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Abstract

This thesis presents a detailed study on software based channel emulators and a set of

algorithms pertaining to the soft emulator. With the fact that several wireless commu-

nications technologies were released in the last decades, there are a lot of challenging

issues emerging due to the need for faster and more reliable technologies. From these

challenging issues, we have chosen to focus our research on two outstanding challenges:

real-time software channel emulator and automatic modulation classification.

Recently, there has been an increase in the demand for a reliable and low-cost channel

emulator to study the effects of real wireless channels. Hence, in the first part of the the-

sis, we discuss an implementation of a real-time software channel emulator. The real-time

fading channel emulator was implemented by using a software defined radio platform. In

order to verify the model, the frequency spectrum specifications of the channel generated

was checked with a double tone transmitter. Then as a second step of verification, bit er-

ror rate (BER) of a real-time Orthogonal Frequency Division Multiplexing system using

the Universal Software Radio Peripheral (USRP) and LABVIEW software was compared

with the BER floor calculated from the theoretical equations. It has been shown that

the developed channel emulator can indeed emulate a fading wireless channel.

In the second part of the thesis we focused on covering an issue related to blind esti-

mation or classification of a parameter in wireless communications at the receiver. This

problem appears in cognitive radios and some defense applications where the receivers

needs to know the type of the modulation of an incoming signal. The efficient automatic

modulation classification scheme proposed in this study can be utilized for a group of

digitally modulated signals such as QPSK, 16-PSK, 64-PSK, 4-QAM, 16-QAM, and 64-

QAM. We performed the classification in two stages: first we classified the modulation

between QAM and PSK signaling, and then we determined the M-ary order of the mod-

ulation by developing Kernel Density Estimation and analyzing the probability density

distribution for the real and imaginary parts of the modulated signals. Simulations were

carried out to evaluate the performance of the proposed scheme for flat channels.

Thus, in this thesis first of all we were able to develop a software based channel emulator.

The developed channel emulator can be a very useful tool for other researchers in testing



their real-time systems on a verified Doppler channel. Moreover, the emulator can find

other applications from education to wireless device developments due to its flexibility.

On the other hand, with the automatic modulation classification, the unknown modula-

tion of an incoming signal can be determined. Hence, the two issues can be combined to

find applications in cognitive radio developments.

Keywords: Channel Emulator, USRP, Automatic Modulation Classification, SDR



Yazılım Tabanlı Radyo Platformu Kullanan Kablosuz Haberleşme

Sistemleri çin Algoritmalar

Hisham FadlAlla M. Abuella

Öz

Bu tezde yazılım tabanlı kanal emülatörleri için detaylı bir çalışma ve bu emülatörlerde

kullanılabilecek bir dizi algoritma sunulmuştur. Son birkaç on yıllık zaman zarfında bir

takım kablosuz haberleşme teknolojilerinin piyasaya sürümü gerçeğinden yola çıkarak,

daha hızlı ve gürbüz teknolojilerin geliştirilmesi esnasında birçok zorluklar ortaya çık-

maktadır. Bu zorluklar arasında biz öne çıkan iki zorluğu seçtik: gerçek zamanlı yazılım

tabanlı kanal emülatörü ve otomatik kipleme sınıflandırılması.

Son zamanlarda gürbüz ve düşük maliyetli kanal emülatörleri gerçek zamanlı kablosuz

kanalların etkisini çalışmak için talep edilmektedirler. Bu nedenle bu tezin ilk kısmında

biz gerçek zamanlı yazılım tabanlı bir kanal emülatörünü tartışacağız. Gerçek zamanlı ve

sönümlemeli kanal emülatörü yazılım tabanlı bir telsiz platformu ile uygulandı. Geliştir-

ilen modeli doğrulamak için elde edilen kanalın frekans tayfı iki tane ton gönderen bir

verici ile kontrol edildi. Daha sonra ikinci bir doğrulama için dikey frekans bölmeli çok-

lama tabanlı bir sistemin bit hata oranları yazılım tabanlı radyo, USRP, ve LABVIEW

yardımıyla elde edilerek teorik değerlerle karşılaştırıldı. Bu doğrulamalar neticesinde

geliştirilen kanal emülatörünün kablosuz bir kanalı gerçekte emüle ettiği gözlemlendi.

Tezin ikinci kısmında ise bir kör kestirim algoritması olan ya da kablosuz haberleşme

alıcılarında parametrelerin sınıflandırılması kestirimini problemine odaklandık. Bu prob-

lem aynı zamanda kavramsal radyolarda ve bazı savunma sanayi uygulamalarında alıcının

gelen sinyalin kiplemesini bilmesini gerektiren durumlarda da görülmektedir. Bu çalış-

mada geliştirilen etkili otomatik kipleme sınıflandırma algoritması yaklaşımı bir grup

sayısal kipleme için kullanılabilir ki bu kiplemeler QPSK, 16-PSK, 64-PSK, 4-QAM, 16-

QAM, ve 64-QAM olabilir. Yaklaşım olarak sınıflandırmayı iki aşamada gerçekleştirdik:

önce QAM ve PSK sinyalleri için kipleme sınıflandırmasını gerçekleştirdik, ve daha sonra

kiplemenin derecesini Kernel Yoğunluklu Kestirim yaklaşımını geliştirerek ve de gelen

sinyalin reel ve sanal kısımlarının olasılık dağılım fonksiyonlarını analiz ederek elde ettik.

Gerçekleştirdiğimiz simülasyonlarla kestirim algoritmasının performansı düz sönümleme

kanalları için başarılı bir şekilde test edildi.



Sonuç olarak bu tezde öncelikle bir yazılım tabanlı kanal emülatörü tasarımı gerçek-

leştirdik. Geliştirilen kanal emülatörü gerçek zamanlı sistemlerini Doppler etkili kanal-

larda test etmek isteyen isteyen diğer araştırmacılar için çok faydalı bir platform sun-

abilir. Bunun yanında emülatörün tasarımı esnek olduğundan eğitimden kablosuz ürün

tasarımı yapan yerlere kadar uygulama alanları bulabilir. Diğer taraftan da otomatik

kipleme sınıflandırması ile bilinmeyen bir sinyalin kiplemesi belirlenebilir. Bu iki çözüm

kavramsal radyodaki bazı zorlukların aşılmasında kullanılabilir.

Anahtar Sözcükler: Kanal emülatörü, USRP, Otomatik Kipleme Sınıflandırılması,

Yazılım Tabanlı Radyo



To my parents, my sister and future love.

vii



Acknowledgments

First of all, I want to express my gratitude to my advisor Prof. Kemal Özdemir for

his endless guidance during my MSc. studies, for his patience, encouragement, and vast

knowledge. His guidance aided me during my research and the editing of the papers. His

advices especially personal ones are greatly valued. I could not have dreamed of having

a better advisor for my MSc. studies. Thanks for helping me to continue my dream of

pursing my PhD studies in USA. Also, I would like to thank my colleague helped me a

lot especially in the channel emulator part.

Secondly, I would like to thank my thesis committee: Assist. Prof. Hakan Doğan and

Assist. Prof. Tansal Güçlüoğlu for their helpful comments.

Last but not the least, I would like to thank my family in Egypt: my parents and sister

for backing me and their endless encouragement. Also, I extend my thanks to my family

in Turkey as they have made it feel like home.

viii



Contents

Abstract iii

Öz v

Acknowledgments viii

List of Figures xi

Abbreviations xiii

1 Introduction and Literature Review 1
1.1 Channel Emulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Automatic Modulation Classification . . . . . . . . . . . . . . . . . . . . . 4
1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Real Time Fading Channel Emulator using SDR 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Implementation of fading channels . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Implementation of Multipath Doppler Channel . . . . . . . . . . . 13
2.2.2 Specifications of the OFDM system used in verification . . . . . . 14

2.3 Theoretical BER curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 First verification phase . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Second verification phase . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Multipath channel simulation results . . . . . . . . . . . . . . . . . 21
2.4.4 Sources of error and mismatch . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Automatic Modulation Classification based on Kernel Density Estima-
tion 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 KDE for the Modulation estimation . . . . . . . . . . . . . . . . . 28
3.2.4 Filtering to improve modulation estimation . . . . . . . . . . . . . 29
3.2.5 AMC proposed flow diagram . . . . . . . . . . . . . . . . . . . . . 31

3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



Contents

3.3.1 Choosing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Conclusion and Future Work 40
4.1 Channel emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Automatic Modulation Classification . . . . . . . . . . . . . . . . . . . . . 41
4.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Proof for equation 2.4 used to calculate the BER for a given fading
channel with certain fD 43

B LABVIEW diagram used to generate the curves in Figure 2.14 46

Bibliography 49



List of Figures

1.1 A Block diagram to present the phases of telecommunication system design. 2
1.2 A Block diagram to describe the use of channel emulators. . . . . . . . . . 3
1.3 A comparison between different digital modulation techniques 8-PSK and

QPSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 An example of a univariate (one dimensional) Gaussian mixture model. [1] 7

2.1 Clarke/Gans model to generate the fading channels. . . . . . . . . . . . . 11
2.2 Flow diagram of the used Algorithm in Fading Channel Generator Block. 12
2.3 Block diagram to explain how to produce Multi-path fading channel. . . . 13
2.4 Block diagram to describe the OFDM used. . . . . . . . . . . . . . . . . . 15
2.5 BER Floor for different N values when changing the Doppler frequency

for QPSK OFDM system when Rb = 10 MHz. . . . . . . . . . . . . . . . . 16
2.6 A block diagram to describe setup of the second phase of verification. . . . 17
2.7 The Setup of the USRP and the Spectrum Analyzer. . . . . . . . . . . . . 18
2.8 Results shown on the Spectrum Analyzer when the channel is idle . . . . . 18
2.9 Results shown on the Spectrum Analyzer when the channel have fD = 10

KHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Results shown on the Spectrum Analyzer when the channel have fD = 20

KHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 A simplified block diagram to describe the block diagram of the VI used

to generate the BER Curves. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 A block diagram to describe setup of the second phase of verification. . . . 20
2.13 The Setup of the USRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 BER Curves for fD=5,10,20,50,100 Hz when fs=200 KHz for USRP and

MATLAB simulation BER floor. . . . . . . . . . . . . . . . . . . . . . . . 22
2.15 BER floor at fD=2,5,10,20,50,100 Hz when fs=200 KHz for USRP and

Theoretical BER floor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 Channel 1 and Channel 2 power delay profiles. . . . . . . . . . . . . . . . 23
2.17 BER Curves for fD=10,50 Hz when fs=200 KHz for MATLAB simulation

for 2 Multi-path channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 The reference system model. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 KDE results of the received signal when the modulation is 4-QAM, 16-

QAM, or 64-QAM and when SNR is 30 dB. . . . . . . . . . . . . . . . . . 29
3.3 M-ary classification when changing the HPF parameters prior to estimat-

ing the number of peaks (Using 10000 sample test points for different
cutoff frequency range from 0.1 to 0.4 (Normalized) ). . . . . . . . . . . . 30

3.4 Filtering effect is shown here by removing the DC and low frequency part
of the signal. The peaks are easily identified. . . . . . . . . . . . . . . . . 30

xi



List of Figures

3.5 Frequency domain of a 4-QAM signal(real part) . . . . . . . . . . . . . . . 31
3.6 The flow diagram to illustrates the steps taken to classify the unknown

modulation type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Variance of absolute QAM and PSK signals with 10000 test cases. . . . . 34
3.8 The selection of Limit 1 based on the best performance. . . . . . . . . . . 35
3.9 QAM and PSK differentiation. . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Determination of the modulation order. . . . . . . . . . . . . . . . . . . . 36

B.1 The user interface of the VI used to generate the BER curves. . . . . . . . 47
B.2 The block diagram to illustrates the VI used to generate the BER curves. 48



Abbreviations

SDR Software Defined Radio

BER Bit Error Rate

QPSK Quadrature Phase Shift Keying

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

USRP Universal Software Radio Peripheral

FPGA Field Programmable Gate Array

DSRC Dedicated Short Range Communication

UWB Ultra Wide Band

RF Radio Frequency

LTE Long Term Evolution

CDMA Code Division Multiple Access

FIR Finite Impulse Response

MIMO Multiple Input Multiple Output

RMS Root Mean Square

PER Packet Error Rate

EVM Error Vector Magnitude

AMC Automatic Modulation Classification

PSD Power Spectral Denisty

GMM Gaussian Mixture Model

ANN Artificial Neural Network

KDE Kernel Density Estimation

CDF Cumulative Distribution Function

PDF Probability Density Function

SNR Signal Noise Ratio

LOS Line Of Sight

xiii



Abbreviations

ML Maximum Likelihood

OFDM Orthogonal Frequency Division Multiplexing

IFFT Inverse Fast Fourier Transform

FFT Fast Fourier Transform

ICI Inter Carrier Interference

SIR Signal Interference Ratio

HPF High Pass Filter

DFT Discrete Fourier Transform

MSK Minimum Shift Keying

FSK Frequency Shift Keying



Chapter 1

Introduction and Literature Review

In this chapter, the underlying facts of choosing the topics of this thesis will be presented.

Then, the state of art for the algorithms of this study on common wireless communication

issues will be discussed. For these first, different structures used for channel emulator

will be presented. Then, a literature review on previous studies related to automatic

modulation classification scheme will be given. At the end of the chapter, the rest of the

thesis structure will be articulated.

1.1 Channel Emulators

Recent developments in the mobile wireless standards and technologies require researchers

to have fast and economical ways of testing their work. Realistic channel scenarios are

needed to test the performance of the new devices and ideas. This is where the impor-

tance of a well tested and verified channel emulator appears. As depicted in Figure 1.1,

once the phase of testing the algorithms is fast, flexible and/or low-cost, the overall

process of designing the standards and technologies will be faster and more economical.

As shown in Figure 1.2, the channel emulator replaces the real time channel in the

transceivers system. Channel emulators are divided mainly into two main categories:

hardware-based and software-based. Hardware-based channel emulators tend to be fast

and have higher bandwidth, but are harder to modify. Software-based channel emulators

are little slower since they usually need to down-convert the signal, apply the channel

in base-band and finally up-convert the signal again. However, their advantage is that

1
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Figure 1.1: A Block diagram to present the phases of telecommunication system
design.

whenever researchers need to change the channel scenario, it is just an update in the

software without the need to change any hardware. In this work, we adopt the software-

based emulator based on software defined radio (SDR) platforms.

Developing an easy to use, low-cost, and flexible channel emulator approach without

buying a new device or tool is pivotal for the evolution of the mobile telecommunication

research. It will allow researchers to test their ideas on real-time fading channels in a

fast manner. Hence, the development of SDR-based channel emulators has become an

important topic. Therefore, we observe a lot of studies on this topic such as the one

in [2], where authors designed a SDR-based channel simulator using field-programmable

gate array (FPGA) for testing baseband transceivers specific for standards of dedicated
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Figure 1.2: A Block diagram to describe the use of channel emulators.

short-range communications (DSRC) and ultra wide-band (UWB) systems. This system

is just too specific for a given platform.

In a study specific to Wi-Fi systems, [3], a SDR-based real-time wireless channel emulator

using FPGA has been proposed. Using the 802.11p protocol, the study evaluated the

performance of modems for wireless vehicular communications using packet error rate.

In [4], an affordable RF channel emulator for geostationary satellite transmission was

developed but it was only targeting satellite transmission channels. Finally, in [5] the

design and prototype implementation of a real-time FPGA-based channel emulator for

benchmarking vehicular modems was investigated. In their study, the authors verified

their emulator by calculating the packet error rate which is not a reliable way for the

verification of the channel emulator. Also, they did not compare the results to any

theoretical baseline.

Some researchers focused on specific standards such as the wide-band real-time mobile

channel emulator for CDMA systems [6] and the multi-terminal LTE testbeds [7]. They

discussed some of the limitations they had in their study like the restrictions on the

channel models used. Others used FPGA on a hardware programming level as in [8]

,[9] for its high speed performance, where a QAM modulator was integrated with the

emulator. The work introduced by [10] can run till 40 MHz bandwidth.

Using FPGAs or FIR filters as in [11] is very useful in terms of the data rates. On the

other hand, these platforms tend to be inflexible as it is hard and expensive to modify the

hardware design. Finally, the recent studies are targeting designing emulators for MIMO

systems for the latest standards as in [12] and [13]. Due to the complexity of MIMO

channels, the performance of the channel emulator in terms of data rates supported is
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affected, therefore it is better to use hardware-based channel emulator for these systems

since it is more stable and faster compared to software-based ones.

One common ground for all of the previous emulator models is that they do not show

strong theoretical verification for the performance of the emulator. Instead, for the verifi-

cation of the emulators, these researches focus on finding the mean square error difference

between the emulator time domain channel and the estimated channel as in [7]. This is

unreliable as it depends on the estimation algorithm used and does not give enough indi-

cation of the emulator performance in a complete system at different data rates. Another

option is comparing empirical measurements of the channel taps and RMS delay spread

of the power delay profile with the spectra and RMS delay spread generated from the

channel simulator as in[2]. This method requires empirical measurements which is not

available for every channel. Hence, in this study we focus on justifying the channel em-

ulator results through two phases: first we check the frequency spectrum characteristics

of the produced channel as done in [6], and secondly we apply the fading channel with

different Doppler frequencies and check the BER for an OFDM system developed on the

same USRP. Some earlier studies have tried to verify their emulator performance using

packet error rate (PER) as done in [3], [14], and [5] or using EVM as introduced in [4].

While PER is specific for certain standards, BER is more general and shows the whole

system performance that take into account the hardware factors. To our best knowledge

our work is the first USRP-based channel emulator that compares the BER performance

with the theoretical studies, thereby enabling the comparison of different channels an

easy task.

1.2 Automatic Modulation Classification

In the last decades many wireless communication technologies have been released either

for defense or civilian usages [15, 16]. In some defense applications, the receiver needs to

know the type of the modulation of an incoming signal. On the other hand, for systems

like cognitive and software defined radio, the receivers require the knowledge of the type

of modulation of the received signal. Commercial or defense related spectrum sensing

applications also heavily rely on the modulation classification techniques [17]. The fast

and correct automatic modulation classification (AMC) will improve the performance and

reliability of cognitive systems and will be useful for defense applications. In Figure 1.3,
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two different digital modulation schemes are presented to show how different they can

be. In the figure, the modulated signals are shown without any noise added so it is easy

to differentiate between 8-PSK and QPSK for this ideal case.

Figure 1.3: A comparison between different digital modulation techniques 8-PSK and
QPSK.

Many studies have been performed to determine the best approaches for AMC. Proposed

solutions are mainly divided into likelihood-based [18] -[19] and feature-based approaches

[20] -[21]. When different approaches are on the table, it is important to identify the key

parameters that reveal the merits of the proposed solutions. For AMC approaches, the

main indicators of a good estimator are:

1. Number of features extracted from the received signal,

2. Complexity of the classifier used,

3. Assumptions made.

For features extraction, we can use many different techniques. For example, we can have

computationally less heavy instantaneous approaches based on amplitude, phase, and

power spectral density (PSD) of the incoming signal. Besides these, we can have compu-

tationally heavy statistical feature extraction approaches like mean, variance, magnitude,

and location of the largest two peaks in the signal spectrum.

Similar to the case of feature extraction, for the classifier choices, we can also opt to

use computationally heavy approaches such as ANN (Artificial Neural Networks) as in

[22], GMM (Gaussian Mixture Models) as in [23] and KDE (Kernel Density Estimation)
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as in [24] or just use decision trees [25]. On the other hand relatively less complex ap-

proaches like the distance properties between cumulative distribution functions (CDFs)

corresponding to different modulation levels are studied [26]. These do not provide a

good solution in terms of memory since we have to store the CDFs of the modulations

techniques in different SNR values. Besides, the classification of new modulation tech-

niques will increase the computations required.

Here, the most critical item is the list of assumptions made for the estimator. Like

in many studies as stated in the survey [15], in our study too, we will assume perfect

frequency offset and time offset recovery. We will also assume the channel to be frequency

non-selective with Additive White Gaussian Noise (AWGN). The channel gain can be

a constant or a Rayleigh fading component. Although some other studies assume a

multipath channel and some additional impairments [20] -[27], here we keep the approach

limited to single tap AWGN channels as we believe the typical application is for systems

with line of sight communication (LOS).

Prior art differentiates QAM from PSK by using the signal’s magnitude of fourth, sixth,

and eighth order cyclic cumulants as features [28], [29]. To approximate the probability

distribution of the features, the Gaussian mixture model was used as in [23] and [30].

Another approach was parameter estimation using GMM to set up an offline database

and then to classify the received signal into different modulation schemes based on the

existing database by using Kullback-Leibler (K-L) Divergence [20]. In another study

maximum-likelihood (ML) decision theory to modulation identification was investigated

[19], [30] and [31] where identification of modulations is based on the ML principle using

only phase PDF information. The approach proposed in [32] is novel but can only work

for binary modulation schemes. Similarly the approaches proposed in [28] and [33] are

only applicable to m-PSK signals. A comprehensive approach proposed in [34] can cover

different modulation types, but it is computationally heavy.

As pointed out in [17], it is very critical that the proposed modulation classification

approaches bear low complexity when they are to be implemented in real applications.

Therefore, in this study, as a way of decreasing the computational complexity of the

modulation classification, we perform the estimation in two steps. Due to the simplicity

and efficiency in comparison between QAM and PSK, in the first step we employ the

variance of the absolute of the signal as the feature to decide whether its modulation is
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QAM or PSK. Then, for the second step of the proposed method, we utilize KDE since

it has been used successfully in areas such as statistical analysis and speech processing

[20] -[35]. By representing the distribution of the signal of interest with a weighted sum

of several multivariate Gaussian functions, KDE is used to get the probability density

function (PDF) of the real and imaginary parts of the modulated signal for the m-QAM

case, or the phase shift offset for the m-PSK case. The PDF functions are then used

to determine the order of the modulation. In Figure 1.4 a one dimensional GMM is

introduced to how a complex distribution can be represented in terms of a mixture of

Gaussian functions where x represent the real and imaginary parts of the modulated

signal in case of QAM signal.

Figure 1.4: An example of a univariate (one dimensional) Gaussian mixture model.
[1]

1.3 Conclusion

Here the motivations behind selecting the channel emulator topic have been revealed.

Also, the channel emulators in previous studies especially SDR-based emulators were

presented in detail. Software based channel emulators that are based on SDR platforms

were not reported in previous studies. Therefore, in this thesis we will attempt to intro-

duce such emulator, whose details are given in Chapter 3. In Chapter 4, a detailed study

on automatic modulation classification algorithm is presented where the proposed algo-

rithm is tested on AWGN and fading channels to calculate its performance for different

channels. Finally, in the last chapter the concluding remarks and future directions are

articulated. List of publications from the work of this study are also given in the last

chapter.



Chapter 2

Real Time Fading Channel

Emulator using SDR

2.1 Introduction

Wireless fading channel emulation is an essential ingredient for wireless communication

technologies. It gives a way to test and verify the new algorithms and ideas proposed

by researchers so that testing of the system efficiencies and performance in different

situations is enabled. The use of emulators is more economic and time efficient than

the costly field tests. Moreover, it can grant researchers with the results that are near

to field test with the ability to change some parameters of the channel and repeat the

test many times. This is why it is becoming more attractive and finding more usage in

research and in the wireless industry.

There are two types of channel modeling mainly used by the academic society:

1. Physical wave propagation method (Ray Tracing)

In this method, Maxwell equations are used to simulate the wave propagation in

the location where we need to emulate the channel. Therefore, it needs detailed

physical environment, geometry, and the dielectric properties. It is site-specific

and gives accurate results at the cost of huge processing power. That’s why they

are typically run on servers. There is a lot of different programs for this type of

simulations like Wireless InSite [36]

8
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2. Statistical models method

In this method, instead of taking the detailed physical environment, we use fading

channel impulse responses to emulate the required channel with a certain statistical

property. Real time fading channels can match a statistical model easily if the

model is appropriately designed. What is needed to test the accuracy is to check

the matching of the probability density function of the fading channel, power delay

profile, and finally the auto/cross correlation of the channel. It needs less processing

power than the physical wave propagation method. Hence, many researchers are

now using it for its simplicity and efficiency.

Mainly, researchers need to measure the channel in real scenarios and assign statistical

models for certain situations. There are different models based on the environment such

as Indoor and Outdoor models. We are mainly focusing on emulating small-scale fading

outdoor environment channels, as these channels are commonly used by researchers in the

wireless communications field. Small-scale fading are fast changes in amplitudes, phases,

or multipath delays of a radio signal over a short time or distance [37]. These changes

are mostly due to the movement of the transmitter or the receiver, which will cause

a Doppler shift and a change in the multipath delays and amplitudes at the receiver.

Although this work is valid for multipath fading channels, we will focus on flat fading

channels, since we would like to compare the simulation results with those of existing

ones. Many statistical models for multipath fading channels have been proposed to

predict the flat fading channels for outdoor environments. Clarke’s Model for flat fading

is a widely used model [38]. We will discuss the implementation of this model in more

detail for our emulator given in Section 2.2.

The development of software defined radios is one of the most important breakthroughs

in the telecommunication field. They were first introduced by Mitola in [39] and over

the years many platforms have been developed. Standing out is the Universal Software

Radio Peripheral (USRP) platform, which is a flexible and affordable SDR transceiver

that turns a standard PC into a powerful wireless prototyping system. USRP platform

was preferred due to its economical advantage since it is an available hardware that can

be used easily. Moreover, it allows the use of high frequencies in the spectrum with larger

bandwidth compared to other SDRs [40]. The ability to integrate ".m" (Matlab files)
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and ".c" file scripts is also an advantage. A lot of libraries can be found online through

NI community in [40].

To the authors’ best knowledge, USRP-based channel emulators have not been widely

discussed and evaluated in the previous research. Many commercial devices have been

developed and tested to function as a channel emulator. For example, the work done

by National Instruments in [41] is based on vector signal transceivers (VST). A lot of

commercial emulators have been introduced by companies like Spirent and Keysights,

the details of which can be found in [42] and Keysight in [43].

What differentiates this work from the prior art is that:

1. The strong verification scheme adopted.

2. Flexibility of the emulator as the channel model used can be modified easily.

3. With the suitable user interfaces, the emulator can be used as an efficient educa-

tional tool not just as a research tool.

4. Comparing the performance of different channel emulators is hard due to the dif-

ferent assumptions and parameters. However, comparing to the theoretical BER

curves gives us a more common and reliable evaluation.

The rest of the chapter is organized as follows: In Section 2.2, we introduce the fad-

ing channels, their generation, and the exact model that we use. Then we present a

small Subsection about our OFDM system specifications. In Section 2.3, we talk about

the theory and equations of the BER curves that are used for comparison. Then, we

present the setup of the USRP and the block diagram of OFDM transceiver used in the

verification test. Finally, the results and some discussions are presented in Section 2.4.

2.2 Implementation of fading channels

In this Section we introduce the fading channel model that describes our system and the

method of generating the channel for the software emulator. A lot of work has been done

in modeling and generating different fading channel environments, since fading channels
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Figure 2.1: Clarke/Gans model to generate the fading channels.

are more realistic and better represent the real time channel environments than only

using AWGN.

These models can be mainly divided into indoor and outdoor channel models. We focus

our research on outdoor channel models. Filtered white Gaussian noise (FWGN) model is

the most famous model where the white Gaussian noise is filtered by the desired Doppler

filter either in time or frequency domain.

We have chosen filtering in frequency domain (Clarke/Gans model) since the length of

the OFDM time symbol allows us to generate channel packets of the same length without

the need for a continuous channel generation process. We can use the model introduced

in [37] as shown in Figure 2.1. Another advantage is that this model is flexible and easy

to implement since the desired Doppler filter can be modified easily.

Figure 2.1 shows a block diagram for the Clarke/Gans model, in which there are two

identical branches: one for a real part and the other for an imaginary part of the channel.

A complex Gaussian noise is first generated and filtered in the frequency domain by the

desired Doppler filter. Then, the filtered noise is transformed into the time-domain by

using an Inverse Fast Fourier Transform (IFFT) block. Note that the output of the IFFT

is conjugate symmetric. At the end, to construct the complex fading channel, we add

the real part to the imaginary part of the output. A detailed flow chart of the algorithm

used with the USRP’s is shown in Figure 2.2.

In Figure 2.2, Nd is the number of the samples of the transmitted signal, fs is the

sampling frequency of the signal (channel) and fD is the maximum Doppler frequency

used. Hence, as fD increases the channel produced is more time-variant. N is the number

of samples used in the frequency domain filtering. We take N to be a power of 2 since

IFFT block is introduced to the output.
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Figure 2.2: Flow diagram of the used Algorithm in Fading Channel Generator Block.

S(f) represents the Doppler filter used. In our simulations, Clarke/Gans model was

adopted from [38] and [44]. It assumes that scattering components around a mobile

station are uniformly distributed with an equal power for each component.

where,

S(f) =
1.5

(π ∗ fD)
√
(1− (f/fD)2)

(2.1)

Finally the final channel generated is as shown in Figure 2.2,

h = hI − 1i ∗ hQ (2.2)
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2.2.1 Implementation of Multipath Doppler Channel

We stated that this work can be extended to multipath fading channels in the introduc-

tion. We will introduce a detailed block diagram and results to prove that our channel

emulator can produce multipath fading channels. In Figure 2.3, we provide a detailed

block diagram of the system used.

Figure 2.3: Block diagram to explain how to produce Multi-path fading channel.

Then, we can represent the output of the multipath fading channel block as in Eq. 2.3

r(t) =

M∑
i=1

cis(t− τi) ∗ hi(t) + n(t) (2.3)

In Figure 2.3, r(t) is the received signal, s(t−τi) is the delayed input (transmitted) signal

by delay τi seconds introduced to a multi-path channel with M taps with a gain ci each

and n(t) is complex AWGN. Here, the samples of AWGN are distributed as ∼ N (0, σ2n)

where σ2n is the noise variance. In case of a single tap channel (flat fading channel) M

is equal 1 and for the case of only AWGN channel M and C1 are equal 1 and τ1 is zero,

while in the case of non line of sight transmission τ1 is not equal zero.



Chapter 2. Real Time Fading Channel Emulator using SDR 14

Since we would like to compare the simulation results with those of existing ones, we will

only discuss flat channel (one tap channel) for the rest of the thesis. Finally, we present

the simulation results of a multipath channel in Section 2.4.3.

2.2.2 Specifications of the OFDM system used in verification

An OFDM system based on a typical fixed WiMAX standard parameters has been used

in the verification process of the channel emulator. Its specifications are as follows:

• It uses quadrature phase shift keying (QPSK), or it transmits 2-bits per sub-carrier

with fs=200 KHz.

• It is using 256 sub-carriers (N) per symbol.

• A 1/4 cyclic prefix, or 64 point cyclic prefix is used per OFDM symbol.

• At the receiver, Van De Beek algorithm [45] is used to detect the cyclic prefix

locations for synchronization.

• At the receiver, equalization is done by linear fitting for both I and Q components

using reference symbols, then we use LABVIEW block to map the symbols to bits.

In Figure 2.4, we present a detailed block diagram of the OFDM transceiver used in our

simulations.

Although the use of an OFDM system allows us to test multipath fading channels, for the

sake of simplicity and to make comparison of BER with the practical USRP results, we

perform tests with for a flat fading channel. This will also allows us to use the theoretical

equations as discussed Section 2.3.

2.3 Theoretical BER curves

It is very challenging to compare the theoretical BER equations with the results under

the assumptions that are made by our channel emulator. Also there are a lot of additional

errors caused by the hardware of the USRP. The variation in the complex channel gain

introduced to the ODFM signal (which is the Doppler shift) causes loss of orthogonality

of the sub-channels of the OFDM symbol, causing inter-carrier interference (ICI).



Chapter 2. Real Time Fading Channel Emulator using SDR 15

Figure 2.4: Block diagram to describe the OFDM used.

Introduction of Doppler shift causes ICI effect for the data. Using the results found

in [46], we assume that ICI can be modelled as AWGN noise resulting in a noise floor

at high SNRs. The ICI variance is as shown in Eq. 2.4, under the assumption that the

Clarke’s 2D isotropic scattering model with an isotropic antenna and normalized channel

as in [46]:

σ2ICI =
Eav
T
− Eav
TN2

∗ (N + 2
N−1∑
i=1

(N − i) ∗ J0(2πfDTi)) (2.4)

Therefore, ICI term is only a function of Eav, N, T and fD, where Eav is the average

energy in the OFDM Symbol, N is the number of sub-carriers in the OFDM symbol, T is

the OFDM symbol duration as stated in [47] and J0(.) is the first order Bessel function.

All the previous parameters are the OFDM communication system parameters while fD

is the maximum Doppler shift introduced by the fading channel. A detailed derivation

for how to find the ICI due to Doppler shift can be found in Appendix A.

The signal to interference (SIR) level can be readily found by the following formula

as [46]:

SIR =
Eav/T

σ2ICI
(2.5)
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By substituting the ICI variance into the well known BER equations in terms of Signal

to interference ratio (SIR), we can calculate the BERFloor for different cases of Doppler

shift. In our study, as we used QPSK, the equation that will be used is [47]:

BERFloor = Q(
√
SIR) (2.6)

In Eq. 2.6, Q(x) is the Q-function which is the probability that a normal random variable

will be larger than x standard deviations above the mean.

Finally, in Figure 2.5, the BER curve floor (value at high SNRs where only ICI is affecting

the BER) is shown for varying number of subcarriers. As shown in Figure 2.5, the curves

are matching exactly with those given in [47]. As can be seen from Eq. 2.4, as the fD

increase the BER floor increase. Also, as the subcarriers number increase the power of

the ICI term increase so it results an increase in the BER floor.

Figure 2.5: BER Floor for different N values when changing the Doppler frequency
for QPSK OFDM system when Rb = 10 MHz.
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2.4 Results

2.4.1 First verification phase

In the first phase, we check the fading channel spectrum characteristics using a single

tone signal.

Figure 2.6 is a block diagram that shows how the USRP needs to be connected to perform

the first phase of verification.

Figure 2.6: A block diagram to describe setup of the second phase of verification.

Figure 2.7 shows the setup of the USRP NI-2932 [48] and the Spectrum Analyzer used

to verify the channel introduced to the single tone shown in Figure 2.8

The transmitter sends a single tone with fm= 50 KHz. Ideally, when there is no channel,

the spectrum analyzer shows only 2 Delta functions at fc ± fm as in Figure 2.8, where

fm is the maximum frequency in the signal and fc is the carrier frequency. When the

channel emulator applies the fading channel with fD = 10 KHz, the result changes to

the one shown in Figure 2.9. In this figure, both of the Delta functions take the U-shape

of Clarke’s model used in the channel generation with a BW = 20 KHz. BW is the

separation between the two peaks in the Doppler shape which indicates the Doppler
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Figure 2.7: The Setup of the USRP and the Spectrum Analyzer.

spread. Finally, when changing fD to 20 KHz, the Doppler shape bandwidth is doubled

as shown in Figure 2.10.

These figures show that the behaviour of the spectrum of the signal is as expected, and

hence these results can be used towards verifying the fading channel spectrum charac-

teristics.

Figure 2.8: Results shown on the Spectrum Analyzer when the channel is idle
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Figure 2.9: Results shown on the Spectrum Analyzer when the channel have fD =
10 KHz

Figure 2.10: Results shown on the Spectrum Analyzer when the channel have fD =
20 KHz

2.4.2 Second verification phase

In this phase, we verified the performance of the emulator by using an OFDM system. We

compare the BER performance of our fading channel emulator with theoretical equations

at different SNRs and Doppler shifts. The channel emulator is introduced after the

transmitter block in the USRP but just before the receiver blocks.

First we present a simple block diagram to explain the real block diagram used in LAB-

VIEW to get the results presented in Figure 2.14 and on how to control the USRP.
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Prepare the Input 
parameters for the 

Fading channel and 
the OFDM system 

For loop (for different SNRs):

For loop (for Packets):

Generate a 
fading channel 
for the packet 

lenght

Send the whole Packet using the generated channel

OFDM Tx OFDM Rx
Calculate the 
BER for this 

SNR

Prepare the 
SNR and BER 

vectors

Plot and Save 
the final BER 

vector with the 
SNRs

Figure 2.11: A simplified block diagram to describe the block diagram of the VI used
to generate the BER Curves.

Figure 2.13 is showing the setup of the USRP used to generate the BER vs. SNR curves

where transmitter (Tx) and receiver (Rx) ports are connected to each other by a coaxial

cable. Also, the LABVIEW diagram and code to generate the fading channel is found

in Appendix B.

Figure 2.12 is a block diagram that shows how the USRP connected to perform the

second phase of verification where the USRP used is NI2932 [48].

Figure 2.12: A block diagram to describe setup of the second phase of verification.

The results in Figure 2.14 shows the BER curves for different fading channels when using

the OFDM system on the USRP and the theoretical BER curves for OFDM systems

under fading channels.

As expected as the Doppler frequency increases the BER increase or it gets worse. More-

over, the BER floor is almost the same for the case of USRP emulation and MATLAB

simulation. After the addition of the correction factors stated in Section 2.4.4 to the

theoretical equations, we get Figure 2.15, which is the same curve in Figure 2.5. It is
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Figure 2.13: The Setup of the USRP.

noticed that there is a difference between USRP results and theory which we think is

a result of imperfections of the USRP or other imperfections from the integration of

Matlab and USRP platforms.

2.4.3 Multipath channel simulation results

In this section we present the MATLAB simulations BER curves when fD=10,50 Hz in

Figure 2.17, for two multipath channel setup where Channel 1 power delay profile and

Channel 2 power delay profile are presented in Figure 2.16.

In Figure 2.17, the BER curves are as expected as the second path power increase the

system performance is worst since it acts now as a frequency selective fading channel,

while in the case of channel 1 it is very near to the flat fading at the same Doppler

frequency.
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Figure 2.14: BER Curves for fD=5,10,20,50,100 Hz when fs=200 KHz for USRP
and MATLAB simulation BER floor.

2.4.4 Sources of error and mismatch

There are lots of sources for the errors and mismatch between USRP results and the

theoretical curves, since we are using a hardware USRP to emulate the OFDM system

and the fading channel. First, we should consider the time synchronization error between

the transmitter and receiver. Another source of error is the channel introduced to the

signal in the coaxial cable connecting the Tx and Rx port in the USRP. Figure 2.14

shows that the BER curves generated by the USRP for each fD case is worse than the

theoretical curve for this fD even after considering an addition of an error floor ICI

due to the above error sources (-10dB). It was impossible to get a near curves without

correcting the used fD by a factor 16.

Some of the error sources were fixed directly, while the others we have used the correction

factors above, we believe that these errors are the source of the correction factors.
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Figure 2.15: BER floor at fD=2,5,10,20,50,100 Hz when fs=200 KHz for USRP and
Theoretical BER floor.

Figure 2.16: Channel 1 and Channel 2 power delay profiles.

2.5 Conclusion

In this chapter, we presented the software based channel emulator by using the USRP

platform. The developed emulator was verified for the generation of the Doppler spec-

trum and the BER performance, where it is compared with the theoretical curves.
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Figure 2.17: BER Curves for fD=10,50 Hz when fs=200 KHz for MATLAB simula-
tion for 2 Multi-path channels.

Throughout this exercise we observed that the USRP can introduce some imperfec-

tions, which then needs to be compensated through some coefficients. With this, we

have developed a software based channel emulator by using a SDR platform.



Chapter 3

Automatic Modulation

Classification based on Kernel

Density Estimation

3.1 Introduction

Automatic modulation classification (AMC) is a process of determining the modulation

type of a signal. When known pilot data is not available from an incoming signal, then

AMC is referred as blind AMC. We propose an efficient automatic modulation classifica-

tion scheme for a group of narrow-band and digitally modulated signals such as QPSK,

16-PSK, 64-PSK, 4-QAM, 16-QAM, and 64-QAM. The classification was performed by

analyzing the probability density distribution for the real and imaginary parts of the

modulated signals.

There has been a lot of studies for the automatic modulation classification as discussed

in Chapter 1, however what differentiates this work from the prior art is that:

1. A new amplitude and phase amplification technique for PSK is employed to esti-

mate high order M-ary data.

2. Unlike the usage of an offline database, here the output of the KDE is exploited

for calculation of the peaks that presents a straightforward differentiation between

M-ary order signals.

25
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3. Number of peaks calculation technique was introduced after the filtering of PDF,

which has been obtained from the KDE technique.

4. Classification between QAM and PSK modulations using the variance of the signal

amplitude was introduced.

3.2 System model

3.2.1 System model

In this study, the basic communication system model depicted in Figure 3.1 is taken

as the reference model. The transmitter consists of data generation, modulation, and

up-conversion, while the receiver is made up of down-conversion, synchronization part,

channel compensation, AMC classification, and the demodulation parts. In this study, we

assumed that up-conversion, down-conversion, and the time frequency synchronizations

were already handled by different communication blocks.

Figure 3.1: The reference system model.

3.2.2 Signal model

The received signal, which is down-converted and synchronized in time and frequency,

for single tap channel can be written as:

y(n) = h ∗ x(n) + w(n) (3.1)
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where h is a complex value. Its amplitude (channel influence factor) is Rayleigh dis-

tributed, while its phase is uniformly distributed between 0 and 2π with the assumption

that h is constant through the whole classification phase (slow flat fading channel).

Moreover, w(n) is the complex AWGN and is distributed as ∼ N (0, σ2w), or

f(w) =
1

σw
√
2π
e−(w)

2/2σ2
w . (3.2)

Here x(n) represents the transmitted baseband complex symbols and has a discrete

uniform distribution with zero mean and unity variance. This assumption is justified

since transmitters of wireless systems generally randomize the information bits, resulting

in constellation points to be equiprobable and hence zero mean. The constellations are

normalized so that the average energy is equal to unity. Then under these conditions the

variance become the same as the average energy or unity, i.e.,

σ̂2y = var [y(n)] . (3.3)

Here we assume perfect channel estimation. In case the channel estimation is to be made

part of the classification process, the blind channel estimation algorithms introduced in

the following references could be exploited [49], [50], and [51].

After channel estimation block we compensate the received symbols by the following

equation.

ŷ =
h ∗ x(n) + w(n)

hestimated
. (3.4)

Assuming the hestimated is perfect, we get

ŷ = x(n) +
w(n)

hestimated
. (3.5)

Assuming that x(n) and w(n) are uncorrelated, one can get:

σ2y = σ2x +
σ2w
σ2h
, (3.6)

where σ2h is the abs (h)2 (channel power), and

σ2x = 1 (normalized) (3.7)
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We can then estimate the noise power, to be used by the KDE, by using the following

equation:

σ̂2w = (var(y(n))− 1) ∗ σ2h. (3.8)

Since the expected value of y(n) is zero, the variance of y(n) is then simply the expected

value of y(n)2, or E
[
y(n)2

]
.

3.2.3 KDE for the Modulation estimation

KDE is a non-parametric approach used heavily in statistics, and it has recently been

employed to estimate the PDF, f(z), of an arbitrary random variable Z, based on a finite

data sample. KDE has been employed in various applications, including image segmen-

tation, depth map segmentation, tracking in image sequences, blind-source separation,

edge enhancement in images, and filtering [24].

In KDE, a pre-defined kernel function is centered at each data sample location. An

influence region is defined with the maximum at the data sample location while decreasing

in intensity with the distance from that location. A scale parameter, which is also called

bandwidth or window width, controls the kernel function that performs smoothing over

the surrounding space. Most studies choose the Gaussian function as the kernel function

due to its properties of approximation and for having the derivatives of all orders defined

over the entire space [24]. In the current study, we also set the kernel function to be

Gaussian.

Here, we want to find the PDF of a random variable Z, with PDF f(z), to represent the

PDF of either the real or imaginary parts of the received signal, y(n). Since we will be

employing Gaussian function as the kernel function, the estimated noise variances will

correspond to the bandwidth of the kernel function.

For the received signal with N number received symbols, the PDF of the KDE is given

as

f(z) =
1

N
·
∑
Npdf (y(n), σ̂2w) (3.9)

where Npdf (y(n), σ̂2w) is a normal distribution with mean equal to y(n) and variance

equal to the estimated noise variance of the data received, σ̂2w. Note that due to the

equiprobable assumption of the constellation points, each individual normal distribution
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is taken with equal weight, or (1/N). Also note that f(z) extends from min(x(n)) to

max (x(n)).

Fig.3.2 shows the graph of the KDE function, f(z), for a sample signal with modulations

4-QAM , 16-QAM or 64-QAM when SNR is 30 dB.

Figure 3.2: KDE results of the received signal when the modulation is 4-QAM, 16-
QAM, or 64-QAM and when SNR is 30 dB.

3.2.4 Filtering to improve modulation estimation

As we are interested in the peaks of the overall PDF of the KDE function, we are basically

interested in the high frequency or sharp changes in the function. Hence, we can perform

filtering to eliminate the low frequency parts of the KDE output and will therefore make

the estimation process more accurate. This process is performed by a high pass filter

(HPF) and its cutoff frequency is chosen according to Figure 3.3. The effect of using the

HPFs is shown in Figure 3.4.

Based on the observation and the analytical approaches, a filter with cutoff frequency at

0.2 π is chosen. As shown in Figure 3.3, the estimator performance is the best when a

HPF with cutoff frequency at 0.2 π is chosen.

Alternatively, if we take the x-axis of the PDF as the time domain and then observe

Discrete Fourier Transform (DFT) of the PDF from the frequency domain point of view,
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Figure 3.3: M-ary classification when changing the HPF parameters prior to estimat-
ing the number of peaks (Using 10000 sample test points for different cutoff frequency

range from 0.1 to 0.4 (Normalized) ).

Figure 3.4: Filtering effect is shown here by removing the DC and low frequency part
of the signal. The peaks are easily identified.

we can see from Fig. 3.5 that we need to remove the low frequency components of the

signal and the cutoff frequency agrees with the chosen value.
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Figure 3.5: Frequency domain of a 4-QAM signal(real part)

3.2.5 AMC proposed flow diagram

By combining the approaches presented above, we can define a multi-step process. Below

are the steps applied to classify an unknown modulation type:

Modulation estimation process

• Stage 1

1. Start receiving data (Wait until we collect N samples).

2. Calculate the variance of the absolute of the data received.

3. Compare the results to a threshold.

4. If larger: It is QAM modulation , else: It is PSK modulation or 4-QAM.

5. If PSK:

– Perform initial classification of 4-QAM and 4-PSK.

– Prepare the data for PSK M-ary classification (rotation and phase am-

plification).
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6. Else If QAM:

– Prepare the data for M-ary QAM classification (absolute and shifting).

• Stage 2

1. Calculate the estimate of noise variance and then prepare KDE for the data.

2. Filter the KDE output and use the peak detection algorithm to determine the

order of the modulation.

3. Determine the modulation type and repeat the process if needed.

Figure 3.6 presents the steps in a flow diagram to make it more clear for the reader.

3.3 Simulation results

3.3.1 Choosing parameters

• Threshold (reference)

We use the variance of the absolute value of the modulated signal since this will reveal the

changes in the constellation points when all samples are reflected in one quadrature. We

then check the variance to see how different the symbols are from each other. Hence we

check var(|y(n)|) = var(|(x(n) + w(n)|). Although we can get a mathematical expression

for different modulations under a given SNR value as done in [31], and [52], due to the

simplicity we prefer to use a graphical approach and get the threshold from the graphic.

From the graphs, we can easily find a threshold that will differentiate between QAM and

PSK modulations at the beginning of the classification. The approach can also identify

higher order QAM modulations from PSK and 4-QAM, since we expect the variance to

be larger for the higher order modulations. Hence, by analyzing Figure 3.7, we choose

a value of 0.09 for the threshold. For the SNR values smaller than 8 dB, the relation

between the SNR and the variance of the absolute of the signal is changing exponentially.

However, we can establish a linear relationship for the threshold and the estimated noise
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Figure 3.6: The flow diagram to illustrates the steps taken to classify the unknown
modulation type.

variance. To capture this variation, we used the empirical relation below (Eq. 3.10) for

finding the new value of the reference or threshold when SNR is less than 8 dB, or

reference = 0.09 + σ̂2w/4. (3.10)
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Figure 3.7: Variance of absolute QAM and PSK signals with 10000 test cases.

• Limit 1 (Limit for peak identification)

Since our goal from the beginning of this study is to design a simple classifier, we opted

to use a simple window search for finding the peaks. We have also deployed compu-

tationally heavy peak detection algorithms but observed that the performance increase

was minimal. Hence, we omitted the complicated peak detection algorithms from this

study.

Limit 1 is used to choose all the candidate points that might be considered as a peak.

Again by observing the curve in Figure 3.8 we choose the value of 0.02 for Limit 1, since

with this value the performance of the estimator is found to be the best.

3.3.2 Simulations

Our simulation environment is set up based on the parameters and assumptions below:

1. For AWGN channels, 5,000 symbols are generated for each test case and 100,000

test cases are executed. On the other hand, for fading channels, each test case

contains 12,000 symbols and 10,000 test cases are executed.
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Figure 3.8: The selection of Limit 1 based on the best performance.

2. SNRs from 0 to 32 dB in 2 dB step size (typically 32 dB is required for 64 - QAM

modulation),

3. 4, 16, and 64 PSK and QAM modulations,

4. HPF cutoff frequency of 0.02 π.

By running the simulations, for the above parameters, we have obtained different figures.

For the simulation of each test case, we first generate random binary data, and then

modulate it either m-QAM or m-PSK. We then add the random AWGN with a certain

power according to the SNR test value. We then apply our algorithm for the estimation

of the modulation type used. At the end of the process, for each SNR test value, we assess

the performance of the approach of this study by observing two parameters: First we

check the percentage of the correct differentiation between PSK and QAM modulations.

Secondly, we check the percentage of the correct estimation of the modulation order used.

The results for these two parameters for different SNR values are shown in Figs. 3.9 and

3.10.

Figure 3.9 shows that the differentiation between PSK and QAMmodulations was almost

perfect when SNR is higher than 10 dB. So the proposed estimator performs very well

for practical SNR values. Also as shown in Figure 3.9, in the case of fading channel even

with perfect channel compensation the performance degrades.



Chapter 3. Automatic Modulation Classification based on Kernel Density Estimation 36

Figure 3.9: QAM and PSK differentiation.

Figure 3.10: Determination of the modulation order.

Figure 3.10 shows the detection of the order of the QAM or PSK modulation. It is seen

that the proposed solution can differentiate both between QAM and PSK, as well as

their orders. As in Figure 3.9 performance of the detection of the order of the QAM or

PSK modulation also degrades in the case of fading channel not only AWGN.

From the Figs. 3.9 and 3.10 we can see that as the SNR increases, the detection of the
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right peaks in the right places in the PDF becomes more accurate. In Figure 3.10, we

further observe that as the modulation order increases, the Euclidean distance between

transmitted symbols decreases due to the power normalization. Hence, for the same level

of noise signals it is harder to differentiate between different symbols (peaks at real and

imaginary parts).

3.3.3 Complexity Analysis

As the prior art does not reveal the number of computations performed for their AMC

approach except for some work as in [26] and the fact that the simulation frameworks are

different due to different assumptions and modulation techniques, it is hard to have a one-

to-one comparison between different studies. Therefore, in this part, we will simply state

the complexity of the algorithm proposed by providing general complexity overviews.

With the algorithm presented in this study, we first estimate the noise level and then

calculate the variance of the absolute of the signal to decide whether QAM or PSK is used.

Then, we use the normal distribution function to implement our estimated KDE output,

which is just the addition of the PDFs with a certain weight. After estimating the density

function, we need to calculate the number of peaks found in the real and imaginary parts

of the signal. This part is accomplished by using a HPF and a comparator to select the

peaks. With an additional step, we further remove the near peaks. Finally, we select the

best M-ary corresponding to the number of peaks found in density distribution in both

the real and imaginary part of the signal received.

We could have developed a more sophisticated algorithm to differentiate QAM from the

PSK modulation techniques, but we choose a simple approach as we were targeting a

less complex algorithm. Similarly, for peak search algorithm we came up with a basic

procedure that gives a good performance. Hence, in general we ended up with a simpler

classifier that identifies different QAM and PSK modulation techniques.

Proposed algorithm’s complexity analysis:

Assuming that M is the number of the symbols used:

1. PSK or QAM classification step:

• Calculation of variance of the absolute of the signal needs M − 1 additions, M

abs(complex) and Msquare operations.
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• Noise variance estimation needs 2M + 1 additions and 2M square operations.

Total: 3M additions, M abs(complex) and 3M square operations.

2. M-ary estimation step: Assuming K (64 is used) is the samples needed to represent

the PDF (KDE output):

• In KDE step we need to store values of N (0, σ̂2w) (Gaussian distribution with

mean zero and variance σ̂2w) around 20-30 kernels with K samples each, and calcu-

lating the output PDF will cost K ∗M additions.

• Filtering:

Assuming that we use c taps filter (10 taps FIR filter is used), the filtering of the

data will cost c ∗K multiplication and K additions.

• Peak detection:

Compare the K values with a limit and removing near peaks will cost around 2K

comparison and K additions. All this is done for real part of the signal and then

repeated for the imaginary part. Hence, this part does not increase the complexity

order.

• Estimating the M-ary from the number of peaks:

6 additions and 6 comparisons if we have 3 options to choose from (4, 16 and 64

M-ary). Again, this part does not increase the complexity order.

Thus, for the whole classification phase, we have total of :

3M +2 ∗ (M +2) ∗K additions, M abs(complex), 3M square, c ∗K multiplication, and

30 ∗K samples that need to be stored.

3.4 Conclusion

With the integration of the approaches developed in this study, we are able to get promis-

ing results with relatively less computation. For example we can differentiate between

QPSK, 16-PSK, 64-PSK, 4-QAM, 16-QAM, and 64-QAM modulations with only 1 % of

misidentification when the SNR is around the level of minimum requirement of a given

modulation. It is observed that this simple efficient technique can find applications in
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blind automatic modulation classification as the performance comparison with the state

of the art is promising.



Chapter 4

Conclusion and Future Work

Software Defined Radios help to make much or most of the complicated algorithms and

techniques that needs to be handled by telecommunications engineers easy and simple.

The simplest case for a SDR receiver is to contain simple analog-to-digital converter and

RF receiver (antenna). All the filtering, baseband processing, and downconversion can

be done digitally, either by using a FPGA or even via a computer connected to a SDR.

Nowadays, many researchers are moving from developing and using analog components

for high-performance applications towards the idea of using SDR and converting all

the processing to the digital domain. Due to the fact that SDR is more flexible for

the configuration of a given system, many researchers, who need to build their radio

algorithms and test their ideas in realistic environments, are heading towards the use of

SDRs and/or similar platforms. That’s the reason that in this study we have introduced

a channel emulator.

4.1 Channel emulator

For the part of the channel emulator, we proposed an implementation of a fading channel

emulator using Clarke/Gans model for the generation of fading channels. We verified

the results of the emulator in two stages. First, we checked the frequency spectrum

specifications of the channel generated by the channel emulator. Then, we connected

an OFDM system running on USRP device to our channel emulator and calculated the

BER of the system for different Doppler frequency fading channels. Finally, we compared

40
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the resulting BER curves with theoretical BER floor curves reported in the literature.

We have found that our emulator’s BER performance was matching with the MATLAB

simulation’s BER floor, but for the case of theoretical BER floor we needed to add some

corrections factors for the fD and add some ICI error floor.

The BER analysis were done for flat channels for comparison purposes. However, the

emulator is capable of emulating multipath channels. To test this, we have emulated a

two-path multipath channel. For the simulations, we observed that as the second path

power increases the BER increases and the multipath channel act as a flat fading channel

when the second path power was very low (-30 dB).

We found that even though our software channel emulator approaches to the performance

indicated by the theory, it comes with the price of the latency and low data rates that

is compatible with the emulator. As it was hard to use a higher data rate than 200KHz

used in step two of the verification. The only way to use high data rates was to use a

buffer (memory) to save the channel in.

In addition to the above case, there were some source of impairments due to USRP.

Some of the error sources of the USRP platform were fixed directly, while for the others

we have used the correction factors. We believe that these errors are the source of the

correction factors.

In the end, we have implemented a software channel emulator. This channel emulator

can be a very useful and a low-cost tool for other researchers to test their real time

systems by using our verified emulator with Doppler effect. Due to the flexibility that

LABVIEW m-script offers, the channel emulator can find a range of applications from

education to the wireless development activities. The flexibility comes from the point

that changing any part of the channel emulator design will only need minor modifications

in the LABVIEW m-script.

4.2 Automatic Modulation Classification

An automatic modulation classification scheme for a group of digitally modulated sig-

nals, such as QPSK, 16-PSK, 64-PSK, 4-QAM, 16-QAM, and 64-QAM modulations by

employing the Kernel Density Estimation function for the probability distribution of real
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and imaginary parts of a modulated signal is proposed. To simplify the complexity of

the detection, the classification is done in two stages: First, classification between QAM

and PSK signals is performed, and then the M-ary order is determined by developing the

KDE for the data and using a simple peak detection algorithm. The simulation results

showed that the classification can identify the modulation types when the SNR of the

signal is in the typical levels of a given modulation. Hence, an alternative modulation

detection approach is offered with a low-complexity. The proposed method here is fur-

ther improved when adaptive change in the classification parameters with respect to the

SNR levels is introduced. With little modifications on the decision criteria, the proposed

method can be used for digitally modulated amplitude shift keying (ASK) signals. As

for the frequency shift keying (FSK) and minimum shift keying (MSK) modulation tech-

niques, alternative approaches will need to be developed. For systems that operate in

multipath channels, the current work can be exploited when the multipath components

are identified.

As can be seen from the approaches given, building algorithms on the platforms that

enable software based approaches makes the life of wireless designer much easier. The

easy to change configurations and experiments that can be performed in the lab instead of

the outdoor field experiments are the invaluable gadgets that a wireless designer engineer

can seek. With the algorithms provided in this thesis, a small step is provided towards

these dreams. More will be realized with the development of new algorithms.

4.3 Publications

Our study on the AMC was accepted by the Canadian Journal of Electrical and Computer

Engineering on summer 2016 and is published by IEEE. Our efforts on the channel

emulator are also put into a conference paper for potential publication. Below are the

details of these two papers:

• H. Abuella and M. K. Ozdemir, "Automatic Modulation Classification Based on

Kernel Density Estimation," in Canadian Journal of Electrical and Computer Engi-

neering, vol. 39, no. 3, pp. 203-209, Summer 2016 (oi: 10.1109/CJECE.2016.2570250).

• H. Abuella and M. K. Ozdemir, "Real-time fading channel emulator using SDR

with theoretical verification", to be submitted for conference publication.



Appendix A

Proof for equation 2.4 used to

calculate the BER for a given fading

channel with certain fD

Assuming that channel gain g is constant over OFDM symbol T . This assumption is

invalid for invalid for fixed Rs and increasing of Doppler frequency. In this proof we will

show that variations in gk over the OFDM N sub-carriers will cause ICI. This ICI will

behave like additional AWGN and will cause an error floor at high SNRs.

After receiving the OFDM symbol with N symbols at the receiver and after the FFT

block the received sub-carriers and after removal of the G guard band symbols are as

follow:

Zn,i =

√
2 ∗ Eh
T

H(0)Xn,i + Cn,i (A.1)

where Xn,i is the sent symbols, H(0) is the effective complex channel gain, Eh is the avg.

energy of the channel and Cn,i =
∑N−1

m=0,m6=iXn,mH(m− i). Where H(m− i) is function

of gk:

H(m− i) =
N−1∑
k=0

gG+(k−G)Ne
j2π(m−i)k

N (A.2)

Note that in case of time invariant channel g is constant and Zn,i = g
√

2∗Eh
T Xn,i.
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So we want to find the ICI part (Cn,i) and calculate its energy. For high N we can

assume that Cn,i is a complex Gaussian random variable. Since Xn,m and H(m− i) are

independent RVs, and E[Xn,m] = 0, So E[Cl] = 0.

Since,

2Eh = Eavδkm

So we get the auto-correlation of the ICI part as:

φcc(r) =
1

2
E[Cn,iC

∗
n,i+r]

=
Eav
T

∑
m 6=i,i+r

E[H(m− i)H∗(m− i− r)]

To proceed further we need to get the time correlation of the channel. First, we need to

make some assumptions:

1. E[|gk|2] = 1 (normalization of the channel).

2. Clarke’s 2D isotropic scattering model with isotropic scattering model with isotropic

receiver antenna.

Finally we get the auto-correlation of the ICI term :

φcc(r) =
Eav
T
δr −

Eav
TN2

N−1∑
k=0

N−1∑
kl=0

Jo(2πfmT (k − kl))(e
j2πklr
N + (1− δr)e

j2πkr
N )

To find the variance of the ICI (σ2ICI) let r=0, So we get :

φcc(0) =
Eav
T
− Eav
TN2

(N + 2
N−1∑
i=0

(N − i)Jo(2πfDTi))

Finally we find the SIR with a simple equation :

SIR =
Eav/T

φcc(0)
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we can find the BER floor for any modulation scheme using the SIR.



Appendix B

LABVIEW diagram used to

generate the curves in Figure 2.14

In Figure B.1 we present the user interface of the LABVIEW VI. Then, in Figure B.2

we present the block diagram of the LABVEIW VI.

46
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