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Abstract

Proteins are macromolecules in living systems used in crucial functions in all biological

processes. In order to understand the function of a protein it is necessary to determine

the structure of it. There are various techniques to obtain structural information and

Nuclear Magnetic Resonance (NMR) Spectroscopy is one of the most important ones.

In this technique, an essential step is the backbone resonance assignment and Structure

Based Assignment (SBA) is a method solving this problem with the help of a template

structure. NVR is an NMR protein SBA program, that takes as input 15N and HN

chemical shifts and unambiguous NOEs, as well as RDCs, HD-exchange and TOCSY

data. To run NVR, there is a sequence of steps in obtaining the data�les from NMR

data and the template structure. In this study, the process of preparing these data�les is

simpli�ed and automatized, which is an important practical step in running NVR on novel

proteins. A method to distinguish NH2 peaks from HSQC peaks is generated. Finally,

rather than computing a single assignment, an ensemble of assignments is computed.

Using this ensemble of assignment results, degree of reliability for individual peak-amino

acid assignments is obtained and assignment accuracy is improved. The results show

that these improvements bring NVR closer to a tool to be useful and practical tool, able

to handle the input data automatically and analyze the reliability of assignments.

Keywords: Structural bioinformatics, NMR structure based protein assignment, NVR



NMR Protein Yap� Tabanl� Atamalar� için NVR (Nükleer Vektör

Yerde§i³imi) çerçevesini kullanan geli³mi³ bir yakla³�m

�eyma Çetinkaya

Öz

Proteinler, ya³ayan sistemlerde bulunan ve temel biyolojik süreçlerde hayati fonksiyonlar�

gerçekle³tiren makromoleküllerdir. Proteinin i³levini anlamak için o proteinin yap�s�n�n

belirlenmesi gereklidir. Yap�sal bilgiyi elde etmek için çe³itli yöntemler vard�r ve Nük-

leer Manyetik Rezonans (NMR) Spektroskopisi en önemli olanlardand�r. Bu teknikte,

gerekli olan bir ad�m omurga rezonans atamas�d�r ve Yap� Tabanl� Atama kal�p protein

yard�m�yla bu sorunu çözmek için kullan�l�r. Nükleer Vektör Yerde§i³imi program�, 15N

ve HN kimyasal kaymalar� ve net NOE'lerin yan� s�ra RDC'leri, HD de§i³imi ve TOCSY

verilerini kullanan NMR protein Yap� Tabanl� Atama program�d�r. NVR'� çal�³t�rmak

için, NMR verisinden ve kal�p yap�dan gelen data dosyalar�n� elde etmede bir dizi ad�m

vard�r. Bu çal�³mada, NVR'� yeni proteinlerde çal�³t�rmada önemli bir ad�m olan data

dosyalar�n� haz�rlama süreci basitle³tirildi ve otomatikle³tirildi. HSQC tepeciklerinden

NH2 tepeciklerini ay�rt etmek için bir yöntem olu³turuldu. Son olarak, tek bir atama

hesaplamak yerine bir tak�m atama hesapland�. Bu tak�m atama sonuçlar� kullan�larak,

tepecik-amino asit atamalar� için bir güvenilirlik derecesi elde edildi ve atama do§rulu§u

yükseltildi. Sonuçlar gösteriyor ki, bu geli³meler NVR'� girdi datalar�n� otomatik olarak

halleden ve atama güvenilirli§ini analiz edebilen pratik bir araç haline getirmektedir.

Anahtar Sözcükler: Yap�sal biyoinformatik, NMR protein yap� tabanl� atama, Nükleer

vektör Yerde§i³imi
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Chapter 1

Introduction

Proteins are macromolecules in living systems used in crucial functions. They are en-

zymes that catalyse chemical reactions, they are used in the processes of energy storage,

defence of cells from antibodies, transportation of molecules inside or the outside of the

cells, transmission of signals between cells, etc.. Proteins are made of 20 amino acids and

amino acids composed of amino-group, carboxyl-group, and R-group that are attached

to the central carbon (Figure 1.1). The 20 amino acids di�er in the R-group and the

properties of amino acids are di�erent because their R-groups are di�erent. Amino acids

come together to construct a sequence with peptide bonds and form proteins (also called

polypeptides).

Figure 1.1: General Structure of Amino Acid

All proteins have four basic levels of structure: primary, secondary, tertiary, and qua-

ternary. The primary structure of a protein is the sequence of amino acids (Figure

1.2(a)). With hydrogen bonds the polypeptide bends and forms α-helices and β-sheets

that give secondary structure to the protein (Figure 1.2(b)). Tertiary structure is the

1



Chapter 1. Introduction 2

overall three-dimentional structure of the protein, that is the resulting shape after a pro-

tein folds (Figure 1.2(c)) and �nally the combination of tertiary structures of multiple

proteins results in quaternary structure (Figure 1.2(d)).

Figure 1.2: Protein Structure of Hemoglobin

To understand the functions of proteins, it is necessary to determine their 3D-structure.

Additionally, the knowledge of a protein's structure is important to understand why

some proteins misfold or partially fold causing some diseases such as Parkinson's disease

and Huntington's disease, �nd structural similarities between proteins, design new drugs,

predict how proteins bind with other proteins, and so on.

In order to determine a protein's structure there are two main techniques: X-Ray Crys-

tallography and NMR (nuclear magnetic resonance) spectroscopy. In X-Ray Crystal-

lography the protein is crystallized and exposed to an intense beam of X-rays. The

crystallized protein di�racts the X-ray beam when the light interacts with electrons of
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the atoms. The di�raction pattern is determined using location and intensity of di�rac-

tions. Then the map of the distribution of electrons in the molecule is obtained and used

to determine the location of each atom. Using this data the preliminary model is �t.

Then this model is re�ned several times until there is no longer improvement to �t the

map more accurately1 (Figure 1.3). Most of the protein structures in the Protein Data

Figure 1.3: Solving the Structure of a Molecule by X-ray Crystallography

Bank are solved by X-Ray Crystallography. However, the crystalline form of the protein

may be di�erent than the form in solution and some proteins cannot be crystallized. For

such proteins, NMR provides a good alternative. NMR studies the protein in an envi-

ronment similar to the native environment. The protein is often examined in solution,

therefore with NMR, information about the physical properties of the protein such as the

geometry of atoms, bonds between them, and dynamics of the protein can be obtained.

Moreover, for proteins that do not form crystals, NMR is the only alternative for atomic

resolution structures. However, NMR is limited by protein size, larger proteins usually

1Lawson, D., "A Brief Introductin to Protein Crystallography", https://www.jic.ac.uk/sta�/david-
lawson/xtallog/summary.htm, 09.09.2015
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result in more missing and overlapping signals. NMR is di�erent from X-ray crystal-

lography in which instead of �nding the atomic resolution structure directly, in NMR,

various experiments are done and the structure is attempted to be found by combining

the information coming from these experiments.

Atoms with an odd number of nucleons have a non-zero quantum mechanical property,

called spin. NMR spectroscopy exploits the magnetic properties of the atoms whose spin

is equal to 1/2 (e.g., 13C, 15N and 1H) [1]. Therefore, to study a protein using NMR,

the protein is labeled with isotopes such as 13C and 15N . A magnetic �eld is applied

to an NMR active nuclei and as a result, nuclei precess. Since the protein folded, every

nucleus has a unique electronic environment. Thus, each nucleus has a unique precession

frequency, so each nucleus can be identi�ed by its frequency. Precession frequency gives

a property called chemical shift (CS) and a tuple of chemical shifts form a peak which

corresponds to an amino acid. In Figure 1.4 a sample of 2D HSQC spectrum is given.

In HSQC spectrum each axis represents a type of atom. In this sample, x-axis gives HN

CS and y-axis gives 15N CS that corresponds to backbone atoms of an amino acid and

all points on the HSQC spectrum correspond to peaks.

Figure 1.4: HSQC Spectrum

One of the important steps in determining the protein structure starting from NMR data

is to assign these peaks to the corresponding amino acids. The assignment of proteins

in NMR laboratories is a laborious process. Automatizing the assignment process with

a high degree of accuracy is important in order to expedite the NMR protein structure

determination. Structure Based Assignment (SBA) achieves this objective with the help
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of a template structure that is homologous to the target protein. The knowledge of tem-

plate provides prior information about the structure of the target protein and allows to

obtain more reliable assignment results [2].

Nuclear Vector Replacement (NVR) is an approach that solves the protein SBA problem.

NVR-EM [3] uses expectation maximization algorithm and �nds a local optimum solu-

tion. NVR-BIP [4] uses binary integer programming to obtain the global solution for the

problem. However, it is unable to obtain the assignments for larger proteins due to the

considerable resources such an exact solution requires. For such proteins, metaheuristic

approaches such as NVR-TS [5] and NVR-ACO [2] have been developed. NVR-TS uses

tabu search and NVR-ACO uses ant colony optimization to arrive at a solution. Finally,

the latest version of NVR is NA-NVR-ACO [6] that is NOE-aware version of NVR-ACO

that distinguishes di�erent types of NOEs.

In this thesis our contributions are:

� Automatization of input data preparation

� Removing NH2 peaks from HSQC spectrum

� Providing a measure of reliability of assignments

� Improving assignment accuracy using an ensemble of assignment results

In the following chapter we give literature review and describe NVR and the problem

formulation. In Chapter 3, we describe our contributions. The test results are given in

Chapter 4. Finally, Chapter 5 presents the conclusions of the thesis and discusses the

future work.



Chapter 2

Literature Review

2.1 Related Work

There are various software programs to help with protein structure based assignments

semi-automatically (using e.g. Analysis [7]) or automatically (using e.g. Flya [8] or Mars

[9]), and fully automated assignment of small proteins is possible [8]. Although there

exist software to automate the assignment process, manual analysis of NMR spectra is

the most reliable method. Manual veri�cation of assignments are almost always done

to handle possible errors, since automation is not trustworthy [1]. Moreover, for large

proteins the assignment step can take weeks and even months [1], since the available data

is incomplete and ambiguous [10]. Other challenges in obtaining the assignments is the

spectra can be crowded, noisy, and there may be extra and missing peaks. In addition

to these, there is another challenge of computational complexity, backbone resonance

assignment problem is NP-Hard [5].

NVR is a framework for the NMR structure based assignment problem that tries to

�nd the optimal matching between the set of amino acids and the set of peaks using only

backbone amide proton and nitrogen chemical shifts, and backbone NOEs. It can also

use RDCs, TOCSY, and Hydrogen-Deuterium exchange data, if available.

6
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2.2 NVR Framework

There are di�erent experiments of NMR. In NMR we observe CSs (Chemical Shifts)

those are atomic property of speci�c atoms, NOEs (Nuclear Overhauser E�ects) that

are pairwise distance constraints between H atoms with up to about 5Å (Angstrom),

RDCs (Residual Dipolar Couplings) that give bond orientations dynamics, TOCSY (To-

tal Correlation Spectroscopy) that is used to analyse scalar (J) coupling networks between

protons, and Hydrogen-Deuterium exchange data that is used in the case of large pro-

teins to understand the location of H atoms in the surroundings of the protein.

In NVR, assignment probabilities of the set of peaks to the set of amino acids are calcu-

lated using the di�erence between the observed and predicted CS values and if available

RDC, TOCSY, and Hydrogen-Deuterium exchange data. It combines the informations

obtained and give a score to all of the possible assignments. Then assignment of peaks

to residues is solved using these scores and NOE constraints.

NVR-BIP is a binary integer programming based approach that computes the assign-

ments using CPLEX. NVR-BIP minimizes the score of the assignment subject to NOE

constraints and �nds the optimal solution for small proteins (less than approximately

150 amino acids) and has high assignment accuracies. However, NVR-BIP is unable to

compute a solution for large proteins due to the large number of constraints. For such

proteins, metaheuristic based approaches within the NVR framework, such as NVR-TS

and NVR-ACO have been developed. NVR-TS is a tabu search-based approach to the

problem. Instead of applying hard constraints and disallowing NOE violations, NVR-TS

uses a penalty term for NOE violations and can �nd a solution for large proteins. NVR-

ACO is the �rst application of ant colony optimization to the problem and is based on the

observation of the behavior of real ant colonies searching for food sources [2]. NVR-ACO

�nds the optimal solution for small proteins and can �nd solutions for large proteins

with high accuracies. NVR-ACO uses backbone NOEs, however does not di�erentiate

between HN-HA and HN-HN NOEs, and sets NOE distance thresholds (UB value in the

formulation below) manually. NOE-aware version NA-NVR-ACO di�erentiates the type

of backbone NOE and uses the appropriate coordinates from the template structure, and

also obtains the NOE upperbound information directly from the NOE intensities in the

data.
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2.2.1 Mathematical Formulation

The latest version of NVR is NA-NVR-ACO and its mathematical model is as follows [6]:

Notation:

P : set of peaks

A : set of amino acids

T : set of distance types, T = {HN −HN,HN −HA,HA−HN}

sij : score associated with assigning peak i to amino acid j

N : number of peaks to be assigned (N ≤ |P |)

djlt : distance between amide protons of amino acids j and l by using distance type t

NOE(i) : set of peaks that have an NOE with peak i

UBik : NOE upper bound distance limit between peaks i and k

bijklt =


1, if djlt ≤ UBik

0, otherwise

Decision variables :

xij =


1, if peak i is assigned to amino acid j

0, otherwise

Mathematical model :

Minimize
∑
i∈P

∑
j∈A

sijxij (2.1)

s.t.
∑
i∈P

xij ≤ 1, ∀j ∈ A (2.2)

∑
i∈A

xij ≤ 1, ∀j ∈ P (2.3)

∑
i∈P

∑
j∈A

xij = N (2.4)

xij + xkl − 1 ≤ bijklt ∀j, l ∈ A, ∀i ∈ P, ∀t ∈ T, ∀k ∈ NOE(i) (2.5)

xij ∈ {0, 1}, ∀i ∈ P, ∀j ∈ A (2.6)
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In this model, the objective function (1) minimizes the total score of assigning peaks to

amino acids. Constraints (2) ensure each amino acid is assigned to at most one peak and

constraints (3) guarantee each peak is mapped to at most one amino acid. Constraint (4)

determines the number of peaks that are going to be assigned. This allows us to obtain

a partial assignment. Constraint set (5) requires peaks i and k which have an NOE

between them of type t to be assigned to amino acids j and l if the distance between

these amino acids (djlt) is less than UBik. Constraint set (6) forces the decision variables

to be binary.

2.2.2 Template Selection

NA-NVR-ACO requires a template structure in order to compute the scoring matrix and

obtain the distance constraints to be used with NOE data. This template structure can be

an X-ray structure corresponding to the same protein, or could be a structural homolog.

In this study, X-ray structure is used as the template. Previous work [11] involved using

more distant templates and improving the assignment accuracy of NVR-EM.



Chapter 3

Methodology

3.1 Automatization of the Data Preparation

In order to run NA-NVR-ACO, a sequence of steps should be followed to prepare input

�les from the NMR data and the template structure. This procedure includes computing

distances between protons in the PDB structure, obtaining the scoring matrix by using

chemical shift prediction programs such as SHIFTS and SHIFTX, and combining the

NMR data coming from di�erent sources corresponding to the same peak. We simpli�ed

this process by automating these steps and enabled running NA-NVR-ACO on novel

proteins faster. The pseudo-code is as follows :

/* Parsing steps */

parsedResonancesF ile← parseResonanceF ile(experimentalShiftF ileName)

parsedPDBfile← parsePDB_File(PDBbaseName)

secondaryStructureF ile← parseSSE_Info(parsedPDBfile)

NHvectorsF ile← parseV ectors_N −H(parsedPDBfile)

SHIFTXFile← shiftx(PDBbaseName)

parsedSHIFTXFile← parseSHIFTX_File(SHIFTXFile)

SHIFTSFile← shifts(PDBbaseName)

parsedSHIFTSFile← parseSHIFTS_File(SHIFTSFile)

/* Assembly step */

10
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InputF ileOfNV R← assembleInput(parsedResonancesF ile,NHvectorsF ile,

secondaryStructureF ile, parsedSHIFTXFile, parsedSHIFTSFile)

parseResonanceF ile parses the resonance �le and extracts HN , N chemical shifts.

parsePDB_File parses the template PDB �le to extract HN , N , Hα and Cα coords.

parseSSE_Info parses the secondary structure information of the template protein.

parseV ectors_N −H calculates N-H bond vectors from PDB �le.

SHIFTX [12] and SHIFTS [13] are chemical shift prediction tools, parseSHIFTX_File

and parseSHIFTS_File read the output of these and extract N , HN and Cα chemical

shifts.

Finally, assembleInput combines all of the �les that are extracted.

3.2 Distinguishing NH2 peaks

Amino acids Asparagine (ASN) and Glutamine (GLN) di�er from others in which they

have an extra Nitrogen atom binding two Hydrogen atoms in their side chains (Figure

3.1).

Figure 3.1: Structure of Amino acids Asparagine and Glutamine

Therefore, for each ASN or GLN in a protein, there are two extra peaks in the HSQC

spectrum with no corresponding amino acid to these peaks. Before performing the as-

signments, there is a need to remove these peaks from HSQC spectrum and this process

is usually done by spectroscopists manually.
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In the case of existence of ASN , NH2 peaks are pairs of atoms ND2-HD21 and ND2-

HD22, and for GLN these extra peaks are NE2-HE21 and NE2-HE22. Since for an

NH2 peak pair, N atom is the same atom (ND2 for ASN or NE2 for GLN), in HSQC

spectrum their N CS's are almost the same. Therefore, in our approach we �rst �nd all

of the peak pairs whose N CS's are 0.01 ppm close to each other. Then a score is given

to all of the peak pairs by using chemical shift statistics. A couple of peaks is labeled as

NH2 peak pair if their score is under a threshold.

To avoid any confusion, remember that in this study, a peak means a couple of atoms

(N and H atoms) and a peak pair means a couple of peaks.

The score of a peak pair i corresponding to an NH2 is calculated as follows :

Si = − log(max(pi,ASN , pi,GLN )) (3.1)

Here, pi,ASN is the probability of peak pair i to be NH2 peak pair of ASN according

to the CS values it has and it is computed by converting the di�erence between the

experimental CS values of peak pair i (call as N1, H1 and N2, H2) and the expected CS

values of ND2, HD21 and HD22 atoms (obtained from BMRB statistics of amino acid

ASN) to a probability using a Gaussian distribution (Figure 3.2). Since the H and N CS

Figure 3.2: Computing CS Probabilities

values are independent from each other, we multiplied the probabilities of the examined

atoms and got a resulting probability. However, since there are di�erent matches of
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Hydrogens (the �rst one is H1-HD21, H2-HD22, and the second one is H1-HD22, H2-

HD21), two di�erent resulting probabilities are obtained as follows:

pi,1 = pi,N1,ND2 ∗ pi,N2,ND2 ∗ pi,H1,HD21 ∗ pi,H2,HD22 (3.2)

pi,2 = pi,N1,ND2 ∗ pi,N2,ND2 ∗ pi,H1,HD22 ∗ pi,H2,HD21 (3.3)

After obtaining these probabilities, the maximum of them is chosen and it gives pi,ASN .

pi,ASN = max(pi,1, pi,2) (3.4)

Next, pi,GLN is calculated in the same way using expected CS values of NE2, HE21 and

HE22 atoms obtained from BMRB statistics of GLN . Then, maximum of pi,ASN and

pi,GLN is chosen and result is converted into a score for each peak pair by taking its

negative logarithm. According to this score they are assigned as NH2 peak pair or not.

3.2.1 Experimental Analysis of Distinguishing NH2 peaks

HSQC information of protein 1UBI and two novel proteins Prp and S1 is obtained from

CNRS. In addition to these, �ve proteins are randomly selected from BMRB to test the

approach.

To determine how well a binary classi�er system performs and the threshold a system,

a graphical plot named Receiver Operating Characteristic (ROC) curve is used. ROC

curve is obtained as a plot of the true positive rate against the false positive rate for

various thresholds.

First, we extracted all possible NH2 peaks and calculated their score, and then, to

determine the threshold of the classi�cation and the quality of our approach, we draw

ROC curve (Figure 3.3) using 80% of the results we obtained. (20% of the data is used

to test the approach with the obtained threshold.)

The threshold is determined using ROC curve (Figure 3.3) and a peak pair is as-

signed as NH2 if its score is under 7.71.
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Figure 3.3: ROC Curve for NH2 Peak Classi�cation.

After assigning all of the peak pairs as NH2 or not, we selected peaks to be deleted. A

peak is removed from HSQC if it is always distinguished as NH2 in the classi�cation

system.

3.3 Providing a Measure of Reliability of Assignments

NA-NVR-ACO can �nd the optimal solution for small proteins. However, for large pro-

teins, the assignment results are distinct in di�erent runs due to a lack of convergence

to a global minimum in a very large search space. In that case, the individual result

of a single assignment run is unreliable. In this thesis, it is hypothesized that in the

lack of convergence, the assignments that are more likely to be correct will occur many

times in multiple runs whereas the incorrect assignments will di�er. Therefore, for such

large proteins, rather than computing a single assignment, we computed an ensemble of

assignments and we calculated how many times a peak is assigned to the same amino acid.

The assignment of a peak is determined as strong, if it is assigned to the same amino

acid more than a percent of the time in all the runs. In order to determine this thresh-

old as a percentage, we used the assignment results of MBP (Maltose Binding Protein),

we computed the sensitivity and the speci�city for di�erent percentages and plot these

points (Figure 3.4) as it is done in [11].
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Figure 3.4: ROC Curve for Various Thresholds to Determine Strong Assignments

As the threshold increases, we expect the number of strong assignments to decrease

and the accuracy of strong assignments to increase. For MBP, the e�ect of the threshold

to the number of strong assignments and accuracy is calculated and it is given in Table

3.1.

Table 3.1: Number of Strong Assignments and Accuracy for Di�erent Thresholds for

MBP

Threshold No of Strong Percent of Strong Accuracy
(%) Assignments Assignments
50 238 71.0 85.3%
55 225 67.2 86.7%
60 202 60.3 91.6%
65 197 58.8 91.9%
70 190 56.7 93.7%
75 177 52.8 94.9%
80 158 47.2 96.8%
85 148 44.2 98.6%
90 135 40.3 98.5%
95 127 37.9 99.2%
100 110 32.8 100%

From these thresholds, we chose 60%, and determined an assignment of a peak as strong,

if it is assigned to the same amino acid more than 60% of the time in all the runs. With

this method, we also derived information about the reliability of our assignments, as the
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ratio of the number of times a peak has been assigned to a given residue over the total

number of runs. This is similar to [11], but instead of using multiple templates to obtain

di�erent assignments, the assignment results of multiple runs are used.

Moreover, by using an ensemble of assignment results, we combined all assignments

by obtaining a bipartite graph where a set of nodes corresponds to the peaks and the

other set corresponds to the residues. The edges between peaks and residues are as-

sociated with a score corresponding to the number of times a peak is assigned to the

corresponding amino acid in the assignment ensemble (Figure 3.5) [11].

Figure 3.5: Obtaining Final Assignment using Hungarian Algorithm

After obtaining aggregate bipartite graph, using the scores of this matrix, the �nal as-

signment is calculated using Hungarian algorithm. With this method, we obtained our

�nal assignment aggregate the results from all of the assignments we had.
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Results

4.1 Automatization of the Data Preparation Results

We studied a new protein molecular-weight-protein tyrosine phosphatase A (MptpA,

150 amino acids) that is not in the set of test proteins of NA-NVR-ACO. The process

of extracting the input data of NVR required almost a week to complete. Then, we

automatized this process using a combination of bash, perl and matlab scripts. With the

automatization, we could obtain our data�les in a few minutes.

4.1.1 Test Results on Two Novel Proteins

We simulated unambiguous NOEs of MptpA and computed its assignments using NA-

NVR-ACO. We obtained an assignment accuracy of 100.0%.

We also computed test results of beta lactamase NDM1 (134 amino acids), whose data

was obtained by CNRS. We simulated unambiguous NOEs of it and computed its as-

signments using NA-NVR-ACO. We obtained an assignment accuracy of 80.6%.

4.2 Distinguishing NH2 peaks Results

At the bottom, there are plots of the test results of the proteins 1UBI, Prp and S1

(Figure 4.1, Figure 4.2, Figure 4.3). In x-axis, peaks those are possibly NH2 peaks are

17
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numbered. In these plots, NH2 peak pairs are shown as green squares and others are

red triangle.

Figure 4.1: NH2 Scores of 1UBI

Figure 4.2: NH2 Scores of Prp

In Table 4.1 and 4.2, the training and test set results that are obtained using our thresh-

old are given.
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Figure 4.3: NH2 Scores of S1

Table 4.1: NH2 Prediction Results

TP TN FP FN Accuracy
Training

set 43 102 7 4 92.9%
Test
set 16 19 1 3 89.7%

Table 4.2: NH2 Prediction Results

Precision Recall F Score
Training

set 0.86 0.91 0.88
Test
set 0.94 0.84 0.89

4.3 Reliability Results

We took 25 di�erent assignment results of MBP using NA-NVR-ACO. Among these en-

semble of assignment results, the assignment with minimum score has a 58.8% accuracy.

The individual assignment accuracies range between 53.4% and 71.3% and the average

assignment accuracy is 64.1%.

MBP has 335 peaks that are all assigned. By using our reliability measure, we found

that 202 peaks (60% of the peaks) were assigned to the same amino acid in 25 runs in

at least 60% of the runs, and these peaks had 91.6% accuracy. This information could
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be used to partially assign the peaks with high accuracy. Additional experiments could

be done for the remaining peaks to assign them correctly. Furthermore, by using the

Hungarian algorithm we combined the assignment results of 25 runs and obtained an

assignment accuracy of 72.8% for all the peaks.
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Conclusion

In this study, the following steps are performed to improve and automate NA-NVR-ACO.

� To facilitate the study on new proteins, input data preparation process is simpli�ed.

The time that is spent to obtain input data is reduced to a couple of minutes. Moreover,

for two novel proteins MptpA and NDM1, test results of NVR are obtained.

� A method is generated to distinguish NH2 peaks from HSQC peaks.

� The reliability of the assignments is determined using an ensemble of assignment re-

sults. A reliability degree of assignments is provided for the protein MBP.

� An ensemble based method is developed to enhance the assignment accuracy. This

method is tested on MBP and the assignment accuracy is improved.

With these improvements, NVR becomes closer to being a practical tool useful in an

NMR laboratory. The time it takes to obtain the assignments for a novel protein using

NVR is signi�cantly reduced. NVR can work with more noise in the data. It must be

mentioned that the reliability information for peaks is available for large proteins for

which the global optimal solution is not found. For such proteins, the assignment results

di�er from run to run.

One step that remains to increase the usability of NVR is to enable it to handle am-

biguous NOEs. Obtaining enough unambiguous NOEs from raw data is a challenge and

may require performing 4D NOESY experiments which are not always available. While

21
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handling ambiguous NOEs, we will distinguish aromatic and aliphatic protons which

have similar chemical shifts using the template structure information. Finally, we plan

to assign larger proteins based on methyl group NOEs [14].



Appendix A

NH2 Removal Scores of Randomly

Selected Proteins

Figure A.1: NH2 Scores of 4183

23
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Figure A.2: NH2 Scores of 6134

Figure A.3: NH2 Scores of 19047

Figure A.4: NH2 Scores of 19217
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Figure A.5: NH2 Scores of GB1
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