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“No human investigation can be called real science if it cannot be demonstrated mathe-

matically. ”

Leonardo da Vinci



Secure and Efficient Biometric Authentication Based on Advanced

Cryptographic Primitives

Ziya Alper Genç

Abstract

In this thesis, we study secure biometric authentication protocols and mitigation methods

against password database breaches. Biometric identifiers such as fingerprint of a user

is inherently unique and can be used to authenticate individuals. However, biometric

identifiers cannot be replaced with new ones, once they are compromised. Therefore,

biometric authentication systems that use biometric data in plain form raises security

and privacy issues. In this thesis, we give a survey of state of the art protocols designed

for secure biometric authentication. Hamming distance is generally used to compare

biometric feature veectors. As a practical example, we analyze a cryptographic protocol

of Bringer et al. (called SHADE) which aims to securely compute a Hamming distance

computation based on Committed Oblivious Transfer protocol. We show that SHADE is

in fact insecure in the malicious model. We mount different attacks to the protocol and

introduce mitigation techniques that makes the protocol indeed secure. Furthermore, we

also analyze the protocol from the efficiency perspective and show that the complexity

of the protocol can be significantly improved.

Another important security problem in authentication is the password database breach.

In the last few years, several password databases were breached and millions of user

names and password hashes were released. With the recent technological advancements

like using graphical-processing unit (GPU) in computation, it is comparably easier to

invert password hashes. Once the password database has been breached and passwords

have been recovered, no server can detect any illegitimate user authentication. In order

to thwart these kinds of threats, Juels and Rivest developed the Honeywords system.

In this system, each user is associated with multiple possible passwords but only one of

them is genuine. This thesis will analyze the security of the Honeywords system as well

as from functionality perspective. The authors point out that the Honeyword system

cannot withstand active attacks, i.e., code modification of the system. We introduce an

enhanced model which solves this open problem. We propose some improvements for

determining the number of Honeywords per user, generating typo-safe honeywords and

managing old passwords. Finally, the security and efficieny analysis has been discussed.

Keywords: oblivious transfers, biometric authentication, shade, password database

breach, honeywords



Gelişmiş Kriptografik Öğelere Dayalı Güvenli ve Verimli Biyometrik

Kimlik Doğrulama

Ziya Alper Genç

Öz

Bu tezde biyometrik kimlik doğrulama protokolleri ve parola veritabanlarının çalınmasını

engellemeye yönelik sistemleri inceledik. Parmak izi gibi biyometrik kimlik belirleyiciler

kişisel olarak eşşizdir ve bu sayede kimlik doğrulamada kullanılabilirler. Ancak bir kez

ele geçirildiklerinde yerlerine yenileri koyulamaz. Bu nedenle, biyometrik veriyi açık

metin halinde kullanan biyometrik sistemler güvenlik ve mahremiyet problemi oluştu-

rurlar. Bu tezde son teknoloji ürünü güvenli biyometrik kimlik doğrulama protokolleri

ile ilgili yaptığımız araştırmayı sunuyoruz. Biyometrik vasıf vektörleri karşılaştırmak

için genellikle Hamming uzaklığı kullanılır. Pratik bir örnek olması için, Bringer ve

arkadaşlarının geliştirdiği (SHADE adındaki) kriptografik protokolü analiz ettik. Bu

protokol taahhütlü habersiz transfer protokolünü kullanarak Hamming uzaklığını güvenli

bir şekilde hesaplamayı amaçlar. Biz ise, SHADE protokolünün kötü niyetli kullanıcılara

karşı aslında güvenli olmadığını ispat ettik. Protokole farklı ataklar gerçekleştirdik pro-

tokolün gerçekten güvenli olması için bu ataklara karşı koyma yöntemleri geliştirdik.

Bir adım ileri giderek, protokolün verimliliğini inceledik ve protokolün karmaşıklığının

iyileştirilebileceğini gösterdik.

Kimlik doğrulamada bir başka önemli problem ise parola veritabanlarının çalınmasıdır.

Son birkaç yılda, birçok parola veritabanı çalındı ve milyonlarca kullanıcı adı ve parola

özeti açığa çıkmıştır. Son teknolojik gelişmelerle birlikte, örn: grafik işlemci biriminin

hesaplamada kullanılması, parola özetlerinin kırılması daha kolay hale gelmiştir. Parola

veritabanı çalınıp parolalar ele geçirilirse, hiçbir sunucu bunu tespit edemeyecektir. Bu

tehditlere karşı, Juels ve Rivest Honeywords sistemini geliştirmişlerdir. Bu sistemde, her

kullanıcı birden fazla olası parola ile ilişkilendirilir ancak bunlardan sadece bir tanesi

gerçek paroladır. Bu tezde, Honeywords sistemi güvenlik ve fonksiyonellik açısından in-

celenecektir. Yazarlara göre Honeywords sistemi aktik saldırılara karşı koyamamaktadır,

örn: sistemin kodlarının değiştirilemsi. Biz ise bu problemi çözen güçlendirilmiş Honey-

words sistemini tanıtacağız. Kişi başına honeywords sayısı, yanlış yazmaya karşı güvenli

honeywords üretimi ve eski parola yönetimi konularına çözüm önereceğiz. Son olarak

güvenlik ve verimlilik analizi yapacağız.

Anahtar Sözcükler: habersiz transfer, biyometrik kimlik doğrulama, parola veritabanı

ifşası
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Chapter 1

Introduction

Several commercial organizations have invested in secure electronic authentication sys-

tems to reliably verify identity of individuals. Biometric authentication systems are

receiving a lot of public attention and becoming a crucial solution to many authentica-

tion and identity management problems because of cost-effective improvements in sensor

technologies and in efficiency of matching algorithms [1]. Biometric data (i.e. templates)

of a user is inherently unique. This uniqueness provides assurance to individuals to be

securely authenticated for accessing an environment provided that the biometric data is

kept as a secret. The biometric data cannot be directly used with conventional encryp-

tion techniques because the data itself is inherently noisy [2]. Namely, whenever two

samples of data are extracted from the same fingerprint, they will not be exactly the

same. In this context, in order to eliminate the noisy nature of the biometric templates,

several error correction techniques were proposed in the literature [3–5].

Biometric authentication over an insecure network raises more security and privacy issues.

The primary security issue is the protection of the plain biometric templates against

a malicious adversary because they cannot be replaced with new ones, once they are

compromised. The common biometric authentication system is as follows: For each

user, the biometric template is stored in a database during the enrollment phase. In the

verification phase a new fresh acquisition of a user is compared to the template of the

same individual stored in the database. The verification phase can either be processed

within a smart card (i.e, on-card matching), or in a system outside the card (i.e, off-card

matching) [6]. Since the biometric template is not necessarily transferred to outside

1
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environment, the on-card matching technique protects the template. In both techniques,

authentication protocols should not expose the biometric template without the user’s

agreement. In order to ensure privacy of the user, the biometric template should be

stored in an encrypted form in a database and no one, including the server, can learn

any information on the biometric data in plain form. But still, it should be possible to

verify whether a user is authentic [7].

The use of passwords is one of the most common methods for user authentication [8].

However, many users whether they are aware or not, choose either weak passwords or

common words that can be easily guessed by using a dictionary attack [9, 10]. Although

authentication systems lock user accounts after a small number of unsuccessful login at-

tempts, the adversaries are frequently able to obtain hashed password databases. Lately,

there has been several data breaches in which millions of user names and password

hashes have been obtained by malicious adversaries [11–15]. Furthermore, the attackers

can easily obtain the original passwords by mounting a dictionary attack on password

hashes.

There exist several state of the art techniques that increase the success chance of brute

force attacks. As an example, Weir et al. developed a password cracking algorithm

which uses probabilistic, context-free grammars [16]. Kelley et al. recently showed [17]

that using Weir’s attack, one billion guess is enough to crack % 40.3 of the passwords that

comply with the “basic8” policy, i.e., all passwords must have at least 8 characters. In

the meantime, parallel processing capabilities of GPUs have been increased dramatically.

For example, using oclHashcat, a free password recovery software, cracking speed of

hashes has reached 8.5 billion/sec for MD5 and 2.7 billion/sec for SHA1 on a single

GPU [18]. These advancements make it necessary to develop new and effective security

countermeasures.

1.1 Related Work

There has been a large amount of research done on the security and efficiency of the

biometric authentication systems. In this section, we review the most recent works for

biometric authentication.
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Hamming distance together with Oblivious Transfers is one of the most elegant tools

used in biometric authentication systems. For example, Jarrous and Pinkas propose the

binHDOT protocol [19] to compute Hamming distance based on 1-out-of-2 Committed

Oblivious Transfer with Constant Difference (COTCD) of Jarecki and Shmatikov [20]

and Oblivious Polynomial Evaluation (OPE) of Hazay and Lindell [21]. The protocol

also uses commitments and zero-knowledge proofs to guarantee that each party follows

the protocol. This protocol provides full security in the malicious model. One OPE

protocol and n COTCDs are invoked to compute the Hamming distance between two

strings of n bits.

The SCiFI (Secure Computation of Face Identification) of Osadchy et al. is the first

secure face identification system which is well suited for real-life applications [22]. SCiFI

system consists of two parts: a client and a server. The server prepares a face recognition

database that contains representations of face images. This computation is done offline.

In the verification phase, a client prepares her face representation and then a crypto-

graphic protocol which uses Paillier encryption and Oblivious Transfer running between

the server and the client. The authors implemented a complete SCiFI system in which a

face is represented with a string of 900 bits. The authors designed the system by aiming

the minimal online overhead: the most significant requirement for computing Hamming

distance between this length of bit strings is 8 invocations of 1-out-of-2 OTs.

Bringer et al. [23] used biometric authentication/identification for access control. Note

that it is important to securely store the biometric template on the server and using

conventional encryption schemes for securing the biometric template can provide a strong

protection. Note also that conventional cryptography requires an exact match while

biometrics always have a threshold value, therefore biometric authentication over the

encrypted domain is a challenging task. In [23], a cryptographic scheme is given for

biometric identification over an encrypted domain which uses Bloom Filters with Storage

and Locality-Sensitive Hashing. Their paper is interesting because it proposes the first

biometric authentication/identification scheme over encrypted binary templates which is

stored in the server’s database.

In another paper, Bringer et al. [24] proposed a security model for biometric-based au-

thentication protocols, relying on the Goldwasser-Micali cryptosystem [25]. This system

allows the biometric match to be performed in the encrypted domain in such a way that
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the server cannot identify which user is authenticating. The proposed system requires

storage of biometric templates in plain form. In order to protect the privacy, the system

ensures that the biometric feature stored in the database cannot be explicitly linked to

any identity, but the DB only verifies whether the received data belongs to an identity

in the database.

Erkin et al. [26] propose a privacy preserving face recognition system on encrypted mes-

sages which is based on the standard Eigenface recognition system [27]. In their protocol

design, they utilized semantically secure Paillier homomorphic public-key encryption

schemes and Damgård, Geisler and Krøigaard (DGK) cryptosystem [28, 29]. Later,

Sadeghi et al. make an improvement over the efficiency of this system [30] by merging

the eigenface recognition algorithm using homomorphic encryption and Yao’s garbled

circuits. Their protocol improves the scheme proposed by Erkin et al. significantly since

it has only a constant number of rounds and most of the computation and communica-

tion is performed during the pre-computation phase. Schneider and Zohner [31] provide

an improvement over [30] and [22] by using the GMW protocol [32].

Tuyls et al. [33] propose a template protection scheme for fingerprint based authentication

in order to protect biometric data. During the enrollment phase, client’s biometric

features X is extracted, the Helper Data [34] W is computed (that is required by the

error-correction mechanism), a one-way hash function H is applied to S and the data

(client, W, H(S )) is stored on the server. Here, S is a randomly chosen secret value

such that G(X, W )=S for a shielding function G [35]. During the verification phase,

after client’s noisy biometric data X is extracted, the server sends W back to the sensor.

The sensor computes S = G(X,W ) and H(S). Then, the server compares H(S ) with

H(S), and grants access if the results are equal. The Helper Data is sent over the public

channel, i.e. an adversary may obtain W. Tuyls et al. however designed the system in

such a way that the adversary obtains minimal information about X by capturing W.

Kulkarni et al. [36] propose a biometric authentication scheme based on Iris Match-

ing. Their scheme uses the somewhat homomorphic encryption scheme of Boneh et al.

[37] which allows an arbitrary number of additions of ciphertexts but supports only one

multiplication operation between the ciphertexts. The scheme is based on Paillier en-

cryption and bilinear pairings. This scheme consists of two phases: Enrollment phase

and Verification phase. During the Enrollment phase, necessary keys are first generated
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by the server and then sent to the client securely. Secondly, the client’s biometric data is

XORed with the key, and a mask value is XORed with a mask key. Both XORed values

are sent to the server. During the Verification (authentication) phase, the client sends an

encryption of the authenticated biometric data to compute the distance. The protocol

is proven to be secure in the semi-honest model.

Kerschbaum et al. [38] propose an authentication scheme in a different setting. In par-

ticular, they assume that there are two parties where each of them has a fingerprint

template. They would like to learn whether the templates match, i.e. generated from

the same fingerprint. However, they do not want to reveal the templates if there is no

match. Their protocol is secure only in the semi-honest model using secure multi-party

computation as a building block.

Barni et al. propose a privacy preserving authentication scheme for finger-code templates

by using homomorphic encryption which is secure only in the semi-honest model [39, 40].

Their protocol allows the use of the Euclidean distances to compare fingerprints in such

a way that the biometric data is reduced for computing a smaller encrypted value that

is sent to the server.

1.2 Contributions

The main contributions of the thesis are twofold. In the first part, we revisit the Hamming

distance computation protocol SHADE of Bringer et al. [41]. We show that SHADE is

in fact insecure in the malicious model [47]. More precisely, we show that the full scheme

has a severe weakness allowing any malicious adversary to violate soundness property of

the protocol, i.e., a different value of Hamming distance from the actual one.

The protocol flaw resides in the method used for validation of the inputs of a user. Using

zero-knowledge proofs, the protocol aims to force the user to submit valid inputs, i.e.

pairs of integers (x, y) that differ by 1. The method succeeds at checking the difference,

however, it fails at validation of the pairs, i.e. a malicious party can submit bogus

pairs (x̃, ỹ) and can pass the verification steps without being detected. Since SHADE

computes the Hamming distance by using the outputs of COT, a verifier would compute

an incorrect Hamming distance. We would like to highlight that any fake Hamming

distance can be set in advance. As a practical example for biometric authentication, we
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show that a malicious adversary can pass the authentication by running the algorithm at

most O(n) times (instead of running O(2n) times, where n is the input length.). Last but

not least, an adversary with knowledge of the distribution of inputs can mount a more

powerful attack. Note that this attack is of independent interest and may be applied to

other schemes.

In order to eliminate this severe weakness, we propose a new method for input validation.

This way, we remove the fault in the protocol and enhance the security of it. We also

show that the computational complexity of the fixed protocol is comparable with the

insecure protocol. Moreover, we optimize the new input validation method for biomet-

ric authentication systems. We prove the security of our protocol using the ideal/real

simulation paradigm in the standard model [42–44] and [45].

Lastly, we consider the efficiency of the protocol and show that running a COT is not

necessary in the full scheme of the protocol. We show that VOT is sufficient instead of us-

ing complete COT protocol which contains additional commitments and zero-knowledge

proofs [46]. This leads to a considerable improvement in the computational complexity

of the protocol.

In the second part of this thesis, we analyze the security of the honeywords system as well

as from functionality perspective. The original Honeywords system suggest some small

number of honeywords per user, in general this number is 20. However, an authentication

system can have some users more important than others. Thus, these important users

must have more honeywords than the regular users. Following this idea, we suggested a

flexible abstract method for determining the number of honeywords per user [48].

There was a problem regarding typo safety that a legitimate user may enter a honeyword

instead of her password. In this case, the system will be alarmed and maybe an unnec-

essary safety procedures will be called. In order to avoid this false alarms, we design an

algorithm for checking the typo-safety of the generated honeywords. Also, we suggested

an idea for handling old passwords as they can be used by adversaries to predict the

current password if they are compromised.

Finally, we introduce an enhanced honeywords model which solves the open problem

of active attacks highlighted by Juels and Rivest. We proposed built-in accounts that
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will work as a probabilistic watchdog system. We also design an enhanced Honeywords

system which utilizes the Short Message Service as a second factor of authentication.

1.3 List of Publications

This thesis is partly based upon the following publications:

[47] M. S. Kiraz, Z. A. Genc, S. Kardas. Security and efficiency analysis of the Ham-

ming distance computation protocol based on oblivious transfer. Security and Commu-

nication Networks, 2015. doi = 10.1002/sec.1329.

[48] Z. A. Genc, S. Kardas, M. S. Kiraz. Examination of a New Defense Mechanism:

Honeywords. Cryptology ePrint Archive, Report 2013/696, 2013. http://eprint.iacr.

org/.

1.4 Outline

This thesis is organized into five chapters. The first chapter provides brief introduction

on secure biometric authentication and password based authentication. Then we give a

literature review on secure biometric authentication methods, followed by contributions

of this thesis.

Chapter 2 introduces the cryptological concepts used throughout the thesis. We classify

the password related attacks in this chapter. The security and privacy model is also given

here.

Chapter 3 is solely dedicated on SHADE protocol of Bringer et. al. We start by

describing the two versions of the protocol, the basic scheme which is secure in the semi

honest setting and the full scheme which aims full security in malicious case. We show

that the full scheme is in fact insecure in the malicious case. We optimize the attack for

different scenarios. Then we fix the protocol and give a security proof. Furthermore, we

increase the efficiency of the protocol without decreasing the security level.

http://eprint.iacr.org/
http://eprint.iacr.org/
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Chapter 4 is focused on one serious problem: password database breach. We analyze the

security and efficiency of the Honeywords protocol of Juels and Rivest. We find that the

Honeywords system provides a good defense against password database breaches. Nev-

ertheless, we propose improvements about the number of honeywords per user, typo-safe

honeyword generation and old passwords management problem. Moreover, we introduce

the Enhanced Honeywords protocol which is a solution to withstand active adversaries.

Chapter 5 summarizes and concludes the thesis.



Chapter 2

Preliminaries

2.1 Mathematical Background

In this section we give the definitions of the cryptographic mechanisms used in this thesis.

We use the symbol Z to represent the integers. For any prime number p, Zp denotes the

field of integers modulo p. Z∗p denotes the set of units in Zp, i.e.,Z∗p = Zp \ {0}.

Definition 2.1. (Discrete Logarithm) Let G be a finite cyclic group of order n. Let α

be a generator of G, and let β ∈ G. The discrete logarithm of β to the base α, denoted

logαβ, is the unique integer x, 0 ≤ x ≤ n− 1, such that β = αx.

Definition 2.2. (Discrete Logarithm Problem) The discrete logarithm problem (DLP)

is the following: given a finite cyclic group G of order n and an element β ∈ G, find the

integer x, 0 ≤ x ≤ n− 1, such that αx ≡ β.

Definition 2.3. (The ElGamal Cryptosystem) The ElGamal cryptosystem is a public

key encryption scheme based on the discrete logarithm problem. This scheme consists

of a tuple (Key Generation, Encryption, Decryption) defined as the following:

• Key Generation: Select a ∈R {1, . . . , q} and compute h = ga.

• Encryption:

1. Select r ∈R {1, . . . , q}.

2. Compute (c1, c2) = (gr,m ·Br).

9
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• Decryption: Compute c−a1 · c2

Definition 2.4. (Commitment Schemes) Commitment scheme is a two party protocol

between committer and a receiver. The protocol take place in two phases:

• Commit phase: The chooses a value m and a random value r, computes c =

Commit(m, r) and sends c to the receiver.

• Reveal phase: The committer sends m and r to the receiver where m is the value

in the commitment and r is the randomness used to compute c. Then the receiver

computes the commitment and checks whether m and r commits to c.

Throughout this thesis, we will use the notation CommitP (m, r) where P is the commit-

ter, m is the message to be committed and r is the randomness. When it is clear from

the context, we shall omit P or r.

A secure commitment scheme must satisfy certain properties. First, a commitment

scheme must be hiding, i.e., the receiver cannot learn any information from the commit-

ment c, until the point of revealing. Second, the commitment scheme must have binding

property. That is, it should be impossible to change the committed value m unless c

is changed, i.e., find another value m′ that commits to the same commitment value c.

In other words, hiding property protects committer from malicious receivers that may

try to learn m before reveal phase. On the other hand, the binding property prevents

malicious verifiers from changing the committed value m to another value m′ after the

commitment has done.

2.2 Authentication

Authentication is a process in which a party proves its identity to an authority.

An authentication system consist of two parts:

• Registration: In this part, a party identifies itself and gives information required

by the authority. This information will later be used to verify the identity of the

party and must be kept secret by both sides. The type of information is dependent

of the verification type used by the authority.
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• Verification: Once a party is registered, its identity can be verified. The party

submits its credentials to the authority. The authority then verifies the party based

on the prior knowledge gained in the Registration part.

Basically, authentication methods is classified into three groups based on the type of

information which is used for verification.

• Methods based on something that you know: A party proves its identity by

showing an information that it knows. A typical example of this information is the

login credentials that one submits to an e-mail server.

• Methods based on something that you have: In this kind of verification, a party

uses something to prove its identity. User tokens and Mobile SMS based One Time

Passwords (OTP) are widely used in the finance sector.

• Methods based on something that you have: This authentication method uses

the characteristic information of a party. This information is called bimetric infor-

mation and includes but not limited to fingerprint and iris pattern.

2.2.1 COT versus VOT

Verifiable Oblivious Transfer (like COT) [49] is also a natural combination of
(
2
1

)
-OT

and commitments. Let CommitS and CommitC be commitments by Sender and Chooser

respectively. In a VOT protocol, the Sender has (x0, x1), the Chooser has y ∈ {0, 1}
and the commitments CommitS(x0), CommitS(x1),CommitC(y) are common input. At the end

of the protocol the Chooser learns xy and the sender has no output. Note that the difference

with COT is that commitment to the output xy is not computed, i.e., VOT is defined if the

CommitC(xy) is not required as output. The functionality of VOT is illustrated in Figure 2.1.

Definition 2.5. (Verifiable Oblivious Transfers)

Sender
Private Input: x0, x1

Private Output: ⊥

Common Input:
CommitS(x0),

CommitS(x1),CommitC(y)

VOT←→

Chooser
Private Input: y

Private Output: xy

Figure 2.1: Verifiable Oblivious Transfer
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We note here the two main aspects of COT vs. VOT:

What to transfer

 bits x0, x1 ∈ {0, 1}

strings x0, x1 ∈ {0, 1}k

Committed Output

 yes→ COT

no → VOT

We show that the basic protocol in [41] does not have to use COT in the case that the server

computes the result (i.e., VOT is already sufficient because it is not necessary to compute the

final commitment.).

Definition 2.6. (Committed Oblivious Transfers)

Sender
Private Input: x0, x1

Private Output: ⊥

Common Input:
CommitS(x0),

CommitS(x1),CommitC(y)

COT←→
Common Output:

CommitC(xy)

Chooser
Private Input: y

Private Output: xy

Figure 2.2: Committed Oblivious Transfer

2.3 Password Related Attacks

There are numerous attacks to obtain a user’s password. Seven of these techniques are depicted

in Figure 2.3.

Password Related Attacks

Brute Force
Attack

Dictionary
Attack

Guessing
Attack

Network
Monitoring

Phishing
Attack

Malware Visible
Passwords

Figure 2.3: Password Related Attacks

Password attacks can be classified as follows:

• Brute force attack: In (offline version of) this scenario, the adversary steals the password

hash file. She creates a set which contains the presumed characters that appear in a
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password. She then creates a combination of characters from this set, computes its hash

and compares the hash with the password hash. This process continues until she finds a

match [50].

In order to understand the practicality of this attack consider the following scenario. A

user created a password of length eight which consists of only lowercase English letters

and digits, i.e., a-z and 0-9. The required time to crack this password can be computed

as follows

Time(inseconds) =
Password space length

Crack speed

Applying the above formula, we find that using only one GPU, an adversary can crack the

SHA1 hash of that password in

(26 + 10)8

2.7× 109 per second
u 1045 seconds

The above computation is based on [18].

• Dictionary attack: In this attack, an adversary computes the hash of words from a list

that consists of strings which are typically derived from a dictionary. She compares this

hash with the password hash. The intention is to try words which are more likely than a

random string to be the password.

• Guessing attack: Many users choose weak passwords such that an adversary can find out

the passwords of some users of a system by trying common passwords while attempting

to login to that system [51, 52]. Spafford suggests good password choice should avoid

common words and names [53].

• Network monitoring: If the communication between the user and the system is un-

secured, i.e., unencrypted, an adversary may monitor the network traffic and obtain the

passwords or interrupt the traffic while a user is entering or creating her password [54].

This attack is also called man-in-the-middle-attack [55]. Most websites use TLS protocol

to mitigate this attack [56].

User Adversary ServerUNSECURED UNSECURED

1. User sends
information, i.e.,
login request.

4. User receives what
adversary sends.

2. Adversary may
record, modify or block

the login request.

3. Adversary gets
critical information.

Figure 2.4: Communication over an unsecured channel
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• Phishing attack: A user can be fooled to submit her login information to a web page

which seems resembles the original system’s login screen but is run by the adversary [57].

In addition to obtaining user credentials, this attack is often used to steal credit card

information.

• Malware: A Trojan program can capture the key strokes and send this information

to the adversary [58]. There are some advanced forms of malware that can steal the

login information from messenger type software some of which does not keep the login

information encrypted [59]. Sun et al. propose oPass which uses a user’s cellphone and

Short Message Service (SMS) to prevent password stealing [60].

• Visible passwords: A password that is written to a stickie can be seen by an adversary.

He can also observe a user while she enters her password (shoulder surfing). Kumar et al.

propose EyePassword, gaze-based password entry, to overcome direct observation [61].

2.4 Security and Privacy Model

We adopt the standard simulation-based definition of ideal/real security paradigm in the stan-

dard model which is already highlighted in [42–44] and [45]. In simulation-based security, the

view of a protocol execution in a real setting is compared (a statistical/computational indistin-

guishable manner) as if the computation is executed in an ideal setting where the parties send

inputs to an ideal functionality F = (F1,F2) that performs the computation and returns its

result.

In an ideal setting, the parties send their inputs x and y to an ideal functionality F who computes

F(x, y) (which is the output of the Hamming distance in our setting) and sends F1(x, y) to the

first party and F2(x, y) to the second party (F1(x, y) or F2(x, y) can be ⊥ if only one party

is required to learn the output). Note that the adversary, who controls one of the parties, can

choose to send any input to the functionality F , while the honest party always sends its specified

input. In a real execution of a protocol ΠF for a functionality F , one of the parties is assumed

to be corrupted under the complete control of an adversary A. Note that we assume that the

adversary A corrupts one of the two parties at the beginning of the protocol execution and is

fixed throughout the computation (as it is known as static adversary model).

Informally, a protocol ΠF is secure if for every real-model adversary A interacting with an honest

party running the protocol, there exists an ideal-model adversary S interacting with the trusted

party computing f , such that the output of the adversary and the honest party in the real model

is computationally indistinguishable from the output of simulator and the honest party in the

ideal model. More formally,
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Definition 2.7. (Simulation-based security) Let F and the protocol ΠF be as above. We

say that the protocol ΠF securely computes the ideal functionality F if for any probabilistic

polynomial-time real-world adversary A, there exists a probabilistic polynomial-time an ideal-

model adversary S (called the simulator) such that

REALΠF ,A(x, y)x,y s.t. |x|=|y| ≈ IDEALF,S(x, y)x,y s.t. |x|=|y|

Note that the above definition implies that the parties already know the input lengths (by the

requirement that |x| = |y|).

Note also that VOT and COT protocols are used as subprotocols. In [62, 63], it is shown that it

is sufficient to analyze the security of a protocol in a hybrid model in which the parties interact

with each other and assumed to have access to a trusted third party that computes a VOT (resp.

COT) protocol for them. Thus, in the security analysis of our protocol the simulator plays the

role of the trusted third party for VOT (resp. COT) functionality when simulating the corrupted

party. Roughly speaking, in the hybrid model, parties run an arbitrary protocol like in the real

model, but have access to a trusted third party that computes a functionality (in our case VOT

or COT) like in the ideal model. A protocol is secure if any attack on the real model can be

carried out in the hybrid model.



Chapter 3

Privacy Issue of the SHADE

Protocol and Efficiency

Improvements

In this chapter, we focus on SHADE protocol of Bringer et al. [41], analyze the scheme from

both security and efficiency perspective. We first describe the two versions of the protocol, the

basic scheme which is secure in the semi honest setting and the full scheme which aims full

security in malicious case. We show that the full scheme is in fact insecure in the malicious

case, as demonstrated in [47]. We optimize the attack for different scenarios. Then we fix

the protocol and give a security proof. Furthermore, we increase the efficiency of the protocol

without decreasing the security level.

3.1 The Basic and the Full Scheme of SHADE

In this section, we briefly describe the basic and the full scheme of SHADE protocol [41] used

for computation of Hamming distance between two bit strings. The basic scheme uses oblivious

transfer (OT) and provides full security when the parties are semi-honest and one-sided security

in the malicious model. The full scheme uses committed oblivious transfer (COT) [64] and zero-

knowledge proofs of knowledge [46] to compute the Hamming distance in malicious model. Each

scheme has two options to select the party which computes and outputs the result meaning that

each party may act as a server and the other as a client.

16



Chapter 3. A Privacy Issue of the SHADE Protocol and Efficiency Improvements 17

3.1.1 The Basic Scheme

The basic scheme is designed to provide secure and efficient method for computing the Hamming

distance between two bit strings in semi-honest model. The intuition behind this protocol is that

if both parties are semi-honest, the OT protocols are sufficient to preserve privacy.

The basic scheme in [41] which is secure against semi-honest adversaries is as follows:

Two parties P1 and P2 are willing to compute the Hamming distance of their private inputs

X = {x1, . . . , xn} and Y = {y1, . . . , yn}, respectively. At the first step, P1 randomly picks

r1, . . . , rn ∈R Zn+1 and computes R =
n∑

i=1

ri. For i = 1, · · · , n, the parties run an OT protocol in

which P1 acts as the sender and P2 acts as the receiver. More precisely, P1 inputs (ri+xi, ri+ x̃i)

where x̃i = 1− xi and P2 inputs yi. At the end of the OT protocol, P2 receives ti = (ri + xi) if

yi = 0 and (ti = ri + x̃i) otherwise. Next, P2 computes T =
n∑

i=1

ti. In the last step,

• 1st Option: P2 sends T to P1. Next, P1 outputs T −R.

• 2nd Option: P1 sends R to P2. Next, P2 outputs T −R.

The privacy is still guaranteed in the presence of semi-honest adversaries as they proved in

Section 6 of [41]. Furthermore, the efficiency of the basic scheme of Bringer et al. [41] was

further improved in [65]. The authors also mention that the basic scheme can be optimized

by using the state of the art techniques, i.e. extended oblivious transfer, as first proposed by

Ishai et al. in [66] and later improved in [67]. This technique leads to an efficient construction

which extends k OTs to n OTs (k < n) in the random oracle model that is secure against only

semi-honest adversaries (note that hash functions can be replaced with RO model in the real

case).

3.1.2 The Full Scheme

The full scheme of Bringer et al. considers the case where the parties are assumed to be malicious.

Note that running OT protocol does not prevent a party from modifying her input. Secondly,

the receiver may send a different value than the actual OT output that she computes. In order to

prevent such scenarios, the authors propose to use the 1-out-of-2 Committed Oblivious Transfer

(COT) protocol of Kiraz et al. presented in [64] (see Figure 2.2). Though, in Section 3.2, we

show that the idea of input validation for P1 is not sufficient and can be exploited with success.

Before we proceed, let’s continue with the description of the full scheme (refer to [41] for more

details).
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• At the first step of the protocol, P2 commits to her input bits yi’s and proves in zero-

knowledge [46] that each yi is either equal to 0 or equal to 1.

• At the same time, P1 generates random elements ri’s from the plaintext space of the

commitment scheme and computes R =
n∑

i=1

ri. Next, she commits to ai and bi where

(ai, bi) = (ri + xi, ri + x̃i)
1. Let’s denote Commit(M) for the commitment functionality

of a message M 2. P1 publishes the commitments Ai = Commit(ai) and Bi = Commit(bi).

Furthermore, using these commitments she proves that ai and bi differ by 1 for each i.

• Next, the COT protocol is run for each i. At the end of each COT, P2 receives ti =

ri + (xi ⊕ yi) and both parties receive Ci = Commit(ti). When all the COTs are run, P2

computes the sum T =
n∑

i=1

ti.

• At this point, there are two options:

– 1st Option: P2 computes C = C1 · · ·Cn, and because of the underlying homo-

morphic property we have Commit(T ) = C [41]. P2 sends T to P1 and proves in

zero-knowledge that C indeed commits to T . P1 also computes C = C1 · · ·Cn and

verifies the proof. If all verifications are successful, P1 outputs T −R.

– 2nd Option: P1 computes K = Commit(2R+n) = A1 · · ·An ·B1 · · ·Bn. P1 sends R

to P2 and proves in zero-knowledge that K indeed commits to 2R+n. P2 computes

K = A1 · · ·An ·B1 · · ·Bn and verifies that K = Commit(2R+ n). If all verifications

are successful, P2 outputs T −R.

The authors in [41] claim that the above scheme is fully secure against malicious adversaries.

However, in the next section we show that a malicious P1 can easily break the correctness

property of the scheme.

3.2 Security and Efficiency Analysis of SHADE

We are now ready to describe the protocol flaw of the full scheme in detail. The security flaw is

due to the proof for validation of P1’s input bits. The flaw allows a malicious P1 to change the

Hamming distance between her input and P2’s input. In the next section, we propose a solution

to fix the flaw by designing a new proof for validation. We show that the complexity of the new

proof for the validation of P1’s input bits for biometric authentication systems is significantly

reduced.
1The commit functionality of [64] is basically a (2,2)-threshold homomorphic encryption scheme

(e.g., ElGamal [68], Paillier [69]). Let (pkP1,P2 , (skP1 , skP2)) denote public and private key pairs of
the encryption scheme where pkP1,P2 is the common public key, and skP1 , skP2 are the corresponding
private key shares of P1 and P2, respectively.

2Note that because of the underlying encryption scheme Commit includes randomness and public key,
and we hide them for the sake of simplicity.
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Furthermore, we also analyze the protocol from the efficiency perspective and show that the

complexity of the protocol can be significantly improved. COT protocol is basically designed

as a sub-protocol in order to prevent possible malicious behaviors between sender and receiver,

where the committed output of COT is expected to be used in further parts of the system.

However, the committed outputs of COT are not used in the case that P1 computes the Hamming

distance. Hence, we point out that Verifiable Oblivious Transfer is sufficient in the case that P1

computes the Hamming distance. This eliminates to compute n commitments together with the

zero-knowledge proofs (for each run of COT protocol). In this way, we improves the efficiency

of the protocol by using VOT instead of COT when P1 is the server.

3.2.1 Attack to the Full Scheme

The protocol is insecure in the case where P1 is malicious. This is because P1 is free in the

sense that she can commit to any pair such that the absolute value of the difference of the

encrypted values is 1, i.e. P1 proves that |bi − ai| = 1 where the pair (ai, bi) is supposed to be

(ri +xi, ri + x̃i). However, a malicious P1 may choose invalid pairs in a special way together with

the proofs that difference between each pair is equal to 1. Our attack uses the fact that at the

end of each COT, P2 receives either ti = ri + g or ti = ri + h and computes the sum T =
n∑

i=1

ti,

where g, h are within the finite cyclic group. Note that g is expected to be equal to xi and h to

x̃i. However, with a careful choosing of g’s and h’s, some g’s can be neutralized by some h’s in

this sum. Hence, the soundness property of the protocol can be violated. In fact, the security

proof of [41] does not explicitly use the zero-knowledge proof of the statement leading to the

flaw in their security analysis.

Before we describe the attack it is important to highlight that the underlying COT scheme uses

threshold ElGamal encryption as a commitment mechanism, i.e. Commit(xi) = Enc(xi) where

xi ∈ G where G is a large finite cyclic group (of a prime order) [64]. This guarantees the existence

of the inverse of n.

Without loss of generality assume that #0’s in P2’s input Y is ` (i.e., #1’s in Y is n − `). A

predetermined fake Hamming distance can be computed with the knowledge of #0’s (similarly

#1’s) in P2 as follows: a malicious P1 uses (ai, bi) = (ri + g, ri + h) for an arbitrary Hamming

distance HD = `g + (n− `)h such that g − h = 1, where g, h are the group elements. Then,

HD = `g + (n− `)(g − 1) = ng − n+ `.

For an example, if a malicious P1 desires Hamming distance HD to be 0 then she chooses

g = 1− `n−1. Next, h= g-1= -`n−1. Hence, P1 may use (ai, bi)=(ri + (1− `n−1), ri − `n−1) as

input. To be more concrete, the attack is given as follows:
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• P2 commits to her inputs yi’s and proves that each yi is either 0 or 1. P1 then generates

random ri’s and computes R=
n∑

i=1

ri.

• Next, instead of following the protocol, P1 computes (ai, bi)=(ri + (1− `n−1), ri − `n−1)

and publishes Ai = Commit(ai) and Bi = Commit(bi). Note that for each i, |bi − ai| = 1

and hence, the proofs pass successfully.

• At the end of each COT, P2 receives either ti = ri + (1 − `n−1) or ti = ri − `n−1. After

COTs are run, P2 computes the sum

T =

n∑
i=1

ti

=
∑

i|yi=0

(
ri + (1− `n−1)

)
+
∑

i|yi=1

(
ri − `n−1

)
= `(1− `n−1) + (n− `)(−`n−1) +

n∑
i=1

ri

=

n∑
i=1

ri

= R.

Therefore, the Hamming distance dH(X,Y )=T − R is equal to 0. We stress that the weakness

in the scheme is destructive as we prove that a relatively insignificant information leakage causes

computation of a completely inaccurate result. Namely, without knowledge of the realX, P1 fools

P2 into outputting an incorrect Hamming distance value without being detected. Furthermore, a

malicious P1 with the prior knowledge of ` is capable of manipulating HD by computing the values

g and h using the above-mentioned equation. This is interesting because Hamming distance is

not necessarily equal to 0 or 1. For example, in [70], the authors propose a privacy-preserving

protocol for iris-based authentication using Yao’s garbled circuits. They show that Hamming

distance between two iris codes owned by the same person is rarely close to 0 (and similarly it

is rarely close to n for different persons). Therefore, the scalability feature of our attack can be

easily adopted to various general settings.

In this part, we propose the most general case and in the next section we give a practical attack

for biometric authentication schemes reducing the computational complexity of an attacker from

O(2n) to O(n), where n is the input length. Namely, an attacker without any prior knowledge

can authenticate herself using only n trials instead of 2n.
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3.2.2 A Special Case: Apply the Attack to Biometric Authentication

Systems

In the previous section, we described the most general case, i.e., for any system that uses the

proposed Hamming distance protocol. We now apply the proposed attack as a practical example

on biometric authentication systems with full success. Note that the matching procedure for

fingerprint, palm print or iris actually measures the Hamming distance between the two bit-

strings X and Y that encode the biometric sample and template (e.g., [7, 36, 71]).

The attack basically consists of n runs of the proposed attack method to successfully authenticate

to the system, where n is the input length. In general, for an n-bit string Y = (y1, . . . , yn), an

attacker must roughly try 2n search for X to pass the authentication successfully and it is

infeasible for large n. However, using the proposed attack a corrupted P1 i can authenticate

the system after at most n trials (because the number of 0s or 1s in Y is between 0 and n, i.e.,

0 ≤ ` ≤ n). More precisely, starting ` = 1 until ` = n a corrupted P1 runs the proposed attack

method, and because 0 ≤ ` ≤ n the authentication is successful with at most n trials (without

any knowledge of the real input X).

3.2.3 Apply the Generic for Uniformly Distributed Inputs

This attack can also be directly applied to uniformly distributed bit strings X and Y . In this

scenario the input bit-strings of P2 (which is generated from a biometric template) is expected

to be independent and identically distributed. That is, there are nearly equal number of zeros

and ones in an input bit string. Below, we show that this fact easily allows an adversary to

minimize the Hamming distance and successfully deceive a verifier:

1. P2 commits to her inputs yi’s and proves that each yi is either 0 or 1.

2. P1 picks random ri’s and computes R =
n∑

i=1

ri.

3. Instead of computing (ai, bi) = (ri +xi, ri + x̃i), P1 computes (ai, bi) = (ri−2−1, ri + 2−1)

in order to make the commitments Ai = CommitP1,i(ai) and Bi = CommitP1,i(bi). The

authors in [41] uses homomorphic encryption as the commitment mechanism. Since those

cryptosystems work in a group of prime order, the multiplicative inverse of 2 always exists,

i.e. P1 can commit to (ai, bi) = (ri − 2−1, ri + 2−1). Next P1 proves that |bi − ai| = 1

which always holds. Note that P1 does not prove the validity of her input, i.e, she does

not prove that the xi’s are equal to either 0 or 1.

4. COTs are run, and in one half of the COTs (because of the uniform distributed inputs),

P2 receives ti=ri − 2−1 and ti = ri + 2−1 in the other half.
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5. P2 computes T =
n∑

i=1

ti. Since yi’s are equally distributed, i.e. the numbers of 0s and 1s in

{y1, . . . , yn} are nearly equal, P2 computes T =

(∑
i

ri + 2−1

)
+

(∑
i

ri − 2−1

)
=

n∑
i=1

ri =

R± k2−1 for some small k � n.

6. Using the 2nd option, K = CommitP2,i
(2R+ n) = A1 · · ·An ·B1 · · ·Bn.

7. P1 sends R and the proof that K commits to 2R+ n to P2.

8. P2 computes dH(X,Y ) = T −R = k where k � n and successfully authenticates P1 since

k will be less than the threshold value.

3.2.4 Our Solution for the Attack

The weakness of the full scheme is due to the zero-knowledge proof of a wrong statement used

for validation of the input pairs {(ai, bi),∀i = 1, . . . , n}. A malicious P1 can easily exploit this

weakness as described in the previous section. Therefore, logical statements of zero-knowledge

proofs should be carefully checked against these kinds of adversarial behaviors.

As a security fix, we modify the step in which P1 generates random ri values. Namely, after

generating each ri, P1 computes and publishes Ai = Commit(ri + xi), Bi = Commit(ri + x̃i) and

Ri = Commit(ri). Next, P1 sends the zero-knowledge proof of the following statement

((ai − ri) = 0 ∨ (bi − ri) = 0) ∧ |bi − ai| = 1

that is equivalent to

(ai + bi − 2ri = 1) ∧ |bi − ai| = 1

using the commitments Ai, Bi and Ri. This new statement contains one more relation than

the one in the original proof of [41]. Although the computation cost of the protocol is slightly

increased, the validation process now assures the security of the protocol.

Note that if the new statement (ai + bi − 2ri = 1) ∧ |bi − ai| = 1 is true then only one of the

following two cases can occur:

ai = bi + 1⇒ 2bi + 1− 2ri = 1⇒ bi = ri, ai = ri + 1

bi = ai + 1⇒ 2ai + 1− 2ri = 1⇒ ai = ri, bi = ri + 1

In Section 3.4 we provide the security analysis of the improved scheme.
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3.2.4.1 More Efficient Solution for Biometric Authentication

Biometric authentication systems are designed to tolerate a small level of errors. In general, the

measure process is not perfect in most environments and thus, instead of exact match, a biometric

system authenticates a party that matches with a small error to prevent false negatives.

The authentication process must also have a small complexity to compute the result in the fastest

way. Therefore each party must prove nothing more than the necessary and sufficient data for

validation of her input.

These motivations lead us to design a more efficient proof that can be used in the biometric

authentication systems. Namely, after generating and publishing the commitments to ai, bi, ri

as in the previous section, P1 sends the proof of:

ai + bi − 2ri = 1.

The above relation has a smaller complexity than |bi − ai| = 1 while it still provides higher

security. This input validation method is an efficient solution for our attack in the case of

biometric authentication. Note that an adversary may input (ai, bi) = (ri − 2−1, ri + 2−1) and

pass the validation but its Hamming distance is n
2 which is the expected value of Hamming

distance between two random inputs with length n.

3.2.5 Efficiency Enhancements

In this section, we present some improvements for the efficiency of the protocol. First, we reduce

the computational complexity of the protocol using VOT instead of COT without sacrificing

the security. Namely, COT is not necessary in the case where P2 computes the final Hamming

distance. Next we reduce the complexity of the proof for the validity of P1’s inputs in the case

of biometric authentication.

3.2.5.1 Efficiency Improvement Using VOT

In this section, we point out a computational complexity reduction. Note that COT is run for

the malicious case in [41]. COT requires the receiver to obtain the output together with its

commitment to this value. In the beginning of the protocol, the input of P1 is an n-bit string

X = (x1, . . . , xn) and the input of P2 is an n-bit string Y = (y1, . . . , yn). After running the

protocol there are two options:

• P1 obtains the Hamming distance dH(X,Y ) and P2 obtains nothing
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• P2 obtains the Hamming distance dH(X,Y ) and P1 obtains nothing

In case P2 computes the Hamming distance, the committed values from the output of COT is

not used. In such case, these commitments are not necessary to be computed, and therefore

VOT is sufficient to use. We realized this observation after writing the COT protocol explicitly

with the overall protocol instead of using as a black box. If P1 computes the Hamming distance

COT is still necessary to use.

3.3 Our Fixed and Improved Scheme

We made the modifications to the full scheme of [41] in order to fix the security weakness

described in Section 3.2 and improve the efficiency of the protocol as mentioned in Section 3.2.5.

Now, we give the corrected scheme with all details:

Inputs:

• P1 inputs an n-bit string X = (x1, . . . , xn)

• P2 inputs an n-bit string Y = (y1, . . . , yn)

Outputs:

• 1st Option: P1 obtains dH(X,Y ) and P2 obtains nothing

• 2nd Option: P2 obtains dH(X,Y ) and P1 obtains nothing

Protocol:

1. P2 commits to her inputs yi’s and proves that each of yi is either 0 or 1.

2. P1 generates random ri’s from the plaintext space of Commit and computes R =
n∑

i=1

ri.

3. P1 commits to (ai, bi, ri) = (ri + xi, ri + x̃i, ri). P1 publishes Ai = Commit(ai), Bi =

Commit(bi) and Ri = Commit(ri).

4. P1 proves that (|ai − ri| = 0 ∨ |bi − ri| = 0) ∧ |bi − ai| = 1 using Ai, Bi and Ri.

5. For each i = 1, . . . , n, a COT is run where

• P1 acts as the sender and P2 as the receiver.

• P2’s selection bit is yi.

• P1’s input bit is (ai, bi).

• The output obtained by P2 is ti = ri + (xi ⊕ yi).
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• Both parties obtain Ci = Commit(ti).

6. P2 computes T =
n∑

i=1

ti

7. 1st Option: Run VOT

(a) P1 computes K = Commit(2R+ n) = A1 · · ·An ·B1 · · ·Bn.

(b) P1 sends R to P2 and proves that K commits to 2R+ n.

(c) P2 computes K = A1 · . . . An ·B1 · · ·Bn and checks that K = Commit(2R+ n).

(d) If all verifications are successful, P2 outputs T −R.

2nd Option: Run COT

(a) P2 computes C = Commit(T ) = C1 · · ·Cn.

(b) P2 sends T to P1 and proves that C commits to T.

(c) P1 computes C = C1 · · ·Cn and verifies the proof.

(d) If all verifications are successful, P1 outputs T −R.

P1 P2

X = x1 . . . xn where xi ∈ {0, 1}, skP1 Y = y1 . . . yn, yi ∈ {0, 1}, skP2

Compute CommitP2,i(yi) ∀i = 1 . . . n ∈R Z∗q
CommitP2,i

(yi)+Prove that yi=0 or yi=1,∀i=1...n
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Pick r1, . . . , rn ∈R
Compute R =

n∑
i=1

ri

Compute (ai, bi) = (ri + xi, ri + x̃i) ∀i = 1 . . . n
Compute Ai = CommitP1,i(ai) ∀i = 1 . . . n
Compute Bi = CommitP1,i(bi) ∀i = 1 . . . n
Compute Ri = CommitP1,i(ri) ∀i = 1 . . . n

<Ai,Bi,Ri+Prove that ((ai−ri)=0 or (bi−ri)=0) and |bi−ai=1|,∀i=1...n>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
1st Option:

<VOT((Ai,Bi);CommitP2,i
(yi)):∀i=1...n>

←−−−−−−−−−−−−−−−−−−−−−−−−−→
Obtain ti where ti = ri + xi ⊕ yi ∀i = 1 . . . n

Compute T =
n∑
i=1

ti

Compute K = CommitP2,i(2R+ n) =
n∏
i=1

AiBi Compute CommitP2,i(2R+ n) =
n∏
i=1

AiBi

R+Prove that K commits to (2R+ n)−−−−−−−−−−−−−−−−−−−−−−−→
dH(X,Y ) = T −R

2nd Option:
<COT((Ai,Bi);CommitP2,i

(yi)):∀i=1...n>
←−−−−−−−−−−−−−−−−−−−−−−−−−→

Obtain ti and Ci = Commit(ti) where
ti = ri + xi ⊕ yi ∀i = 1 . . . n

Compute T =
n∑
i=1

ti

Compute Commit(T ) =
n∏
i=1

Ci Compute C = Commit(T ) =
n∏
i=1

Ci

T+Prove that C=Commit(T )←−−−−−−−−−−−−−−−−−−
dH(X,Y ) = T −R

Figure 3.1: Our Improved Scheme

3.4 Security Analysis of Our Scheme

A cryptographic protocol is secure if the view of an adversary in a real protocol execution can be

generated from the information the adversary has (i.e., its input and output). In this section, we
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proved the security of the proposed protocol by constructing a simulator, which is given only the

input and output of the “corrupted” party, and generating a view that is indistinguishable from

the view of the adversary in a real protocol execution [42–45]. This implies that the adversary

learns no information from the real protocol because it could generate anything from what it

sees in such an execution by itself.

Theorem 3.1. The proposed protocol, which is shown in Figure 3.1, is secure in the presence

of static malicious adversaries.

Proof. We show that given a party is corrupted, there exists a simulator that can produce a

view to the adversary that is statistically indistinguishable from the view in the real protocol

execution based on its private decryption share as well as public information.

Case-1-P1 is corrupted. Let AP1 be an adversary corrupting P1. We construct a simulator SP1

and show that the view of the adversary AP1
in the simulation with SP1

is statistically close

to its view in a hybrid execution of the protocol with a trusted party running the VOT (resp.

COT) protocol. Since we assume that the VOT (resp. COT) protocol is secure, we analyze the

security of the protocol in the hybrid model with a trusted party computing the VOT (resp.

COT) functionality. Note that the simulator SP1
knows X, skP1

for the 1st option where VOT

is run (in the 2nd the simulator also knows dH(X,Y )). The simulator proceeds as follows:

1. SP1
picks arbitrary Ỹ = ỹ1 . . . ỹn and computes ˜CommitP2,i

. SP1
can simulate the proofs

since it knows the committed input values ỹi’s and skP1 .

2. In case of VOT is run:

(a) SP1 first extracts the input of RP1 from VOT functionality in the hybrid model, then

sends the input to the trusted party and learns the output value t̃i.

(b) SP1
computes T̃ =

n∑
i=1

t̃i and computes CommitP2,i
(2R+n) =

n∏
i=1

AiBi as in the real

protocol.

In case of COT is run:

(a) SP1
first extracts the input of RP1

from COT functionality in the hybrid model,

then sends the input to the trusted party and learns the output value t̃i and C̃i =

Commit(t̃i) ∀i = 1, . . . , n.

(b) SP1
computes T̃ =

n∑
i=1

t̃i and Commit(T̃ ) =
n∏

i=1

C̃i as in the real protocol.

(c) SP1 can simulate the proof since it knows the committed input value T̃ ’s, dH(X,Y )

and skP1
.
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Consequently, each step of the proposed authentication protocol for the simulator is simulated

and this completes the simulation for the malicious verifier. The transcript is consistent and

statistically indistinguishable from the verifier’s view when interacting with honest P2.

Case-2-P2 is corrupted. Let AP2 be an adversary corrupting P2, we construct a simulator SP2 as

follows. Since we assume that the COT (resp. VOT) protocol is secure, we analyze the security

of the protocol in the hybrid model with a trusted party computing the COT (resp. VOT)

functionality. Note that the simulator SP2
knows Y = y1 . . . yn, skP2

and dH(X,Y ) for the 1st

option where VOT is run (in the 2nd the simulator does not know dH(X,Y )). The simulator

proceeds as follows:

1. SP2
picks arbitrary X̃ = x̃1 . . . x̃n.

2. SP2 picks r̃i ∈R Z∗q and computes R̃P2 =
n∑

i=1

r̃i. Next, SP2 computes (ãi, b̃i) = (r̃i + x̃i, r̃i +

x̃i) ∀i = 1 . . . n. SP2
computes Ãi, B̃i and R̃i as in the real protocol. SP2

can again

simulate the proofs since he knows the committed input values and skP2 .

3. In case VOT is run:

(a) SP2 first extracts the input of RP1 from VOT functionality in the hybrid model and

then sends the input to the trusted party. SP2
next computes K̃ = CommitP2,i

(2R̃+

n). SP2
can simulate the proof since it knows the committed input value R, dH(X,Y )

and skP2 .

In case COT is run:

(a) SP2
first extracts the input of RP1

from COT functionality in the hybrid model and

then sends the input to the trusted party and learn Ci ∀i = 1, . . . , n. SP2 computes

Commit(T̃ ) =
n∏

i=1

C̃i.

Consequently, each step of the proposed authentication protocol for the simulator is simulated

and this completes the simulation for the malicious verifier. The transcript is consistent and

statistically indistinguishable from the verifier’s view when interacting with honest P1.

3.5 Complexity Analysis Of Our Fixed Protocol

In this section, we analyze the computational complexity of our fixed protocol and compare it

with the full scheme of Bringer et al. [41]. In our protocol, the number of invoked zero-knowledge

proofs and multiplication of ciphertexts remain the same. However, we improved the efficiency of

the protocol significantly by replacing n COTs with n VOTs in the second option of the protocol
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where P2 computes the final Hamming distance. In this way, we show that n commitments, 2n

partial decryptions and 2n ZK proofs can be removed. The number of commitments of P1 is

increased from 2n to 3n in order to guarantee the validity of P1’s inputs. This is the price that

should be paid to make the protocol secure. The complexity comparison of the full scheme of

Bringer et al. [41] and our fixed protocol is illustrated in Figure 3.1.

Table 3.1: Complexity Comparison

Scheme of
Bringer et al.

Our Fixed
Scheme

P1 P2 P1 P2

Commitments 2n n 3n n

ZK proofs n

OTs n COTs 1st opt: n COTs
2nd opt: n VOTs

Multiplication
of ciphertexts

1st opt: n
2nd opt: 2n

Our analysis shows that the additional cost of the security fix is only n commitments made by

P1, independent of the party which computes the final Hamming distance. However, in the case

that P2 computes the final Hamming distance, the computational savings that can be achieved

by replacing the n COTs with n VOTs are far larger. In general, a COT protocol requires

one more flow than a VOT protocol in which the chooser recommits to its received value and

proves that the new commitment equals to her previous committed input. In particular, the

full scheme in [41] uses the COT scheme of [64] where each run of a COT protocol requires one

commitment, two partial decryption of a ciphertext and two zero-knowledge proofs in addition

to a VOT protocol. As a result, we avoid unnecessary use of two zero-knowledge proofs and two

partial decryptions. Consequently, we improve the efficiency of the protocol significantly while

we establish the security of the protocol.



Chapter 4

Enhanced Honeywords System

In this chapter, we analyze the security and efficiency of the Honeywords protocol of Juels and

Rivest. We find that the Honeywords system provides a good defense against password database

breaches. Nevertheless, we propose improvements about the number of honeywords per user,

typo-safe honeyword generation and old passwords management problem. Moreover, we intro-

duce the Enhanced Honeywords protocol which is a solution to withstand active adversaries [48].

4.1 Honeywords System

Juels and Rivest propose a method for detecting password breaches and improving the security

of hashed passwords. The proposed system, Honeywords, designed against brute-force and dic-

tionary attacks, where an adversary has stolen the file of user names and associated password

hashes from a server (see Figure 2.3) [72]. The adversary has also obtained salt values and other

required parameters for computing the hash function. In this scenarios, the adversary can make

a brute-force or a dictionary search to find one or more user’s password (i.e., the adversary can

crack most of the hashes). The authors also assume that authentication can only be handled

using passwords while logging into the server and the adversary leaves the system after stealing

the password hashes, i.e., does not monitor submitted passwords.

In [72], Juels and Rivest proposed the idea of changing the structure of the password file in such

a way that each user is associated with a set of possible passwords, called sweetwords in which

only one of them is real. The false passwords are called honeywords. As soon as a honeyword

is submitted in the login process, it is detected that the password file has been stolen and the

adversary has computed the inverse of a hash from that file. Hence, in this way the system can

easily detect malicious login attempts. More concretely, the honeyword system works roughly

as follows.

29
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Let ui, pi and H() denote the ith user name, her ith password and the hash function of the

system, respectively. As demonstrated in Figure 4.1, the system adds honeywords’ hashes to

this file at random positions. Thus, an adversary who has cracked the password hashes will see

randomly ordered sweetwords wi,j of user ui where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Username Password’s Hash
u1 H(p1)
u2 H(p2)
· · · · · ·
um H(pm)

−−→

Username Password’s Hash
u1 H(w1,1), H(w1,2), · · · , H(w1,n)
u2 H(w2,1), H(w2,2), · · · , H(w2,n)
· · · · · ·
um H(wm,1), H(wm,2), · · · , H(wm,n)

Figure 4.1: Password database of a standard system is on the left and password
database of a honeword system is on the right, where m,n denotes the number of users

and sweetwords, respectively.

When the user ui sends a login request, the login server will determine her order among the

users, and the order of the submitted string among her sweetwords. If the submitted value is

not equal to any of the sweetwords of the user, then the login server handles this situation as a

wrong password submission. Otherwise, the login server sends a message of the form Check(i, j)

to a secure server for ith user and her jth sweetword. This message has the following meaning:

“Is the ith user’s password in the jth position among her sweetwords? ”. The secure server, which

is called “honeychecker”, will determine whether the submitted order is correct or not. If the

order of the submitted sweetword is wrong, then honeychecker will raise an alarm or take an

action that is previously chosen as illustrated in Figure 4.2. Note that the honeychecker cannot

know anything about the users’ passwords or honeywords because passwords and honeywords

are never sent to the honeychecker. The honeychecker maintains a single database that contains

for each user only the order of the true password among the user’s sweetwords.

User

Server Honeychecker

SE
C

U
R

E
D

SECURED

1. User sends
a login

request to server

2. Check: i, j

3. True/False, Alarm
4. ACCEPT

or
REJECT

ALARM

Figure 4.2: Login schema of a system using honeywords.

The adversary can still steal the file of hashed passwords and invert the hashes. Nonetheless, if

the honeywords are carefully generated, i.e., honeywords cannot be distinguished from the real

password, the adversary cannot tell which sweetword is the real password. Since it is more likely
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to submit a honeyword rather than the real password, and with high probability this will prevent

the adversary from logging into the system.

A closely related work to honeywords is the Kamouflage system of Bojinov et al. [73] but that

work differs from honeywords. In that system, password list of the user is placed with another

lists that contain honeywords. When the user tries to access the password list, she provides a

master password, which is then transformed into the index of the correct list. There is no need

for a server in Kamouflage system although the authors in [73] note that servers might be used

to empower the ability of detection of compromise.

4.2 Improvements for Honeywords System

In this section, we propose our practical improvements for the honeyword system which consist

of four distinct solutions. The first three solutions are proposed to make the system more robust

in the case that the adversary obtains the password hashes and leaves the system. Our last

solution is related to an open problem mentioned in [72], i.e.where we deal with an active attack

scenario to the honeyword system.

4.2.1 Number of Honeywords

Rivest and Juels recommends a small integer k = 20 for the number of honeywords per-user.

They note that, though, the number of honeywords does not need to be a system wide parameter.

But how do we assess a user’s importance and determine an appropriate number for honeywords

of her? And, more importantly, how should we maintain this number for each user?

Instead of having constant number of honeywords per-user, the number of users’ honeywords

should be dynamic once there is an active attack. Namely, the system should generate more

honeywords for users who were previously attacked. Our suggestion comes from the following

fact: A user whom honeyword is submitted is more likely to be the target of an adversary than

users whose honeywords are never submitted. The system should be setup in such a way that

the password of this user is reset, her new honeywords are generated and the honeychecker is

updated accordingly. The honeywords should be renewed after every attack and in order to

decrease the success probability of the attacker. The number of honeywords for each user should

be bounded with a certain security level in order to prevent denial-of-service (DoS) attacks.

This technique will deter the adversary to attack the same user again, because the success chance

of the adversary will decrease in each unsuccessful attack.
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4.2.2 Typo-Safe Honeyword Generation

The honeyword generation method called “chaffing-by-tweaking” tweaks the selected character

positions of the password to obtain a honeyword [72]. This technique is easy to implement on

the existing systems since it does not require any change in the login screen. However, since

the honeywords differ from the password in a few characters, a legitimate user may submit a

honeyword mistakenly and set off an alarm.

There is another honeyword generation algorithm called “take-a-tail” which generates honeywords

by adding random -generally three digit- integers at the end of the password. As the authors

[72] propose, error detection codes can be used to detect typos. Namely, difference of two tails

is required to be a multiple of a small prime q greater than 10, i.e., q = 13.

We generalize this idea to all tweaking methods as follows. First, a honeyword is generated

by honeyword generation function, Gen(password, genParams) where password is a user’s

password and genParams denotes honeword generation parameters of the system. Once a

honeyword is generated, a new function Eval(password, honeyword) evaluates the typo-safety

of the honeyword considering the users keyboard scheme. In this setting, a honeyword which

contains a character that is close to, i.e., right or left to, the corresponding character of user’s

password gets a lower score. If the honeyword’s typo-safe score is lower then threshold, i.e.,

the minimum required distance to the password, then the generation procedure generates a new

honeyword. Otherwise, the procedure outputs the honeyword. The pseudocode of the algorithm

is given in Figure 4.3.

Algorithm 4.2.1: TYPO-SAFE(password)

global threshold, genParams
honeyword← Gen(password, genParams)
while Eval(honeyword, password) < threshold
do honeyword← Gen(password, genParams)

output (honeyword)

Figure 4.3: Typo-Safe Honeyword Generation Algorithm.

We give an implementation of Eval() function for the English (en-US) keyboard layout. It is

assumed that the password contains only lower case letters (a-z) and digits (0-9). The imple-

mented function handles honeywords which is generated from the same set. We also assume that

the Gen function generates honeywords that has the same character length with the password.

private double Eval(string honeyword, string password)

{
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List<List<char>> rows = new List<List<char>>();

rows.Add("1234567890".ToList<char>()) ;

rows.Add("qwertyuiop".ToList<char>()) ;

rows.Add("asdfghjkl" .ToList<char>()) ;

rows.Add("zxcvbnm".ToList<char>()) ;

double distance = 0;

for (int i=0; i<password.Length; i++)

{

int px = 0; int py = 0;

int hx = 0; int hy = 0;

for (int j=0; j <rows.Count; j++)

{

i f (rows[ j ] . IndexOf(password[ i ] ) >= 0)

{

px = rows[ j ] . IndexOf(password[ i ] ) ;

py = j ;

}

i f (rows[ j ] . IndexOf(honeyword[ i ] ) >= 0)

{

hx = rows[ j ] . IndexOf(honeyword[ i ] ) ;

hy = j ;

}

}

distance +=Math.Sqrt(Math.Pow((px − hx) , 2) + Math.Pow((py − hy) , 2)) ;

}

return distance ;

}

Eval() function computes the distance of a honeyword to a password using Euclidean Distance

between two keys of characters on the keyboard. The characters are modeled as points in the

x-y plane and the y axis increases downwards. The origin is the digit 1, the left most character
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which can appear in the password. The distance is computed as follows: for each character in the

password, the Euclidean Distance to the corresponding character in the honeyword is computed

and added to the previous sum.

4.2.3 Old Passwords Problem

Most clients use the same passwords on different systems. An old password of a user on some

system may be the current password of that user on another system. Thus, taking advanced

security countermeasures may not guarantee the safety of the passwords. Namely, an adversary

may attack to a weaker system that the targeted user have an account on it and obtain her old

passwords and submit them on a more secure system. Juels and Rivest give an effective solution

to this problem where instead of storing old passwords per-user basis the system will store all

user’s old passwords in a list anonymously. When a password is created, system checks whether

this list contains the password. If it is in the list, the system will not allow that password to be

used. However, this solution will not be user-friendly since it is rather strange to forbid to use

a password just because of somebody else used it before.

Juels and Rivest also propose to encrypt and keep old passwords per-user basis on the actual

system and keep the encryption keys in the honeychecker. When needed, the system asks the

honeychecker for that user’s old passwords’ key. This seems to be a good solution. However,

this method increases the complexity of the system because the honeychecker has to perform

more computation, needs more storage, and accepts new type of commands which contradicts

the simplicity of the honeychecker.

We offer an another to solve this issue. In our solution the system generates honeywords for old

passwords, “old honeywords”, as well. The system will generate old honeywords and keep their

hashes with old passwords’ hashes per-user basis in random order. Note that in this setting, old

honeywords and old passwords are stored randomly and the honeychecker does not know any

information about the old passwords.

4.3 Solution to an Open Problem: Active Attacks Against

Honeywords System

The honeyword system is only designed to withstand off-line attacks. In this scenario we assume,

as the authors mentioned in [72], that the adversary has only stolen the password hashes but

did not compromise the system on a persistent basis, i.e., the adversary obtained the password

hashes and left the system. However, Juels and Rivest mentioned about a problem which we
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believe is still open: How can a honeyword system be best designed to withstand active attacks,

e.g., code modification, of the system (or the honeychecker)?

The question is very reasonable as the adversary who has access the password hashes may also

gain other permissions like administrator rights. In that case, the system is assumed to be

corrupted and therefore may behave arbitrarily.

4.3.1 Assumptions

In our proposal, we assume that the login server and the honeychecker cannot be compromised

at the same time (which is a trivial assumption as otherwise the honeyword scheme will not be

secure at all). We also assume that the administrators of login server and honeychecker do not

cooperate.

4.3.2 Adversarial Capabilities

In our model, we classify adversarial attack scenarios into two classes.

• The adversary has compromised the login server and has gained administrator rights. She

can now modify the codes in the login server as well as other components on it.

• The adversary has compromised the honeychecker. She can now modify the codes of the

honeychecker as well as other components on it.

In the first case, the attacker has gained administrator rights and has system wide effects. Thus

she can send any message (or request) to honeychecker. Note that the honeychecker understands

only two type of messages: Check and Set. We previously described the Check message. The

Set message is of the form Set(i, j) which is understood by the honeychecker as the ith user’s

password is in the jth position among her sweetwords. Using this advantage, the adversary can

attack as follows. She inverts the hash of a sweetword of ith user, say the jth sweeetword. Then

she sends a message Set(i, j) to the honeychecker as she controls the login server. Now she can

impersonate the ith user and the honeychecker cannot detect it.

In the second case, the adversary has administrator rights on the honeychecker. In this case, the

most important attack that the adversary can mount is a DoS attack. The attacker can allow

an illegitimate login request or disallow a legitimate login request by randomly returning a True

or False message.
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4.3.3 The Proposal

In [72], the login server is assumed to be honest and therefore does not maliciously use any Set

message. However, in one of our attack scenarios the login server is assumed to be malicious.

Thus, we need to enhance the overall honeyword system in such a way that the login server cannot

transmit malicious Set messages without being detected. Set messages are sent to honeychecker

by the login server if

• A user signs up, i.e., she creates her password for the first time.

• A user changes her password.

We need a secure channel to communicate with the user whose password’s order is being set.

However, the honeychecker does not have any communication information of the user. One of

the design principles of honeychecker is that compromise of only the honeychecker should not

reduce the security level of the whole system. Therefore, in our proposal, we give honeychecker

the minimal information about the user. This information must be enough to communicate with

the user to validate her with a fair confidence. In todays world, the most common way of this

communication can be done on Short Message Service (SMS).

In our model, when a user registers to the system, the login server asks her to enter registration

information including mobile number and updates the honeychecker. In order to accomplish

this, we overload the Set function as follows:

• Set(i, j)

• Set(i, j, phn)

The first version of Set function is the same as the Set function in the original honeywords

system. It is called when a user changes her password. The second version of Set function takes

an extra parameter: phn, the users mobile number. It is called when the user registers to the

system. The honeychecker will add this information to its database and will communicate with

the client when needed. During registration, the honeychecker sends a random code to the client

via an SMS message. Then, the client use this code in the registration phase to verify that the

phone number is a valid one. The summary of the this enhanced honeyword system is depicted

in Figure 4.4.

If the user would like to change her password, she will send a password change request to login

server. The login server will send a Set message to honeychecker. The honeychecker generates

a random code and sends to the client via SMS. The client sends back the code the server and

it sends the code with the required update messages to the honeychecker in order to validate
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Figure 4.4: Sign up schema of an enhanced honeywords system.

the origin of the request. The password change scheme of an enhanced honeyword system is

depicted in Figure 4.5.
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Figure 4.5: Password change schema of an enhanced honeywords system.

If a variety of invalid update requests are sent to the honeychecker, the honeychecker will assume

this situation as an attack and it sets on an alarm. The alarm must be sent to the system owner

or to the administrator.

4.3.4 Security Analysis of the New Proposed Model

If the adversary gains administrator rights on login server, she can send Set messages which she

desires. In this case, the honeychecker will confirm the update request by asking the user. A

dishonest login server will fail to change the order of a user’s password in this scenario.

The adversary can also send repetitive Check messages to find the order of a user’s password. We

suggest that the honeychecker counts and monitors the check requests and decides whether the

login server is compromised or not. High number of check requests means that the (malicious)

login server is making a brute-force search to find the correct order of password of each user.
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An adversary may also attack honeychecker and may gain administrator rights on it. She can

modify the honeychecker to send arbitrary results to login server after Check messages. Our

suggestion for fighting with this attack is creating some number of dummy accounts to test the

honesty of the honeychecker. The login server will send valid and invalid login requests with

these accounts frequently. If the honeychecker is infected, i.e., compromised, it will not take the

correct action in response to these requests. Thus the adversary will be detected.

Hence, our enhanced model of honeyword system is more robust to active attacks than the

primitive system designed in [72].



Chapter 5

Conclusion

In this thesis, we studied secure biometric authentication protocols and mitigation methods

against password breaches. We first showed that the SHADE protocol of Bringer et al. is not

secure in the malicious case. In our attack, we show that an adversary without having any prior

knowledge can make the verifier compute an incorrect Hamming distance. In the case of biometric

authentication systems, a malicious user can easily authenticate without any information about

the honest party. Namely, the complexity of the security of the system is reduced from O(2n) to

O(n), where n is the input length. Moreover, we fixed the protocol by placing a robust method

for input validation without adding a significant cost. We also enhanced the efficiency of their

protocol significantly by showing that Verifiable Oblivious Transfer (VOT) is sufficient to use

instead of Committed Oblivious Transfer (COT) in the second option of the full scheme. The

VOT reduction avoids the unnecessary computation of one commitment, two zero-knowledge

proofs and two partial decryptions of the ciphertext for each bit of the input.

This thesis also examined the Honeywords system which is designed to mitigate against password

breaches. We found that the honeyword system provides powerful defense in the scenario where

an adversary steals the file of password hashes and inverts most of the hashes. Namely, even if the

adversary has broken all the hashes in the password file, he cannot login to the system without

being detected. Hacking the honeychecker has also no benefit to the adversary since there is

no information about a user’s password or honeyword in the honeychecker. The order of the

true password is meaningless without obtaining the file of password hashes. On the other hand,

honeyword system is still not a complete and effective solution for the password management

problem. In particular, the following scenarios should also be considered in order to have a

robust and secure system:

• An adversary can manage to observe the submitted passwords in real time.

39
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• An adversary can steal the sweetwords of a user and submit to another systems which

does not use honeywords.

In the second part of the thesis, we revisited and analyzed the Honeywords system of Juels and

Rivest [72] and then suggest some possible improvements for

• determining the number of honeywords of a user

• generating typo-safe honeywords

• managing old passwords

Furthermore, we introduced an enhanced Honeywords system as a solution to the active attacks

problem. We conclude with the security analysis of the new model.
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