model that refers to the probability of

the multi-type object distribution in Web text from the heterogeneous information

network. Since multi-type objects have di�erent types of connections that form to

a set of meta-paths (For example, in a bibliographic dataset, objects of multiple

types, such as papers, authors, publication venues and title terms have relations

of multiple types such as write, publish and contain). Meta-path is de�ned as

including a sequence of relations between di�erent object-types. In order to learn

the weights for each meta-path, the Expectation-Maximization algorithm is used.

Statistical analysis shows that the SHINE approach has better e�ciency than the

baselines.
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• [25] focuses on the probability of a given attribute value reappearing over time.

The idea is that an entity might change its attribute value as depending on its

past value. It uses the temporal information of entity records in the form of time

stamps. In the training phase, how frequently values evolve in each attribute of the

record set is learnt. Then, they calculate the likelihood that the record attribute

changes its value that have never seen before. This method is called the mutation

model. Their approach uses the mutation function that computes the probability

of entity's mutant record for given attribute at a certain time.

• In [12], a method they develop to match unstructured text reviews to a structured

list of objects. Review language model that they use gives them a principled

method that, given a review, �nds the object which is most likely to be the topic of

the review. In this paper, they explore the scenario of matching reviews to objects

using only their textual context. They propose a general method to match objects

to reviews. When a review is written about an object, each word in the review

is drawn either from a description of the object, or generic review language that

is independent of the object. The experiments and their extensive analysis show

that their language model-based method signi�cantly outperforms traditional tf.idf

based methods. We use their entity matching problem to determine whether a given

tweet is relevant or irrelevant with a corresponding company. In our adaptation, we

use two language models: one is entity mention language and the other is review

language model. Similarly, our review language model includes all review data

for training and testing companies. Also, our entity mention language consists

of two pro�les: one of the pro�les consists of Wikipedia company keywords, and

the other pro�le consists of Wikipedia disambiguation company keywords (We are

not given any information in this article about Entity mention language that they

use). We use the same algorithm in this article, and it computes the value for

both of two pro�les based on the probability values of entity mention language

and review language model. Then, the algorithm assigns the tweet as `true', or

`false'depending on the returned greatness of the pro�le values. Also, we show that

our tweet classi�cation results based on this algorithm outperforms our baseline

approach, too.

• [26] studies the object matching problem in tweets. They formulate a simple user

model for generating a tweet about an object. The model depends on the tendency

of a user to tweet about an object, the object's popularity and the distance between

the user and object's geographic location. They compute the probability of a user

tweets about an object as following: the product of the user's interest about an

object, the popularity of the object, and the function of the distance between a user
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and the object locations. Statistical analysis show that their geography-enabled

model provides improved performance over geography-less models.

• In [27], they focus on matching reviews to given objects using a translation model.

This model is based on generating a word for the object from object's attributes.

Here attributes include name of the object, city of the object and cuisine of the

object (The experiments are done both restaurant reviews from Yelp and movie

reviews from IMDb). They use generative model and learn the parameters of the

generative model using Expectation-Maximization algorithm. Their experimen-

tal analysis shows that their model gives better results than other object-review

matching problem approaches.

2.4 Social Media Analysis

• It is reasonable to make an assumption that public mood including i.e., anxiety

can drive stock market values as much as news, over the past years. In [28],

authors explain how Twitter mood in�uences the stock market. For this purpose,

measurements of collective mood states derived from large-scale Twitter feeds are

correlated to the Dow Jones Industrial Average over time. In this paper, two

tools are used in order to measure the variations in the public mood from tweets

submitted to the Twitter service during a certain time. The �rst tool is Opinion

Finder that measures the tweet in a given day text as negative or positive of public

mood. The other is GPOMS that generates a six dimensional daily time series of

public respectively mood, calm, alert, sure, vital, kind, and happy. The

experimental results show that there is a strong correlation between the certain

public mood dimensions and the stock market prediction.

• In [29], the terms in microblog posts are linked to Wikipedia pages in order to use

Wikipedia's link structure to estimate semantic similarity. Their method is the

following: useful feature terms are extracted using Wikipedia. As feature terms,

only the terms that are used in Wikipedia at least once as an anchor text for a

link are used. Combining those features, the distance between microblog posts are

measured. Then, based on the semantic similarity measurements, an unsupervised

topic detection method is used to cluster microblog documents. Lastly, for each

topical cluster, the topic is labelled with a selected term.

• In [30], the Hydra approach is proposed to solve the problem of automatically link-

ing user accounts belonging to the same user across di�erent social platforms. For

this problem, they use 5 social network service that are originated from China and

two globally social networks, Facebook and Twitter. They propose a model, called
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`Heterogeneous Behaviour Modeling'in order to measure the similarity between two

users using several aspects. The �rst one is user attributes which are either textual

attributes like name, gender, age, or visual attributes like face images used in the

user pro�le. The second is user's topic interests, the third is the language style

of a user such as personalized wording and emoticon adaptation that might be

bene�cial to distinguish di�erent users. The last one is information about user's

location and multimedia sharings like image, video or music on the Web. Based

on the above behaviour modeling, they propose to learn a linkage function via a

multi-objective optimization system. This system is based on the decision model on

pairwise similarity and users' social structure consistency information. Statistical

analysis show that their HYDRA approach outperforms the standard algorithms

in predicting the user identity across di�erent platforms.

• In [31], the authors explain that in daily life, tweets are ranked in chronological

order regardless of their potential interestingness. Therefore, more personalized

ranking scheme is needed to �lter the overwhelmed information. In this study,

they focus on, how to learn a predictive model to rank the tweets in order to

determine what tweet's are likely to attract one's attention, according to their

probability of being re-tweeted. With this approach, users can �nd interesting

tweets in a short time. For this work, they generate a graph consisting of 3 types

of nodes, users, publishers, and tweets. To incorporate all sources of information

like users pro�le, tweet quality, interaction history, nodes and edges are represented

as feature vectors. All these feature vectors are mapped to node weights and

edge weights. According to the graph model, feature aware factorization model is

designed, which can re-rank the tweets and fully explore all the information in the

graph for prediction. Di�erent from the previous studies, this work is focuses on

local factors at individual level.

• In [32], a natural alternative for advertising keyword recommendation for short-text

web pages is to recommend relevant key words not present in the target web page

by leveraging the content of Wikipedia is proposed. Given a target web page, they

propose to use a content biased Page Rank on the Wikipedia graph to rank the

related entities. More clearly, advertising keywords are extracted from web page,

then these keywords are used in order to �nd the relevant ads. The short-text web

pages contain little information which makes ranking di�cult for a recommendation

system. Therefore, in order to overcome this problem, the existing advertising

keywords will be enriched with those keywords that are relevant to the target Web

page even if they do not appear on the target web page. Advertising keywords are

analysed to �nd a relationship between existing ones and new obtained keywords,

which are called `leveraged keywords'that are semantically relevant with each other.
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This paper's approach uses Wikipedia pages as the dictionary of the recommended

keywords. Structurally, Wikipedia can be viewed as a directed graph with vertices

and edges corresponding to its entities. Page Ranking algorithm is used to infer

related keywords. Also, two kinds of biased are used, which are called content

biased and advertisement biased making it possible to extract advertising keywords

that are both relevant with a target page and a valuable for advertising.

• The main idea behind [33] is that words co-occuring in text similarly refer to

concepts that close together in the Dbpedia graph. The approach is graph-based

topic labeling by using Dbpedia. Dbpedia subgraph of topic labels is extracted,

and then network centrality measures are adapted so that represent a good label

for a topic. The most important improvements are better corpus coverage and

much higher ability to represent broader labels. In this �eld, one of the best

known multi-domain knowledge is Dbpedia which extracts structural information

from Wikipedia. This paper proposes to extract topic labels in text documents

by linking the inherent topics of a text to concepts found in Dbpedia, and mining

the resulting topic graphs. The goal is not only �nding a good label but also

integrating a topic with related concepts. An important aspect of this work is

relating a topic label with a URL which identi�es a concept. This opens a way to

knowledge exploration in Dbpedia. Using graph centrality measures, concepts that

are most likely to represent the topic are identi�ed.

• In [34], the authors make use of Twitter messages for the task of sentiment analysis

in order to classify tweets as positive, negative, or neutral sentiments. A sentiment

classi�er is used on a tweet corpus. Companies want to become aware of positive

or negative comments with regard to themselves through a social media. Our work

can be a preprocessing step of sentiment analysis task. After the relevant tweets

are identi�ed, those can serve for sentiment task.
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Problem Statement and Our

Approach

3.1 Problem Statement

Given a set of tweet t and an organization name o, our goal is to determine whether t

is related to o or not. An input tweet is composed of: the tweet identi�er, the entity

(organization) name, the query used to retrieve the tweet, the author identi�er and

the tweet content. For each organization in the dataset, we are given the organization

name and its homepage URL. The output per tweet is `True'or `False'tag corresponding

to related or non-related to the given organization. Compared with the conventional

classi�cation process, this task has some challenges as presented in the �rst chapter in

detail. Brie�y, the main challenge is that tweet and organization name contain little

information, i.e., contextual information is very limited. To overcome this problem, we

create several pro�les for a company, each of which is either related or unrelated to the

company.

3.1.1 Company Pro�le Representation

We represent each company as a collection of several pro�les, formally:

Ck = (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12) (3.1)

P1 = (Company Wikipedia Page Pro�le) (3.2)

22
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P2 = (Company Wikipedia Disambiguation Page Pro�le) (3.3)

P3 = (Company Home Page Pro�le) (3.4)

P4 = (Company Review Page Pro�le) (3.5)

P5 = (Company Wikipedia Page Kullback-Leibler Pro�le) (3.6)

P6 = (Company Wikipedia Disambiguation Page Kullback-Leibler Pro�le) (3.7)

P7 = (Company Wikipedia Page Noun Phrase Pro�le ) (3.8)

P8 = (Company Wikipedia Disambiguation Page Noun Phrase Pro�le.) (3.9)

P9 = (Company Wikipedia Page Term Frequency Pro�le) (3.10)

P10 = (Company Wikipedia Disambiguation Page Term Frequency Pro�le.) (3.11)

P11 = (Company Wikipedia Page Latent Semantic Indexing Pro�le) (3.12)

P12 = (Company Wikipedia Disambiguation Page Latent Semantic Indexing Pro�le)

(3.13)

Each pro�le is a set of weighted keywords. For better classi�cation results, a company

pro�le should have a good overlap with its tweets. We are not given tweet messages in
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advance, so we create such pro�les from alternative external sources, independent of the

tweet messages. A company pro�le should not be too general, because it would result

in many false positives during the classi�cation, and also not too narrow; otherwise, we

could miss potential relevant tweets.

3.1.2 Tweet Representation

Each tweet is represented as bag of words i.e., the occurrence of the word is used as

a feature for classi�er. Initially these tweets are pre-processed by removing html tags

and stop words. Then, stemming and tf.idf computation are performed for each tweet.

Lastly, the tweet pro�le vector is generated as tuples of words and their weights. The

vector for i'th tweet inluding n words can be represented as:

Vi = set(word1,weight1), ..., (wordn,weightn)

3.2 Our Approach

Using the provided training data, we train a classi�er with generic features. The features

should not be too general which may lead to biased the preference to tag tweets as `True',

or too narrow which may lead to biased the preference to tag tweets as `False'.

The features should be generated automatically, with no manual labelling. We propose

to build and use a set of supervised classi�ers on the extracted features. The �rst step

is to select the features, which will maximize the accuracy of classi�cation. In 3.1, you

can see our disambiguation approach visually.
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Figure 3.1: Components of a Disambiguation System.

3.2.1 Data Preprocessing

We �rst explain several data-preprocessing techniques that are widely used for our clas-

si�cation task. Data-preprocessing methods transform raw data into an `understandable

format'. In this way, irrelevant, redundant, noisy and unreliable data are removed, which

makes data content cleaner. Data pre-processing includes data cleaning, data normaliza-

tion, data transformation, feature extraction, feature selection, etc. The output of data

pre-processing is the �nal cleaned-up training set.

3.2.1.1 Removing Stopwords

While generating company pro�le, it is important to remove all stop words like `a, an, the,

...' in order to get the clear content. For this purpose, beside using Python's NLTK library

[35], we generate a custom list of ignorable words that leads to much more reasonable

results. You can see our additional stopword list in Appendix section. Moreover, to

prevent the bias, we also ignore company name keywords from both Tweet vector and

company pro�le vector.
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3.2.1.2 Stemming

In Information Retrieval, stemming is the process of converting the derived words to their

stems and roots. This data transformation process provides the capability of grouping

the keywords from the same root. For instance the stem for computer and computation

is comput. In this thesis, both the Porter Stemmer and Lancaster Stemmer is tested.

However, since the Porter Stemmer is more popular and commonly used in many appli-

cations, we determine to use it.

3.2.1.3 Lemmatization

Lemmatisation is the algorithmic process of determining the dictionary form of a given

word in the context. For example, In English, the verb 'to walk' may appear as `walk',

`walked', `walks', `walking'. The dictionary form of `walk' is called the lemma for this

word. The other example is that the word `better' has `good' as its lemma. For our prob-

lem, the words are lemmatized using NLTK's WordNetLemmatizer [36]. Lemmatization

can be seen as a form of data transformation and preprocessing step.

3.2.1.4 Data Normalization

Data Normalization is the process of transforming all variables in the data into speci�c

range of values. By normalization, the similarities of two documents can be compared

even, if one of them is small, and the other is large.

3.2.1.5 Generating Vector Space Model

The representation of the documents as vectors in a common vector space is known as the

`Vector space model'[? ]. This refers to a vector representation of a document d includes

the words in d with their weights. The Vector Space Model is commonly used in di�erent

Information Retrieval tasks, such as document classi�cation, clustering, retrieval, etc..

The weight vector for document d is:

[Vd] = [w1,d, w2,d, · · · , wn,d] t

represented as a bag-of-words model.The weight of the each term in a document is

computed commonly via term frequency-inverse document frequency (tf.idf) model:
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wt,d =

(
tft,d · log

|D|
|d′ ∈ D|t ∈ d′ |

)
(3.14)

where tft,d denotes term frequency of term t in document d. tft,d value is computed

as term frequency of term t in document d is divided by the document length i.e., the

number of words in the document. The other component of the weight computation

log |D|
|d′∈D|t∈d′ | is inverse document frequency where |D| is the total number of documents

in the document set, and |d′ ∈ D|t ∈ d′ | is the number of documents containing the term

t.

3.2.2 Feature Extraction

The feature extraction includes organization features (i.e. company) and tweet features.

In this step, we pay more attention to the organization information, which is enriched

with external resources. We use Wikipedia company web page, company home page

and company review page, which include the keywords related to the company and the

Wikipedia disambiguation pages which include the keywords unrelated to the company

to get features representing an organization.

3.2.2.1 Numerical Features

Company Wikipedia Page Pro�le

We use the Wikipedia page of a company with the goal of getting higher quality and

rich data about the company and its products and services. The most important words

on these pages are mostly relevant to the speci�cs of the company, and can easily be

used to identify the product/company. We �rst download the Wikipedia pages and the

pages linked from these Wikipedia pages up to depth=2. These pages are then parsed

and the text in the pages are used to derive the Company Wikipedia Page Pro�le for the

company.

In order to generate this pro�le, then we compute the weight of each term in these

parsed text �les using the tf.idf term weighting scheme. Most important 100,250 and

500 keywords are then selected as to represent the company pro�le as a vector. For

example, for Apple Inc., the �rst �ve keywords with their associated weights are:
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VprofileWiki = [(′ipad′, 0.532), (′mac′, 0.484), (′iphone′, 0.422),

(′store′, 0.366), (′steve′, 0.322)]

Company Wikipedia Disambiguation Page Pro�le

We generate an alternative pro�le for each of the company using the Wikipedia pages

of the other meanings of the company name. Wikipedia provides a disambiguation

page, when an entry might mean more than one entity in the real world. For example,

Apple disambiguation web page includes all other meanings of `apple'. Thus, we use

these disambiguation pages to �nd the other meanings of the company name and each

namesake's. The purpose of creating these Wikipedia disambiguation page pro�les is to

�nd out the most important terms that would help distinguish between the company we

are interested in and all other real world entities with the same name.

To create the pro�le, we again perform stemming, lemmatization as we do in Company

Wikipedia Page Pro�le creation. Terms are weighted using tf.idf and ranked. Top K

(100,250,500) keywords are then selected as the Company Wikipedia Disambiguation

Page Pro�le.

VprofileWikiDisambiguation = [(′river′, 0.187), (′valley′, 0.185),

(′band′, 0.183), (′card′, 0.172), (′store′, 0.169)]

Company Review Page Pro�le

Tweets usually mention companies in an informal context. They do not include complete

and clearly identi�able company names. Thus, with the assumption that if we can

capture the informal context/language in a more content rich platform we might be able

to get better company pro�les, we create the review pages-based company pro�les. We

expect that the company review pro�le keywords will have better overlap with the tweets

mentioning the company.

Since, our data set includes companies providing services di�erent categories, we have to

pick company review pages from several web sites that suits to the company function.

For instance, for the companies in the Food/Restaurant categories (e.g., Friday's and

McDonald's), we use restaurant review sites such as Yelp [37] and Pissed Consumer [38].

These sites contain information about the businesses in addition to the customer reviews.

Amazon [39] and CNET [40] are used to collect reviews about the technology companies
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such as Alcatel and Apache, while AirlineQuality.Com [? ] is used to gather comments

on airlines. For hotels and reservation companies Tripadvisor [41] is exploited. For the

companies that are in other industries such as automotive and education, we select a

representative set of sites that has enough consumer reviews on those companies.

The data collection process involve crawling the mentioned review sites. Instead of

crawling the whole site, we only crawl the initial pages about the company and the pages

linked from those pages (crawling depth = 2). Same preprocessing steps are applied to

this crawled data. Then the top K (100, 250, and 500) terms ranked according to their

tf.idf are selected as Company Review Page Pro�le. For instance, we show the �rst �ve

keywords about Apple Inc. below.

VprofileReview = [(′inch′, 0.999), (′iphon′, 0.583), (′iwatch′, 0.429),

(′macbook′, 0.403), (′speaker′, 0.363)]

To improve the classi�cation accuracy, we perform some additional �ltering method by

�xing the typos in the review text, which are prevalent.

Firstly, we apply on to do fuzzy matching process. We initially detect misspelled words

in review data using Python's Enchant library [42]. Enchant library includes dictionaries

that have di�erent language tags like Spanish or English. These dictionaries are used

to check the spelling of words in the text and to get suggestions for misspelled words.

Using Enchant's default English tag dictionary, we obtain misspelled words. Then, in

order to do string matching for misspelled words, we use Levenshtein distance metric [43]

for measuring the di�erence between two strings. The Levenshtein distance between two

words refers to the minimum number of single-character edits, i.e., insertions, deletions,

or substitutions require to change one word into the other. Technically, for a misspelled

word, we obtain all the possible strings that have minimum Levensthein Distance to a

given erroneous word. However, in the case of returning more than one word that have

the minimum distance, there is a second job that we have to choose more meaningful

word that is most related with a given concept manually, so this method is useless.

Next, we apply another method that succeeds to eliminate misspelled words considerably.

We enrich the keyword set of the Enchant's default dictionary by generating additional

entries. In order to prevent incorrect �ltering, we create very large dictionary containing

both company-based words and general public language words. For that purpose, we

use a big text �le which consists of about a million words. The �le is a concatenation

of several public domain books from Project Gutenberg and lists of most frequent words
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from Wiktionary and the British National Corpus. This �le is obtained from Peter

Norvig's Web site [44]. As this �le involves general language words at a high level, the

created dictionary only using the words in this �le may not be su�cient for �ltering

process. Therefore, we crawl 2 level of each company's home page, then we extract all

keywords and add into the dictionary that we have created. Then, Enchant's default

dictionary and the generated dictionary discard misspelled words automatically. Before

�ltering, some of the keywords taken from Apple Inc. pro�le vector is:

[`tbdtax', `seller', `instal', `techtrack', `msrp', `tbdmsrp', `o�ens', `softwar', `iphon',

`prohibit', `unavail', `imac', `wireless',`inch', `shop', `macbook', `cool', `devic',

`speaker', `attempt', `messageif', `capsul', `fullest']

As seen from the keyword set, most of the words seem very meaningless or irrelevant that

would not make any contribution to classifying process. The given example representing

5 keywords of Apple Inc. above involves the second method that we mention. As

you from the example, the second technique makes the pro�le content more clear and

understandable.

Company Wikipedia Page Kullback-Leibler Pro�le

Kullback-Leibler divergence measures the relative entropy between two probability mass

functions namely P and Q. When sum of P and Q is 1, and for any i, if P (i) > 0 and

Q(i) > 0, we de�ne their Kullback Leibler Divergence based on this formula:

KL(P ||Q) =
n∑

x∈X
P (x) · log

P (x)

Q(x)

In the document scenario, we consider a document d as discrete distribution of |d| random
variables, where |d| is number of words in the document. Let d1 and d2 be two documents

that we want to calculate their Kullback Leibler distance. The divergence between two

distributions of words is:

DKL( ~td1
t
, ~td2

t
) =

m∑
t=1

wt,d1 · log
wt,d1

wt,d2

where wt,d1 represents term frequency of term t in document d1 and wt,d2 denotes term

frequency of term t in document d2.

We adapt the formula in 3.15 that is originally used for document similarity to a weight

computation scheme.Formally, for term t in document d, we use the formula in 3.16 to



Chapter 3. Our Approach 31

compute the weight of the t in d in order to create other company pro�le vector. For

this purpose, we use the following formula:

kullbackLeibler(t, d) = (wt,d · log(wt,d)) (3.15)

where wt,d represents term frequency of term t in document d.

In order to create the related pro�le, we download the Wikipedia pages and the pages

linked from these Wikipedia pages up to depth = 2 as we perform to build Company

Wikipedia Page Pro�le. Then, the same preprocessing steps are applied to the down-

loading data. Then, the top K (100,250, and 500) most important terms in the parsed

text are ranked according to their computed weights by 3.16 and Company Wikipedia

Page Kullback-Leibler Pro�le is constructed.

According to the formula 3.16, when term frequency value of a term increases, the ob-

tained weight value decreases. Therefore, initially, we obtain the weight values which are

less than zero. Then, we need to normalize ranked terms by term weight which has the

smallest value, so that pro�le values are mapped between 0 and 1. As you see from Apple

Inc. examples for both related and unrelated pro�les, the most important keyword for

the company pro�le has the greatest value which is 1. For example, for Apple Inc., the

�rst �ve keywords with their associated weights become as:

VprofileKullbackLeibler = [(′comput′, 1.0), (′system′, 0.983), (′product′, 0.69),

(′softwar′, 0.634), (′macintosh′, 0.588)]

Company Wikipedia Disambiguation Page Kullback-Leibler Pro�le

In order to create Company Wikipedia Disambiguation Page Kullback-Leibler Pro�le,

we download and parse the Wikipedia disambiguation pages to get the other meanings of

the company content as we generate Company Wikipedia Disambiguation Page Pro�le.

Then, we rank the top K (100, 250, and 500) most important terms in the parsed text

according to their computed weights by 3.16, and we construct Company Wikipedia

Disambiguation Page Kullback-Leibler Pro�le. After performing the same normalization

method that we discuss for Company Wikipedia Page Kullback-Leibler Pro�le, the �rst

�ve keywords for Apple Inc. with their associated weights become as:
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VprofileDisambiguationKullbackLeibler = [(′nonprofit′, 1.0), (′textdecor′, 0.956), (′revis′, 0.926),

(′fruit′, 0.834), (′list′, 0.755)]

Company Wikipedia Page Noun Phrase Pro�le

Our previous company pro�les contain vocabulary from linguistic categories both noun

and verb. We believe that representing any company with its extracted signi�cant nouns

is more comprehensive way rather than representing that company with verbs extracted

from company pro�les. Therefore, we eliminate verbs from pro�les to bring nouns into

the forefront. Grammatically, adjectives and adverbs have a meaning when they are used

with other words. Since adverbs do not make much contribution to represent company

content noticeably, we discard adverbs from company pro�les. Hence, so we construct a

company pro�le vector including nouns and noun phrases.

Firstly, we tag [45] the given list of tokens using NLTK's postag module. Then, we

explore chunking which segments and labels multi-token sequences. In order to do that,

we de�ne a rule that �nds a chunk structure in a given text using NLTK's RegexpParser

module. The rule is extracting single noun, noun + noun and, adjective+noun in a given

text. The rule that we use is represented in 3.2.
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CHUNKING RULE

grammar = r"""

NBAR:

{<NN.*|JJ>*<NN.*>} # Nouns or Adjectives, terminated with Nouns

NP:

{<NBAR>}

{<NBAR><IN><NBAR>} # Above, connected with in/of/etc...

"""

Figure 3.2: Chunking Rule for Extracting Noun + Noun Phrase

Formally, the rule says that any number of noun (NN) or adjective (JJ) is followed by

any number of noun (NN). Using this grammar rule, a chunk parser is created, and a

chunk tree is produced. For instance, given a sentence in the following:

This is the best digital camera.
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Chunking Example

This is the best digital camera

DT VBZ       DT             JJS                 JJ                   NN

NP

S

Figure 3.3: Chunking Example for Extracting Noun + Noun Phrase

The chunk tree based on the example is constructed in 3.3.

For our problem, we feed obtained tokens to the chunker as a parameter to obtain

noun+noun and adjective+noun words from the text. Then, we select top 100,250

and 500 important keywords as company Wikipedia page noun phrase pro�le vector

for Wikipedia company pages. For Apple Inc., the �rst �ve keywords based on Company

Wikipedia Page Noun Phrase Pro�le are:

VprofileNamephrase = [(′macintosh′, 0.756), (′iphon′, 0.731), (′ipod′, 0.575),

(′ipad′, 0.529), (′powerbook′, 0.495)]

Company Wikipedia Disambiguation Page Noun Phrase Pro�le

In order to create company unrelated pro�le that includes noun and noun phrases, we

apply the same chunking strategy to Wikipedia disambiguation pages for the correspond-

ing company. Then, we select top 100,250 and 500 important keywords as company

Wikipedia disambiguation page noun phrase pro�le vector. For Apple Inc., the �rst �ve
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keywords based on Company Wikipedia Disambiguation Page Noun Phrase Pro�le are:

VprofileDisambiguationNounphrase = [(′appel′, 0.613), (′river′, 0.371), (′automobil′, 0.354),

(′band′, 0.297), (′custard′, 0.278)]

Company Wikipedia Page Term Frequency Pro�le

Term frequency is often used in Information Retrieval and Text Mining in order to

weight document terms. Term frequency captures how often a particular word appears

in a document. After performing data preprocessing steps as we apply to construct

other pro�les, we build this entity pro�le vector based on the term frequency metric

for Wikipedia company pages. We chose the top 100, 250 and 500 terms that have the

highest term frequency score. In order to do this computation, we use this formula:

termfrequency(wi, D) =

(
freq(wi, D)

maxfreq(wk, D); for wordwk ∈ D

)

For Apple Inc., the �rst �ve keywords based on Company Wikipedia Page Term Fre-

quency Pro�le are:

VprofileTermFrequency = [(′comput′, 1.0), (′iphon′, 0.711), (′system′, 0.546),

(′disk′, 0.538), (′macintosh′, 0.134)]

The pro�le example for Apple Inc. shows that the weight of the most signi�cant keyword

is 1. However, except Company Wikipedia Page Kullback-Leibler Pro�le and Company

Wikipedia Disambiguation Page Kullback-Leibler Pro�le, the most important keyword

for the corresponding pro�les has less than 1 weight value. The reason is the following:

Since we use company Wikipedia page and links on that page, we have more than one

document. Also, while computing a word weight, we gather all word weights in the

documents, so the total weight of the word may become greater than 1. Therefore, we

need to normalize pro�le terms with the greatest term weight in that pro�le, so that a

word that makes the greatest contribution to the classi�cation task has the value of 1.

Company Wikipedia Disambiguation Page Term Frequency Pro�le

We construct the entity unrelated pro�le vector based on the term frequency metric

which is de�ned above for Wikipedia company disambiguation pages. We choose the

top 100, 250 and 500 terms that have the highest term frequency score. Then, we do
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the same normalization method that we discuss for Company Wikipedia Page Term

Frequency Pro�le. For Apple Inc., the �rst �ve keywords based on Company Wikipedia

Disambiguation Page Term Frequency Pro�le are:

VprofileDisambiguationTermFrequency = [(′tomato′, 1.0), (′cashew′, 0.487), (′beatl′, 0.476),

(′band′, 0.418), (′record′, 0.417)]

Company Wikipedia Page Latent Semantic Indexing Pro�le

Latent Semantic Indexing (LSI) [46] is an Information Retrieval method that is capable

of retrieving text based on the concepts that it contains. LSI has the ability to correlate

semantically related terms that are hidden in a collection of documents. LSI is based

on the principle that words that are used in the same contexts tend to have similar

meanings.

LSI �rstly constructs a term-document matrix, formally A, to represent the occurrences

of the m terms within a collection of n documents. In a term-document matrix A, each

term is represented by a row, and each document is represented by a column. Each cell

ai,j in the matrix shows the number of times the associated term appears in the given

document. This matrix is usually very large and very sparse.

Once a document matrix is constructed, each cell counts are modi�ed using tf.idf weight-

ing formula given by 3.14. As a result of that, rare words are weighted more heavily than

common words. Next, LSI performs Singular Value Decomposition on the matrix A to

determine patterns in the relationships between the terms and concepts used in the doc-

uments. Singular Value Decomposition computes the term and document vector spaces

by transforming the single term-frequency matrix A into three other matrices. These are

an m by r term-concept vector matrix T , an r by r singular values matrix S, and a n by

r concept-document vector matrix D, which satisfy the following relations [47]

A =
[
TSDT

]

[S1,1 ≥ S2,2 ≥ Sr,r ≥ 0]

Then, the singular value matrix S is truncated to size k by r, document vector size

is truncated to n by k, and term vector matrix size is truncated to m by k. This is

called dimensionality reduction which is one of the in�uential preprocessing techniques.
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Along with this reduction, while reducing noise and other undesirable e�ects of the

original space of A, Singular Value Decomposition preserves the most important semantic

information in the text. In other words, it makes the best possible reconstruction of the

matrix with the least possible information. The reduced set of matrix is that:

Ak =
[
TkSkD

T
k

]
Tk matrix gives us the coordinates of each word on our concept space, Dk matrix gives us

the coordinates of each document in our concept space, and Sk matrix of singular values

gives us a clue about how many dimensions or `concepts'we need to include. Based on

these coordinates, documents or terms can be clustered easily using similarity metrics

like cosine or others. Also, new concept space has fewer dimensions and the obtained

matrix is a dense matrix rather than its previous case which is a sparse. Therefore, LSI

is computationally powerful.

One of the drawback of LSI method is that it can not handle polysemy i.e., words with

multiple meanings, e�ectively. It assumes that the same word means the same concept

which causes problems for words like `book'that have multiple meanings depending on

which contexts they appear in.

We use LSI for company Wikipedia pages to extract semantically related keywords, and

we generate other alternative pro�le. In order to do that, we construct document-term

matrix including Wikipedia company page and each link on that page as documents in the

columns of the matrix, and each word appearing in these documents forms the row of the

matrix. When we apply LSI to the constructed matrix, the algorithm examines statistical

word co-occurence patterns within documents, and discovers semantic structure in a given

corpus. As a result, we extract top K keywords (100, 250, and 500), we create Company

Wikipedia Page LSI Pro�le for the corresponding company.

During implementation, we use Python's Gensim package [48] that includes LSI to apply

Singular Value Decomposition on the constructed matrix to extract more `semantically

related'keywords with their associated weights. Gensim implementation involves de�ning

the topic number i.e., when the constructed matrix is mapped to the lower dimension,

the number of target dimension in the transformed dimension. For our classi�cation task,

we obtain the topic number as the default topic number which is de�ned by Gensim (the

default topic number is �ve). In this way, the �ve singular value which carries the most

important semantic information is obtained while reducing noise in data. This means,

we transform our constructed matrix via Latent Semantic Indexing into a latent 5-D

space, so that the most signi�cant keywords for each topic are ranked. Then, we obtain

the top K keywords (10, 25, and 50) for each topic, and combine them, so Company
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Wikipedia Page LSI Pro�le is generated. For Apple Inc., the most important 5 keywords

for Company Wikipedia Page LSI Pro�le are:

VprofileLSI = [(′macintosh′, 0.331), (′iphon′, 0.246), (′ipad′, 0.177),

(′ipod′, 0.165), (′model′, 0.132)]

Company Wikipedia Disambiguation Page Latent Semantic Indexing Pro�le

We use the same LSI technique for company Wikipedia disambiguation pages. In this

case, we construct document-term matrix including company Wikipedia disambiguation

page and each link on that page. Similarly, we extract top K keywords (100, 250,

and 500), and we create Company Wikipedia Disambiguation Page LSI Pro�le for the

corresponding company.

We obtain the topic number as 5 which is de�ned by Gensim as default as while generating

Company Wikipedia Page LSI Pro�le. Then, we obtain the top K keywords (10, 25, and

50) for each topic, and combine them, so Company Wikipedia Disambiguation Page LSI

Pro�le is generated.

For Apple Inc., the most important 5 keywords for Company Wikipedia Disambiguation

Page LSI Pro�le are:

VprofileDisambiguationLSI = [(′fruit′, 0.346), (′plant′, 0.274), (′tree′, 0.218),

(′band′, 0.198), (′flower′, 0.167)]

Number of alternative meanings

We obtain the number of di�erent links in Wikipedia Disambiguation Page for each of

the organization in the dataset in order to see how disambiguation intensity in�uence

the related or unrelated tweet evaluation process. More clearly, the number of di�erent

namesakes of a company name would help us if the company name is a very common

name or not. This feature would help di�erentiating between companies that have generic

company names like Borders or Delta and companies that have speci�c company names

like Armani or Lennar. We use the number of di�erent namesakes extracted from the

Wikipedia disambiguation pages as the number of alternative meanings.



Chapter 3. Our Approach 39

3.2.2.2 Categorical Features

Capital words

Capital words are more likely to be important words or named entity. We assume that,

if the tweet contains a company name in capital case, it is more likely that the tweet is

related to the company of interest.

Url

URL is also a strong indicator. If the tweet contains a link to a page that is in the same

domain as the company homepage, or it has a link to company Wiki-Webpage, then it

is more likely that the tweet is related to the company of interest.

Unigram

The rule is that if a tweet contains the full entity name (more than one word) such as

�Apollo Hospital�, then it is more likely to be tagged as related with the given organiza-

tion.

Prepositions

The basic English grammar rule is that the prepositions, `at', `for' and `of' commonly

come in front of the organization names. Therefore, we de�ne such information as an

other feature that would help us whether a tweet refers about a given organization or

not.

3.2.2.3 Feature Representation

We represent each tweet using a feature vector compose of the above de�ned features.

For a given tweet Ti and company entity Ck pair, the feature vector is as follows:

Fj(Ti, Ck) = [M1,M2,M3,M4,M5,M6,M7,M8,M9, H1, H2, H3, H4]
T (3.16)

The M1,M2,M3,M4,M5,M6,M7,M8 features are similarity features, which quantify

how close a tweet overlaps with the entity and alternative pro�les. More formally:

M1 : is computed using the cosine similarity between the tweet feature vector and

Company Wikipedia Page Pro�le.

M2 : is computed using the cosine similarity between the tweet feature vector and

Company Wikipedia Disambiguation Page Pro�le.
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M3 : is computed using the cosine similarity between the tweet feature vector and

Company Review Page Pro�le.

M4: is computed using the cosine similarity between the tweet feature vector and

Company Wikipedia Page Noun Phrase Pro�le.

M5: is computed using the cosine similarity between the tweet feature vector and

Company Wikipedia Page Kullback-Leibler Pro�le.

M6: is computed using the cosine similarity between the tweet feature vector and

Company Wikipedia Page Term Frequency Pro�le.

M7: is computed using the cosine similarity between the tweet feature vector and

Company Wikipedia Page Latent Semantic Indexing Pro�le.

M8: is computed using the Kullback-Leibler distance asymmetric similarity between

the tweet feature vector and Company Wikipedia Page Pro�le.

Also, M9 is number of alternative meanings feature. Lastly, the Hi features are the

categorical features explained in previous section.

3.2.3 Used Supervised Classi�ers

3.2.3.1 Logistic Regression

The goal of a classi�er in our study is to mark tweets as True or False based on their

feature vectors. We train a Logistic Regression for this task. Logistic Regression is a type

of probabilistic statistical classi�cation model, which is also used to predict a binary value

from a binary predictor. It is used for predicting the outcome of a categorical dependent

variable (i.e., a class label) based on one or more predictor variables (features). The

principle of Logistic Regression is to �nd the maximum entropy distribution that is

consistent with the given constraints [49]. The idea that just model what is known, and

keep uniform distribution for what is unknown, i.e., is have maximal entropy. Weka [50]

tool is used to implement Logistic Regression.

Logistic regression uses predicted probabilities in order to label future testing sample

like Naive Bayes, J48 Decison Tree[51]. Statistical anlysis shows that, it has better
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performance than the other prediction methods. Assuming that we have binary classes 0

and 1,Logistic regression estimates class probabilities directly via the following formula:

Pr((1|(x0, x1 . . . xn), (w0, w1 . . . wn)) =
1

1 + exp(−w0 − w1 · x1 − w2 · x2 − . . . wn · xn)

where x1, . . . , xn represent features, and w1, . . . , wn represent associated feature weights.

The given function produces p values between 0 and 1. Mathematically:

Pr((1|(x0, x1 . . . xn), (w0, w1 . . . wn)) + Pr((0|(x0, x1 . . . xn), (w0, w1 . . . wn)) = 1

Suppose that if 1
1+exp(−w0−w1·x1−w2·x2−...wn·xn)

≥ 0.5 then y = 1; otherwise, y = 0.

As a parameter estimation method, Logistic Regression uses Maximum-Likelihood Es-

timation that selects the set of values of the model parameters, which maximizes the

likelihood function[52]. We chose to use Logistic Regression as the supervised classi�er.

We employ Logistic Regression for only numerical features. For example, when we apply

logistic algorithm to our training and test data for Wikipedia cosine similarity and review

cosine similarity features, the output is here:

Trueclass = 2.3791 + cosineV alue · 39, 205 + reviewCosineV alue · 13, 5366

Falseclass = 5.52 · cosineV alue− 8.38 · reviewCosineV alue+ 3, 25

3.2.3.2 Majority Voting

Majority voting method [12] requires a set of internal classi�ers. Majority voting algo-

rithm chooses the particular class based on the largest number of votes or predictions

that it receives. Majority rule is a decision rule that selects the alternative which has a

majority, that is, more than half the votes.

For this classi�cation problem, we select three di�erent classi�cation algorithms CM1(X),

CM2(X), and CM3(X)where X denotes classi�ed sample, and CMi(X) denotes the i'th

classi�er in order to classify sample X by Majority Voting algorithm. CM1(X), CM2(X),

and CM3(X) show the individually better performance in our classi�cation task. CM1(X)

represents BFTree, CM2(X) represents MLP, and CM3(X) represents LADTree.

Majority voting aims to combine these 3 di�erent classi�er results such that the produced

output is superior to any of these individual models. A common way to combine these

rules is to: C(X) = majority voting CM1(X), CM2(X), CM3(X), where C(X) is the
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predicted label. Voting Classi�er contributes to improve the performance; for instance,

if CM1(X), CM2(X) classify X correctly, but CM3(X) classi�es incorrectly, there is a

1/3 probability of labeling it as incorrectly. However, the combined classi�er will always

give the correct classi�cation.

3.2.3.3 Support Vector Machine

Support Vector Machine Algorithm can e�ciently perform non-linear classi�cation using

a kernel function that, in a way, maps its inputs into high-dimensional feature spaces.

A support vector machine constructs a hyperplane in a high dimensional space, which

can be used for classi�cation. A good separation is achieved by the hyperplane that has

the largest distance to the nearest training data point of any class. The documents that

are on the hyperplane margins are called the support vectors. The new document is

classi�ed according to the following simple reasoning:

Documents in the direction of the normal vector are classi�ed as positive; on the other

hand, documents in the opposite direction of the normal vector are classi�ed as negative.

Support Vector Machines usually produces good results. However, there is a blackbox

problem, i.e., we do not know why it generates good results. Also, its parameters are

needed to tuned, and a kernel function that can be linear, quadratic, gaussian or PolyK-

ernel is needed to be chosen. Thus, there is no �x set of parameters for Support Vector

Machines. For our classi�cation problem, we employ Support Vector Machine as one

of the classi�cation algorithms. We obtain the best accuracy result for our classi�ca-

tion task with PolyKernel function when the complexity parameter has a value of 2.8

and the type of the data transformation is normalizing. We �nd complexity parameter

value using Weka's Parameter Selection Classi�er, e.g., for a given parameter range, the

algorithm selects the best parameter value for the corresponding classi�er.

3.2.3.4 Multilayer Perceptron

This algorithm is based on the structure of our brain. Systematically, there are inputs,

there is a hidden layer or there are hidden layers, and there are outputs. This algorithm

is an e�ective algorithm, because, if the actual output is not equal the desired output,

the error value is aimed to be minimized without any external e�ects. The algorithm

minimizes the error value by updating weights with �Backpropagation Algorithm�.
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If there is no any hidden layer, the algorithm is called Perceptron Algorithm. The input-

output representation is here:

f(x1 · w1 + x2 · w2 + ....+ bias) = output

where xi denotes features of input sample and wi denotes associated sample weight.

f is a monotonically increasing, continuous function i.e., it's derivative is always positive.

The function f is as follows:

f(x) = sigmoid function = 1
1+exp(−x)

In contrast, if there is a hidden layer or multiple hidden layers, the algorithm is called

�Multilayer Feedforward Neural Network�. It uses Backpropagation Algorithm [53] that

minimizes the error by taking derivative of the error function. Backpropogation algorithm

is prone to stuck in a local minumum. In order to avoid stucking in a local minumum,

the optimization algorithms like simulated annealing and genetic algorithm is used.

We will present the problem mathematically. Since backpropagation uses the gradient

descent method, the derivative of the squared error function with respect to the weights

of the network should be calculated [53]. Assuming one output neuron, the squared error

function is:

E =
1

2
· (t− y)2

where, E is the squared error, t is the target output for a training sample, and y is the

actual output of the output neuron. The factor of 1
2 is cancelled the exponent, when

di�erentiating. So, error E depends on the output y. However, the output y depends on

the weighted sum of all its input:

y =
n∑

i=1

wi · xi

Here, n is the number of input units to the neuron, wi is the i'th weight and xi is the

i'th input value to the neuron.

The given formula in above is only true for a neuron with a linear activation function

i.e., that is the output is simply the weighted sum of the input. In general, a non-linear,

di�erentiable activation function, α, is used. Thus, more correctly:
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y = α(net)

net =
n∑

i=1

wi · xi

The partial derivative of an Error Function is computed with respect to wi using the

chain rule:

∂E

∂wi
=

(
dE

dy
· dy
dnet

· ∂net
∂wi

)

where ∂E
∂wi

denotes how the error changes when the weights are changed, dE
dy

denotes the

error change when the output is changed, dy
dnet

denotes how the output changes in the

case of changing weighted sum, and ∂net
∂wi

denotes how the weighted sum changes as the

weights change.

As the weighted sum net is the sum over all products wi ·xi, the partial derivative of the
sum with respect to a weight wi is the the corresponding input xi. Similarly, the partial

derivative of the sum with respect to an input value xi is the weight wi:

∂net

∂wi
= xi

∂net

∂xi
= wi

The derivative of the output y with respect to the weighted sum net is the derivative of

the activation function α:

dy
dnet

=
d

dnet
· α

For that reason backpropagation algorithm chooses the activation function as to be

di�erentiable. A commonly used activation function is the logistic function:

y =
1

1 + e−z

which has a derivative of:

dy

dz
= y(1− y)
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When the network uses a logistic activation function, the derivative of the output y with

respect to the weighted sum net is the same as the derivative of the logistic function:

dy

dnet
= y(1− y)

Finally, the derivative of the error E with respect to the output y is:

dE

dy
=

d

dy

1

2
(t− y)2

dE

dy
= y − t

Combinatorially,

∂E

∂wi
=

(
dE

dy
· dy
dnet

· ∂net
∂wi

)

∂E

∂wi
= ((y − t) · y · (1− y) · xi)

To update the weight wi using gradient descent, the error derivative function is multiplied

by learning rate α

∆wi = −α ∂E
∂wi

∆wi = α(t− y)α′xi

For a linear neuron, the derivative of the activation function α is 1, which yields:

∆wi = α(t− y)xi

This is the delta rule for perceptron learning. In backpropagation and perceptron learn-

ing, when the output y equals the desired output t, the change in weight ∆wi would be

zero, which is exactly the desired case.

For our tweet classi�cation problem, we employ Multilayer Perceptron as one of the

classi�cation algorithms that is considered by Majority Voting Classi�er. We obtain the

number of hidden layers as 1, the value of the learning rate α as 0.24 and the number of
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the training time as 1000. We �nd these numerical values using Trial and error approach.

We repeat varied numbers to reach the best accuracy value. With these numerical values,

the perceptron algorithm give the best result.

3.2.3.5 Decision Tree

Decision tree[54] is one of the classi�cation algorithms that is easy to understand and

interpret. When a new item comes, the algorithm starts to check from the top of the tree

to match the item's criteria against the node's criteria. In order to construct a decision

tree, starting from the top node, the splitting attribute is determined for each iteration.

Splitting attribute is determined mostly based on �Information Gain�[55] that tells us

how important a given attribute of the feature vectors is. In other words, the splitting

attribute is the one that has the highest Information Gain. Basically, Information Gain is

computed using entropy that measures the degree of uncertainty in the group of samples.

In order to prevent Over�tting that occurs when the algorithm memorizes the training

data rather than learning a tree, the stopping criteria is determined while the tree is

constructed. If the entropy of the pair of the nodes is greater than common parent node,

the splitting process is stopped.

The sample that is predicted is known as dependent variable, because, its label will be

determined based on other attributes' values.

For our classi�cation problem, we employ LADTree Decision Tree [8] as one of the classi-

�er that shows good performance, and is considered by Majority Voting Classi�er. Since

LADTree is a binary classi�er, the algorithm can distinguish between positive and neg-

ative samples successfully. The basic assumption of LAD model is that a binary point

covered by some positive patterns, but not covered by any negative pattern is positive,

and similarly, a binary point covered by some negative patterns, but not covered by pos-

itive pattern is negative. For a given data set, LAD model builds large a set of patterns

and selects a subset of them which satis�es the above assumption.

Also, we use BFTree Decision Tree [9] as one of the classi�ers that is regarded by Majority

Voting Classi�er. BFTree shows considerable performance that we represent in the next

chapter. BFTree uses �best �rst approach�, while constructing a tree. BF tree constructs

binary trees, i.e., each internal node has two outgoing edges. The tree growing method

attempts to maximize within-node purity. The �best�node is the node whose split leads

to maximum reduction of impurity (e.g. Gini index [56] or information gain) among all

nodes available for splitting. For our classi�cation task, we use Gini Index in order to

determine the best splitting attribute for BFTree.
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3.2.3.6 Adaboost Algorithm

Boosting [57] is an approach in Machine learning based on the idea of constructing a

highly accurate prediction rule by merging many relatively weak and inaccurate rules.

In other words, AdaBoost is an algorithm for constructing a strong classi�er as linear

combination of simple weak classi�ers ht(x):

f(x) =

T∑
t=1

αt · ht(x)

where t represents the training time, and α represents the learning rate.

Most boosting algorithms include weak learner classi�ers which are only slightly corre-

lated with the true classi�cation, and combine them in to a �nal strong classi�er. When

weak classi�ers are combined, they are typically weighted in some way that is usually

related to the weak classi�ers' accuracy. After a weak classi�er is added, the data is

re-weighted: examples that are misclassi�ed gain weight, and examples that are classi-

�ed correctly lose weight. Thus, future weak classi�ers focus more on the examples that

previous weak classi�ers missed.

Unlike Neural Networks and Support Vector Machine, the AdaBoost training process

selects only features that are known to improve the predictivity of the model. The

algorithm reduces dimensionality, since irrelevant features do not need to be computed.

In this way, the algorithm improves the execution time. Boosting is a meta-algorithm that

reduces bias in supervised learning. We utilize Adaboost algorithm for both numerical

and categorical features.

3.2.3.7 Simple Approach Algorithm

In this experiment, we apply the following simple approach. After doing some prepro-

cessing techniques, a company pro�le vector is generated using company Wikipedia web

page. Then, top 100 key words that have the highest tf.idf values are obtained.

Then, we assume that if a tweet includes one of the company pro�le vector term, a tweet

would be relevant with a given company; otherwise it would be irrelevant.

In [26], the similar approach is used in order to select restaurant related tweets from

tweet corpus. First, they pick the top occuring words in the reviews as keyword set, then

they eliminate a tweet that do not contain any of those keywords from tweet collection.

Using this approach, they generate restaurant related tweet data set that they use for

Entity Matching problem.
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3.2.3.8 Entity Ranking Algorithm

We use a general method to classify given tweet as related, or unrelated. For this purpose,

we use language model which is proposed in [12], and we previously explain this method

in Chapter 2. The model incorporates the entity information and general review language

model. For our problem, the goal of this mixture model is to determine whether a given

tweet is relevant or irrelevant with a corresponding company. Informally, when a tweet t

is written about a company, each word in the t is drawn either from an entity (company)

information, or generic review language.

In our adaptation, we use two language models: one is entity mention language and

the other is review language model. Our review language model includes all review

data for training and testing companies. Also, entity mention language consists of two

pro�les: one of the pro�les consists of Wikipedia company keywords, and the other pro�le

consists of Wikipedia disambiguation company keywords. For this algorithm, the general

approach is here:

For a given tweet, each word in the tweet is chosen with α probability from entity mention

language and (1- α) probability from review language model. Since we have two pro�les,

the algorithm computes the value for both of them based on the probability values of

entity mention language and review language model. Then, the algorithm assigns the

tweet as `true', or `false'depending on the returned greatness of the pro�le values. More

speci�cally, if the obtained value of the Wikipedia disambiguation pro�le is lower than

the Wikipedia company pro�le, the tweet is labelled as `true', otherwise it is labelled as

`false'. We illustrate the algorithm for our problem in 3.4.

Now, we will explain the visualized system mathematically:

Pe1 : The company pro�le vector that includes relevant preprocessed keywords with the

company,

Pe2 : The company pro�le vector that includes irrelevant preprocessed keywords with

the company,

Pr : The review pro�le vector that includes both training and testing company review

preprocessed keywords,

Pt : The tweet pro�le vector that includes preprocessed tweet keywords,

where Pe1 and Pe2 show our entity mention language models, and Pr denotes our general

language model.



Chapter 3. Our Approach 49

Company 
Related Profile 

Vector 𝑃𝑒1

Review Profile 
Vector 𝑃𝑟

Tweet
Profile 

Vector 𝑃𝑡

Company 
UnRelated 

Profile Vector 
𝑃𝑒2

𝑝𝑒1(w)

𝑝𝑒2(w)

p(w)

w \in {𝑤1, 𝑤2, .., 𝑤𝑛}

p(𝑒1|t)
p(𝑒2|t)

Figure 3.4: Entity Ranking Algorithm Representation as Visually

For a given tweet pro�le vector Pt, each word in Pt is generated independently. With

probability α, a word is chosen with probability pe1(w) from Pe1 or with probability

pe2(w) from Pe2 , and with probability 1−α, a word is chosen with probability p(w) from

Pr. For simplicity, we obtain α as 0.5. When we formalize that, we need to compute

pe1 |t and pe2 |t such that

pe1 |t =

Pt∑
w∈Pt

log

(
1 +

α

1− α
· pe1(w)

p(w)

)

pe2 |t =

Pt∑
w∈Pt

log

(
1 +

α

1− α
· pe2(w)

p(w)

)

where

pe1(w) =
log( 1

fw
)

Pe1∑
w′∈Pe1

· log( 1
f
w
′
)

pe2(w) =
log( 1

fw
)

Pe2∑
w′∈Pe2

· log( 1
f
w
′
)
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where fw represents the frequency of the word in Pr. Lastly, we have:

p(w) =
c(w,Pr) + 1

Pr∑
w′∈Pr

c(w′ , Pr) + |V |

where c(w,Pr) represents the frequency of w in Pr, and |V | represents the vocabulary size.
Based on the computed probabilities pe1 |t and pe2 |t �rstly, we come to the conclusion

that:

If pe1 |t > pe2 |t
then a tweet is relevant with a given company and labelled as `true'.

If pe1 |t < pe2 |t
then a tweet is irrelevant with a given company and labelled as `false'.

If pe1 |t = pe2 |t
then we do not know whether a tweet is relevant or irrelevant with a given company

and labelled as `unknown'.

Here, we do not evaluate `unknown'tweets. Since tweet content is very limited and has

many grammatical errors, many tweets do not overlap with both Pe1 and Pe2 . Also, the

limited keyword set in Pe1 and Pe2 (as explained below) induce non-overlapping results.

Table 4.18 in the next chapter con�rms this observation. In this case, pe1(w) and pe2(w)

have the value of 0. Therefore, a considerable number of tweet have been labelled as

`unknown'. As we do not have any evaluation criteria that measures the accuracy of the

unknown tweets, we use di�erent approach for the zero probability tweets. We assume

that if the calculated probability equals to 0 for pe1(w) and pe2(w), the tweet will be

labelled as `false'. Here are the main reasons for this assumption.

The sources to gather company related keywords are better than the sources for unrelated

keywords. With the help of Web crawling techniques, we select the most related keywords

about a given company in the pro�le. However, Pe2 has in�nite keyword set. In Entity

Ranking Experiment, since we do not have in�nite keyword set, Pe2 is limited to 100, 250

and 500 keywords. Thus, these keyword set values are very insu�cient. Also, the sources

for collecting irrelevant keywords are not clear as collecting related keyword set. That

is Pe2 may include relevant keywords about a company that would lead to erroneous

results. Therefore, we had to limit the number of Pe2 with 100, 250, and 500.

As a result, we assume that in the case of having 0 probability for both pro�les, since the

tweet do not overlap with Pe1 which includes the most relevant keywords about a given

company, the probability of being irrelevant outweighs the probability of being relevant.
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We generate Pe1 for Company Wikipedia Page Pro�le, Company Wikipedia Page Noun

Phrase Pro�le, Company Wikipedia Page Kullback-Leibler Pro�le, Company Wikipedia

Page Term Frequency Pro�le, and Company Wikipedia Page Latent Semantic Indexing

Pro�le with di�erent keyword sizes. Whereas, we construct Pe2 for Company Wikipedia

Disambiguation Page Pro�le, Company Wikipedia Disambiguation Page Noun Phrase

Pro�le, Company Wikipedia Disambiguation Page Kullback-Leibler pro�le, Company

Wikipedia Disambiguation Page Term Frequency Pro�le, and Company Wikipedia Dis-

ambiguation Page Latent Semantic Indexing Pro�le with the same sizes of keywords that

we use for company related pro�les. We enlarge Pr corpus including all review keywords

that are obtained from training and testing review company pro�le vectors. Then, we

apply the given algorithm. The results are discussed in the next chapter.

3.2.3.9 Threshold Classi�cation

We also develop and study a simple classi�cation technique by learning a threshold value

from training data set. The value of similarity features represents how much company

pro�les overlaps with a given tweet. The algorithm learns the threshold value which gives

the best accuracy on the training data. Then, this threshold value is used for unseen

testing data. if the cosine similarity of a test tweet is under this threshold value, the

tweet is assumed to be unrelated to the corresponding company. Otherwise the tweet is

assumed to be related.

Initially, while learning the best threshold that gives the most accurate results, we extract

Wikipedia company pro�le keyword set including the most important top 100,250,500,

and 1000 keywords. We perform Threshold learning approach with all those di�erent

keyword sets, and we get the best result with top 100 most signi�cant keywords of the

company pro�le. Therefore, we do all other threshold experiments using company pro�le

consisting of top 100 important keywords.

We use the Threshold Learning algorithm for the following pro�les: Company Wikipedia

Page Pro�le, Company Review Page Pro�le, Company Wikipedia Page Noun Phrase

Pro�le, Company Wikipedia Page Kullback-Leibler Pro�le, Company Wikipedia Page

Term Frequency Pro�le, Company Wikipedia Page Latent Semantic Indexing Pro�le,

and Company Wikipedia Disambiguation Page Pro�le. In order to learn the threshold

value, we use two similarity techniques, namely, Cosine similarity and Kullback-Leibler

Divergence asymmetric similarity. The similarity explanations are presented next and

the learned threshold values and performance values are presented in the next chapter.
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• Cosine Similarity

Cosine Similarity is one of the most popular similarity measures applied to text

documents for Information Retrieval applications and clustering. Given two doc-

uments that are represented as term vectors, their similarity may be computed as

the correlation between term vectors. The cosine similarity of any pair of vectors

may be computed by taking their dot product, and dividing it by the product of

their norms. Mathematically, given two document term vectors ~a t and ~b t , their

cosine similarity is:

SIMcosine(~a
t,~b t) =

(
~a t ·~b t

|~a t| · |~b t|

)

where ~a t and~b t are m dimensional vectors over the term set T. The cosine similarity

is non-negative and bounded between [0,1]. If the value of the cosine similarity

between two documents is 1, then these two documents are identical. In contrast,

when the value is 0, than these two documents are totally di�erent.

• Kullback-Leibler Divergence Asymmetric Similarity

We de�ne Kullback-Leibler Divergence above, and we present its mathematical

equations (by 3.15). Here, we use Kullback -Leibler Distance to compute document

similarity between company pro�le vector and a tweet vector. A basic property

of Kullback-Leibler distance is its asymmetry. In other words, Kullback-Leibler

distance between documents P and Q is not equal to the distance between Q

and P. Therefore, we need to compute the KL-divergence twice. Formally, given

two documents d1 and d2, after computing DKLd1||d2 and DKLd2||d1 based on

the formula given above in eq.(3.15), we obtain the average of the two computed

results, and assign the resulting value as the document similarity between two

documents. As Kullback-Leibler distance does not always give results between 0

and 1, we conduct normalization to pull values between 0 and 1. In order to do

that, we use the following mathematical function:

normalizedvalue = e−average

Kullback Leibler distance has di�erent interpretation than Cosine Similarity. If

Kullback-Leibler distance between two documents equals 0, then the documents

are identical, and the similarity decreases when the value moves away from 0.

Therefore, while computing threshold value based on training data, we assume

that if threshold value is less than Kullback-Leibler distance, the tweet will be

labeled as `true'; otherwise, it will be labelled as `false'. Similarly, for unseen tweet

data, we assume that a tweet which has a similarity value that is greater than the
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learned threshold are labelled as `false'. This study is carried out only on Wikipedia

company pro�les. The results are presented in the next section.



Chapter 4

Experiments and Evaluation

4.1 Dataset Description

We use the data set of WePS-3 evaluation campaign that is a well-recognized international

competition, and was held in 2010. In WePS-3, the problem of Web entity search are

proposed. The competition include two tasks, one is focused on the problem of person

name ambiguity, and the second task is related to Online Reputation Management for

organizations. The second task focus on company name ambiguity. In this study, we

deal with the second task.

Online Reputation Management (ORM) [58] Task consists of �ltering tweet posts con-

taining a given company name, and deciding whether a post belongs to the company or

not. ORM consists of monitoring media, analysing what people say about an entity; also

if necessary, contact with customers. This is because, negative comments on online media

can seriously a�ect the reputation of a company. Therefore, popular company brands

want to analyse the content of tweets in order to improve marketing strategies. However,

when the entity name is ambiguous, �ltering out the tweets is a very challenging task.

ORM does this task by using Twitter posts; because, it is a critical source of real time

reputation management, and it has a little context and no privacy criteria.

In the data set, the set of organization names are di�erent in the training and testing

portions of the data. For each organization in the data set, there is a company name

and its home page URL. For each tweet, there exists a tweet identi�er, the entity name,

query, the author identi�er, and the tweet content.

The trail corpus consists of 23 company names (17 English and 6 Spanish organizations)

each of them has 100 tweets. In the training and testing datasets, there are 52 and

48 companies respectively. The companies are chosen from the DBpedia [59] which

54
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is a knowledge-base that extracts structural information from Wikipedia pages. The

automatic �lter that detects company names match the common names, so it ensures

the ambiguity of the company name.

The training and testing corpora have been annotated by Mechanical Turk Workers that

enables employers to hire online workers for short-term tasks that computers don't do

well. These workers annotated the tweets that mention the company apparently after

determining whether each tweet mentions the company or not. The �true�label means

that the tweet is associated to a company, whereas the �false�one means that the tweet

is not relevant to a given company, and the unknown label indicates that the annotators

are unable to make a decision. In our experiments, we do not consider the unknown

labels.

4.2 Evaluation Metrics

In this part, the evaluation metrics that are commonly used in Information Retrieval

are explained. Precision is the fraction of retrieved instances that are relevant, recall

is the relevant instances that are retrieved. In other words, precision is the measure of

the quality demonstrating that the algorithm returns relevant terms more than irrelevant

terms; recall is the measure of the quantity demonstrating that the algorithm returns the

most of relevant results. For example, for a text search on a set of documents, precision

is the number of correct results divided by the number of all returned results, and for

text search on a set of documents, recall is the number of correct results divided by the

number of results that should have been returned.

In the classi�cation task, some terms are used in order to compare classi�cation results

under test with external judgments. The terms �positive�and �negative�show the classi-

�er's prediction, while �true�and �false�terms de�ne whether the prediction corresponds

to the judgment result. These terms are explained below:

True Positive (TP) : Tweets that are correctly labeled as belonging to the positive

class.

True Negative (TN) : Tweets that are correctly labeled as belonging to the negative

class.

False Positive (FP) : Tweets that are labeled as belonging to the positive class incor-

rectly.

False Negative (FN) : Tweets that are labeled as belonging to the negative class in-

correctly.
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We use the following metrics to study the performance of our classi�cation process.

Accuracy = (TN + TP )/(TN + TP + FN + FP )

Precision+ = TP/(TP + FP )

Precision− = TN/(TN + FN)

Recall+ = TP/(TP + FN)

Recall− = TN/(TN + FP )

F+
measure = 2 · Precision+ ·Recall+/(Precision+ +Recall+)

F−measure = 2 · Precision− ·Recall−/(Precision− +Recall−)

4.3 Experiments

4.3.1 Experiment 1: Bag-of-Words Experiment

Initially, a simple baseline algorithm is designed using weighted bag of keywords from

Twitter. These tests are performed on the testing data set. We perform leave-one-out

cross validation. We train a support vector machine on the 47 of these companies and

test it on the last company. We repeat this for all of the 48 companies. The performance

of the classi�er is shown in Table 4.1. This is our baseline experiment.

Table 4.1: Support Vector Machine on Testing Data only Using Bag of Weighted
Tweet Keywords (Baseline).

Experiment Accuracy

Baseline 59.7%

4.3.2 Experiment 2: Feature Extraction

As seen in Table 4.1, simple bag of words approach is not appropriate for the task of

disambiguation. The results support our belief in the importance of utilizing external

features. As we discuss in the previous chapter, we use both numerical and categorical

features. Firstly, we will represent how numerical features contribute to the classi�cation

task both individually and combined with others.
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Table 4.2: The abbreviations used for features and algorithms.

Name Abbreviation

Wikipedia Cosine Similarity wikicosineSim

Wikipedia Disambiguation Cosine Similarity disambigcosineSim

Kullback-Leibler Divergence Asymmetric Similarity kldivSim

Review Cosine Similarity reviewcosineSim

Wikipedia Kullback-Leibler Divergence Cosine Similarity klSim

Wikipedia Term Frequency Similarity termfreqSim

Wikipedia Latent Semantic Indexing Similarity latentSim

Number of Alternative Meanings numberofmeanings

Capital name capital

Url url

Preposition beingprep

Unigram unigram

Multilayer Perceptron M.P.

Logistic Regression L.R.

Majority Voting M. V.

J48 Decision Tree J48

DecisionStump Decision Tree Dstump

LADTree Decision Tree LADTree

BFTree Decision Tree BFTree

Adaboost Algorithm Adaboost

Support Vector Machine SVM

Entity Ranking Algorithm E. R. A.

Simple Approach Algorithm S. A. A.

Threshold Algorithm T. A.

Wikipedia Two Pro�le Algorithm W.T.P.A.

Naive Bayes Algorithm N. Bayes

Attribute Selected Classi�er Attribute S. C.

Table 4.2 shows the abbreviations of features and algorithms that are used for both

feature extraction and other experiments.
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Table 4.3: Experiments with Selected Classi�ers that give the best accuracy on nu-
merical attributes.

Used Feature Experiment Accuracy

wikicosineSim M. P. 62.22%

disambigcosineSim LADTree 62.23%

kldivSim SVM 51.2%

reviewcosineSim L. R. 56.6%

klSim LADTree 59.7%

termfreqSim Adaboost 61.1%

latentSim M. P. 62.1%

numberofmeanings Dstump 55.1%

wikicosineSim + disambigcosineSim L. R. 62%

wikicosineSim + kldivSim Adaboost 62.2%

wikicosineSim + reviewcosineSim L. R. 61.8 %

wikicosineSim + numberofmeanings Adaboost 64%

wikicosineSim+klSim M.P. 62.9%

wikicosineSim+termfreqSim BayesNet 63%

wikicosineSim+latentSim Adaboost 63%

disambigcosineSim +kldivSim SVM 51.8%

disambigcosineSim +reviewcosineSim J48 55.6%

disambigcosineSim +numberofmeanings Adaboost 55.1%

kldivSim+reviewcosineSim Adaboost 55.7%

disambigcosineSim+klSim LADTree 60.6%

disambigcosineSim+termfreqSim Adaboost 63%

disambigcosineSim+latentSim LADTree 62.1%

klSim + kldivSim SVM 59.2%

termfreqSim + kldivSim Adaboost 61.1%

latentSim+ kldivSim Adaboost 62.1%
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Table 4.4: Experiments with Selected Classi�ers that give the best accuracy on nu-
merical attributes.

Used Feature Experiment Accuracy

numberofmeanings +klSim LADTree 61.3%

numberofmeanings +termfreqSim LADTree 62.9%

numberofmeanings+latentSim LADTree 63.1%

wikicosineSim + numberofmeanings+disambigcosineSim M. V. 64.59 %

wikicosineSim + disambigcosineSim+kldivSim SVM 61%

wikicosineSim + disambigcosineSim+reviewcosineSim M. P. 62.47%

disambigcosineSim+reviewcosineSim+kldivSim Adaboost 55.1%

wikicosineSim + kldivSim+

reviewcosineSim+numberofmeanings L. R. 61.5%

wikicosineSim + reviewcosineSim+

klSim+termfreqSim+latentSim M. P. 63.3%

wikicosineSim + disambigcosineSim +

kldivSim + reviewcosineSim Adaboost 62.2%

wikicosineSim + disambigcosineSim+

numberofmeanings +reviewcosineSim M. P. 62.6%

klSim+termfreqSim +

latentSim + kldivSim SVM 61%

wikicosineSim+disambigcosineSim+reviewcosineSim+

klSim+termfreqSim+latentSim Adaboost 64.3%

wikicosineSim+disambigcosineSim+reviewcosineSim+

klSim+ termfreqSim+ latentSim+kldivSim SVM 62.5%

wikicosineSim+disambigcosineSim+reviewcosineSim+

klSim+termfreqSim+latentSim+numberofmeanings BFTree 64.95%

wikicosineSim + disambigcosineSim+klSim+

termfreqSim+latentSim+kldivSim+

reviewcosineSim +numberofmeanings Adaboost 64%

As you see in Table 4.4, kldivSim shows the worst performance individually when we

compare with the other features. As for wikicosineSim, generally it gives the best results

both individually and when it combines with other numerical features.
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Although disambigcosineSim produces comparable results both individually and when it

comes together with wikicosineSim, klSim, termfreqSim, and latentSim; in the case of

combining with other features except wikicosineSim, klSim, termfreqSim, and latentSim,

the accuracy becomes low. This shows that in order to make classi�cation task accurately,

this feature should be used with either one of the following features: wikicosineSim, klSim,

termfreqSim, latentSim or combination of those features.

reviewcosineSim individually does not give comparable results as wikicosineSim, klSim,

termfreqSim, latentSim, and disambigcosineSim. When it combines with wikicosineSim,

the performance increases by 5%. When reviewcosineSim comes together with both

wikicosineSim and disambigcosineSim, the performance increases 6% and the best accu-

racy is obtained by Multilayer Perceptron algorithm (62.47%). Beside, when we use all

related similarity features, Multilayer Perceptron algorithm gives the best performance

by 63.3%. Moreover, when we use all similarity features except kldivSim, we obtain the

best result by Adaboost algorithm (64.3%). This shows that 1% increase arise from

disambigcosineSim. However, when we use all similarity features, the best accuracy is

obtained by Support Vector Machine algorithm (62.5%). It is clear that 1.8% decrease

arise from the ine�ciency of kldivSim.

Since kldivSim makes a bad contribution to the classi�cation process individually, when

it is used with wikicosineSim, the classi�cation accuracy decreases slightly (0.02). Results

also show that kldivSim does not work well with disambigcosineSim as wikicosineSim.

When disambigcosineSim and kldivSim are combined, the accuracy performance becomes

51.8% which is 10.5% below than the accuracy value which is obtained by disambigcosineSim

individually. In addition, kldivSim decreases the classi�cation performance 0.5% when it

is used with reviewcosineSim. In the case of bringing together kldivSim, reviewcosineSim

and disambigcosineSim, the best performance is obtained by Adaboost (55.1%) algorithm.

This result is slightly below than the obtained result by the association of kldivSim and

reviewcosineSim.

Also, kldivSim decreases the classi�cation accuracy 0.7% when it is employed with klsim.

However, when kldivSim combines either termfreqSim or latentSim, the accuracy per-

formance does not change. This shows kldivSim works better with termfreqSim and

latentSim rather than other features. As we mention in the above paragraph, if all

similarity features are employed, the best performance becomes 62.5%. It is clear that

kldivSim decreases the accuracy value by 1.8%, since the accuracy value becomes 64.3%

when all similarity features are used except kldivSim. Also when kldivSim is used with

klSim, termfreqSim, and latentSim, the obtained accuracy becomes 61%. Therefore, in

general, kldivSim has either negative e�ect or no e�ect to the our classi�cation task both

individually and when it is used with other similarity features.
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The other important feature is that numberofmeanings. As you see from the table,

numberofmeanings does not achieve a high classi�cation accuracy individually. Never-

theless, when it is combined with wikicosineSim, the performance increases dramatically.

As this feature shows the intensity of the company ambiguity and wikicosineSim shows

the document similarity, their co-occurrence makes a great contribution to the classi�ca-

tion task. Results show that these two features show the best performance by Adaboost

algorithm. The obtained accuracy value is 64%. As you see from the following tables and

explanations, this result is very close to the obtained best accuracy when we use all fea-

tures. Similarly, when three of the features namely numberofmeanings, wikicosineSim,

and disambigcosineSim come together, the best performance is provided by Majority Vot-

ing classi�er (64.59%) that encapsulates Support Vector Machine, Multilayer Perceptron,

and LADTree. disambigcosineSim increases the performance by approximately 0.5%. The

success of these three classi�ers may be interpreted as follows: the document similarity,

the document dissimilarity and the name ambiguity value are important features for our

evaluation task.

In addition, when numberofmeanings is used with one of the following features: klSim,

termfreqSim, or latentSim, it has a considerable e�ect to our classi�cation task in com-

parison to its single e�ect. Moreover, when we use numberofmeanings with all similarity

features except kldivSim , the best accuracy is obtained by BFTree (64.95%). As you see

from the table, this value is higher by approximately 0.6%, when we use all similarity

features except kldivSim. However, kldivSim decreases accuracy value as 0.95%, in the

case of using with other features i.e., similarity features and the name ambiguity feature.

In spite of the fact that kldivSim shows the worst accuracy among numerical attributes,

when it is used with other features, kldivSim does not decrease the accuracy signi�cantly.

We think the reason is that the decrease in accuracy is resulted by using with other

features is balanced when it is used with termfreqSim or latentSim. Even then, it does

not contribute anything.

Table 4.5: Experiments with Selected Classi�ers that give the best accuracy on cat-
egorical attributes

Used Feature Experiment Accuracy

capital LADTree 51.8%

url M. P. 51.2%

unigram SVM 53.2%

beingprep Adaboost 51%

All categorical features N. Bayes 55.1%
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Table 4.5 shows the performance of categorical features both individually and combined

with other features. As you see from the table, unigram seems to show the best contri-

bution, and other categorical features except unigram improve the performance approxi-

mately 2%. Actually, we expect that these categorical features would help to improve our

classi�cation accuracy both individually and combined with other features. Surprisingly,

these features show the low accuracy. As a reason, our data set might not be suitable for

these extracted features. As we have mention before, the tweet data has many grammat-

ical errors. Since tweet text is informal, users make their tweet text without worrying

about spell checking. Generally, users post their tweets with the purpose of chatting.

For a user, sending of his-her message instantly is the most important step rather than

the correctness of the content, so tweet contents has many abbreviations and statements

that is very challenging for others to understand. Therefore, our categorical features that

are mostly based on users do not show the e�cient performance for Twitter data.

For example, we assume that, if a tweet includes the company name with capital letters,

it is more likely that it is relevant to a particular company. Because of the reasons that

we mention, Twitter users use company names with lower cases frequently. Therefore,

this feature might not be good measure for Twitter data set. In principle, company

names take one of the prepositions respectively �for�, �of�, or �at�. This feature should

have shown a lot better performance than 51%. Nevertheless, as tweet users do not

pay attention to grammatical rules, most of the company names are used without any

preposition. We believe that if we used these categorical features for normal data set

that have more clear content, we might have obtained more satisfactory results.

Table 4.6: Experiment results with both numerical and categorical features

Experiment Accuracy

M. P. 62.4%

AdaBoost 64.03%

BFTree 64.3%

LADTree 64.54%

M. V. (LADTree+BFTree) 64.1%

M. V. (LADTree+Adaboost) 64.5%

M. V. (LADTree+M.P.) 64.8%

M. V. (Adaboost+M. P.+LADTree) 64.9%

M. V. (BFTree+M. P.+LADTree) 65.7%

M. V. (Adaboost+LADTree+BFTree) 64.5%



Chapter 4. Experiments and Evaluation 63

Table 4.6 shows performance of some of the classi�ers that show the best performance

for our classi�cation task. In this case, we use all numerical and categorical features.

As you see from Table 4.6, �rstly we show classi�ers that produce the best performance

individually. Then, we obtain several combinations of these classi�ers that are included

by Majority Voting. We get the best score using the selected classi�ers respectively

BFTree (gini index is used as splitting criteria, prepruning strategy is used as pruning

strategy, and the number of folds is obtained as 6.), Multilayer Perceptron (learning rate

= 0.28, training time = 1000 and number of hidden layers = 1), and LADTree. Although,

Multilayer Perceptron does not provide good accuracy individually, when Multilayer Per-

ceptron and BFTree come together with LADTree, they contribute to the classi�cation

accuracy noticeably. In contrast, Adaboost does not improve the classi�cation accuracy

as LADTree does as when it is used with BFTree and Multilayer Perceptron. Moreover,

as you see in 4.6, when Adaboost is used with other classi�ers by Majority Voting, it

does not a�ect to the classi�cation task.

Table 4.7: Experiment results with selected numerical and categorical features

Selected Features Experiment Accuracy

wikicosineSim+numberofmeanings+

termfreqSim+latentSim+unigram Attribute S. C. (LADTree) 64.57%

wikicosineSim+numberofmeanings+

termfreqSim+latentSim+unigram Attribute S. C. (M.V.) 65%

As seen in Table 4.7, we perform Attribute Selection in order to see which features are

more valuable for the classi�cation task. In order to do that, we select our features using

the correlation feature selection (CFS) [60] criteria that is a kind of �ltering method to

choose feature subsets. The Correlation Feature Selection measure evaluates subsets of

features on the basis of the principle that good feature subsets contain features that are

highly correlated with the classi�cation, but uncorrelated with each other. As search

approach, we use best �rst that use greedy hill climbing, which iteratively evaluates a

candidate subset of features, then modi�es the subset, and evaluates whether the new

subset is an improvement over the old or not.

Weka selects 5 attributes as selected attributes that show the best performance in the

classi�cation process. As you see from Table 4.7, these are respectively wikicosineSim,

numberofmeanings, termfreqSim, latentSim, and unigram. With all these selected fea-

ture combinations, we perform additional experiments. We apply Majority Voting on

these features with previously selected classi�ers, namely, Multilayer Perceptron, BFTree,

and LADTree. As you see from the table, the obtained accuracy with these features is
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65%. When we compare to the Table 4.6, this shows other features make approximately

0.7% contribution to the overall classi�cation task. Another observation based on this

table is that, when we ignore other seven features, LADTree provides a slight improve-

ment.

Table 4.8 presents abbreviations of used company pro�les and metrics for the following

experiments.

Table 4.8: The abbreviations used for company pro�les and metrics.

Name Abbreviation

Company Wikipedia Page Pro�le WP

Company Wikipedia Disambiguation Page Pro�le WDP

Company Review Page Pro�le RP

Company Wikipedia Page

Noun Phrase Pro�le WNPP

Company Wikipedia Page

Kullbeck-Leibler Pro�le WKLP

Company Wikipedia Page

Term Frequency Pro�le WTFP

Company Wikipedia Page

Latent Semantic Indexing Pro�le WLSP

Company Wikipedia Disambiguation Page

Noun Phrase Pro�le WDNPP

Company Wikipedia Disambiguation Page

Kullbeck-Leibler Pro�le WDKLP

Company Wikipedia Disambiguation Page

Term Frequency Pro�le WDTFP

Company Wikipedia Disambiguation Page

Latent Semantic Indexing Pro�le WDLSP

Precision for Positive Examples P+

Precision for Positive Examples P−

Recall for Positive Examples R+

Recall for Negative Examples R−

F Measure for Positive Examples F+

F Measure for Negative Examples F−
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4.3.3 Experiment 3: Threshold Algorithm

We perform threshold experiments with several company pro�les. The obtain results are

presented in Table 4.9.

In this table, the threshold is learned from the cosine similarity value of the training data.

The algorithm learns the threshold value which gives the best accuracy performance

on the training data, and this threshold value is used for unseen testing data. if the

cosine similarity of a test tweet is under this threshold value, the tweet is assumed

to be unrelated to the corresponding company. Otherwise the tweet is assumed to be

related. We perform Threshold learning approach with several di�erent keyword sets

i.e., 100,250,500, and 1000 for Company Wikipedia Page Pro�le, and we get the best

result with top 100 most signi�cant keywords of the pro�le. Therefore, we do all other

threshold experiments using company pro�le consisting of top 100 important keywords.

We did not try to obtain results with other sets of keyword for other pro�les.

Table 4.9: Threshold Experiment.

Used Pro�le Accuracy P+ R+ F+ P− R− F−

RP (thr = 0.003) 61.3% 60.7% 42.5% 50% 66% 80.3% 72.5%

WNPP (thr = 0.001) 66.6% 66% 40.5% 50.3% 66.7% 85.3% 74.8%

WKLP (thr = 0.004) 67% 61.3% 56.5% 58.8% 70.5% 74.5% 72.4%

WTFP (thr = 0.005) 68.7% 67.5% 48% 56% 69% 83.4% 75.6%

WLSP (thr = 0.002) 69.9% 73.6% 43.3% 54.6% 68.6% 88.8% 77.4%

WP (thr = 0.001) 71% 69% 51% 59% 70% 84% 76%

As you see from the Table 4.9, as oppose to our expectation, review pages are not good

sources to overlap with a tweet vector. Statistical analysis show that, both true negative

and positive values decrease in comparison with other pro�les. One of the primary

reasons is that review pages mostly include terms that belong to daily language. This

indicates that the learned cosine value between a tweet vector and a review pro�le vector

might become higher than the learned cosine value with Company Wikipedia Noun

Phrase Pro�le and Company Wikipedia Page Pro�le (the learned threshold with those

companies is 0.001). Thus, our false negative values increase noticeably (approximately

600 more tweets are labelled as false negative when we compare with the Company

Wikipedia Page Pro�le). This aspect in�uences true negative tweets in a negative way,

too. This factor lowers measured precision(-), recall(-) and fmeasure(-). The other

signi�cant factor is that because of review pages comprise mostly of daily statements,
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the majority of company pro�le vector keywords are keywords that are less relevant to

the company. For that reason, missed signi�cant keywords lessen true positive tweets at

a considerable level. Since our true positive and negative values decrease, the accuracy

of the review pro�le decreases dramatically.

The Accuracy-Threshold graph (4.1) for training data is represented for Company Review

Page Pro�le. In this graph, the threshold is learned from training data, which is 0.003.

Figure 4.1: Accuracy-Threshold Graph for training data that represents the best
threshold value for Company Review Page Pro�le.

Table 4.9 also shows that, the accuracy of Company Wikipedia Page Noun Phrase Pro�le

is less than the Company Wikipedia Page Kullback-Leibler Pro�le, Company Wikipedia

Page Term Frequency Pro�le, Company Wikipedia Page Latent Semantic Indexing Pro-

�le, and Company Wikipedia Page Pro�le. With this pro�le, our false negative values

as high as Company Review Page Pro�le. This means many tweets are labeled as false

incorrectly. That shows our learned threshold value from training data is rather higher

for testing data. This proves the fact that since our training and testing tweet data set

include di�erent company tweets, the overlapping problem may occur, and this problem

may challenge the classi�cation task. As we mention in the previous section, our Com-

pany Wikipedia Page Noun Phrase Pro�le consists of keywords that are only noun or

noun phrase. We exclude verb part of speeches from this pro�le. This seems to a�ect

our positive tweets negatively. Thus, in comparison with our Company Wikipedia Page

Pro�le, the number of true positive tweets decreases approximately by 750.
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The Accuracy-Threshold graph (4.2) for training data is represented for CompanyWikipedia

Page Noun Phrase Pro�le. In this graph, the threshold is learned from training data,

which is 0.001.

Figure 4.2: Accuracy-Threshold Graph for training data for Company Wikipedia
Page Noun Phrase Pro�le.

Table 4.9 clearly shows that Company Wikipedia Page Kullback-Leibler Pro�le and Com-

pany Wikipedia Page Term Frequency Pro�le have similar performance values. As you

see in 4.9, the learned threshold value is higher when we compare to other pro�les. The

reason is that, as we mention in the previous section, the most important term in term

pro�le vector for both pro�les has a weight of 1, which is higher than the weight of the

most signi�cant keyword of other pro�les, so this factor increases the learned threshold

value noticeably. Also, we see that Company Wikipedia Page Term Frequency Pro-

�le has higher recall value for negative examples. This shows our false positive values

are higher for Wikipedia Page Term Frequency Pro�le than Company Wikipedia Page

Kullback-Leibler Pro�le. The Accuracy-Threshold graphs (4.3 and 4.4) are represented

for Company Wikipedia Page Kullback-Leibler Pro�le and Wikipedia Page Term Fre-

quency Pro�le. The learned threshold value from company training data for Company

Wikipedia Page Kullback-Leibler Pro�le equals 0.004, and the learned threshold value

from company training data for Company Wikipedia Page Term Frequency Pro�le is

0.005.
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Figure 4.3: Accuracy-Threshold Graph for training data for Company Wikipedia
Page Kullback-Leibler Pro�le.

Figure 4.4: Accuracy-Threshold Graph for training data for Company Wikipedia
Page Term Frequency Pro�le.

As you see from in Table 4.9, when we use Company Wikipedia Page Latent Semantic

Indexing Pro�le for threshold classi�cation, we obtain comparable results with Company

Wikipedia Page Pro�le. As we mention in the previous chapter, LSI is computationally



Chapter 4. Experiments and Evaluation 69

powerful in order to �nd semantically related signi�cant keywords among document

corpus. Therefore, we obtain satisfactory performance results with Company Wikipedia

Page Latent Semantic Indexing Pro�le. With this pro�le the obtained true positives are

lower than the number of true positive values which are obtained by Company Wikipedia

Page Pro�le, so the accuracy value is lower than Company Wikipedia Page Pro�le. Also,

when we use Company Wikipedia Page Latent Semantic Indexing Pro�le, we obtain

higher false negative values in comparison to Company Wikipedia Page Pro�le; thus, we

have lower recall+. More clearly, higher false negative values mean that i.e., the learned

threshold value for company training data is high for test company set of data. The

Accuracy-Threshold graph (4.5) for training data is represented for Company Wikipedia

Page Latent Semantic Indexing Pro�le. In this graph, the threshold is learned from

training data, which is 0.002.

Figure 4.5: Accuracy-Threshold Graph for training data for Company Wikipedia
Page Latent Semantic Indexing Pro�le.

As seen in Table 4.9, we obtain the best performance with Company Wikipedia Page

Pro�le including keywords that are both nouns and verbs. Since, Wikipedia content is

more formal, the pro�le vector includes keywords that are more related to a corresponding

company. As Wikipedia content is frequently checked for misspellings, the Wikipedia

content is cleaner that makes pro�le vector clearer as well. All these factors in�uence

the classi�cation accuracy of the Company Wikipedia Page Pro�le positively. With

this pro�le, our true positive values increase noticeably. Also, the algorithm is very

successful in �nding true negative examples, too. Since the number of our false positive
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values is low, our negative recall value is as high as the obtained negative recall value

with Company Wikipedia Page Noun Phrase Pro�le.

The Accuracy-Threshold graph (4.6) for training data is represented for CompanyWikipedia

Page Pro�le. In this graph, the threshold is learned from training data, which is 0.001.

Figure 4.6: Accuracy-Threshold Graph for training data for Company Wikipedia
Page Pro�le.

In summary, we can make the general following comment about our threshold experiment.

Our method tends to label tweets as unrelated for all given pro�les because our threshold

is high. Because of this, we obtain high values for precision, recall, and f-measure with

negative examples in comparison to the positive examples.

Table 4.10 shows the result of threshold experiment using only Company Wikipedia

Page Pro�le. In this case, Kullback Leibler distance asymmetric similarity is used as

to be learned threshold value. The learned threshold value from training data is 0.58.

For this similarity, Wikipedia Company Page Pro�le shows the best performance which

is approximately 58%. As you see from the previous table, Kullback-Leibler distance

shows bad performance when it is compared with the cosine similarity. As other company

pro�les have similar decrease, we do not need to show the similarity performance obtained

by those pro�les in Table 4.10.
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Table 4.10: Experiment Results with Kullback Leibler Distance.

Used Pro�le Accuracy P+ R+ F+ P− R− F−

WKLP 58.5% 96.2% 0.67% 1.3% 58.4% 99.9% 73.7%

4.3.4 Experiment 4: Wikipedia Two Pro�le Approach

In this experiment, additionally, we compute the cosine value between CompanyWikipedia

Disambiguation Page Pro�le and each company tweet. We assume that for a given tweet

if the cosine similarity between the company Wikipedia pro�le vector and a tweet vector

is greater than the cosine similarity between the Wikipedia disambiguation pro�le vector

and a tweet vector, the tweet will be marked as related to the given company; otherwise,

the tweet will be labeled as unrelated to the given company. In the case of being the

equal cosine value, the tweet is labeled as unknown. However, we do not evaluate the

unknown tweets. The obtained results are shown by Table 4.11.

Table 4.11: Experiment Results with using Company Wikipedia Page Pro�le and
Company Wikipedia Disambiguation Page Pro�le

Used Pro�le Accuracy P+ R+ F+ P− R− F−

WP + WDP 70.65% 70.3% 85.6% 77.2% 71.3% 49.8% 58.7%

4.3.5 Experiment 5: Simple Approach Algorithm

Simple Approach Algorithm results are shown in Table 4.12.

Table 4.12: Simple Approach Algorithm Results using Wikipedia Company Pro�le

Used Pro�le Accuracy P+ R+ F+ P− R− F−

WCP 69.8% 66.7% 55% 60.3% 71.3% 80.3% 75.6%

Although this approach is very simple, the results are amazing. With this approach,

because of the increase in the true positive tweets, the number of positive examples are

higher than the previous experiments. Also, the number of true negative examples are

as high as the previous experiments. As evident from the table, the accuracy of this

algorithm is better than the more complicated algorithms shown in Table 4.6. This

proves the fact that in data analysis, sometimes, the simpler approach produces more

valuable results. The reason can be explained with bias-variance dilemma [61].
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Table 4.13: Entity Ranking Classi�cation Results for Company Wikipedia Page Noun
Phrase Pro�le and Company Wikipedia Disambiguation Page Noun Phrase Pro�le for

di�erent keyword sets.

Keyword Set Accuracy P+ R+ F+ P− R− F−

(100,100) 64.9% 62.2% 40.8% 49.2% 65.9% 82.2% 73.2%
(250,100) 65.2% 59.1% 54.1% 56.5% 69% 73.2% 71%
(500,100) 62% 53.7% 64.5% 58.6% 70.3% 60.2% 64.8%
(250,250) 64.6% 58.8% 50.8% 54.5% 67.9% 74.5% 71%
(500,500) 62.9% 55.8% 54.4% 55% 67.9% 69.1% 68.5%

Table 4.14: Entity Ranking Classi�cation Results for Company Wikipedia Page
Kullback-Leibler Pro�le and Company Wikipedia Disambiguation Page Kullback-

Leibler Pro�le for di�erent keyword sets.

Keyword Set Accuracy P+ R+ F+ P− R− F−

(100,100) 67.8% 65.7% 48% 55.5% 68.8% 82% 74.8%
(250,100) 66.1% 59% 61.4% 60.2% 71.5% 69.5% 70.5%
(500,100) 61.1% 52.6% 68.6% 59.6% 71.3% 55.8% 62.6%
(250,250) 67.2% 61.69% 56.4% 58.9% 70.6% 74.8% 72.6%
(500,500) 63.3% 55.7% 59.5% 57.5% 69.5% 66.1% 67.8%

As the model becomes more complex, the model learns the training data very well, so

the error of the training data decreases. However, this case is very undesirable for unseen

testing data. Since, the model memorizes the training data, it will not generalize the

training pattern for unseen testing data that leads to the higher variance. As a result of

that, the predictions of the model will be less accurate. In contrast, models with higher

bias tend to be relatively simple and generalizable for unseen testing data. As explained,

our more complex algorithms might not have learned the general pattern as necessary,

that causes the low performance results. Probably, this fact might have been valid for

our threshold algorithm too.

4.3.6 Experiment 6: Entity Ranking Algorithm

For this algorithm, we use di�erent pro�le vectors with di�erent keyword sets. In tables

(4.13 through 4.17), the keyword sets are represented as tuples. The �rst element of

the tuple denotes the number of relevant keywords obtained from Pe1 , and the second

element of the tuple represents the number of irrelevant keywords obtained from Pe2 .

The obtained highest accuracy value is written with bold face for each pro�le.

As seen from the tables, the best accuracy is obtained with Company Wikipedia Page

Latent Semantic Indexing Pro�le and Company Wikipedia Disambiguation Page Latent

Semantic Indexing Pro�le including 250 keyword set for Pe1 and 250 unrelated keywords
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Table 4.15: Entity Ranking Classi�cation Results for Company Wikipedia Page Pro-
�le and Company Wikipedia Disambiguation Page Pro�le for di�erent keyword sets.

Keyword Set Accuracy P+ R+ F+ P− R− F−

(100,100) 67.9% 67% 45.4% 54.1% 68.2% 84% 75.3%
(250,100) 67.2% 60.7% 59% 59.8% 71.2% 72.7% 71.9%
(500,100) 64.4% 56% 68.3% 61.6% 73.1% 61.6% 66.8%
(250,250) 65.8% 59.9% 54.4% 57.1% 69.4% 73.9% 71.6%
(500,500) 65.3% 58.2% 60.2% 59.2% 70.8% 69% 69.9%

Table 4.16: Entity Ranking Classi�cation Results for Company Wikipedia Page Term
Frequency Pro�le and Company Wikipedia Page Term Frequency Pro�le for di�erent

keyword sets.

Keyword Set Accuracy P+ R+ F+ P− R− F−

(100,100) 65.4% 60.9% 47.9% 53.6% 67.6% 77.9% 72.4%
(250,100) 66.3% 59.6% 59.9% 59.8% 71.2% 70.9% 71%
(500,100) 61.8% 53.2% 69.2% 60.2% 71.9% 56.5% 63.3%
(250,250) 64.8% 58.1% 56.2% 57.1% 69.4% 71% 70.2%
(500,500) 62.1% 54% 60.8% 57.2% 69.2% 63% 65.9%

Table 4.17: Entity Ranking Classi�cation Results for Company Wikipedia Page La-
tent Semantic Indexing Pro�le and Company Wikipedia Disambiguation Page Latent

Semantic Indexing Pro�le for di�erent keyword sets.

Keyword Set Accuracy P+ R+ F+ P− R− F−

(100,100) 67.7% 63.2% 54.1% 58.3% 70.2% 77.4% 73.6%
(250,100) 66.9% 60.1% 61.6% 60.9% 72% 70.7% 71.4%
(500,100) 66% 58.2% 65.4% 61.6% 72.8% 66.4% 69.5%
(250,250) 69.1% 64.5% 58.1% 61.1% 71.9% 77.1% 74.4%
(500,500) 68.3% 62.1% 61.3% 61.7% 72.5% 73.2% 72.9%

for Pe2(4.17). As we mention in the previous section, Latent Semantic Indexing algo-

rithm succeeds to �nd highly relevant keywords among all documents in a corpus using

Singular Value Decomposition method. The algorithm selects the most correlated words

considering all Wikipedia document corpus. Since we have higher true negative samples

and lower false positive examples, our recall value for negative examples is higher for

(250,250) keyword set.

As you see from tables, 4.13 and 4.16, company Wikipedia noun phrase pro�les and

company Wikipedia term frequency pro�les reach the best accuracy with (250,100) key-

word set. Since Company Wikipedia Page Noun Phrase Pro�le and Company Wikipedia

Disambiguation Page Noun Phrase Pro�le have restricted keyword set, the best over-

lap between a tweet pro�le and a company related entity pro�le could be provided by

enriching Pe1 . For Pe2 , 100 keyword set seems to be su�cient to �nd irrelevant tweets
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without needing to enlarge irrelevant keyword set. Also, we may make the same com-

ments for Company Wikipedia Page Term Frequency Pro�le and Company Wikipedia

Disambiguation Page Term Frequency Pro�le.

Our Wikipedia pro�le vectors and Wikipedia Kullback Leibler pro�le vectors get the

best accuracy with values (100,100) (Tables 4.15 and 4.14). We observe from the tables

that when the keyword set increases, the performance of the algorithm decreases consid-

erably. That shows that the increase in keyword set reduces the quality of the keyword

set in company pro�le vectors Pe1 and Pe2 . That leads to the inaccurate probabilistic

computation that a�ects the performance of the algorithm negatively.

It can be noted that as you see from the Entity Ranking formula given in the previous

chapter, the Entity Ranking algorithm penalizes any word which exists in review lan-

guage model frequently. On the other hand, the obtained probability will be higher if a

word in a given tweet comes from entity pro�le. The major novel side of the algorithm is

here. With this aspect, this algorithm is more e�cient than the standard tf-idf approach.

Suppose that for a given tweet, being relevant or irrelevant will be determined depend-

ing on the summation of the idf value of all terms in the tweet across documents. If the

word �iphone�and �go�have equal idf values, both of these words will have equal weights

for Apple Inc. company. However, �iphone�is an entity mention word that should have

had higher weight more than word �like�. Therefore, the approach of Entity Ranking

Algorithm is more capable than such standard approaches.

4.3.7 General Evaluation

Table 4.19 shows average accuracy measure per company for di�erent classi�ers. Sta-

tistically signi�cant improvement of classi�ers over baseline are indicated by bold face.

As seen from the table, except Wikipedia Two Pro�le Experiment (Using Company

Wikipedia Page Pro�le and Company Wikipedia Disambiguation Page Pro�le), our re-

sults are statistically signi�cant over our baseline algorithm.

Table 4.20 shows the performance of WePS-3 participants. Considering Threshold Al-

gorithm that gives the best result as Our Proposed Method, it gets an accuracy of 71%

which is lower than only LSIR and ITC-UT systems. Also, our other approaches, namely,

Majority Voting, Entity Ranking Algorithm, Simple Approach Algorithm, and Wikipedia

Two Pro�le Algorithm outperform than other systems, except LSIR and ITC-UT.

Our method tends to label tweets as unrelated because our threshold is high. Because of

this, we obtain high values for precision, recall, and F-measure with negative examples.
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Table 4.18: Number of Non-Overlapping Tweets using Wikipedia company Latent
Semantic Indexing pro�les for each Company in the Testing Data Set.

Company Name # Tweet (100,100) (250,100) (500,100) (250,250) (500,500)

Amazon 483 223 192 176 161 136

Apache 500 374 336 312 251 212

Apple 493 150 125 116 117 103

A. S. Roma 499 362 332 316 268 257

Blizzard Ent. 463 314 303 296 198 189

Camel 500 421 407 389 408 383

Canon 500 232 218 204 209 188

Cisco Systems 496 212 178 166 168 152

Cisco Systems 499 212 178 166 168 152

Cvs/pharmacy 477 367 327 320 310 297

Denver Nuggets 498 307 281 288 255 215

Deutsche Bank 465 125 117 112 53 51

Emory University 496 203 182 161 169 146

Fox Channel 499 252 219 188 201 162

Friday's 498 438 380 356 355 323

Gibson 469 367 345 332 325 298

GM 435 279 171 158 159 140

Jaguar Cars Ltd. 499 371 338 314 309 263

Johnnie Walker 497 11 11 9 10 9

JFK Airport 498 309 259 239 260 237

Kiss Band 500 430 406 379 390 338

Lexus 405 39 37 30 33 29

Liverpool FC 500 260 20 19 18 17

Lloyds Banking Group 473 26 26 25 23 22

Mtv 466 333 289 224 268 205

Macintosh 385 185 162 159 156 140

Mcdonald's 500 4 4 3 4 3

Mclaren Group 500 338 298 284 256 250

Metro Supermarket 401 263 237 212 240 204

A.C. Milan 500 229 209 191 217 197

Muse Band 500 308 256 233 245 219

Oracle 496 197 178 162 178 161

Orange 499 386 353 329 361 331

Paramount Group 453 379 355 351 323 309

Scorpions 500 9 9 6 9 6

Seat 443 361 346 297 341 289

Sharp Corporation 475 387 358 335 344 318

Sonic.net 474 427 406 387 415 392

Sony 396 84 71 67 73 69

Starbucks 445 288 278 242 282 243

Subway 500 324 302 289 292 280

Tesla Motors 500 320 265 241 269 231

Us Airways 471 385 361 334 357 323

Virgin Media 469 372 345 330 341 330

Yale University 498 243 214 187 208 179

Zoo Entertainment 478 392 381 357 351 318
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Results show that Threshold Classi�cation technique achieves good results with cheap

computational cost.

Table 4.20: All System Results.

System Accuracy P+ R+ F+ P− R− F−

LSIR %83 %71 %74 %63 %84 %52 %56

ITC-UT %75 %75 %54 %49 %74 %6 %57

Our Proposed Method %71 %69 %51 %59 %70 %84 %76

SINAI %63 %84 %37 %29 %68 %71 %53

UVA %56 %47 %41 %36 %6 %64 %55

KALMAR %46 %48 %75 %47 %65 %25 %28

4.3.8 T-test Results

In order to measure the signi�cance of accuracy change on experiments, we perform

statistical t-test [62]. The independent samples t-test is used to test the hypothesis

that the di�erence between the means of two samples is equal to 0 (this hypothesis

is therefore called the null hypothesis). We conduct a paired t-test that looks at the

di�erence between paired values in two, and takes into account the variation of values

within each sample, and produces a single number known as a t-value. Since we do not

know the mean of the two samples, we obtain the tail number as 2. When the obtained

t-test value is less than the level of signi�cance (traditionally chooses as 0.05), the null

hypothesis is rejected and the conclusion is that the two means di�er signi�cantly. If the

p-value associated with the t-test is small than the signi�cance level, there is evidence

to reject the null hypothesis. In other words, there is evidence that the means are

signi�cantly di�erent at the signi�cance level reported by the p-value. If the p-value

associated with the t-test is not small than the signi�cance level, there is not enough

evidence to reject the null hypothesis, and we can conclude that there is evidence that

the means are not di�erent.

If the signi�cant level is set at 0.05, it means that the rejection region comprises 5% of the

sampling distribution. This 5% can be allocated to one side of the sampling distribution

as in a one-tailed test or partitioned to both sides of the distribution as in a two-tailed

test, with each tail (or rejection region) containing 2.5% of the distribution.

As we mention, the signi�cant level usually is predetermined as 0.05. However, this value

may change depending on the application. An informal interpretation of a p-value, based

on a signi�cance level of about 10%, might be:
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If p < 0.01

then very strong presumption against null hypothesis.

If 0.01 < p < 0.05

then strong presumption against null hypothesis.

If 0.05 < p < 0.1

then low presumption against null hypothesis.

If p > 1

then no presumption against the null hypothesis.

We obtain the signi�cance level as 0.06, and we measure t value between company samples

(for each company, the obtained accuracy value for the corresponding experiment is

considered.) for each experiment pair. T-test results for the evaluated method pairs are

shown in Table 4.21. According to the stated signi�cant value, statistically signi�cant

values are written as bold face.
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Table 4.21: T-test Results for Experiment pairs

Experiment pairs p-value (signi�cant level = 0.07)

T. E.-S. A. A. 0.6

T. E.-Baseline 0.0026

T. E.-M. V. 0.1

T. E.-E. R. A. (WCP is obtained). 0.4

T. E.-E. R. A. (LSP is obtained). 0.7

T. E.-W. T. P. A. 0.7

Baseline-M. V. 0.58

Baseline-W. T. P. A. 0.32

Baseline.-S. A. A. 0.021

Baseline-E. R. (WCP is obtained) 0.02

Baseline-E. R. (LCP is obtained) 0.017

M. V.-E. R. A. (WCP is obtained) 0.2

M. V.-W. T. P. A. 0.6

M. V.-S. A. A. 0.2

M. V.-S. A. A. 0.2

M. V.-E. R. A. (LSP is obtained) 0.01

S. A. A.-E. R. A. (WCP is obtained) 0.6

S. A. A.-E. R. A. (WCP is obtained) 0.6

S. A. A.-W. T. P. A. 0.9

S. A. A.-E. R. A. (LSP is obtained). 0.2

E. R. A. (WCP is obtained)-E. R. A. (LSP is obtained) 0.24

E. R. A. (WCP is obtained)-W. T. P. A. 0.99

E. R. A. (WCP is obtained)-W. T. P. A. 0.99

W. T. P. A. + E. R. A. (LSP is obtained) 0.56
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Table 4.19: Average Accuracy Measure along with p-values for Di�erent Classi�ers.
Statistically signi�cant improvement of classi�ers over baseline are indicated by bold

face. (t-test p < 0.06)

Company Name Baseline M.V. E. R. A. S. A. A. W.T.P. A. T. A.

Amazon.com 30.1% 36.5% 46.8% 40.8% 60% 38.1%

Apache 55.4% 62.2% 65.1% 75.5% 86.2% 80.3%

Apple 41.7% 61.4% 76.4% 71.1% 96.6% 77.1%

A. S. Roma 73.3% 77.8% 83.4% 79.6% 58.4% 78.5%

Blizzard E. 72.1% 80% 81.1% 81.667% 91.7% 84.7%

Camel 76.4% 83.3% 88.6% 93.1% 52.7% 90.2%

Canon 52.8% 64.4% 61.5% 71.7% 92.8% 80.5%

Cisco S. 30.3% 44.5% 63.6% 65% 78.5% 58.9%

CVS/P. 27.6% 34.4% 32.2% 37.9% 72.7% 37.3%

Denver N. 67.3% 69.1% 64.9% 73.7% 24.6% 75%

Deutsche B. 44.3% 59.5% 88.2% 70.9% 69.1% 74.3%

Emory U. 51.1% 50.6% 59.5% 59.2% 54.8% 59.7%

Fox C. 46.4% 50% 57.4% 60% 34.1% 60.5%

Friday's 75.3% 75.2% 50% 50% 62.5% 81.3 %

Gibson 85.2% 87.1% 85.4% 86.6% 80.6% 89.9%

GM 54.5% 64.5% 81% 57.2% 75.7% 60.5%

Jaguar Cars 63% 70.2% 60.8% 65.8% 88.1% 81.5%

Johnnie W. 74.5% 74.6% 80.1% 79% 78.4% 79.7%

John F. K. A. 47.4% 51.4% 64.5% 69.2% 68.2% 68.9%

Kiss Band 78.4% 80.8% 85.9% 85.2% 54.8% 84.1%

Lexus 84% 92.7% 86.4% 85.4% 85.2% 26.9%

Liverpool FC 64.4% 61.6% 69.1% 68.4% 55% 67.5%

Lloyds B. G. 73.8% 74.8% 62.6% 11.3% 27.9% 80.3%

Mtv 26.2% 35.5% 31.2% 37.4% 80.9% 37.4%

Macintosh 44.5% 53.7% 72.2% 65.3% 84.7% 63.2%

Mcdonald's 20.2% 29.2% 50% 50% 81.6% 45.4%

Mclaren G. 60.7% 66.3% 67.5% 66.5% 49.4% 69.1%

Metro S. 90.7% 87.8% 78.7% 84.2% 68.2% 88.8%

A.C. Milan 57% 56.2% 59.6% 63.6% 45.2% 66%

Muse Band 37.8% 44.4% 62.5% 56% 77% 57%

Oracle 47.7% 57.5% 68.2% 65% 91.1% 73.3%

Orange 88.4% 85.3% 81.7% 84.7% 54.9% 89%

Paramount G. 81.4% 78.5% 82.7% 76 69.5% 83.5%

Scorpions 40.3% 51.2% 71% 60.7% 82.5% 63.3%

Seat 88.5% 88.7% 85.7% 89.1% 53% 81.7%

Sharp C. 82.3% 83.3% 86.3% 85.1% 64.2% 84.8%

Sonic.net 83.8% 84.5% 89.2% 87.9% 76.3% 81%

Sony 14% 89% 78% 63.3% 76.1% 19.1%

Starbucks 12% 15% 36.3% 22.8% 69.5% 20.2%

Subway 54.4% 60.4% 68.5% 70% 86% 73%

Tesla M. 65.3% 67.8% 68.8% 80.6% 78.3% 79.9%

Us Airways 88.2% 89.4% 82.3% 92% 59.3% 93.1%

Virgin Media 80% 83.5% 80.6% 88.6% 49.1% 89.7%

Yale U. 39% 49.3% 56.2% 56% 81.5% 62.2%

Zoo E. 90.3% 90.2% 93.8% 80.9% 17.3% 78.5%

Average 59.7% 65.7% 69.1% 69.9% 70.6% 70.9%

t-test (p < 0.06) 0.058 0.0017 0.021 0.32 0.0026
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Figure 4.7: Accuracy Graph for testing data for each classi�cation algorithm.



Chapter 5

Conclusion

5.1 Overall Analyze and Future Work

Researchers analyze twitter data for di�erent purposes: �nding in�uential ones, opinion

mining, sentiment analysis, categorizing tweets, summarizing tweets, etc. In some of

these tasks, like opinion and sentiment mining, the classi�cation of the tweets based

on entities requires an important preprocessing step, as the accuracy of further analysis

depends on this step. In this study, we emphasise on the problem of �nding related

tweets to a given organization. This is a challenging task due to the organization name

ambiguity. This task is more challenging due to speci�c three problems: the tweets and

organization contain little information,misspellings in tweet text and the organizations

in training data are di�erent with those in test data.

We use external resources to enrich the information of organization. We realize an

e�cient classi�cation process with the help of entity pro�les, which we construct using

di�erent information sources. We observe that the accuracy of our classi�cation technique

depends on the quality of the entity pro�les. However, from the analysis of the test set

tweets we observe that in 4.18, there is a signi�cant amount of tweets, which do not have

any overlapping words with the corresponding company pro�le keywords. Therefore, this

shows that as a future work, we need to increase the quality of our company pro�les. We

can use some techniques to do this job.

Using Twitter stream might be a good way to enrich our pro�les with highly correlated

keywords that are related with a given company. As it has been mentioned in Related

Work section, in [4], we show that authors enrich the pro�le keywords that are both

related and unrelated with a given company using Twitter stream. While inspecting

Twitter stream, if the basic pro�le and a tweet have overlapping words, all words co-

occurring with pro�le keywords in these tweets added to the pro�le. On the other hand,
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if the inspected tweet and a basic pro�le do not have any overlapping word, they add all

words in that tweet (ones above a certain threshold) to the company unrelated pro�le.

In [4], it is also shown that the accuracy becomes as 0.84 using this enriching technique.

We can apply the same technique to enlarge our company related and unrelated pro�les.

This might be essential for us, since our classi�cation techniques that we use produce

higher or lower accuracy results based on the overlapping level of a company pro�le and

a tweet. As it is seen in 4.19, some companies such as Amazon or Starbucks show

very low accuracy, when statistically signi�cant classi�ers over baseline perform on those

testing data set. When we measure the relatedness value of Amazon and Starbucks,

both have higher relatedness value. This observation shows that the reason of the low

performance is highly correlated with having poor quality company pro�le. Therefore,

the quality factor should be improved for future work.

Moreover, we may want to enrich the existing keywords that are relevant to the target

company Web page even if they do not in company Web page. For this purpose, the

techniques that are explained in [32] or [63] can be used for our classi�cation task. In

order to do that, we will need to analyse the keywords for �nding a relationship between

existing ones and newly obtained keywords that are semantically relevant with each

other. For this purpose, we will bene�t from Wikipedia graph structure. Structurally,

Wikipedia can be viewed as a directed graph with vertices and edges corresponding to

its entities. Since company home pages have restricted information, we may want to use

each entity in the company Web page to generate Wikipedia graph structure. For this

purpose, we need to take each entity as a vertex of the graph and if two entities are

semantically related, these should be connected via edge. The hyperlinks in Wikipedia

pages linking to the other Wikipedia articles for the graph we want to construct are

potential edges. As a goal, we may construct edges linking to entities in the same topic.

Also, the weight between two entities is computed in order to see the most related entities.

For this purpose, we may want to use page ranking algorithm to rank related entities.

Also we can use a Tweet clustering approach which is mentioned in [63]. Like [63], we

can link terms in company tweets to Wikipedia pages and use Wikipedia's link structure

to do tweet clustering. In order to do that, �rstly we need to extract term features in

Twitter microblogs. We may use microblog tokens as features if those tokens exist as

a Wikipedia anchor text at least once or if those tokens are used as Wikipedia article

titles. Then, we will need to determine most relevant articles with a given microblog

based on the extracted feature tokens. Lastly, we will need to do document similarity

between candidate articles and cluster those articles as �related�or �unrelated�with a

certain company.
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When we analyse how we can produce more satisfactory results for future work, we can

conclude that the word quality of unrelated terms is as important as word quality of rel-

evant terms. We mention about gathering company related terms is a �nite process; in

contrast, the situation is not the same for collecting company unrelated keywords. As un-

related keyword set is in�nite, gathering quality unrelated terms about a given company

becomes very di�cult task. Therefore, sometimes a keyword might exist both company

related pro�le and unrelated pro�le that leads to erroneous results. For example, when

we analyse �rst 100 keyword of �Apple�Inc., we notice that �game�and �video�keywords

both exist company Wikipedia pro�le and company Wikipedia disambiguation pro�le.

Therefore, as a future work, we need to develop a strategy that will prevent misplacement

of such those terms. In [4], the threshold limit is proposed while generating the company

unrelated pro�les. If the weight of the candidate word is above a certain threshold, it

is added to the pro�le. However, their system is based on inspecting tweets in Twitter

stream, so the system is dynamic. Therefore, this method might not be valid for our

system which is static, so we need to discover other convenient methods to solve that

problem.

5.2 Possible Implications

Our method is scalable for other systems and precedes highly expensive information

extraction system. Since the method is text-based and does not depend on any HTML

structure, this classi�cation system can be applicable for other social networks or blogs

easily.
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Table A.1: Additional stop word list

alcatel amadeus apollo armani barclays bart blockbuster boingo

cadillac craft delta dunlop edmunds elf emperor fender

folio foxtel fujitsu harpers impulse linux lamborghini lufthansa

liquid luxor lynx mack magnum mandalay marriott marvel

mdm mgm mercedes mercer nikon nordic philips pierce

pioneer renaissance renault rover shin southwest yamaha borders

borders best buy cme delta dunkin ford gap

leap frog lennar opera overstock palm rim southwest

sprint tam warner amazon apache apple rome a.s.

blizzard camel canon cisco cvs denver nugget deutzhe

emory friday′s gibson gm jaguar johnie kennedy kiss

lexus liverpool lyds macintosh mcdonalds mclaren metro milan

muse oracle orange paramount scarpions seat sharp sonic

sony starbucks subway tesla us virgin yale zoo

hundred thousand million billion trillion date annually annual

year quarterly yearly quarter month monthly week weekly

day daily january february march april may june

july august september october november december null want

monday tuesday wednesday thursday friday saturday sunday one

one two three four �ve six seven eight

nine ten eleven twelve thirteen fourteen �fteen sixteen

seventeen eighteen nineteen twenty thirty forty �fty sixty

seventy eighty ninety �rst second third fourth �fth

sixth seventh eighth ninth tenth i ii iii

iv v vi vii viii ix x xi

xii xiii xiv xv xvi xvii xviii xix

xx able out who can his her me

rather way just did never too up were

him we us you she them from else

ever which he where wasn what so since

how because hence therefore however about its despite

actually have had am only one didn either

often later all after when more has other

are o� also unless any until certain through

would could within may yes both now neither

nor than less here best each weren been

called nevertheless although over day years �rst end

around while based most per under without before

include consist during almost among along instead back

even though between due back some being cache

ones only onto others otherwise ought ours ourselves

outside over overall own particular particularly perhaps placed

please plus possible presumably probably provides que quite

really reasonably regarding regardless regards relatively respectively right

said same saw say saying says secondly see

seeing seem seemed seeming seems seen self selves
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Table A.2: Additional stop word list

sensible sent serious seriously several shall should shouldn′t

somebody somehow someone something sometime sometimes somewhat somewhere

soon sorry speci�ed specify specifying still sub sup

sure take taken tell tends than thank thanks

thanx that′s thats theirs themselves then thence there′s

thereafter thereby therefore therein theres thereupon they′d they'll

they′re they′ve think thoroughly those though throughout thus

together took toward towards tried tries truly try

trying twice under unfortunately unlikely until unto up

upon use used useful uses using usually value

various very via viz vs want wants we′d

we′ll we′re we′ve welcome well went weren′t what′s

whatever whence whenever where where′s whereafter whereas whereby

wherein whereupon wherever whether while whither why who′s

whoever whole whom whose will willing wish with

won′t wonder would wouldn′t yet you′d you′ll you′re

you′ve yours yourself yourselves zero okay old once

a′s about above according accordingly across afterwards again

against ain′t all allow almost alone already nobody

always amongst another anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate appropriate aren aside

ask asking associated available away awfully became become

becomes becoming beforehand behind believe below beside besides

better beyond brief came can can′t cannot cant

cause causes certain certainly changes clearly come comes

concerning consequently consider considering containing corresponding could couldn′t

course currently de�nitely described despite didn′t di�erent do

does doesn′t doing don′t done down downwards edu

elsewhere enough entirely especially et etc every everybody

everyone everything everywhere ex exactly example except far

few followed following follows former formerly further furthermore

get gets getting given gives go goes going

gone got gotten greetings hadn′t happens hardly hasn′t

haven′t having he′s hello help hence here here′s

hereafter hereby herein hereupon hers herself hi himself

hither hopefully how howbeit however i′d i′ll i′m

i′ve ie ignored immediate inasmuch inc indeed indicate

indicated indicates inner insofar into inward isn′t it′d

it′ll it′s itself just keep keeps kept know

known knows last lately later latter latterly least

less lest let let′s like liked likely little

look looking looks ltd mainly many may maybe

mean meanwhile merely might more moreover most mostly

much must myself name namely nd near nearly

necessary need needs neither never nevertheless new next

non none noone nor normally not nothing novel

nowhere obviously often oh ok
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