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Multilingual Distributed Word Representation Using Deeplearning

Gihad Sohsah

Abstract

In this work, the problem of extracting meaningful multilingual word embeddings is

studied with special focus on morphologically-rich languages. In order to achieve mul-

tilingualism, a data-driven method that makes use of a sentence-aligned parallel corpus

is used. This method is expanded hierarchically to take account for the words parts,

tokens or morphemes, rather than just considering the raw words as the basic language

units. Also various architectures and aggregation functions for constructing word and

sentences embeddings given their parts are studied and compared. The aggregation func-

tion for a speci�c function is chosen according to the nature of the particular language.

To evaluate the di�erent methods, one sanity check test is used and two more tests are

used to evaluate the quality of the resulting representations. The sanity check which is

mainly used to make sure that the models are learning anything from the corpus and is

also used for the parameter tuning, is the paraphrase test. The second test, t-SNE, is a

visual test that just gives insights about the model's ability to bring semantically equiv-

alent words and sentences close to each other in the space. The third test, that gives

the most meaningful measure, is the cross-lingual document classi�cation task. The

(CLDC) task is concerned with training a supervised classi�er using documents from

one language, the rich-resources language, and testing it using another language, the

low-resources one, while maintaining a satisfying performance. The performances of the

models are described in terms of the F1-score. As the experiments have shown, a multi-

lingual framework for extracting word-embeddings jointly for both English and Turkish

that uses additive functions at both sentences and words level results the best result in

terms of the F1-score achieved in the (CLDC) task. Various data preprocessing methods

are also studied, the words can be either extracted by simply dividing the sentences using

the space as a delimiter, using a tokenizer, or using a morphological analyzer in the case

of the morphologically-rich languages. The experiments showed that using the raw data

format for English and the morphemes as the basic language unit for Turkish yields the

best results.

Keywords: Natural Language Processing, Deeplearning, Neural Networks,

Morphologically-rich languages, Turkish NLP Natural Language Processing, Lan-

guage Model, Deeplearning, Neural Networks, Multilingual, Word Embeddings



Derin ö§renme ile çok dilli, da§�t�lm�³ kelime temsilleri

Gihad Sohsah

Öz

Bu çal�³mada manal� çok dilli temsillerin ç�kar�lmas� problemi morfolojik olarak zen-

gin dillere odakla incelenmi³tir. Çok dillili§i sa§lamak için cümle olarak e³le³tirilmi³

metinleri kullanan veri tabanl� bir metot kullan�lm�³t�r. Bu metot sadece yal�n kelimeleri

de§il, hiyerar³ik olarak kelime parçalar�, ekleri ve di§er morphemeleri dikkate alacak

³ekilde hiyerar³ik olarak geli³tirilmi³tir. Ayr�ca, parçalar�ndan kelime ve cümle temsilleri

olu³turmak için farkl� mimari ve birle³tirme fonksiyonlar� incelenmi³ ve kar³�la³t�r�lm�³t�r.

Bir dilin birle³tirme fonksiyonu o dilin özelliklerine göre seçilmi³tir. Farkl� metotlar�

kar³�la³t�rmak ve temsillerin amaca uygunlu§unu belirlemek için, biri h�zl� kontrol amaçl�

olmak üzere üç test kullan�lm�³t�r. H�zl� kontrol için olu³turulan paraphrase testi hem

metinlerden ö§renme olup olmad�§�n� kontrol etmek, hem de parametreleri belirlemek

için kullan�lm�³t�r. �kinci test, t-SNE, modelin birbirine e³it kelime ve cümleleri bir araya

getirmesinin görsel bir testdir. En anlaml� sonucu veren üçüncü test bir diller aras� dökü-

man s�n��and�rma (CLDC) testidir. Bu test çok kaynak bulunan bir dilde e§itilen göze-

timli ö§renme s�n��and�r�c�n�n az kaynak bulunan bir dilde performans kayb� olmadan test

edilmesiyle ilgilidir. Modellerin performans� recall ve precision'� göz önünde bulunduran

bir ölçü olan F1-skoru ile aç�klanmaktad�r. Bu çal�³mada kelime temsilleri kullan�larak

�ngilizce gibi çok kaynakl� bir dilden, Türkçe gibi az kaynakl� bir dile bilgi aktar�lmas� ve

�ngilizce üzerinde e§itilen modellerin Türkçe dökümanlar�n s�n��and�r�lmas�nda yeterli

performans sa§lamas�na odaklan�lm�³t�r. Bu test de, averaged-perceptron s�n��and�r�c�s�

TED-Corpus kullan�larak e§itilmektedir. Bu s�n��and�r�c� e§itildikten sonra bir dökü-

man� tesmiline göre 14 s�n�ftan birine atamal�d�r. Bu döküman temsili bütün kelimelerin

temsillerini ekleyerek olu³turulmaktad�r. Averaged perceptron iki s�n��� bir s�n��and�r�c�

oldu§undan one-vs-all tekni§i kullan�larak bu s�n��and�r�c� 14 s�n��� bir s�n��and�r�c�ya

dönü³türülmü³tür. Deneylere göre, kelime temsillerini Türkçe ve �ngilizce için ortak

ç�karan ve toplama kompozisyon fonksiyonlar�n� kullanan çok dilli yöntem, hem kelime

hem cümle seviyesinde CLDC F1 skoru olarak en iyi sonuçlar� vermi³tir. Farkl� veri i³leme

yöntemleri incelenmi³tir. Cümleler bir tokenizer kullanarak bo³luklar ile kelimelere yada

zengin morfolojisi olan diller için bir morfolojik inceleyici kullan�larak morphemelerine

ayr�labilir. Deney sonuçlar�na göre �ngilizce'de kelimeleri, Türkçe'de morphemeleri kul-

lanmak en iyi sonuçlar� vermi³tir.

Anahtar Sözcükler: Do§al dil ³leme, derin ö§renme, sinir a§lar�, Zengin mor-

folojisi olan diller, Türkçe do§al dil i³leme Mühendislik, Deneysel Psikoloji
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Chapter 1

Background

1.1 Introduction

Distributed word representation, also known as word embedding, is a set language mod-

elling and feature representation techniques for various natural language processing tasks.

They also can be de�ned as a set of low-dimensional vector space where each vector rep-

resents a word and the dimensions are the potential features to describe the semantic and

syntactic properties of the word. It is a low-dimensional space compared to the number

of the words in the vocabulary. Each word is described in the space as a contentious

real-valued vector such that with similar semantics, syntactic properties, or share the

same context in the corpus should be in proximity to each other in the space. Word-

embedding can be extracted from huge corpora using various methods, including neural

networks, dimensionality reduction methods, and even probabilistic methods. In the

following subsections we overview the various methods for extracting word embedding.

1.2 Dimensionality Reduction Methods

In this set of methods, word embeddings are extracted by running dimensionality reduc-

tion algorithms on the word-context or words co-occurrence matrix of the corpus. These

methods are easier and less time-consuming than the neural methods which need long

time and tons of data for training.

1.2.1 Word co-occurrence matrix

The word-context matrix, or word co-occurrence matrix, is formed by counting the oc-

currences of the words in the contexts. For example, for the corpus C we have two

1
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main sets, 1)Vw which represents the words vocabulary. 2)Vc which represents the con-

texts vocabulary. Each c belongs to Vc is an L-sized window, and the context of any

word is all the surrounding words. The co-occurrence matrix is formed by computing all

probabilities P (w | c).

P (w | c) = P (w, c)

P (c)
=

n(w, c)∑
w n(w, c)

(1.1)

The co-occurrence matrix size is dependent on the number of words in the vocabulary,

so using the discrete distribution directly as word embeddings is not practical for large

vocabulary. That is why after forming the word co-occurrence matrix, a dimensionality

reduction algorithm, such as Principal Component Analysis, can be used to extract the

word embeddings.

A method that exploits Hellinger PCA as a technique for extracting word embeddings

from words co-occurrence matrix is described in Lebret and Collobert [14]. In their work,

they use Hellinger distance to compute word discrete distributions. Afterwards they use

PCA to reduce the dimensions in order to get the �nal word embeddings. They show

that a simple spectral method as PCA can generate word embeddings that are at least

as good as the ones extracted using deep-learning architectures.

1.2.1.1 Principal Component Analysis

Principal Component Analysis, PCA, was �rst formulated in statistics by Pearson [21]

, who formulated the analysis as �nding "lines and planes of closest �t to systems of

points in space". As illustrated by Wold et al. [24] , PCA provides a way of reducing

a multivariate data matrix X as the product of two small matrices T and P ′. These

matrices, T and P ′ are believed to capture the essential data represented by the matrix

X. By plotting the columns of T , we can get a picture of the dominant "object patterns"

and by plotting the rows of P ′ we can get a picture of the dominant "variable patterns".

PCA can be used for various tasks, including: 1) simpli�cation, 2) data reduction and

compression, 3) modelling, and 4) feature-selection for machine learning problems. In

this context, PCA is used to reduce the data and detect the correlating dimensions given

the word-context or the words co-occurrence matrix and then map the data into a space

of a set of linearly uncorrelated dimensions called principal components.

Another work by Levy and Goldberg [15] tackles the problem as an implicit matrix fac-

torization problem. They consider the words co-occurrence matrix and try to broaden
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the understanding of the problem. They argue that the training objective of the neural-

network language modelling is to maximize the dot-product between the vectors of word-

context pairs that frequently co-occur. On the other hand, it is desirable to minimize the

dot-product for random word-context pairs. In their work, they try to model Skip-Gram

with Negative Sampling known as, SGNS, training method as weighted matrix factor-

ization problem. They show that the objective of the training is implicitly factorizing

a shifted Pointwise Mutual Information matrix. In the following subsections we give

further details about PMI matrix, and how to model the objective of SGNS.

1.2.1.2 Pointwise Mutual Information Matrix

From information theory, pairwise mutual information is an association measure between

two discrete outcomes p and q, it can be de�ned as:

PMI(x, y) = log
P (x, y)

P (x).P (y)
(1.2)

In the NLP context, PMI(w, c) is an association measure between a word w and a

context c. the use of PMI as an association measure was �rstly introduced by Church

and Hanks [7]. The PMI for word-context can be estimated using the counts of occurences

as follows:

PMI(w, c) = log
count(w, c).|C|
n(w).n(c)

(1.3)

An extension to this de�nition to make it more �t for NLP problems is the positive PMI

metric. Where all negative entries in the matrix are replaced by zero. Or more formally,

for each (w, c) pair we do the following:

PPMI(w, c) = max(PMI(w, c), 0) (1.4)

1.2.1.3 Skip-Gram with Negative Sampling

In Skip-Gram with negative sampling SGNS introduced in Mikolov et al. [17] the objec-

tive can be de�ned as follows:

Consider a word context pair (w, c) and a corpus C. let P (C = 1 | w, c) be the probabil-
ity that (w, c) is a valid pair in the corpus, i.e. there is actually an L-sized window c in
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the corpus C that contains the word w. And let be the probability that it is not a valid

pair in the corpus.

The negative sampling objective tries to maximize P (C = 1 | w, c) for all (w, c) pairs
in the corpus while also maximizing P (C = 0 | w, c) for randomly samples negative

pairs. This assmes that a randomly selected context for a given word is likely to result a

non-existing pair (w, c) in the corpus C. Using this understanding as a departure point,

the problem can be modeled implicitly as a matrix factorization problem for the PPMI

matrix. Therefore, a spectral dimensionality reduction algorithm can be casted.

1.3 Neural Networks Methods

In this set of methods, neural networks, with various architectures, are exploited to learn

the words vector representations namely, word embeddings, from large training corpora.

There have been many e�orts that showed success in using neural networks as a mean

for extracting word embeddings. Here we discuss some of the most popular methods and

review their results.

1.3.1 SENNA embeddings

In their work, Collobert and Weston [8] propose a neural-networks-based method for cap-

turing the word embeddings using an architecture that learns to distinguish between an

n-gram sequence from the training corpus and a corrupted version of it. The corrupted

sequence is generated by replacing a word in the middle with an arbitrary word from the

vocabulary. The replaced word is the word of interest. The training objective is to learn

to associate a higher score with the original sequence than the score associated with the

corrupted one. The loss is calculated using a hinge function and then backprobagated

through the model to change the word embeddings of the word of interest that has been

replaced in the corrupted sequence. In their benchmarking results, they showed that

the extracted embeddings, when used as feature vectors in the absence of any other fea-

tures, are fairly well performing in various NLP tasks. They performed their tests using

tasks including 1) chuncking, 2) part-of-speech-tagging, and 3) named-entity recognition.

Figure 1.1 illustrates the basic model they propose for learning the embeddings.
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Figure 1.1: The neural network architecture proposed by Collobert and Weston [8]
for extracting word embeddings using a �xed-sized window. The same architecture was
also exploited by Turian et al. [23] with few di�erences in the experimental settings.

1.3.2 Turian embeddings

In Turian et al. [23], they propose a semi-supervised model for NLP tasks. They imple-

mented the same model described by Collobert and Weston [8] but with the following

di�erences:

• they corrupted the last word in the n-gram sequence instead of the middle.

• they choose di�erent learning rates for the embeddings, i.e. lookup table parame-

ters, and the neural network weights.
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In their tests, they not only use the word embeddings, but they also combine them with

typical NLP features to improve their results. And for this reason, it is a semi-supervised

method, because not all features are learned in an unsupervised manner.

1.3.3 HLBL embeddings

Mnih and Hinton in their work Mnih and Hinton [18] use a variation of Restricted

Boltzmann Machines, RBM, called Factored Restricted Boltzmann Machine, FRBM, to

obtain the language model. In the model training, they train their model to predict the

nth word in an n−gram sequence given all the n−1 words. They proposed a log-bilinear

loss function to calculate the loss at each iteration. Later, in Mnih and Hinton [19], they

introduced a hierarchical log-bilinear model, HLBL, to overcome the drawback of the

slow training and testing. This model was primarily inspired by the hierarchical method

proposed in Morin and Bengio [20] that prunes the search space for the next word without

the need to compute all the probabilities for all the words in the vocabulary.

Before the training of the model, a binary tree for words is constructed. This tree can

be constructed using expert data, data-driven methods, or a hybrid method that utilizes

the two. Then a hierarchical clustering is performed on this tree based on words usage.

The training of the HLBL model is done using the trees resulting from the clustering,

and as shown in their results that helped leveraging the performance. However, they

use perplexity as a performance measure which is arguably an inadequate metric for

evaluating the quality of the information captured by the word embeddings Chen et al.

[6].

1.3.4 Huang's embeddings

In their work, Huang et al. [12] try to tackle the challenge of synonymy, i.e. words with

multiple meanings. They do this by incorporating the local n − gram contexts with

the document global context to disambiguate the multiple meanings of the words. They

exploit the same architecture proposed by Turian et al. [23], meaning that, the model is

trained to assign a higher score to an n − gram sequence than the score assigned to a

corrupted version of it as proposed by Collobert and Weston [8]. However, the corrupted

version is the same as the original one after replacing the nth word with an arbitrary

word from the vocabulary. This is done on both local and global contexts as shown in

Figure 1.2 and scores are combined using a summation function.
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Figure 1.2: The architecture proposed by Huang et al. [12] for extracting word em-
beddings using both local and global contexts to capture the multiple meanings of the
same word by learning from the global context i.e. document words. The model uses

the same archiecture proposed by Turian et al. [23].

1.3.5 Word2vec

One of the most publicly famous available word embeddings are the ones known as,

word2vec. The model has been initially proposed by Mikolov et al. [17] and used Skip-

gram and Skip-gram with Negative Sampling, SGNS, explained in Section 1.2.1.3 for

models training. In their work, they show that the subsampling of the frequent words

leads to faster training and better representations of less frequent words. They also

propose an approach for learning phrases representations by simply representing each

phrase as a single token in the vocabulary. They made the code for training the word

and phrase vectors available as an open-source project 1.

1.3.6 Polyglot

Since most of the methods available focus primarily on English and rich-resources lan-

guages, Al-Rfou et al. [1] tried to generate word embeddings for multilingual NLP. In

their work, they use a similar architecture that is used in Collobert and Weston [8] to

generate SENNA embeddings descriped in section 1.3.1. However their method di�ers

from the one used to generate SENNA in the following ways:

• they do not limit their models to English, they also train embeddings for a hundred

and seventeen other languages.

• they do not do excessive normalization in the preprocessing step to preserve lin-

guistic features that might get lost by doing so. For example, their English model

represents the word "Apple" by a vector closer in the representation space to IT

1code.google.com/p/word2vec
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companies vector representations and the word "apple" by a vector closer to fruits

vector representations.

They released the embeddings and the code for obtaining them as an open-source project

for the community to utilize 2.

1.4 Cross Lingual Models

The methods described so far focus on extracting word embeddings one language at a

time. Meaning that, the models are trained to induce the distributed representations for

just one language and to get the representations for a di�erent language a new model

need to be trained. This also means that each language will be represented in a space

that is separate from all the other languages. And there is no guarantee that words

with the same or similar meanings from di�erent languages will have vectors that are

close to each other if we assumed that they are in the same space. However, there is

a relatively new research trend that spots the light on how to train the models jointly

for two or more di�erent languages. Such that semantically similar words are adjacent

to each other in the space irrespective of the language. In the following subsections we

review two of the methods that can be utilized to generate jointly trained multilingual

word embeddings. One of them Hermann and Blunsom [11] use a data-driven method

by utilizing parallel corpora to jointly train the models. While the other Klementiev

et al. [13] can be described as an algorithm-driven since it uses the multitasking learning

method proposed by Cavallanti et al. [5] to extend the logistic regression algorithm to

make it capable of optimizing more than one model jointly.

1.4.1 Klementiev et al. embeddings

In their work, Klementiev et al. [13] aim to extract word embeddings that capture the

syntactic and semantic features of the words such that words with similar meanings are

brought closer in the space regardless the language. They use a variation of the neural

network model described by Bengio et al. [3] and do the joint training using the multitask

learning (MTL) setting proposed by Cavallanti et al. [5]. In the following subsections we

give more details about the (MLT) and the neural network model they use.

2www.cs.stonybrook.edu/�dsl
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1.4.1.1 Multitask Learning

In the multi task set-up, a multitask learner at time t receives a training example for

one of the K training tasks. Along with each xt, yt pair, a task index it is associated.

A multitask version of the perceptron algorithm, they propose keeping a weight vector

for each task. When a mistake s is made at time t, not only the weights for the task it

is updated but also for all the remaining K − 1 tasks. The update rate for each task is

de�ned by a K × K matrix called the interaction matrix A. The update at each time

step t and task it can be written as:

vj,s ← vj,s−1 + ytA
−1
j,it
xt,∀j ∈ [1,K] (1.5)

1.4.1.2 The Neural Network Model

A neural n− gram language model architecture is used for generating word embeddings

for each language. This architecture is similar to the one described by Bengio et al. [3]

and illustrated in �gure . The model is given as an input a sequence of words wt−n+1:t−1

and tries to estimate the probability of the output word wt ∈ V where V is the set of all

words in the vocabulary. The architecture is used and trained as follows:

• The representations of the input words are obtained and concatenated, preserving

the order, to form the input vector c = (ct−n+1, ct−n, . . . , ct−1).

• The hidden layer is a simple linear transformation followed by a logistic function

to implement the logistic regression algorithm.

• Finally, the output layer is a softmax layer to compute the probabilities of each

word in the vocabulary V to be the output word wt.

• The model is trained using backpropagation using a large corpus.

• The set of free trainable parameters consists of both W , which are the weights of

the model layers, and c which are all the representations for all the words in the

vocabulary.

• The Learning objective is to maximize the log likelihood expressed as follows:

L(θ) =
T∑
t=1

logPθ(wt | wt−n+1:t−1) (1.6)

• The training is done using stochastic gradient descent.
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Figure 1.3: The architecture proposed by Bengio et al. [3] for extracting word embed-
dings using n−gram sequences. A similar architecture is used by Klementiev et al. [13]
to train multiple models for multiple languages jointly using MTL descriped in section

.

1.4.2 Karl Moritz Hermann and Phil Blunsom embeddings

The second cross lingual approach we consider here is proposed by Hermann and Blunsom

[11]. They leverage parallel corpora and learn to align the embeddings of semantically

equivalent sentences. They also extend their approach to learn representations at the

document level as well. Their bilingual model archeticture is illustrated in �gure and

trained as follows:

• For each sentence pair in the parallel corpus, the sentence vector representation of

each sentence is composed using a compositional vector model (CVM).

• During the training, the CVM learns how to construct the semantic representation

of larger syntactic units given the semantic representations of its parts.

• Assume having two composition functions f and g which map sentences from lan-

guages x and y onto distributed representation space. They de�ne the energy of

the model given two sentences (a, b) ∈ C where C is the parallel corpus used for

the training and (a, b) are two parallel sentences as follows:

Ebi(a, b) =|| f(a)− g(b) ||2 (1.7)
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• They then try to minimize Ebi for all equivalent sentences in the corpus.

• To prevent the model from degenerating, they sample a number of noise sentences

n for each pair of parallel sentences (a, b) where n are not equivalent to a with a

high probability. Then they de�ne a hinge-loss energy function as follows:

Ehl(a, b, n) = [m+ Ebi(a, b)− Ebi(a, n)]+ (1.8)

• In their work, they propose two compositional models, the �rst model is the ADD

model which simply construct the sentences embeddings by simply summing all the

embeddings of the consisting words. This simply can be considered a distributed

bag-of-words approach. The second model, is the BI model, which captures the

bi-gram information using a non-linear tanh function over bi-gram pairs in each

sentence:

f(x) =
n∑
i=1

tanh(xi−1 + xi) (1.9)

• Models are trained using backpropagation.

Figure 1.4: The bilingual architecture proposed by Hermann and Blunsom [11] for
extracting word embeddings leveraging parallel corpora.
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1.5 Problem De�nition

In the previous sections, we shed a light on distributed word representations, their origin

and de�nition, their usage and methods for extraction, we also reviewed a large portion

of what is done so far. However, on one hand, most of the work described in the previous

literature focus on high-resources languages as language modelling requires huge corpora.

On the other hand, most of the work available consider the word as the basic unit of

language, the fact that hinders the performance of most of the methods when dealing

with morphologically-rich languages, such as Turkish. Looking closely at the Turkish lan-

guage, considering the TED Talks English-Turkish parallel corpus 3, the corpus contains

around 136700 sentences that split into 246629 words. This is an enormous number com-

pared with the number of the English words in the same 136700 corresponding sentences

which is 103928. This, in most of the cases, makes the size of the corpus inadequate to

embed su�cient syntactic and semantic information in the word representations. The

reason why the number of Turkish words in relatively large is simply that the words can

take various forms according to the su�xes entailed to it. And most of the grammar and

semantics are represented as su�xes. So in this case, it is a better choice to consider

the morphemes as the basic language unit instead of the word. To summarize, in the

problem of word embeddings extraction from language corpora, two main issues arise.

Firstly, the problem of data scarcity in some languages and secondly the fact that not

all languages are the same when it comes to the grammar and semantics. This makes

the practice of treating all languages the same way quite inadequate. To provide a solu-

tion for these problems in order to produce high-quality word embeddings, the available

methods for dealing with these pitfalls are explored.

1.5.1 Available methods for tackling the proposed issues

For dealing with low-resources languages, a method that represents multiple language

in a joint space can be utilized. In the previous discussion we introduced two methods

for representing two or more languages in the same joint space. The �rst is discussed

in section 1.4.1 and can be described as an algorithm-based method since it utilizes an

algorithm called multitask learning to simultaneously optimize two models. The second

method that can be described as a data-driven method achieves the multilingualism by

utilizing sentence-aligned parallel corpora as described in section 1.4.2. One of these

methods can be utilized to potentially leverage the quality of the low-resources language

word embeddings, by allowing information transfer from high-resources languages to low-

resources ones. For example, can consider English and Turkish, using the same setting

3https://wit3.fbk.eu/
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explained in section 1.4.2, we can start the training with pre-trained embeddings for

English and allow the parameters for only Turkish word embeddings to change.

To tackle the issues arise with the morphologically-rich languages, we review some of the

techniques from the available literature for integrating compositional morphological rep-

resentations into language models. In the following subsections, we discuss two of these

techniques one simply aggregates the word parts to produce the vector representation

for each word. The second method utilizes a recurrent neural network architecture to

form the word embeddings.

1.5.1.1 Using Simple Additive Function

One of the methods found interesting, is described in Botha and Blunsom [4] and uses

an additive function to aggregate the word embedding vector given the vectors for its

consisting morphemes. In their setting, the word embeddings are constructed as follows:

This method can also deal with out-of-vocabulary words by constructing them from their

building components. For example, if the word inconvenient was not encountered during

the word embeddings extraction phase, we can still build its vector given the vectors for

the morpheme in and the word convenient. In their setting, the word embeddings are

constructed as follows:

−−−−−−−−−→
imperfection =

−→
im+

−−−−−→
perfect+

−→
ion (1.10)

They, in order to avoid the order invariance, add the word itself as a component. Meaning

that, the embedding for the word greenhouse is aggregated as follows:

−−−−−−−−→
greenhouse =

−−−−−−−−→
greenhouse+−−−→green+

−−−→
house (1.11)

This overcomes the order-invariance of the additive function that would make handover =

overhand.

1.5.1.2 Using Recurrent Neural Network

The second method we discuss here is introduced by Luong et al. [16] and instead of

simple additive function it utilizes a simple recurrent neural network architecture to

build the word out of its consisting morphemes. Their model as shown in �gure 1.5

consists of two layers:

• The morphological RNN layer which generates the word vector by recursively tak-

ing its consisting morphemes as input.



Chapter 1. Background 14

• The word-based neural language model which optimizes scores for relevant n-grams

using a similar method as the one described in Smith and Eisner [22].

This method, unlike the previously discussed one, takes the order into account which

makes it a better choice for the morphologically-rich languages that has pre�xes and

post�xes as essential components of its syntactic and grammatical rules. However, in

the languages which the grammatical and semantic information is mainly represented by

only post�xes or pre�xes, the additive function is preferred due to the long training time

of the RNN and its data-greedy nature.

Figure 1.5: The layered architecture proposed by Smith and Eisner [22] that utilizes
RNN to build word embeddings from morphemes embeddings.
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Proposed Method

2.1 Introduction

In our work, we try to extract multilingual distributed word representations that project

all words from di�erent languages in the same vector space while focusing on morpho-

logically rich languages such as Turkish. In our previous discussion, we discussed two

methods for extracting multilingual word embeddings. These two models are briefed in

section , the �rst of them can be referred to as an algorithm-based method since it uti-

lizes an algorithm called multitask learning to jointly train two models as described by

the original paper Klementiev et al. [13] . The second method that can be described as

a data-driven method since it achieves the multilingualism by utilizing sentence-aligned

parallel corpora as detailed in Hermann and Blunsom [11]. For overcoming the chal-

lenging nature of the morphologically-rich languages, we have previously discussed two

methods, one uses a simple additive function to build up the word embedding by adding

the vectors for its consisting morphemes as described by Botha and Blunsom [4]. The

other method uses a recursive neural network architecture that recursively takes the

morphemes consisting a word as an input sequence and outputs the word embedding as

described by Luong et al. [16].

2.2 Proposed Framework

In our work, due to it is e�ectiveness and simplicity, we follow the method described in

Hermann and Blunsom [11] to extract the word embeddings. Parallel corpora are utilized

in order to extract multilingual word embeddings. We used the same model architecture

illustrated in �gure. In their settings, sentence embeddings are constructed using either

15
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an ADD function or BI given by the following equation:

f(x) =

n∑
i=1

tanh(xi−1 + xi) (2.1)

However, in this work, a variation of the equation is used. Insteard of considering only

bigrams, we consider 6-grams and we apply the tanh function over the vector summation.

The equation becomes as follows:

f(x) =

k∑
i=1

tanh(

i+6∑
j=i

xj) (2.2)

The ADD function is used without any modi�cations.

For Turkish, as a morphologically rich language, a more sophisticated composition func-

tion is used. So instead of simply aggregating the sentence embedding given the words,

the words need �rstly to be constructed using their consisting morphemes. This is done

to avoid the pitfalls discussed in the privious chapter represented in the fact that the

number of words in the vocabulary would blow up undesirably since the method would

consider the word kedi which means cat, the word kediler which means cats, and the

word kedilerim which means my cats as three distinct words. This makes the size of

the corpus indequate to embed all the semantic and syntactic information in the words

vectors. That is why, the morpheme should be considered as the basic unit instead of

the word. To build up the word vector using the morphemes vectors, one of the methods

discussed in section can be used. The method introduced by Botha and Blunsom [4] is

chosen in favor of the one introduced by Luong et al. [16]. This is due to the insu�cient

data to train a recurrent neural network architecture. It is also argued that a recur-

rent architecture would be of a little use in the case of the Turkish language since the

semantic, syntactic, and grammatical information are mainly represented in the form

of su�xes. Also, the ordering of the post�xes is mainly �xed, for example, the plural

su�x comes before the possessive su�x. For this reason, the order of the morphemes

is of little importance in the case of Turkish language since it does not change, hence,

it does not include any semantic information. That is why, the simple additive method

described in Botha and Blunsom [4] is used. However, there is a subtle di�erence in the

way the word vectors are formed here and the way they form them. In their work, they

try to avoid the problem of order-invariance of the additive function that would make

handover = overhand by considering the word itself as a component as in the following

example:
−−−−−−−−→
greenhouse =

−−−−−−−−→
greenhouse+−−−→green+

−−−→
house (2.3)



Chapter 2. Proposed Method 17

In the case of the Turkish language, and as discussed previously, the order of the mor-

phemes is of little meaning, we do not include the word itself in the equation. This is also

useful in avoiding unnecessarily increasing the number of items in the vocabulary. So

for the word arkadaslarim, we have only three components instead of four. The word is

devided into arkadas, lar, and im. In this case the word vector is constructed as follows:

−−−−−−−−−−→
arkadaslarim =

−−−−−→
arkadas+

−→
lar +

−→
im (2.4)

The framework we use in this work for English-Turkish language pair for example can

be illustrated as in �gure 2.1.

Figure 2.1: English-Turkish framework for extracting word embeddings

We use various frameworks for various languages as required by the speci�c language. The

intiuition behind our method is that: for each language, we use a composition function

to construct the word from its parts, if the language was relatively morphologically rich,

and another composition function for constructing the sentences out of their consisting

words. For each parallel sentences pair in the corpus, we form the sentence vector

for each using the suitable composition functions for forming the words vectors and

sentence vectors according to the nature of the language. The composition functions can

be anything, as discussed in the previous sections. We vary them choosing between a
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simple additive function, n-gram tanh function, or we can even use a recurrent neural

network architecture. In the following chapter we conduct various experiments using the

illustrated framework and review the results.



Chapter 3

Experiments and Results

3.1 Introduction

In this chapter, we discuss in details how the experiments are performed and how the

qualities of the extracted word embeddings using di�erent composition functions are

evaluated. We also give details about the datasets and the tools used for the data

preprocessing.

3.1.1 Experimental Setting

3.1.1.1 Choosing the composition function

As discussed previously, we can choose the composition functions for composing the words

given the words parts and sentences given their consisting words using di�erent schemes.

These schemes include, simple additive function, the n-gram tanh function given by the

equation 3.1 below, or we can also use a recurrent neural network architecture.

f(x) =

k∑
i=1

tanh(

i+n∑
j=i

xj) (3.1)

By varying the composition functions various frameworks per language pairs can be

achieved. For example, for each language we can achieve 23 = 8 methods to achieve

sentence embeddings by varying the word composition function and the sentence compo-

sition function. And for each language pair we can achieve 82 = 64 di�erent frameworks.

19
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3.1.1.2 Data preprocessing

For multilingualism, the method described by this work as a data-driven method dis-

cussed by [11] is followed. In their work they propose an architecture for extracting the

word embeddings utilizing the TED Talks sentence-aligned corpus. This corpus consists

of thousands for parallel sentences per language pair. The proposed method aims at

minimizing the distance between the vectors that represent the same sentence in the

corpus. In the original work, no data preprocessing is done, meaning that, the words are

extracted by simply splitting the sentences using the space as a delimiter. In this work,

we follow the same architecture but we introduce the idea for not considering the words

as the simplest language unit. Instead, we choose between di�erent options, either to

consider the words as the basic language block, the tokens, or the morphemes. In the

following we de�ne the word, the token, and the morpheme:

• The word: words are obtained by simply splitting the sentences using the space

as a delimiter. For example, the sentence "I don't know!" would be split to three

words: I, don′t, and know!. This method ignores the fact that don′t consists of

two words do and not and the word know! is the word know and the exclamation

mark. To split data into words no special tools are needed, we simply use the string

processing libraries included in most of the high-level programming languages.

• The token: tokens are obtained by using a tokenizer tool. The one used here is the
nltk1 available for python2. When a sentence like "I don't know!" is passed to the

tokenizer, the tokenizer returns: I, do, n′t, know, and !. This output is language

independent, meaning that, if a Turkish sentence was passed, the output would not

di�er to adapt the language grammar. For example, the sentence "bilmiyorum!"

which is the Turkish equivalent to "I don't know!" will be split into: bilmiyorum,

and the exclamation mark ignoring the fact that the token bilmiyorum itself con-

sists of di�erent parts correspond to I, do, n′t, and know in its English equivalent.

• The morpheme: it can be de�ned as a meaningful morphological unit of a lan-

guage that cannot be further divided. For example, the word incoming can be

divided into in, come, and ing. The morphemes can be obtained using a special

tool called morphessor or morphologicalanalyzer. This tool is usually language

speci�c, meaning that, the morphological analyzer for one language cannot be used

for another. In the case of our example, the output of a Turkish morphessor for the

sentence "bilmiyorum!" which is the Turkish equivalent to "I don't know!" would

be: bil, mi the negation morpheme, yor the present continues morpheme, and um

1http://www.nltk.org/
2http://www.python.org/
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the singular �rst person subject pronoun. The morphological analyzer used for

Turkish is the one available as a part of ITU-NLP pipeline 3 that is described by

Eryigit [9] and Eryi§it et al. [10].

Di�erent methods for data preprocessing can be combined with various frameworks ob-

tained by varying the composition functions. However, the number of possibilities will

blow up and it will be unpractical to try them all. That is why only the methods found

intuitive are tried knowing the nature of languages and their grammar structures.

3.1.1.3 Training and Parameter Tuning

After designing the architecture for the embeddings extraction, we need to set the training

parameters to achieve the best possible quality embeddings. The training objective is to

minimize the loss function over the training corpus. The loss function used in this work

is the absolute function, meaning that, the model is trained to minimize the absolute

distance given by the equation 3.2 between each a,b pair of parallel sentences.

Ebi =|| f(a)− f(b) || (3.2)

The models are then trained using backpropagation (backpropagation through time in

the case of recurrent architectures) utilizing the output gradients calculated from the

loss function in the equation 3.2. For the training we need to tune some parameters we

list them below:

• The learning rate.

• The learning rate decay factor, by which the learning rate is divided after a

speci�c threshold in order to avoid oscillations during the training.

• The threshold, the number of epochs after which the learning rate should decay.

• The maximum number of epochs, which represents the number of times we

should repeat the training using the dataset.

• The batch size, the number of sentences per batch.

• And in the case of the n-gram tanh composition function, the window-size n is

also considered as a design parameter.

3tools.nlp.itu.edu.tr
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Due to the long training time of the model at each parameter setting (typically two

days) and the large number of possible model architectures, the tuning was done in a

trial-and-error manner rather than brute-force search. For parameter tuning, we use a

check for sanity called the paraphrase test which we talk about in details in the following

subsection.

3.1.1.4 The Paraphrase Test

The paraphrase test is done by simply going through randomly selected 1000 pairs of

sentences of the training corpus and forming their embeddings. Then the distances

between each two vectors each from one language are computed. For each sentence, if

the closest sentence, in terms of embedding, is the one that corresponds to this particular

sentence in the parallel corpus, the score increases by 1. Then the total score is reported

as a percentages of the correct mapping.

3.1.1.5 The CLDC Test

The cross-lingual document classi�cation or (CLDC) is a problem that was �rst described

by Bel et al. [2] and then was introduced by Klementiev et al. [13] as a method for evalu-

ating the quality of multilingual word embeddings. The (CLDC) task is concerned with

training a supervised classi�er using documents from one language, the rich-resources

language, and testing it using another language, the low-resources one, while maintain-

ing a satisfying performance. The performances of the models are described in terms

of the F1-score which is a combined metric that considers both recall and precision of

the trained model. In our work, we study how multilingual word embeddings can be

used to transfer information from a high-resources language, English, to a low-resources

language, Turkish, to successfully train models using English documents and use the

same models to classify Turkish documents and still achieving satisfying results. In this

test, we train an averaged-perceptron classi�er, as suggested by Hermann and Blunsom

[11], using the TED-Corpus. This classi�er, after trained, should assign one of 14 classes

to a document given its embedding. The document embedding is calculated by adding

the embeddings of all the consisting words. Since the averaged perceptron is originally

a binary classi�er, we use one-vs-all to extend it to a multi-class classi�er by training 14

binary classi�ers each of which is trained to distinguish one class.
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3.1.1.6 Hardware and Software

For this work, a TitanX GPU is mainly used due to the high performance that can

be achieved by using a GPU for training deep neural networks. Torch7 4, a scienti�c

computing framework with a wide support for machine learning and neural networks

algorithms is used. It is easy to use and computationally e�cient since it is built on top

of Lua, an easy fast scripting programming language whose compiler is implemented using

ANSI-C. Torch7 has support for CUDA which makes it a good choice for implementing

and running neural networks on GPU. The code for obtaining the results of this work is

open-sourced and made available for the community.

3.1.2 Experimental Results

In our experiments we try di�erent models by variating the data preprocessing method

and the composition function. As discussed earlier the number of di�erent combinations

is too large to try all the di�erent possibilities. That is why the composition functions

and the data preprocessing methods are chosen according to the nature of the language

at hand. We �rstly try additive functions for all composition functions at both languages

using all preprocessing methods discussed in section 3.1.1.2. The second setting tried

during the experimentations is achieved by using raw words without any preprocessing

at the English side and morphemes at the Turkish side. As discussed earlier, the order of

arranging the morphemes in Turkish is �xed (the su�xes are appended to the end in the

same order according to their semantic function) which makes the idea of utilizing the

simple additive function as a composition function to aggregate the words vectors from

their consisting morphemes straightforward. The addition function is preferred over the

RNN method due to its simplicity and e�ectiveness. Also, as mentioned in the previous

chapter, the additive method described by Botha and Blunsom [4] is changed subtly for

the Turkish language. Instead of adding the word itself as in the following example:

−−−−−−−−→
greenhouse =

−−−−−−−−→
greenhouse+−−−→green+

−−−→
house (3.3)

The word itself is not included since the order of the morphemes in Turkish does not

change, to give an example for this, the word arkadaslarim can be constructed as follows:

−−−−−−−−−−→
arkadaslarim =

−−−−−→
arkadas+

−→
lar +

−→
im (3.4)

4torch.ch
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Table 3.1: The paraphrase test results for each type of models studied in this work
according to the data preprocessing scheme using add function as a composition func-

tion.

HHHH
HHL1
L2

EN-raw EN-tok

TR-raw 82
TR-morph 90
TR-tok 68

Table 3.2: The paraphrase test results for each type of models studied in this work
according to the data preprocessing scheme using n-gram tanh function as a composition

function.

H
HHH

HHL1
L2

EN-raw EN-tok

TR-raw 80
TR-morph
TR-tok 50

This helps overcoming the issues that would arise due to including both the words and

the morhemes in the vocabulary causing the size of the dictionary to blow up. This would

make the size of the training data insu�cient for learning meaningful word embeddings.

3.1.2.1 Extracting the Embeddings

The word embeddings for English and Turkish are extracted using one of the models

following the proposed framework. Table 3.1 demonstrates the paraphrase test results

for each type of models studied in this work according to the data preprocessing scheme.

The composition function used at both words and sentences level is a simple additive

function. On the other hand, the paraphrase test results illustrated in table 3.2 use the

6-gram tanh function given by the equation 3.1.

3.1.2.2 Evaluating the quality of the embeddings

To evaluate the embeddings quality t-SNE and CLDC tests discussed earlier are used.

The t-SNE test results can be illustrated as �gures that show the fact that equivalent

words project onto the 2D space close to each other. Figures 3.1, 3.2, and 3.3 show the

results for t-SNE test for the 6-gram tanh model trained using tokenized data. Figures
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3.4, 3.5, and 3.6 show the results for t-SNE test for the 6-gram tanh model trained using

raw data. Figures 3.10, 3.11, and 3.12 show the results for t-SNE test for the simple

additive model trained using tokenized data. Figures 3.7, 3.8, and 3.9 show the results

for t-SNE test for the simple additive model trained using raw data.

Figure 3.1: t-SNE visualization of animals names in Turkish and English using word
embeddings extracted by the 6-gram tanh model using tokenization as a preprocessing

method

The CLDC results are reported in table 3.3. As we discussed previously, the performance

metric used here is the F1-score which is a combined score that takes into account both

precision and recall. both tanh-tok and add-tok consider tokenization preprocessing

scheme for both languages.

Table 3.3: F1-scores obtained by training four models using four types of embeddings.
The language of the training set is English while the language for the test set is Turkish.

Embed. set add-raw add-tok tanh-raw tanh-tok

0.74 0.73 0.73 0.64
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Figure 3.2: t-SNE visualization of numbers in Turkish and English using word em-
beddings extracted by the 6-gram tanh model using tokenization as a preprocessing

method
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Figure 3.3: t-SNE visualization of sentences in Turkish and English using word em-
beddings extracted by the 6-gram tanh model using tokenization as a preprocessing

method
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Figure 3.4: t-SNE visualization of animals names in Turkish and English using word
embeddings extracted by the 6-gram tanh model using raw words
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Figure 3.5: t-SNE visualization of numbers in Turkish and English using word em-
beddings extracted by the 6-gram tanh model using raw words
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Figure 3.6: t-SNE visualization of sentences in Turkish and English using word em-
beddings extracted by the 6-gram tanh model using raw words
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Figure 3.7: t-SNE visualization of animals names in Turkish and English using word
embeddings extracted by the additive model using raw words
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Figure 3.8: t-SNE visualization of numbers in Turkish and English using word em-
beddings extracted by the additive model using raw words
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Figure 3.9: t-SNE visualization of sentences in Turkish and English using word em-
beddings extracted by additive model using raw words
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Figure 3.10: t-SNE visualization of animals names in Turkish and English using
word embeddings extracted by the additive model using tokenization as a preprocessing

method
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Figure 3.11: t-SNE visualization of numbers in Turkish and English using word em-
beddings extracted by the additive model using tokenization as a preprocessing method
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Figure 3.12: t-SNE visualization of sentences in Turkish and English using word em-
beddings extracted by the additive model using tokenization as a preprocessing method



Chapter 4

Conclusion

4.1 Introduction

In this chapter, we overview the methods used for this word, the problem de�nition, and

the main �ndings.

4.2 Conclusion

In this work, the problem of extracting multilingual distributed word representations

is studied. The various method proposed by the literature are also overviewed. As

detailed in the background chapter, there are various methods for extracting distributed

word representations, also known as, word embeddings by utilizing huge corpora that

contain hundreds of thousands of sentences and various language modelling techniques.

These word embeddings are numerical vectors that capture the semantic and syntactic

information of the words such that similar words should be represented in a proximity in

the space. Some of the techniques used for this problem are simply probabilistic methods

combined with dimensionality reduction algorithms. Some other techniques are based on

training deep neural networks to learn those representations from the available linguistics

resources. Most of the work in this �eld is focusing on learning the word representations

for one language at a time. Therefore, the word representations for di�erent languages

can be represented as vectors in mutually exclusive spaces. Since the representations

would be more meaningful if they enable multilingualism allowing their utilization in a

wider spectrum of natural language processing tasks, this word is focused on extracting

multilingual word embeddings. For this purpose we use a data-driven method that

utilizes neural networks to extract word embeddings for two or more languages from

sentence-aligned parallel corpora. This method tries to minimize the distance between

37
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the embeddings for each two parallel sentences. The sentences embeddings are formed

by aggregating the embeddings for their consisting words. All embeddings for all words

in the vocabulary of a language are stored as weights in the neural model. These words

are extracted from the training corpus by splitting all the sentences in the corpus using

the space as a delimiter. This method for extracting the words causes many issues

to arise with morphologically-rich languages. Considering Turkish as an example for

morphologically rich languages, the number of the non-identical words in a corpus will

be huge if the same word and its di�erent forms were considered as di�erent words. In this

case, more data would be required to learn the representations for such a huge number

of words. Since Turkish is a relatively low-resources languages, this would cause the

representative power of the model to degrade. To solve this issue, the embeddings for the

words are constructed from their morphemes before they are aggregated into sentences

embeddings. In this work, a hierarchical method that starts at the level of the morphemes

embeddings up to the level of sentences embeddings through the word embeddings is

proposed. At the transition between each two levels a suitable composition function

should be used. In this word, the use of di�erent composition functions that range

from simple additive functions to sophisticated recurrent neural networks architectures

are discussed. However, for the case study we consider here that includes Turkish and

English, the additive function is used at all levels due to its simplicity and e�ectiveness.

The e�ect of varying the methods for data preprocessing is also studied and compared.

Three ways for data preprocessing are considered. The �rst uses the raw words obtained

by splitting the corpus using the space as a delimiter as the basic language unit. The

second divides the corpus into a set of tokens. The third method uses a morphological

analyizer to generate the morphemes for each word in the corpus and considers the

morpheme as the most basic language unit. To evaluate the performance of the model

at each settings, three tests were used. The �rst of them is the paraphrase test, which

was used as a primary sanity check to make sure that the model is actually learning

something. The paraphrase test was also used to tune the training parameters. The

second test, is performed to visualize the embeddings from di�erent languages to show

their expressive power. The visualizing method used here is t-SNE, a method that is

used to reduce the dimensions of the embeddings for the purpose of visualizing them.

The third, and most meaningful, test uses the cross-lingual document classi�cation task

(CLDC) to evaluate how well the models embed the multilingual information into the

word vectors. In this test, classi�ers are trained to assign topic classes to documents. The

classi�ers are trained using documents from one language and tested using documents

from another. For test, F1-score is used as a performance evaluation metric meaning

that the model is considered more representative if the F1-score value gets higher. In

the experimentations of this work, the model that uses additive functions at all levels

for both English and Turkish and uses raw words as the basic language unit for English
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and the morphemes as the basic language unit for Turkish scored higher F1-score value

than all of the other explored methods.
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