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Eco-efficiency of Electric Vehicles in the United States: A Life-Cycle

Assessment based Principal Component Analysis

Shiva Afshar

Abstract

This research presents an integrated sustainability assessment framework for alternative
electric vehicle technologies in the United States. Two methods such as life cycle assess-
ment (LCA) and principal component analysis (PCA) are jointly used for eco-efficiency
analysis of battery electric vehicles. Three scenarios are analyzed such as marginal elec-
tricity mix, average electricity mix and 100% solar energy. Three environmental (water
withdrawal, energy consumption and carbon emission) and one economic (life cycle cost)
indicators are combined to obtain the eco-efficiency values for 49 U.S. states. First,
the scenarios are compared by applying the ANOVA and Tukey HSD test approaches
regarding their environmental and economic indicators values. Then, a comparison is
executed based on the eco-efficiency values of states in each scenario separately. The
maximum scores of eco-efficiency are related to Idaho, Texas and New Mexico based
on marginal electricity mix scenario, average electricity mix scenario and solar energy
scenario, respectively. According to the results, solar energy scenario is the cleanest sce-
nario because of the least value of environmental impacts while the marginal electricity
mix scenario has the highest economic output. Compared to other two scenarios, solar
energy scenario cause an extreme decrease in the amount of carbon emission in all states
and also reduces the value of water consumption and energy use considerably in most of

the states.
Keywords:

Life cycle assessment, principal component analysis, eco-efficiency, electric vehicles, sus-

tainable transportation, policy analysis.



Amerika Birlegik Devletleri’'ndeki Elektrikli Araclarin Eko-Verimliligi:

Yagam dongligii Analizi bazh Temel Bilegenler Analizi

Shiva Afshar
Oz

Bu aragtirma Amerika Birlegik Devletleri’'ndeki alternatif elektrikli arac teknolojileri icin
entegre edilmiy siirdiiriilebilirlik degerlendirme cercevesi sunmaktadir. Yagam dongiisii
degerlendirmesi (LCA) ve temel bilesenler analizi (PCA) metodlar elektrikli bataryal
araclarin eko-yeterlilik analizinde birlikte kullamilmigtir. Marjinal elektrik kullanimi, or-
talama elektrik kullanimi ve solar enerji ile sarj edilenler dikkate alinarak ti¢ senaryo ince-
lenmistir. Ug ¢evresel (su gekilmesi, enerji tiiketimi ve karbon emisyonu) ve bir ekonomik
(yagsam siiresi maliyeti) gosterge birlestirilerek ABD’nin 49 eyaletinin eko-yeterlilik deger-
leri elde edilmistir. Ilk olarak, her bir eyaletin eko-yeterlilik degerleri her bir senaryoda
ayr1 bir gekilde kargilagtirmali olarak uygulanmigtir. Eko-yeterliligin maksimum degerleri
Idaho, Texas ve New Mexico sirasiyla marjinal elektrik kullanmim senaryosu, ortalama
elektrik kullanimi senaryosu ve solar enerjisi senaryosu ile iligkilendirilmistir. Daha sonra
bu senaryolar ANOVA ve Tukey HSD test yaklagimlariyla cevresel ve ekonomik gosterge
degeleri uygulanarak karsilastirilmigtir. Sonuclara gore, solar enerji senaryosu en az
cevresel etki degeri ile en temiz senaryo olurken marjinal elektrik kullanimi senaryosu en
yiiksek ekonomik maliyet elde etmigtir. Diger iki senaryoyla kiyaslandiginda, solar enerji
senaryosu biitiin eyaletlerde karbon emisyonu miktarini en iist diizeyde azaltirken bircok

eyalette ise su gekilmesi degerini ve enerji tiiketimini 6nemli oranda diigiirmiistiir.

Anahtar Sozciikler: yagam siiresi degerlendirmesi, temel bilesenler analizi, eko-yeterliligin,

elektrikli arag teknolojileri, siirdiiriilebilir ulagim, politika uygulamalar:.
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Chapter 1

Introduction

1.1 The U.S. transportation impacts in terms of economy

and environment

Environmental issues like global warming, water pollution, air quality, and high rates of
natural resources consumption have become major global concerns during recent, decades.
An increasing rate of fuel consumption in industrial sectors and transportation networks
is considered to be an influential cause of these environmental concerns. These concerns
are even more highlighted in progressive countries like the U.S. because of the huge and
growing transportation and industrial sectors. The transportation sector in the U.S.
consumes almost 30% of the total energy used in the whole country, and about 92%
of this amount is supplied by petroleum products [2]. The amount of oil required to
satisfy the transportation demand is 70% of the entire oil consumption in the U.S., and
about 65% of this amount is used by personal vehicles [3]. This great amount of fuel
consumption makes the transportation sector the second largest emitter of GHG after the
electricity sector [4]. Hence, in recent decades alternative vehicles like electric vehicles
(EVs) have been considered as appropriate solutions for environmental problems. For
example, their lower tailpipe emissions and energy consumption compared to internal

combustion vehicles (ICVs) make them more sustainable options [5].
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1.2 Life cycle assessment models and applications in trans-

portation

In order to quantify the environmental impacts of EVs, the life cycle assessment technique
(LCA) is widely used in the literature. The LCA technique is popular because of assessing
environmental impacts of producing a product or transportation activities from cradle to
gate including raw material extraction, production, distribution, consumption and end

of life [6].

Three main LCA approaches has been vastly used to measure the environmental impacts
of a system: process-based LCA, input output based LCA and hybrid LCA [7]. In a
process- based approach all the inputs and outputs are considered for each step of life
cycle. The total output of the system is obtained as the summation of the output of each
step. For the systems which have numerous inputs and outputs, process-based method
becomes so complicated [8]. Economic input -output LCA can deal with this problem
because of computing environmental impacts by considering the transactions between
the different life cycle steps. On the other word, the process-based LCA includes almost
all the detailed transactions in each step, where in input output LCA the transactions
among the sectors are clearly determined. The hybrid LCA is an approach which aims
to overcome the disadvantages of two previous methods. This method applies process-

based and input output LCA in parallel [§].

In many studies, LCA has been applied to assess sustainability. [9] assessed environmen-
tal impacts of conventional vehicles, HEVs, BEVs and PHEVs in the U.S. for the entirety
of their life cycle time regarding 19 indicators based on two different charging systems.
[10] utilized input output LCA to measure greenhouse gas emissions of plug-in hybrid
electric vehicles. [11] used an EIO-LCA to compare the sustainability of three types of
electric vehicles for the 50 states of the U.S based on the driving patterns, battery struc-
tures and energy preparation scenarios. [12] used LCA approach to compare EVs and
Internal combustion vehicles based on their economic and environmental impacts. [13]
used EIO-LCA to measure the economic, environmental and social impacts of some U.S
construction sectors. [14] compared the environmental sustainability index of hydrogen
versus electric vehicles by utilizing the LCA techniqge in Tuscany,Italy. [15] used LCA to

make a comparision between the present mid-sized passenger vehicles and those of the
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future based on their fuel consumption types. [16] utilized jointly IO-LCA and multicri-
teria optimization technique to determine the most sustainable passenger vehicle type
for each states of U.S. [17] made a comparison between the sustainability performance of
plug-in and wireless charging electric bus systems regarding energy and greenhouse gas

indicators by using a process-based LCA approach.

1.3 Sustainability performance assessment indicators and

Eco efficiency

There are several indexes being used to assess the sustainability performance in a sys-
tem. Social, environmental and economic indexes are widely applied in the literature
of transportation sustainability [18, 19]. In order to assess each index the indicator se-
lection step is required. The indicators essentially should be clear, precise and reliable
enough to result in unbiased assessments [20]. Several environmental indicators like,
water consumption, energy use, CO2 emission are accounted for quantifying the environ-
mental sustainability index (ESI) in a system. Economic indicators such as tax, profit
and investment and social indicators like employment, income, human health, and wel-
fare are used to assess the economic sustainability index and social sustainability index,

respectively.

Eco-efficiency is one of the metrics vastly applied in many studies for assessing the
sustainability performance. [21-23|. This is mostly because it can consider both economic

and environmental sustainability indexes in the computations [24].

In spite of being a popular and efficient approach, computing Eco- efficiency becomes
complicated in case of having many environmental indicators with different measuring
units. In order to reduce the complexity of computations of these cases, some weighting
models are utilized to reduce the dimension of variables. However, the results obtained
from these models are influenced by the weight values. Some linear programming tech-
niques including data envelopment analysis (DEA) and principle component analysis
(PCA) are more suitable alternatives because of their independency to the subjective
weights [22]. DEA approach is applicable to measure the environmental impact of a sys-

tem for multi-attributed data and also have the capability to deal with spurious, modal
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and outlier data [25]. However, the results obtained from this approach are not reli-
able when the correlation exists between the indicators. If the indicators are correlated
to each other, PCA approach is a suitable alternative duo to dealing with correlated

indicators and it obtains rigorous results [22].

1.4 The novelty and organization of the research

In this study, data of three different scenarios are used from [11].1) State- based average
electricity generation mix scenario considers the average electricity generation in the U.S.,
2) the state- based marginal electricity mix generation scenario is based on the marginal
electricity generation in the U.S. and 3) 100% solar power charging stations scenario
just utilize solar energy as the resource of energy for battery charging system. Based on
these three scenarios the sustainability performances of battery electric vehicles (BEVs)
are evaluated across the U.S. in the operational phase of their life cycle. Eco-efficiency
is used as one of the well-known metrics to assess the sustainability which provide a
quantifiable combination of economic benefits and environmental impacts. To assess
the environmental impacts regarding three environmental indicators (carbon footprint,

energy use and water consumption) a two-phased model of LCA and PCA is developed.

Additionally, the states are ranked based on their eco-efficiency values for each scenario.
Furthermore, a judgment is done to determine the best charging scenario based on their
environmental and economic consequences. In the rest of the study the literature review
is explained in chapter 2, methodology and data description is explained in chapter
3. The results of LCA, eco-efficiency and ANOVA and Tukey HSD test are presented
in chapter 4. Finally,chapterb consists of the conclusion, limitation of the work and

potential future work.
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Literature Review

2.1 Studies of sustainability performance benchmarking such

as DEA and PCA

PCA is widely used in the literature of sustainability since in most of the studies there are
numerous indicators and dimension reduction techniques are required. Soler Rovira and
Soler Rovira [26] used PCA to compute composite sustainability index for fresh apple
trade in 36 countries. Salvati and Carlucci [27] used a PCA approach in a case study
of Italy to determine the contribution between 99 indicators and also determining their
contribution in sustainability index obtained by factor weighting model. Reisi et al. [28§]
obtained a sustainability index for transportation in Melbourne using a PCA approach
to combine 9 social, environmental and economic indicators. Bolcarova and Kolosta [29]
ranked 27 countries in Europe by considering their aggregated sustainability development
index regarding environmental, social and economic indicators by using PCA approach.
Mascarenhas et al. [30] used PCA to reduce the number of indicators used to compute
the sustainability score of the Algrave’s spatial plan. Mainali and Silveira [31] applied a
PCA approach to find a composite sustainability index to assess the performance of ten
energy systems for rural electrification industry in India. Ghaemi et al. [32] computed a
sustainability index to evaluate the soil quality in Astan-Qods in Iran by using PCA for
9 soil-environmental indicators. Dong et al. [33] applied PCA approach to compute the

sustainability index of natural gas industry in China.
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DEA is another approach to obtain composite sustainability index. This technique is
widely used in the literature of economic-production [34]. For example, Sueyoshi and
Wang [35] used a DEA approach for an environmental assessment in U.S. energy in-
dustry to propose to improve both economic and environmental aspect of their service.
Tajbakhsh and Hassini [36] evaluated supply chin networks which try to maximize the
economic benefits and minimize the environmental effects by developing a multi-stage
DEA model to assess the sustainability indexes of a manufacturing sector and a bank
sector. Faramarzi et al. [37] proposed a new Network DEA model to assess the efficiency
in a combined cycle power plant regarding social, environmental and economic indica-
tors. Liu et al. [38] computed three indicators as environmental efficiency, economic
efficiency and unified efficiency using DEA approach to evaluate the sustainability of
consolidation policy in China’s coal mining industry. Balezentis et al. [39] measured the
environmental performance index by applying DEA approach for Lithuanian economic
sectors. Schoenherr and Talluri [40] used a comparative analysis to compare the envi-
ronmental sustainability initiative which is calculated by DEA approach for some plants
in U.S. and Europe to survey its relation with the plants efficiency scores. Egilmez and
Park [41] computed energy and carbon footprint using EIO-LCA and then computing the
Eco-efficiency of U.S. manufacturing sectors by applying DEA approach. Tianqun and
Yuepeng [42] computed the eco-efficiency for a real data set including eleven years data
of Wuhan by using DEA approach. Lahouel [43] applied DEA approach for seventeen

firms in France to measure eco-efficiency.
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Methodology

3.1 LCA and PCA approach

Three environmental and one economic indicators are considered to obtain the eco-
efficiency as the ratio of economic output to environmental index. In order to obtain
a specific value for environmental impact index LCA and PCA approaches are jointly
used. The life cycle impacts corresponding to the environmental and economic indica-
tors computed by applying LCA is the input of PCA to make a specific value as the
composite environmental impacts (CEI) [22]. The application of PCA method is ex-
plained in section 3.3 in detail. In order to prevent having negative values of CEI a
large enough positive number should be added to the output of PCA. To calculate the
eco-efficiency, both direct and indirect economic output are considered. Life cycle cost
(LCC) as an influential factor in the GDP of a country is used as economic output. The
LCC is the nominator and the CEI is the denominator of the eco-efficiency ratio. The
states with higher eco-efficiency scores may have either higher economic benefits or less
environmental impacts or both of them. Figure.3.1 shows the steps to construct the

eco-efficiency.

3.2 Life cycle assessment of Battery electric vehicles

The operation phase is the most energy-water-carbon intensive phase as well as spa-

tially more sensitive compared to manufacturing and end-of-life phases. Therefore, the

7
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LCA
* Apply LCA
technique to
quantify and
economic (LCC)
and environmental
(Carbon footprint,
Energy use and
water cosumption)
indicator values.
+ Compare
scenarios based on
the LCA results.

PCA

*Normalize LCA results
by log transformation
technique.
*Provide the correlation
coctiicient matrix.
*Compute eigenvalues
and eigenvectors.
*Decide about the
number of
components.
*Compute the PCA
value for each state for
three scenarios.

" Eco-Efficiency g

*Comput Eco-
efficiency as the
ratio of LCC to
CEL
*Normalize Eco-
efficiency using
Min-Max
technique.
*Ranke the U.S
states based on
their Eco-
efficiency values
for each scenario.

»Add a large enough
positive constant value
to avoid negative CEI | |

Ny / "-\_‘5_ values. A - /";

FI1GURE 3.1: The steps to calculate Eco-efficiency.

manufacturing and end-of-life impacts are not considered. The functional unit of the
LCA is per vehicle-miles traveled (VMT). The operation phase impacts are composed
of well-to-tank (WTT) and tank-to-wheel (TTW), which are upstream and direct im-
pacts, respectively. Since there is no direct water consumption and tailpipe emissions in
the operation phase of BEVs, TTW carbon emissions and water consumptions are zero
for BEVs, regardless of the spatial variations. However, there are energy consumption
in both WTT (the amount of energy required to generate electricity) and TTW (the
amount of energy consumed during travel of a BEV) phases. Hence, the environmental

impacts of BEVs can be calculated as follows:

Foi=FCWTT¢; +TTW.;) (3.1)

Where, F is the footprint for the impact category c in state i. FC is per mile fuel
consumption in kWh. WTT and TTW stand for well-to-tank and tank-to-wheel phase
impacts in impact category c in state i. WTT impacts are calculated based on state-
specific energy mixes. TTW energy consumption is equal to direct energy consumption
per mile travel of an average BEV, which is approximately 0.3 kWh. Similarly, life
cycle cost impacts are obtained from literature [44] for the same vehicle type and same
assumptions. For more detail information about how the LCA impacts are calculated,

the complete life cycle inventory, and data source, please see [11] and [44].
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3.3 Application of PCA method

To compose the environmental sustainability index, one of the linear programming tech-
niques is utilized to make a combination of three environmental impacts. PCA is one
of the approaches using for unsupervised (data without any response variable) multi-
attribute and highly correlated data. PCA is based on a linear programming approach
which is widely used for reducing the dimension of multi-attribute data. This approach
makes one or several components (principle components) as new variables (Z;) which
are the linear combination of the main indicators, while there are not any correlation
between the components. Among all the components only a few first components in-
clude the most information and variance from dataset. Therefore, they are kept as new
variables and the remains are removed from the calculations [45]. The mathematical

framework of PCA is shown in Equation 3.2.

¢
Z1 =a] = anri + ajp®s + ... a1aTy

t
Zo = ay = 2171 + a22%2 + . . . A2 Ty

(3.2)

t
Zpy = a, = ap1T1 + ap2T2 + ... ApnTn

Where Z1, Z, ..., Z, are the components and the a;; is the coefficient of z; in ith

com-
ponent. Each individual component is computed as a linear combination of the variables
to cover the most of the information in the dataset with the largest variance and also

each component is orthogonal to its previous components.

3.3.1 Normalizing data

The output obtained from LCA technique is a matrix consists of the states of U.S.
as the rows and three environmental indicators and economic output as the columns.
This matrix is used as the base of the following calculations. Since the data obtained
from the LCA has different measuring units a normalization technique is used to reduce
the lopsidedness and the magnitude of environmental and economic output variables by
executing a log transformation technique. This normalization will lead to have more

accurate results of PCA.
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3.3.2 Finding indicators correlation matrix

After normalizing data, correlation matrix of three environmental indicators is computed
in Equation 3.3. The indicators with correlation values close to 1 (or -1) have a strong

correlation.

1 n
i =T ZXsiij (3.3)
s=1

Wherer;; is the correlation coefficient among indicator ¢ and indicator j and X,; is the

value of indicator ¢ in state s and Xj; is the value of indicator j in state s.

3.3.3 Computing eigenvalues and eigenvectors

In order to decide about the number of components in the PCA, eigenvalues in Equation

3.4.

IR — M| =0 (3.4)

Where R is the indicators correlation matrix and A represents the eigenvalues and I
is the unit matrix. The eigenvalues obtained from Equation 3.4 are attributed to each
principle component. The largest eigenvalue is attributed to the first principal component
since it should have the maximum percentage of variance. the percentage of variance

corresponding to component j is calculated by Equation 3.5.

Aj

—anl y (3.5)

percentage of variance =

In order to compute the principal component values Eigenvectors are calculated by Equa-

tion 3.6.

(R—=M\I)F; =0 (3.6)
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Where ); is the eigenvalue of component j and Fj is its eigenvector. The coefficient of
X;js in each principle component are obtained by dividing its related eigenvector over

the square root of its eigenvalue [26].

3.3.4 Deciding about the number of components

The components which their eigenvalues are grater or equal to 1 and consequently include
high variance in dataset are used to calculate PCA values and the remains are omitted,
since they do not include a large amount of variability of dataset and do not have any
impressive effects in our results. If only the eigenvalue of the first principle component
is equal or greater than one it is principle component; otherwise, PCA value is a linear
combination of those Z; s which their eigenvalues are greater or equal to 1 (Equation

3.7) [33].

3.3.5 Computing the PCA values for each state for three different sce-

nartos

After computing principal components we can compute PCA value using Equation 3.7

for each state for 3 different scenarios.

MZ1+XoZoy+ ...+ )\ij

PCA value =
CA value PYEED VD p

(3.7)

3.3.6 Adding a large enough positive value to PCA wvalues to avoid

non-positive values

We added a large enough number to each PCA value(See Equation 3.8) to avoid non-

positive amounts as our CEI [46].

CEI; = PC; +¢ (3.8)
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Where CE1T;; the composite environmental impact score of is state i, PC; is the PCA
score of state 7 and € is a positive constant number and is bigger than the smallest neg-

ative PCA score.

3.4 Mathematical framework for Eco-efficiency

For calculating the eco-efficiency as an index of the performance of electric vehicles re-
garding both environmental and economic aspects, the raw eco-efficiency is defined as

aratio of life cycle cost (LCC) to composite environmental impacts (CEI))(Equation 3.9).

Lcc
CEI

Eco — ef ficiency = (3.9)
In order to make the eco-efficiency score comparable between the states , the raw eco-
efficiency values are rescaled by applying a min-max technique(Equation 3.10) which is

used by [22] as well.

Ei - Emzn

Normalized(F;) = R
maz — min

(3.10)

E; is the raw eco-efficiency value for state ¢ and E,;, and i, are the minimum and

maximum values of eco-efficiency among all the states, respectively.
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Results

4.1 LCA Results

The LCI results for the environmental indicators which are computed by applying EIO-

LCA approach for three scenarios are shown in Figure 4.1, 4.2, 4.3.

In scenario 1, according to Figure. 4.1, WV is the state with maximum amount of carbon
emission. IN and KY are the second and third states with the highest amount of carbon
footprint, respectively. VT is the first and ID is the second state with minimum amount
of carbon footprint. The observations in Figure 4.2 show that the energy consumption
has the same pattern as carbon footprint. IN, OH, WV and KY are the states with high
amount of energy consumption while ID consumes the least amount of energy. Figure
4.3 presents that, ID, WA, OR and VT which are among the states with low amount
of energy and carbon footprint, consume the highest amount of water. As a result, the
amount of energy use has a direct relation with carbon footprint while it is obvious that

the amount of Water use has the inverse relation with other 2 indicators.

In scenario 2, Figure 4.4, 4.5, 4.6 shows that, IL. has the highest level of water use,
Energy consumption and carbon emission. OH, MI, IN, KY and WV have almost the
second largest amount of water use and carbon emissions. In Figure 4.5, the amount of
energy consumption has its largest amount in IL also some north eastern states (MA,
RI, CT, VT, ME and NH) have the large amount of energy consumption. TX has
the minimum amount of carbon footprint and water use and a low amount of energy
consumption among all the states. Since there are strong and positive relations between

13
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FIGURE 4.5: LCA results of energy footprint (MJ/mile) in scenario 2.

three indicators in this scenario, we can observe that the states with high (low) amount

of one indicator also have high (low) amounts for other 2 indicators.

In scenario 3, the policy is using only solar energy to charge the batteries. Therefore, as it
is shown in Figure 4.7, 4.8 and 4.9,the emission of carbon has been decreased considerably
in comparison with other two scenarios. The level of energy consumption (See Figure 4.8)
and water use (See Figure 4.9) also has the remarkable reduction compared to scenario
1 and scenario 2. In this scenario, IL has the maximum value of energy consumption,
water use and carbon emissions and consequently maximum environmental impact. After

IL, PA and NY are second and third states which have the highest amount of energy
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consumption, water use and carbon emissions. NM is the state that has the minimum

amount of effect on the environment duo to its low amount of environmental indicators.

By utilizing the LCA and economic output values of the states for each scenario, a com-
parison between three scenarios is made by applying the Analysis of Variance (ANOVA)
technique. ANOVA (analysis of variance) is a statistical technique widely utilized to
compare the means of several populations in previous studies [47, 48]. This comparison
is essentially a statistical hypothesis testing in which the null hypothesis (Hy) is that all
population means are equal with confidence of 1 — . ANOVA considers the propor-
tion of variance between the populations over the variance within the populations and

calculates an F-value. For the large amount of F-value, it will be more likely to reject
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the null hypothesis. If the corresponding P-value of F-value which is extracted from F
distribution is less than the a , the null hypothesis is rejected and claim that the means
of the populations are not equal. The framework of ANOVA is shown in Equation 4.1
[49].

H() :M1 = Mg = M3 (4 1)

H; : At least two scenarios have different averages for one specific indicator.

Where, M, My and Ms are the average of each environmental indicators in scenario
1, 2 and 3, respectively. In this study , In order to determine the difference between

the means of each indicator in three scenarios the one way- ANOVA technique is used
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with 95% confidence interval. The results of ANOVA are provided in Table 4.1. The
results demonstrate that, for all four variables (carbon, water, energy and LCC) the
null hypothesis is rejected due to its very small P-values (0.000 < 0.05) . These results
(See Table 4.1) shows that the alternative hypothesis (H;) will be true and at least two

scenarios do not have equal means for each indicator.

TABLE 4.1: ANOVA results

DF Sum. Squ Mean.Squ F-Value P-Value

Carbon Betvx.ze.en Groups 2 1397359 698679 330 0
Whitin Groups 144 304889 2117
Between Groups 2 6.21 3.11

Water o ithin Groups 144 13.37 0.09 3328 0
Between Groups 2 277.6 138.8

EDerey  whithin Groups 144 23.7 0.16 -2 0

LCC Betx.zve(?n Groups 2 3 1.5 30.4 0
Whithin Groups 144 7.1 0.05

Considering the results that are obtained from ANOVA (null hypothesis is rejected for
all four indicators) at least there are two scenarios for each indicators that have unequal
averages. Therefore, to determine which scenarios have different means for each indicator,
one method is doing t-tests for each two scenarios but this method will increase the type I
error (The probability of rejecting a true null hypothesis). There is another method which
is used very common after observing the rejection of Hg in ANOVA which called Tukey
HSD test. This test defines confidence intervals for each two groups and with regard to
their difference of averages determines whether there is any significant difference between

their means or not [50].

The results of Tukey test which have been shown in Table 4.2, represent that for carbon,
energy and LCC the differences between each two scenarios are significant because their
lower and upper bound values have the same sign (both of them are positive or negative)
and zero is not in their confidence interval; on the other word, M; — M; are not equal to
zero. The small amounts of P-value (0.000 < 0.05) also illustrate that the null hypothesis
is rejected for each two scenarios except water consumption in scenario 2 and 3 since zero
is in the interval of their lower and upper bound and consequently, the P-value (0.16) is

not small enough to reject Hy. (See Table 4.2)

Regarding the results that we obtained from the ANOVA and Tukey-tests and by consid-

ering the averages of three environmental variables, the third scenario has the minimum
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TABLE 4.2: Tukey HSD -test results

Mi-Mj Lower Bound Upper Bound P-value

Scenario2- 1 40.12 18.11 62.14 0

Carbon Scenario3- 1 -183.82 -205.83 -161.8 0

Scenario 3-2 -223.95 -245.96 -201.93 0

Scenario 2-1  -0.37 -0.51 -0.22 0

Water Scenario 3-1 -0.48 -0.63 -0.34 0
Scenario 3-2  -0.11 -0.26 0.03 0.16

Energy Scenario 2-1 0.5 0.3 0.69 0

Scenario 3-1  -2.64 -2.83 -2.44 0

Scenario 3-2  -3.13 -3.33 -2.94 0

Scenario 2-1  -0.35 -0.45 -0.24 0

LCC Scenario 3-1  -0.21 -0.32 -0.11 0

Scenario 3-2 0.13 0.03 0.24 0

amount of carbon and energy footprint with significant differences compared to scenario 1
and 2 and the water consumption also has the least value among three scenarios although

its difference is not remarkable in comparison with scenario 2 .

Considering the descriptive statistics of three environmental indicators which are pro-
vided in Table4.3, The average of carbon emission of first and second scenarios are 16.98
and 20.47 times while the means of water consumption are 25 and 6.5 times and the

averages of energy use are 3.33 and 3.77 times more than scenario 3,respectively.

Consequently, scenario 3 is the best scenario considering its extreme lowest environmental
impacts in comparison with the first and second scenarios. Scenario 2 has the lower
averages of carbon emission and energy consumption but the higher average of water
consumption in comparison with scenario 2 (See Table 4.3). LCC is another index which
has the important effect on the eco-efficiency scores. Scenario 1 had the highest average
of economic output among all three scenarios. The second average of economic output
is related to third scenario and scenario 1 has the minimum amount of economic output.

(See Table 4.3)

4.1.1 Results of principal component analysis

The average of correlation coefficients among the indicators for three scenarios are pre-

sented in Table 4.4. There are strong positive correlations among all indicators in scenario
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TABLE 4.3: Descriptive statistics of variables

Range Min Max Mean Std.deviation

Water 2.45 0.08 2.54 0.5 0.52
Scenario 1 Carbon 311.18 3.53  314.7 195.32 76.06
Energy 3.46 1.77 5.22 3.76 0.69
LCC 0.62 3.02 3.64 3.37 0.16
Water 0.13 0.08 0.21 0.13 0.04
Scenario2 Carbon  73.49 205.76 279.25 235.45 20.81
Energy 0.34 4.1 4.44 4.26 0.11
LCC 0.46 2.84 3.3 3.02 0.12
Water 0.01 0.01 0.02 0.02 0
Scenario 3 Carbon 9.08 7.86  16.94 11.5 1.87
Energy 0.05 1.11 1.16 1.13 0.01
LCC 1.6 2.4 4 3.15 0.32

1 and 2. This means that the more water and fuel are consumed, the more energy is
used.

TABLE 4.4: The correlation coefficient (CC) among carbon (C),water (W) and energy
(E) footprints in three scenarios

Scenario 1 Scenario 2 Scenario 3

CC W E C W E C W E C
Water 1 -079 -058 1 069 097 1 096 0.99
Energy -0.79 1 09 069 1 083 09 1 097
Carbon -0.58 0.9 1 097 083 1 099 097 1

In all scenarios except scenario 1, all indicators have strong and positive correlations but
in scenario 1 the water withdrawal indicator has a negative correlations with the amount
of energy consumption and carbon footprint. Regarding to the significant correlations
between the indicators we used PCA method to compute CEI index. The values of

percentage of variance and eigenvalue of the PCA components are shown in Table 4.5.

TABLE 4.5: The eigenvelues and percentage of variance (POV) of the components in
three scenarios

Scenario 1 Scenario 2 Scenario 3
Eigenvalue POV Eigenvalue POV Eigenvalue POV
Component 1 24 79.89 2.68 89.5 2.98 99.38
Component 2 0.48 15.94 0.31 10.21 0.02 0.5
Component 3 0.12 4.17 0.01 0.29 0 0.12

In order to decide about the number of component to obtain PCA values, it is necessary

to select the components which their cumulative percentage of variances cover the most
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information in the dataset. Therefore, their eigenvalue should be greater or equal to
1.For all three scenarios only the first components have the most percentage of variance
(79.9, 89.87 and 97.28) and their eigenvalues are more than 1. (See Table 4.5) Therefore,

the first component (Z;) is used to obtain PCA vales for all three scenarios.

The correlation between each indicator and the first component are shown for three
scenarios in Table 4.6. In scenario 1 there are strong positive correlation between Energy
consumption and Carbon emission values and the scores of PCA, while there is a strong
negative correlation between the water consumption values and PCA. This means that
by increasing the value of water consumption PCA value is decreasing in this scenario.
For second and third scenario all the correlations are positive and close to 1. Therefore,

by increasing the values of each indicator PCA value is increasing, consequently.

TABLE 4.6: The correlation between the variables and the first components

Scenario 1 Scenario 2 Scenario 3

Energy 0.96 0.89 0.99
Carbon 0.86 0.99 0.99
Water -0.85 0.95 0.99

The variables factor maps show the vector of the environmental indicators in three sce-
narios. Dim 1 and Dime 2 display the percentage of variance of the first and second
component in PCA, respectively (See Figure 4.10). The negative correlations among
water consumption and energy use and carbon footprint due to their opposite directions
are observed in the first scenario, where all other indicators in scenario 2 and 3 have
the positive correlations. In all three scenarios the first components (Dim 1) represent
the largest percentages of variance. Furthermore, the correlations among the indicators
and their related PCA scores are also observable by drawing an orthogonal line from the
endpoint of each vector to the Dim 1 axis for each dimension. The greatest correlations
among PCA values and environmental indicators belong to third scenario, since in case

of the obtained value is very close to 1.

For computing the composite environmental impact (CEI), after doing log transformation
to reduce the skewness of environmental indicators and economic output, PCA is applied
for each scenario. A large enough number (6) is also added to each computed PCA value
to avoid having the negative values as the CEL Then, the eco-efficiency scores as a ratio

of life cycle cost over composite sustainability index for three scenarios are computed
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FIGURE 4.10: The variables factor map (PCA) for a) Scenario 1, b) Scenario 2 and c)
Scenario 3.

for all the states. Afterward, the states are ranked considering their descending orders
of eco-efficiency scores. The values of CEI and log transformed LCC and eco-efficiency

scores of 49 states are shown in Table 4.7.

The values of eco-efficiency in Table 4.7, present the raw eco-efficiency values which
are obtained by dividing the LCC values of different states in to the CEI values. To
rescale the values of raw-eco efficiency we used the min-max technique (Equation.3.9) to
normalize the raw-eco-efficiency scores and put them into the zero and one interval .The
values of normalized eco-efficiency for three scenarios are shown in Figure 4.11, 4.12 and
4.13.

In scenario 1, ID has the highest amount of eco-efficiency. Since the eco-efficiency has a
direct relation with life cycle cost (LCC) value and the inverse relation with CEI, this
state has the minimum score of CEI among all the states .The amount of LCC (3.35
cents/ mile) makes it the best state by considering both economic and environmental
impacts. VT is the second state which has the high value of eco-efficiency since it has
the second lowest value of CEL. DC has the maximum amount of CEI and this leads to

make it the least eco-efficient state. (See Figure 4.11)

In scenario 2, TX has the maximum amount of eco-efficiency due to its low value of
CEI and also large enough amount of LCC. Totally, it is concluded that the western
and central states have higher amount of eco-efficiency than eastern provinces because

of their less environmental impacts and consequently their lower amounts of CEI which
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TaABLE 4.7: CEI and raw eco-efficiency (EE) scores for three scenarios

State CEI1 EE1 State CEI2 EE2 State CEI3 EE3
ID 1.049 1.152 TX 3447 0308 NM 2.322 0.377
vT 1.158 0.969 CA 3568 0299 VT 3.341  0.375
WA  1.778 0.68 ID 3.671 0291 AZ 2.579 0.339
OR 2765 0437 OR 3671 0291 WY 3306 0.311
SD 3.629 0351 UT 3671 0291 TX 3.962 0.294
MT 4.893 0.252 WA 3.671 0291 NV 3.17  0.276
NY 441 0251 WY 3671 0291 DE 4214  0.276
CA 5106 0.23 AR 3846 0.279 UT 4.128  0.258
TN 5477 0.228 KS 3.846 0279 CA 3.947 0.252
ME 5086 0221 OK 3846 0279 FL 4.59  0.246
NH 5203 0216 NV 4131 0262 SD 4.822 0.235
NJ 5.702 0.211 SD 4564 0245 CO 4.612 0.231
IL 6.072 0.21 AZ 455 0238 CT 5.336  0.229
AL 5.792 0.209 CO 455 0238 ND 5.329 0.224
SC 5.828 0.209 NM 455 0238 KS 4.856 0.219
CcT 547 0.206 FL 4429 0236 OK 4.725 0.218
MD 6.104 0202 NY 4807 0.22 KY 5436 0.214
A7 6.0650 0.201 MT 5244 0203 WA 6584 0.211
NC 6.092 0.199 ND 5975 0.187 SC 5237 0.21
NE 6.42 0.198 NE 5975 0.187 NC 5.329  0.206
AR 597 0.198 AL 6.29 0.181 NE 5.561 0.203
MN 6418 0.196 GA 6.29 0.181 LA 5574 0.203
VA 6.338 0.195 LA 6.29 0178 GA 5.546 0.192
PA 6.383 0.193 MS 6.29 0.178 ID 5587 0.191
WI 6.617 0192 NC 629 0178 MT 6.015 0.188
IA 6.623 0.19 SC 629 0178 MD 6.3354 0.188
NV 6401 0.189 TN 6.29 0.178 MN 6.25 0.186
CO 6.887 0187 WI 6474 0.172 AR 6.015 0.183
MO 6.844 0.187 DC 6.7538 0.163 OR 7.42 0.18
KS 6.806 0.186 DE 6.758 0.163 DC 6.986 0.175
ND 6.76 0.186 ™MD 6.758 0.163 WI 6.88 0.174
MI 6.832 0.185 NJ 6.758 0.163 NH 7.608 0.172
GA 6.501 0.18 PA 6.758 0.163 ME 6.775 0.172
OK 6.725 0.178 TIA 7.63 0.156 VA 7.327 0.171
OH 7116 0.177 CT 6.957 0.154 NJ 7.203 0.17
KY 7.05 0177 MA 6.957 0.154 1IA 6.678  0.169
LA 6.706 0.176 ME 6.957 0.154 MI 7409  0.169
WV 7138 0176 NH 6.957 0.154 OH 7513 0.167
WY 7.112 0.176 RI 6.957 0.154 MS 6.59  0.167
MS 6.834 0175 VT 6957 0.154 RI 6.986  0.166
IN 7.289 0.173 VA 743 0.151 MO 6.909 0.164
TX 7.037 0169 MN 7.63 0.146 1IN 7.203 0.161
ur 7197 0.168 MO 7.764 0.145 TN 6.67 0.16
NM 7274 0166 KY 8488 0.139 MA 7894 0.151
MA 6773 0166 IN 8488 0.138 WV 8691 0.144
DE 7338 0.164 MI 8.488 0.138 AL 8137 0.139
FL 7.075 0.163 OH 8488 0.138 PA 8971 0.133
RI 7.595 0.148 WV 8748 0.134 NY 8.988 0.133
DC 8.256 0.147 IL 9.132 0.131 IL 10.431 0.117
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FIGURE 4.12: Eco-efficiency scores of scenario 2.

is one of the most important factors that determine the value of eco-efficiency in the
states. IL has the highest values of all three environmental indicators and consequently
the largest value of CEI. Although this state has the maximum amount of economic

output, the large value of CEI makes it the last eco-efficient state. (See Figure 4.12)

In scenario 3, NM has the maximum amount of eco-efficiency duo to its minimum amount
of CEL. VT and AZ are the second and third scenarios with high score of eco-efficiency,
respectively. While the CEI value of AZ is less than VT, AZ is more eco-efficient since
it has the greater value of LCC than VT. IL is the least eco- efficient has the maximum
value of CEI and also its LCC score is not high enough to make a significant change in

its low value of eco-efficiency. (See Figure 4.13)
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4.1.2 Comparison of eco-efficiency results with previous DEA analysis

In another study [1] the efficiency of 49 states in U.S. conducted by applying an agent-
based and state benchmarking model. In, this study we survey if there is any relation
between our findings and previous study. Therefore, therefore, we used a correlation

analysis. The results of our survey are shown in Table 4.8.

TABLE 4.8: The correlation coefficient (CC) among this study and previous study [1]

Scenario 1 Scenario 2 Scenario 3

CC 0.43 0.88 0.89

The high correlations, especially among scenario 2 and 3 in our study and previous study
shows that there are strong and positive relationship between the results of eco-efficiency

based on PCA have the strong relation with another study. (See Table 4.8)
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Conclusion

In this study, three environmental (CO2 emission, energy use and water consumption)
and economic output indicators are considered to measure the sustainability performance
of BEV s for 49 states in U.S. Three different scenarios are studied. First, the environ-
mental impacts are quantified by applying the LCA technique. The results of comparing
LCA of three scenarios by using ANOVA and Tukey-tests show that third scenario has
the minimum average of all three environmental indicators and can be introduced as the

cleanest scenario.

The third scenario, because of obtaining all the required energy of BEVs from the solar
energy makes a reduction in the amount of carbon emission in all the states and also
the value of water consumption and energy use has decreased notably in most of the
states. The first scenario has the maximum value of economic output and the third and
second scenarios have the second and third highest averages of economic output, respec-
tively. Additionally, because of the high correlation between environmental indicators,
the PCA approach is applied to reduce the dimension of three environmental indicators
and generate a unique composite environmental impact. Next, the Eco-efficiency for
each state is computed and the states were ranked regarding their increasing value of
eco-efficiency. In scenario 1, ID has the highest amount of eco-efficiency. In scenario 2,
TX has the maximum amount of eco-efficiency due to its lowest value of CEIL Totally
we can conclude that the western and central states have higher amount of eco-efficiency

than eastern provinces. In scenario 3, NM has the maximum value of eco-efficiency.

26
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As the last step, the correlation analysis is done to determine whether there is any mean-
ingful relation between the results obtained from previous study (DEA approach) versus
this study (PCA approach).A correlation analysis among this work (PCA approach) and
previous study (DEA approach) is also made. From the results it is found that there
are strong positive relations between the results of two approaches in scenario 2 (0.88)
and scenario 3 (0.89) and the moderate positive relations (0.43) between the results of

scenariol among two approaches.

The results of the environmental and the economic impacts of BEVs can be used for
the researchers and government to make correct decisions in the transportation system.
Furthermore, the method that we used in this study can be applicable for all the trans-
portation and industries problems which are dealing with the several correlated indicators

and consequently need a dimension reduction technique.

In this study the survey has been executed for just BEV s that are a small branch of
passenger electric vehicles. This study can be extended by considering other types of
electric vehicles like plug in-hybrid and hybrid electric vehicles. Additionally, only the
operational phase of the BEVs life time is considered here. It is possible to extend it
to cradle- to- gate life cycle perspective. As another limitation in this study, just the
environmental impacts of BEVs are taken in to account to assess the sustainability index
regardless of their economic and social impacts. In addition to Economic input output
LCA model is used to assess the environmental impacts. The computations can be more

accurate if using other LCA models like hybrid or process based LCA as well.
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