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An Improved Formalism for Assigning Proteins Using Nuclear Vector

Replacement Framework

Seyma CETINKAYA

Abstract

Proteins are macromolecules in living systems used in crucial functions in all biological
processes. In order to understand the function of a protein it is necessary to determine
the structure of it. There are various techniques to obtain structural information and
Nuclear Magnetic Resonance (NMR) Spectroscopy is one of the most important ones.
In this technique, an essential step is the backbone resonance assignment and Structure
Based Assignment (SBA) is a method solving this problem with the help of a template
structure. NVR is an NMR protein SBA program, that takes as input N and HY
chemical shifts and unambiguous NOEs, as well as RDCs, HD-exchange and TOCSY
data. To run NVR, there is a sequence of steps in obtaining the datafiles from NMR
data and the template structure. In this study, the process of preparing these datafiles is
simplified and automatized, which is an important practical step in running NVR on novel
proteins. A method to distinguish N Hs peaks from HSQC peaks is generated. Finally,
rather than computing a single assignment, an ensemble of assignments is computed.
Using this ensemble of assignment results, degree of reliability for individual peak-amino
acid assignments is obtained and assignment accuracy is improved. The results show
that these improvements bring NVR closer to a tool to be useful and practical tool, able

to handle the input data automatically and analyze the reliability of assignments.

Keywords: Structural bioinformatics, NMR structure based protein assignment, NVR



NMR Protein Yap: Tabanl Atamalar i¢in NVR, (Niikleer Vektor

Yerdegigimi) gercevesini kullanan geligmig bir yaklagim

Seyma CETINKAYA
Oz

Proteinler, yagayan sistemlerde bulunan ve temel biyolojik siireclerde hayati fonksiyonlar:
gerceklegtiren makromolekiillerdir. Proteinin iglevini anlamak icin o proteinin yapisinin
belirlenmesi gereklidir. Yapisal bilgiyi elde etmek icin cegitli yontemler vardir ve Niik-
leer Manyetik Rezonans (NMR) Spektroskopisi en 6nemli olanlardandir. Bu teknikte,
gerekli olan bir adim omurga rezonans atamasidir ve Yapi Tabanli Atama kalip protein
yardimiyla bu sorunu ¢ézmek icin kullamilir. Niikleer Vektoér Yerdegisimi programi, 15N
ve HY kimyasal kaymalar1 ve net NOElerin yan1 sira RDC’leri, HD degisimi ve TOCSY
verilerini kullanan NMR, protein Yapi Tabanli Atama programidir. NVR’1 ¢ahigtirmak
igin, NMR verisinden ve kalip yapidan gelen data dosyalarini elde etmede bir dizi adim
vardir. Bu calismada, NVR’1 yeni proteinlerde caligtirmada énemli bir adim olan data
dosyalarim1 hazirlama stireci basitlegtirildi ve otomatiklegtirildi. HSQC tepeciklerinden
N H5 tepeciklerini ayirt etmek i¢in bir yontem olugturuldu. Son olarak, tek bir atama
hesaplamak yerine bir takim atama hesaplandi. Bu takun atama sonuclar1 kullanilarak,
tepecik-amino asit atamalar: icin bir giivenilirlik derecesi elde edildi ve atama dogrulugu
yikseltildi. Sonuglar gosteriyor ki, bu geligmeler NVR"1 girdi datalarini otomatik olarak

halleden ve atama giivenilirligini analiz edebilen pratik bir ara¢ haline getirmektedir.

Anahtar Sozciikler: Yapisal biyoinformatik, NMR protein yap: tabanh atama, Niikleer

vektor Yerdegigimi
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Chapter 1

Introduction

Proteins are macromolecules in living systems used in crucial functions. They are en-
zymes that catalyse chemical reactions, they are used in the processes of energy storage,
defence of cells from antibodies, transportation of molecules inside or the outside of the
cells, transmission of signals between cells, etc.. Proteins are made of 20 amino acids and
amino acids composed of amino-group, carboxyl-group, and R-group that are attached
to the central carbon (Figure 1.1). The 20 amino acids differ in the R-group and the
properties of amino acids are different because their R-groups are different. Amino acids
come together to construct a sequence with peptide bonds and form proteins (also called

polypeptides).

FIGURE 1.1: General Structure of Amino Acid

All proteins have four basic levels of structure: primary, secondary, tertiary, and qua-
ternary. The primary structure of a protein is the sequence of amino acids (Figure
1.2(a)). With hydrogen bonds the polypeptide bends and forms a-helices and S-sheets
that give secondary structure to the protein (Figure 1.2(b)). Tertiary structure is the

1



Chapter 1. Introduction 2

overall three-dimentional structure of the protein, that is the resulting shape after a pro-
tein folds (Figure 1.2(c)) and finally the combination of tertiary structures of multiple

proteins results in quaternary structure (Figure 1.2(d)).

@ -

(b)

One c-helix

One of
hemoglobin’s
subunits

(c)

Hemoglobin,
which consists
of four
polypeptide
subunits

(d)

D 2071 Pearson Education, Inc.

FIGURE 1.2: Protein Structure of Hemoglobin

To understand the functions of proteins, it is necessary to determine their 3D-structure.
Additionally, the knowledge of a protein’s structure is important to understand why
some proteins misfold or partially fold causing some diseases such as Parkinson’s disease
and Huntington’s disease, find structural similarities between proteins, design new drugs,

predict how proteins bind with other proteins, and so on.

In order to determine a protein's structure there are two main techniques: X-Ray Crys-
tallography and NMR (nuclear magnetic resonance) spectroscopy. In X-Ray Crystal-
lography the protein is crystallized and exposed to an intense beam of X-rays. The

crystallized protein diffracts the X-ray beam when the light interacts with electrons of
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the atoms. The diffraction pattern is determined using location and intensity of diffrac-
tions. Then the map of the distribution of electrons in the molecule is obtained and used
to determine the location of each atom. Using this data the preliminary model is fit.
Then this model is refined several times until there is no longer improvement to fit the

map more accurately! (Figure 1.3). Most of the protein structures in the Protein Data

crystal

diffraction
pattern

electron
density map

refinement

., Aatomic
) model

F1GURE 1.3: Solving the Structure of a Molecule by X-ray Crystallography

Bank are solved by X-Ray Crystallography. However, the crystalline form of the protein
may be different than the form in solution and some proteins cannot be crystallized. For
such proteins, NMR provides a good alternative. NMR studies the protein in an envi-
ronment similar to the native environment. The protein is often examined in solution,
therefore with NMR, information about the physical properties of the protein such as the
geometry of atoms, bonds between them, and dynamics of the protein can be obtained.
Moreover, for proteins that do not form crystals, NMR is the only alternative for atomic

resolution structures. However, NMR is limited by protein size, larger proteins usually

'"Lawson, D., "A Brief Introductin to Protein Crystallography", https://www.jic.ac.uk/staff/david-
lawson/xtallog/summary.htm, 09.09.2015
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result in more missing and overlapping signals. NMR is different from X-ray crystal-
lography in which instead of finding the atomic resolution structure directly, in NMR,
various experiments are done and the structure is attempted to be found by combining

the information coming from these experiments.

Atoms with an odd number of nucleons have a non-zero quantum mechanical property,
called spin. NMR spectroscopy exploits the magnetic properties of the atoms whose spin
is equal to 1/2 (e.g., ¥3C, 1N and 'H) [1]. Therefore, to study a protein using NMR,
the protein is labeled with isotopes such as 3C and ' N. A magnetic field is applied
to an NMR active nuclei and as a result, nuclei precess. Since the protein folded, every
nucleus has a unique electronic environment. Thus, each nucleus has a unique precession
frequency, so each nucleus can be identified by its frequency. Precession frequency gives
a property called chemical shift (CS) and a tuple of chemical shifts form a peak which
corresponds to an amino acid. In Figure 1.4 a sample of 2D HSQC spectrum is given.
In HSQC spectrum each axis represents a type of atom. In this sample, x-axis gives HV
CS and y-axis gives ' N CS that corresponds to backbone atoms of an amino acid and

all points on the HSQC spectrum correspond to peaks.
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F1cure 1.4: HSQC Spectrum

One of the important steps in determining the protein structure starting from NMR data
is to assign these peaks to the corresponding amino acids. The assignment of proteins
in NMR laboratories is a laborious process. Automatizing the assignment process with
a high degree of accuracy is important in order to expedite the NMR protein structure

determination. Structure Based Assignment (SBA) achieves this objective with the help
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of a template structure that is homologous to the target protein. The knowledge of tem-
plate provides prior information about the structure of the target protein and allows to

obtain more reliable assignment results [2].

Nuclear Vector Replacement (NVR) is an approach that solves the protein SBA problem.
NVR-EM [3] uses expectation maximization algorithm and finds a local optimum solu-
tion. NVR-BIP [4] uses binary integer programming to obtain the global solution for the
problem. However, it is unable to obtain the assignments for larger proteins due to the
considerable resources such an exact solution requires. For such proteins, metaheuristic
approaches such as NVR-TS [5] and NVR-ACO [2] have been developed. NVR-TS uses
tabu search and NVR-ACO uses ant colony optimization to arrive at a solution. Finally,
the latest version of NVR is NA-NVR-ACO [6] that is NOE-aware version of NVR-ACO
that distinguishes different types of NOEs.

In this thesis our contributions are:

Automatization of input data preparation

Removing N Hs peaks from HSQC spectrum

Providing a measure of reliability of assignments

Improving assignment accuracy using an ensemble of assignment results

In the following chapter we give literature review and describe NVR and the problem
formulation. In Chapter 3, we describe our contributions. The test results are given in
Chapter 4. Finally, Chapter 5 presents the conclusions of the thesis and discusses the

future work.



Chapter 2

Literature Review

2.1 Related Work

There are various software programs to help with protein structure based assignments
semi-automatically (using e.g. Analysis [7]) or automatically (using e.g. Flya [8] or Mars
[9]), and fully automated assignment of small proteins is possible [8]. Although there
exist software to automate the assignment process, manual analysis of NMR spectra is
the most reliable method. Manual verification of assignments are almost always done
to handle possible errors, since automation is not trustworthy [1]. Moreover, for large
proteins the assignment step can take weeks and even months [1], since the available data
is incomplete and ambiguous [10]. Other challenges in obtaining the assignments is the
spectra can be crowded, noisy, and there may be extra and missing peaks. In addition
to these, there is another challenge of computational complexity, backbone resonance

assignment problem is NP-Hard [5].

NVR is a framework for the NMR structure based assignment problem that tries to
find the optimal matching between the set of amino acids and the set of peaks using only
backbone amide proton and nitrogen chemical shifts, and backbone NOEs. It can also

use RDCs, TOCSY, and Hydrogen-Deuterium exchange data, if available.
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2.2 NVR Framework

There are different experiments of NMR. In NMR we observe CSs (Chemical Shifts)
those are atomic property of specific atoms, NOEs (Nuclear Overhauser Effects) that
are pairwise distance constraints between H atoms with up to about 5A (Angstrom),
RDCs (Residual Dipolar Couplings) that give bond orientations dynamics, TOCSY (To-
tal Correlation Spectroscopy) that is used to analyse scalar (J) coupling networks between
protons, and Hydrogen-Deuterium exchange data that is used in the case of large pro-

teins to understand the location of H atoms in the surroundings of the protein.

In NVR, assignment probabilities of the set of peaks to the set of amino acids are calcu-
lated using the difference between the observed and predicted CS values and if available
RDC, TOCSY, and Hydrogen-Deuterium exchange data. It combines the informations
obtained and give a score to all of the possible assignments. Then assignment of peaks

to residues is solved using these scores and NOE constraints.

NVR-BIP is a binary integer programming based approach that computes the assign-
ments using CPLEX. NVR-BIP minimizes the score of the assignment subject to NOE
constraints and finds the optimal solution for small proteins (less than approximately
150 amino acids) and has high assignment accuracies. However, NVR-BIP is unable to
compute a solution for large proteins due to the large number of constraints. For such
proteins, metaheuristic based approaches within the NVR framework, such as NVR-TS
and NVR-ACO have been developed. NVR-TS is a tabu search-based approach to the
problem. Instead of applying hard constraints and disallowing NOE violations, NVR-TS
uses a penalty term for NOE violations and can find a solution for large proteins. NVR-
ACQO is the first application of ant colony optimization to the problem and is based on the
observation of the behavior of real ant colonies searching for food sources [2]. NVR-ACO
finds the optimal solution for small proteins and can find solutions for large proteins
with high accuracies. NVR-ACO uses backbone NOEs, however does not differentiate
between HN-HA and HN-HN NOEs, and sets NOE distance thresholds (U B value in the
formulation below) manually. NOE-aware version NA-NVR-ACO differentiates the type
of backbone NOE and uses the appropriate coordinates from the template structure, and
also obtains the NOE upperbound information directly from the NOE intensities in the

data.
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2.2.1 Mathematical Formulation

The latest version of NVR is NA-NVR-ACO and its mathematical model is as follows [6]:

Notation:

P: set of peaks

A: set of amino acids

T': set of distance types, ' = {HN — HN,HN — HA,HA — HN}

sij: score associated with assigning peak ¢ to amino acid j

N : number of peaks to be assigned (N < |P|)

dj;i; » distance between amide protons of amino acids j and [ by using distance type ¢
NOE(i): set of peaks that have an NOE with peak 4

U B, : NOE upper bound distance limit between peaks ¢ and k

1, ifdjy <UBgy
bijrie =
0, otherwise

Decision variables:

1, if peak 7 is assigned to amino acid j
.I'Z'j =
0, otherwise

Mathematical model:

Minimize Z Z i (2.1)

1€P jeA

st Y @i <1, VjEA (2.2)
i€EP
d wy<1,VjeP (2.3)
€A
Z Z]}Z’j =N (2.4)
1€EP jeA
Tij + T — 1< bijklt Vi le A Vie P, VteT, Vk € NOE(Z) (2.5)

Tij € {0, 1}, Vie P, Vje A (2.6)
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In this model, the objective function (1) minimizes the total score of assigning peaks to
amino acids. Constraints (2) ensure each amino acid is assigned to at most one peak and
constraints (3) guarantee each peak is mapped to at most one amino acid. Constraint (4)
determines the number of peaks that are going to be assigned. This allows us to obtain
a partial assignment. Constraint set (5) requires peaks i and k which have an NOE
between them of type t to be assigned to amino acids j and [ if the distance between
these amino acids (d;y;) is less than U B;;. Constraint set (6) forces the decision variables

to be binary.

2.2.2 Template Selection

NA-NVR-ACO requires a template structure in order to compute the scoring matrix and
obtain the distance constraints to be used with NOE data. This template structure can be
an X-ray structure corresponding to the same protein, or could be a structural homolog.
In this study, X-ray structure is used as the template. Previous work [11] involved using

more distant templates and improving the assignment accuracy of NVR-EM.



Chapter 3

Methodology

3.1 Automatization of the Data Preparation

In order to run NA-NVR-ACO, a sequence of steps should be followed to prepare input
files from the NMR data and the template structure. This procedure includes computing
distances between protons in the PDB structure, obtaining the scoring matrix by using
chemical shift prediction programs such as SHIFTS and SHIFTX, and combining the
NMR data coming from different sources corresponding to the same peak. We simplified
this process by automating these steps and enabled running NA-NVR-ACO on novel

proteins faster. The pseudo-code is as follows:

/* Parsing steps */

parsedResonancesF'ile < parseResonanceFile(experimental ShiftFileName)
parsedPDB file + parsePDB__File(PDBbaseName)
secondaryStructureFile < parseSSE _Info(parsedPDB file)

N HvectorsFile < parseVectors N — H(parsedPDB file)

SHIFTXFile < shiftx(PDBbaseName)

parsedSHIFTX File < parseSHIFTX _File(SHIFTX File)

SHIFTSFile « shifts(PDBbaseName)

parsedSHIFTSFile «+ parseSHIFTS File(SHIFTSFile)

/* Assembly step */

10
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InputFileO f NV R < assembleInput(parsed ResonancesFile, N HvectorsFile,
secondaryStructureFile, parsedSHIFTX File, parsedSHIFTSFile)

parseResonanceFile parses the resonance file and extracts HY, N chemical shifts.
parsePDB_ File parses the template PDB file to extract H™, N, H, and C, coords.
parseSSE _Info parses the secondary structure information of the template protein.

parseVectors N — H calculates N-H bond vectors from PDB file.

SHIFTX [12] and SHIFTS [13] are chemical shift prediction tools, parseSHIFTX F'ile
and parseSHIFTS File read the output of these and extract N, HY and C,, chemical
shifts.

Finally, assembleInput combines all of the files that are extracted.

3.2 Distinguishing N H, peaks

Amino acids Asparagine (ASN) and Glutamine (GLN) differ from others in which they
have an extra Nitrogen atom binding two Hydrogen atoms in their side chains (Figure

3.1).

Backbone N-H
Backbone N-H

Side Chain N-H Side Chain N-H

asparagine ASN N glutamine GLN Q

FIGURE 3.1: Structure of Amino acids Asparagine and Glutamine

Therefore, for each ASN or GLN in a protein, there are two extra peaks in the HSQC
spectrum with no corresponding amino acid to these peaks. Before performing the as-
signments, there is a need to remove these peaks from HSQC spectrum and this process

is usually done by spectroscopists manually.
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In the case of existence of ASN, NH, peaks are pairs of atoms ND2-HD21 and ND2-
HD22, and for GLN these extra peaks are NE2-HE21 and NE2-HE22. Since for an
N Hy peak pair, N atom is the same atom (ND2 for ASN or NE2 for GLN), in HSQC
spectrum their N CS’s are almost the same. Therefore, in our approach we first find all
of the peak pairs whose N CS’s are 0.01 ppm close to each other. Then a score is given
to all of the peak pairs by using chemical shift statistics. A couple of peaks is labeled as

N Hy peak pair if their score is under a threshold.

To avoid any confusion, remember that in this study, a peak means a couple of atoms

(N and H atoms) and a peak pair means a couple of peaks.

The score of a peak pair ¢ corresponding to an N H is calculated as follows:

S; = —log(max(pi aAsn, Pi,GLN)) (3-1)

Here, p; asn is the probability of peak pair i to be NHy peak pair of ASN according
to the CS values it has and it is computed by converting the difference between the
experimental CS values of peak pair ¢ (call as N1, H1 and N2, H2) and the expected CS
values of ND2, HD21 and HD22 atoms (obtained from BMRB statistics of amino acid
ASN) to a probability using a Gaussian distribution (Figure 3.2). Since the H and N CS

CSpred QZ

Predicted Experimental
CS value CS value

FiGURE 3.2: Computing CS Probabilities

values are independent from each other, we multiplied the probabilities of the examined

atoms and got a resulting probability. However, since there are different matches of
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Hydrogens (the first one is H1-HD21, H2-HD22, and the second one is H1-HD22, H2-

HD21), two different resulting probabilities are obtained as follows:

Pi,l = Di,N1,ND2 * Pi,N2,ND2 * Di, H1,H D21 * Di H2,H D22 (3.2)

Pi2 = Di,N1,ND2 * Pi,N2,ND2 * Di H1,H D22 * Di H2,H D21 (3.3)

After obtaining these probabilities, the maximum of them is chosen and it gives p; asn-

Pi,ASN = maz(p;1,Pi2) (3.4)

Next, p; arn is calculated in the same way using expected CS values of NE2, HE21 and
HE22 atoms obtained from BMRB statistics of GLN. Then, maximum of p; asn and
pi,GLN s chosen and result is converted into a score for each peak pair by taking its

negative logarithm. According to this score they are assigned as N Hs peak pair or not.

3.2.1 Experimental Analysis of Distinguishing N H, peaks

HSQC information of protein 1UBI and two novel proteins Prp and S1 is obtained from
CNRS. In addition to these, five proteins are randomly selected from BMRB to test the

approach.

To determine how well a binary classifier system performs and the threshold a system,
a graphical plot named Receiver Operating Characteristic (ROC) curve is used. ROC
curve is obtained as a plot of the true positive rate against the false positive rate for

various thresholds.

First, we extracted all possible NHs peaks and calculated their score, and then, to
determine the threshold of the classification and the quality of our approach, we draw
ROC curve (Figure 3.3) using 80% of the results we obtained. (20% of the data is used
to test the approach with the obtained threshold.)

The threshold is determined using ROC curve (Figure 3.3) and a peak pair is as-

signed as N H if its score is under 7.71.
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< cutoff point

True positive rate

FI1GURE 3.3: ROC Curve for N Ho Peak Classification.

After assigning all of the peak pairs as INH4 or not, we selected peaks to be deleted. A
peak is removed from HSQC if it is always distinguished as NHq in the classification

System.

3.3 Providing a Measure of Reliability of Assignments

NA-NVR-ACO can find the optimal solution for small proteins. However, for large pro-
teins, the assignment results are distinct in different runs due to a lack of convergence
to a global minimum in a very large search space. In that case, the individual result
of a single assignment run is unreliable. In this thesis, it is hypothesized that in the
lack of convergence, the assignments that are more likely to be correct will occur many
times in multiple runs whereas the incorrect assignments will differ. Therefore, for such
large proteins, rather than computing a single assignment, we computed an ensemble of

assignments and we calculated how many times a peak is assigned to the same amino acid.

The assignment of a peak is determined as strong, if it is assigned to the same amino
acid more than a percent of the time in all the runs. In order to determine this thresh-
old as a percentage, we used the assignment results of MBP (Maltose Binding Protein),
we computed the sensitivity and the specificity for different percentages and plot these

points (Figure 3.4) as it is done in [11].
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F1GURE 3.4: ROC Curve for Various Thresholds to Determine Strong Assignments

As the threshold increases, we expect the number of strong assignments to decrease
and the accuracy of strong assignments to increase. For MBP, the effect of the threshold
to the number of strong assignments and accuracy is calculated and it is given in Table

3.1.

TABLE 3.1: Number of Strong Assignments and Accuracy for Different Thresholds for

MBP
Threshold No of Strong Percent of Strong Accuracy

(%) Assignments Assignments

50 238 71.0 85.3%
55 225 67.2 86.7%
60 202 60.3 91.6%
65 197 58.8 91.9%
70 190 56.7 93.7%
75 177 52.8 94.9%
80 158 47.2 96.8%
85 148 44.2 98.6%
90 135 40.3 98.5%
95 127 379 99.2%
100 110 32.8 100%

From these thresholds, we chose 60%, and determined an assignment of a peak as strong,
if it is assigned to the same amino acid more than 60% of the time in all the runs. With

this method, we also derived information about the reliability of our assignments, as the
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ratio of the number of times a peak has been assigned to a given residue over the total
number of runs. This is similar to [11], but instead of using multiple templates to obtain

different assignments, the assignment results of multiple runs are used.

Moreover, by using an ensemble of assignment results, we combined all assignments
by obtaining a bipartite graph where a set of nodes corresponds to the peaks and the
other set corresponds to the residues. The edges between peaks and residues are as-
sociated with a score corresponding to the number of times a peak is assigned to the

corresponding amino acid in the assignment ensemble (Figure 3.5) [11].

peaks residues
O—x O—x

Aggregate Bipartite Graph %
l Hungarian Algorithm

Final Assignment 2><:

O— X

FI1GURE 3.5: Obtaining Final Assignment using Hungarian Algorithm

After obtaining aggregate bipartite graph, using the scores of this matrix, the final as-
signment is calculated using Hungarian algorithm. With this method, we obtained our

final assignment aggregate the results from all of the assignments we had.
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Results

4.1 Automatization of the Data Preparation Results

We studied a new protein molecular-weight-protein tyrosine phosphatase A (MptpA,
150 amino acids) that is not in the set of test proteins of NA-NVR-ACO. The process
of extracting the input data of NVR required almost a week to complete. Then, we
automatized this process using a combination of bash, perl and matlab scripts. With the

automatization, we could obtain our datafiles in a few minutes.

4.1.1 Test Results on Two Novel Proteins

We simulated unambiguous NOEs of MptpA and computed its assignments using NA-
NVR-ACO. We obtained an assignment accuracy of 100.0%.

We also computed test results of beta lactamase NDM1 (134 amino acids), whose data
was obtained by CNRS. We simulated unambiguous NOEs of it and computed its as-
signments using NA-NVR-ACO. We obtained an assignment accuracy of 80.6%.

4.2 Distinguishing N H, peaks Results

At the bottom, there are plots of the test results of the proteins 1UBI, Prp and S1

(Figure 4.1, Figure 4.2, Figure 4.3). In x-axis, peaks those are possibly NHy peaks are

17
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numbered. In these plots, N Hy peak pairs are shown as green squares and others are

red triangle.

B NH2 peaks
125

A A Backbone peaks

score

FIGURE 4.1: NH, Scores of 1UBI

175 B NH2 peaks
A Backbone peaks

125

score

peaks

FIGURE 4.2: NHy Scores of Prp

In Table 4.1 and 4.2, the training and test set results that are obtained using our thresh-

old are given.
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FIGURE 4.3: NHy Scores of S1

TABLE 4.1: NH2 Prediction Results

TP | TN | FP | FN | Accuracy

Training
set 43 | 102 7 4 92.9%
Test
set 16 19 1 3 89.7%

TABLE 4.2: NH2 Prediction Results

Precision | Recall | F Score
Training
set 0.86 0.91 0.88
Test
set 0.94 0.84 0.89

4.3 Reliability Results

We took 25 different assignment results of MBP using NA-NVR-ACO. Among these en-
semble of assignment results, the assignment with minimum score has a 58.8% accuracy.
The individual assignment accuracies range between 53.4% and 71.3% and the average

assignment accuracy is 64.1%.

MBP has 335 peaks that are all assigned. By using our reliability measure, we found
that 202 peaks (60% of the peaks) were assigned to the same amino acid in 25 runs in

at least 60% of the runs, and these peaks had 91.6% accuracy. This information could
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be used to partially assign the peaks with high accuracy. Additional experiments could
be done for the remaining peaks to assign them correctly. Furthermore, by using the
Hungarian algorithm we combined the assignment results of 25 runs and obtained an

assignment accuracy of 72.8% for all the peaks.
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Conclusion

In this study, the following steps are performed to improve and automate NA-NVR-ACO.

e To facilitate the study on new proteins, input data preparation process is simplified.
The time that is spent to obtain input data is reduced to a couple of minutes. Moreover,

for two novel proteins MptpA and NDM1, test results of NVR are obtained.
e A method is generated to distinguish N Hs peaks from HSQC peaks.

e The reliability of the assignments is determined using an ensemble of assignment re-

sults. A reliability degree of assignments is provided for the protein MBP.

e An ensemble based method is developed to enhance the assignment accuracy. This

method is tested on MBP and the assignment accuracy is improved.

With these improvements, NVR becomes closer to being a practical tool useful in an
NMR laboratory. The time it takes to obtain the assignments for a novel protein using
NVR is significantly reduced. NVR can work with more noise in the data. It must be
mentioned that the reliability information for peaks is available for large proteins for
which the global optimal solution is not found. For such proteins, the assignment results

differ from run to run.

One step that remains to increase the usability of NVR is to enable it to handle am-
biguous NOEs. Obtaining enough unambiguous NOEs from raw data is a challenge and

may require performing 4D NOESY experiments which are not always available. While

21
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handling ambiguous NOLs, we will distinguish aromatic and aliphatic protons which
have similar chemical shifts using the template structure information. Finally, we plan

to assign larger proteins based on methyl group NOEs [14].
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N H9 Removal Scores of Randomly

Selected Proteins
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FIGURE A.1: NH, Scores of 4183
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