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Dynamic Anchorage Planning

Bahman MADADI

Abstract

Globalization and subsequent increase in seaborne trade have necessitated efficient plan-
ning and management of world’s anchorage areas. These areas serve as a temporary stay
area for commercial vessels for various reasons such as waiting for passage or port, fuel ser-
vices, and bad weather conditions. In this study, we present a simulation-based dynamic
multi-objective anchorage planning strategy where we incorporate a time dimension by
simultaneous modeling vessel arrival and departures. We consider utilization, safety, and
fuel consumption performance metrics in a normalized weighted sum scheme as the ob-
jective function. We use Monte Carlo simulations to measure the effect of any particular
combination of planning metrics (measured in real time for an incoming vessel) on the
objective function (measured in steady state). We resort to the Simultaneous Perturba-
tion Stochastic Approximation (SPSA) method for identifying the linear combination of
the planning metrics that optimizes the desired linear combination of the performance
metrics. We present computational experiments on a major Istanbul Straight anchorage
as well as synthetic anchorages. Our results indicate that our methodology significantly

outperforms current state-of-the-art anchorage planning algorithms in the literature.

Keywords: Simulation, stochastic optimization, multi-objective optimization, anchor-

age planning



Dinamik Ankraj Planlamasi

Bahman MADADI
Oz

Deniz ticaretindeki kiiresellesme ve sonrasindaki artig, diinyadaki ankraj alanlarinin
etkin bir gekilde planlanmasi ve yonetimini gerekli(zorunlu) hale getirmigtir. Bu alan-
lar ticari gemilere gecit ya da liman icin bekleme, yakit hizmetleri ya da kotii hava
kogullar1 gibi cegitli nedenlerle gecici konaklama alani olarak hizmet vermektedir. Bu
caligmada biz, gemilerin gelig gidislerinin eg zamanli modellemesi ile bir zaman boyutu
iceren simiilasyon-tabanli dinamik ¢ok amach ankraj alani planlama stratejisi sunuy-
oruz. Faydalanma orani, giivenlik ve yakit tiiketim performans metriklerinin normal-
ize aggirlikli toplamlarini amag fonksiyonu olarak degerlendiriyoruz. Gelen gemi icin
gercek zamanli olarak oOlciilerek olugturulan planlama olclimlerin herhangi bir kombi-
nasyonun duragan durumda olciillen amac fonksiyonu {izerindeki etkisini 6l¢mek icin
Monte Carlo Simiilasyonlarini kullandik. Performans dl¢limlerinin istenen dogrusal kom-
binasyonun optimizasyonu olan, planlanan 6lgiimlerin dogrusal kombinasyonunu tanim-
lamak i¢in Egzamanh Pertiirbasyon Stokastik Yaklagimi (EPSY) metoduna bagvurduk.
calismamizda, A°stanbul Bogaz Ankraji yamsira yapay ankraj iizerinde hesaba day-
ali deneyler sunuyoruz. Sonuglarimiz, metodolojimizin literatiirdeki mevcut en geligmis

ankraj planlamas: algoritmalarindan 6nemli 6l¢iide daha iyi oldugunu gostermektedir.
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Chapter 1

Introduction

With ever-advancing globalization and burgeoning international trade, seaborne ship-
ping has become an economical and environmentally friendly means of transportation,
comprising 90% of the world’s commerce. Despite its advantages, growing seaborne
transportation brings about its own specific set of issues. In particular, escalating sea
traffic congestion is as serious a problem in maritime traffic as it is in land. One of the
efficient measures in dealing with maritime traffic is facilitating anchorage areas, which
tremendously contribute to alleviating traffic congestion just as parking lots do for land.
Furthermore, anchorages provide essential services to vessels such as serving as a shel-
ter from extreme weather conditions, loading/unloading of cargo and, land services like
fueling, legal issues, and repair [1]. Taking into account the significance of anchorages
along with the widespread popularity of maritime transportation, effective management

of the anchorage areas has come to be a pressing concern.

In light of the fact that management of and planning for different anchorage areas may
call for different considerations, it is appropriate to examine closely a real case in order to
gain some insight into the issues that we may encounter while dealing with anchorages.
One of the busiest and most congested restricted waterways around the world is the
Istanbul Strait, which requires constant and careful attention. Among the anchorages
on this sea route, the Ahirkapt Anchorage located at the southern entrance of the Strait
plays a critical role in the overall performance and safety of international maritime traffic

in the Strait.
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An essential part of anchorage planning is determining the optimal berth location of
vessels inside the anchorage area. So far, the main focus in academic research has been
on maximizing utilization, i.e., accommodating the maximum number of vessels inside
the anchorage. Yet, safety, as a vital issue in maritime traffic, has not received proper
attention in the literature. Specially, packing ships as dense as possible for the purpose
of maximizing utilization can potentially increase the risk of accidents. Thus, safety and
utilization must be considered simultaneously when determining the optimal arrangement
of vessels inside anchorages. Moreover, minimizing the distance traveled and hence the
fuel costs should be incorporated into the anchorage planning problem, which has the

additional benefit of reducing the vessels’ detrimental environmental impacts.

Previous research on anchorage planning has traditionally approached the problem as a
static disk packing problem without accounting for the time dimension, which is not very
realistic. The problem of anchorage planning is clearly a dynamic one as vessels arrive
and depart around the clock inside an anchorage. In reality, the starting point is not an
empty anchorage area and the problem is not solved when the anchorage area becomes
full, which is the case in static planning strategies. In comparison, our approach takes
into account both vessel arrivals and departures in real time and our simulation does not

end even if the anchorage reaches its full capacity.

An appropriate approach to model the anchorage planning problem needs to entail a
steady-state analysis and, the optimal course of action should be defined only after
observing the events in real time. Therefore, in this study, we transform the hitherto
static problem of anchorage planning into a dynamic one by incorporating the time
dimension along with a comprehensive steady-state analysis. In particular, we conduct
a steady-state analysis to define the optimal warm-up period and the optimal simulation
duration. We resort to Monte Carlo simulations for assessing relative performance of
anchorage planning strategies where vessel arrival and anchorage duration times are
sampled from probability distributions consistent with empirical data. For an incoming
vessel, it is assumed that its anchorage duration is known at the time of the arrival for
planning purposes. On the other hand, we assume exact arrival times of subsequent

incoming vessels are not known, which is generally the case in practice.

In this study, we consider a multi-objective optimization strategy with three objectives:

maximizing utilization and safety, and minimizing fuel costs. In order to measure these
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three objectives, we introduce four performance metrics that are measured over a par-
ticular period of time, once the Monte Carlo simulation reaches steady-state. These
performance metrics are (1) dynamic area utilization, (2) average distance traveled by
the vessels, (3) average arrival intersection length (AIL), and (4) average departure in-
tersection length (DIL). The first metric measures anchorage area utilization, the second
metric measures fuel costs, and the average of the last two metrics is intended to measure
how safe vessels anchor over time. The objective function in our model is a linear com-
bination of these performance metrics in a normalized weighted sum scheme. Weight of
each metric is assumed to reflect the relative priorities of anchorage planning authorities

for each one of the three objectives.

Regarding potential berth locations for an incoming vessel, we consider a finite number
of possibilities among the so-called corner points. In order to evaluate relative efficiency
of a corner point for an incoming vessel, we introduce static as well as time-sensitive
planning metrics that are computed in real-time. The static planning metrics we consider
are distance traveled, realized AIL, and projected DIL. The dynamic planning metrics
are defined as the static metrics multiplied by the anchorage duration. For corner point
evaluation, we assume a linear combination of both the static and dynamic planning

metrics.

It is critical to note performance metrics are measured in steady-state for the entire an-
chorage whereas the planning metrics are measured in real-time for each candidate corner
point for each incoming vessel. Thus, we need a methodology to determine the optimal
coefficient of each planning metric (for picking the best corner point for an incoming
vessel) that optimizes the objective function, i.e., weighted sum of the performance met-
rics. On the other hand, the impact of a planning metric on the objective function is
not explicitly known. In addition, the objectives of utilization, safety, and fuel consump-
tion are conflicting in nature, which is further complicated by incorporation of the time
dimension. For instance, berthing a vessel at the entrance of the anchorage might be a
good choice from a fuel consumption point of view. If the vessel’s anchorage duration is
short, this would probably not pose a safety issue, but if the anchorage duration is long,
this choice might pose significant safety risks and it might be a better choice to berth
this vessel further away from the entrance. Moreover, implications of these decisions

from a utilization point of view can only be assessed at the end of the simulation. Thus,
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identification of the best corner point, hence the best planning metric coefficients for op-
timization of a desired weighted sum of the performance metrics is a rather challenging

problem.

Since the performance metrics are measured via (noisy) Monte Carlo simulations, an
explicit mathematical form for the objective function is not available, suggesting tradi-
tional optimization methods are not readily applicable. Therefore we turn to stochastic
optimization techniques that do not require explicit objective function nor gradient in-
formation. The specific method we resort to is the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm. SPSA is a stochastic pseudo-gradient descent algo-
rithm that approximates the gradient from noisy objective function measurements. In
particular, SPSA does not require detailed modeling information between the objective
function and the variables to be optimized, and it formally accounts for the noise in
function measurements. It should be noted that incorporation of a time dimension, and
utilization of an appropriate stochastic optimization method for identification of the most
appropriate berth location are the first of their kind in the anchorage planning literature,

which we believe to be major contributions to this field.

Subsequent sections of this article are as follows: Section 2 presents a detailed descrip-
tion of the anchorage planning problem and its development from the general disk pack-
ing problem. Section 3 introduces the performance metrics designated to measure the
achievement of the optimization objectives. Sections 4, 5, and 6 respectively describe the
planning metrics, the SPSA algorithm, and the simulation system developed for bench-
marking our strategy. Section 7 presents the computational results and comparisons
against the current state-of-the-art approaches in the literature on the Ahirkapr anchor-
age as well as synthetic anchorages. Section 8 presents a summary and our concluding

remarks.



Chapter 2

Problem Description and Literature

Review

Anchorages operate year around with vessels arriving and departing around the clock.
From a modeling stand point, they are spaces in the sea next to the shore with the
shape of Multilateral. There are open sea edges in anchorages from which vessels enter,
called the entry side of the anchorage. As mandated by Istanbul Straight authorities, for
instance, while entering and leaving anchorages, vessels are obligated to cross the entry
side from the nearest point to their berth locations perpendicularly, and they are just
allowed to move around inside the anchorage to the minimum level in order to reduce

the risk of accidents.

Despite the fact that a vessel anchors in a particular location, the precise position of
the vessel during its stay is dictated by natural conditions such as winds, waves, and
currents. Based on the anchor position, a safe anchor circle can be considered as the
zone the vessel shall reside, which is demonstrated in Figure 2.1. Excluding extreme
environmental conditions resulting in anchor displacement, the vessel will stay inside the

corresponding safety zone which is the above-mentioned circle throughout its stay.

The size of the safe anchor circle depends on the length of the vessel and its anchor chain
as well as the depth of the sea in a particular location. Danton [2| defines the optimal
anchor chain length as 25v/D, where D is the sea depth and L is the vessel length. With

respect to Pythagorean theorem, the anchor circle radius is given as:
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FIGURE 2.1: Illustration of anchor circle associated with an anchored vessel.

r=L+\/(25VD)2 — D2, (2.1)

To avoid possible collisions between vessels, overlap between their safe zones which are
their anchor circles, must be averted. Accordingly, the problem of disk-packing for disks
with identical radii can be considered as the corresponding mathematical problem to
the problem of capacity planning for anchorage areas. A recognized problem relevant to
filling a quadrilateral area with equiradial disks is the NP-Hard circular open dimension
problem (CODP) [3]. Huang et al. [4] attempted to evaluate anchorage capacity which
they defined as the ratio of area occupied by vessels when the anchorage area reaches its
full capacity multiplied by the duration for which the anchorage area is full to the total
area. Utilizing Monte Carlo simulations, the authors benchmarked the performance of
their suggested algorithms against common algorithms in the literature and demonstrated
outstanding performance. Huang et al. [5] make use of MHDF and WALLPACK-MHDF

algorithms which were proposed by [4] in a sea-born traffic simulation study.

Oz et al. [1] proposed a multi-objective optimization method accounting for safety and
utilization using a simulation tool and achieved significant improvement in safety while
maintaining the same utilization level as competing methods. Although they recognized
vessels take a path to reach their berth locations and measured the risk involved in
undertaking this path on arrivals and departures, they did not consider any temporal
aspects of the problem. Moreover, in this particular study, the simulations start with an
empty anchorage and terminate as soon as the anchorage reaches its full capacity with

no ships departing the anchorage during the simulation.

It appears there are currently no studies in the literature treating the anchorage plan-

ning problem as a dynamic one with a time dimension and attempting to conduct a
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steady-state analysis. Furthermore, the fact that maximizing utilization is not the sole
objective in anchorage planning is only recognized in Oz et al. [1] where the authors
incorporated safety but it certainly calls for more contemplation and further develop-
ment. Specifically, considering the notions of utilization and safety are contradictory in
nature, maximizing utilization requires arranging vessels adjacent to each other and/or
anchorage area boundaries as compact as possible whereas maximizing safety dictates
arrangements with minimal overlap. In addition, incorporating distance considerations
further complicates the problem by adding new constraints and places it far away from

the traditional disk-packing problem.

In this study, we attempt to tackle the anchorage planning problem with all the aforemen-
tioned considerations. Our optimization method is compared with algorithms introduced
by Oz et al. [1] and Huang et al. [4] which we consider to be state-of-the-art to the day.
It should be noted that while our approach is more suitable for daily anchorage planning
tasks, we believe both Oz et al. [1] and Huang et al. [4] have their place in the literature
for anchorage capacity planning where the goal is to assess maximum safe capacity of an

anchorage and a static approach is more appropriate than a dynamic one.
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Performance Metrics

In this section, we present the performance metrics intended to measure the objectives
of safety, distance traveled (in lieu of fuel costs), and utilization. The first performance
metric, dynamic area utilization, is aimed at assessing utilization from the start of steady-
state until the end of the simulation. The next metric, distance to entry, relates to
distance and the last two metrics of arrival intersection length and departure intersection
length are intended to assess safety. Performance metrics and related parameters are

listed in Table 3.1.
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TABLE 3.1: Performance metrics and related parameters

Performance Metric Unit Notation
Dynamic Area Utilization % U
Average Distance Traveled meter D
Safety meter S
AIL meter Se
DIL meter S
Anchor Circle for Vessel 4 - ¢
Anchor Circle Area meter squared al()
Anchorage Area meter squared at
Duration day d
Total Duration (Simulation Time) day dt
Distance to Entry meter de
Number of Arrivals +# n®
Number of Departures 7# nd

3.1 Dynamic Area Utilization

The dynamic area utilization metric attempts to provide an estimate of area under the

curve for the total space occupied by all vessels throughout the simulation.

We define the dynamic anchorage area utilization U as the ratio of summation of an-
chorage circle areas, each one weighted by its anchor duration, to the total anchorage
area weighted by the total simulation time as:

o dl (3.1)

where N denotes the total number of arrivals in the simulation, a(c;) is the area of the
i-th anchor circle (associated with the i-th vessel), d; is the anchor duration of the i-th

vessel and, a' and d' denote the anchorage area and total simulation time respectively.
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3.2 Average Distance to Entry

The average distance to entry metric attempts to measure the distance vessels travel
inside the anchorage while arriving to and departing from their berth locations. Distance
to entry is defined as the distance between the entry point of the ship to anchorage area
and its berth location, which is illustrated in Figure 3.1. Since vessels are required to
choose a direct path inside the anchorage upon arrival and departure, two times distance
to entry will yield the distance traveled for each ship. Subsequently, average distance
traveled is the total distance traveled by all vessels divided by the number of ships.

Distance to entry is denoted by d¢ and average distance traveled is denoted by D.

"y

' Distance to Entr

Anchorage Depth

FiGURE 3.1: Distance to entry for a berth location

3.3 Arrival Intersection Length (AIL)

The next performance metric is devoted to assessing the safety risks for vessels upon
their arrival. For each vessel, its Arrival Intersection Length (AIL), denoted by S¢, is
defined as the summation of distances it travels inside other vessels’ anchor circles until
it arrives at its berth location. Average anchor AIL, denoted by S¢, is defined as the
sum of arrival intersection lengths for all vessels divided by the total number of vessels

in the simulation, i.e.,
N

Sa =" s /ne. (3:2)

i=1
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Although vessels can, in fact, navigate through other vessels’ anchor circle, there is a
certain level of risk associated with this passage, specially since the exact location of
vessels inside the anchor circle is uncertain, even under normal environmental conditions
and the danger they incur is likely to be greater with longer intersections. After all,
most accidents occur when ships get too close to each other. Oz et al. [1] put forth a
safety metric pertaining to the number of intersecting vessels on arrival path. While
crossing the least number of vessels’ safety zone may seem a valid concern, we argue the
distance traveled inside other safety zones is a more plausible criterion. In Figure 3.2
five different arrival paths are indicated with doted lines. Arrival intersection number
for both path C and path D is 3, but it is fairly discernible that undertaking path D,
which has a greater total intersection length, carries greater risk than undertaking the
alternative path. Moreover, in comparing paths B and E, although path B has a greater
intersection number, path E requires crossing a large vessel, thereby potentially more

steering and more risk.
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Ficure 3.2: Different anchor paths with different arrival intersection values

3.4 Departure Intersection Length (DIL)

Vessels undertake fairly identical paths upon arrival and departure. However, this does
not necessarily mean they are exposed to the same level of risk since the arrangement of
vessels inside the anchorage is likely to change upon their departure. We define a vessel’s
Departure Intersection Length (DIL) analogous to its AIL. In our simulations, in some
cases, the difference between AIL and DIL was so significant it could clearly reflect some

algorithms’ inability to provide a proper look-ahead approach. The following equation
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shows how departure intersection length is calculated where S¢ and n? denote DIL and

number of departures respectively:

N
S§1=""sd/n’. (3.3)
i=1

3.5 The Multi-Objective Model

With respect to the performance metrics described above, the objective function is de-
fined as

L:=WsgxS+WyxU+Wpx(1-D,). (3.4)

In this equation, S := (@—i—ﬁ) /2 and D is normalized by dividing by twice the anchorage
depth which is the maximum possible distance traveled by any vessel. Here, Wg, Wi and
Wp are weights for each one of the safety, distance, and utilization objectives respectively
with Wg + Wy + Wp =1 and 0 < Wg, Wy, Wp < 1. It is assumed these weights are
specified as seen appropriate by the anchorage planners per their priorities with respect to
each objective. These three weights shall be denoted by the vector W := (Wg, Wy, Wp).
We note all three objectives are normalized to assume values between zero and one and,
since we are minimizing S and D, the term 1 — U is used to define a minimization

problem.



Chapter 4

Berth Location Optimization

There are three steps involved in choosing an appropriate berth location for an incoming
vessel in anchorage planning in general: identifying candidate berth locations, evaluating
these candidates, and finding the best berth location. In what follows, we explain these
steps in detail and discuss the planning metrics used in the berth location optimization

process, which is illustrated in Figure 4.1.

Vessel Arrival

Corner Point Calculation

Corner Point Evaluation SPSA Optimizer

Berth Location

FI1GURE 4.1: The berth location optimization process

13
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4.1 Corner Point Calculation

The anchorage planning problem is inherently a continuous space problem, yet, treating
the problem as such makes it extremely challenging. Following previous work, for any
given anchorage configuration, we consider a finite number of candidate berth locations
called corner points. Specifically, a corner point C'P; for anchor circle 7 is specified as the
point where the circle is tangent to at least two items among the anchorage boundaries
and currently existing anchor circles assuming its center is at C'P; Huang et al. [6].
Corner points are classified into three types according to the items they are tangent
to. Side-and-Side (SS) corner points are the center of the circles whose sides contact
two sides of the anchorage area. Side-and-Circle (SC) corner points are the center of
the circles contacting (but not overlapping) an existing anchor circle and a side of the
anchorage area. The third is Circle-and-Circle (CC) corner points, which are the centers
of the circles contacting two anchor circles (without overlapping). These three types are
depicted in Figure 4.2. Corner points perform the task of limiting the infinite number of
possible anchor locations inside the anchorage to a finite set of candidate anchor points
to place the center of new anchor circles.

Entry and Exit Side of Anchorage Area

FIGURE 4.2: Three types of corner points in an anchorage

4.2 Corner Point Evaluation

Previous work on anchorage planning typically define planning metrics for scoring of

corner points in such a way that they are closely related to each objective considered,
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and minimizing or maximizing that metric will be the touchstone for berth location
optimization. Huang et al. [4] suggests hole degree, denoted by H, as the criterion for
determining the optimum berth location (illustrated in Figure 4.3). For an anchor circle

i, H; is defined as:

H =1 — dmin (4.1)

where r; is the radius of CP; and d;;y, is the minimum distance from C'P; to the closest
item excluding the two contacting items. The Maximum Hole-Degree (MHDF) Algo-
rithm of Huang et al. [4] starts with placing two circles at two corners of the anchorage
and places each subsequent anchor circle by selecting the corner point with the highest
hole degree. On the other hand, Oz et al. [1] uses maximum normalized distance to entry
(NDE) in order to choose the optimal berth location. Normalization of this distance to
entry happens via dividing it by the anchorage depth (as shown in Figure 3.1). Both
algorithms start with an empty anchorage and terminate when the anchorage becomes
full, yet they do not account for any departing vessels in the meantime. Simply put, the
idea in Huang et al. [4] is to pack circles as densely as possible whereas the key idea in
Oz et al. [1] is to pack circles as further away from the entrance as possible. Oz et al. [1]
argues while both algorithms achieve similar utilization levels, the latter results in safer
anchorage planning.

Entry and Exit Side of Anchorage Arca

oof ()

Ficure 4.3: Illustration of two different cases for minimum hole degree

As we attempt to optimize the objectives of utilization, safety, and distance, we define a
total of seven planning metrics in order to evaluate a given corner point. Three of these
metrics are static and the remaining ones are time-sensitive, all of which are intended

to adequately address each objective. The interactions between these planning metrics
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along with the fact that some metrics may have opposing effects on unintended objec-
tives necessitate a weighting system for determining the appropriate contribution of each
planning metric to scoring the candidate corner points and selecting the optimal berth
location. Therefore, in order to score corner points, we work with a linear function of
the planning metrics that also includes certain interaction terms. In order to find the
best coefficient for each term in this linear function for a given set of performance metric
weights, namely, Wg, Wp, and Wy respectively for safety, distance, and utilization, we
use the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. Details

of SPSA is discussed in the next section.

4.3 Planning Metrics

This section presents the planning metrics for evaluation of corner points. These metrics
are computed in real time for each candidate corner point when a new vessel arrives at
the anchorage. The corner point with the highest score with respective to the coefficients

obtained by SPSA is declared to the berth location for this incoming vessel.

4.3.1 Realized AIL (RAIL)

Evidently, the metric we present as AIL in Section 3 can perform the task of an effective
planning metric as well. Since our measure for safety is the mean value of average
AIL and average DIL, the AIL value for each arrival, which we call realized AIL(RAIL),
provides valuable information concerning the contribution of that arrival to overall safety.
The mere difference is that in planning we calculate the AIL score for each individual
candidate anchor while the average AIL used in performance measuring is the total AIL

for all vessels arrived divided by the number of arrivals.

4.3.2 Projected DIL (PDIL)

Analogous to RAIL for arrivals, a DIL value can be linked to each departure, and given
these values for all vessels, the contribution of each vessel to safety could be easily
calculated. Notice that when a vessel arrives, we are aware of departure times for that

vessel and other anchored vessels, but we do not know future arrivals that may occur
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during the newly arrived vessel’s dwell time. However, since DIL is measured upon
departure and since we do not know the arrangement of the anchorage at the time of
departure, it is not possible to compute the exact value of DIL at the time of the arrival.
Nevertheless, we can achieve a plausible estimate for DIL simply by ignoring the new
arrivals until the vessel’s departure and just consider the departures of currently anchored
vessels during the vessel’s stay at the anchorage, which we call projected DIL (PDIL).
Clearly, PDIL is an underestimation of the true DIL value, yet a necessary and effective

one.

4.3.3 Nearest Distance to Entry (NDE)

The concept of distance to entry was introduced in Section 3. Normalized distance to
entry (NDE) is calculated by dividing distance to entry to the anchorage depth, which
is the distance between the entry side of the anchorage and the land. We use NDE as

another planning metric for evaluation of candidate corner points.

4.3.4 Dynamic NDE (DNDE)

The next four metrics include a time dimension. The notion is inspired by the simple fact
that if a vessel is going to stay for long, it seems appropriate to send it to a deep corner of
the anchorage area to keep the opening and middle space clear for passage. On the other
hand, if the vessel is going to leave soon, there is no reason for crossing the anchorage area
twice on arrival and departure in order to anchor deep, thereby increasing total traveled
distance and the risk of accidents. Multiplying NDE by the dwell time culminates in a
metric we call Dynamic NDE (DNDE), which comes to be of great help in increasing

safety while maintaining a reasonable trade-off with distance.

4.3.5 Dynamic RAIL, Dynamic PDIL and Dynamic Fused Safety

Following the same idea, we multiply RAIL, PDIL and RAIL times PDIL by the dwell
time to obtain three new metrics, respectively called: Dynamic RAIL (DRAIL), Dynamic
PDIL (DPDIL) and Dynamic Fused Safety (DFS). It is intuitive when the anchorage area
is idle, indicating small values for RAIL and PDIL, the dwell time is less relevant. But,
for a busy anchorage with higher values for RAIL and PDIL, the dwell time becomes
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a pressing matter. This impact is recognized by multiplying the dwell time by RAIL,
PDIL and Fused Safety, which is RAIL times PDIL. In short, when our safety metrics
have greater values, dwell time will be weighted by greater numbers leading to greater
values for dynamic safety metrics and more contribution to corner points’ score. Our
experimental results provide more evidence for effectiveness of our time-sensitive metrics.

The following equations show the calculation of the dynamic planning metrics:

mg=mq Xd (4.2)
ms =mg X d (4.3)
me =m3 X d (4.4)
my =mq X mg X d (4.5)

where d is the anchor duration and mq,me,...,m7 respectively stand for RAIL, PDIL,
NDE, DRAIL, DPDIL, DNDE, and DFS planning metrics, which are summarized in
Table 4.1. For standardization purposes, the static metrics were normalized by the
anchorage depth and the dynamic metrics were normalized by the anchorage depth times

total simulation time.

TABLE 4.1: Planning metrics used in evaluating candidate corner points for an incom-

ing vessel
Planning Metric Abbreviation Notation
Realized Arrival Intersection Length RAIL mq
Projected Departure Intersection Length PDIL ma
Normalized Distance to Entry NDE ms
Dynamic Realized Arrival Intersection Length DRAIL my
Dynamic Projected Departure Intersection Length DPDIL ms
Dynamic Normalized Distance to Entry DNDE me
Dynamic Fused Safety DFS my

Thus, a particular anchorage planning problem instance consists of the following com-

ponents:

e Topology and depth of the anchorage.
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e Performance metrics weight vector W = (Wg, Wy, Wp) as specified per the needs

of the anchorage planners.

e The probability distribution for vessel inter-arrival times (in hours). This distribu-

tion specifies the frequency of vessel arrivals at the anchorage.

e The probability distribution for vessel dwell times (in hours). Dwell time for an

incoming vessel is sampled from this distribution at the time of its arrival.

e The probability distribution for vessel lengths (in meters). Vessel lengths are used

to determine the radius of the associated anchor circle.

The solution to a problem instance is then the optimal planning metrics coefficient vector

that minimizes the multi-objective function L.
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The SPSA Algorithm

In our anchorage planning model, the variables to be optimized via SPSA are the co-
efficients of the seven planning metrics introduced earlier, which we denote by w; for

1,...,7. Thus the goal becomes finding the vector w* = (wf,...,ws) such that:

w* = arg géi@ L(w|W) = {w* e R": L(w*) < L(w) Yw € R}, (5.1)

that is, w™ minimizes the objective function L (for a given W') whose relation to w can
be measured via simulations. Once w™* is found, candidate corner points are computed

for each incoming vessel and each corner point is evaluated based on the formula:

7
§:= Zw; X my, (5.2)
p=1

and the corner point with the lowest s score is declared to be the vessel’s berth location.
We note that we do not impose any sign restrictions on the components of the w vector.
Thus, contribution of some planning metrics to the score s could be positive whereas

those of some other metrics could as well be negative.

Observe that for a given coefficient vector w, the function L(w) is a random variable
with an unknown explicit form that can only be observed at the end of a noisy Monte
Carlo simulation subject to a certain margin of error. The inputs to a Monte Carlo

simulation are as follows:

20
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e Topology and depth of the anchorage.
e Planning metrics coefficient vector w = (wy, . .., wr).
e Performance metrics weight vector W = (Wg, Wy, Wh).

e The probability distributions for vessel inter-arrival times, dwell times, and vessel

lengths.

The outputs of one simulation run are the safety, distance, and utilization performance
metric values measured over a certain amount of time once the run reaches steady-state.
In our simulations, we use probability distributions that are consistent with empirical

data obtained from the Ahirkapi anchorage.

In order to find a local minimum of a real-valued deterministic function L : R? — R, a
wide-spread practice is the gradient descent approach. In conventional gradient descent
algorithms, it is presumed that the objective function (usually called loss function in
minimization problems) and its derivatives are known. However, when the loss function
assumes the form of a random variable and information regarding its actual values can
only be observed through sampling, such an approach would be of no use. This is
particularly pertinent to the cases when the information regarding the loss function is
available only through simulations which are merely realizations of the loss function and
inherently noisy. In such cases, stochastic pseudo-gradient descent algorithms can be
convenient choices since they estimate the loss function from noisy measurements that
are simulation runs. Additionally, such algorithms formally account for the noise and

they do not require explicit information regarding the loss function nor its derivatives.

Kiefer-Wolfowitz finite-difference stochastic approximation (FDSA) is a powerful but
computationally expensive algorithm for gradient-free stochastic optimization [7]. The
number of loss function examinations in each iteration in FDSA is 2p (where p is the
number of input variables to be optimized), making it computationally infeasible when
p is large. Introduced by Spall [8], SPSA makes a significant improvement to FDSA
by providing the same level of accuracy with only two measurements to construct one

gradient approximation, resulting in a p—fold decrease in execution time.

Let L(w) : R? — R denote the loss function to be optimized where an explicit functional

form for L is not available, yet one can make noisy measurements y(w) := L(w) + e(w)
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where e denotes noise. The gradient of L is defined as:

g(w) := ((99_51 (5.3)

Similar to traditional gradient descent based algorithms, SPSA starts with an initial
estimate wo and iterates with respect to the recursion below in order to find a locally

minimum vector w™:

Wit = Wi, — apdr(Wr). (5.4)

In the equation above, ay, is an iteration gain sequence and gy (wy) stands for the approxi-
mate gradient at wy. Since it is assumed that L is not known explicitly, the gradient g(w)
is not readily available and thus it needs to be approximated. The perturbation amount
0 is taken as cyAp where ¢ is a gradient gain sequence and Ay is the p—dimensional
simultaneous perturbation vector. SPSA imposes certain regularity conditions on Ay [8].
In particular, each component of Ay needs to be generated independently from a sym-
metric zero mean probability distribution with a finite inverse, such as the symmetric
Bernoulli distribution (e.g., +1 or —1 with 0.5 probability). Simultaneous perturbations

around the current iterate wy are defined as:

’lf}]:: = ﬁ]k + CkAk. (5.5)

Once y(w;") and y(w; ) are computed, the estimate of gradient gy, is calculated as:

RN
Akl

y(a)) —y(wy) [Dee

5 (5.6)

~1
_Akp_
SPSA requires three loss function measurements in each iteration: y(w;"), y(wy ), and
y(Wr41). The first two measurements are needed to approximate the gradient and the

third one is required for measuring the performance of the subsequent iterate, i.e., W11

[9].
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The iteration gain sequence is specified as ap = a/(A + k)® where A is the stability
constant and the gradient gain sequence is taken as ¢ := ¢/k7. In SPSA, a,c, A, o,
are pre-defined parameters whose proper fine-tuning is critical for superior algorithm
performance. Under some mild conditions, SPSA has been shown to converge to a
locally optimal solution almost surely [8]. A common stopping rule for SPSA is reaching
a pre-defined number for iterations due to the fact that automatic stopping criteria does
not exist for such stochastic approximation algorithms, specially when there is no specific

expectation for the value of optimal solution.

Even though SPSA has been widely used in a variety of stochastic optimization problems,
few studies exist on its parameter calibration. Spall [10] provides certain guidelines for
identifying suitable values for the algorithm parameters. In particular, the asymptotically
optimal values of « and  are 0.602 and 0.101 respectively. The parameter c is suggested
to be set to the standard deviation of the measurement noise, the stability constant A
to one-tenth of the number of intended iterations and, a to a small value close to 0.05.
Moreover, a common choice for the elements of Ay is independent +1-valued Bernoulli-

distributed random variables with a 0.5 probability.

Nonetheless, optimal SPSA parameters are case-dependent in practice and can vary
significantly under different circumstances. More details on the SPSA parameter fine-

tuning process is provided in Section 7.
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Anchorage Simulation System

Optimization of the planning metrics coefficients for a given problem instance as well
as comparison of our approach against existing state-of-the-art algorithms necessitate
Monte Carlo simulations, which in turn, call for an anchorage simulation system. This
system facilitates empirical performance assessment of anchorage planning algorithms
under a wide variety of conditions as detailed in Section 7. Our implementation of
the simulation system is similar to that of Oz et al. [1] whose logical flow is shown in

Figure 6.1 and main components are described below.

Arrival /Departure

y
4

Anchorage Manager Vessel Locator

Anchrage Area SPSA Optimizer

System Evaluator I

FIGURE 6.1: Flowchart of the anchorage simulation system
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6.1 Anchorage Area

Following common practice, the anchorage area is modeled as a two-dimensional polygo-
nal region containing anchor circles with various radii representing vessels. It is assumed
(1) the anchorage has uniform depth and (2) vessel entry and exits occur through the
entry side of the anchorage with the vessels following a straight path to their berth loca-
tions (per regulations). On the other hand, the uniform depth assumption is not always
realistic [11], yet integration of non-uniform depth information into a multi-objective

setting requires non-trivial changes and it is left for future research.

6.2 Vessel Arrival/ Departure Generator

The Vessel Arrival/ Departure Generator component is in charge of generating vessel
arrivals with an associated arrival time, anchor duration (i.e., dwell time), and a ves-
sel length for calculating the vessels’ anchor circle radii. These quantities are sampled
from respective probability distributions as discussed in Section 7. This component also

initiates a departure event at the end of the vessel’s anchor duration.

6.3 Vessel Locator

The Vessel Locator component is responsible for scoring the candidate berth locations
and determining the berth location of incoming vessels with respect to these scores.
The scoring is based on a linear combination of the planning metrics as described in
Section 5 and coefficients of each planning metric are computed by the SPSA Optimizer

component.

6.4 SPSA Optimizer

The SPSA Optimizer iteratively improves upon the coefficients of the planning metrics
w using the SPSA algorithm. The system starts with an arbitrary wg, forms a gradient
estimate by averaging multiple Monte Carlo simulations (for loss function evaluation) in

each iteration, and computes the next w iterate until termination.
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6.5 Anchorage Manager

The Anchorage Manager component oversees the entire simulation system and man-
ages the connection between the system’s components. When an event takes place in
any component, this component receives a notification and determines the appropriate
course of action, including sending the information to the component responsible for an

appropriate action.

6.6 Anchorage System Evaluator

The Anchorage System Ewvaluator component is responsible for computing and maintain-
ing all relevant statistics related to performance and planning metrics, including averages

and standard deviations.
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Computational Experiments

This section presents computational experiments for empirical performance assessment
of our SPSA-based optimization strategy. Our goal in this section is two-fold: (1) bench-
mark our strategy against the current state-of-the-art anchorage planning algorithms and
(2) briefly investigate the effect of different performance metric weight combinations on

the individual objectives. Our experiments comprise of the following variations:

e Two different anchorage topologies: The Ahirkapt Anchorage in the southern en-
trance of the Istanbul Strait, and a rectangular-shaped synthetic anchorage. The
Ahirkapr Anchorage has a bounding box of 2.5 by 4 kilometers and the synthetic
anchorage’s dimensions are 2.5 by 4 kilometers. The depth of both anchorages
is taken as 35 meters. Figure 7.1 shows Ahirkap: and the synthetic anchorage

topology used in simulations.

e For the synthetic anchorage, three different vessel inter-arrival distributions repre-
senting busy, average, and idle anchorage traffic respectively. Combined with the

Ahirkapr Anchorage, this results in a total of four different anchorage settings.

e Five different performance metrics weight vectors for assessing impact of this vector
on the respective objectives of safety, utilization, and distance. The weight vectors

we consider are (1,0,0), (0,0,1), (5,0,1), (1,0,1), and (1,0,5).

27
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Entry Side -

Ahirkapr Anchorage

Synthetic Anchorage

FIGURE 7.1: Anchorage topologies used in the computational experiments

Our Monte Carlo simulations require probability distributions for sampling vessel inter-
arrival time, dwell time, and vessel length quantities. In this work, we make use of
Ahirkap1 Anchorage historical data information for the year of 2015 and we determine
the best fitting (i.e., the most likely) probability distribution for each one of the three
quantities, which are then used for sampling in the simulations. The probability distri-

butions acquired from the empirical data are as follows:
e Inter-arrival times (hours): Exponential(u = 0.45)
e Dwell times (hours): Log-normal(y = 2.4, 0 = 1.3)
e Vessel lengths (meters): Beta(a = 2.4, 5 = 2.4).

In order to simulate synthetic anchorage settings with busy and idle anchorage traffic, we
use a multiplier k for dwell times to manipulate departure to arrival ratio. The multiplier

values used in the four different anchorage settings are as follows:
e Ahirkap1 anchorage: k& = 1.
e Average synthetic anchorage: k = 1.
e Busy synthetic anchorage: k = 2.2.

e Idle synthetic anchorage: k£ = 0.5.
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Suppose sampling from the Log-normal(2.4, 1.3) distribution yields a dwell time of 2.5
hours. For the busy setting, the dwell time would be set to 5.5 hours whereas the dwell

time for the idle setting would be set to 1.25 hours.

7.1 Steady State Analysis

Transcending the static anchorage planning problem into a dynamic one with a time
dimension necessitates rather significant changes in the simulation approach, one of which
is a steady-state analysis. In planning stages of any Monte Carlo simulation, an important
decision is whether to use terminating conditions or steady-state. Since anchorages serve
around-the-clock, there is really no terminating condition for their operation. Also, it
is hard to imagine an empty anchorage waiting for vessels to arrive. Thus, as we are
interested in estimating a set of performance metrics in the long run, it is favorable to
eliminate any improbable factors that would potentially cause a deviation in the trend

of the parameters of interest such as initial and terminating conditions.

Figure 7.2 shows the trend of our performance metrics throughout the first fifteen days
of simulation for all the competing algorithms for the Ahirkap1 Anchorage starting with
an empty anchorage. This figure, as well as similar analyses we conducted with various
simulation settings suggested there is no considerable increase or decrease due to initial
settings after the seventh day and all metrics seem to stabilize by this point. Therefore,
we regard the first seven days as the warm-up period and we consider the second seven
days of simulation to be the window of study during which we monitor the system’s

behavior in order to compare the planning algorithms.

7.2 SPSA Implementation

As mentioned earlier, careful fine-tuning of SPSA parameter values is of utmost impor-
tance for convergence of the algorithm to a good solution. In our implementation, we
used the symmetric Bernoulli distribution with a probability of 0.5 for each £1 outcome
for the perturbation vector A, which is a theoretically valid, simple, and very commonly

used distribution in the SPSA literature. Regarding v and -, we used the theoretically
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FIGURE 7.2: Performance metrics over time for the Ahirkapi Anchorage during fifteen
days of simulation time.

optimal values of 0.602 and 0.101 respectively. For the parameters of a, ¢, and A, sub-
sequent to a comprehensive fine-tuning process involving various simulation settings, we

used the values of 0.17, 0.019 and 0, respectively.

The number of SPSA iterations was taken as 500, which we observed to be sufficient for
convergence in general. In each iteration, for a particular planning metrics coefficient
vector w, the loss function measurement was taken as the average of 10 independent
Monte Carlo simulations. Averaging of simulation runs is a common way of reducing the

effect of noise in SPSA implementations, see, e.g., [9].
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Consider, for instance, the case when Wg = 0, Wy = 0 and Wp = 1; Figure 7.3 shows
the normalized values of objective function for this performance metrics weight vector
over 500 iterations for Ahirkapt Anchorage where the measurement for each iteration is
the average of 10 simulations. The coefficient vector with the lowest objective function
value over the entire range of SPSA iterations is declared to be the optimal coefficient

vector w*.

0.5

Normalized Objective Function

0.15

. . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
Iteration

FIGURE 7.3: Normalized objective function value vs. iteration count for SPSA for the
Ahirkapr Anchorage.

7.3 Performance Comparison of Algorithms

Once we identify the optimal coefficients vector for the planning metrics using SPSA, we
are ready to benchmark our algorithm against the alternatives. For a fair comparison,
we use the average over 100 simulation replications for each algorithm for each anchorage

setting by using the method of common random numbers (CNR) to reduce variance.

Competing algorithms are the Nearest Distance to Entry (NDE) method of Oz et al. [1]
and the Maximum Hole Degree (MHD) method of Huang et al. [4], which are named
based on the metric they use for choosing the best candidate corner point for an incoming
vessel. The idea in the NDE method is to place incoming vessels so as to maximize its
distance to the entry line, whereas the idea in the MHD method is to place the vessel in
the tightest available space in the current anchorage configuration. In addition to NDE
and MHD, we consider random candidate corner point selection in order to provide a

baseline for comparisons, which we call the Random method.



Chapter 7. Computational Experiments 32

For each one of the four anchorage settings, we use SPSA with five different sets of W,
Wy and Wp weights in order to demonstrate the performance of SPSA as a robust multi-
objective optimizer with various anchorage planning priorities. Tables 7.1, 7.2, 7.3, and
7.4 show the comparison results for all four methods for each anchorage setting. The
tables show the average for each performance metric over the 100 simulations along with
the margin of errors for a 95% confidence interval. Optimal planning metric coefficients
(scaled between +1) for the Ahirkapi1 Anchorage are shown in Table 7.5 to illustrate how

these coefficients relate to each other for one particular anchorage setting.

TABLE 7.1: Comparison of algorithms for the Ahirkap1 Anchorage averaged over 100
simulations. The plus/minus values denote the margins of error for a 95% confidence
interval.

Algorithm Safety (m) Utilization (%) Distance (m)
MHD 480.4+13.5 0.194+0.0079 4031.6+£57.5
NDE 389.348.7 0.19+0.0079 4289.8+19.9
RANDOM 488.0+8.9 0.1940.0079 4046.2+26.1
SPSA: Wg/Wy/Wp

1/0/0 223.7+£6.3 0.19£0.0079 3620.44+43.2
5/0/1 231.7+7.4 0.19+0.0079 2395.1420.3
1/0/1 244.2+7.4 0.1940.0079 2313.84+23.5
1/0/5 245.9+7.8 0.1940.0079 2288.7+22.1
0/0/1 315.6£8.8 0.1940.0079 2199.14+21.4

TABLE 7.2: Comparison of algorithms for synthetic average anchorage

Algorithm Safety (m) Utilization (%) Distance (m)
MHD 685.6£23.6 0.19+0.083 4801.8+213.5
NDE 612.1+15.2 0.19+0.083 5948.14+36.0

RANDOM 958.4£13.9 0.19+0.083 4546.3+42.1

SPSA: Wg/Wy/Wp

1/0/0 413.5+11.6 0.19+0.0083 3944.5+82.0

5/0/1 489.2+13.1 0.19+0.0083 2170.9437.2

1/0/1 500.84+12.9 0.19+0.0083 2139.74+36.4

1/0/5 502.14+12.5 0.19+0.0083 2135.44+36.8

0/0/1 523.3+13.4 0.1940.0083 2092.1+35.4
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TABLE 7.3: Comparison of algorithms for the synthetic busy anchorage

Algorithm Safety (m) Utilization (%) Distance (m)
MHD 1190.2+15.0 0.4840.0147 4093.4+£28.7

NDE 1200.1+£15.6 0.47+0.0147 4505.9+32.9

RANDOM 1231.24+15.0 0.48+0.0157 4134.8+25.3

SPSA: Wg/Wy/Wp

1/0/0 931.6+£14.8 0.46+0.0134 3780.04+32.9

5/0/1 938.9+15.9 0.46+0.0141 3606.44+34.5

1/0/1 968.2+16.5 0.47+0.0147 3555.5+35.4

1/0/5 973.7+£14.4 0.47£0.0143 3552.3+33.7

0/0/1 998.14+16.4 0.47+0.0147 3518.84+35.4

TABLE 7.4: Comparison of algorithms for idle synthetic anchorage

Algorithm Safety (m) Utilization (%) Distance (m)
MHD 385.6+£23.1 0.03£0.0029 6391.3+68.3
NDE 252.149.2 0.03£0.0029 6881.44+19.6
RANDOM 884.8£18.9 0.03+0.0029 5092.5+38.5
SPSA: Wg/Wy/Whp

1/0/0 152.34£5.8 0.03+0.0029 6017.7450.0
5/0/1 202.6+7.6 0.03£0.0029 1215.9£20.0
1/0/1 210.1£7.7 0.03£0.0029 1187.7£20.1
1/0/5 222.1+£7.9 0.03£0.0029 1181.4+19.2
0/0/1 244.449.0 0.03£0.0029 1174.6£19.5
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TABLE 7.5: Optimal planning metric coefficients for the Ahirkapt Anchorage

w w*

Ws/Wy/Wp  wi w3 w} wj w we wk
1/0/0 0.063 0.325 0.117 -0.287 0.087 -0.121 -0.219
5/0/1 0.019 0.525 0.150 -0.729 -0.559 0.733 -0.389
1/0/1 -0.100 0.614 -0.020 -0.134 -0.406 -0.274 -0.304
1/0/5 -0.066 0.580 -0.002 -0.372 0.240 0.712 -0.882
0/0/1 -0.185 0.155 -0.393 0.189 -0.219 -0.291 -0.5539

It is evident from the comparison tables when the priority is safety or distance, SPSA
outperforms all the other algorithms. Even when Wg = Wp = 1, SPSA outperforms
all competing algorithms in both safety and distance. On the other hand, the numbers
for utilization are indicative of an interesting notion; when the anchorage does not reach
its full capacity, utilization, as it is defined in this work, would be the same regardless
of any criteria for choosing among corner points and, since we use CNR for sampling,
the numbers in the utilization columns are exactly the same in this case. That is why
we only present results when Wy = 0. As expected, setting different values for Wy
does not make any difference in the optimal solution; even considerably large values for
Wy will yield the same results as zero in this case. However, there is one case where
utilization could differ among algorithms. As it is indicated in Table 7.3, the numbers in
the utilization column slightly vary, but there are two key issues that need to be taken
into account while pondering on the results. First, with a trivial margin, the highest
utilization in Busy anchorage case belongs to MHD that only focuses on utilization, and
yet, the Random method has the same performance. This gives rise to the claim that

the notion of corner points may suffice for optimizing utilization.

In order to make a definitive judgment, we need to determine whether the differences
between the scenarios are statistically significant or not. There are sizable overlaps be-
tween utilization intervals for all the algorithms, meaning the differences in utilization
are not statistically significant. The differences in safety and distance are significant
in most cases. Considering these results, a crucial observation is that our algorithm
is commendably sensitive to changes in weights in objective function, making it a re-

liable multi-objective optimization algorithm. Although in some cases the differences
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are not statistically significant, SPSA algorithm almost entirely dominates competing
algorithms. Specifically, in the objective that it is aimed to optimize, it statistically

dominates all other algorithms in all cases and instances.

For instance, for the Ahirkap: Anchorage, regarding the safety objective, SPSA yields an
average value of 223.7 meters whereas NDE, the closest of the other three algorithms,
yields an average of 389 meters. Likewise, regarding the distance metric, SPSA results
in an average of 2199 meters while the closest MHD method yields an average of 4031
meters. In addition, regarding the distance performance metric for the idle synthetic
anchorage, SPSA gives an average of 1174 meters whereas the closest Random method
yields an average of 5092 meters. Such results underline the superior performance of
our SPSA-based approach against the current state-of-the art methods for anchorage

planning in general.



Chapter 8

Summary and Conclusions

As maritime transportation gains momentum, anchorage planning, and related problems
demand closer attention and dealing with them calls for appropriate strategies. So far,
the research in this area mostly have been case studies focusing on one or two objectives
while ignoring the time dimension. In this research, we embark on developing a more
general methodology that can be of assistance for decision makers when facing dynamic

multi-objective optimization problems in this area.

For this purpose, we introduce performance metrics aimed at assessing anchorage plan-
ning performance. Next, we present effective planning metrics associated with one or
more of the objectives that can be employed for optimization. Then, we use the SPSA
stochastic optimization algorithm to identify the best planning metric coefficients for a
given instance of the problem. With the aid of a custom simulation tool, we benchmark
our algorithm against current best practices and we showcase the power of our approach
in four different settings we generate using historical data gathered from Ahirkapr An-
chorage. It is worth mentioning our study is the first in this field that: (1) accounts for
the time dimension of the anchorage planning problem and (2) attempts to simultane-
ously optimize the triple objectives of safety, utilization, and average distance traveled

(in lieu of fuel consumption & environmental impacts).

Our results indicate our SPSA-based methodology predominantly outperforms competing
algorithms in safety and distance. As far as utilization is concerned, we argue the concept
of corner point placement is sufficient for optimizing utilization and further considerations

would not lead to statistically significant differences, at least under the conditions and
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assumptions in our study. Should there be any possibility for significantly different results
under different conditions in the future, our approach, with slight alterations, could be
employed to optimize utilization as well due to its flexible design for accounting for any

number of desired performance and planning metrics.

As for the future research, incorporating environmental conditions such as waves, wind
and sea currents into the problem and developing the algorithm to account for these
forces along with non-uniform depths is on the agenda. Moreover, considering more re-
alistic arrival and departure paths instead of straight lines can potentially have a major
contribution in bringing the anchorage planning problem one step closer to reality and
increasing the accuracy and effectiveness of its modeling. In this work, we experimented
with a limited number of planning metric weight combinations, which do not fully reveal
the interactions and trade-offs between the safety, utilization, and distance objectives.
Future research might investigate these relationships in detail for a pareto-optimal ap-

proach to this multi-objective optimization problem.
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