
Partial Key Exposure Attacks on

Multi-power RSA

A thesis submitted to the

Graduate School of Natural and Applied Sciences

by

Muhammed Fethullah ESGİN

in partial fulfillment for the

degree of Master of Science

in

Cybersecurity Engineering







Partial Key Exposure Attacks on Multi-power RSA

Muhammed Fethullah ESGİN

Abstract

In this thesis, our main focus is a type of cryptanalysis of a variant of RSA, namely

multi-power RSA. In multi-power RSA, the modulus is chosen as N = prq, where r ≥ 2.

Building on Coppersmith’s method of finding small roots of polynomials, Boneh and

Durfee show a very crucial result (a small private exponent attack) for standard RSA.

According to this study, N = pq can be factored in polynomial time in logN when

d < N0.292. In 2014, Sarkar improve the existing small private exponent attacks on

multi-power RSA for r ≤ 5. He shows that one can factor N in polynomial time in logN

if d < N0.395 for r = 2.

Extending the ideas in Sarkar’s work, we develop a new partial key exposure attack on

multi-power RSA. Prior knowledge of least significant bits (LSBs) of the private exponent

d is required to realize this attack. Our result is a generalization of Sarkar’s result, and

his result can be seen as a corollary of our result. Our attack has the following properties:

the required known part of LSBs becomes smaller in the size of the public exponent e

and it works for all exponents e (resp. d) when the exponent d (resp. e) has full-size

bit length. For practical validation of our attack, we demonstrate several computer

algebra experiments. In the experiments, we use the LLL algorithm and Gröbner basis

computation. We achieve to obtain better experimental results than our theoretical

result indicates for some cases.

Keywords: Cryptography, Public-key Cryptography, RSA, Multi-power RSA, Partial

Key Exposure, Lattice Reduction, LLL, Coppersmith’s Method



Çoklu Kuvvet RSA’ya Kısmi Bilgi Saldırıları

Muhammed Fethullah ESGİN

Öz

Bu tezde temel olarak bir RSA çeşidinin kriptoanalizi üzerine yoğunlaşıyoruz. Çoklu

kuvvet RSA olarak adlandırılan bu çeşitte RSA modülü N = prq, r ≥ 2, olacak şekilde

seçilmektedir. Boneh ve Durfee standart RSA üzerinde Coppersmith’in polinomların

küçük köklerini bulma yöntemini kullanarak çok önemli bir sonuç (bir küçük gizli üs

saldırısı) göstermişlerdir. Bu çalışmaya göre N = pq için d < N0.292 sağlandığında logN

üzerinden polinom zamanda N sayısı çarpanlarına ayrılabilmektedir. 2014’te, Sarkar

çoklu kuvvet RSA üzerinde var olan küçük gizli üs saldırılarını r ≤ 5 için geliştirmiştir.

Burada r = 2 için d < N0.395 sağlanması durumunda N ’nin logN üzerinden polinom

zamanda çarpanlarının bulunabileceği gösterilmiştir.

Biz, Sarkar’ın çalışmasındaki fikirleri genişleterek çoklu kuvvet RSA’ya yeni bir kısmi

bilgi saldırısı geliştireceğiz. Saldırının gerçekleştirilebilmesi için gizli üs d’nin en önemsiz

bitlerinin bir kısmının bilinmesi gerekmektedir. Bulduğumuz sonuç, Sarkar’ın sonucunun

bir genelleştirmesi olup, Sarkar’ın sonucu bizim sonucumuzun bir yan sonucu olarak

görülebilmektedir. Saldırımız şu özellikleri taşımaktadır: gerekli olan en önemsiz bit

miktarı açık üs e küçüldükçe azalmaktadır ve d’nin (e’nin) bit boyu N ile aynı olsa dahi

bütün üsler e (d) için çalışmaktadır. Saldırımızın pratik olarak çalıştığını göstermek

için bilgisayar üzerinde bazı cebirsel deneyler gösterilmiştir. Deneylerde LLL algoritması

ve Gröbner bazı hesaplaması kullanılmaktadır. Bazı deneylerde teorik sonucumuzun

belirttiğinden daha iyi deney sonuçları elde edilmiştir.

Anahtar Sözcükler: Kriptografi, Açık Anahtarlı Kriptografi, RSA, Çoklu Kuvvet RSA,

Kısmi Bilgi Saldıları, Örgü İndirgeme, LLL, Coppersmith’in Yöntemi
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Chapter 1

Introduction

As we are in the era of technology, the power of knowledge is of the utmost importance.

Everyone from high-valued companies to the Internet users require to secure their private

data, and the key to information security is cryptology. Information security is not only a

reference to enciphering data but also has other aspects such as integrity, authentication

and non-repudiation. These properties are all realized via cryptographic solutions. Every

online banking, instant messaging or e-trade user, with or without knowing it, benefits

from various cryptographic solutions. First of all, an online banking user must be ensured

that no unauthorized party learns his password (confidentiality). Then, he/she must

be certain that every action he/she does must be received by the bank as intended

(integrity). Moreover, the bank must know that if someone makes an order, he/she

cannot later deny ever doing it (non-repudiation). All these concerns form the basis for

cryptology.

Cryptology is defined as the study of hiding information in the presence of an untrusted

party, and consists mainly of two parts: cryptography and cryptanalysis. Main concern of

cryptography is designing new cryptosystems that enable the users to hide some sensitive

information. Such a property of hiding private information is referred as confidentiality

and this can be achieved by enciphering (or encrypting) the information at hand. As

mentioned, there are more security services concerning cryptography such as integrity,

authentication and non-repudiation. These services are provided using cryptographic

tools such as digital signatures and hash algorithms (see [1] for details).

1
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In cryptanalysis, on the other hand, one tries to break a cryptographic system by any

means. It can be the prevention of any one of the security services. So, the objective

of an attacker can, for example, be one of the followings: decrypting encrypted data,

modifying encrypted data in a way that it is validated in a check process, posing as

someone else, tracking users and revealing the identity of an anonymous entity. In fact,

we can say that cryptography contains cryptanalysis because it is impossible to design a

new system without making a thorough analysis of it.

In general, a cryptographic scheme is illustrated as follows: There are 2 parties, Alice and

Bob. They try to communicate via a (potentially) insecure channel in the presence of an

adversary, Eve, who tries to acquire some knowledge about the communication between

Alice and Bob. Till the invention of public-key cryptography in 1976 [2], it was always

assumed that Alice and Bob shared a secret key, which is unknown to the adversary,

Eve. In that way, using this shared secret key (or also referred as private key), Alice can

encrypt messages that she wants to send and decrypt messages from Bob, and vice versa.

Such a cipher having only one secret key (or keys that can easily be derived knowing

only one of them) is called a symmetric-key cipher (see [1] for a more detailed overview

of cryptology).

In 1976, Whitfield Diffie and Martin Hellman published their paper “New Directions in

Cryptography” [2] that opened up, as its title suggests, new directions in cryptography.

This paper is the first publicly known introduction of asymmetric (or public-key) cryp-

tography. They describe a method so that two parties can agree on a secret key over an

insecure channel. In public-key cryptography, Alice possesses a key pair consisting of a

public key and a private key. She publishes her public key so that everyone including

Bob and Eve can send her encrypted messages using this public key. However, as Alice

keeps the private key to herself, only she can decrypt messages that are encrypted under

her public key. The system in this case relies on the hardness (computational infeasi-

bility) of finding the private key when the public key is known. This is usually referred

as a trapdoor mechanism. That is decryption is hard knowing the public key but easy

knowing the private key.

There are mainly two mathematical problems upon which public-key scheme are built:

the Integer Factorization Problem (IFP) and the Discrete Logarithm Problem (DLP). In

the IFP, one is given an integer N = pq that is the product of two (distinct) primes p
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and q. The aim here is then to find prime factors p (or q). In the DLP, there is a cyclic

group G =< g > and an element h ∈ G. This implies that (using the multiplicative

notation) there exists an x ∈ Z such that gx = h. The problem is then to find x = loggh

given G, g and h.

The most famous IFP-based asymmetric crypto scheme is the RSA cryptosystem [3].

Famous DLP-based cryptographic schemes are Diffie-Hellman key exchange protocol

[2], ElGamal encryption scheme [4] and the Elliptic Curve Discrete Logarithm Problem

(ECDLP) based algorithms [5, 6]. The main disadvantage of the IFP over the DLP is

that, in the IFP, one necessarily works on a ring that may enable an attacker to exploit

structural properties of the ring. In the DLP, however, a group structure is enough, which

seriously limits the capabilities of the attacker. This is the main reason behind the belief

that much shorter key size for the ECDLP based algorithms provide same security level

with longer key sizes for RSA. For example, 512-bit key for an elliptic curve is assumed to

be equivalent to 15360-bit RSA key [7]. In Table 1.1, different key sizes of symmetric-key

ciphers, the ECDLP-based algorithms and the IFP-based algorithms are compared [7].

Table 1.1: Comparison of different key sizes between symmetric-key ciphers, the
ECDLP-based algorithms and the IFP-based algorithms.

Symmetric-key ECDLP-based IFP-based

80 160 1024

Key 128 256 3072

Size 192 384 7680

256 512 15360

In most of the cryptographic systems, a hybrid system is adopted. A public-key scheme

is used to agree on a symmetric key, and then symmetric-key systems with that key are

used in the next stages. The reason for this is that in symmetric-key cryptography par-

ties sharing encrypted information need to agree on a private key, which should not be

acquired by anyone else. That means either sharing the key via a secure channel or using

public-key cryptography. Additionally, the reason for continuing the secure communica-

tion using symmetric-key ciphers is that they work much faster compared to public-key

algorithms. This is due to fact that the mathematical problems that asymmetric algo-

rithms rely on are usually solvable in subexponential time in the bit length of the key

(ECDLP being an exception) while the security margin grows exponentially in the bit
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length of the key in symmetric algorithms. Hence, having a larger key results in higher

computational cost.

In this work, we will be mainly interested in public-key cryptography, specifically the

RSA cryptosystem. RSA is the first public-key encryption algorithm developed in 1978

by Rivest, Shamir and Adleman [3], and the most commonly used one ever since its

introduction. We can state two main reasons why it is more commonly used than the

other public-key schemes: easiness and simple implementation. Because, it does not

require deep mathematical background to implement it (as we will explain in Section

2.1). Due to being in the core of public-key cryptography, it has attracted a lot of

attention of various cryptanalysts from all over the world. Boneh’s work [8] in 1999

about previous cryptanalysis of RSA may be a good guideline for understanding the

cryptanalytic path of the RSA cryptosystem. For a more recent and detailed survey on

the cryptanalysis of RSA, we refer to [9].

In 1990, Wiener described an attack on RSA [10] that shows RSA is easily broken

whenever the secret key d satisfies d < 1
3N

1
4 where N represents the RSA modulus. This

attack shows that under certain conditions RSA may be very weak. This opened up a

very important question what other possible conditions are (if any) such that RSA is

weak. In this thesis, we also concentrate on this question. However, the attacks will

require not only implicit knowledge (as in the case of Wiener’s attack) but also explicit

knowledge. What we mean by an implicit knowledge is that the adversary knows that

secret information (keys) satisfies certain conditions. On the other hand, knowing the

value of some part of the secret information is considered as explicit knowledge.

1.1 A Short History of the Partial Key Exposure Attacks

Standard RSA parameters can be described as follows. Let N = pq be the product of

two different large primes. Choose two integers e and d such that d is the inverse of e

modulo φ(N) = (p− 1)(q − 1). Then, (N, e) is the public key and d (or (d, p, q)) is the

private key. Now, the encryption and decryption work as follows:

E(m) := me mod N,

D(c) := cd mod N.
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Here, N is referred as the RSA modulus, e the public exponent and d the private expo-

nent.

Partial key exposure attacks were first suggested by Boneh, Durfee and Frankel [11]

in 1998. The attack can be described as finding the whole secret exponent d in RSA

with the help of a partial knowledge of the secret exponent. The main tool used in the

attack is Coppersmith’s algorithms for finding small roots of polynomials [12–14], which

takes advantage of lattice reduction techniques (in particular, the LLL algorithm [15]).

The benefit of the attack is that it apriori tells the attacker if the attack is going to be

successful. So, the attack actually predetermines how many bits of d the attacker has

to acquire in order to successfully break the system. When first proposed by Boneh,

Durfee and Frankel, the attack was only applicable when the public exponent e satisfies

e <
√
N . However, the attack worked for N

1
4 < e < N

1
2 only when the factorization

of e is known in addition to the partial knowledge from the private key. They left it as

an open question whether the attack could still be applied under weaker assumptions.

Later in 2003, Blömer and May [16] increased the bound on e such that their strongest

attack worked when e < N
7
8 .

This led to the belief that the attack should work for all e up to full-size (i.e., the bitsize

of e can be as large as the bitsize of N). Not long after, it turned out that the attack

in fact worked for all e up to full-size [17]. However, as we employ the attack with

weaker assumptions, it becomes that we need more bits of d known to reconstruct all

of it. After, showing that a partial key exposure attack can be mounted for any e, the

works started to concentrate more on employing the attack on different variants of RSA.

Especially, CRT-RSA [18] is studied widely. There is also an interesting result by Joye

and Lepoint [19] that shows a partial key exposure attack can be mounted on RSA with

private exponents larger than N .

Remark 1.1. There is a technique called private exponent blinding that is used to protect

against side-channel attacks (see Section 2.4.2.1). In this technique, d′ = d+ aφ(N), for

some a ∈ Z, is used as the private exponent to disable an attacker from learning the bits

of d by observing the bits of d′.

Attacks using Coppersmith’s methods are highly dependent on the polynomial f whose

roots are to be found. Today, there is no provable method providing the optimal con-

ditions for such attacks. Due to this dependence on f cryptanalysts to find a general
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strategy are limited which results mostly in exploring ad hoc methods for lattice con-

structions. In [20, 21] a general strategy for a lattice construction is explained. However,

this does not always provide the optimal bounds, and is not always compatible with

different techniques.

1.2 Overview of the Thesis

Research goal:

Our goal in this thesis is to explore new partial key exposure attacks on multi-power

RSA. The main assumption is that an attacker acquires some least significant bits of

the private exponent d. The attack aims at factoring the modulus N = prq, where

r ≥ 2.

Organization of the thesis:

Chapter 2: The RSA Cryptosystem

To begin with, we give an overview of the RSA cryptosystem and one of its many variants,

multi-power RSA. An important part of this chapter consists of various cryptanalysis of

RSA. The attacks include those that form the basis for partial key exposure attacks:

Wiener’s attack [10] and Boneh-Durfee attack [22]. Actually, Boneh-Durfee attack is

studied in detail in Chapter 3.

Chapter 3: Preliminaries

In Chapter 3, we first outline some preliminaries about the lattice theory. Then, we

concentrate on Coppersmith’s method of finding small roots of polynomials [12–14].

This is core of partial key exposure attacks. Since we use the method of finding small

modular roots, this one is studied in more detail. Later, we discuss the complexity of

attacks using Coppersmith’s methods. The chapter is concluded with the introduction

of Boneh-Durfee attack [22].

Chapter 4: Partial Key Exposure Attacks on Multi-power RSA

In Chapter 4, we first discuss previous studies using Coppersmith’s methods of finding

small roots of polynomials on multi-power RSA. These include small private exponent

attacks [23–27] and partial key exposure attacks [27, 28]. Later, the main contribution of
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this thesis is given. That is, we show a new partial key exposure attack on multi-power

RSA. The attack works even when the exponents satisfy e, d ≈ N .

A part of this chapter is based on [29], which has been accepted to CAI 2015 (joint work

with the supervisor and the co-supervisor).

Chapter 5: Conclusion and Discussions

Chapter 5 is the final chapter of this thesis. First, a short overview this work is given.

Then, we argue some issues about a partial key exposure attack in [28]. Finally, we

conclude the thesis with some discussions and further study options/open problems in

the area of the thesis.



Chapter 2

The RSA Cryptosystem

In this chapter, we give details of the RSA cryptosystem [3], show how the system works,

and explain also its multi-power RSA variant, about which we show a new partial key

exposure attack in Chapter 4. Firstly, we start with the mathematical preliminaries of

RSA parameters. Afterwords, we explain a method with which the key generation can

be realized. We fix ZN := Z/NZ = {0, 1, . . . , N − 1}.

2.1 RSA

LetN = pq be the product of two large distinct primes p and q. Further, let 1 < e < φ(N)

with gcd(e, φ(N)) = 1 where φ(N) := #{1 ≤ k < N | (k,N) = 1} and gcd(x, y) denotes

the greatest common divisor of x and y. (φ is called the Euler’s Totient function). Note

that for such an N , φ(N) = (p− 1)(q− 1) by definition. Also, let d be the multiplicative

inverse of e modulo φ(N). i.e., ed ≡ 1 mod φ(N). Now, the encryption of a plaintext

m ∈ ZN , gcd(m,N) = 1 , and the decryption of a ciphertext c ∈ ZN , gcd(c,N) = 1, are

given as the following functions:

E(m) := me mod N,

D(c) := cd mod N,

respectively. The relation between e and d yields to the following equation which we call

the RSA equation:

8
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e−1 ≡ d mod φ(N)

=⇒ ed ≡ 1 mod φ(N)

=⇒ ed− 1 = k.φ(N) for some k ∈ Z (2.1)

In most of the partial key exposure attacks, equation (2.1) (or a variant of it) is used.

Theorem 2.1. Let m ∈ Z/NZ and c ≡ me mod N . Then, cd ≡ m mod N .

Proof. If m = 0, the result is clear. If gcd(m,N) = 1, then m ∈ (Z/NZ)∗ and

cd ≡ med mod N

≡ mk.φ(N)+1 mod N

≡ (mφ(N))km mod N

≡ m mod N

since |(Z/NZ)∗| = φ(N). If gcd(m,N) 6= 1, then we can say that m = ap for some a > 0

without loss of generality. Then, we get

cd ≡ med mod q

≡ mk.(q−1)(p−1)+1 mod q

≡ m mod q (by Fermat’s Little Theorem)

and also

cd ≡ med ≡ (ap)ed ≡ 0 mod p

Finally, using the Chinese Remainder Theorem, we see that cd ≡ m mod N .

Note that although the above theorem is true for any m ∈ Z/NZ, gcd(m,N) 6= 1 should

not hold for a plaintext in RSA. Because, otherwise, an attacker can compute a prime

factor of N by computing gcd(m,N).
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2.2 RSA Key Generation

Here, we give a possible way of RSA key generation. We note that depending on the

designer’s criteria for parameters, different algorithms (probability with condition checks

on d and/or e) have to be adopted.

1. Pick two large random primes p, q of the same size.

2. Set N := pq.

3. Choose an integer e such that gcd(e, φ(N)) = 1.

4. Find d := e−1 modulo φ(N).

5. (e,N) is the public key and (d, p, q) (or just d) is the private key.

One may raise a question “can we easily find random primes of the same size?”. The

answer relies on the prime number theorem which states that for large X ∈ R, there

are approximately X
lnX

prime numbers up to X [30]. Furthermore, finding an e with

gcd(e, φ(N)) = 1 is computationally easy because we can just choose any prime number

less than φ(N).

The bitsize n of N is usually referred as the security parameter because it determines

the level of security of the underlying RSA system. Today, n = 2048 is believed to be

secure.

2.3 Multi-power RSA (Takagi’s Variant)

Multi-power RSA (also referred as Takagi’s RSA or prime power RSA) is introduced

by Takagi in [24]. One of the motivations of this variant is to speed up the RSA de-

cryption/signing process. More concretely, N = prq is chosen for two (distinct) primes

of same bit length such that r ≥ 2. Then, there are two different ways of generating

public/private exponents. The first one imposes the condition ed ≡ 1 mod (p− 1)(q − 1)

while the other ed ≡ 1 mod φ(N), where φ(N) = pr−1(p − 1)(q − 1). Decryption of a

ciphertext c is computed more efficiently using simply a combination of Hensel lifting

and Chinese Remainder Theorem modulo pr and q (see [24] for details).
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2.4 Cryptanalysis of RSA

In this section, we revisit some cryptanalytic methods on RSA. If two distinct RSA

moduli N1 and N2 share a common prime factor, then this factor can be extracted easily

by a greatest common divisor (gcd) computation between N1 and N2. However, for

example, for two 1024-bit RSA moduli with random 512-bit prime factors, the probability

that they share a common prime factor is negligibly low. That’s why one suspects that

if prime factors of two different RSA moduli coincide, there must be something wrong

with the prime number generation. This is exactly the case in [31], [32] and [33]. In

these papers, authors find common prime factors using the batch gcd algorithm (which

is used to efficiently calculate gcd of many numbers) and show deficiencies in the prime

number generation in these specific cases.

Another observation is that knowing φ(N) is equivalent to knowing p and q. This is due

to the fact that φ(N) = (p − 1)(q − 1) = N − (p + q − 1). Since N is already known,

one can easily find s := p + q. After that all one needs to do is to find the roots of the

polynomial f(x) = x2 − sx+N , which yields p and q. Thus, φ(N) must be guarded as

safe as the prime factors.

Lastly, it is easy to see that RSA has multiplicative homomorphic property. That is, for

any x1 and x2,

D(x1) ·D(x2) = (xd1 mod N) · (xd2 mod N) ≡ (x1x2)
d mod N

=⇒ D(x1) ·D(x2) = D(x1x2).

The same holds for the encryption as well. As a result, if signing is performed on the

message without any prior formatting (or hashing), an attacker can forge signatures that

are validated by a verification process. This leads to the principle that either the hash

of a message must be signed or the message must be properly padded prior to signing.

But, some padding schemes have been shown to be weak. We mention one in Section

2.4.2.2 and one may also be interested in to see [34–39].
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2.4.1 Factoring N

The most straightforward way to break an asymmetric cryptographic system is to solve

its underlying mathematical problem. For the case of RSA, this is factoring N directly.

So, this problem is in fact not specific to RSA because the attacker does not benefit from

additional information provided by the RSA system. The only goal is to find the prime

factors p and q given N = pq. The most efficient algorithm currently known for general

factorization problem is the (General) Number Field Sieve (NFS) [40] method. For large

N , its complexity is estimated as

exp
(

(c+ o(1)) ln(N)
1
3 ln ln(N)

2
3

)

for some 1 < c < 2. There is also the Elliptic Curve Method (ECM) [41] that is mostly

used to find the small prime factors of a number. This is useful when one wants to check

if a number r is m-smooth meaning that all prime factors of r is less than or equal to

m. The largest number factored using ECM until now has 83-digits and this record is

achieved by Ryan Propper in September 2013.

The largest RSA modulus (without having a prime factor of a special form) factorized

in the open literature until now is for n = 768 bits [42]. NFS method is used in this

process. Today, it is strongly suggested to use RSA with a key size of at least 2048 bits.

2.4.2 Implementation Attacks

This section deals with the attacks that take advantage of the individual implementa-

tion characteristics of RSA. Hence, they do not always work and are specific to certain

implementations.

2.4.2.1 Side-Channel Analysis

Side-channel analysis is a technique where the attacker tries to exploit weaknesses due to

implementation details. For example, consider the square-and-multiply algorithm that is

used to exponentiate a number. Suppose that we want to calculate cd mod N for some

ciphertext c and decryption exponent d (which is n-bit). Let d = (dn−1, dn−2, . . . , d0) be

the binary representation of d. The algorithm works as follows:
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1. A← c and B ← 1. For i ∈ {0, 1, . . . , n− 1} do:

(a) if di = 1, B ← A ·B mod N

(b) A← A2 mod N

2. return B

The key point here is that statement (a) is run only when di = 1, which means a device

running this algorithm behaves differently according to the value of di. If an attacker

can differentiate these situations (i.e., di = 0 and di = 1), then he learns the bits of d.

Possible ways to observe such a distinguishing property include timing each iteration,

examining the power consumption or the noise and etc (e.g., see [43–45]).

Side-channel attacks received a lot of attention after Kocher introduced timing attacks

[46]. Simple and differential power analysis [47] is one of the core attacks in the area. A

countermeasure for protecting against exposing bits of d is called exponent blinding. In

this method, one uses d′ = d + aφ(N), a ∈ Z instead of d as the decryption exponent.

That way an attacker observing the bits of the decryption exponent via a side-channel

analysis cannot learn the bits of d due to masking. Another advantage of this method

is that decryption may be fastened by decreasing the hamming weight of the decryption

exponent.

There is also an important result by Boneh, DeMillo and Lipton [48] that one can expose

the prime factors of N by injecting random faults on a device running CRT-RSA [18]

signing process. However, this attack may simply be prevented by checking the signature

before revealing it.

2.4.2.2 Bleichenbacher’s Attack

Bleichenbacher’s attack [49] works on an old version of Public Key Cryptography Stan-

dard 1 (PKCS 1). According to this standard, a message m is first formatted as follows:

02 Random 00 m

where each value in the first and the third blocks represent a byte. Then, this will

be the message to be encrypted. In some protocols, when a ciphertext is decrypted,
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the application first checks if the most significant 2 bytes are ‘02’ and sends an error

message if the check fails [8]. But, now, an attacker can intercept a ciphertext c, generate

c′ := rc mod N for some random value r and send c′ to the application. If the application

sends an error message, the attacker knows that the most significant 2 bytes of the

plaintext is not equal to ‘02’. Thus, the attacker has a mechanism that tells him whether

the most significant 16 bits of the decryption of chosen ciphertexts equal to ’02’ or not.

Bleichenbacher shows that this mechanism enables an attacker to decrypt c.

2.4.3 Message Recovery Attacks

This section concentrates on RSA attacks that recover the message rather than the

private keys. So, the attacker can only find the plaintexts encrypted under certain

conditions and cannot completely break the system by obtaining the private keys.

2.4.3.1 Håstad’s Attack

In [50], Håstad shows attacks on the case when the same message m is sent to multiple

recipients who use the same public exponent e but different moduli Ni. Let us focus on

the easier case first. Let e = 3 and Alice send ci = Ei(m) = m3 mod Ni to 3 recipients,

1 ≤ i ≤ 3. If Ni’s are not pairwise relatively prime, then we can find a common factor

by a simple greatest common divisor (gcd) computation. Thus, we can assume that Ni’s

are pairwise relatively prime. In that case, using the Chinese Remainder Theorem on c1,

c2 and c3, an attacker can compute

c ≡ m3 mod N1N2N3

Observe that since m < Ni for all 1 ≤ i ≤ 3, m3 < N1N2N3. Thus, the equality m3 = c

is satisfied over Z. The attacker can now easily extract m by computing the real cube

root of c.

Håstad [50] proves a stronger result as well. He showed that applying fixed polynomials to

mi before encryption does not prevent the attack provided that the message is encrypted

into enough number of ciphertexts. Boneh, in [8], shows a stronger version of this result.

Theorem 2.2 ([50] and [8]). Let {fi}1≤i≤k be a set of polynomials defined over ZNi
[x]

with a degree of at most d where Ni’s are pairwise relatively prime integers. Suppose
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there is a unique m that is less than all Ni satisfying the condition

fi(m) ≡ 0 mod Ni, for all 1 ≤ i ≤ k.

One can recover m efficiently if k > d and (Ni, gi) pairs are given for 1 ≤ i ≤ k.

2.4.3.2 Franklin-Reiter Attack

Franklin-Reiter’s attack [51] works when two related messages are encrypted using the

same public key pair (N, e) where e is small. For example, let e = 3 and m1 6= m2 such

that m1 = f(m2) mod N for some affine transformation f . Then,

c1 ≡ m3
1 ≡ f(m2)

3 mod N , and

c2 ≡ m3
2 mod N

Thus, setting h1 := f(x)3− c1 and h2 := x3− c2 with h1, h2 ∈ ZN [x], we see that x−m2

divides both h1 and h2. Thus, by calculating gcd(h1, h2), we can recover this linear

factor. In the rare cases of e 6= 3, gcd computation may be non-linear and hence the

attack fails in these cases.

2.4.3.3 Coppersmith’s Short Pad Attack

In this attack [12], Coppersmith considers the case when a message is meant to be sent,

it is first appended with a simple random padding and then encrypted as usual. He

shows that when this padding is small enough, the message can be recovered without

knowing the values of the individual paddings. Suppose m is a message of bitsize at most

n− r where r = ⌊n/e2⌋. Then, the Coppersmith’s result shows that m can be obtained

efficiently given (N, e) when bitsize of the paddings (which are unknown to the attacker)

are at most r.

2.4.4 Attacks Using Extra Knowledge on RSA Parameters

As explained earlier, RSA may be very weak when the parameters satisfy certain con-

ditions. In this section, we describe pioneering works that benefits from some implicit
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knowledge. Partial key exposure attacks fall into this class as well, but they use some

explicit knowledge. They take advantage of some knowledge that the parameters satisfy

certain conditions as well as of that some bits of the private exponent d is exposed to the

attacker. This exposure may be due the side-channel attacks described earlier in Section

2.4.2.1.

2.4.4.1 Wiener’s Attack

In 1990, Wiener introduced an attack [10] on RSA using continued fraction techniques.

He showed that N can be factored efficiently whenever d < 1
3N

1
4 . This attack is a basis

for many modern attacks on RSA including the partial key exposure attacks. It actually

shows that RSA can be efficiently broken with some implicit knowledge. Before proving

this result, we recall some properties from the theory of continued fractions.

Definition 2.3. [a0, a1, . . .] for ai ∈ Z is called the continued fraction representation of

x ∈ R if

x = a0 +
1

a1 +
1

a2+···

If we stop at an index i ≥ 0, then [a0, a1, . . . , ai] is called the i-th convergent of x. The

following theorem by Legendre [52] is used for the proof of the attack.

Theorem 2.4. Let x ∈ R. If a
b
is a fraction satisfying

∣

∣

∣x− a

b

∣

∣

∣ <
1

2b2
,

then a
b
is a convergent of x.

Now, we can state and prove the result of Wiener’s attack.

Theorem 2.5. For a given RSA modulus N = pq with q < p < 2q, assume that

d < 1
3N

1
4 . Then, d can be found in time polynomial in n.

Proof. Recalling the RSA equation, we know that

ed = 1 + kφ(N)

=⇒ e

φ(N)
− k

d
=

1

dφ(N)



Chapter 2. The RSA Cryptosystem 17

Also, note that ed > kφ(N) implies k < d since e < φ(N). So, by the assumption on d,

k < 1
3N

1
4 . Now, observe that

∣

∣

∣

∣

e

N
− k

d

∣

∣

∣

∣

=

∣

∣

∣

∣

ed− kN

dN

∣

∣

∣

∣

=

∣

∣

∣

∣

ed− kφ(N) + kφ(N)− kN

dN

∣

∣

∣

∣

=

∣

∣

∣

∣

1− k(N − φ(N))

dN

∣

∣

∣

∣

It is easy to see that N − φ(N) = pq − (p − 1)(q − 1) = p + q − 1 < 3N
1
2 . So, we get

from the above equalities together with the condition on k that

∣

∣

∣

∣

e

N
− k

d

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

3kN
1
2

dN

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

3k

dN
1
2

∣

∣

∣

∣

<

∣

∣

∣

∣

1

dN
1
4

∣

∣

∣

∣

<

∣

∣

∣

∣

1

3d2

∣

∣

∣

∣

Hence, using Theorem 2.4, we can find k
d
as a convergent of e

N
. Then, the fact that k

and d are relatively prime allows us to find k and d, simultaneously.

After finding k and d, we can find φ(N), and hence s := p+ q. As a result, we can factor

N by finding the roots of the polynomial f(x) = x2 − sx+N .

2.4.4.2 Boneh-Durfee Attack

Boneh and Durfee’s attack [22] is an important improvement on Wiener’s attack. It

shows that N can be factored efficiently whenever d < N0.292. But, since this attack

requires more knowledge about finding the small roots of polynomials, we study this

attack in more detail in Section 3.2.3.
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Preliminaries

3.1 Lattice Theory

In this section, we revisit some basic definitions and theorems about lattice theory, which

are useful in the partial key exposure attacks. For the sake of completeness, only an

introductory part of lattice theory is covered here. For a detailed study on the relation

of the Lattice Theory to cryptography, we refer the reader to [53], which also covers some

lattice based cryptographic algorithms.

Definition 3.1 (Euclidean Norm for vectors). Let v = (v0, . . . , vr), r ≥ 0, be a vector

in R
r+1. Then, the Euclidean Norm of v, denoted by ||v||, is given as follows:

||v|| :=

√

√

√

√

r
∑

i=0

(vi)2.

Definition 3.2 (Lattice). Let v1, . . . , vw ∈ R
m, w,m ∈ N

+ be a set of R-linearly inde-

pendent vectors. Then, the lattice L generated by these vectors is defined as

L := {α1v1 + . . .+ αwvw : αi ∈ Z for 1 ≤ i ≤ w} .

So, L is the integer linear combinations of the given vectors.

Remark 3.3. Since given vectors are linearly independent, it must hold that w ≤ m. If

w = m, then L is called a full rank lattice.

18
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As in the vector spaces, any set of linearly independent vectors generating L is called a

basis of L, and the dimension of L (denoted by dim(L)) is the number of vectors in a

basis of L. For the above definition, dim(L) = w. L can also be represented by a matrix

M whose row vectors consist of the basis vectors such that

M =























v1

.

.

.

vw























.

The determinant of a lattice L is denoted by det(L). The exact definition of the deter-

minant requires additional definitions, which is not useful for this work (e.g., see [53]).

For this work, it is enough to know that for a full rank lattice L, det(L) = det(M).

Remark 3.4. A lattice L admits infinitely many bases, but det(L) is unique.

In this study, we work only with lattices having full rank with the goal of finding small

vectors in such lattices. There is an important theorem, due to Hermite, related to this

issue (the theorem is attributed to Minkowski as well. e.g., in [9] and [21]). It states in

terms of dim(L) and det(L) that a small vector exists in the lattice L. However, it does

not describe a constructive method which can be used to find such a small vector.

Theorem 3.5 (Hermite’s Theorem). Let L be a lattice with dim(L) = w. Then, there

exists a nonzero vector v in L such that

||v|| ≤ √w.det(L)
1
w .

In general, computational complexity of finding a small vector in a lattice increases

exponentially in the dimension of the lattice. This problem is NP-hard for randomized

reductions [54]. To that end, the lattice reduction algorithm LLL introduced by Lenstra,

Lenstra and Lovász [15] is used in practice. What LLL does is that given a set of basis

vectors for a lattice, it produces a set of small vectors describing the same lattice. To

see how small the reduced basis vectors are, the following theorem is used:



Chapter 3. Preliminaries 20

Theorem 3.6 ([15] and [55]). For a lattice L with dim(L) = w, the LLL algorithm

produces a set of reduced basis vectors {r1, . . . , rw} such that

||ri|| ≤ 2
w(w−1)

4(w+1−i)det(L)
1

w+1−i .

In particular, for i = 1,

||r1|| ≤ 2
w−1
4 det(L)

1
w .

For a of this theorem, one can see [55]. The computational complexity of the LLL

algorithm is polynomial in dim(L) and in the maximal bitsize of an entry [56].

3.2 Finding Small Roots of Polynomials

For a univariate modular polynomial or a multivariate integer polynomial, there is no

generic method for finding its roots. Otherwise, RSA would have been easily broken by

finding the roots of the RSA equation (Equation 2.1). A novel step forward for achieving

this goal is taken by Coppersmith. Coppersmith developed techniques in [12] (see also

[13] and [14]) both for finding small modular roots of univariate polynomials and also for

finding small integer roots of bivariate polynomials under certain conditions. Before we

start explaining the method, let us give some definitions and notations.

As usual, we denote ZN := Z/NZ. A multivariate (or univariate) polynomial with

coefficients from Z is denoted by f . If the coefficients of a polynomial are in ZN , then

the polynomial is represented by fN . Below, the definitions are given for f , but those

for fN are analogous.

Definition 3.7 (Monomial). Let f(x1, . . . , xs), s ≥ 1, be a polynomial. Then, any term

xi11 . . . xiss , i1, . . . , is ∈ N, with a nonzero coefficient is called a monomial.

Definition 3.8 (Leading Monomial and Leading Coefficient). Leading monomial of a

multivariate polynomial is the largest monomial with respect to an ordering. Also, the

coefficient of the leading monomial is called the leading coefficient.

Definition 3.9 (Euclidean Norm for polynomials). Let f(x1, . . . , xs), s ≥ 1, be a polyno-

mial whose coefficients are represented by a0, . . . , at for some t ∈ N. Then, the Euclidean
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Norm of f , denoted by ||f ||, is given as

||f || :=

√

√

√

√

t
∑

i=0

(ai)2.

Now, we are ready to formally define the problems that are solved using Coppersmith’s

methods:

• given X ∈ Z
+, find a root x0 of fN (x) modulo N such that |x0| < X where the

factorization of N is unknown.

• given X,Y ∈ Z
+, find a root (x0, y0) of f(x, y) such that |x0| < X and |y0| < Y

where the factorization of N is unknown.

In this work, we study the extended version of the first problem of finding small modu-

lar root of univariate polynomials to multivariate polynomials. The second problem of

finding small integer roots requires more careful work due to an independence issue that

is discussed in Chapter 5 in detail.

3.2.1 Finding Small Modular Roots

Assume that fN (x) has root x0 modulo N . The key idea behind Coppersmith’s method

is to find a polynomial h(x) that has the same root x0 over integers (not modulo N).

But how can we find this polynomial h(x)? To do that, we construct polynomials having

the root x0 modulo Nm for some m > 0. These polynomials represent a lattice and

we find a small vector in this lattice using LLL algorithm. And, finally, we hope that

the polynomials corresponding to these small vectors carry the root x0 over Z. From

now on, we let s denote the number of variables in a multivariate polynomial and w the

dimension of the lattice in an attack.

Our aim now is to explain this idea more formally. Let ǫ > 0, and for 0 ≤ k ≤ m and

some j construct a set of polynomials gjk as follows:

gjk(x) := xj(fN (x))kNm−k.
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These polynomials are called shift polynomials. It is easy to see that all shift polynomials

share the root x0 modulo Nm. That’s why it must be the case that any integer linear

combination h(x) of gjk’s must have the root x0 modulo Nm. If it also satisfies the

condition that |h(x0)| < Nm, then h(x0) = 0 over Z. Hence, we obtain the end result.

Having made these observations, Howgrave-Graham’s following theorems [57] (which are

reformulations of Coppersmith’s ideas) sum up the conditions as follows.

Theorem 3.10 (Howgrave-Graham’s Theorem for univariate case, [57]). Let f(x) ∈
Z[x], be a polynomial with the number of monomials less than or equal to w. If the

following two conditions hold:

1. f(x0) ≡ 0 mod M for some |x0| < X and an M ∈ Z
+,

2. ||f(xX)|| < M√
w
,

then x0 is a root of f over Z.

i.e., f(x0) = 0.

Proof. Let f(x) := a0 + a1x + · · · + amxm for some m ∈ N. Note that since f has at

most w monomials, the set of nonzero ai’s can have at most w elements. First, by the

definition of the Euclidean Norm, we have

M√
w

> ||f(xX)|| =

√

√

√

√

m
∑

i=0

(aiXi)2.

And, also using triangle inequality yields to

|f(x)| = |a0 + a1x+ · · ·+ amxm| ≤|a0|+ |a1x|+ · · ·+ |amxm|

≤|a0|+ |a1X|+ · · ·+ |amXm|.

Finally, by Hölder’s inequality, we get

m
∑

i=0

|aiXi| ≤ √w.

√

√

√

√

m
∑

i=0

(aiXi)2 =
√
w.||f(xX)|| < M

So, |f(x0)| < M and by the first assumption, f(x0) ≡ 0 mod M . This yields f(x0) = 0

over Z.
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A similar proof may be found in [21] as well. This theorem can also be generalized

for multivariate polynomials as given below. The proof for the multivariate case works

analogously to the one for the univariate case. Only notations get a bit more complicated.

Theorem 3.11 (Howgrave-Graham’s Theorem for multivariate case, [57]).

Let f(x1, . . . , xs) ∈ Z[x1, . . . , xs], s ≥ 1, be a polynomial with the number of monomials

less than or equal to w. If the following two conditions hold:

1. f(x01, . . . , x
0
s) ≡ 0 mod M for some |x01| < X1, . . . , |x0s| < Xs and an M ∈ Z

+,

2. ||f(x1X1, . . . , xsXs)|| < M√
w
,

then (x01, . . . , x
0
s) is a root of f over Z.

i.e., f(x01, . . . , x
0
s) = 0.

Let fN (x) be the polynomial whose root x0 we are trying to extract. Suppose also that we

have constructed w shift polynomials gjk’s. We see the coefficients of gjk(xX) as vectors

forming a basis for a lattice L (note that dim(L) = w). We apply LLL to these vectors

and get reduced vectors corresponding to the reduced polynomials r1(xX), . . . , rw(xX).

By Theorem 3.6, we know that

||r1(xX)|| ≤ 2
w−1
4 det(L)

1
w .

If it is also the case that

2
w−1
4 det(L)

1
w <

M√
w
,

then Howgrave-Graham’s theorem is satisfied and h(x) = r1(x) can be chosen. As a

result, the main goal reduces to choosing gjk’s so that det(L) is small.

The case for multivariate polynomials requires more work. Let fN (x1, . . . , xs) be the

polynomial whose root (x01, . . . , x
0
s) we are trying to extract. Similarly, after building

shift polynomials as

gj1···jsk(x1, . . . , xs) := xj11 · · ·xjss (fN (x1, . . . , xs))
kNm−k,

construct a lattice L using the coefficient vectors of gj1···jsk(x1X1, . . . , xsXs)’s. Apply-

ing LLL to L, we get reduced polynomials r1(x1X1, . . . , xsXs), . . . , rw(x1X1, . . . , xsXs)
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where w ≥ s. By Theorem 3.6, we know that

||r1(x1X1, . . . , xsXs)|| ≤ · · · ≤ ||rs(x1X1, . . . , xsXs)|| ≤ 2
w(w−1)

4(w+1−s)det(L)
1

w+1−s .

If it is also the case that

2
w(w−1)

4(w+1−s)det(L)
1

w+1−s <
M√
w
, (3.1)

then Howgrave-Graham’s theorem for multivariate polynomials is satisfied and we get

s polynomials carrying the root (x01, . . . , x
0
s) over Z. Now, to extract the common root,

there are mainly two techniques that we can use: computing resultants or a Gröbner

basis. In our experiments, a Gröbner basis computation is more efficient and resultant

computation consume too much memory. Moreover, we mostly found more than s poly-

nomials carrying the common root. i.e., the system of equations is overdefined, from

which a Gröbner basis computation benefits. However, in order for a Gröbner basis

computation to find the common root, the following heuristic assumption needs to hold.

Assumption 1. Let f1, · · · , fk be the polynomials having the desired root over Z for

k ≥ s computed using LLL reduction. Furthermore, let I be the ideal generated by

these polynomials. Then, the algebraic variety of I is zero-dimensional. In particular,

the common root can be extracted by computing a Gröbner basis on I.

Since our attack in Chapter 4 relies on this assumption, it is heuristic. However, our

experiments show that this assumption holds in general (see Section 4.3). The compu-

tational complexity of a Gröbner basis computation can be bounded by a polynomial in

logN assuming the number of variables and the maximal degree of input polynomials is

fixed [58].

As in similar works, we simplify the condition (3.1) to

det(L) < Mw (3.2)

and let low order terms contribute to an error term ǫ. Thus, in our attack, the ulti-

mate goal is to construct a lattice satisfying Inequality 3.2. Next, the computational

complexity of the overall attack is discussed.
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3.2.2 Complexity of the Attacks

Partial key exposure attacks using Coppersmith’s method consist mainly of two parts:

polynomial reduction, which is usually done using LLL, and root extraction, which can

be done by computing resultants or a Gröbner basis. In the following, computational

complexities of these operations are discussed in more detail. In the following results, we

assume that the error term ǫ introduced in the methods for choosing shift polynomials

and the number of variables s are fixed.

3.2.2.1 Polynomial Reduction

Today one of the fastest LLL reduction algorithms (i.e., having the lowest worstcase com-

plexity) is suggested by Nguyen and Stehlé [56]. It is called floating-point LLL (fpLLL)

(which is implemented in Sage and Magma [59]). The complexity of the algorithm is

O(w5(w + η)η) where w is the dimension of the lattice and η is the maximal bitsize

of an entry. In Coppersmith methods, η is polynomial in n and w depends only on ǫ.

Hence, the polynomial reduction phase of the Coppersmith’s method can be done in time

polynomial in n using the LLL reduction algorithm.

3.2.2.2 Root Extraction

As mentioned before, there are two general ways to extract a common root from multi-

variate polynomials: resultant or Gröbner basis computations. To compute a Gröbner

basis for root extraction, F5 algorithm by Faugère [58] can be used. The complexity

of the algorithm can be bounded by a polynomial in n assuming that the number of

variables and the maximal degree of input polynomials is fixed.

One may wish to use the method of resultants. Computing a resultant is equivalent to

computing the determinant of a matrix. For a square matrix of size ℓ, the determinant

computation can be done in time O(ℓ3). Note that, in the case of Coppersmith’s method,

the number of iterations for the resultant computations is fixed (remember that s is

fixed), the number of terms in a reduced polynomial is constant and the size of the

coefficients in each resultant polynomial is polynomial in the coefficient sizes of the

starting polynomials (whose sizes are polynomial in n). Hence, the total complexity of

the resultants computation step can be upper bounded by a polynomial in n.
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As a result, partial key exposure attacks using Coppersmith’s method can be done in

time polynomial in n assuming that ǫ and s are fixed.

3.2.3 Boneh-Durfee Attack

Now that we have discussed the method of finding small roots of polynomials, we can

illustrate Boneh and Durfee’s attack [22].

Theorem 3.12 ([22]). Let N = pq be of bitsize n where p, q are primes with q < p < 2q.

Also, let ed ≡ 1 mod φ(N) with e ∼ N and d ∼ Nβ. Then, if d < N0.292, then under

Assumption 1, N can be factored in time polynomial in n.

Proof. Recalling the RSA equation, we know that

ed− 1 = k(N − (p+ q − 1)).

Looking at this equation modulo e and replacing k with x and p+ q − 1 with y, Boneh

and Durfee use the following polynomial:

fe(x, y) = 1 + xN − xy.

It is easy to see that fe carries the root (x0, y0) := (k, p+ q−1) modulo e. We also know

that x0 < min{e, d} = min{N,Nβ} = Nβ and y0 < 3N
1
2 . Hence, the upperbounds

become X = Nβ and Y = N
1
2 ignoring small constants. Now, the shift polynomials are

defined as

gik(x, y) = xifk
e (x, y)e

m−k, for i = 0, . . . ,m− k

hjk(x, y) = yjfk
e (x, y)e

m−k, for j = 0, . . . , t

and for k = 0, 1, . . . ,m. Setting t = τm, Inequality (3.2) becomes

X
1
6
m3(2+3τ)+o(m3)Y

1
6
m3(1+3τ+3τ2)+o(m3) < N

1
6
m3(1+3τ)+o(m3).
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To get an asymptotic bound, we ignore o(m3) terms. Substituting the values for X and

Y , the condition reduces to

β(2 + 3τ) +
1

2
(1 + 3τ + 3τ2) < 1 + 3τ

=⇒ 3τ2 + 3τ(2β − 1) + (4β − 1) < 0. (3.3)

which reaches its maximum at τ = 1
2 − β. Plugging in this value to Inequality 3.3, we

finally obtain

−3β2 + 7β − 7

4
< 0

=⇒ β <
7

6
− 1

3

√
7 ≈ 0.284.

This result is then improved by looking at the sublattices of the lattice generated by the

shift polynomials. Boneh and Durfee’s final result is given as β < 0.292 [22].
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Partial Key Exposure Attacks on

Multi-Power RSA

In this chapter, we describe known attacks on multi-power RSA that uses Coppersmith’s

methods along with a new partial key exposure attack on multi-power RSA when the

exponents are generated modulo φ(N). Section 4.2 is based on [29], which has been

accepted to CAI 2015 (joint work with the supervisor and the co-supervisor).

Notation: Let log denote the logarithm base 2 unless the base is given concretely. We

use the following notation throughout this chapter.

N Multi-power RSA modulus

n bitsize of N

p, q prime factors of N

r integer satisfying the relation N = prq

e RSA public exponent

d RSA private exponent

d0 known part of d

d̃ unknown part of d

α logN e (i.e., e ≈ Nα)

β logN d (i.e., d ≈ Nβ)

δ logN d0 (i.e., d0 ≈ N δ)

γ logN d̃ (i.e., d̃ ≈ Nγ)

Partial key exposure attacks uses Coppersmith’s method of finding small roots of poly-

nomials [12] (see Section 3.2). An attacker obtains some bits of d (e.g., via side-channel

28
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attacks, see Section 2.4.2.1) and tries to construct all of d. The more realistic scenario

(and the one most partial key exposure attacks focus on) is that the attacker knows some

consecutive most significant bits (MSBs) or consecutive least significant bits (LSBs) of

it. A partial key exposure attack taking advantage of MSBs (resp. LSBs) is referred as

a known MSBs (resp. LSBs) attack.

4.1 Known Attacks

As there are two methods of generating exponents e and d for multi-power RSA, we

study each case separately.

4.1.1 Attacks when ed ≡ 1 mod (p− 1)(q − 1)

Less work has been done for this variant of multi-power RSA. In 2008, Itoh et al. [23]

showed a small private exponent attack such that N could be factored efficiently when

d < N
2−
√

2
r+1 . Later, same ideas in [23] are used in [28] to mount partial key exposure

attacks. It is shown that N can be factored efficiently when

γ ≤ 7
4(r+1) − 1

4

√

24(α+β)
r+1 − 39

(r+1)2
if MSBs or middle bits are known,

or γ ≤ 5
3(r+1) − 2

3

√

3(α+β)
r+1 − 5

(r+1)2
if LSBs are known.

Note that these attacks do not work when e and d are of full size modulo (p− 1)(q − 1)

(i.e., e, d ≈ N
2

r+1 ). We argue the validity of the known MSBs attack in [28] in Chapter

5.

4.1.2 Attacks when ed ≡ 1 mod (pr − pr−1)(q − 1)

To begin with, we discuss small private exponent attacks that do not require any knowl-

edge of the bits of d. The first one is described by Takagi in [24] where he introduced the

multi-power RSA variant. In this paper, Takagi shows that N can be factored in time

polynomial in n when

β <
1

2(r + 1)
.
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Later, this bound is improved by May [25] such that

β < max

{

r

(r + 1)2
,
(r − 1)2

(r + 1)2

}

.

Sarkar [26] improved this bound even further for r ≤ 5. His result is not given explicitly

because the function is complicated but rather he presents numerical values (see Table

4.1). More recent work is done by Lu et al. [27]. They improve the bound of Sarkar

when r ≥ 4. Their result is given explicitly as β < r(r−1)
(r+1)2

. In fact, their attack works

whenever the unknown part d̃ of d (whether it is all of d or an MSB/LSB part of it)

satisfies d̃ < N
r(r−1)

(r+1)2 . This directly implies partial key exposure attacks. Their partial

key exposure attacks are independent of the sizes of e and d.

In Table 4.1, we compare numerical values of the aforementioned bounds on the size of

d. We would like to note that for large r, multi-power RSA variant is not useful for

practical purposes since the prime factors of N get smaller for a fixed-sized N . Thus, N

can be factored more easily. Moreover, the result of [60] shows that N can be factored

efficiently when 1
r+1 fraction of the bits of p are known.

Table 4.1: Numerical comparison between the bounds on β.

bound on β

r Takagi May Sarkar Lu et al.

2 0.166 0.222 0.395 0.222
3 0.125 0.250 0.410 0.375
4 0.100 0.360 0.437 0.480
5 0.083 0.444 0.464 0.555
6 0.071 0.510 0.489 0.612

Lu et al.’s partial key exposure attacks require slightly less knowledge of the bits of d

than our new attack when e > N0.846 or d > N0.962 where the other exponent is full-

sized. Otherwise, our attack is better and requires much less knowledge about d as e or

d gets smaller. One should note that Takagi’s decryption process is efficient only when

e is small as described in [24]. Hence, small-e attacks have more practical interest.
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Figure 4.1: The relation between the sizes of e (resp. d) and the fraction of the part
of d required to be known.

4.2 A New Attack with Known LSBs

The attack basically uses partial knowledge of LSBs and works for all e (resp. d) when

the exponent d (resp. e) has full size bit length.1 More concretely, we prove the following

theorem which generalizes Sarkar’s result [26].

Theorem 4.1. Let r ≥ 2 be an integer and N = prq be a multi-power RSA modulus,

where p and q are distinct primes with the same bit size (i.e., p, q ≈ N
1

r+1 ). Suppose that

ed ≡ 1 mod φ(N) with e ≈ Nα and d ≈ Nβ. Suppose further that an attacker obtains

an LSB part d0 of d, where d0 ≥ N δ for some δ ∈ R
≥0. Then under Assumption 1,

there exists an algorithm which finds the prime factors of N in polynomial time in logN

provided that

ρ(r, β, α, δ) < 0,

where ρ is a function of r, β, α and δ.

In Figure 4.1, we show the attack regions of previous works along with our result for the

case r = 2. Light grey areas indicated by “Takagi’98”, “May’04”, “Sarkar’14” shows the

attack regions by [24], [25] and [26], respectively. The blue curves are the fixed bound of

[27] (i.e., d̃ ≈ N
2
9 ). The darker grey areas are the applicable regions of our attack.

1This rule is induced by the condition that ed ≡ 1 mod φ(N).
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Since our result in Theorem 4.1 relies on Assumption 1, it is heuristic. However, our

experiments show that this assumption holds in general (see Section 4.3). Now, we can

proceed with the proof of our main result Theorem 4.1.

Proof. (Theorem 4.1) Multi-power RSA parameters satisfy the congruence ed ≡ 1 mod

φ(N) with φ(N) = (pr − pr−1)(q − 1). This implies the equation that ed − 1 = k(pr −
pr−1)(q − 1) for some k ∈ Z. Since we know an LSB part of d, we can write this as

eMd̃+ ed0 − 1 = k(pr − pr−1)(q− 1) where d = d̃M + d0 and M is a power of 2. Hence,

we have the following polynomial

feM (x, y, z) = ed0 − 1− xN − xyr−1 + xyr−1z + xyr

carrying the root (x0, y0, z0) = (k, p, q) modulo eM . It is easy to see that |x0| < X :=

Nα+β−1, |y0| < Y := N
1

r+1 and |z0| < Z := N
1

r+1 neglecting small constants.

Let m, t1, t2 ≥ 0 and define the following shift polynomials:

gi,j,k(x, y, z) = xjykzj+t1f i
eM (x, y, z),

where i = 0, · · · ,m, j = 1, · · · ,m− i and k = j, · · · , j + 2r − 2,

gi,0,k(x, y, z) = ykzt1f i
eM (x, y, z),

where i = 0, · · · ,m and k = 0, · · · , t2.

Recall that yr0z0 = N . Hence, we replace every occurrence of yrz with N in the shift poly-

nomials. Denote new polynomials by g′i,j,k(x, y, z). Observe that choosing xyr as the lead-

ing monomial of feM , the leading monomials in g′i,j,k’s are of the form xi+jyk+ri−rlzj+t1−l,

where l = min
{

⌊k+ri
r
⌋, j + t1

}

.

Let aℓ denote the leading coefficient. Assuming gcd(aℓ, eM) = 1, we can multiply g′i,j,k’s

with the inverse a′ℓ of their corresponding leading coefficient in Z/(eM)mZ. Finally, the

shift polynomials become

hi,j,k(x, y, z) = a′ℓ · g′i,j,k(x, y, z) · (eM)m−i

which carry the root (x0, y0, z0) modulo (eM)m.



Chapter 4. Partial Key Exposure Attacks on Multi-power RSA 33

We let the coefficient vectors of hi,j,k(xX, yY, zZ) represent the basis vectors of a lattice

L. Generation of L is summarized in Algorithm 1.

Algorithm 1 Generating the Lattice L

Input: r ≥ 2; m, t1, t2 ≥ 0 and feM (x, y, z)

G,H,Ord← ∅
for i ∈ {0, 1, · · · ,m} do

for j ∈ {1, 2, · · · ,m− i} do
for k ∈ {j, j + 1, · · · , j + 2r − 2} do

Append (xjykzj+t1f i
eM , i) to G

l← min
{

⌊k+ri
r
⌋, j + t1

}

Append xi+jyk+ri−rlzj+t1−l to Ord

end for

end for

end for

for i ∈ {0, 1, · · · ,m} do
for k ∈ {0, 1, · · · , t2} do

Append (ykzj+t1f i
eM , i) to G

l← min
{

⌊k+ri
r
⌋, j + t1

}

Append xi+jyk+ri−rlzj+t1−l to Ord

end for

end for

for each element (g, i) in G do

Replace each occurrence of yrz with N in g

a′ℓ ← a−1ℓ mod eM , where aℓ is the leading coefficient of g

Append (a′ℓ · g · (eM)m−i) to H

end for

i← 1

for each polynomial h(x, y, z) in H do

Set i-th row of L to the coefficient vector of h(xX, yY, zZ) ordered w.r.t. Ord

Increment i

end for
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Note that each polynomial in H generated by Algorithm 1 introduces exactly one new

monomial, which is appended to Ord that defines the monomial ordering. Hence, the

matrix representing the lattice is lower triangular when each row is ordered with respect

to Ord. As a result, the determinant of L is the product of the diagonal entries of the

representation matrix.

det(L) =





m
∏

i=0

m−i
∏

j=1

j+2r−2
∏

k=j

Xi+jY k+ri−rl1Zj+t1−l1(eM)m−i





×
(

m
∏

i=0

t2
∏

k=0

XiY k+ri−rl2Zt1−l2(eM)m−i
)

,

where l1 = min
{

⌊k+ri
r
⌋, j + a

}

and l2 = min
{

⌊k+ri
r
⌋, a
}

. Letting sx, sy, sz and seM be

the powers of X, Y , Z and eM in det(L), respectively, and denoting the dimension of

the lattice by w, we obtain

w =
m
∑

i=0

m−i
∑

j=1

j+2r−2
∑

k=j

1 +
m
∑

i=0

t2
∑

k=0

1 =
2r − 1

2
m2 + t2m+ o(m2),

sx =
m
∑

i=0

m−i
∑

j=1

(2r − 1)(i+ j) +
m
∑

i=0

t2
∑

k=0

i =
2r − 1

3
m3 +

t

2
m2 + o(m3),

seM =
m
∑

i=0

m−i
∑

j=1

(2r − 1)(m− i) +
m
∑

i=0

t2
∑

k=0

(m− i) =
2r − 1

3
m3 +

t

2
m2 + o(m3).
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Assuming t2
r
≤ t1 ≤ m, we obtain as an asymptotic result

sy =

m
∑

i=0

m−i
∑

j=1

j+2r−2
∑

k=j

(k + ri− rl1) +

m
∑

i=0

t2
∑

k=0

(k + ri− rl2)

≈
⌊ (r−1)m+rt1

2r−1
⌋

∑

i=t1

⌊ r(i−t1)
r−1

⌋
∑

j=1

j+2r−2
∑

k=j

(k + ri− rj − rt1)

+

m
∑

i=⌊ (r−1)m+rt1
2r−1

⌋

m−i
∑

j=1

j+2r−2
∑

k=j

(k + ri− rj − rt1)

+

t1
∑

i=t1−⌊ t2
r
⌋

t2
∑

k=r(t1−i)
(k + ri− rt1) +

m
∑

i=t1

t2
∑

k=0

(k + ri− rt1)

=
1

2

(

r2m3

3
− r2m2t1 + r2mt21 −

r2t31
3

+ rm2t2

−2rmt1t2 + rt21t2 +mt22 − t1t
2
2 +

t32
3r

)

+ o(m3),

sz =
m
∑

i=0

m−i
∑

j=1

j+2r−2
∑

k=j

(j + t1 − l1) +
m
∑

i=0

t2
∑

k=0

(t1 − l2)

≈
t1
∑

i=0

m−i
∑

j=1

j+2r−2
∑

k=j

(

j + t1 −
k + ri

r

)

+

⌊ (r−1)m+rt1
2r−1

⌋
∑

i=t1

m−i
∑

j=⌊ r(i−t1)
r−1

⌋

j+2r−2
∑

k=j

(

j + t1 −
k + ri

r

)

+

t1−⌊ t2
r
⌋

∑

i=0

t2
∑

k=0

(

t1 −
k + ri

r

)

+

t1
∑

i=t1−⌊ t2
r
⌋

r(t1−i)
∑

k=0

(

t1 −
k + ri

r

)

=
1

2

(

(r − 1)2m3

3r
+ (r − 1)2m2t1 + rmt21 −

rt31
3

+ t21t2 −
t1t

2
2

r
+

t32
3r2

)

+ o(m3),

which are approximated as in [26].

Note that the simplified condition Inequality 3.2 is det(L) < (eM)wm. In our case, we

need

sx(α+ β − 1) + (sy + sz)

(

1

r + 1

)

+ (seM − wm)(α+ δ) < 0

to be satisfied. Plugging in the values for sx, sy, sz and seM , we obtain a polynomial

ρ′(r, α, β, δ) with parameters t1, t2 and m. Let t1 = τ1m and t2 = τ2m, and terms of

o(m3) contribute to an error term ǫ. Next, we take the partial derivative of ρ′ with respect

to τ1 and τ2, and find the values making the derivatives zero to obtain the maximum
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value of ρ′. Finally, for γ := β − δ, when τ1 =
1−rγ+r2(1−γ)

2r and

τ2 =
1 + r3(1− γ)− r2(1 + 2γ) + r(1− γ) + 2r

√

r2(1− γ) + r(1− 2γ) + 1− γ

2r + 2

both derivatives become zero. Plugging in these values in ρ′, a function ρ(r, α, β, δ).

When the tuple (r, α, β, δ) satisfies ρ(r, α, β, δ) < 0, Howgrave-Graham’s theorem fol-

lows. We can extract the root (k, p, q) under Assumption 1, and thus factor N in time

polynomial in logN .

Remark 4.2. We note that our definition of shift polynomials is similar to the one in [26].

The difference is that we work modulo eM instead of modulo e. Hence, the constant

coefficient of feM changes.

Corollary 4.3. Equating M = 1 (i.e., δ = 0), we obtain the result of Sarkar [26] as a

corollary of Theorem 4.1 where no knowledge about the bits of d is required.

Table 4.2: Numerical values satisfying ρ < 0 for different r and α values where β = 1.

r
smallest δ value satisfying

ρ(r) < 0 for α = 1
smallest δ value satisfying

ρ(r) < 0 for α = 0

2 0.828 0.362

3 0.798 0.344

4 0.750 0.314

5 0.703 0.285

6 0.662 0.259

7 0.625 0.237

Unfortunately, the exact expression of ρ is complicated. Thus, in Table 4.2, we provide

some numerical values for δ which yields ρ < 0 when β is fixed to 1. We remind that for

r = 2 new attack regions are given in Table 4.1 when either d or e is full-sized.

4.3 Experimental Results

In this section, we provide various experimental results. In all of our experiments, we

fix d to be full-sized (i.e., β = 1) which is mostly the case in real-life applications. The

values for p, q and d are chosen randomly (or d is the inverse of 216 + 1 modulo φ(N)).

The experiments are performed on Sage 6.5 running on Ubuntu 14.04 LTS with Intel

Core i7-3770 CPU at 3.40GHz and 16GB RAM.
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Our results are given in Table 4.3 and Table 4.4. In all of our experiments, Gröbner basis

computation yields a polynomial of the form y− p giving the factorization of N . For the

case when α = β = 1 (which is illustrated in Table 4.3), we would like to highlight that

our result in some examples is better than the theoretical bound δ ≥ 0.828. However,

when e is chosen small (e.g., e = 216 + 1), the modulus eM becomes very small when

compared to the case α = β = 1. Therefore, the low order terms ignored to simplify the

condition to det(L) < (eM)wm have much higher effect in this case. Thus, the results

are a little bit worse than the best possible bound of Theorem 4.1.

Table 4.3: Experimental results for α = β = 1. n = 2048 bits for the last row and
n = 1024 bits for the rest.

r m t1 t2 w δ
LLL time
(secs)

Gröbner Basis
time (secs)

2 6 4 7 119 0.870 1930.21 3.00
2 7 4 8 156 0.860 6517.26 67.99
2 8 4 7 180 0.850 19619.96 1227.18
2 8 5 9 198 0.835 28684.34 358.80
2 9 5 9 235 0.830 63748.97 635.33
2 9 5 10 245 0.823 67480.18 149.56
3 7 4 9 220 0.952 26671.68 7358.66

2 8 5 9 198 0.840 90981.76 2246.77

Table 4.4: Experimental results for e = 216 +1, β = 1. n = 2048 bits for the last two
rows and n = 1024 bits for the rest.

r m t1 t2 w δ
LLL time
(secs)

Gröbner Basis
time (secs)

2 8 3 2 135 0.520 21234.57 4114.00
2 8 3 2 135 0.510 19082.57 4280.77
2 9 3 3 175 0.500 48950.79 9134.06
2 10 3 2 198 0.485 84090.70 15927.35
3 9 3 3 265 0.510 148030.34 56230.82

2 10 3 2 198 0.500 203293.58 45573.57
2 10 3 2 198 0.490 185964.22 40817.77

We present a numerical example as well. Let N = p2q for

p = 4851381352638300223177429586853498256903097882540048

525448641952774977197424807103289427210525603885213,

q = 5367862136571034162844637067723677810733386174980963

896793957719202848754570727653059410176088408971627.
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Also, let e, d be as follows

e = 86472774791379904562530989436203277712168664790504314

668231179206777291180215735981601204480915666501181

321356983959223368812264279920170244935605591454813

974523727400903276305268091865997652248594608213718

081792491503496741281718035462447740811075452185332

643454734435084358556686937611936588923125644164327,

d = 58143026404937222258552087067167738089154589779014286

742029436867422121112158929384437596107391112752311

216033758409707420815706778951944015637478411688055

402400135856244505748434331100670364698856619320457

527030608512508567651511620177295376290964564916189

171109750872900475420111865338456120983693881910007.

Then, when 845 LSBs of d are given (δ = 0.823), p, q can be found using our attack. In

this case, N is 1024-bits, and e, d are both 1023-bits.



Chapter 5

Conclusion and Discussions

In this thesis, we study multi-power RSA where N = prq for r ≥ 2. First, we revisit the

RSA cryptosystem and some of its cryptanalytic aspects. Later, Coppersmith’s method

of finding small roots of polynomials is discussed [12]. Using these preliminaries, we

show a new partial key exposure attack on multi-power RSA that takes advantage of

known LSBs. Our result in Theorem 4.1 generalizes the work of Sarkar [26]. Moreover,

we provide experimental results justifying our claims. Our attack works even in the

case when e, d ≈ N . Furthermore, our attack has the advantage that it requires less

knowledge about d when e is small. This has more practical interest because in most of

the practical applications, e = 216+1 is chosen for efficiency reasons. Recall that e must

be small in order for multi-power RSA to be efficient [24].

One may wonder why our attack is not directly applicable to known MSBs case. Suppose

that we know an MSB part d0 of d. Then, we obtain the equation

ed0 + ed̃− 1 = k(pr − pr−1)(q − 1),

where d̃ represents the unknown part of d. Considering this equation as a polynomial,

we get

F (w, x, y, z) = 1− ed0 − ew + x(N − yr − yr−1z + yr−1).

Now e, N or ed0 are possible choices of moduli. The case e is studied in [26] where one

cannot benefit from partial knowledge of d as it vanishes. If N is chosen as the modulus,

then the trick of replacing each term yrz with N and finding its inverse cannot be
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applied. That leaves us with the option to choose ed0 as the modulus. This case actually

corresponds to finding a small root of integer equations [14], not modular equations [13].

Observe that reducing F modulo ed0 does not eliminate any variable. In particular, Fed0

and F have the same set of monomials. Hence, the polynomials derived from LLL may

just be those of the form F · gi for nonzero polynomials gi not carrying the desired root.

More concretely, the attacker does not obtain any additional useful information at all

although LLL-reduced polynomials carry the root since they have the factor F .

For a recent work, one may see Coron’s works [61, 62] about methods to ensure indepen-

dence between the initial polynomial F and the polynomials derived after LLL reduction

(this independence is also ensured in Coppersmith’s method [14]). Unfortunately, the

tricks used in this work cannot be directly applied together with Coron’s method.

This issue raises questions about the validity of known MSBs attack shown in [28]. The

authors do not specify any methodology guaranteeing the independence aforementioned.

Their experiments for this case are very far away from the new attack region described

by Theorem 1 in their paper. Moreover, the authors also state that in some experiments,

they just verified that the LLL-reduced polynomials contain the root. As we explained

earlier, this does not have any implication for an attacker to be able to find the root.

In some cases, we successfully show experimental results that are better than the the-

oretical bound. This may happen due to the fact that LLL algorithm does not use all

the rows in the representation matrix and concentrates on a submatrix. Thus, a further

study option may be investigating sublattices of the original lattice to improve the theo-

retical bound. Actually, this is first done in [22] by introducing geometrically progressive

matrices. However, this is a hard task because the lattice will not be of full rank in this

case and calculating the determinant gets complicated. Thus, one needs to develop new

strategies for parametric calculation of the determinant of the lattice.

One clear extension of attacks on multi-power RSA could be investigating attacks when

the modulus has the form N = prqs for r, s ≥ 1. If one can show a result for any r and s

that reaches the best known bounds on different RSA variants, the designers can have a

better idea on how to balance between efficiency and security (for a study on this balance

problem, see [63]). The final step would be to combine all these attacks by considering
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N = pr1pr2 · · · prs where s ≥ 2 and ri ≥ 1 for 1 ≤ i ≤ s. Very recently, a method for

factoring N = prqs for large r and s is studied in [64].

Another further study option could be to improve upon the works of Coron [61, 62] for

finding integer roots of polynomials. As mentioned, the tricks used in this work (and

also in similar works) are not directly applicable with Coron’s methods. Finding a more

flexible strategy for ensuring the independence discussed earlier would result in better

known MSBs attacks on different RSA variants (including the standard RSA).

The most crucial part of attacks using Coppersmith’s methods is the lattice reduction.

Currently, the LLL algorithm is used for this purpose. If one can find a new efficient

algorithm for finding short vectors in a lattice or improve the LLL algorithm, this would

have great implications in not only the attacks discussed in this work but also in various

areas in Mathematics.
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