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Abstract

Multiple Depot Vehicle Scheduling Problem (MDVSP) is the problem of assigning time-

tabled trips of di�erent lines to a limited number of vehicles emanating from multiple

depots. It is a component of bus transit planning process of public transportation com-

panies and aims to prepare vehicle schedules covered by minimum number of vehicles

with minimum total deadhead kilometers while satisfying trip compatibility relations.

In this thesis, two heuristic solution methodologies are devised to solve MDVSP by fol-

lowing the current literature. Iterative Rescheduling (IR) improves the existing heuristic

method Schedule - Cluster - Reschedule (SCR) where Trips Merger (TM) is based on

reducing the state space by using the outputs of IR solution.

Vehicle scheduling problem of Metrobus System of Istanbul Electricity, Tramway, and

Tunnel (IETT) General Directorate is modelled as MDVSP and solved by IR and TM

heuristics. It is shown that preparing vehicle schedules of the system via mathematical

optimization instead of manual methods and relaxing the rule of disallowance of line

change which is applied in current scheduling methodology leads to less costly vehicle

schedules.

Keywords: Bus Transit Planning, Multiple Depot Vehicle Scheduling Problem, 0-1

Integer Programming, Heuristic Optimization



Çok Garajl� Araç Çizelgeleme Problemi için bir Çözüm

Uzay� Küçültme Sezgiseli

�smail Sevim

Öz

Çok Garajl� Araç Çizelgeleme Problemi (ÇGAÇP), sefer tarifelerinde yer alan tarifelerin

birden fazla garajda parklayan s�n�rl� say�daki araca atanmas� problemidir. Seferler

aras�ndaki uyumluluk ili³kilerini göz önüne alarak minimum say�da araç ve toplam

ölü kilometre ile kar³�lanabilecek araç çizelgelerinin haz�rlanmas�n� amaçlayan problem,

toplu ula³�m i³letmelerinin haz�rlamak durumunda olduklar� ³ehir içi otobüs ta³�mac�l�§�

planlar�ndan biridir.

Bu tez çal�smas�nda, güncel literatür takip edilerek ÇGAÇP çözümünde kullan�lmak

üzere iki adet sezgisel metot geli³tirilmi³tir. Yinelemeli Çizelgeleme (Iterative Reschedul-

ing) literatürde var olan Çizelgele - Kümele - Tekrar Çizelgele (Schedule - Cluster -

Reschedule) sezgiselinin geli³mi³ versiyonu iken, Sefer Birle³tirici (Trips Merger) algo-

ritmas�n�n çal�³ma prensibi Yinelemeli Çizelgeleme sezgiselinin sonuçlar�n�n kullan�larak

çözüm uzay�n�n küçültülmesine dayanmaktad�r.

�stanbul Elektrik, Tramvay ve Tünel (�ETT) �sletmeleri Genel Müdürlü§ü'nün sorumlu-

lu§unda olan Metrobüs Sistemi'ne ait araç çizelgeleme problemi ÇGAÇP olarak model-

lenmi³ ve Yinelemeli Çizelgeleme ve Sefer Birle³tirici sezgiselleri yard�m�yla çözülmü³tür.

Araç çizelgelerinin haz�rlanmas�nda manuel metotlar yerine matematiksel optimizasyon

tekniklerinin kullan�lmas� ve halihaz�rdaki çizelgeleme sistemi için geçerli olan hat de§i³ik-

li§ine izin vermeme kural�n�n göz ard� edilmesi sayesinde daha dü³ük maliyetli araç çizel-

gelerinin elde edildi§i gösterilmi³tir.

Anahtar Sözcükler: �ehir �çi Otobüs Ta³�mac�l�§� Planlama, Çok Garajl� Araç Çizel-

geleme Problemi, 0-1 Tamsay�l� Programlama, Sezgisel Optimizasyon
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Chapter 1

Introduction

The bus planning process of bus transit companies consists of six steps: (1) network de-

sign, (2) frequencies setting, (3) timetable development, (4) vehicle scheduling, (5) driver

scheduling, and (6) driver rostering. The network design and frequencies setting steps are

known to be strategic level plans of such companies, where timetable development is a

tactical level plan. The outputs of last three steps are needed for daily operations of bus

transit companies. Therefore, they are classi�ed as operational plans. Vehicle scheduling,

main topic of this thesis, deals with assigning daily timetabled trips to available vehicles

to obtain bus schedules. A Multiple Depot Vehicle Scheduling Problem (MDVSP) is

a problem of assigning timetabled trips of di�erent lines to a set of available vehicles

emanating from multiple depots. It aims to minimize the number of vehicles and total

pull-out, pull-in, and dead-running trip costs, while satisfying trip compatibility concerns

and depot capacities. The problem is proven to be NP-Hard. If the number of depots

in a MDVSP case is equal to one, then such a problem is called a Single Depot Vehicle

Scheduling Problem (SDVSP) and there exist polynomial time algorithms to solve this

problem.

A review of the MDVSP literature reveals that the problem is usually modelled as Multi-

Commodity Network Flows (MCNF), a Set-Partitioning Problem (SPP), or Time-Space

Networks (TSN). The solution methods o�ered for MDVSP may be grouped into three

categories: (1) exact solution approaches, (2) heuristic methods, and (3) metaheuristic

methods. Since the problem is NP-Hard, standard optimization software applications are

not able to solve large-sized real-world MDVSP instances. Therefore, problem-speci�c

1



Chapter 1. Introduction 2

exact solution methodologies are o�ered by researchers of the �eld. Also, many heuristic

and metaheuristic methods are devised and preferred to exact solution methodologies

due to the scalability property of heuristics.

Due to the NP-Hardness of the problem, �nding an optimal solution for a large-sized

MDVSP instance is a challenging work. In the MDVSP literature, there exist only

two studies reporting optimal solutions for large-sized MDVSP instances. The main

drawback of the methods o�ered in both studies is the methods are instance-speci�c.

Therefore, it can be stated there is no best method to solve all large-sized MDVSP

instances to proven optimality. Since there exists no exact solution methodology �t in

with all MDVSP instances, heuristic methods take action to solve large-sized real-world

MDVSP instances in most of the cases.

The vehicle scheduling problem of the Metrobus System, a BRT line governed by Istanbul

Electricity, Tramway, and Tunnel (IETT) General Directorate, is modelled as an MDVSP

and solved by two newly introduced heuristic methods, namely Iterative Rescheduling

(IR) and Trips Merger (TM) in this thesis. Amounts of cost improvements obtained

by this solution are reported. Timetabled trips of 7 di�erent lines of 2014-2015 winter

timetables of the Metrobus System are used as input to the MDVSP. Since there are 6,254

trips in the problem, it can be classi�ed as a large-sized real-world MDVSP instance.

Schedulers of the Metrobus System use a manual approach to prepare bus schedules and

such an approach leads to scheduling solutions far from optimal. Also, there exists a rule

applied in the current scheduling approach is thought to cause sub-optimal solutions.

According to this rule, a vehicle is not allowed to cover timetabled trips of di�erent lines.

Therefore, when a vehicle arrives at a terminal, it has to wait the next timetabled trip of

the same line instead of starting the next timetabled trip of any other lines and this causes

unnecessary waits of vehicles at terminals. The MDVSP, a mathematical optimization

model, prepares bus schedules by relaxing this rule. The solution of MDVSP of the

Metrobus System shows that operational costs of the system can be reduced by inserting

mathematical optimization techniques into vehicle scheduling phase of Metrobus System

planning.

In Chapter 2, steps of public transportation planning and bus transit planning are brie�y

described. The de�nition of MDVSP and related literature review are also topics of the

chapter. Two new MDVSP heuristics are introduced in Chapter 3 and a comparison
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of these heuristics with two existing heuristic methods concludes the aforementioned

chapter. The case study of this thesis is given in Chapter 4. Finally, Chapter 5 contains

concluding remarks and future research directions.



Chapter 2

Background and Multiple Depot

Vehicle Scheduling Problem

2.1 Overview

In this chapter, Multiple Depot Vehicle Scheduling Problem (MDVSP) is introduced.

Related mathematical models and literature review are given for MDVSP. Steps of public

transportation planning and bus transit planning processes are also discussed brie�y to

show where MDVSP is positioned among planning activities.

Steps of public transportation planning and corresponding de�nitions are listed at the

beginning of Section 2. It follows with brief discussions of bus planning process: (1) trans-

port network design problem (TNDP), (2) bus timetabling (BT), (3) vehicle scheduling

problem (VSP), (4) driver scheduling and rostering. In Section 3, de�nition of MD-

VSP and related terminology are given. Aforementioned section ends with two di�erent

mathematical models for MDVSP, namely Multi-Commodity Network Flow (MCNF)

and Set Partitioning Problem (SPP). Last section of this chapter is a literature survey

on MDVSP.

2.2 Bus Planning Process of Public Transport Companies

Crowded cities have to plan their transportation systems cleverly and e�ciently to avoid

tra�c congestion and to increase the prosperity and mobility of their habitants. Steps

4
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Figure 2.1: Steps of transportation planning

in transportation planning are: (1) trip generation, (2) trip distribution, (3) modal split,

and (4) tra�c assignment. Brief descriptions of each step are given below:

Trip Generation: The city is separated into zones. Planners may use the existing

administrative structure such as counties or their own zoning system. Trip gen-

eration and attraction values of each zone are found by conducting polls, doing

observations etc.

Trip Distribution: The ending zones of all trips generated from each zone are planned

in a way satisfying number of generations and attractions of each zone de�ned in

the trip generation phase.

Modal Split: The transport modes of trips between each zone are determined. For

instance, 10% of trips between Zone-A and Zone-B are covered by private cars.

Tra�c Assignment: This is the last step of transportation planning process. Each trip

must be assigned to one of the existing roads. Planners usually follow Wardrop's

User Equilibrium principle [? ] while assigning trips to available routes. Accord-

ing to the principle, in a balanced tra�c assignment there are no better route

assignments than the assigned ones for all of the agents moving in the tra�c �ow.

Steps of transportation planning is given in Figure ?? [? ]. Please note that, transporta-

tion planning is an iterative process.

The above planning process covers all transportation modes and activities including

public or private agents and institutions. In this thesis, one of the activities of bus

planning process of public transportation companies is studied. Although there are

di�erent classi�cation for activities of bus planning process, framework of [? ] is employed

here. Planning activities and outputs-inputs of each activity are given in Table ?? [? ].
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Table 2.1: Bus planning activities of public transportation companies

Independent Inputs Planning Activity Outputs
Demand Data
Supply Data
Route Performance Indicators

Network Design
Route Changes
New Routes
Operating Strategies

Subsidy Available
Buses Available
Service Policies
Current Patronage

Frequencies Setting Service Frequencies

Demand by Time of Day
Times for First and Last Trips
Running Times

Timetable Development
Trip Departure Times
Trip Arrival Times

Deadhead Times
Recovery Times
Schedule Constraints
Cost Structure

Bus Scheduling Bus Schedules

Driver Work Rules
Run Cost Structure

Driver Scheduling Driver Schedules

2.2.1 Transport Network Design Problem

TNDP deals with setting lines and their frequencies. The former one is also called

Route Network Design (RND) [? ]. In RND, planners aim to design an optimal set

of stops and lines in terms of costs and passenger satisfaction, where frequency setting

determines number of trips for time intervals. Public transportation companies want

to spend least possible amount of resources to satisfy passenger needs where passengers

demand cheap and through journeys. Minimizing number of vehicles, number of links,

equivalent pollution index, or maximizing number of users, ratio of number of stops

to number of links or combinations of these indicators may be chosen as performance

criteria of TNDP. For a wider list of indicators readers are referred to [? ].

Besides aiming suitable purposes, planners have to face with some restrictions such as

(a) minimum values of frequencies for each route, (b) maximum allowed load factor, a

measure of the capacity utilization, for each route, and (c) maximum number of buses

available [? ]. Note that restrictions of a real world case are not limited to these. A

comprehensive literature review of TNDP may be found in [? ].
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2.2.2 Bus Timetabling

BT aims to decide the departure times of each bus trip. During this decision process,

the objective is to obtain an optimal list of departure times, i.e., timetables. There may

exist many factors a�ecting the optimality de�nition. For example, three di�erent factors

are discussed in [? ]. These factors are listed as: (1) passengers may transfer to next

line with short waiting times, (2) bus bunching, a situation more than one bus belong

to same line arrives same station simultaneously, must be avoided, and (3) departures

should be aligned evenly.

2.2.3 Vehicle Scheduling Problem

The purpose of VSP is assigning timetabled trips to an available number of vehicles in a

�eet by considering compatibility relations between each trip. Assignment activity may

have many restrictions. Since, a VSP variant, MDVSP is the main topic of this thesis,

related literature and further discussions are given in next sections. Please, note that

VSP is analogous to Aircraft Routing Problem (ARP) of aviation systems.

2.2.4 Driver Scheduling and Rostering

Driver Scheduling Problem (DSP) deals with assigning trips to anonymous drivers of a

transportation company to generate daily duties. It must be ensured that each vehicle

has a driver, unless it is in a depot where vehicles park after their duties.

Public transportation companies have to face challenging restrictions while scheduling

its drivers. Strict government rules such as maximum amount of work without a break

or starting and ending times of a workday must be satis�ed [? ]. The main purpose

of driver scheduling is to cover all timetabled trips with minimum number of duties. A

comprehensive overview on DSP can be found in [? ].

Preparing daily rosters is also a compelling task for public transportation companies. The

main purpose of this planning activity is to cover all generated duties with a minimum

number of drivers. Minimizing total overwork is also a purpose of rostering. During

rostering, planners have to follow some rules such as vacation days for each driver and
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maximum allowed number of working days in a row to distribute duties evenly among

all drivers. A real world application of rostering can be found in [? ].

2.2.5 A Brief Discussion on Optimization in Bus Planning Process

Public transportation companies use mathematical optimization methods as well as prac-

tical methods to plan their activities. Although planning all activities simultaneously is

theoretically known to produce the most e�cient plans, public transportation companies

follow sequential approaches in practice. Actually, they are obliged to employ such an

approach due to the computational complexity of each planning activity. For example,

it is shown that RND, VSP, and DSP are NP-Hard [? ? ? ].

Planning even a single step of a large-sized real-world public transportation case through

mathematical optimization techniques is not always possible in a tolerable amount of

time. Therefore, researchers decide to devise e�cient methods for solving separate steps

of the bus planning process. For instance, a heuristic method is devised to solve MDVSP

in this thesis. However, there exist simultaneous solution approaches in the transporta-

tion literature. It should be noted none of these studies deal with all steps of large-size

real-world bus planning cases.

Genetic algorithms to solve RND and frequency setting simultaneously are given in [? ?

]. There are also solution approaches for concurrent optimization of vehicle and driver

scheduling [? ? ]. On the other hand, timetabling, vehicle scheduling, and driver

scheduling problems are solved simultaneously with heuristic methods in [? ], where a

solution methodology to solve vehicle scheduling, driver scheduling, and driver rostering

problems concurrently is discussed in [? ].

2.3 Multiple Depot Vehicle Scheduling Problem

Two major components of a public transport company's resources are labor and energy.

Therefore, it is possible to obtain signi�cant cost reductions through e�cient usage of

these cost components for most of bus transit planning cases. Planners have to carefully

prepare its driver and vehicle schedules to exploit these cost reduction opportunities.
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In this thesis, the preparation of vehicle schedules via mathematical programming is

discussed.

Before going into the details of MDVSP, related terminology is discussed �rstly. A

bus transit company has a �eet of vehicles to serve its customers. Di�erent �eets

may contain di�erent types of vehicles. For example, a �eet may have standard buses,

articulated buses, and double-decker buses where a �eet belongs to another company may

consist of minibuses only. Vehicles of a �eet park and get serviced in single or multiple

depots. Whether single or multiple, depots have maximum capacities. Let D be the set

of depots, then each d ∈ D has at most rd vehicles within.

Each vehicle is supposed to cover a portion of timetabled trips of same or di�erent

lines that is a sequential set of stations. A timetabled trip is a single journey on a

route of a line. Starting-ending stations, starting-ending (planned) times, and duration

(planned) of a timetabled trip is de�ned and shared with passengers in form of timetable

in advance. Vehicles may have to cover some deadhead trips that is a trip without

passengers. A deadhead trip may be one of these three: (1) a pull-out trip between a

depot and starting station of a timetabled trip, (2) pull-in trip between ending station

of a trip and a depot, and (3) dead-running trip between ending station of a trip and

starting station of a compatible trip. Let T be the set of timetabled trips, et be the

ending time of trip t ∈ T , st′ be the starting time of a trip t′ ∈ T\{t} and ∆t,t′ be the

duration of a dead-running trip between ending station of trip t and starting station of

trip t′. If et + ∆t,t′ ≤ st′ , the it is said that trips t and t′ are compatible trips and a

vehicle can cover these trips in a sequence.

MDVSP is the problem of assigning |T | number of timetabled trips to vehicles emanating

from |D| number of depots. It is solved to obtain bus schedules. A bus schedule is

a feasible sequence of journeys starts with a pull-out trip followed by a few timetabled

trips with possible dead-running trips between each consequent timetabled trip pairs and

ends with a pull-in trip. Note that MDVSP is called Single Depot Vehicle Scheduling

Problem (SDVSP) if |D| = 1.
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2.3.1 Objective Function of Multiple Depot Vehicle Scheduling Prob-

lem

An optimal solution for a MDVSP case covers all timetabled trips with minimum number

of vehicles and minimum total deadhead trip kilometers. However, these two objectives

may con�ict with each other and one of them must be prioritized. In MDVSP, minimizing

number of vehicles is always the primal objective due to the high procurement, repair,

and maintenance costs of vehicles.

Objective function of MDVSP is summation of deadhead trip distances which are mea-

sured in terms of kilometers in this thesis. By adding an adequately large penalty PV

to pull-out and pull-in trip distances, it is ensured that minimizing number of vehicles is

prioritized.

2.3.2 Constraints of Multiple Depot Vehicle Scheduling Problem

Although di�erent set of constraints may be incorporated into di�erent MDVSP cases,

there are four basic constraints all MDVSP cases must have: (1) Each trip must be

assigned to only one vehicle, (2) each consequent trip pairs in any bus schedule must be

compatible, (3) each bus schedule must start and end at same depot, and (4) it is not

allowed to exceed depot capacities.

In practice, there may exist a boundary on maximum kilometers a bus can ride or

maximum duration a bus can be on the road in a day. Such restrictions are called route

time constraints and incorporated into several MDVSP cases [? ? ? ]. Moreover, if

there are more than one type of vehicle in a �eet and each timetabled trip can only be

assigned to a subset of these vehicle types, then an additional set of constraints called

multi-vehicle type must be added to MDVSP. In MDVSP literature, there are a number

of studies take into account such constraints [? ? ].

2.3.3 Mathematical Modelling Approaches

In this section the MDVSP literature is discussed in terms of modelling approaches. It

is found that MDVSP is modelled as Multi Commodity Network Flows, Set Partitioning

Problem, and Time-Space Networks through a review of MDVSP literature. Network
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Figure 2.2: Network for Multi-Commodity Network Flow Model

structures and mathematical models of two studies are given as examples of modelling

-one for MCFN and one for SPP. Interested readers are referred to [? ] for details of

TSN approach.

2.3.3.1 Multi-Commodity Network Flow

In [? ? ? ] MDVSP is modelled as MCNF. Network structure and mathematical model

of [? ] are given in this section as an example of MCNF modelling.

The given mathematical model is based on �ows over directed multigraph G = (V, E).

The set of nodes of G is union of three subsets: (1) set of trip nodes T = {T1, T2, . . . , Tn}

where n is equal to number of trips in the MDVSP case, (2) set of source nodes D =

{D1, D2, . . . , Dd} where d is equal to number of depots in the problem, and (3) set of sink

nodes S = {S1, S2, . . . , Sd}. There are three di�erent arc sets that union of them is E : (1)

pull-out arc set L that contains arcs (Dd, Ti) for d = 1, 2, . . . , |D| and i = 1, 2, . . . , |T|, (2)

deadhead arc setC that contains |D| replications of arcs (Ti, Tj) where tripi and trip j are

compatible trips, and (3) pull-in arc set A that contains arcs (Ti, Sd) for i = 1, 2, . . . , |T|

and d = 1, 2, . . . , |S|. Note pull-out arcs and pull-in arcs correspond to pull-out trips and

pull-in trips respectively where deadhead arcs correspond to dead-running trips.

The network representation of an MDVSP case with 2 depots and 3 trips can be found

in Figure ??. It is also given that C = {(T1, T2)}, i.e., only �rst and second trips are

compatible. Note that the arcs of Depot 1 are drawn in color of light grey where arc of

Depot 2 have color of dark grey.
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A MCNF formulation based on multigraph G is given below. From now on, the model

will be called (P ). In (P ), T takes part as transshipment nodes where D and S are

de�ned as source and sink nodes respectively. Production capacities of source nodes that

are typical for MCNF are actually depot capacities. Since all arc capacities are equal to

1, it is ensured that at most one vehicle can cover a deadhead trip whether it is a pull-

out, dead-running or pull-in trip. Therefore, aim of (P ) is to obtain minimum number

of chains visit all elements of T with the lowest cost. Model (P ) is given below:

min
∑
d

∑
i

ld,iLd,i +
∑
i

∑
j

∑
d

ci,j,dxi,j,d +
∑
d

∑
i

ai,dAi,d (2.1)

s.t.
∑
j

Ld,i ≤ rd ∀d, (2.2)

Ld,i +
∑
j

xj,i,d − yi,d = 0 (j, i) ∈ C ∀i, d, (2.3)

Ai,d +
∑
j

xi,j,d − yi,d = 0 (i, j) ∈ C ∀i, d, (2.4)

∑
j

Ai,d ≤ rd ∀d, (2.5)

∑
d

yi,d = 1 ∀i, (2.6)

All variables are binary. (2.7)

Variables of model (P ) are de�ned below:

� Ld,i: Binary variable takes a value of 1 if trip i is the �rst trip of a bus schedule

and covered by a vehicle emanating from depot d and 0 elsewhere.

� xi,j,d: Binary variable takes a value of 1 if a dead-running trip between two compat-

ible trips i and j is covered by a vehicle emanating from depot d and 0 elsewhere.

� Ai,d: Binary variable takes a value of 1 if trip i is the last trip of a bus schedule

and covered by a vehicle emanating from depot d and 0 elsewhere.

� yi,d: Binary variable takes a value of 1 if trip i is covered by a vehicle emanating

from depot d and 0 elsewhere.

Parameters of model (P ) are as follows:
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� ld,i: Cost of a pull-out trip from depot d to the starting station of trip i.

� ci,j,d: Cost of a dead-running trip from ending station of trip i to the starting

station of trip j. Please note that the value of the parameter is independent from

source depot of the vehicle covers trip j immediately after trip i.

� ai,d: Cost of pull-in trip from ending station of trip i to depot d.

� rd: Maximum number of vehicles emanating from depot d (depot capacities).

Objective function is a combination of all deadhead trip costs in terms of kilometers,

i.e., pull-out trip distances plus dead-running trip distances plus pull-in trip distances.

The objective is to minimize the total cost. In order to enforce the model to choose the

vehicle schedule with minimum number of buses, the pull-out and pull-in trip distances

are added adequately large penalty PV . Constraints ?? and ?? are capacity constraints of

depots where ??-?? are �ow conservation constraints common for MCNF formulations.

Constraints ?? assigns each trip to only one depot. Constraints ?? are binary constraints

and assure all variables of the mathematical model take a value of 0 or 1.

2.3.3.2 Set Partitioning Problem

Once an MDVSP is modelled as MCNF, it is possible to obtain SPP equivalent of the

formulation and to solve the problem with a standard [? ] or modi�ed [? ] column

generation approaches. Aforementioned solution strategy is shown to be able to solve

di�erent sized MDVSP cases [? ? ? ]. SPP formulation of [? ] is given in this section

as an example of SPP approach.

Before giving SPP formulation, the directed multigraph G = (V, E) is de�ned. Vertices

of directed multigraph V is the union of two sets T and D where T = {T1, T2, . . . , Tn}

and D = {D1, D2, . . . , Dn} where n is the number of trips and d is the number of depots

in an MDVSP case. Hence V = {T1, T2, . . . , Tn, D1, D2, . . . , Dn}. There are three arc

sets in the network that union of them is E: (1) pull-out trip arcs set L that have arc

type of (Dk, Ti) where k = 1, 2, . . . , d and i = 1, 2, . . . , n, (2) dead-running trip arcs set

L that contains |E| replications of (Ti, Tj) where i = 1, 2, . . . , n, j = 1, 2, . . . , n, i 6= j

and trips i and j are compatible trips, and (3) pull-in trip arcs set A that have arcs in

form of (Ti, Dk) for i = 1, 2, . . . , n and k = 1, 2, . . . , d.
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Figure 2.3: Network for Set Partitioning Problem

Let I be an MDVSP case with 3 timetabled trips and 2 depots where only compatibility

relation exists between T1 and T2. Illustration of the directed multigraph G for I can be

found in Figure ??. Note that arcs whose tail or head node is D1 are drawn in color of

light grey where remaining arcs have color of dark grey.

SPP formulation of MDVSP based on directed multigraph G is given below. Let Ω be

the set of all bus schedules. From now on, the formulation will be called (M). Model

(M) is given below.

min
∑
p∈Ω

cpθp (2.8)

s.t.
∑
p∈Ω

aipθp = 1 i = 1, 2, . . . , |T| (2.9)

∑
p∈Ω

bkpθp ≤ vk k = 1, 2, . . . , |D| (2.10)

θp ∈ {0, 1} ∀p ∈ Ω (2.11)

Variables of model (M) are given below.

� θp: Binary variable takes a value of 1 if p ∈ Ω is an element of bus schedules and

0 elsewhere.

Parameters of model (M) are de�ned below.
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� cp: Total deadhead trip cost of a bus schedule p ∈ Ω i.e., cost of the pull-out trip

plus cost of possible dead-running trips plus cost of the pull-in trip that p ∈ Ω

incurs.

� aip: Binary constant takes a value of 1 if trip i is covered by p ∈ Ω and 0 elsewhere.

� bkp: Binary constant takes a value of 1 if p ∈ Ω is covered by a vehicle emanating

from depot k.

� vk: Maximum number of vehicles emanating from depot k (depot capacities).

Objective function of model (M) is total of costs of all bus schedules p ∈ Ω. Constraints

?? assure each trip is covered only one bus where constraints ?? are depot capacity

constraints. Finally, constraints ?? ensure variables θp where p ∈ Ω can only take a

value of 0 or 1. The model aims to obtain bus schedules with minimum cost by choosing

an appropriate combination of bus schedules from Ω to cover all timetabled trips T.

Since number of all bus schedules may be enormous in practice, sometimes it is even

impossible to keep all bus schedules in memory. Instead of storing all bus schedules

explicitly, it is more e�cient to produce them when they are necessary. Therefore, a sub-

problem to obtain most bene�cial bus schedules is solved and these bus schedules are

added to Ω that contains a couple of bus schedules initially. Then model (M) is solved

to optimality with new Ω. This iterative scheme is applied until obtaining an evidence

indicates that objective value of last solved model (M) cannot be improved anymore.

This framework is known as column generation and widely used in scheduling �eld.

In such a framework given above model (M) is called master problem. As noted before,

a sub-problem is needed to add new bus schedules to Ω. Readers may �nd a mathe-

matical model based on multigraph G prepared as a sub-problem formulation (S). This

formulation is used to obtain appropriate bus schedules to add Ω. Model S is given

below.
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min
∑
k∈D

∑
i∈T

c̄k,iLk,i +
∑

(i,j)∈C

∑
k∈D

c̄ki,jx
k
i,j +

∑
i∈T

∑
k∈D

c̄i,kAi,k (2.12)

s.t.
∑
i∈T

Ai,k −
∑
i∈T

Lk,i ∀k = 1, 2, . . . , |D| (2.13)

∑
k∈D

Lk,i +
∑

j:(j,i)∈C

xkj,i −
∑

j:(i,j)∈C

xki,j −
∑
k∈D

Ai,k (2.14)

∀i = 1, 2, . . . , |T|

0 ≤ Lk,i ≤ 1 ∀k = 1, 2, . . . , |D|, ∀i = 1, 2, . . . , |T| (2.15)

0 ≤ Ai,k ≤ 1 ∀k = 1, 2, . . . , |D|, ∀i = 1, 2, . . . , |T| (2.16)

0 ≤ xki,j ≤ 1 ∀(i, j) ∈ C (2.17)

Variables of model (S) are given below:

� Lk,i: Amount of �ow on a pull-out arc which connects depot k to trip i where

k ∈ D and i ∈ T.

� xki,j : Amount of �ow on a kth replica of dead-running trip arc between trip i and

trip j where k ∈ D and (i, j) ∈ C.

� Ai,k: Amount of �ow on a pull-in arc which connects trip i and depot k where

i ∈ T and k ∈ D.

Parameters of model (S) are given below.

� c̄k,i: Let βk be the dual variable associated with constraint ?? of model (M) where

k = 1, 2, . . . , |D| and β∗k denote the value βk in an optimal solution. Then, c̄k,i =

lk,i − β∗k where lk,i is pull-out trip cost of a journey connects depot k and starting

station of trip i.

� c̄ki,j : Let αi be the dual variable associated with Constraint ?? of model (M)

where i = 1, 2, . . . , |T| and α∗i denote the value αi in an optimal solution. Then,

c̄ki,j = cki,j − α∗i where cki,j is cost of dead-running trip between trip i and trip j.

� c̄i,k: Let βk be the dual variable associated with constraint ?? of model (M) where

k = 1, 2, . . . , |D| and β∗k denote the value of βk in an optimal solution. Then,
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c̄i,k = ai,k − β∗k where ai,k is pull-in trip cost of a journey connects ending station

of trip i and depot k.

Objective function of model (S) is total of reduced costs associated with pull-out, dead-

running, and pull-in trip costs. Constraints ??-?? are �ow conservation constraints for

depot nodes D and trip nodes T respectively where constraints ??-?? ensure �ows on

all arcs cannot exceed 1 unit of �ow. Model (S) aims to obtain a bus schedule with

minimum negative reduced cost by solving a shortest-path problem. Note, the model

can be solved for each depot separately.

2.4 Literature Review

In this section, it is aimed to review solution methodologies of MDVSP. The taxonomy

of methodologies is based on solution approaches. Firstly, exact solution approaches are

discussed and then heuristic and metaheuristics methods are reviewed. For a taxonomy

study based on modelling approaches for SDVSP and MDVSP, readers are referred to [?

].

2.4.1 Exact Solution Approaches

The �rst exact solution methodology is o�ered in [? ]. MDVSP is modelled as a single-

commodity network model with additional subtour breaking constraints. The authors

derive a lower bound by using an "additive lower bounding" procedure [? ] and then use a

branch-and-bound technique to obtain integer solutions. Another method incorporating

a branch-and-bound technique is given in [? ]. Here the authors formulate an equivalent

set-partitioning model of a MCNF and solve instances with 6 depots and 300 trips to

optimality with Dantzig-Wolfe decomposition. However, a further study of Dantzig-

Wolfe decomposition for MDVSP [? ] indicates such an approach is unable to solve

instances with more than a thousand trips. Instead, the author discusses a delayed

column generation method is able to solve real-world instances up to 2,283 timetabled

trips. A set-partitioning approach to �nd an optimal solutions is discussed in [? ].

A heuristic solution to the dual of the linear relaxation of set-partitioning problem is

found, then this solution is used to reduce the number of variables of set-partitioning
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formulation. Finally, this reduced problem is solved to optimality with a general branch-

and-bound algorithm.

A MCNF formulation of MDVSP, where depot assignment and scheduling are done by

di�erent set of variables, is used to obtain optimal solutions to MDVSP instances [?

]. An equivalent SDVSP is solved, then a solution for this problem is used as a dual

feasible basis for the linear relaxation of MDVSP. Subsequently, a branch-and-bound

method is applied to obtain integer solutions. A MDVSP variant, MDVSP with time

windows, is solved to optimality with a branch-and-price method [? ]. At each branching

node, a SPP is solved with column-generation. A best-�rst procedure is applied during

branching to reduce the number of nodes to explore. Optimal solutions are reported for

instances with 5 depots and 250 trips. A heuristic approach is also given in same study.

A branch-and-bound algorithm that combines column generation, variable �xing, and

cutting planes is o�ered in [? ]. Method is able to solve instances with 4 depots and 500

trips. The authors also denote when an average number of trips in a column is large,

then column generation works less e�ciently.

In [? ], the idea of separating trips into categories is inserted to MDVSP literature: (1)

morning trips, (2) midday trips, and (3) afternoon trips. Trip compatibility constraint of

MDVSP is also separated into two di�erent categories: (1) depot compatibility and (2)

street compatibility. This separation leads the authors to set a new mathematical model

with a fewer number of variables compared to general multi-commodity �ow network

models [? ]. However, since an additional set of constraint, route time restrictions, is

added to pure MDVSP, o�ered method is able to solve in most instances with 400 trips.

In another study, it is reported MDVSP with route time constraints with up to 600

trips are solved to optimality with a branch-and-cut algorithm incorporating heuristic

procedures [? ].

To the best of our knowledge, there are only two studies that solve real-world and large

sized MDVSP instances to optimality. The authors of [? ] use time-space networks

instead of connection-based networks to model MDVSP. It is shown that time-space

network models need up to 99% fewer number of variables comparing to connection-

based network models when there are a few of terminals in a MDVSP case. Optimal

solutions are obtained by direct usage of standard optimization software applications for

instances with 5 depots and 7,068 trips.
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A MCNF model may be transformed into an equivalent set-partitioning model. Then,

this set-partitioning problem may be solved with a column generation procedure to obtain

optimal vehicle schedules. During column generation iterations inactive columns with

negative reduced costs become active. However, this activation method is not useful for

large instances of MDVSP. In [? ], it is o�ered to also activate some inactive variables

with positive reduced costs. This technique is called "Lagrangean pricing" and solves

real-world large-sized MDVSP instances with up to 49 depots and 24,906 trips. It should

be noted that integrality gaps for these instances are almost 0%, thus a simple rounding

procedure is enough to obtain integer solutions and no branch-and-bound procedure is

needed.

2.4.2 Heuristic Solution Approaches

MDVSP is shown to be a NP-Hard problem [? ]. This means there exists no polyno-

mial time algorithm that �nds an optimal solution for MDVSP cases. Although there

are standard optimization software applications that have an ability to solve small or

medium-sized MDVSP cases to optimality, many large-sized real-world cases of MDVSP

are still unsolvable. Therefore, many authors prefer to use heuristic methods to overcome

this problem. Even though heuristic methods do not guarantee �nding optimal solutions,

it is desirable to have at least a feasible schedule for most MDVSP cases. Moreover, if

a heuristic �nds a sub-optimal solution in short amount of time, this solution may be

preferred to optimal solutions obtained in longer times.

Heuristic solution methodologies have been used to solve MDVSP since the early 1980s.

A list of primal heuristics are given in [? ]. One of them is called "Cluster First - Schedule

Second". First, total pull-out and pull-in arc costs are calculated for each trip-depot pair.

Then, each trip is assigned to a depot where total pull-in and pull-out cost is minimum.

After this assignment, each SDVSP is solved to optimality. If there are infeasibilities in

terms of depot capacities, then these infeasibilities are resolved heuristically. Another

heuristic is called "Schedule - Cluster - Reschedule". A MDVSP is transformed into a

SDVSP by choosing minimum pull-out and pull-in costs among all depots. Then, this

SDVSP is solved to optimality. Generated vehicle schedules are assigned to depots by

using actual pull-out and pull-in costs. After this assignment, "Cluster First - Schedule

Second" heuristic is used to realize the rescheduling part.
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In [? ], MDVSP is modelled as capacitated multi-commodity matching problem. The

authors use Lagrangian relaxation method where depot assignment constraints are re-

laxed. This relaxation decomposes MDVSP into separate SDVSPs. Since, SDVSP can

be solved in polynomial time it is possible to obtain optimal solutions for these separate

SDVSPs. There may exist some infeasibilities such as unassigned trips or trips assigned

to more than one depot in solution due to the relaxed constraint set. A greedy heuristic

is also given in the study to remove these infeasibilities. An MDVSP variant, MDVSP

with time windows, is solved heuristically by an algorithm o�ered in [? ]. Authors of the

paper uses a column generation approach embedded in a branch-and-bound procedure.

Depth-�rst search is used without back-tracking during branching.

In [? ], two di�erent heuristic procedure is given to solve MDVSP with route time

constraints. First, pure MDVSP is solved to optimality. If there are infeasibilities in the

solution in terms of route time constraints, then some variables are �xed to avoid these

infeasibilities and the problem is solved again. Authors also o�er a heuristic method

to reduce number of variables for a given instance. It is reported some compatibility

relations may be relaxed to reduce problem size. However, this relaxation procedure

is not de�ned clearly. Another size reduction heuristic is given in [? ]. Instead of

solving MDVSP directly, separate SDVSPs for each depot in the problem are solved to

optimality. If a trip-compatibility arc is activated in all SDVSP solutions, then this arc is

�xed. Thus, problem size is reduced at amount of one. After �xing all compatibility arcs

satisfying this condition, reduced problem is modelled as time-space network and solved

to optimality by direct usage of standard optimization software applications. A similar

size reduction methodology is discussed in [? ]. Instead of �xing active compatible arcs

as done in [? ], authors o�er to �x an inactive compatible arc if that arc is inactive in each

SDVSP. Once the problem size is reduced, it is solved heuristically by using truncated

column generation method which is given in [? ]. Another method incorporates truncated

column generation and size reduction is o�ered in [? ].

Since, many compatibility arcs of MDVSPs are inactive in the solution, a degeneracy

problem exist in many MDVSP cases. A method to resolve this problem is discussed in

[? ]. A variable �xing strategy based on "Schedule First - Cluster Second" heuristic [?

] also given in the study. Performance of di�erent heuristics are compared in [? ]. A

comparison between, a branch-and-cut, a Lagrangian, and truncated column generation



Chapter 2. Background and Multiple Depot Vehicle Scheduling Problem 21

heuristics is done by solving cases1 randomly generated in a way given in [? ]. It is

reported the truncated column generation method is best in terms of solution quality if

longer solution times are tolerable. For other heuristics methods readers are referred to

[? ? ? ? ? ? ].

2.4.3 Metaheuristic Solution Approaches

Finding optimal solutions for combinatorial optimization problems is mostly intractable,

since this class of problems are known to be NP-Hard [? ]. In practice, scientists are

satis�ed with sub-optimal or at least feasible solutions in some cases. If sub-optimal

solutions are satisfying, metaheuristic methods can be used to solve combinatorial opti-

mization problems. Metaheuristic methods are classi�ed into two groups. Local search

methods try to �nd a local optimum point in a neighborhood by searching the neighbor-

hood starting from a solution belonging to that neighborhood, where population-based

methods explore solution space to avoid getting stuck at a local optima.

In recent years, metaheuristic methods are also o�ered to solve MDVSP. Both local

search and population-based methods are used in the literature. In [? ], "block-moves"

neighborhood is compared to two neighborhood structures of MDVSP literature: (1)

shift, and (2) swap [? ]. It is reported "block-moves" neighborhood outperforms both

existing neighborhood structures. Iterated local search method incorporates "block-

moves" is o�ered to solve MDVSP [? ]. The authors asses performance of their method

by solving instances used in [? ].

Max-min ant system [? ] is used to solve MDVSP with route time constraints [? ]. Best-

worst ant system [? ], ant colony algorithm [? ] are shown to be suitable population-

based methods to solve MDVSP. On the other hand, local search methods such as large

neighborhood search and tabu search [? ], and variable depth local search [? ] are also

o�ered to solve MDVSP.

Although a wide range of metaheuristics solutions of MDVSPs have been studied in

the literature, none of these studies deal with solving large-sized real-world instances.

Therefore, the applicability of metaheuristics in practice is still questionable.

1Available for download at http://people.few.eur.nl/huisman/instances.htm



Chapter 3

Heuristic Algorithms for Multiple

Depot Vehicle Scheduling Problem

3.1 Overview

In this chapter, four di�erent heuristic methods for MDVSP are discussed and a compar-

ison of these heuristics is given. Two of these heuristics, namely Iterative Rescheduling

(IR) and Trips Merger (TM), are introduced �rst in this thesis, where the other two

heuristic methods have been already studied in MDVSP literature. A comparison of

solution times of TM heuristic and a standard optimization software application solution

is also given to show the e�ciency of TM heuristic.

Sections ??, ??, ??, and ?? give details of heuristics Schedule First-Cluster Second

(SFCS), Schedule-Cluster-Reschedule (SCR), IR, and TM consecutively. Comparison of

heuristic methods is given in Section 6. The chapter ends with a section studying the

e�ciency of TM heuristic.

3.2 Schedule First - Cluster Second

The heuristic solution methodology is based on the idea of solving a SDVSP derived

from a base MDVSP [? ]. Since SDVSP can be solved in polynomial time [? ], it is

computationally e�cient to obtain bus schedules by solving a SDVSP derivation instead

22
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of base MDVSP. From now on SDVSP derivation of a base MDVSP is called SDV SPmin.

The derivation method of SDV SPmin will be discussed later in this section.

The heuristic consists of two steps: (1) Solving SDV SPmin to optimality to obtain a

set of bus schedules Ω. (2) Assigning each bus schedule p ∈ Ω to one of the depots by

considering depot capacities. The �nal assignments are bus schedules. These assignments

are also a heuristic solution to the base MDVSP. Since the method has a heuristic

nature, it is not always guaranteed the solution is optimal. In practice, there may exist

time boundaries on obtaining the set of all bus schedules for each depot. Therefore, a

suboptimal solution may be preferred to optimal solution which could require more time

to be found.

The �rst step of SFCS heuristic is solving an SDVSP derived from a base MDVSP. Here,

a method given in [? ] is discussed to derive an appropriate SDVSP. For an MDVSP,

let D be the set of depots, T be the set of timetabled trips, lk,i be the pull-out trip cost

between depot k and starting station of trip i and ai,k be the pull-in trip cost between

ending station of trip i and depot k where k = 1, 2, . . . , |D| and i = 1, 2, . . . , |T | and let

ci,j be the cost of a dead-running trip between ending and starting stations of compatible

trips i and j where i = 1, 2, . . . , |T | , j = 1, 2, . . . , |T | and i 6= j. Note that ci,j values are

independent from depots. Also let li be the set of all lk,i and ai be the set of all ai,k for

i = 1, 2, . . . , |D| and k = 1, 2, . . . , |D|.

Assume there is a virtual depot Dv that has a depot capacity r equal to sum of capacities

of all depots in a MDVSP case. Vehicles of the depot are supposed to cover timetabled

trips of T de�ned above. Pull-out trip cost of a journey between Dv and starting station

of trip i is li = min(li) and pull-in trip cost of a journey between ending station of trip

i and Dv is ai = min(ai). These parameters r, li, ai, and ci,j are used to construct a

SDVSP model by using formulation of model (P ) and this model is called SDV SPmin,

i.e., SDVSP derivation of a MDVSP case.

Let Ω be the set of bus schedules obtained by solving SDV SPmin and D be the set of

all depots. Then a formulation of an assignment problem (AP) for clustering is given

below. From now on the model is called model (A).
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min
∑
p∈Ω

∑
k∈D

cp,kxp,k (3.1)

s.t.
∑
k∈D

xp,k = 1 ∀p = 1, 2, . . . , |Ω| (3.2)

∑
p∈Ω

xp,k ≤ rk ∀k = 1, 2, . . . , |D| (3.3)

xp,k ∈ 0, 1 ∀p = 1, 2, . . . , |Ω|, ∀k = 1, 2, . . . , |D| (3.4)

Let Ωk be the set of bus schedules assigned to depot k where k = 1, 2, . . . , |D|. Then,

Schedule First - Cluster Second heuristic is outlined by Algorithm ??. Note that solve(m, d)

is an operator solves a mathematical model m with input d.

Algorithm 1 Schedule First - Cluster Second
1: procedure

2: Ω← solve(SDV SPmin,T)
3: ∀Ωk ← solve(A,Ω)
4: return ∀Ωk

5: end procedure

3.3 Schedule - Cluster - Reschedule

The heuristic method is an improved version of SFCS heuristic. The basic idea behind

the SCR heuristic is rescheduling clustered timetabled trips by solving separate SDVSPs

for each depot. Since SCR heuristic uses outputs of SFCS heuristic as inputs, objective

value of a SCR solution is always less than or equal to objective value of SFCS solution

to same MDVSP case.

Assume that SFCS heuristic is used to solve a MDVSP case and bus schedules for each de-

pot Ωk are obtained. Let Tk be a subset of timetabled trips set T and contain timetabled

trips covered by bus schedules Ωk where k = 1, 2, . . . , |D|. Seperate SDVSPs for each

depot are solved by considering subsets Tk to obtain rescheduled bus schedules.

Let SDV SPk be the SDVSP model to reschedule bus schedules p ∈ Ωk. If chainbreaker

operator assigns each timetabled trip covered by bus schedules p ∈ Ω to a set T , then

Algorithm ?? outlines SCR heuristic.
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Algorithm 2 Schedule - Cluster - Reshedule
1: procedure

2: ∀Ωk ← Algorithm ??

3: for k ∈ D do

4: Tk ← chainbreaker(Ωk)
5: end for

6: return ∀Ωk

7: end procedure

Interested readers are referred to [? ] for another implementation of SCR.

3.4 Iterative Rescheduling

The heuristic is inspired by the well-known clustering algorithm K-means and based on

the idea of using "Cluster" and "Reschedule" parts of the SCR algorithm in an iterative

scheme. Before going into the details of IR heuristic, it is useful to share the steps of

K-means algorithm.

Let P be a set of data points to be clustered into k number of clusters. Then, K-means

algorithm aims to assign all elements of P to the clusters such that sum of squared dis-

tances between each data point and centroid of the cluster that a data point is possessed

are minimized. Steps of K-means algorithm are as follows [? ]:

1. Initiate with an opening partition. Repeat steps 2 and 3 until convergence, i.e.,

the membership of clusters is �xed.

2. Change the last partition by assigning each data point to closest cluster.

3. Find centroids of newly generated clusters.

Assume that a MDVSP case is solved by using SCR heuristic. Sets of bus schedules Ωk

is obtained for each depot k where k = 1, 2, . . . , |D|. Then, de�ne a set Ω = ∪kΩk i.e. a

set whose members are all bus schedules obtained by the SCR heuristic. After this step,

assign all bus schedules p ∈ Ω to depots by solving an AP in such a way used in the

SFCS heuristic. The IR heuristic is applying these two steps iteratively over sets of bus

schedules obtained by the SCR heuristic until convergence, i.e., objective function values

of consequent iterations are equal to each other. Since the IR heuristic uses outputs of
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the SCR heuristic as inputs, objective value of an IR solution is always less than or equal

to objective value of the SCR solution to the same MDVSP case.

Let objective be an operator returns objective value of given sets of bus schedules. Then,

pseudo-code of the IR heuristic can be found in Algorithm ??.

Algorithm 3 Iterative Rescheduling
1: procedure

2: i← 2
3: ∀Ωk ← Algorithm ??

4: Φ1 ← ∪kΩk

5: r1 ←
∑

k∈D objective(Ωk)
6: Ω← ∪kΩk

7: ∀Ωk ← solve((A),Ω)
8: c1 ←

∑
k∈D objective(Ωk)

9: for k ∈ D do

10: Tk ← chainbreaker(Ωk)
11: Ωk ← solve(SDV SPk, Tk)
12: end for

13: Φi ← ∪kΩk

14: ri ←
∑

k∈D objective(Ωk)
15: while ri < ri−1 do

16: i← i+ 1
17: Ω← ∪kΩk

18: ∀Ωk ← solve((A),Ω)
19: ci ←

∑
k∈D objective(Ωk

20: if ci = ri−1 then

21: breakwhile
22: else

23: for k ∈ D do

24: Tk ← chainbreaker(Ωk)
25: Ωk ← solve(SDV SPk, Tk)
26: end for

27: Φi ← ∪kΩk

28: ri ←
∑

k∈D objective(Ωk)
29: end if

30: end while

31: return ∀Ωk

32: return Φ
33: end procedure

3.5 Trips Merger

Since MDVSP is NP-Hard and real world MDVSP cases are large sized, it is not always

possible to obtain optimal solutions to most of real world instances. Di�erent heuristic
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and metaheuristic methods are reported to be useful for solving such cases. There exist

a couple of heuristic methods based on the idea of reducing state space heuristically

and solving this reduced problem with direct usage of standard optimization software

applications. Interested readers are referred to [? ? ] for such methods. The TM

heuristic is also based on reducing the state space.

Assume the IR algorithm is run for an MDVSP case. Set of reschedules, prepared at

each iteration of IR algorithm, Φ is obtained. If two timetabled trips are covered in a

sequence in all of the reschedules, then this trip pair is merged, i.e. it is predetermined

that two trips will be covered in a sequence. If there are more than two trips in a

sequence possesses given property, then all of these trips are merged. After merging

operation, obtained reduced MDVSP is solved to optimality by direct usage of standard

optimization software applications.

After solving a MDVSP case with IR algorithm, underlying network of MDVSP, which

will be called based network from now on, must be transformed into a reduced net-

work in the TM framework, i.e., some nodes and arcs must be eliminated from the base

network to obtain the reduced network. Elimination may get di�erent forms with respect

to trip features. There may exist three di�erent trip features in terms of trips merging:

(1) a trip may not be merged with another trip or trips, (2) a trip may be merged with

another trip, and (3) a trip may be merged with more than two trips. First, trips are

sorted in some manner. Then, elimination decisions are taken one by one for each trip.

Let chain be a set of sequential trips to be merged, �rst trip be the starting trip of

the chain, last trip be the ending trip of the chain, and intermediate trip be any trip

between �rst and last trips. Following is a framework for elimination in case of each of

the three forms given above.

� If a trip does not merge with any other trip or trips, then there is no need for any

elimination, i.e., nodes and arcs related to the trip node stay same.

� If two trips are merged, nodes and arcs related to these two trips are eliminated

from the base network. Instead, a single node has incoming arcs of �rst trip as its

incoming arcs and outgoing arcs of last trip as its outgoing arcs is inserted to the

network.
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� If a chain has more than two trips, nodes and arcs related to �rst, last, and all

intermediate trips of this chain are eliminated from the base network. Instead, a

single node has incoming arcs of �rst trip as its incoming arcs and outgoing arcs

of last trip as its outgoing arcs is inserted to the network.

Note, since each inserted arc comes from the base network, costs of these arcs also come

from the base network, i.e., if cost of a pull-out arc connects depot k with starting station

of trip i is equal to c in the base network, then cost of a pull-out arc of a node represents a

chain whose �rst trip is i is also equal to c. However, since all dead-running trip arcs are

eliminated from the base network if two or more trips are merged and none of these arcs

are inserted to the reduced network, cost of these dead-running trips are not transferred

to the reduced network. Thus, sum of costs of such dead-running trips are added to

objective function of the mathematical model of the reduced network as a constant to

ensure that costs of same bus schedules obtained by solving MCNF formulations based

on base and reduced networks are equal.

Let clear be an operator deletes a variable, set(m, c) be an operator prepares an appro-

priate SDVSP formulation m where all pull-out and pull-in trip costs are equal to 1 and

all dead-running trip costs are equal to 0 with respect to compatibility matrix c, and

lowerbound be a user de�ned positive integer whose maximum value is equal to |Ω|1.

Then Algorithm ?? outlines TM heuristic.

3.6 Comparison of Heuristics

In this section, comparison of heuristics SFCS, SCR, IR, and TM is given. Solutions of

each heuristic method to a set of benchmark instances2 are compared to optimal solutions

obtained by GUROBI®solver. Given benchmark instances �rstly used in [? ] and

generated by using a technique given in [? ]. Properties of benchmark instances are given

in Table ??. Code is the code of benchmark instance given in source website. #Depots

and #Trips are number of depots and number of trips in an instance respectively.Total

Vehicle Capacity gives sum of depot capacities for an instance where #Variables and

1Default value of lowerbound is equal to |Ω|.
2Instances are available at http://people.few.eur.nl/huisman/instances.htm
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Algorithm 4 Trips Merger
1: procedure

2: ∀Ωk,Φ← Algorithm ??

3: clear(∀Ωk)
4: for k = 1, 2, . . . , |Φ| do
5: for (i, j) ∈ Φi do

6: if xi,j = 1 then
7: drmk(i, j)← 1
8: else

9: drmk(i, j)← 0
10: end if

11: end for

12: end for

13: checkmatrix←
∑|Φ|

k=1 drmk

14: for (i, j) ∈ checkmatrix do
15: if checkmatrix(i, j) ≥ lowerbound then
16: mergecandidate(i, j)← 1
17: else

18: mergecandidate(i, j)← 0
19: end if

20: end for

21: SDV SPmc ← set((P ),mergecandidate)
22: TM ← solve(SDV SPmc, T )
23: ∀Ωk ← solve(MDV SP, TM )
24: return ∀Ωk

25: end procedure

#Constraints are number of variables and number of constraints for model (P ) prepared

according to an instance.

Table 3.1: Benchmark instances

# Code #Depots #Trips Total Vehicle Capacity #Variables #Constraints
1 s0 4 500 233 306,620 4,508

2 s1 4 500 228 309,728 4,508

3 s2 4 500 217 313,772 4,508

4 s3 4 500 230 309,676 4,508

5 s4 4 500 216 303,868 4,508

6 s0 4 1000 447 1,225,640 9,008

7 s1 4 1000 438 1,228,572 9,008

8 s2 4 1000 407 1,222,576 9,008

9 s3 4 1000 429 1,198,052 9,008

10 s4 4 1000 429 1,211,288 9,008

11 s0 4 1500 675 2,690,272 13,508

12 s1 4 1500 656 2,769,400 13,508

13 s2 4 1500 676 2,750,656 13,508

14 s3 4 1500 648 2,763,136 13,508

15 s4 4 1500 593 2,756,936 13,508

All heuristics are coded in MATLAB®Release 2013a where GUROBI®Solver 6.5.0 takes
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action whenever a linear programming solution is needed. All calculations are done on

a laptop with an Intel®Core�i7-4510U CPU @ 2.00 GHz processor with 6.00 GB RAM

on a Microsoft®Windows®64 bit operating system. All linear programs prepared for

MDVSP instances are based on MCNF formulation, i.e., each instance are modelled as

(P ).

All instances are solved by SFCS, SCR, IR, and TM algorithms heuristically. Instances

are also solved to optimality by GUROBI®Solver where branching terminates when

integrality gap is 0.01%. Objective function values of solutions for all instances obtained

by each heuristic method and GUROBI®Solver are given in Table ??. TM solutions are

superior to IR solutions where IR solutions are superior to solutions of SCR and SFCS

heuristics as expected in all MDVSP instances.

Table 3.2: Objective function values of each instance obtained by given heuristics and
GUROBI®

# SFCS SCR IR TM GUROBI®
1 1,298,849 1,298,303 1,297,921 1,297,101 1,289,158
2 1,251,543 1,251,282 1,250,632 1,250,181 1,241,687
3 1,297,518 1,297,188 1,294,325 1,293,523 1,283,812
4 1,267,631 1,267,116 1,266,211 1,264,910 1,258,686
5 1,325,449 1,325,389 1,325,388 1,325,017 1,317,153
6 2,545,407 2,544,500 2,542,442 2,536,601 2,516,095
7 2,432,147 2,431,306 2,429,876 2,428,467 2,413,375
8 2,463,745 2,463,362 2,462,852 2,462,265 2,452,982
9 2,502,842 2,502,711 2,501,631 2,501,014 2,490,780
10 2,526,349 2,525,541 2,524,541 2,524,285 2,519,307
11 3,859,269 3,857,582 3,852,859 3,848,377 3,830,716
12 3,568,324 3,568,001 3,567,498 3,567,179 3,559,193
13 3,672,906 3,671,434 3,665,827 3,664,764 3,649,628
14 3,432,750 3,432,089 3,430,154 3,428,791 3,406,826
15 3,597,976 3,596,176 3,592,931 3,587,251 3,567,124

CPU times of each heuristic method are given in Table ?? for each benchmark instance.

Gaps between optimum solution and heuristic solutions are calculated for each instance

to show the e�ciencies of each heuristic method. Aforementioned gaps are given in Table

??3.

It is already mentioned all pull-out and pull-in trip costs are added an adequately large

penalty PV to ensure that aim of minimizing number of vehicles is prioritized. Vehicle

penalty PV , is decided to be equal to 5,000 for all instances. Please note, since PV is
3gapi = (heuristic solutioni − optimal solutioni)/heuristic solutioni
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Table 3.3: CPU times of each heuristic method for each benchmark instance

SFCS SCR IR TM

0.58 0.70 0.89 0.98
0.40 0.51 0.61 0.75
0.44 0.56 1.00 1.43
0.47 0.58 0.80 0.89
0.50 0.55 0.59 0.69
3.94 4.39 5.25 5.75
2.58 3.23 5.34 5.56
2.55 3.14 3.66 3.67
2.41 2.93 3.79 3.91
2.56 3.20 5.06 5.76
5.08 6.93 16.92 18.81
6.17 8.46 10.81 10.58
6.36 7.83 15.73 16.14
7.71 9.42 14.19 13.5
9.22 10.44 14.89 12.74

Table 3.4: Gaps between heuristic and optimal solutions for each instance

# SFCS SCR IR TM

1 0.75% 0.70% 0.68% 0.61%
2 0.79% 0.77% 0.72% 0.68%
3 1.06% 1.03% 0.81% 0.75%
4 0.71% 0.67% 0.59% 0.49%
5 0.63% 0.62% 0.62% 0.59%
6 1.15% 1.12% 1.04% 0.81%
7 0.77% 0.74% 0.68% 0.62%
8 0.44% 0.42% 0.40% 0.38%
9 0.48% 0.48% 0.43% 0.41%
10 0.28% 0.25% 0.21% 0.20%
11 0.74% 0.70% 0.57% 0.46%
12 0.26% 0.25% 0.23% 0.22%
13 0.63% 0.59% 0.44% 0.41%
14 0.76% 0.74% 0.68% 0.64%
15 0.86% 0.81% 0.72% 0.56%

added to pull-out and pull-in trip costs for each depot, each additional vehicle increases

the objective function at amount of 10,000 units. Therefore, objective function values

given in Table ?? do not represent actual cost of all deadhead trips. An amount equal

to number of vehicles used in a solution times 10,000 is subtracted from each objective

function value to obtain actual cost of all deadhead trips. Number of vehicles used for

each instance are given in Table ?? where actual deadhead trip costs for each instance

are given in Table ??.
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Table 3.5: Number of vehicles used in solutions for each instance

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Vehicles 123 118 123 120 126 241 229 233 237 238 368 338 350 326 343

Table 3.6: Actual deadhead trip costs of each instance found by given heuristics and
GUROBI®

# SFCS SCR IR TM GUROBI®
1 68,849 68,303 67,921 67,101 59,158
2 71,543 71,282 70,632 70,181 61,687
3 67,518 67,188 64,325 63,523 53,812
4 67,631 67,116 66,211 64,910 58,686
5 65,449 65,389 65,388 65,017 57,153
6 135,407 134,500 132,442 126,601 106,095
7 142,147 141,306 139,876 138,467 123,375
8 133,745 133,362 132,852 132,265 122,982
9 132,842 132,711 131,631 131,014 120,780
10 146,349 145,541 144,541 144,285 139,307
11 179,269 177,582 172,859 168,377 150,716
12 188,324 188,001 187,498 187,179 179,193
13 172,906 171,434 165,827 164,764 149,628
14 172,750 172,089 170,154 168,791 146,826
15 167,976 166,176 162,931 157,251 137,124

Gaps between optimum solution and heuristic solutions for deadhead trip costs are cal-

culated in such a way used in Table ??. Calculated gaps for each heuristic is given in

Table ??.

Table 3.7: Gaps between optimum solution and heuristic solutions for deadhead trip
costs

# SFCS SCR IR TM

1 14.08% 13.39% 12.90% 11.84%
2 13.78% 13.46% 12.66% 12.10%
3 20.30% 19.91% 16.34% 15.29%
4 13.23% 12.56% 11.37% 9.59%
5 12.68% 12.60% 12.59% 12.10%
6 21.65% 21.12% 19.89% 16.20%
7 13.21% 12.69% 11.80% 10.90%
8 8.05% 7.78% 7.43% 7.02%
9 9.08% 8.99% 8.24% 7.81%
10 4.81% 4.28% 3.62% 3.45%
11 15.93% 15.13% 12.81% 10.49%
12 4.85% 4.69% 4.43% 4.27%
13 13.46% 12.72% 9.77% 9.19%
14 15.01% 14.68% 13.71% 13.01%
15 18.37% 17.48% 15.84% 12.80%
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It has already been discussed SCR improves the solution of SFCS, IR improves the

solution of SCR, and TM improves the solution of IR. Therefore amounts of improvement

on SFCS solutions obtained by each heuristic are given in Table ?? to compare given

heuristics.

Table 3.8: Amounts of improvement on SFCS solutions obtained by each heuristic

# SCR IR TM

1 0.79% 1.35% 2.54%
2 0.36% 1.27% 1.90%
3 0.49% 4.73% 5.92%
4 0.76% 2.10% 4.02%
5 0.09% 0.09% 0.66%
6 0.67% 2.19% 6.50%
7 0.59% 1.60% 2.59%
8 0.29% 0.67% 1.11%
9 0.10% 0.91% 1.38%
10 0.55% 1.24% 1.41%
11 0.94% 3.58% 6.08%
12 0.17% 0.44% 0.61%
13 0.85% 4.09% 4.71%
14 0.38% 1.50% 2.29%
15 1.07% 3.00% 6.38%

It is indicated by Table ??, the amount of improvement on SFCS solutions are at a

range of 0.61%-6.50%. On average, the SCR method improves the solution of the SFCS

heuristic in amount of 0.54%, where values of same indicator for IR and TM are 1.92%

and 3.21%, respectively.

As a last note to this section, it can be stated that solution quality of the TM heuristic

strongly depends on the solution quality of opening heuristic, namely SFCS method. Ac-

tually, it is straightforward because TM is an improved version of SFCS. A scatter chart

for solution quality of TM versus solution quality of SFCS heuristic and corresponding

linear regression line is given in Figure ??. Since R2 is 0.905 it can be concluded the

gap between the optimal solution and the TM solution strongly depends on the SFCS

solution.

3.7 E�ciency of TM Heuristic

Since MDVSP is a NP-Hard problem, standard optimization software applications suf-

fer from a lack of su�ciency to solve large real-world cases. Therefore, heuristic and



Chapter 3. Heuristic Algorithms for Multiple Depot Vehicle Scheduling Problem 34

Figure 3.1: Solution quality of TM heuristic versus SFCS method

Table 3.9: Solution times of TM heuristic and GUROBI®Solver (in sec)

# Trips Merger GUROBI®Solver

1 0.98 39.57
2 0.75 41.55
3 1.43 30.17
4 0.89 36.8
5 0.69 274.76
6 5.75 6944.42
7 5.56 333.96
8 3.67 297.9
9 3.91 377.62
10 5.76 355.74
11 18.81 1720.29
12 10.58 1616.43
13 16.14 26787.5
14 13.5 1683.35
15 12.74 2043.72

metaheuristic methods are devised to solve this problem. Heuristic and metaheuristic

methods are known to be scalable and e�ciencies of such methods are independent from

problem size. This fact applies for the TM heuristic too. Solution times of the TM

heuristic and GUROBI®Solver are given in Table ??.

A ratio of solution time of TM heuristic to GUROBI®Solver can be used for comparing

solution times of both approaches. Values of this ratio for each instance are given in

Table ??.

On average, solution times ratio is equal to 2.34% for 500 trips instances (instances 1-5),
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Table 3.10: Ratios of solution times of TM to GUROBI®Solver

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ratio (%) 2.5 1.8 4.7 2.4 0.3 0.1 1.7 1.2 1 1.6 1.1 0.7 0.1 0.8 0.6

Figure 3.2: Average solution times ratio for each subset based on number of trips

1.13% for 1000 trip instances (instances 6-10) and 0.65% for 1500 trip instances (instances

11-15). A scatter chart for these ratios is given in Figure ?? to show scalability of TM.

Figure ?? indicates solution times ratio follows a negative exponential function. It is true

because TM solves a couple of SDVSPs and GUROBI® solves a single MDVSP. Please

note, there exist polynomial time algorithms to solve SDVSP where no polynomial time

algorithm exists for MDVSP.

The TM heuristic has one more property makes it preferable to direct usage of standard

optimization software applications such as GUROBI®. Instance 5 needs much longer

CPU time than other 500-trip instances to be solved by GUROBI®. However, solution

time of TM heuristic for this ill-conditioned instance does not variate signi�cantly from

average solution time of 500-trip instances. The same fact also applies for instances

6 and 13 for 1000-trip instances and 1500-trip instances respectively. This analysis

indicates that solution time of the TM heuristic is not a�ected by compatibility relations

of timetabled trips of a MDVSP case, where GUROBI® Solver is sensitive to these

relations.
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Case Study

4.1 Overview

In this chapter the 2014-2015 winter timetables of the Metrobus System of the IETT

General Directorate are assigned to vehicles of the system by solving MDVSP by the TM

heuristic. Section ?? introduces the Metrobus System and the data to be used in the

case study where SFCS, IR, and TM solutions to the vehicle scheduling problem of the

Metrobus System are given in Section ??. Solution times and qualities of each method

are also discussed in Section ??.

4.2 Metrobus System

The Metrobus System is a Bus Rapid Transit (BRT) line governed by the IETT General

Directorate and serves the people of Istanbul. In an average day 800,000 passengers

are served by the system. It covers 8.27% of daily trips of commuters among all public

transportation modes of the city, e.g. minibuses, taxis, ferries, etc.

Istanbul is known to be have the third-most congested tra�c after Mexico City and

Bangkok and commuters su�er from signi�cant amounts of lost time in tra�c jams. The

Metrobus System, as a BRT line, helping the people of Istanbul to overcome this problem

by doing daily trips on 7 di�erent lines. List of these lines is given in Table ??.

36
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Table 4.1: List of lines of Metrobus System

Line Terminal 1 Terminal 2

34AS Avcilar Sogutlucesme
34 Avcilar Zincirlikuyu

34BZ Beylikduzu Zincirlikuyu
34C Beylikduzu Cevizlibag
34G Beylikduzu Sogutlucesme
34Z Zincirlikuyu Sogutlucesme
34U Uzuncayir Zincirlikuyu

Table 4.2: Depots serve Metrobus System and their properties

Depot Area (m2) Closed Area (m2) Capacity (#Vehicles)

Ikitelli 192,000 28,000 74
Edirnekapi 60,000 6,720 237
Hasanpasa 37,000 4,000 120
Anadolu 58,200 10,000 65
Total 496

Table 4.3: Number of daily trips of all lines of Metrobus System

Line Total Number of Trips (1→ 2) Total Number of Trips (2→ 1)

34AS 778 779
34 322 328
34BZ 887 896
34C 359 350
34G 38 37
34Z 738 583
34U 159 -
Total 3,281 2,973

Timetabled trips of the Metrobus System are covered by vehicles which are allowed to

cover any of the trips, park and get repair-maintenance in four di�erent depots spread

over Istanbul. These depots and depot properties are given in Table ??.

In this study, the 2014-2015 winter timetables which have maximum number of trips

over all timetables of Metrobus System are used. The number of daily trips of all lines

are given in Table ??. In Table ??, (1 → 2) shows trips starting from terminal 1 and

ends at terminal 2 where (2 → 1) represents trips starting from terminal 1 and ends at

terminal 2. Trip frequencies of all lines are given in Appendix A.

Number of daily trips of all lines add up to 6,254. In current practice, these timetabled

trips are covered by 496 vehicles emanating from 4 di�erent depots spread over Istanbul.

This study aims to reduce the number of vehicles to cover such a timetable. Also,
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the total deadhead kilometers covered by these vehicles is aimed to be minimized by

mathematical optimization techniques.

In the current scheduling approach of the Metrobus System, schedulers use a spreadsheet

for scheduling purposes and they do the scheduling manually. Therefore, there is a strong

suspicion that the vehicle schedules prepared by using such a manual method are far from

optimum. This fact indicates there are cost improvement opportunities on scheduling via

mathematical optimization. Also, there exists a rule applied on vehicle scheduling that

decreases the degree of e�cient usage of the �eet. According to this rule, a single vehicle

cannot cover timetabled trips of di�erent lines on the same day, i.e., when a vehicle

comes to a terminal, it must wait for the starting time of the nearest timetabled trip of

the same line instead of starting the nearest timetabled trip of any of the other lines.

This fact causes unnecessary waiting of vehicles in terminals. In MDVSP, there is no

such rule. Actually this rule may be treated as a side constraint added to the MDVSP.

Therefore, it is supposed to have further cost improvements by solving the problem by

modelling it as a MDVSP.

4.3 Computational Results

In this study, vehicle scheduling problem of the Metrobus System is modelled as a MD-

VSP and solved by the TM heuristic introduced earlier in this thesis. A set of timetabled

trips T contains timetabled trips of the 2014-2015 winter timetables. From now on, the

instance refers to the aforementioned timetables. Please note all computations are done

in a laptop with an Intel® Core� i7-4510U CPU @ 2.00 GHz processor with 6.00 GB

RAM on a Microsoft®Windows® 64 bit operating system except single-depot problem

whose properties are given in Table ??. A laptop with an Intel® Core� i5-3210M CPU

@ 2.50 GHz processor with 8.00 GB RAM on a Microsoft®Windows® 64 bit operating

system is used when the exception occurs. All heuristic methods are coded in MATLAB

R2013a environment and GUROBI® Solver is used whenever a linear programming

solution is needed.

The instance is modelled as MDVSP with MCNF formulation, i.e., model (P ). Properties

of the model are given in Table ??.
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Table 4.4: Model size of the multiple-depot formulation

Model #Trips #Depots #Compatibility Arcs #Variables #Constraints
Multi-Depot 6254 4 16,107,698 64,505,840 75,056

GUROBI® Solver is unable to solve the multi-depot model and returns the error out of

memory. This is expected because of NP-Hardness and size of the problem. Since the

direct solution approach is unsuccessful, it is concluded that a MDVSP-speci�c method

of the existing literature or a newly introduced method is necessary. First, the instance

is solved by the SFCS heuristic to show the feasibility of the problem, i.e., are there ad-

equate number of vehicles to cover timetabled trips of the instance? The SFCS heuristic

needs a SDVSP formulation of the instance. Problem size of such a formulation is given

in Table ??.

Table 4.5: Model size of the single-depot formulation

Model #Trips #Depots #Compatibility Arcs #Variables #Constraints
Single-Depot 6254 1 16,107,698 16,126,460 18,764

GUROBI® Solver is able to solve such a formulation to optimality in 5,070.72 sec-

onds. Solution indicates that timetabled trips of the 2014-2015 winter timetables may

be covered by a �eet consisting of 476 vehicles, instead of the current �eet which has

496 vehicles. After solving the single-depot formulation, the SFCS heuristic assigns each

bus schedule to available vehicles emanating from multiple-depots. The assignment is

obtained by solving model (A). Problem size of the aforementioned model is given in

Table ??.

The problem is solved to optimality in less than 2 seconds. Result of this assignment

actually is a solution to the instance. It is already found by the single-depot model

that all timetabled trips may be covered by 476 vehicles. According to the solution of

the assignment model, it is found the total deadhead kilometers incur in prepared bus

schedules is equal to 16,618.

Once the feasibility of the problem is shown by solving the instance with the SFCS

heuristic, it is the IR heuristic's turn. A cluster and a reschedule are generated in each

iteration of the IR heuristic and the method terminates if objective value is same for two

Table 4.6: Model size of the assignment formulation

Model #Bus Schedules #Depots #Variables #Constraints

Assignment 476 4 1,904 480
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Table 4.7: IR iterations

Iteration Phase Objective Function Value

1 Cluster 9,536,617.50
1 Reschedule 9,536,500.60
2 Cluster 9,535,909.90
2 Reschedule 9,535,887.20
3 Cluster 9,535,511.70
3 Reschedule 9,535,452.50
4 Cluster 9,535,215.70
4 Reschedule 9,535,169.30
5 Cluster 9,535,069.70
5 Reschedule 9,535,069.70

Table 4.8: IR iterations without vehicle penalties

Iteration Phase Total Deadhead Kilometers

1 Cluster 16,617.50
1 Reschedule 16,500.60
2 Cluster 15,909.90
2 Reschedule 15,887.20
3 Cluster 15,511.70
3 Reschedule 15,452.50
4 Cluster 15,215.70
4 Reschedule 15,169.30
5 Cluster 15,069.70
5 Reschedule 15,069.70

consecutive reschedule and cluster or vice versa. The IR heuristic iterates 5 times until

the termination criteria is satis�ed when solving the instance. The method needs 12,804

seconds to terminate. Changes in objective function value through iterations of the IR

method are given in Table ??. Please note, objective function value of cluster phase of

the �rst iteration is actually the solution of SFCS.

Since an adequate penalty PV = 10, 000 is added to each pull-out and pull-in arc to

prioritize the aim of minimizing number of vehicles, objective function values given in

Table ?? does not represent actual deadhead kilometers. Actual deadhead kilometers

found at each iteration of IR are given in Table ??.

Improvements through IR iterations are given in Figure ??.

Vehicle schedules obtained at each iteration of IR heuristic are used for reducing the

problem size of the instance in TM framework. Since the IR heuristic terminates at the

�fth iteration there are �ve di�erent vehicle schedules each obtained at one iteration of IR.
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Figure 4.1: IR iterations without vehicle penalties

If TM uses these vehicle schedules to reduce the problem size with di�erent lowerbound

values, �ve di�erent reduced problems are obtained. Properties of these reduced problems

are given in Table ??.

Table 4.9: Properties of the reduced problems

lowerbound #Compatibility Arcs #Variables #Constraints #Merged Trips Amount of Reduction
1 0 0 0 476 92.39%

2 1,611,189 6,471,132 26,384 2198 64.85%

3 5,460,921 21,888,816 45,140 3761 39.86%

4 9,883,419 39,593,172 59,504 4958 20.72%

5 12,958,014 51,899,676 67,628 5635 9.90%

Columns #Variables and #Constraints gives the number of variables and number of

constraints in a MDVSP formulation based on model (P ) with 4 depots, respectively.

Please note, when lowerbound = 1, solving the reduced problem as a MDVSP is equiv-

alent to solving an assignment problem. Since there are no compatibility arcs in such a

reduced problem, none of the merged trips is an element of a chain at the �nal solution

of MDVSP. Therefore, this reduction is trivial.

Each of the reduced problems are modelled as MDVSP and tried to be solved to optimal-

ity by direct usage of GUROBI® Solver as prescribed in TM framework. If lowerbound

parameter of TM heuristic is larger than 2, GUROBI® returns the error out of memory.

Since TM solution is equal to IR solution when lowerbound is equal to 1, it is concluded

that the only optimal solution is obtained for the problem where lowerbound is equal to

2.

Out of all reduced problems only the problem corresponding to lowerbound = 2 is solved

to optimality. GUROBI® Solver needs 7,160.52 seconds to solve the aforementioned



Chapter 4. Case Study 42

Table 4.10: Depot assignments

Depot Depot Capacity #Vehicles Used Utilization Ratio

Ikitelli 74 74 100%
Edirnekapi 237 237 100%
Anadolu 65 45 69.23%
Hasanpasa 80 80 100%

problem. Since �rst step of TM, the IR heuristic needs 12,804.04 seconds, total time to

obtain a solution for the instance by the TM method is equal to 19,964.56 seconds.

Objective function value of the MDVSP prepared for the instance and solved by the

TM heuristic is equal to 9,533,136. Therefore, obtained vehicle schedules incur 13,136

kilometers of deadhead trips where 13.08% of this amount is caused by dead-running

trips, i.e., kilometers of dead-running trips add up to 1,718.40. Please note that, number

of vehicles found by TM is also equal to 476. Depot assignments of these vehicles are

summarized in Table ??.

Summary stats of vehicle schedules by depots are given in Table ??. #Trips (Avg.) gives

average number of trips covered by the vehicle schedules where #Dead-Running Trips

(Avg.) gives average number of dead-running trips whose costs are nonzero and covered

by these schedules. #Line Change (Avg.) column gives average number of line change

occurrence in vehicle schedules. Please note that the value of the stat #Line Change

(Avg.) is equal to zero in bus schedules prepared by current scheduling approach. Finally,

Total Dead-Running (km) column shows the total dead-running trip kilometers covered

by the vehicle schedules.

Table 4.11: Summary stats of vehicle schedules by depots

Depot #Trips (Avg.) #Dead-Running Trips (Avg.) #Line Change (Avg.) Total Dead-Running (km)
Ikitelli 16.16 0.61 8.07 641.5

Edirnekapi 12.08 0.29 5.62 343.4

Anadolu 12.69 0.47 6.6 253.4

Hasanpasa 13.54 0.46 6.28 480.1



Chapter 5

Conclusion and Future Research

In this study, the vehicle scheduling problem of the Metrobus System is modelled as

MDVSP and the model is solved separately by two newly introduced heuristic methods.

It is reported that timetabled trips of 7 di�erent lines may be covered by a �eet consists

of 476 vehicles instead of the current �eet which has 496 vehicles. This result indicates

that the current size of the �eet may be reduced by 4.03% through solving the vehicle

scheduling problem of the Metrobus System with mathematical optimization methods. It

is also found the total deadhead kilometers to cover the timetabled trips by 476 vehicles

is equal to 13,136. Please note, line change is allowed in the MDVSP solution.

Two heuristics, namely IR and TM, are introduced in this thesis. The e�ciency of these

heuristics is studied by solving 15 di�erent benchmark cases. It is found the IR heuristic

improves the solution of the widely-used SFCS heuristic by 1.92%, where same indicator

is equal to 3.21% for the TM heuristic. This is true because IR is the improved version of

SFCS and TM is the improved version of IR. Interestingly, the IR heuristic improves the

SFCS solution by 9.32% and the TM heuristic improves the by 20.95% when the vehicle

scheduling problem of Metrobus System is solved. This is probably caused by the fact

that in real-world problems most of the dead-running trip costs are equal to 0, which is

not true for the benchmark instances. Future research is needed to show the correctness

of this idea.

All of the benchmarks instances are solved to optimality by GUROBI® Solver to show

the gaps between optimum and heuristic solutions. According to the results the average

gap between the IR solution and optimal solution is equal to 11.56%, where the same
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indicator is equal to 10.40% for the TM heuristic. Although these heuristics improve the

solution of the SFCS heuristic, the average gaps indicate more e�cient heuristics can be

devised for MDVSP.

In this study, MDVSP is solved separately as a single step of the bus planning process

of bus transit companies. It is noted in the literature that solving each planning step

separately leads sub-optimal solutions. Therefore, solving the vehicle scheduling problem

of the Metrobus System simultaneously with driver scheduling and rostering problems

may lead to reductions in the overall cost of each step. This issue may also be reserved

as an item of future research.



Appendix A

Freqeuncies of All Lines of Metrobus

System

Table A.1: Trip frequencies of line 34AS by terminals

Interval Avcilar Sogutlucesme

05:01 - 06:00 11 8
06:01 - 07:00 40 37
07:00 - 08:00 51 49
08:01 - 09:00 49 52
09:01 - 10:00 50 53
10:01 - 11:00 47 48
11:01 - 12:00 47 47
12:01 - 13:00 48 47
13:01 - 14:00 42 48
14:01 - 15:00 38 37
15:01 - 16:00 36 37
16:01 - 17:00 43 39
17:01 - 18:00 45 45
18:01 - 19:00 48 48
19:01 - 20:00 48 48
20:01 - 21:00 45 41
21:00 - 22:00 46 43
22:00 - 23:00 25 26
23:01 - 00:00 11 13
00:01 - 01:00 6 11
01:01 - 02:00 2 2
02:01 - 03:00 - -
03:01 - 04:00 - -
04:01 - 05:00 - -
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Table A.2: Trip frequencies of line 34 by terminals

Interval Avcilar Zincirlikuyu

05:01 - 06:00 6 4
06:01 - 07:00 23 17
07:00 - 08:00 41 29
08:01 - 09:00 26 40
09:01 - 10:00 26 27
10:01 - 11:00 14 20
11:01 - 12:00 11 14
12:01 - 13:00 14 10
13:01 - 14:00 9 10
14:01 - 15:00 7 10
15:01 - 16:00 26 7
16:01 - 17:00 16 31
17:01 - 18:00 37 17
18:01 - 19:00 20 38
19:01 - 20:00 15 19
20:01 - 21:00 7 15
21:00 - 22:00 12 8
22:00 - 23:00 8 7
23:01 - 00:00 2 2
00:01 - 01:00 2 1
01:01 - 02:00 - 2
02:01 - 03:00 - -
03:01 - 04:00 - -
04:01 - 05:00 - -
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Table A.3: Trip frequencies of line 34BZ by terminals

Interval Beylikduzu Zincirlikuyu

05:01 - 06:00 12 6
06:01 - 07:00 49 20
07:00 - 08:00 60 53
08:01 - 09:00 53 55
09:01 - 10:00 55 63
10:01 - 11:00 55 56
11:01 - 12:00 54 54
12:01 - 13:00 53 56
13:01 - 14:00 48 56
14:01 - 15:00 48 50
15:01 - 16:00 49 49
16:01 - 17:00 53 47
17:01 - 18:00 55 50
18:01 - 19:00 55 60
19:01 - 20:00 57 54
20:01 - 21:00 52 60
21:00 - 22:00 52 48
22:00 - 23:00 17 29
23:01 - 00:00 10 18
00:01 - 01:00 - 11
01:01 - 02:00 - 1
02:01 - 03:00 - -
03:01 - 04:00 - -
04:01 - 05:00 - -
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Table A.4: Trip frequencies of line 34U by terminals

Interval Uzuncayir Zincirlikuyu

05:01 - 06:00 - -
06:01 - 07:00 12 -
07:00 - 08:00 54 -
08:01 - 09:00 54 -
09:01 - 10:00 33 -
10:01 - 11:00 6 -
11:01 - 12:00 - -
12:01 - 13:00 - -
13:01 - 14:00 - -
14:01 - 15:00 - -
15:01 - 16:00 - -
16:01 - 17:00 - -
17:01 - 18:00 - -
18:01 - 19:00 - -
19:01 - 20:00 - -
20:01 - 21:00 - -
21:00 - 22:00 - -
22:00 - 23:00 - -
23:01 - 00:00 - -
00:01 - 01:00 - -
01:01 - 02:00 - -
02:01 - 03:00 - -
03:01 - 04:00 - -
04:01 - 05:00 - -
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Table A.5: Trip frequencies of line 34C by terminals

Interval Beylikduzu Cevizlibag

05:01 - 06:00 8 25
06:01 - 07:00 23 59
07:00 - 08:00 46 35
08:01 - 09:00 20 42
09:01 - 10:00 37 9
10:01 - 11:00 1 3
11:01 - 12:00 - -
12:01 - 13:00 1 -
13:01 - 14:00 2 -
14:01 - 15:00 - -
15:01 - 16:00 - 4
16:01 - 17:00 18 33
17:01 - 18:00 40 45
18:01 - 19:00 41 39
19:01 - 20:00 44 36
20:01 - 21:00 23 12
21:00 - 22:00 6 6
22:00 - 23:00 21 -
23:01 - 00:00 26 -
00:01 - 01:00 - -
01:01 - 02:00 1 -
02:01 - 03:00 - -
03:01 - 04:00 - -
04:01 - 05:00 1 2
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Table A.6: Trip frequencies of line 34G by terminals

Interval Beylikduzu Sogutlucesme

05:01 - 06:00 - -
06:01 - 07:00 - -
07:00 - 08:00 - -
08:01 - 09:00 - -
09:01 - 10:00 - -
10:01 - 11:00 - -
11:01 - 12:00 - -
12:01 - 13:00 - -
13:01 - 14:00 - -
14:01 - 15:00 - -
15:01 - 16:00 - -
16:01 - 17:00 - -
17:01 - 18:00 - -
18:01 - 19:00 - -
19:01 - 20:00 - -
20:01 - 21:00 - -
21:00 - 22:00 4 3
22:00 - 23:00 5 5
23:01 - 00:00 5 5
00:01 - 01:00 5 5
01:01 - 02:00 5 5
02:01 - 03:00 5 5
03:01 - 04:00 5 6
04:01 - 05:00 4 3
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Table A.7: Trip frequencies of line 34Z by terminals

Interval Zincirlikuyu Sogutlucesme

05:01 - 06:00 4 2
06:01 - 07:00 28 20
07:00 - 08:00 77 34
08:01 - 09:00 91 39
09:01 - 10:00 68 41
10:01 - 11:00 30 21
11:01 - 12:00 22 22
12:01 - 13:00 25 24
13:01 - 14:00 22 23
14:01 - 15:00 23 22
15:01 - 16:00 23 26
16:01 - 17:00 59 48
17:01 - 18:00 62 68
18:01 - 19:00 65 70
19:01 - 20:00 62 63
20:01 - 21:00 36 37
21:00 - 22:00 25 19
22:00 - 23:00 15 3
23:01 - 00:00 1 1
00:01 - 01:00 - -
01:01 - 02:00 - -
02:01 - 03:00 - -
03:01 - 04:00 - -
04:01 - 05:00 - -
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