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Abstract

DC-DC converters are one of the main components of any system. Since analog and

digital sub-modules in SoC require different supply voltages, large number of DC-DC

converter are used to provide supply voltages for each module from the global input

voltage source.

DC-DC converters are divided into two main types; linear and switching regulators. As

the drop between the global input source and required voltage increases, linear regula-

tors suffer from high losses and consequently achieve low efficiency compared to switching

regulators. Since integration is one of the main objectives, switched capacitor DC-DC

converters are more preferable compared inductor based regulators. SC DC-DC regula-

tors eliminate the bulky and costly inductor and can be integrated fully on-chip to be

used in sensor networks, energy harvesters and bio-sensors.

In this dissertation, a switched capacitor DC-DC converter, which can directly convert

input voltage of 3.3V to five different output voltages, is presented. Different design

techniques are used in the design to improve efficiency over a large output current range,

reduce output ripple, increase response time and reduce the overall cost.

To improve efficiency, the converter uses a combination of frequency, interleaving and

switch width scaling techniques in a feedback loop that respond to the output load and

current conditions. The loop consists of a four-phase clock generator, a clock divider,

high speed dynamic comparators and a decision making unit. In order to reduce the

output ripple, the converter uses four interleavers and frequency scaling. A decision

making circuit is included to switch the converter into high response speed mode. Off-

chip components were eliminated to minimize the cost of the design.



Frekansı, Serpiştirmeyi ve Anahtar Boyutunu Ayarlama Tekniklerini

Kullanan Geniş Akım Aralığına Sahip Anahtarlamalı Kapasitör

DA-DA Çeviricisi

Shady A.Mohammed

Öz

DA/DA çeviriciler bir sistemin ana bileşenlerinden biridir. Çip üzerindeki sistemlerdeki

analog ve dijital alt modüller farklı besleme gerilimleri gerektirdiğinden, bir çok DA/DA

çeviricileri ana giriş gerilim kaynağından her bir modüle besleme gerilimi sağlamak için

kullanıldı. DA/DA çeviricileri iki ana çeşide ayrılır; doğrusal ve anahtarlama regülatörü.

Ana giriş gerilim kaynağı ve gerekli gerilim arasındaki fark arttıkça, doğrusal regülatör-

ler yüksek kayıptan zarar görür ve anahtarlama regülatörleriyle kıyaslandığında sonuç

olarak düşük verim elde edilir. Entegrasyon ana hedeflerden biri olduğu için; anahtar

kapasitör DA/DA çeviricileri, regülatör temelli indüktör ile kıyaslandığında tercih edilir.

Anahtar kapasitör DA/DA regülatörleri hacimli ve masraflı indüktörü tasfiye eder ve

sensör ağlarında, enerji üreticilerde ve biyosensörlerde kullanılmak kullanılmak üzere çip

üzerine tamamen entegre edilebilir. Bu tezde, 3.3V giriş gerilimini direkt olarak beş

farklı çıkış gerilimine çevirebilen anahtar kapasitör DA/DA regülatörleri tanıtıldı. Çıkış

akımının aralık değerini arttırmak, çıkış dalgalanmalarını azaltmak, tepki süresini art-

tırmak ve toplam maliyeti azaltmak için tasarım kısmında değişik tasarım teknikleri

kullanıldı. Verimi arttırmak için, dönüştürücü frekansın, serpiştirmenin ve çıkış yükü

ce akım durumlarına yanıt veren geribesleme döngüsündeki anahtar boyutu ölçekleme

tekniklerinin kombinasyonunu kullanır. Devrede dört fazlı saat üreteci, saat pergeli, yük-

sek hızlı dinamik komparatör ve karar verme birimi vardır. Çıkış dalgalanmalarını azalt-

mak için, komparatör 4 serpiştiriciyi ve frekans ölçeklendirmeyi kullanır. Dönüştürücüyü

yüksek tepki hızı moduna çevirmek için bir karar verme devresi dahil edilmiştir. Çip üz-

erinde olmayan bileşenler tasarımın maliyetini azaltmak için çıkartılmıştır.
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Chapter 1

Introduction

1.1 Power management for modern Soc

Since portable electronic devices are getting smaller and smaller, electronics industry

have led to the development of more compact and higher performance electronic sys-

tems. These devices are powered through portable batteries. These portable devices

consist of a variety of different circuits and blocks [1]. Each block requires a different

voltage and current supply as shown in Figure 1.1. Local power supply for these blocks

can be generated and distributed by DC-DC converters. The main role of these convert-

ers are to provide constant and clean output voltages to the electronic circuit. DC-DC

converters are divided into two main categories; linear regulators and switching convert-

ers. Moreover, switched converters are divided to inductor based converters and switched

capacitor converters [2].

Figure 1.1: Typical circuit blocks in Soc and they are powered.

1



Chapter 1. Introduction 2

Inductor-based DC-DC converters are used to supply high power consumption blocks

such as power amplifiers in order to get high power efficiency. Since these efficient

converters have large area and are expensive, it is not convenient to have these bulky-

converters for each block and circuit. Linear regulators are used for most of the blocks due

to its small size and ease of integration. Linear regulators are efficient when the dropout

voltage is small. If a large number of linear regulators are used as on-chip regulators

and since the efficiency of linear regulators decrease linearly with the increase of dropout

voltage, the collective power loss in them may be significant [1]. For this reason, switched

capacitor DC-DC converters are the more power efficient all integrated alternative which

eliminates the need to use bulky inductor, consume a reasonable amount of area and

have high efficiency in a broad range of output voltages. Moreover SC converters can

generate higher, equal and lower output voltages compared to the input source [2].

1.2 Thesis Organization

The thesis is organized as follows. Basic background theory of the DC-DC converters fo-

cusing on switched capacitor converters and its loss mechanisms are explained in Chapter

2. Explanation of the proposed design and its implementation is described in Chapter 3.

Layout issues faced and solutions are described in Chapter 4. Measurement results are

given in Chapter 5. Finally, conclusions are given in Chapter 6.



Chapter 2

Background Theories

2.1 Classification of DC-DC converters

2.1.1 Linear Regulators

Linear regulators are used to provide voltage levels to sub- blocks by regulating the

output voltage using a feedback loop. These regulators are used due to advantages

of low area and cost, and they enable the PMIC to be integrated on the same chip [2].

However, linear regulators, as shown in Figure 2.1, suffer from efficiency limitations when

the dropout voltage is quite large. The use of these linear regulators is only efficient for

lower dropout voltages.

Figure 2.1: Typical circuit diagram of low-dropout regulators

3



Chapter 2. Background Theories 4

2.1.2 Inductor-Based Switching DC-DC converters.

Off-chip inductor-based converters, shown in Figure 2.2, are mainly used to provide high

output current with high efficiency. This kind of converters can generate different levels

of DC voltages. This can be done by filtering a pulse-width modulated signal by an LC

filter [1]. As explained earlier, Although Inductor-based switching DC-DC converters are

energy efficient, they are expensive and consume large area. Hence, most of the low cost

applications use linear regulators as DC-DC converters due to minimum area and cost.

Figure 2.2: Typical circuit diagram of Inductor-Based Converters.
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2.1.3 Switched capacitor DC-DC converters

Switched capacitor (SC) DC-DC converters, as shown in Figure 2.3, consist only of capac-

itors and switches. This enables the SC converter to be easily integrated on-chip. This

kind of converters are like Inductor-based converters, they can provide different DC volt-

age levels. These levels can be generated according to the configuration of switches and

capacitors. Output voltage can be equal, higher, lower or opposite in polarity compared

to the voltage source as in Figure 2.3a, b, c and Figure 2.3d respectively [1].

Figure 2.3: Switched Capacitor converters (a) 1-to-1 Topology (b) 2-to-1 Topology
(c) 1-to-2 Topology (d) 1-to-(-1) Topology

With continuous CMOS technology scaling, SC DC-DC converters gain more attention

since the switching frequency can be increased to reduce the total area of SC convert-

ers without degrading efficiency. This can be achieved because due to CMOS scaling,

capacitance per unit area increases and the on-resistance per unit area decreases [1].

Table 2.1 summarizes the advantages and disadvantages of different DC-DC converter

types [2].
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Table 2.1: Summary for different types of DC-DC converters

Converter
Types Advantages Disadvantages

Linear
converters

• High efficiency for low
dropout voltages.

• No output ripples.

• Smaller size and easy to
be integrated.

• Simple design.

• Poor efficiency for high
dropout.

• Can provide output for
only lower than the in-
put voltage.

Inductor-
Based
converter

• Very high efficiency.

• Complex design.

• Not easily integrated

• Bigger size.

SC con-
verters

• Easy to be integrated.

• Higher Efficiency than
linear regulators for high
dropout.

• Can provide higher and
opposite voltages.

• Only discrete number of
output are possible at
the peak Efficiency.

• Slightly Less Efficient
than inductor based
converters.

• Low output current
compared to Inductor
based converter.
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2.2 Basic operation of switched capacitor Converters

The switches in the circuit shown in Figure 2.4, are operated by two non-overlapping

clock signals, Φ1 and Φ2. By turning them on and off consecutively, the configuration of

the flying capacitors changes.

Figure 2.4: A 1:1 SC converter toplogy

During the first half period Φ1, the battery charges the flying capacitor Cfly through

the first switch. Similarly, during the next half period Φ2 the second switch turns on

and Cfly discharges into the load capacitor CL. The charging and discharging time

depends on the on-resistance of the switch, a small amount of voltage is dropped across

the switch-on resistance. If it is assumed that the switch on-resistance is negligible, then

the output voltage at no-load condition VNL will be equal to the input battery voltage

and the SC converter topology shown in Figure 2.4 is called 1-1 SC topology. For the real

implementation, SC converters have some current load and switch on-resistance (Ron) is

not negligible. Due to these load and switch on-resistances, output voltage VL of the SC

converter drops below the no-load output voltage VNL. The difference between the VNL
and VL is known as dropout voltage and is given by ∆V = VNL − VL [1]. The linear

efficiency related with the SC converter is given by:

ηLIN =
( VL
VNL

)
(2.1)

Equation 2.1 shows that the efficiency degrades as VL gets smaller compared to VNL.

Consequently, the converter has increased losses due to higher switch on-resistance Ron

and parasitic capacitances. In order to have good efficiency, different SC topologies need

to be implemented that can achieve small dropout voltage ∆V for different voltage ratios

and current loads. In this dissertation, 1/2, 1/3, 2/3, 2/5 and 2/7 topologies are designed

in order to have a wide range of voltages with maximum efficiency values achieved.
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2.3 Loss mechanism in switched capacitor Converters

2.3.1 Conduction loss [charge transfer loss]

As was described before, the maximum attainable efficiency is limited by the value of VL
given in Equation 2.1. As the output voltage VL drops below the no-load voltage VNL,

the maximum attainable efficiency decreases linearly in the same manner as a linear

regulator. This loss is due to the charging and discharging of the capacitors through the

on-resistance of the switch, Equation 2.2.

RON =
L

Kw(VGS − Vt)
(2.2)

When charge flows from battery to the load, some of it is dissipated on the switch

resistance. The amount of the dissipated energy is given in Equation 2.3. Due to this

loss, a lower value of VL will be generated and the efficiency will drop. This is one of

the major drawbacks of SC converters and need to be addressed carefully.

PRSW = I2load.RON (2.3)

2.3.2 Bottom plate and parasitic capacitor loss.

The second contributor of efficiency loss is the bottom-plate capacitors. The effect of

the bottom-plate capacitors appear because they are being charged and discharged ev-

ery clock cycle. It especially appears when MOS capacitors are used as transfer fly

capacitors. For N-well capacitors, this parasitic capacitor is formed between the N-well

and P-substrate due to the reverse biases diode junction capacitors. It scales with the

capacitor dimensions, technology and the layout. If CBP represent the bottom plate

capacitance of the flying transfer capacitance Cfly, then

CBP = α.Cfly (2.4)

where α is a technology depended constant and the power loss associated with bottom

plate capacitance is given as [1]:

PBP = fsw.
∑
i

CBP,i.V
2
bp,i (2.5)
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where fsw is switching frequency, Cbp is bottom plate capacitance and Vbp is the maxi-

mum voltage swing across bottom plate capacitance.

Consider the SC 1/2 topology in Figure 2.5. During phase 1, all switches connected to

Φ1 are shorted and the two capacitors are charged to half of the battery voltage. In

the next phase, the switches connected to Φ2 are closed and the fly capacitors transfer

charge to the output capacitor CL. Bottom-plate capacitor of the upper fly capacitor is

also charged to half the battery voltage in Φ1 and the charges in it is wasted in Φ2 as it

is connected to ground from both terminals. Consequently, this energy loss can result in

notable efficiency degradation [2].

Figure 2.5: A 1:2 SC Topology with bottom plate capacitance

2.3.3 Gate-drive loss

When transistors are used as switches, the gate and parasitic capacitors associated with

them are charged and discharged to clock levels every cycle. Power consumed in this

process is known as switching power and it is given by

PCW = fsw.
∑
i

CMOS .V
2
i (2.6)

Where CMOS represents the MOSFET parasitic capacitances given in Equation 2.7 and

shown in Figure 2.6 . Vi is the maximum voltage swing across the transistor.

RON =
ε.w.L

tox
(2.7)
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Figure 2.6: MOS transistor parasitics capacitances [2]

Increasing transistor width will increase the parasitic capacitances associated with the

transistor. On the other hand, increasing the transistor width will decrease on-resistance

of the transistor (RON). Hence, there is an optimum sizing for each switch that can

achieve the minimum possible parasitic capacitance and minimum on-resistance [2].

2.3.4 Control circuit loss

The SC core topologies will be surrounded with control circuitry in order to achieve con-

stant voltage regulation. These control circuitry such as comparators, digital blocks and

reference voltage generators must be insensitive to process, supply voltage and tempera-

ture variations. These circuits usually require constant energy for their operations. The

power lost in the control circuitry is especially a concern when delivering ultra-low load

power levels [1]. The power lost in every switching cycle can be broken into switching

and leakage power losses and is given by Equation 2.8

PCNTRL = CCONT .V
2
BAT .fsw + Ileak.VBAT (2.8)

where CCONT is the equivalent capacitance switched in the control circuitry per cycle,

Ileak is the total leakage current in the control circuitry.
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The overall efficiency, given by equation 2.9 and taking into account all the above men-

tioned losses, can be expressed as the ratio of the power delivered to the load to the sum

of all the power losses and the power delivered to the load.

η =
PL

PL + PCsw + PRsw + Pbp + Pcntrl
(2.9)

Here, PL is the total output power, PCsw is the switching power loss due to gate capac-

itance, PRsw is the switching power loss due to on-resistance, Pbp is the bottom plate

capacitance power loss and Pcntrl is the control circuitry power loss.

2.3.5 Output Ripple

SC DC-DC converters suffer from output ripple. Since many electronic circuits are volt-

age sensitive, they need a clean and stable voltage supply [2]. Therefore, it is important

to reduce the output ripple as much as possible. Additionally, output ripple causes

additional power loss due to charging and discharging of the capacitors with the rip-

ple amount. Ripple can be reduced by increasing the switching frequency, increasing

the fly capacitor amount, increasing the output capacitance or decreasing the parasitic

resistance RESR.

Interleaving is another approach that can be used to decrease the output ripple. Since

the flying capacitors are charged/discharged through a resistance, RESR, the charge/dis-

charge glitches may be significant. These glitches and the abrupt charge transfer to the

load capacitor are the main causes of the output ripple. The main idea of interleaving

is to have more than one working core connected in parallel with shifted clocks feeding

into them. For example, a 4-way interleaving uses four different phases (0o, 90o, 180o

and 270o) of the input clock. With interleaving, fly capacitor can be divided into smaller

components and charge is transferred to the output in small portions at each phase. This

causes a smaller but increased frequency ripple at the output.

In normal operation of SC converter, during phase-One, flying capacitors are charged by

the battery. During phase-Two, flying capacitors are discharged into output capacitance

CL. If high current is drained at the output, the DC-DC converter cannot provide enough

charge to the output to keep the output voltage constant. In order to address this issue,

either bigger flying capacitance need to be used or the switching frequency need to be

increased. For lower output ripple, interleaving technique can be implemented or the

load capacitor can be increased. This way, output capacitance CL discharge slowly as a

result of higher capacity, which give the flying capacitance time to charge it back and

keep the output voltage nearly constant with low ripple [2] [3].
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2.3.6 Summary of losses

As mentioned in the previous sections, SC DC-DC converters suffer from many kinds

of losses. If we substitute the MOSFET parasitic capacitance (Equation 2.7) and on-

resistance of the switch (Equation 2.2) in Equation 2.6 and Equation 2.3 respectively, we

see that the transistor width (w) and the switching frequency(fSW) are the main factors

in determining the power loss and ripple in the SC DC-DC converters as shown in Table

2.2 .

Increasing switch width will increase the gate parasitic capacitance but will decrease the

on-resistance of the switch. Likewise, increasing the switching frequency will decrease

the output ripple, but at the same time increase the bottom plate losses. Consequently,

there is an optimum width and switching frequency that give minimum losses and optimal

ripple amplitude.

Table 2.2: Summary for different types voltage control techniques

Conduction Loss
PRsw = I2load.

L
Kw(VGS−Vt)

Bottom Plate Loss
Pbp = fsw.

∑
iCBP,i.V

2
bp,i

Gate Drive Loss
PCsw = fsw.

∑
i
ε.wi.L
tox

.V 2
i

Output Ripples(OR)
O.R. α 1

fSW
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2.4 Control Techniques

Various techniques are used to control the operation of SC DC-DC converters. These

techniques include changing parameters such as switching frequency, pulse width, charge

transfer capacitor size [2] and switch sizes according to the output current requirements

using a lookup table [4]. Some of the important controlling schemes are explained below.

2.4.1 Pulse frequency modulation (PFM) technique

Pulse frequency modulation (PFM) technique is one of the most popular techniques

used to control high performance SC DC-DC converters to output a desired voltage

level. High efficiency can be achieved over a wide load current range since the bottom-

plate and control losses scale with the switching frequency (fsw) as shown in Equation

2.5, 2.6 and 2.8.

The PFM consists of dynamic latched comparators and a resistance divider at the output

to provide a feedback voltage as shown in Figure 2.7. The basic operation principle of the

PFM technique is as follows. At the rising Edge clock, the dynamic latched comparator

compares the feedback voltage (VFB), which is a scaled version of the output voltage,

with the given reference (VREF ) as shown in Figure 2.8. When the output voltage (VL)

falls below the defined reference voltage (VREF ), the dynamic latched comparator permits

the clock to be connected to the SC converter to charge its capacitors. When the output

voltage (VL) goes above the reference voltage (VREF ), the comparator blocks the clock

connection to maintain the desired output voltage. In this manner, the feedback voltage

can be regulated at a voltage near the reference voltage [5] [6].

Figure 2.7: Voltage regulation using frequency pulse modulation

The drawback of this method is the large output ripple voltage especially at light output

load condition. Since the flying capacitor is relatively large compared to the amount of

charge needed to supply the required output load current, the output current ends up
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being large. This large flying capacitor delivers large amounts of charge to the output

every cycle, which makes the output voltage overshoot as shown in Figure 2.9 [1].

Figure 2.8: Basic Operation of frequency pulse modulation

Figure 2.9: Overshoot due to small load and relatively large flying capacitor

2.4.2 Switch width modulation technique

If the switching frequency is fixed, the amount of charge delivered to the load can be

controlled by either the capacitor or switch size [1]. In slow switching regime, switches

have enough time to charge the flying capacitors so the limitation of charge transferring

from the input to the output comes from the flying capacitor sizes and the amount of

charge that can be stored in them. In fast switching regime, there is not enough time

to deliver the charge to the load. This limitation is due to the switch conductance.

Increasing or decreasing the width of the transistor can help controlling the amount of

charges that can be delivered to the load [7, 8].

The switch width modulation technique consists of multiple switches connected in parallel

as shown in Figure 2.10 and controlled by a decision making unit which is usually a look

up table [4]. The main disadvantage of switch width modulation is that, even though the

sizes of switches are scaled with the load amount, the bottom plate parasitic capacitor

does not scale with change in load current, therefore the losses stay the same. In addition,

it is difficult to have an acceptable efficiency over a large load current range by only

controlling the switch widths [1].

2.4.3 Switch width modulation technique

As mentioned in section 2.4.2, capacitor size dominates the losses in the slow switching

regime. Flying capacitor modulation is similar to switch width modulation. With this
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Figure 2.10: Voltage regulation using switch and capacitor modulation

technique, the amount of capacitance that takes part in the charging process is changed

according to the output load current as shown in Figure 2.10. The advantage of this

technique is that by scaling the capacitor size, the bottom plate capacitor is also scaled.

This in return decreases the losses of the switched capacitor core. However, as in the

switch width modulation case, it is difficult to have acceptable efficiency over a wide load

current range only by controlling the capacitor size [1].

Table 2.3 summarizes the advantages and disadvantages of different control techniques

[2].
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Table 2.3: Summary for different types voltage control techniques.

Control Technique Advantages Disadvantages

Frequency pulse
modulation

• Ease of imple-
mentation.

• large peak-to-peak output
ripple voltage especially at
the light load condition.

• High power consumption of
the comparator as it works
at fast clock.

Switch width modu-
lation

• Ease of imple-
mentation.

• Switching losses is higher at
smaller loads due to con-
stant frequency.

• Optimum efficiency is not
achieved due to changing
pulse width.

Capacitor modula-
tion

• Bottom plate
parasitic capac-
itance losses
reduce at
smaller load
currents.

• Requires more complicated
structure of charge transfer
capacitors.



Chapter 3

Implementation of Switched

Capacitor DC-DC Converter

Chapter two provided the advantages and disadvantages of switched capacitor regulators

and their basic operation. Moreover, it showed the aspects of losses that the SC regulator

suffers and how to minimize them. Finally, it showed various kinds of control techniques

that were commonly used recently in the literature to achieve maximum possible effi-

ciency. This chapter focuses on the design of a fully integrated all-CMOS SC DC-DC

regulator to provide a wide range of output voltages from 0.94 V to 2.2V using a 3.3 V

input supply. This converter has five different gain configurations and can provide output

load current in the range of 20uA - 4.3mA with high efficiency, therefore it is suitable for

integration with ultra-low voltage (UVL) and ultra-low power (UVP) applications such

as bio-sensors and sensor networks. The proposed design uses a feedback control loop to

control and improve the overall power efficiency. This loop uses frequency scaling, switch

width scaling techniques and reduces the number of interleaver stages as needed.

17
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3.1 Architecture of the converter

The proposed architecture is shown in Figure 3.1. The design consists of multi-gain

all-CMOS core converter and a feedback control loop. The loop comprises of 2-dymanic

latched comparators, a frequency divider, a 4-phase non overlapping clock generator, a

decision making unit and a reference voltage generator. The converter reaches its steady

state when Equation 3.1 is achieved.

Vth1 < VL < Vth2 (3.1)

Figure 3.1: Voltage regulation using switch and capacitor modulation

3.2 Multi-gain switched capacitor converter.

The switched capacitor core is designed to support a wide range of output voltages. 1/2,

2/3, 1/3, 2/5 and 2/7 are the five gain configurations combined in Figure 3.2. Gain

topology is set by gain selection logic controlled manually by the user. Once the gain

value is set, switches and capacitances of the core converter change their orientations

with the settings given in Table 3.2. After the gain topology is set, when the converter is
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started to be clocked, it switches between common phase and gain phase. With switching

between two phases, transfer of charges from the input to the output is done by way of

the flying capacitances. Table 3.1 shows each of the switches and in what setting and

phase they are activated.

Figure 3.2: Proposed SC topologies combined
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Table 3.1: Switches and its phases

SW phase SW phase

1 Φ1 3 Φ2 [2/7,2/5,1/2,1/3]

2 Φ2 4 Φ1 [2/3, 1/2]

7 ON all except 1/3 9
Φ1 [2/5,2/3,1/2,1/3]

8 Φ2 [2/7, 2/5, 1/2, 1/3] 10 Φ2 [2/7,2/3,1/2,1/3]

13 Φ2 [2/7, 1/2, 2/3, 1/3] 15 Φ1 [2/7,2/5,1/2,2/3]

14 Φ2 [2/5, 1/2, 1/3] 16 Φ1 [2/7,2/3,1/2]

19 Φ2 [2/7, 1/2, 2/3, 1/3] 20 Φ1 [2/7,2/3,1/2,1/3]

5 Φ1 [2/7, 2/5, 1/3] φ
[2/3] 6 Φ1 [2/3,1/2,1/3]

11 Φ1 [2/5, 1/2, 2/3, 1/3] 12 Φ1 [2/7] φ2 [2/5]

17 Φ1 [1/3] φ2 [2/7, 2/3] 18 Φ2 [1/2,1/3]
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Table 3.2: Core-topologies and phase-illustration
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3.2.1 Switch type selection

The choice of using NMOS or PMOS switches depends on the switch location in the

core converter [2]. The NMOS transistor is preferred if it is connected to ground due to

its ability as a good pull down device and vice versa for the PMOS. Moreover, NMOS

is preferred over PMOS because it’s high mobility and smaller size for the same on-

resistance. If a switch is neither connected to ground nor VDD, it is preferred to be

implemented as a pass-gate as shown in Figure 3.3.

Figure 3.3: Proposed SC core topology implemented in CMOS

3.2.2 Capacitor selection

Choosing which capacitance to use, depends on two main properties; capacitance per

unit area and bottom-plate capacitance (α) [2] [7] [5]. There are three popular types of

capacitors, which are shown in Table 3.3.



Chapter 3. Implementation of Switched Capacitor DC-DC Converter 24

Table 3.3: Summary of the possible capacitances used in SC DC-DC converter [2]

Capacitor type Features

MOM capacitance

• MOM capacitance is formed from regular metal
layers.

• Does not require additional mask or extra pro-
cess.

• Capacitance per unit area 1.5 fF/um2

• Bottom plate parasitic capacitance (α) is 5 to
10% of the whole capacitance.

MOM capacitance

• MiM capacitance is formed by two metal layers
with a thin dielectric layer between them. This
layer has very high dielectric constant enabling
a better capacitance density.

• It requires additional masks and process steps.

• They are built far from the substrate to reduce
the bottom plate capacitance.

• Capacitance per unit area 5 fF/um2

• Bottom plate parasitic capacitance (α) is less
than 1% of the whole capacitance.

MOS Capacitance.

• MOS capacitance is implemented using transis-
tor’s gate-oxide capacitor. The gate dielectric
has the highest dielectric which enable a better
capacitance density.

• It does not require any additional masks or pro-
cess steps.

• They are built far from the substrate to reduce
the bottom plate capacitance.

• Capacitance per unit area 10 fF/um2

• Bottom plate parasitic capacitance (α) is 5 to
10% of the whole capacitance.
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MOS Capacitance is chosen to be implemented due to its high capacitance per unit area

and because it does not require any extra mask or process. Normal CMOS transistor has

a diode between drain/source and the substrate, as shown in Figure 3.4. This diode is off

and acts as bottom plate capacitor. Using triple well CMOS-transistor as a capacitor, as

shown in Figure 3.5, will reduce its bottom plate capacitance. The deep N-well CMOS

transistor will add other diodes in series with the pre-existing diode, reducing the total

amount of parasitic capacitance.

Figure 3.4: Conventional NMOS transistor cross-section showing bottom plate ca-
pacitor.

Figure 3.5: Deep NMOS transistor cross-section showing bottom plate capacitor.
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3.3 Feedback control loop

Controlling the converter for high efficiency using only one parameter is difficult, espe-

cially if the converter supplies a wide range of output load current values. In order to

keep the efficiency high in this wide range, a feedback control that uses frequency scaling

is used as a main control scheme. Additionally, the number of interleavers are scaled at

very low current loads and switch width scaling is used.

The basic operation of these control schemes is as follows; Firstly, two threshold voltages

are generated (VTH1 and VTH2) to be used as references that the output voltage of the

converter is compared to. When the converter initially starts, all the cores work with

minimum switch width and the decision making unit gradually increases the frequency

until the output voltage reaches the minimum threshold voltage (VTH1). When the

output voltage crosses (VTH1), the converter keeps the frequency constant until it drops

below (VTH1) or it crosses (VTH2). In these cases, it increases or decreases the frequency

respectively. This way, the comparator tries to maintain a steady state frequency and

output voltage by measuring output voltage and keeping it between (VTH1) and (VTH2).

At low-output load currents, the decision making unit decreases the frequency until it

reaches minimum frequency. If the (VL) is still bigger that (VTH2), the decision making

unit starts turning off interleavers until the steady state output voltage is achieved in

equation 3.1 or only one interleaver is left operating. Conversely, at high-output load

currents, the decision making unit starts increasing the frequency until it reaches its

maximum. If (VL) is still smaller than (VTH1), the DMU starts to scale the switch sizes

up until the steady state condition in equation 3.1 is achieved or maximum switch size

is achieved. When the load current value jumps from high to low or from low to high

suddenly, the opposite of the procedure explained above is followed.

3.3.1 Frequency Scaling and frequency divider.

The nominal clock input to the converter was chosen to be 12 MHz. This clock value is

not suitable for all the current loads since the switching frequency with high efficiency

is directly proportional to the output current load as shown in equation 3.2 [4]. A

frequency divider as shown in Figure 3.6 is used to scale the frequency that goes into

the non-overlapping clock generator block. Frequency divider takes in the external clock

and divides it into seven different clocks and the working/output clock is selected by the

decision making unit according to the control unit decision as explained above.

IL = 4Cfly∆fsw (3.2)



Chapter 3. Implementation of Switched Capacitor DC-DC Converter 27

Figure 3.6: Proposed frequency divider.

Frequency division is achieved by seven cascaded stages of divide-by-2 circuits that con-

sist of D-flip flops. Eight switches in series with the input clock and divided clocks are

used to allow/block the frequency selected to the comparator. These switches are con-

trolled by the decision making unit. The additional two D-flip flops to the right of Figure

3.6 are used to generate slower and ninety-degree phase shifted clocks, which are used

for the comparators and the decision making unit to overcome any race conditions in the

DMU and instability in the loop.

3.3.2 Interleavers and switch scaling.

At low-output currents, the efficiency of the converter decreases since the control circuitry

current dissipation becomes comparable or larger than the output load current. One way

of improving the efficiency is to turn off some of the interleavers to get rid of the circuitry

overhead that is used to control these interleavers. Power dissipated in the control

circuitry is shown in equation 2.8 and a portion of this dissipation will be eliminated as

a result. 4-phase non overlapping clock generator is turned off when the current is too

low, and it is reconfigured into a single inverter to generate an 180o phase shift. On the

other hand, the output ripple magnitude increase as we turn off the interleavers since the

output discharges more before it is recharged again. This is usually acceptable because,

when the output current is very low, the circuitry that the converter feeds is in sleep

mode or performance degradation is acceptable.

At high-output currents, the converter works at maximum frequency to meet the steady

state output voltage condition. If the converter fails regulate to the desired value, switch

width scaling is applied and the switch sizes are increased gradually until the converter

output reaches the desired value (decreasing the on-resistance minimizes the voltage

losses) as explained in section 2.3.1 by allowing more charge to transfer to the load.

3.3.3 Decision making unit

The decision making unit (DMU), as shown in Figure 3.8, controls the converter to

achieve the maximum possible efficiency. The DMU consists of a 3-bit up/down counter
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Figure 3.7: Switch size scaling example.

which is used to control the frequency scaling technique and a finite state machine to

control the number of interleavers used and the switch width scaling as shown in Figure

3.9.

The up/down counter counts up or down each time the comparator decisions indicate that

the output voltage is lower than VTH1 or higher than VTH2 respectively. The counter

output controls the output-switches of the frequency divider to double, halve or keep

the converter frequency after each decision. A block diagram of the DMU is shown in

Figure 3.9. The Finite State Machine state diagram is shown in Figure 3.9 and works as

explained throughout this chapter.
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Figure 3.8: Proposed decision making unit.

Figure 3.9: Proposed finite state machine.
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Layout

This chapter presents layout design and floor planning. Layout was done with Cadence

Layout XL. While designing and floor-planning the converter, the following rules were

taken in consideration.

• Make layout as symmetric as possible.

• Use wide and high metal layers for the input, output and the power rails of the

converter.

• Add as many Vias as you can to decrease path resistance.

• Put as much bypass capacitance as you can.

• Clock must have the same delay for all the 4 cores and have same delay for the 2

comparators.

UMC CMOS technology provides 8 metal layers and the lowest resistance is the highest

metal. Consequently, metal-8 is used in all power rails and in the input/output traces.

In addition to making this metal wider to decrease the resistance, adding as many vias

as possible at connections between metal layers is very important. These approaches

make the layout more reliable and prevents the currents from tunneling through a small

number of vias, especially in the wires near the flying capacitors where the resistance

adds to efficiency drops. Additionally, increasing the width of the metal increases the

parasitic capacitance, which can help in output ripple suppression.

The core is designed to be as symmetric as possible as shown in Figure 4.1. One core

is laid-out and copied to four sides symmetrically to reduce mismatch. The rest of the

circuitry is put in the middle of the four cores in order to make sure that the clock delay

is nearly identical for all four cores.

30
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Figure 4.1: Initial layout proposal.

Figure 4.2 shows the overall layout of the deigned converter. It occupies an active area

of 0.725 mm2. The area of single flying capacitor [48.7 pF] is 0.035 mm2 and the size of

the single core, which contains four capacitors of 194.8 pF size, is 0.156 mm2.
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Figure 4.2: Overall layout.



Chapter 5

Measurements and Simulations

Based on the proposed architecture, the circuit was designed using 65 nm Bulk CMOS

technology and was fabricated by UMC. CMOS capacitors were used as flying capacitors

due to their high capacitance density compared to other types of capacitance in order

to minimize the area. The core converter uses 48.7 pF for each flying capacitor and

the total capacitance in the core is 780 pF. The efficiency in the results were calculated

using the Equation 2.9. Only 1/2, 2/3 and 1/3 were successfully measured and the rest

were not able to be measured due to a misconnection in the layout, which disabled the

modes. Simulation and measurement results are shown in the figures below and general

conditions of the simulation are listed in the Table below. M stands for measurement

results, S stands for simulation results, and Scale shows the results with interleaving and

switch size scaling enabled:

Table 5.1: Summary of general simulation conditions.

Input voltage 3.3V Temperature 27 o C
Process model Typical Output voltage 0.94V ∼ 2.2V

Output ripples 5.4mV∼ 14.6mV Output Capacitance 5nF

33
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Figure 5.1: Efficiency versus output load current for simulated and measured 1/2
topology

Figure 5.2: Efficiency versus output load current for simulated and measured 1/3
topology

Figure 5.3: Efficiency versus output load current for simulated and measured 2/3
topology
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Figure 5.4: Efficiency versus output load current for 2/5 topology

Figure 5.5: Efficiency versus output load current for 2/7 topology
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Figure 5.6: Output voltage, ripples and switching frequency for 1/3 topology

The efficiency curves show that at low output load currents, the interleavers scaling

achieved efficiency gain around (∼ 6%) in both of the simulated and measurements for

most of the configurations. This is due to turning off the control circuitry as explained in

chapter 3. At high output load currents, switch scaling achieved efficiency gain around

4% in almost all the configurations. This is due to decreasing the switch resistance by

increasing the switch size as explained in chapter 3. There is a drop in the efficiency due

to parasitic resistances, capacitance and inductance of both of chip and the PCB, shown

in Figure 5.7, which is designed to measure the chip.
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Figure 5.7: Output ripples versus output load current for 1/2 topology
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Figures below show the switching frequency, output ripples and output ripples variations

with respect to output current and Table XX shows the summary for the measured

topologies.

Figure 5.8: Output voltage and switching frequency versus output load current for
2/3 topology

Figure 5.9: Ripples versus output load current for 2/3 topology

Figure 5.10: Printed circuit board used in testing.
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Table 5.2: Summary of general simulation conditions.
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Chapter 6

Conclusion

This work presents an all CMOS switched capacitor (SC) DC-DC converter that uses

a 4-way interleaver. The converter was implemented in 65nm Bulk CMOS process by

UMC. The converter’s peak efficiency is 84% at 600uA load current. It can supply output

current in the range from 20uA to 4.3mA with efficiency higher that 75%. The converter

can be configured into 5 different gain topologies to support various output voltages

between 0.94 V and 2.2 V from a 3.3 V input supply. The converter uses a combination

of frequency, switch and interleaving scaling techniques to control the output voltage

level in order to achieve maximum efficiency. The converter’s total area is 0.725 mm2.
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