
Targeted and Budgeted Influence

Maximization in Social Networks under

Deterministic Linear Threshold Model

A thesis submitted to the
Graduate School of Natural and Applied Sciences

by

Furkan GÜRSOY

in partial fulfillment for the
degree of Master of Science

in
Data Science

Targeted and Budgeted Influence Maximization in Social Networks

under Deterministic Linear Threshold Model

Furkan GÜRSOY

Abstract

We define the new Targeted and Budgeted Influence Maximization under Deterministic

Linear Threshold Model problem by extending the original influence maximization prob-

lem to a targeted version where nodes might carry heterogeneous profit values, and to a

budgeted version where nodes might carry heterogeneous costs for becoming seed nodes.

As a solution to this problem, we develop a novel and scalable general algorithm which

utilizes a set of alternative methods for different operations: TArgeted and BUdgeted

Potential Greedy (TABU-PG) algorithm.

TABU-PG works in an iterative and greedy fashion where nodes are compared at each

iteration and the best one(s) are chosen as seed. The main idea behind TABU-PG is to

invest in potential future gains which are hoped to be materialized at later iterations.

Alternative methods are provided for calculating potential gain, and for comparing nodes.

Some methods are taken from the literature while others are novel methods introduced

by us. In comparing nodes, we propose a hybrid model which considers both gain and

efficiency. In calculating potential gains, we propose methods which dynamically assign

suitable weights to potential gains based on remaining budget. We also propose a new

method which ignores the potential gains which are results of partial influences under a

parameterized ratio. Moreover, we equip TABU-PG with novel scalability methods which

reduces runtime by limiting the seed node candidate pool, or by selecting more nodes

at each iteration; trading-off between runtime and spread performance. In addition, we

suggest new data generation methods for influence weights on links; and threshold, profit,

and cost values for nodes which better mimics the real world dynamics.

Extensive computational experiments with 8 different dataset on 4 real-life networks

show that TABU-PG heuristics perform significantly better than benchmark heuristics.

Moreover, runtime can be reduced with very limited reduction in final influence spread.

Keywords: Social Networks, Influence Maximization, Diffusion Models, Targeted Mar-

keting, Greedy Algorithm

Sosyal Ağlarda Belirlenimci Doğrusal Eşik Modeli altında

Hedefli ve Bütçeli Etki Enbüyükleme

Furkan GÜRSOY

Öz

Orijinal etki enbüyükleme problemini, düğümlerin farklı fayda değerleri taşıyabildiği

hedefli ve düğümlerin tohum düğüm olmak için farklı maliyet değerleri taşıyabildiği

bütçeli bir problem versiyonuna genişleterek, yeni Belirlenimci Doğrusal Eşik Modeli

altında Hedefli ve Bütçeli Etki Enbüyükleme problemini tanımlıyoruz. Çözüm olarak,

çeşitli işlemler için alternatif yöntemler barındıran, özgün ve ölçeklenebilir bir genel al-

goritma geliştiriyoruz: Hedefli ve Bütçeli Potansiyel Açgözlü (TABU-PG) Algoritma.

TABU-PG döngülü ve açgözlü bir biçimde çalışır. Her döngüde düğümler karşılaştırılır

ve en iyisi/iyileri tohum düğüm olarak seçilir. TABU-PG’nin ana fikri, sonraki döngülerde

somutlaştırılabilecek potansiyel kazançlara yatırım yapmaktır. Potansiyel kazançları

hesaplamak ve düğümleri karşılaştırmak için alternatif yöntemler sağlanmıştır. Kimi

yöntemler literatürden alınmışken, diğer yöntemler bizim tarafımızdan önerilen özgün

yöntemlerdir. Düğümleri karşılaştırırken, hem kazancı hem verimliliği dikkate alan melez

bir yöntem öneriyoruz. Potansiyel kazançları hesaplarken, potansiyel kazançlar için uy-

gun ağırlıkları, kalan bütçe miktarından yola çıkarak dinamik biçimde atayan özgün

yöntemler öneriyoruz. Aynı zamanda, parametreyle kontrol edilen bir değerin altında

kalan kısmi etki oranlarından kaynaklanan potansiyel kazançları yoksayacak bir yöntem

de öneriyoruz. Ayrıca, tohum düğüm aday havuzunu daraltarak veya her bir döngüde

daha fazla düğüm seçerek, TABU-PG’nin çalışma süresini önemli ölçüde düşüren özgün

ölçekleme yöntemleri sunuyoruz. Bu ölçekleme yöntemleri, çalışma süresi ve yayılma

performansı arasında ödünleşerek çalışır. Ek olarak, bağlar üzerindeki etki ağırlıkları ve

düğümler üzerindeki eşik, fayda ve maliyet değerleri için gerçek hayat dinamiklerini daha

iyi yansıttığını düşündüğümüz yeni veri türetim yöntemleri öne sürüyoruz.

Gerçek hayattaki 4 sosyal ağ baz alınarak oluşturduğumuz 8 farklı veri setinde uygulanan

kapsamlı sayısal deneyler gösteriyor ki; TABU-PG buluşsal algoritmaları, denektaşı bu-

luşsal algoritmalarına göre önemli ölçüde daha iyi performans gösteriyor. Ek olarak, nihai

etki yayılmasındaki kısıtlı bir düşüş karşılığında, çalışma süresi de anlamlı bir biçimde

düşürülebiliyor.

Anahtar Sözcükler: Sosyal Ağlar, Etki Enbüyükleme, Yayılma Modelleri, Hedefli

Pazarlama, Açgözlü Algoritma

To my parents, Gülsüm and Ahmet, who are always there for me.

v

Acknowledgments

First and foremost, I would like to express my gratitude to my advisor, Prof. Dilek

Günneç Danış, for the continuous support in my research. Without her valuable feedback

and guidance, this thesis would not have been become what it is now.

Besides my advisor, I would like to thank the rest of my thesis committee, Prof. Necati

Aras and Prof. Barış Arslan, for their insightful comments.

I also thank Filip Rak for his help in crawling one of the social network datasets we

employ in this study.

The author is supported by the Scientific and Technological Research Council of Turkey

(TUBITAK) under 2210-A Program.

vi

Contents

Declaration of Authorship ii

Abstract iii

Öz iv

Acknowledgments vi

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Our Contribution . 2
1.3 Thesis Structure . 3

2 Background on Diffusion in Social Networks 4
2.1 Social Influence . 4

2.1.1 Role of influence in decision making 5
2.1.2 Influence in social networks . 6

2.2 Basic Concepts on Networks . 8
2.3 Diffusion Models in Social Networks . 10

2.3.1 Independent Cascade Model . 11
2.3.2 Linear Threshold Model . 12

3 Literature Review on Solution Algorithms 14
3.1 Influence Maximization Problem . 14
3.2 Solution Methods . 15

3.2.1 Original Greedy Algorithm . 15
3.2.2 Lazy Greedy Algorithms . 16
3.2.3 Other Heuristics . 16

3.3 Extensions . 18
3.3.1 Budgeted Influence Maximization 18
3.3.2 Targeted Influence Maximization 20

3.4 Deterministic Linear Threshold Model . 21
3.5 Our Contribution . 23

vii

Contents viii

4 Methodology 25
4.1 Formal Problem Statement . 25
4.2 Proposed Algorithm . 25

4.2.1 Gain Calculation . 26
4.2.2 Node Selection . 28
4.2.3 Algorithm Illustration . 28
4.2.4 Scaling for Larger Networks . 30
4.2.5 The Algorithm . 31

4.3 Graphs . 35
4.4 Data Generation . 35

4.4.1 Influence Weights on Links . 36
4.4.2 Node Thresholds . 37
4.4.3 Node Costs . 38
4.4.4 Node Profits . 39

5 Experimental Results and Discussion 40
5.1 Data Preprocessing . 41
5.2 Experiments . 43

5.2.1 Experiments on Epinions . 45
5.2.2 Experiments on Academia.edu . 52
5.2.3 Experiments on Inploid . 60
5.2.4 Experiments on Pokec . 68

5.3 Discussion . 76

6 Conclusion 84

Bibliography 86

List of Figures

2.1 Five Groups of Consumers in Adoption of Innovation 8
2.2 A sample social network . 8
2.3 Independent Cascade Model . 12
2.4 Linear Threshold Model . 13

4.1 TABU-PG Illustration . 29

5.1 Comparison of All Heuristics in Experiment 1 46
5.2 Detailed Diffusion of Selected Heuristics in Experiment 1 47
5.3 Scaling TABU-PG_2_4_0.05 in Experiment 1 48
5.4 Scaling TABU-PG_2_3_0.5 in Experiment 1 49
5.5 Comparison of All Heuristics in Experiment 2 50
5.6 Detailed Diffusion of Selected Heuristics in Experiment 2 51
5.7 Scaling TABU-PG_3_3_0.1 in Experiment 2 52
5.8 Scaling TABU-PG_2_2_0 in Experiment 2 53
5.9 Comparison of All Heuristics in Experiment 3 54
5.10 Detailed Diffusion of Selected Heuristics in Experiment 3 55
5.11 Scaling TABU-PG_3_3_0.2 in Experiment 3 56
5.12 Scaling TABU-PG_3_2_0.2 in Experiment 3 56
5.13 Comparison of All Heuristics in Experiment 4 57
5.14 Detailed Diffusion of Selected Heuristics in Experiment 4 58
5.15 Scaling TABU-PG_3_2_0 in Experiment 4 59
5.16 Scaling TABU-PG_2_4_0.05 in Experiment 4 60
5.17 Comparison of All Heuristics in Experiment 5 61
5.18 Detailed Diffusion of Selected Heuristics in Experiment 5 63
5.19 Scaling TABU-PG_3_4_0 in Experiment 5 63
5.20 Scaling TABU-PG_1_4_0.2 in Experiment 5 64
5.21 Comparison of All Heuristics in Experiment 6 65
5.22 Detailed Diffusion of Selected Heuristics in Experiment 6 66
5.23 Scaling TABU-PG_3_4_0 in Experiment 6 67
5.24 Scaling TABU-PG_2_3_0.05 in Experiment 6 67
5.25 Comparison of All Heuristics in Experiment 7 69
5.26 Impact of MinPGR on TABU-PG_2_3 in Experiment 7 70
5.27 Detailed Diffusion of Selected Heuristics in Experiment 7 70
5.28 Scaling TABU-PG_2_3_0 in Experiment 7 71
5.29 Scaling TABU-PG_2_2_0 in Experiment 7 72
5.30 Comparison of All Heuristics in Experiment 8 73
5.31 Detailed Diffusion of Selected Heuristics in Experiment 8 74

ix

List of Figures x

5.32 Zoom on Detailed Diffusion of Selected Heuristics in Experiment 8 75
5.33 Scaling TABU-PG_2_2_0 in Experiment 8 75

List of Tables

3.1 Problem Comparison with the Related Work 24

5.1 Graphs . 41
5.2 Methods Used in the Experiments . 44
5.3 Overall Comparison of All Heuristics . 77
5.4 Overall Comparison of TABU-PG Heuristics 78
5.5 Rankings of TABU-PG Heuristics . 80
5.6 Overall Comparison of Benchmark Heuristics 81
5.7 Overall Impact of Scaling Parameters on Performance 81
5.8 Overall Impact of Scaling Parameters on Runtime 82

xi

Chapter 1

Introduction

As social process of influence intensely and frequently takes place in networks of people,

marketers try to take advantage of it in order to increase the adoption of their products -

or ideas and behaviours. With the development of online social networks, it has become

more feasible as the structure of networks and other relevant information can now be

collected and analyzed.

Social media in particular and social networks in general play an increasingly important

role in our daily lives, and in the world in general. Politics, business, and other matters

of our lives are significantly shaped by social influence we are exposed to via the social

networks we are part of. One might argue that it was the case even hundreds of years

ago with physical social networks, however the social networks are not bounded anymore

by the smaller social circle which consists of people who we mostly know personally. The

world has evolved to be a place where information can spread very quickly and easily

to far distances when compared to even few decades ago. It might further be argued

that information in our age is not different from before only in terms of its source,

but also in terms of its potential use and social effects due to the democratization and

industrialization that has been seen over the past few centuries.

Given the significance of diffusion of information in modern social networks; we study

how influence spreads, and how the spread and adoption of a desired product or idea can

be maximized over a given social network by finding influential user sets and subsidizing

them to promote the product or idea. The general methodology we develop in this work,

in part or in full, can be of use in other diffusion problems on networks.

1

Chapter 1. Introduction 2

1.1 Problem Statement

In a viral marketing campaign executed over a social network, ideally, subsidizing a few

influential people to promote a certain product will create a cascade in the network where

influential friends, friends of friends and so on will adopt the product. Therefore, the

problem is to select a set of influentials in such a way where influence spread is maximized

while the cost of subsidizing the influentials is kept within a given budget.

We define the particular problem we are studying as the Targeted and Budgeted Influence

Maximization under Deterministic Linear Threshold Model. Basically, the aim is to

maximize the total profit (i.e., influence spread) by activating selected nodes as seeds via

external intervention (e.g., subsidizing them to become seed nodes) on a network where

the activation function is defined by the Deterministic Linear Threshold Model.

A more formal and detailed definition of the problem is presented in Section 4.1.

1.2 Our Contribution

In this study, we define the new Targeted and Budgeted Influence Maximization under

Deterministic Linear Threshold problem. This problem differs from the existing studies

in the literature by extending the original influence maximization problem[1] to a tar-

geted version of the problem where nodes might carry heterogeneous profit values, and

extending to a budgeted version of the problem where nodes might carry heterogeneous

costs for becoming seed nodes; in deterministic networks.

Our main contribution is the development of a new algorithm named Targeted and Bud-

geted Potential Greedy (TABU-PG) for the problem we defined. The algorithm employs

a variety of method options for different operations. Therefore, selecting different meth-

ods results in different TABU-PG heuristics sharing the same framework.

Moreover, we propose novel methods to enable TABU-PG heuristics to run on very large

networks in a significantly shorter amount of time by trading spread performance (i.e.,

total profit) with better runtime. For example, by utilizing the scalability methods we

introduced, a TABU-PG heuristic which runs on a network with over a million nodes and

over 14 million links takes approximately 1 hour instead of 11 hours while performing

nearly the same as original.

Chapter 1. Introduction 3

In addition, we propose new methods for generating influence weights for links; and

threshold, profit, and cost values for nodes. In our opinion, in many cases, our meth-

ods reflect the real world more accurately than the existing methods employed in the

literature.

Lastly, we provide empirical evaluations of TABU-PG heuristics and benchmark heuris-

tics such as closeness, betweenness, pagerank, hub, authority, eigenvector, and bench-

mark heuristics. With extensive computational experiments we show how all heuristics

perform with 8 different datasets on 4 different real-life networks.

1.3 Thesis Structure

This work is organized as follows.

In Chapter 2, we review how people’s decisions and behaviours are shaped by social

influence. We then approach the topic from a social network analysis perspective. Back-

ground on basic concepts on networks which are used in the rest of the work, hence

helpful for understanding this work, is given. Lastly, most popular diffusion models

in social networks, which are essential to comprehend the related works and also our

methodology, are explained.

In Chapter 3, we review how influence maximization problem emerged and developed. We

cover the existing solution methods in the literature for influence maximization problem

as well as its extensions. We complete the chapter with comparative analysis of our

problem and existing problems in the literature, and present our contribution.

In Chapter 4, we begin with formally defining our problem. Next, we propose a novel

algorithm, explain it in detail, and illustrate how it works. Then, the graphs (i.e., social

networks) which are used in this work are given along with descriptions. Lastly, we

present our data generation methods which we use to create non-existing data which are

required for our algorithm, or to transform the existing data into a desired form.

In Chapter 5, we present experimental results and provide a comprehensive discussion

on the results. First, data preprocessing steps which are utilized in generation of final

datasets are explained. Then, experimental results on 8 different datasets which are

created from 4 different social networks are presented along with initial comments. The

chapter ends with an overall and comparative discussion on performance and runtime

results of our heuristics and benchmark heuristics.

The conclusion and final remarks are given in Chapter 6.

Chapter 2

Background on Diffusion in Social

Networks

In this chapter, we will review basic concepts which are necessary to understand the

significance and fundamentals of the problem and solution we study. In the first section,

we explore how social influence occurs in social networks and shapes people’s decisions.

Next, we review basic concepts in social networks, particularly focusing on the concepts

which we are going to refer in later sections. In the last section, we explain the diffusion

models in social networks which are studied in the relevant literature.

2.1 Social Influence

In a connected world, people’s decisions and behaviours are influenced by others. Social

influence can be observed in sales, marketing, persuasion, peer pressure, conformity, and

leadership. Social influence can be categorized into two categories: informational social

influence and normative social influence [2].

Informational social influence occurs when one accepts arguments provided by others

when the person in question is uncertain about the subject. On the other hand, normative

social influence occurs when one conforms, with or without private acceptance, in order

to be liked by a group. Decisions and behaviours, such as purchasing of a product or

adopting a particular lifestyle, are shaped by both of these types of social influence.

4

Chapter 2. Background on Diffusion in Social Networks 5

2.1.1 Role of influence in decision making

The influence may occur either at a conscious level or at an unconscious level. In the

case of influence happening at a conscious level, people choose whether to be influenced

or not as a result of some rational decision making process. On the other hand, one does

not always have the control over whether to be influenced or not as influence can also

happen at an unconscious level.

For the influence at a conscious level, there are two types of benefits in imitating the

decisions of others: the direct-benefit effect and the informational effect.

Direct-benefit effect takes place when one’s payoff from her own action is directly

affected by other people’s actions. This phenomenon is also called as network effect.

In a setting with network effects, one’s adoption decision is affected both by her own

intrinsic interest and by quantity and composition of other people who have already

adopted.

The composition refers to wide-ranging information on the people’s roles and relations

in their social network. For example, if some of one’s colleagues start using a certain

Product B, one’s payoff in switching from Product A to Product B increases given that

collaborating with them will become much easier.

A product with network effects needs to be adopted by a significant portion of all con-

sumers before larger crowds start to adopt the product. Therefore, there exist tipping

points (i.e., certain share of the market) such that once it is reached, the upward demand

will easily increase the product’s market share. This can be illustrated by the historical

adoption rates of fax machine which quickly peaked after it slowly reached to a tipping

point [3].

In the case where multiple products compete for the same market, if the role of network

effects is significant, usually one of the competing products dominate the market at the

end. Assuming that these products are comparable, the first product which successfully

gets adopted by larger portion of the consumers has a significant advantage over others to

become the market leader since a new consumer will tend to choose it because her payoff

will be higher due to network effects, even though the functionality of the competing

products is basically the same. Windows’ domination in operating system market for

PCs illustrates this phenomenon.

The informational effect, also called indirect-effect, occurs when collective information

is more powerful than one’s private information. In a setting where one has limited

information on which action to prefer, the decision is more likely to be made by mimicking

Chapter 2. Background on Diffusion in Social Networks 6

others’ decisions. In fact, that is the rational thing to do since collective information is

likely to be more accurate than one’s own limited private information.

The informational effect is different from direct-benefit effect since one’s payoff is not

necessarily changed due to others’ actions. Rather, it is one’s information that is changed.

Consider the following famous example: there are two neighbouring restaurants; one

restaurant has a long line of customers waiting and the other restaurant has virtually

no customer. A newly arriving customer will think that there must be a good reason

that people fall in line for one restaurant and not for the other. Her private, thus prior,

information about which restaurant to prefer will be influenced by the information that

the majority seems to have.

This behaviour is called as herding. A person cannot directly observe the private infor-

mation of others but can make inferences from their actions. So that, herding behavior

occurs when people’s decisions depend on the inferences from the earlier decisions of

other people. The interesting part is that a single person can be the only reason behind

a whole cascade. In the restaurant example; the second customer makes the same choice

as the first customer, the third customer makes the same choice as the second customer

and so on. Choice of the first customer, possibly a random choice, might result in most

people preferring the same restaurant as her.

Despite the fact that herding behavior is the rational thing to do in the case where one

has a limited or non-existent information about the decision to be made, the results in

a herding model might not be optimal at the end. The earlier decisions might be taken

under random circumstances or might be manipulated on purpose. Therefore, a small

number of people at the beginning can affect the direction of the whole cascade. This

phenomenon explains how certain businesses or products rise to prominence although

they are not superior to their competitors.

Contrary to influence at a conscious level, people can also be influenced without any

conscious rational decision making process. Social conformity, mirroring and other psy-

chological effects are few explored examples of such situations [4].

2.1.2 Influence in social networks

Along with advancements in scientific methods and with the aid of computers, the process

of influence has started to be studied from the perspective of social network analysis.

Understanding how influence spreads in social networks plays a crucial role in modeling

and developing solutions to the problems in social network analysis.

Chapter 2. Background on Diffusion in Social Networks 7

Theoretical roots of Social Network Analysis lie in Psychology, Anthropology, and Math-

ematics [5]. Moreno developed Sociometry and aimed to explore the relationship between

psychological well-being and social configurations, and formation of groups [6]. Euler’s

Konigsberg Bridge problem [7], which later enabled the development of Markov proba-

bility chains in Statistics, also can be given as an example of the roots of Social Network

Analysis in Mathematics. Today, Social Network Analysis is a well-developed area with

increasing interdisciplinary approach.

The earliest studies about influence propagation in social networks took place in the

middle of the 20th century. In his famous book, Diffusion of Innovations [8], Rogers

brings together number of studies which study how innovations in agricultural methods

and tools spread in the rural communities. He paved the way for the development of

notions such as strength of weak ties, tipping point, phases of adoption, and categories of

technology adopters. These notions have all been extensively studied later and become

central themes in social network analysis and other fields.

Diffusion of innovation in the social network and adoption are not necessarily equivalent.

One might be aware of a new product however might not immediately adopt it. When it

comes to adoption, there are five groups of consumers: innovators, early adopters, early

majority, late majority, and laggards.

Innovators are often the visionaries and enthusiasts who are willing to adopt new in-

novations immediately without requiring anyone in their network to priorly adopt the

innovation. They make up 2.5% of the population. Early adopters are like Innovators

but they are not as fast as them when adopting an innovation. They wait until they see

a few people adopt before adopting themselves. They make up 13.5% of the population.

Early majority is the pragmatists who notice the benefits of adoption after a certain

portion of people adopt the product. With 34% of the population, they constitute a

large group of people who wait more than the previous two groups before adoption and

only adopt after more careful consideration.

Late majority is the conservatives who resist to change unless significant portion of the

population adopts the change. They are the same size of the early majority group.

Laggards are the remaining 16% of the population and they are very unlikely to adopt

an innovation even though majority of the population already adopted.

However, it might be misleading to assume that these groups are strictly separated

from each other. Rather, each consumer has a position in the scale from innovative to

laggard. A person in the early majority group can be closer to early adopters or late

majority. Figure 2.1 shows the distribution of consumers in terms of tendency to adopt

an innovation.

Chapter 2. Background on Diffusion in Social Networks 8

Figure 2.1: Five Groups of Consumers in Adoption of Innovation

2.2 Basic Concepts on Networks

A graph is a diagram which depicts the system of any relations between any two or more

things. On the other hand, a social network is a social structure comprised by actors

and social interactions between the nodes (i.e., the actors). A social network can be

represented as a social graph using graph notations. We will use the term social network

for the rest of this study. The two main constituents of social networks are nodes which

represent the actors and links which represent the interactions. A social network with

12 nodes and 19 links is shown in Figure 2.2.

Figure 2.2: A sample social network

Nodes, commonly referred as vertices in graph theory, represent things such as people,

webpages, places and anything else which can be modelled as actors in a system. Nodes

might have properties associated with them. Values for these properties can be assigned

externally or can be calculated based on the structure of the network. Demographics

can be given as an example of externally assigned property whereas centrality measures

are calculated based on the structure of the network.

Chapter 2. Background on Diffusion in Social Networks 9

Links, commonly referred as edges in graph theory, are the representations of interactions

between nodes. Friendships, co-authorships, rating the same product are some examples

of links. A link constitutes a neighborship between the two nodes it connects. Links can

be directed or undirected (also called as bi-directional). For example, on Twitter, the

follow action constitutes a directional link from the follower to the followed user. On

the contrary, friendship links on Facebook are undirected since A is always a friend of B

given that B is a friend of A. A social network is called a directional social network if

at least one of the links is directed and called a bidirectional social network if all of the

links are undirected.

Centrality measures

Usually, a tiny fraction of nodes plays a disproportionately large role in diffusion mech-

anisms in social networks (i.e., power law distribution). Therefore, finding methods of

identifying such influential nodes is a notable research problem. It might be intuitive

to assume that nodes which are more central in a social network are more important

and thus more influential. There are different ways of measuring centrality and most

of them are based on the relative position of a node in the network. degree, closeness,

betweenness, pagerank, hub, authority, and eigenvector centrality scores are among the

most popular measures of centrality.

Degree centrality is the measure of number of links a node has. The intuition is that a

node is more important if a node has more links, therefore connections, with other nodes.

For a directional network, indegree centrality and outdegree centrality is measured by

the number of incoming links and outgoing links, respectively. Compared with other

centrality measures, degree centrality is a simpler approach because it does not consider

the relative location of a node in the network. [9] showed that degree is not necessarily

an indicator of influence in microblogging networks.

Closeness centrality is the measure of how easy it is for a node to reach other nodes.

The easiness implies the shortness of the paths. Therefore, closeness is average length of

the shortest paths from the node to all other nodes. The intuition is that a node is more

important if it is close to all other nodes on average since it can reach them more easily.

Betweenness centrality is the measure of how frequently a node is on the shortest

paths between all node pairs in a social network. The intuition is that a node is more

important if it plays a larger role in connecting other nodes in shorter paths.

PageRank score is based on the probability distribution of random walk on graphs. In

a simplistic intuitive view, a node which has a link to another node is effectively casting

for a vote for the latter node. Thus, the network can be represented as nodes voting other

nodes which they have link to. However, not all votes are equal. Importance of the vote

Chapter 2. Background on Diffusion in Social Networks 10

is determined by the importance of the voting node, and a node with higher PageRank

score is more important. Therefore, PageRank score is calculated in a recursive manner.

The PageRank algorithm was initially developed by Page et al. [10] to rate Web pages

objectively and mechanically. It has been a significant part of Google’s search algorithm.

Hub score is higher for a node if it has more outgoing links to more authoritative nodes.

Authority score is higher for a node if it has more incoming links from more hub nodes.

Therefore, they exhibit a mutually reinforcing relationship. Using this relationship, hub

scores and authority scores can be calculated in a recursive manner. The HITS algorithm

is developed by Kleinberg [11] to calculate Hub and Authority scores.

Eigenvector centrality, also known as eigencentrality, is a measure of influence where

a node is more central if it is connected to nodes which are more central, measured by the

size of their eigencentrality values. Hence, Eigenvector centrality utilizes a reinforcing

relationship in calculation of eigencentrality. For example, PageRank score is a variation

of Eigenvector Centrality. However, throughout this study, we will refer to the version

in [12] as Eigenvector centrality.

2.3 Diffusion Models in Social Networks

Information might spread in three ways: epidemics, herding and information cascades in

networks [13].

Epidemic models generally assume implicit network and unknown connections among

nodes. Epidemic models are largely used to model spread of diseases. However, rather

than focusing on network structure, it generally focuses more on infection and recovery

rates at a global level. Although contact networks, a type of epidemic models, assume

connections between nodes; these nodes are not necessarily close in terms of real-world

proximity. Sharing the same air by chance with a total stranger can be considered a

connection while modelling the spread of a flu virus.

Herd behavior describes the way people align their actions in a group without previous

planning. There are two prerequisites for a herd behavior to occur: connections between

individuals and a method to transfer behavior among individuals or to observe their

behavior. An example is when you divide a group of people into two and ask them

to guess the population of a random country. First group is instructed to write their

answers on a paper without showing it to others. The second group is instructed to

answer in a way that everyone in the group can hear. In this experiment, the people in

the second group approximate their original answers to the previous answers of others

while the first group gives more varying answers.

Chapter 2. Background on Diffusion in Social Networks 11

For herding, there is no need for a network in theory, however a well-connected network

exists in practice. As the network should be a near-complete graph for herding behaviour

to take place, herding behavior does not apply to most social networks where underlying

network is rather sparse. However, it can still be observed in densely-connected clusters

which are part of a sparse network. Also, the trending section of microblogs (such as

Twitter) can be an example of where herding takes place as users become aware of

what many other people talk about although these people are not necessarily in their

immediate network.

In contrast to the epidemics and herding, people’s interactions predominantly take place

at the local level rather than at a global level. People in general are more interested in

opinions of their own network than opinions of the whole population. This phenomenon

also explains people aligning with their friends although they are a minority in the global

population. Thus, structure of network plays a significant role in spread of information,

or diffusion of innovation.

Information cascades in social networks can be modelled by employing Markov random

fields, voter models, Independent Cascade Model, and Linear Threshold Model. The

latter two are investigated in detail in the following sections.

2.3.1 Independent Cascade Model

Independent Cascade Model (ICM) [1] assumes that diffusion time steps are discrete. At

any time, a node can be either active (i.e., influenced) or inactive. An active node may

attempt to activate a neighbouring inactive node only once (i.e., it has a single chance),

and a node cannot become inactive later once it is active (i.e., a progressive model).

The process starts with initially active nodes which serve as the seed nodes. A node v

that is activated at time t tries to activate its inactive neighbour node u at time t + 1.

The attempt is successful with probability pvu. The process runs until the time step

where no more nodes get activated. Independent Cascade Model can be thought of as a

sender-centric model. An example of the diffusion process in ICM is illustrated in Figure

2.3.

In Figure 2.3, B is selected as the seed node and activated at t = 0. It then attempts

to activate its neighbors. A, C, and E have activation probabilities of pBA, pBC , and

pBE respectively. At t = 1, only A is activated by B; and B cannot activate any of

its neighbors anymore. A then proceeds to activate D in a similar fashion. After D

attempts to activate its neighbors and activate G, the diffusion terminates since there

does not remain any active node which can attempt to activate neighbors.

Chapter 2. Background on Diffusion in Social Networks 12

Figure 2.3: Independent Cascade Model

2.3.2 Linear Threshold Model

Linear Threshold Model (LTM) [1] holds the same assumptions as the ICM except that

single chance of activation attempt rule is replaced with another activation model. Each

node, in a way, contributes to activation of their neighbours rather than attempting to

activate them at once. So, LTM can be thought of as a receiver-centric model in contrast

to ICM’s sender-centric model. In LTM, each link is assigned a weight wvu representing

the influence of node v towards the target node u. Each node has an assigned threshold

θu to get activated.

The process starts with initially active nodes which serve as the seed nodes. At any time

step t, for node u, if weights of links from neighbouring active nodes exceed the threshold

θu, then u becomes active. The process runs until the time step where no more nodes

get activated. The process in LTM is demonstrated in Figure 2.4

In Figure 2.4, all nodes are assumed to have fixed thresholds of 0.5 for demonstration

purposes. At t = 0, B is selected as the seed node and activated. At t = 1, A and C get

activated since sum of incoming influence weights are greater than their thresholds. In

the next time step, D and E are activated in a similar fashion. Since F and G cannot

be activated, the diffusion terminates after t = 3.

Chapter 2. Background on Diffusion in Social Networks 13

Figure 2.4: Linear Threshold Model

Chapter 3

Literature Review on Solution

Algorithms

3.1 Influence Maximization Problem

Domingos and Richardson [14] popularized the concept of network value of customers.

By approaching the market as a set of connected entities rather than independent entities,

they shifted the approach to considering the extra value which might emerge as a result

of influences between entities instead of considering only the intrinsic value of each entity.

Their study introduced the fundamental problem of Influence Maximization, that is how

to choose seed nodes so that particular influence spread functions in social networks are

maximized.

Kempe, Kleinberg and Tardos [1] formulated the problem that is posed by [14] as a

stochastic discrete optimization problem under Independent Cascade Model (ICM), Lin-

ear Threshold Model (LTM) or their special cases. The Independent Cascade Model

takes its roots from the studies on interacting particle systems in probability theory.

Linear Threshold Model is based on Granovetter’s study [15] on threshold models of col-

lective behaviour. Detailed information about ICM and LTM are given in Section 2.3.1

and 2.3.2

They formulated the problem as follows: given a social network, a set of influence weights

for links, a random threshold function, an integer budget, and a diffusion model; which

nodes should be selected as seeds so that the final count of activated nodes is maximized.

Extensions to the problem include budgeted version of the problem where costs of nodes

are heterogeneous (see Section 3.3.1), and targeted version of the problem where nodes

have different profit values associated with them (see Section 3.3.2).

14

Chapter 3. Literature Review on Solution Algorithms 15

3.2 Solution Methods

3.2.1 Original Greedy Algorithm

For the stochastic discrete optimization problem they formulated, [1] proposes a greedy

approximation algorithm with an approximation guarantee of (1−1/e). By randomizing

the spread of influence instead of using a deterministic version, they obtain a submodular

objective function. Using properties of submodular functions, they are able to secure a

provable approximation guarantee under both ICM and LTM for their algorithm.

Algorithm 1 summarizes the greedy algorithm of [1]. Since a stochastic function is used

for the diffusion of influence, Monte Carlo simulations are employed to estimate the

influence spread.

Algorithm 1 General Greedy Algorithm

Input: Graph N(V,E), size of the desired seed set (i.e., budget) k, submodular and
monotone influence spread function f

1: S ← ∅
2: for i = 1 to k do
3: u← argmaxw∈V \S{f(S∪{w}−f(S)}
4: S ← S ∪ {u}
5: end for
Output: S

The General Greedy Algorithm requires k iterations. At each iteration, the algorithm

estimates the influence spread of S ∪ v for every v /∈ S. Obtaining an accurate estimate of

the influence spread requires a large number of Monte Carlo simulations, typically 10,000

times. Therefore, the original greedy algorithm takes a very long time to complete. For

instance, it takes multiple days to select 50 seeds in a network of 30K nodes [16].

To sum up, the original greedy algorithm is inefficient for two reasons: (i) Monte Carlo

simulations are called kn times given a budget k and number of nodes in the network

n, and (ii) large number of Monte-Carlo simulations are required. In order to improve

the long running time of the original greedy algorithm, [1] is followed by number of

studies which suggested modifications on their original greedy algorithm. [17–19] focus

on improving upon the first limitation by employing lazy evaluation techniques. [16, 20–

22] try to overcome the second limitation by developing heuristic algorithms instead of

a Monte Carlo Greedy (MC-Greedy) algorithm.

Chapter 3. Literature Review on Solution Algorithms 16

3.2.2 Lazy Greedy Algorithms

Leskovec et al. [17] propose the Cost-Effective Lazy Forward (CELF) optimization for

the given influence maximization problem. Utilizing the submodularity property of the

model used in [1], the number of evaluations for influence spread estimations (i.e., calls

for Monte Carlo simulations) is reduced. The idea behind their approach is that a node’s

marginal gain in the current iteration cannot be better than its marginal gain in the

previous iterations due to submodularity. Therefore, if any node v’s marginal gain in

previous iterations is smaller than marginal gain of the current best node in the current

iteration, it is unnecessary to evaluate the marginal gain of v in the current iteration. It is

empirically shown that CELF is up to 700 times faster than the naive greedy algorithm.

Goyal et al. [18] propose CELF++ algorithm to further reduce the running time of

CELF algorithm. In CELF++, when a node v’s marginal gain is computed with regard

to current seed set S, node v’s marginal gain with regard to S ∪ u is also computed,

given that u is the best candidate so far in the current iteration. If u is selected as the

best candidate in the current iteration, it will not be necessary to compute v’s marginal

gain in the next iteration. The authors report 35% to 55% running time improvement

compared to CELF algorithm.

Zhou et al. [19] propose Upper-Bound Lazy Forward (UBLF) algorithm to further im-

prove the running time of CELF. They derive an upper bound for influence spread and

use that to reduce the number of calls to Monte-Carlo simulations. The algorithm is de-

signed for ICM. The authors explain that when the propagation probability is relatively

small and number of nodes in the network is large enough, the upper bound asymptoti-

cally approximates the real value of influence spread. In comparison to CELF, UBLF is

able to reduce the number of Monte-Carlo calls up to 95% and is faster 2-5 times.

In this group of studies, running times are reduced while maintaining the influence spread.

Although the running times are significantly improved, they are yet to be scalable for

selecting a relatively larger seed set in large networks.

3.2.3 Other Heuristics

An array of heuristic methods have been proposed to further improve the running time;

avoiding the Monte Carlo simulations altogether while trying to nearly match the influ-

ence spread.

Chen et al. [20] improve both the original greedy and CELF algorithms by employing

an efficient randomized algorithm to estimate the size of reachable sets for all nodes

Chapter 3. Literature Review on Solution Algorithms 17

in batches under the Independent Cascade Model and Weighted Cascade Model. By

doing so, they avoid the independent Monte-Carlo simulations which are required at

each iteration. Their improved greedy algorithm (New Greedy) achieves 15% to 34%

running time improvement compared to CELF algorithm while matching the influence

spread.

Chen et al. [20] developed the Degree Discount Heuristics as well. The heuristic is de-

rived from the ICM with uniform influence probabilities. In simple terms, the proposed

heuristic works by reducing the degree count of nodes based on their neighbors which are

already activated. The heuristic is more than six magnitudes faster than the greedy algo-

rithms since it does not employ a greedy approach nor require Monte Carlo simulations.

The influence spread obtained by using Degree Discount Heuristics is reported to be

close to the influence spread obtained by using greedy algorithms, although not match-

ing. The Degree Discount Heuristic can be considered as a special case of Maximum

Influence Arborescence heuristic [21] with uniform probabilities and all arborescences

having depth one.

Chen et al. [21] propose a new heuristic algorithm, Maximum Influence Arborescence

(MIA) under ICM. In their model, influence computations are restricted in the local

influence regions of nodes instead of the whole network. Size of local influence regions is

established by a user defined tunable trade-off parameter. Arborescence structures (i.e.,

a tree graph, in which there is exactly one directed path from the root node to other

nodes) are created for each node based on shortest-paths between the nodes. These struc-

tures represent the local influence regions where the computations happen. In addition,

they propose Prefix excluded MIA (PMIA) algorithm which modifies the arborescence

structures to provide alternative paths between nodes in certain cases. It outperforms

other heuristics such as PageRank and Degree Discount Heuristic in terms of influence

spread; and it completes in seconds where Greedy Algorithm completes in hours.

Chen et al. [16] propose Local Directed Acyclic Graphs Algorithm under LTM, in con-

trast to the previous heuristics which are designed for ICM. In their algorithm, influence

computations happen in the local regions, namely local directed acyclic graphs (LDAG).

Note that, every arborescence is a DAG, but not every DAG is an arborescence. There-

fore, this approach can be seen as a more general version of the approach in MIA. Local

DAG of a particular node is created by adding all other nodes whose influence on that

particular node is above a parameterized threshold. The influence computations can

be done in LDAGs accurately under LTM. Restricting the calculations in LDAGs, the

algorithm improves the running time of greedy algorithm by three order of magnitudes

while reportedly its influence spread almost matches that of the Greedy Algorithm.

Chapter 3. Literature Review on Solution Algorithms 18

Goyal et al. [22] propose SIMPATH model under LTM. Instead of using local DAG for

each node, it uses all simple paths between the node and nearby nodes. The size of the

neighborhood is controlled by a parameter. Integrating other techniques such as Vertex

Cover Optimization and Look Forward Optimization, they are able to further improve

the running time. SIMPATH improves the running time by 22− 67%, memory usage by

63− 81%, and influence spread by 2− 9% over LDAG algorithm.

In this group of studies, running times are dramatically reduced while trying to match

the influence spread. The improvement in running time is usually enabled by restricting

the calculation of influence spread in local regions, assuming that most of the influence

diffusion happens in local neighborhoods. Theoretically, there is no approximation guar-

antee for the algorithms given in this section. Nevertheless, their influence spreads nearly

match the influence spreads of the greedy algorithm in many experiments.

3.3 Extensions

3.3.1 Budgeted Influence Maximization

The studies we have visited so far assume that initial activation costs of potential seed

nodes are uniform, therefore result in a cardinality constraint in selection of seed sets.

However, in practice, the nodes (e.g. accounts in social networking websites) have varying

self-perceived values and different pricing strategies for becoming a seed node. Conse-

quently, the nodes are expected to have heterogeneous initial activation costs. Hence,

Budgeted Influence Maximization (BIM) problem focuses on the case where the nodes

have heterogeneous initial activation costs and the budget is monetary rather than an

integer count. In BIM problem, the cardinality constraint is transformed into a knapsack

constraint.

Leskovec et al. [17] enable heterogeneous costs in their CELF algorithm. In selecting

seed nodes, both the nodes with highest density (i.e., the ratio of gain1 to cost, also

called as efficiency), and the nodes with best marginal gain are evaluated and stored as

two separate solutions. At the end, the two solutions are compared in terms of estimated

influence spread and the algorithm outputs the solution with better score.

Nguyen et al. [23] develop a greedy solution for BIM, using DAGs for estimating influence

spread under ICM. The algorithm selects the seed nodes based on estimated spread to

cost ratio (i.e., density or efficiency). Let’s say, the density-based selection method results

in seed set S1. Assuming that there is no node with a cost greater than the budget, let
1Terms gain and marginal gain are used interchangeably in this study.

Chapter 3. Literature Review on Solution Algorithms 19

the node with the maximum spread among all nodes be smax. They proceed to compare

influence spreads of S1 and smax, and then output whichever has a greater value. By

doing so, they report to obtain an approximation guarantee of (1− 1/
√
e).

Du et al. [24] study a version of the problem which has a budget constraint along

with timing and user constraints. They assume a continuous-time ICM for the diffusion

process. We are interested in how they handle the budget constraint. The main ideas

behind their approach are (i) spend the budget efficiently, which means selecting only

the seeds with relatively high density, and (ii) spend the budget as much as possible. In

selecting a new seed node at each iteration, the nodes whose density values are above the

current density threshold and whose marginal gains are above a parameterized threshold

are selected. The density threshold satisfies the first idea, and a decreasing marginal

gain threshold as the process unfolds satisfies the second idea. They also show that there

exists a density threshold achieving a balance between the two main ideas which might

seem contradicting at first.

Singer [25] designs mechanisms which elicit individuals’ costs and provides desirable

approximation guarantees under many popular models in the literature including ICM

and LTM. Mechanical Turk is employed to learn initial activation costs of users by

launching a competition where users are asked to specify the number of their friends

on Facebook and how much they would like to be rewarded in exchange for posting a

commercial content on their Facebook profile. Interestingly, they found no evidence of

correlation between the demanded reward and number of Facebook friends. However, this

finding should not be generalized without further evidence since the sample of Facebook

users might not accurately represent all Facebook users. In the experimental design, they

use the distribution that is obtained from the Mechanical Turk experiment to assign costs

to nodes. In selecting seed nodes, the following rule is employed: After sorting the nodes

based on the highest density, nodes are included in the solution if the ratio between their

cost and the budget is smaller than half of the ratio between their marginal contribution

and the value of the subset already selected (i.e., proportional share rule).

In this section, we are particularly interested in the methods other studies employ to

handle the budget constraint rather than focusing on other features of their algorithms.

In a nutshell, there are four general methods employed as a seed selection method: (i)

highest density, (ii) highest marginal gain, (iii) highest marginal gain above a certain

density threshold, (iv) highest density above certain marginal gain threshold. In a sense,

the last two methods are a hybrid of the first two methods.

Chapter 3. Literature Review on Solution Algorithms 20

3.3.2 Targeted Influence Maximization

Most of the studies we looked into estimate the spread of influence in terms of number of

activated nodes. However, in practice, each node carries different value for the marketer.

The promoted product might be relevant for only nodes of certain types or nodes in

certain locations. The expected profit might be different for each node since the nodes’

perceived values of the product might differ or because of the varying purchasing power

of the nodes. Thus, it is an obvious direction to assign heterogeneous profit values to

nodes and modify the objective function to account for these values.

Li et al. [26] propose Labeled New Greedy Algorithm based on New Greedy Algorithm

of [20], Labeled Degree Discount Heuristic based on Degree Discount Heuristic of [20],

and their own Maximum Coverage Greedy Algorithm based on offline computations of

proximities between nodes and online finding of the seed nodes for given target labels. All

proposed algorithms are under ICM. The algorithms, as inputs, require a label for each

node, and designated profit values for labels. They modify the objective function to sum

up profit values of activated nodes rather than simply counting them. In experiments,

they use data derived from Internet Movie Database (abbreviated as IMDb). Actors

and actress of movies during 1994-1995 are collected and are considered as nodes in the

network. The labels associated with each node are derived from the categories of their

involved movies. Each label is then assigned a profit value arbitrarily.

Lu and Lakshmanan [27] propose the Linear Threshold model with user Valuations (LT-

V) by introducing nodes’ valuations of the marketed product, and a new state called

adopted in addition to influenced. An influenced node adopts only in the case where her

valuation is lower than or equal to the price of the product. For the profit maximization

problem they formulated, they aim to find the optimal pair of seed set and price vector.

Their Price Aware GrEedy (PAGE) algorithm assigns prices dynamically based on the

potential profits of candidate seeds.2

Li et al. [28] study the Real-time Targeted Influence Maximization problem under ICM

for online advertising. In their work, topics are extracted from the available data on nodes

(i.e., tweets) and a user profile is represented by a term vector in the topic space. The

advertisement is also represented by a term vector. Then, impact of an advertisement to

an end user is calculated as the similarity between two term vectors. To find the seed set,

they propose an online sampling Reverse Influence Set method named Weighted Reverse

Influence Set (WRIS) which returns a solution with (1− 1/e− ε) approximation ratio.
2It should be noted that our algorithm does not extend to the case of offering different prices to each

node.

Chapter 3. Literature Review on Solution Algorithms 21

Lee et al. [29] study Targeted Influence Maximization problem under ICM. They assign

binary values to nodes as targeted or not targeted. Categorical data available in datasets

is used to determine which nodes are to be selected as target nodes, when such data exists.

In other cases, to assign the binary values, they first determine the target nodes to all

nodes ratio p1. Next, they randomly select a node and perform a breadth-first search

starting from that node. For every visited node, they establish them as a target node

with probability p2. With probability p3, another node is selected uniformly at random

as a target node. Their aim is to maximize the influence on the targeted nodes instead

of on whole network. As a solution algorithm, they develop Independent Maximum

Influence Paths-based Expectation (IMIP) Model which is based on PMIA of [21].

Song et al. [30] study Location Targeted Influence Maximization problem. Utilizing a

network where users share their locations, each node is assigned with her most frequent

check-in location as its location. Then, for each node, a distance value is calculated based

on the node’s distance to the target location. Based on the distances, suitable target

fitness values are assigned to the nodes. They employ a version of ICM and develop a

Weighted Reverse Influence Set based method like [28] do.

In summary, all of the algorithms modify the objective function to include so-called

profit or target fitness values. In assigning such values, they either benefit from the data

already available in the datasets or generate values arbitrarily.

3.4 Deterministic Linear Threshold Model

In ICM and LTM, the influence spread is stochastic. In ICM, the randomness is naturally

obtained since activations of nodes depend on influence probabilities on edges. In LTM,

the randomness is obtained by assigning nodes random thresholds which are uniformly

distributed between 0 and 1. [1] showed that an equivalency between ICM and LTM

can be established. The resulting influence functions are submodular in both models.

Therefore, theoretical approximation guarantees can be obtained for both by employing

the General Greedy Algorithm. In both models, the exact computation of influence

spread is shown to be P-hard [21].

In this work, we employ Deterministic Linear Threshold Model (Deterministic LTM).

The main idea behind Deterministic LTM is that, in practice, threshold values of nodes

can be learned via surveys or data mining techniques. Thus, threshold values can be

viewed as an input to the model instead of assuming a random threshold function. For

LTM, this approach results in deterministic version of the problem where the influence

spread is based on deterministic rules.

Chapter 3. Literature Review on Solution Algorithms 22

However, when the threshold values are fixed, the number of activated nodes is not a

submodular function of the target set [1]. In fact, Lu et al. [31, 32] showed that there

is no n1−ε factor polynomial time approximation for the problem unless P = NP . On

the other hand, the exact computation of the influence spread under Deterministic LTM

can be solved in linear time [32].

Acemoglu et al. [33] study the dynamics of Deterministic LTM and aim to answer

whether different types of networks in terms of structures make diffusion more easy in

them. They show that eminently clustered networks are not necessarily more advanta-

geous over less structured networks because it is more difficult to penetrate into tight

communities unless there exists a seed node inside them.

Another type of problem under Deterministic LTM covers the problems relating to Posi-

tive Influence Dominating Sets. A Positive Influence Dominating Set (PIDS) is a subset

S of all nodes V , where each node in V − S has at least a fraction p of its neighbours

in S. In Minimum PIDS (MPIDS) problem, the aim is to find the minimum sized set

S, satisfying the condition that S is a PIDS. The diffusion model in this problem can

be viewed as an LTM with uniform weights and uniform thresholds. [34–37] study the

MPIDS problem, its complexities and employ greedy algorithms to find a such seed set.

Although the underlying diffusion model is a version of LTM, the objective of MPIDS

problem is different than the objective of the problem we study. MPIDS is a set cover

problem where the aim is to find the minimum-sized set influencing all nodes in the net-

work, while our problem is a maximum coverage problem where the aim is to influence

as many nodes as possible given an upper limit on size of the seed set.

Given a subset of nodes called as a snapshot, Askalidis et al. [38] seek to understand

whether there exists a seed set of size at most k which can result in the activation of the

given snapshot under variations of Deterministic Linear Threshold Model. The problem

they study is a variation of set cover problem.

Xu [39] proposes a sparse optimization technique with a linear algebraic approach for

the Influence Maximization problem under Deterministic LTM. The author shows that

the proposed Lp-norm (0 < p < 1) non-convex relaxation method achieves better results

than the L1-norm convex relaxation approach. It should be noted that this study differs

from the rest of the literature in terms of its solution method, and the empirical analysis

is performed with experiments in very small networks.

Swaminathan [40] proposes Threshold Difference Greedy (TDG) algorithm for the Influ-

ence Maximization problem under Deterministic LTM. The main idea behind his algo-

rithm is as follows. When comparing nodes in the seed selection steps, a node should

also be rewarded for partially influencing other nodes. Such a reward is obtained by

Chapter 3. Literature Review on Solution Algorithms 23

calculating marginal gain based not only on activated nodes but also the nodes that are

partially influenced. Thresholds of the partially influenced nodes are decreased by the

influence exerted on them. Consequently, it will be easier to activate them in the next

iterations. In our study, we name this concept as potential gain. The author reports that

empirical results show that TDG performs better than other methods such as eigenvector

centrality, betweenness, Degree Discount, PMIA, and LDAG under Deterministic LTM.

The deterministic activation of nodes was first thought to be a highly simplistic view in

the Influence Maximization Problem [1]. However, in line with the ever-increasing speed

of the technological advancements in terms of data mining techniques and data collection

abilities; it becomes more feasible to predict people’s behaviour in product adoption

which in turn results in the estimation of node threshold values and link influence weights

in LTM. Once these values are learned, better fitting algorithms can be enabled for the

deterministic version of LTM; replacing most of the algorithms in the literature which

assume random thresholds.

3.5 Our Contribution

The problems which are studied in the literature differ between themselves with respect

to certain classifications such as whether it is an Influence Maximization problem or

Set Cover problem, whether influence propagates deterministically or stochastically, the

underlying diffusion model, and which extensions it does cover.

Table 3.1 shows the comparison of the problem definition in our work with that of

existing studies in the literature in terms of diffusion model, diffusion type, extensions,

and problem type. A mark symbolizes relatively strong focus on the given aspect. Our

work is given in the last row and it is shown to be unique in the literature according to

the given classifications.

On top of the differences in problem definition, the studies also differ in terms of their

solution methods. For instance; while the early studies employ a greedy algorithm to

ensure the theoretical approximation guarantee, a number of following studies aim at

reducing the run time by sacrificing the theoretical approximation guarantee.

Our contribution in problem definition is to expand the Influence Maximization problem

under Deterministic LTM to cover (i) Budgeted IM problem and (ii) Targeted IM prob-

lem. Enabling these extensions brings the problem closer to the real life problems. Our

formal problem definition is given in Section 4.1.

Chapter 3. Literature Review on Solution Algorithms 24

Table 3.1: Problem Comparison with the Related Work

Diffusion Model Diffusion Type Extensions Problem Type
Ref. LTM ICM Other Deter. Stoch. Targ. Budg. Inf.Max. Other
[14] - - X - X - - X -
[1] X X - - X - - X -
[16] X - - - X - - X -
[17] X X - - X - X X -
[18] X X - - X - - X -
[19] - X - - X - - X -
[20] - X - - X - - X -
[21] - X - - X - - X -
[22] X - - - X - - X -
[23] - X - - X - X X -
[24] - X - - X - X X -
[25] X X - - X - X X -
[26] - X - - X X - X -
[27] X - - - X X - X -
[28] - X - - X X - X -
[29] - X - - X X - X -
[30] - X - - X X - X -
[33] X - - X - - - - X
[35] X - - X - - X - X
[36] X - - X - - - - X
[37] X - - X - - - - X
[38] X - - X - - - - X
[39] X - - X - - - X -
[40] X - - X - - - X -
Us X - - X - X X X -

Our main contributions in solution method are (i) improving the use of potential gain,

(ii) introducing a new node selection method, and (iii) scaling the solution to very large

graphs while nearly matching the same influence spread. Details of our algorithm are

given in Section 4.2.

In addition, when compared with the methods used in the literature, we have used novel

data generation methods to assign threshold, profit (i.e., target fitness), and cost values

to nodes; and influence weights to links. The main purpose of the new methods we

employ is to better mimic the real world dynamics. The detail on our data generation

methods are given in Section 4.4.

Chapter 4

Methodology

4.1 Formal Problem Statement

In this section, we provide a formal statement of the problem we propose to solve, namely

the Targeted and Budgeted Influence Maximization problem under Deterministic Linear

Threshold Model.

Let N = (V,E) be a directed network where V is the set of nodes with |V | = n nodes,

and E is the set of links with |E| = m links. Each node v ∈ V is associated with a

threshold value θv, an activation cost for being a seed node cv, and a profit value pv.

Each directed link has an influence weight iuv representing the degree of influence node

u has on node v. The budget is denoted by B.

At any time step, a node can only be in one of the two states, inactive or active, repre-

sented by σv ∈ 0, 1. f(v) describes transition of the state of node v and it is solely based

on Deterministic Linear Threshold Model described earlier in Section 3.4. The model is

assumed to be progressive so that once a node becomes active, it can never go back to

the inactive state.

The problem aims to find a set of seed nodes S under the constraint
∑

v∈S cv ≤ B, such

that activating the nodes in S is expected to maximize the total profit P =
∑

v∈V \S pvσv

over the social network.

4.2 Proposed Algorithm

This section covers our TArgeted and BUdgeted Potential Greedy Algorithm (TABU-

PG) for the Targeted and Budgeted Influence Maximization problem under Deterministic

25

Chapter 4. Methodology 26

Linear Threshold Model.

TABU-PG works in an iterative and greedy fashion. At each iteration, nodes which

satisfy the given constraints are compared based on the objective measure of the given

selection method. The node with the maximum value for the given selection method is

chosen and added to the seed set. In next iterations, the algorithm keeps adding new

nodes to the seed set in the same way. Iterations continue until the remaining budget

cannot afford selecting any new node. Ultimately, the seed set and its influence spread

is found as the output of the algorithm.

The aforementioned constraints and objective measures are parameterized, therefore dif-

ferent versions of the algorithm can be tested and comparative analysis can be carried

out between the different versions.

4.2.1 Gain Calculation

In order to compare nodes against each other, gain values for all nodes are calculated.

gain consists of two components: actual gain and potential gain. Actual gain immediately

realizes itself and increases the total profit whereas potential gain represents the potential

future profits which the algorithm invests on.

At first, gain values are calculated for all nodes. At later steps, gain values are calculated

only for the nodes whose gain values will be affected by the updates in the network. This

approach avoids redundant calculations and significantly improves the runtime. The

procedure in determining the nodes whose gain values are to be recalculated is further

explained in Section 4.2.5

Actual gain of a node is calculated by measuring the increase in the total actual profit

which emerges due to the node’s capability of fully influencing (i.e., activating) neigh-

boring nodes, and also other nodes by passing influence via the nodes it activated. For

instance, assume that node u exerts influence towards node v whose current threshold

is lower than the incoming influence from u. Therefore, u is able to activate v. If v is

the only neighbor u can activate and v cannot activate any other node, then actual gain

of u is equal to pv. If v also is able to activate a single node w, then actual gain of u is

equal to pv + pw.

Potential gain is related to the concept of partial influence, which is an important

theme of our algorithm. Partial influence can be described as influence exerted by a node

towards another node, which decreases the threshold of the latter but cannot eliminate

it in full. In this case, the latter node is not immediately activated but is more likely to

be activated in later iterations since it now has a lower threshold.

Chapter 4. Methodology 27

Minimum Potential Gain Ratio parameter MinPGR and Potential Gain Calculation

Method parameter PGCMthd together specify how potential gains are accounted for

while calculating the potential gain values for nodes.

Only the potential gains satisfying constraint of iuv to θv ratio being greater than or

equal to MinPGR are accounted for. If the ratio is lower than MinPGR, the potential

gain is ignored. However, note that, θv is decreased by iuv in both cases due to the

nature of LTM.

When the ratio of iuv to θv is greater than or equal MinPGR, the potential gain is

calculated by multiplying pv, iuv/θv, and PGMltp. PGMltp is calculated based on the

selection of parameter PGCMthd.

Parameter PGCMthd specifies how PGMltp is calculated. In this work, we employ four

methods. In Method 1, PGMltp is set to 0 thus effectively removing the potential gain

from the algorithm. In Method 2, PGMltp is set to 1 thus effectively eliminating the

impact of PGMltp. In Method 3, PGMltp is dynamically assigned the value of 1−E/B
each time given that E is the amount expensed so far. For instance, when half of the

budget is exhausted, PGMltp is set to 0.5. In Method 4, PGMltp is dynamically set to

1− (E/B)2 similar to the previous method. In this case, for instance, PGMltp is set to

0.75 when half of the budget is exhausted.

The intuition behind the third and fourth method is as follows. Since the potential gain

represents the investment to the future profits, the value of PGMltp should decrease

when the chances of reaping these future profits decrease. Due to the fact that the

number of future steps is limited by the remaining budget, the chances decrease and

eventually converges to zero as budget is exhausted.

Equation 4.1 and 4.2 shows how actual gain and potential gain components are calculated

at any given node that is exposed to an influence originating from the node which we

calculate gain for. The resulting values from the formula add up and produce the actual

gain and potential gain values. gain, which is the main component of the measures on

which nodes are compared, is the sum of actual gain and potential gain.

Actual Gain =

pv, if iuv/θv ≥ 1

0, otherwise
(4.1)

Potential Gain =

pv(iuv/θv)(PGMltp), if MinPGR ≤ iuv/θv < 1

0, otherwise
(4.2)

Chapter 4. Methodology 28

4.2.2 Node Selection

The Node Selection Method parameter NSMthd specifies the measure which nodes are

compared on, and also specifies any additional constraints. In all methods, the value

which algorithm tries to maximize at each iteration is closely related to the gain values

calculated for each node.

We currently employ three node selection methods. Method 1 compares nodes solely

based on gain and selects the node with maximum gain. Method 2 compares nodes

solely on efficiency, that is the ratio of gain to cost gv/cv. This ratio of efficiency is also

called as density in the literature.

Method 3 is a type of combination of the first two methods. In this method, top three

candidate nodes are selected based on efficiency (i.e., applying Method 2 but choosing

three nodes instead of one). Then, among the three, the node with maximum gain (i.e.,

applying Method 1 but comparing only three nodes instead of many) is selected as the

seed node. It is possible to combine the first two methods in other ways such as calculat-

ing scores for both methods and averaging them, or choosing top three nodes based on

gain and selecting the seed among them based on efficiency. However, our preliminary

experiments showed that they do not perform better than Method 2. Therefore, we do

not employ such additional methods in this work.

4.2.3 Algorithm Illustration

To illustrate how TABU-PG works, consider the following network. A influences B and

D; B influences A, C, and E; C influences E; D does not influence any node; and E

influences B and D. Figure 4.1 illustrates the network and execution of TABU-PG.

Node threshold, profit, and cost values are given inside the nodes. Influence weights are

given on links. Nodes selected as seed are shown with a bold font type. Active nodes are

depicted with green color. The campaign budget is set to 6.

In the first iteration, gain values will be calculated for all nodes. Potential gain and

actual gain calculations are shown below. Note that, PGMltp is not shown in the

initial potential gain calculations. Instead, it is shown in the calculation of gain as

g = ga + gp(PGMltp). Since none of the nodes can activate another node at this

iteration, actual gain values are equal to zero for all nodes.

gpA = (0.2/0.3)1 + (0.3/0.8)2 = 1.42, gaA = 0

gpB = (0.3/0.6)3 + (0.2/0.8)3 + (0.5/0.6)3 = 4.75, gaB = 0

Chapter 4. Methodology 29

Figure 4.1: TABU-PG Illustration

gpC = (0.2/0.6)3 = 1, gaC = 0

gpD = 0, gaC = 0

gpE = (0.1/0.3)1 + (0.2/0.8)2 = 0.83, gaE = 0

When selecting the seed node, we have three options as explained in Section 4.2.2. For

this illustration, we will employ NSMthd = 2, the second method that is choosing the

most efficient node. Accordingly, the efficiency values are found as A : 0.36, B : 2.38,

C : 0.33, D : 0, and E : 0.83, by dividing total gain (g = ga + gp(PGMltp)) by cost of

the node. Note that PGMltp is equal to 1 at the first iteration except for the case when

PGCMthd = 1, that is to ignore potential gains altogether. For this illustration, we

will employ PGCMthd = 3, that is decreasing the share of potential gain as budget is

exhausted. MinPGR is assumed to be 0 for illustration purposes. See 4.2.1 for details

on gain calculation.

B is selected as the first seed node since it has the maximum value for the given ob-

jective measure. The network is updated accordingly: relevant thresholds are lowered

and relevant nodes are activated if there is any. The total amount spent is 2, and the

remaining budget is 4.

Chapter 4. Methodology 30

After the very first gain calculation, potential and actual gain values will only be calcu-

lated for those nodes which are not already activated and whose gain values are affected

by the updates in the network. Therefore, in the second iteration, potential gain and

actual gain values will be calculated only for A and E since they influence B; and for C

since it influences E whose threshold is lowered by B.

C can activate E, therefore the gains obtained on other nodes via E is also accounted

for.

gpA = (0.3/0.8)2 = 0.75, gaA = 0

gpC = (0.2/0.8)2 = 0.5, gaC = 3

gpE = (0.2/0.8)2 = 0.5, gaE = 0

Then, gain values are calculated by multiplying potential gains by (6−2)/6 = 0.67 since

we employ PGCMthd = 3. For the nodes whose gain values are not recalculated, the

gain values from the previous iterations are used since their potential gain and actual

gain values are not changed. The gain values for the candidate nodes are calculated as

follows.

gA = (0.75)(0.67) + 0 = 0.5

gC = (0.5)(0.67) + 3 = 3.34

gD = (0)(0.67) + 0 = 0

gE = (0.5)(0.67) + 0 = 0.34

Then the efficiency values are found as A : 0.13, C : 1.11, D : 0, and E : 0.34. C is

selected as the seed node at this iteration since it has the maximum value for the given

objective measure. The network is updated accordingly: relevant thresholds are lowered

and relevant nodes are activated if there is any. The total amount spent is increased

to 5, and the remaining budget is 1. Since there is no node in the network with cost

not greater than the remaining budget; a new seed node cannot be selected in the next

iteration and the algorithm halts.

4.2.4 Scaling for Larger Networks

In order to make the algorithm scalable to very large networks, parameterNumBefReCalc

specifying the number of nodes to select before recalculating gain values, and parameter

TopMltp specifying the multiplier for determining the number of top nodes are defined.

NumBefReCalc specifies how many nodes are to be selected as seed nodes based on

Chapter 4. Methodology 31

the current gain values for nodes; before recalculating the gains for the updated network.

When NumBefReCalc is set to 1 which is the default, the gains are calculated before

each time a new seed node is selected. When it is set to Inf , the gains are calculated

only once at the beginning, and all seed nodes are selected based on these gain values.

When, for example, it is set to 5; after a gain calculation, up to five more nodes can be

selected before recalculating the gain values.

TopMltp takes part in determining the number of top nodes for which gains will be

calculated for after the very first calculation which is done for all nodes. The intuition is

that if a node’s gain or efficiency is very small at first; it is very unlikely that the gain or

efficiency values which will be calculated for that node will be large enough for that node

to be selected as a seed at later steps. Therefore, the idea is to calculate gain values or

efficiency values only for the nodes who are more likely to be selected as seed nodes.

Before recalculating the gain values, number of top nodes which gain will be calculated

for is calculated based on TopMltp, NumBefReCalc, and current size of S which is

the number of nodes which have been selected as seeds so far. The formula for deter-

mining the number is given in Equation 4.3. NumBefReCalc parameter is included

in the formula to ensure that there will be enough number of nodes to consider when

NumBefReCalc is larger and thus gain is calculated less frequently. Utilizing this

method, we limit the candidate pool for seed nodes to a number of top nodes instead of

all nodes.

N. of Top Nodes =

n, if NumBefReCalc = Inf

(|S|+NumBefReCalc)TopMltp, otherwise
(4.3)

Introducing these two parameters enables a trade-off between runtime and final influence

spread, therefore making it possible to run the algorithm on very large graphs in a

reasonable amount of time. Note that, in some cases, there could be large improvements

in run time without any worse performance in influence spread results at all.

4.2.5 The Algorithm

The algorithm we propose, TABU-PG, is described in Algorithm 2. After initializing

required variables in Line 1− 4, algorithm starts the iterative process in Line 5 as long

as remaining budget allows. Potential Gain Multiplier (PGMltp) is determined based

on Potential Gain Calculation Method, in Line 6− 14.

Chapter 4. Methodology 32

Algorithm 2 TABU-PG for IM under Deterministic LTM

Input: Graph N(V,E), set of threshold values for nodes Θ, set of profit values for nodes
P , set of activation costs for nodes C, set of influence weights for links I, maximum
budget B, node selection method NSMthd ∈ {1, 2, 3}, Minimum Potential Gain
ratio to qualify for potential gain calculation MinPGR, potential gain calculation
method PGCMthd ∈ {1, 2, 3, 4}, number of nodes to select for seed set before recal-
culating the gain NumBefReCalc, multiplier for determining the limit on number
of top nodes whose gain will be recalculated TopMltp

1: S ← ∅, A← ∅, E ← 0 // S: seed nodes, A: active nodes, E: amount spent so far
2: SortInitGain← TRUE // to enable sorting based on very first gain calculation
3: T ← V , U ← V // T : top nodes, U : nodes whose gain need to be updated
4: Ga, Gp, G // initiate Ga: actual gains, Gp: potential gains, G: total gains
5: while B ≥ E do
6: if PGCMthd = 1 then
7: PGMltp← 0
8: else if PGCMthd = 2 then
9: PGMltp← 1

10: else if PGCMthd = 3 then
11: PGMltp← 1− E/B
12: else if PGCMthd = 4 then
13: PGMltp← 1− (E/B)(E/B)
14: end if
15: for y ∈ (U ∩ T)\A do
16: U.remove(y)
17: (ga)y ← 0, (gp)y ← 0 // reset gain value for the node
18: At ← A // At: temporary copy of A
19: Θt ← Θ // Θt: temporary copy of Θ
20: Q← ∅ // initiate a list for holding -temporarily- active nodes
21: Q.push(y), θty ← 0, At ← At ∪ y // temporarily activate the node
22: while Q 6= ∅ do
23: u← Q.pop()
24: for v ∈ (outNeighbors(u)\A) // u influences outNeighbors(u) do
25: if iuv ≥ θtv then
26: gay ← gay + pv, θtv ← 0, At ← At ∪ v
27: Q.push(v)
28: else
29: if iuv/θtv ≥MinPGR then
30: gpy ← gpy + pv(iuv/θ

t
v)

31: end if
32: θt ← θtv − iuv/θtv
33: end if
34: end for
35: end while
36: end for
37: G← Ga +Gp(PGMltp)

Chapter 4. Methodology 33

38: for j = 1 to NumBefReCalc do
39: if NSMthd = 1 then
40: s← argmax1v∈T\A,cv≤B−E{gv} // argmaxk: top k nodes
41: else if NSMthd = 2 then
42: s← argmax1v∈T\A,cv≤B−E{gv/cv}
43: else if NSMthd = 3 then
44: s← argmaxv∈argmax3v∈T\A,cv≤B−E{gv/cv}{gv}
45: end if // s: node selected as a seed
46: Q2 ← ∅ // Q2: list to hold affected nodes. U is generated using this list
47: Q3 ← ∅ // Q3: a list also used in generation of U
48: Q← ∅, Q.push(s), θy ← 0, A← A ∪ s
49: while Q 6= ∅ do
50: u← Q.pop()
51: for v ∈ outNeighbors(u)\A do
52: Q2.push(v)
53: if iuv ≥ θv then
54: θv ← 0, At ← At ∪ v
55: Q.push(v)
56: else
57: θv ← θv − iuv/θv
58: end if
59: end for
60: end while
61: end for
62: while Q2 6= ∅ do
63: u← Q.pop()
64: for v ∈ inNeighbors(u)\(A ∪ U) // u is influenced by inNeighbors(u) do
65: U ← U ∪ v
66: Q3.push(v) // to check if the change in gv causes a change in ginNeighbors(v)
67: end for
68: end while
69: while Q3 6= ∅ do
70: u← Q3.pop()
71: for v ∈ inNeighbors(u)\(A ∪ U) do
72: if ivu ≥ θu then
73: U ← U ∪ v // gv should be updated since the change in gu affects gv
74: Q3.push(v)
75: end if
76: end for
77: end while
78: if SortInitGain = TRUE then
79: Gi ← G // Gi: initial gain values after the very first calculation
80: SortInitGain← FALSE
81: end if
82: if TopMltp 6= Inf then
83: if NSMthd = 0 then
84: T ← argmax

(size(S)+NumBefReCalc)TopMltp
v∈V {giv}

85: else
86: T ← argmax

((size(S)+NumBefReCalc)TopMltp
v∈V {giv/cv}

87: end if
88: end if
89: end while
Output: S,A

Chapter 4. Methodology 34

From Line 15 to Line 36, gain values for nodes who are in both of the to-be-updated

list U and top nodes list T are calculated. To calculate the gain for a node, the node

which gain is calculated for is removed from the to-be-updated list U , its gain is reset,

temporary copies of active node list A and thresholds Θ is created, and a list Q is created

to hold temporarily active nodes. Then, the node is temporarily activated to simulate the

diffusion process as if the node was selected as seed. By this way, the algorithm calculates

the gain which would result from the activation of the node. Line 22 − 35 shows how

influence diffuse in the network, and how actual gain and potential gain are calculated.

Finally, in Line 37, the gain value which nodes will be compared on is calculated. Note

that, since PGMltp might be changed in every iteration, it actually requires gain values

for all nodes to be changed. By placing this gain summation outside of the loop, we avoid

actual gain and potential gain calculations for nodes whose values are changed only due

to the change in PGMltp.

After gain values are calculated for nodes, new seed nodes are selected and the network

is updated accordingly in Line 38− 61. Before going on with the rest of the algorithm,

NumBefReCalc nodes are selected as seed by iterating the process NumBefReCalc

times. Depending on the Node Selection Method, the node which satisfies the constraints

and has the maximum value is selected as a seed in Line 39−45. Then, in Line 48−60,

the seed node is activated, influence spread is calculated, and the network is updated.

Since updates in thresholds of nodes change the gain values of nodes who exert influence

upon them, list U must be generated to hold nodes whose gains to be updated. For

this purpose, two lists are initialized in Line 46 − 47. Nodes whose thresholds have

been changed are added to Q2 in Line 52. After selecting the seed nodes and before

recalculating the gains, the nodes whose gains need to be updated are determined and

added to U in Line 62− 77. In the first part, in Line 62− 68, nodes who influence the

nodes whose thresholds are changed are added to U . In the second part, in Line 69−77,

nodes who are able to activate any node in U by themselves are added to U . This is

because gains will be recalculated for the nodes in U , and if a node can fully activate a

node in U , then its gain value also needs to be updated.

In Line 78 − 87, all nodes are sorted according to their initial gain or efficiency value

based the node selection method. Certain number of nodes are selected as top nodes

based on the number of nodes have been selected so far, the number of nodes to select

before recalculating the gain values, and the multiplier for determining the number of

top nodes. It results in a list of top nodes T , which presents a constraint on nodes for

which gain will be calculated in the next calculation.

Chapter 4. Methodology 35

4.3 Graphs

For the empirical analysis, the following public network datasets are employed: Epinions[41,

42], Academia.edu [43, 44], and Pokec[41, 45]. In addition, we crawled the underlying

social network of Inploid, a social network where users can ask questions and answer

questions of others in Turkish.

Epinions is a consumer review website where users can register for free and share their

reviews for a variety of products. In order to prevent deceiving reviews, a trust system

is put into place where users can specify whether other users are trustworthy or not. It

results in a social network where nodes are the users and directed links are indicators

of trust between the users. The dataset originally consists of 75, 879 nodes and 508, 837

directed links and no other information. This data set has been used in number of studies

including [16, 21, 27, 29, 40].

Academia.edu is a social networking website for academics where users can share papers

and follow each other. It originally consists of 200, 169 nodes and 1, 398, 063 directed

links and no other information. The dataset is crawled by Ben Gurion University Social

Networks Security Research Group and used in number of studies including [43, 44].

Inploid is a social question & answer website in Turkish with total number of nearly

40, 000 registered users. Users can follow others and see their questions and answers on

the main page. Each user is associated with a reputability score which is influenced by

feedback of others about questions and answers of the user. Each user can also specify

interest in topics. The data is crawled in June 2017 and consist of 39, 750 nodes and

57, 276 directed links between them. In addition, for each user, reputability scores and

top five topics are included in the dataset.

Pokec is a Slovakian online social networking website where users can share information

about themselves, post pictures on their profiles, and chat with other users. The infor-

mation about users include age, gender, physical appearance, marital status, hobbies,

political view, and many other fields. The dataset covers the whole network and origi-

nally consists of 1, 632, 803 nodes and 30, 622, 564 directed links, and profile information

of users for near 60 fields. The dataset is used in various studies including [29, 45].

4.4 Data Generation

Our algorithm requires influence weights for links; and threshold, cost, and profit values

for nodes. Most of the time, at least one of them is not available in the social networks.

Chapter 4. Methodology 36

Therefore, we employ suitable data generation methods to fill the missing parts with

synthetic yet meaningful data.

The following three methods are used in data generation: (i) a fixed value, (ii) a discrete

distribution, or (iii) continuous distribution. For continuous distribution we use either a

uniform distribution or a normal distribution. Truncated normal distribution based on

[46] is also used when a lower or upper limit need to be established.

4.4.1 Influence Weights on Links

Influence weights on links represent the degree influence one node has on another. For

some networks, influence values in some forms might be available in the dataset due

to the nature of the given social network (i.e., trust degrees). However, in most cases,

social networks do not have mechanisms to assign such values to the links. Therefore, it

is necessary to assign proper values as influence weights to the links.

In the literature, influence weights (or influence probabilities in ICM) are assigned in the

following ways: fixed value, arbitrary, or ratio model. In fixed value method, all links

are assumed to have the same fixed weight such as 0.05 or 0.1. When this method is

employed, it effectively ignores any differentiation in influence capabilities of links; which

is not a proper representation of mechanisms in the real world. This method is used in

studies including [26].

In arbitrary selection method, influence weights are sampled randomly from a set of

values such as {0.01, 0.05, 0.1} or from an interval such as [0, 1]. This is a better repre-

sentation of the real world compared to fixed value method since it acknowledges that

different links might have different influence capabilities. This method is used in studies

including [23, 27].

In ratio model, influence weight is assigned by dividing the count of edges by the num-

ber incoming links to target node. Supposing that ~uv represents a directed link where

influence goes from u to v, the equation for influence weight is given in Equation 4.4.

Various studies including [1, 16, 40] employ this method.

iuv = | ~uv| / indegree(v) (4.4)

When one of the first two methods are employed, a node becomes active based on count

of its neighbors which are already activated. For instance, at least five neighbors with

influence weight of 0.1 on the links are required to activate a node with a threshold of

0.5. On the other hand, in the third method, a node becomes active based on proportion

Chapter 4. Methodology 37

of its active neighbors instead of count. For example, to activate a node with threshold

of 0.5, at least 50% of its neighbors are required to be active given that links have equal

weights.

The methods which are based on count makes it relatively difficult to activate nodes

with smaller degrees. For instance, a node with threshold of 0.6 has no chance to be

activated if it only has three neighbors given that all links have influence weights of less

than 0.2. On the contrary, the methods which are based on proportion makes it difficult

to activate the nodes with larger degrees (i.e., nodes with many incoming influences).

For example, a node with relatively low threshold of 0.3 and 100 neighbors requires at

least 30 active neighbors whereas a node with relatively high threshold of 0.7 and 10

neighbors require only 7 active neighbors, given that influence weights are uniform.

Considering a such trade-off, we develop a hybrid method which is a fusion of arbitrary

selection method and ratio model, as explained as follows. First, average degree of

the network is calculated by dividing number of links to number of nodes. Then, 1 is

divided by average degree and a fixed value is found. For each link, this fixed value

is then multiplied by a value sampled from {a1, a2, ...} with respective probabilities of

{p1, p2, ...}. In effect, it is similar to arbitrary selection method. However, we introduce

sampling probabilities and the practice of dividing 1 by average degree of the network.

Then, for each link, geometric mean of the results of the above method and results of

the ratio model is calculated and assigned as the influence weight. The formula is given

in Equation 4.5. In the case where the influence weight resulted from ratio model is

0.2, and the influence weight resulted from the above method is 0.45; our hybrid model

results in influence weight of 0.3, their geometric mean.

iuv =
√

(| ~uv|/indegree(v))((1/(|E|/|V |))(rand({a1, a2, ..}, {p1, p2, ..})) (4.5)

4.4.2 Node Thresholds

Node thresholds are not readily available neither in any of the datasets we use nor in any

datasets in the studies in the literature, to the best of our knowledge. Therefore, node

thresholds need to be synthetically generated.

In most of the literature, thresholds are assigned randomly between 0 and 1 to satisfy

the submodularity requirement for the original LTM. In studies about PIDS problems,

thresholds are assigned a fixed value, usually 0.5. In [40], fixed values 0.8 and 0.5; or

random values between 0.1 and 0.9, or between 0.3 and 0.7 are used. Most of studies

Chapter 4. Methodology 38

use ratio model in assignment of influence weights; and in such models, a node with a

threshold above 1 can never be activated.

Since submodularity does not hold in Deterministic LTM, we are not limited to drawing

thresholds randomly between 0 and 1. On the other hand, assigning all nodes a same

fixed value is an oversimplification. Instead, we develop a new approach which mimics

the real world dynamics of diffusion of innovations.

As Rogers put it in his seminal work [8], there are five groups of consumer when it comes

to adoption of innovation: innovators (2.5%), early adopters (13.5%), early majority

(34%), late majority (34%), and laggards (16%). See Section 2.1.2 for details. Although

share of markets are given for five discrete groups, they do not follow a discrete dis-

tribution but a normal distribution, as illustrated in Figure 2.1. Therefore, to assign

threshold values, we employ a normal distribution with a limit on lowest value (i.e.,

truncated normal distribution) to mimic the real world dynamics.

4.4.3 Node Costs

In the literature, studies on BIM problem embraced the following ways of assigning cost

values. [24] employ two methods in assigning cost values to nodes. First one is to assign

a fixed uniform cost to all nodes. The second method is assigning costs based on degree

of nodes. Similarly, [17] use fixed uniform costs to all nodes (so-called unit cost model)

as the first model, or assign costs to blogs (i.e., nodes) based on number of blog posts

they contain. [23] employed the method of selecting costs randomly from an interval in

addition to employing unit cost model.

Instead of assigning random or fixed values as costs for nodes, we develop a new method

similar to that of [24], that considers the indegree (i.e., number of outgoing influences)

of a node while estimating the cost of that node1. The intuition is as follows. In typical

social networks, nodes (e.g. users) are not likely to know their true network value.

Instead, we assume, a node’s self-perceived value is mostly based on the number of its

followers. It is a simple metric on which users can compare themselves with others, and

estimate their own value in the market.

However, degree is not a deterministic factor by itself. Thus, we also employ a random

variation in addition to the value find based on indegree. Moreover, we specify a fixed

value added to costs of all nodes, which represents any possible fixed costs in real life

(e.g. cost of time required for communication with any node, legal costs, cost of sample

products, and etc.).
1A node with large indegree value means that number of its followers is large. Direction of an edge

and direction of the influence on that edge is opposite and should not be confused.

Chapter 4. Methodology 39

In order to normalize the cost values, square root of indegree is used instead of indegree.

The found value then is multiplied with a random value between a and b, to represent

the variation in users’ methods of self-perception. Finally, a fixed value of z is added to

every node. The formula for cost calculation is given in Equation 4.6

cv =
√
vindegrand(a, b) + z (4.6)

4.4.4 Node Profits

Using heterogeneous profit values on nodes extends our problem to a targeted version of

the Influence Maximization problem. In real life, profit values can be used for targeting

certain demographics where profit values are generated according to fitness of nodes to

target demographics. It can also be used for simply profit maximization by generating

profit values based on estimated profit (e.g. socioeconomic status of nodes). For instance,

if incomes of nodes (i.e., users) are known, then profit can be estimated based on it.

A third option is to combine these two approaches to represent both fitness to target

demographics and estimated profit values.

In the literature, profit values are assigned to nodes in the following ways. [27] employs a

product-user network and derives profit values by combining the item ratings of users and

prices of the items. [30] uses a location based social network and derives profit values (or

so called target fitness values) by measuring the distance of users to the target location.

[26] employs a movie-actor network and creates profit values based on the genres of the

movies in which actors have played. [28] studies online advertising and assigns profit

values based on similarity between the two term vectors he created for advertisements

and users. [29] used profile data of users to target users in certain categories.

Generating such profit values is not always possible when the dataset lacks necessary

information. In those cases, profit values need to be created synthetically.

Profits can be drawn from a discrete distribution {a1, a2, ...} and {p1, p2, ...} where p1 is

probability of selecting a1 and so on. For instance, if a campaign only targets the males

living in urban areas, then a1, a2 and p1, p2 should be 1, 0 and 0.25, 0.75 respectively,

given that half of people live in urban areas and male to female ratio in urban areas is 1.

Profit can also be generated based on the assumed continuous profit distribution. Since

the distribution is highly dependent on the product and context; for simplicity, we will

assume a log-normal distribution as a representation of income inequality.

The third method which combines the discrete distribution method and continuous dis-

tribution method can be achieved by multiplying the outputs of the two.

Chapter 5

Experimental Results and

Discussion

The goal of the experiments is to present the performance of our algorithm on various

datasets. In this chapter, we first explain the procedures in data preprocessing step

which include preliminary operations on graphs, generation of influence weights for links

and generation of threshold, profit and cost values for nodes. For each of Epinions,

Academia.edu, Inploid, and Pokec networks, two different datasets are generated via

using different data generation methods which are explained in Section 4.4. Experiments

are categorized based on underlying networks. Numerical results and initial comments

are provided for each experiment in Section 5.2.

An overall discussion with regard to different value settings for parameters and their

impacts on influence spread (i.e., total profit)1 and runtime are given in Section 5.3.

All experiments are run on a computer with Intel2 Core i5-5200U CPU @ 2.20 Ghz, and

8 GB memory. R is employed for data preprocessing and data generation operations.

Centrality scores to be used in benchmark heuristics are calculated in R as well. Java

is employed to run our TABU-PG algorithm, and to obtain influence spread results of

benchmark heuristics. The upper limit on memory allocated to Java program is set as

6500MB.
1Total profit and influence spread are used interchangeably throughout this study.
2Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

40

Chapter 5. Experimental Results and Discussion 41

5.1 Data Preprocessing

Various data preprocessing operations are undertaken for all graphs which are presented

in Section 4.3: Epinions, Academia.edu, Inploid, and Pokec. In this section, we go over

the data preprocessing steps and explain how final datasets to be used in experiments

are generated from the original network datasets.

In order to choose seed sets based on the benchmark heuristics, igraph package of R

is utilized. Weights on edges are not taken into account when calculating centrality

scores. Directions of edges are considered. Cutoff points3 are set as 3 in estimation

of betweenness and closeness scores for all experiments except for the experiments on

Pokec. For Pokec, the cutoff points are set as 2 to prevent it to take a very long time

to estimate since the network is very large. In calculation of PageRank score, for all

experiments, damping factor4 is set as 0.85 which is an assumed default value in most

PageRank applications.

Following data preprocessing procedures is applied to all graphs. Any self-loops and

multiple (i.e., recurring) links are removed from the graph. Largest connected component

in each network is found and other components are removed from the network. Therefore,

basically, the experiments are done on the largest connected component for each network.

This is preferred because disconnected components are, in a sense, like multiple different

networks rather than a single network.

Additional data preprocessing steps are taken for Pokec graph. The nodes whose follower

information was not public, approximately one third of all nodes, are excluded from the

network.

The information on resulting graphs before and after data preprocessing operations are

performed are summarized in Table 5.1.

Table 5.1: Graphs

Before Data Preprocessing After Data Preprocessing
Graphs # of nodes # of links # of nodes # of links
Epinions 75,879 508,837 75,877 508,836
Academia.edu 200,169 1,398,063 200,167 1,397,620
Inploid 39,750 57,276 14,360 57,100
Pokec 1,632,803 30,622,564 1,080,251 14,662,846

3A cutoff point is the maximum path length to consider when calculating the betweenness or closeness
score.

4Please refer to [10] for details.

Chapter 5. Experimental Results and Discussion 42

Data generation methods which are employed in creating influence weights for links; and

threshold, cost, and profit values for nodes are explained below and in their respective

sections when necessary.

In all experiments, threshold values are assigned randomly by using a truncated normal

distribution. This method aims to reflect the groups of consumers in adoption of inno-

vation, which are shown earlier in 2.1. The parameters of the distribution is given for

each experiment in their respective sections.

In odd numbered experiments, influence weights are assigned by the ratio model (see

Section 4.4.1) which is the most widely used method in the literature. Briefly, in this

model, sum of weights of incoming influences is equal to 1.

In even numbered experiments, influence weights are assigned by the hybrid model which

is explained in Section 4.4.1. x being the average degree of nodes, for each node, a value

from {a1x, a2x, a3x, a4x} is selected with respective probabilities of {p1, p2, p3, p4}.
Then, geometric mean of the selected value and the value which would be resulted from

ratio model is found. The geometric mean is set as the influence weight of the node.

The values for {a1, a2, a3, a4} and {p1, p2, p3, p4} are specified for each experiment

in their respective sections.

It is worth noting that values of influence weights or thresholds become meaningful only

in comparison to values of the other. For instance, a threshold of 0.8 can be seen as

relatively high when most of the influence weights are smaller than 0.1, however it can

be seen as relatively low when most of the influence weights are greater than 0.4. Thus,

influence weights and thresholds should be viewed as strongly interrelated components.

In all experiments except for experiments on Inploid, cost values are assigned according

to following formula we suggest: cv = 1 +
√
indegree(v)rand(min = 0.5, max = 1.5).

As explained in Section 4.4.3; 1 represents the fixed cost, indegree(v) represents the

assumption that the cost of a node is correlated to number of followers the node has,

and rand(min = 0.5, max = 1.5) represents the distinctness in users’ self-evaluations in

determining their costs and also other unaccounted factors. Square root is employed for

normalization purposes.

For the experiments on Inploid, cost values are assigned by using the already available

information in the dataset. Details of the calculation of cost values for nodes in Inploid

network is given in the respective section.

In experiments on Epinions and Academia.edu networks, profit values are assigned by

multiplying the following two values: a selection in {0, 1, 2, 3} with respective probabili-

ties of {0.25, 0.25, 0.25, 0.25}, and a random selection from the log-normal distribution

Chapter 5. Experimental Results and Discussion 43

of ln(mean = 1, sd = 0.3). The first component aims to represent different demograph-

ics (e.g., four equal sized target demographics). It is assumed that one group does not

bring any profit at all, and the other three groups have respective importance degrees

(e.g., profit potentials) of 1, 2, and 3. The second component is assumed to represent the

income distribution among people in the network, creating further variations in profit

values.

In experiments on Pokec and Inploid, the profit values are assigned by using the already

available information in the dataset. Details of the calculation for profit values for nodes

in Pokec and Inploid networks are given in the respective sections.

When two experiments are using the same data generation method, it does not mean

that both are using the same data since methods include random components or network

specific calculations, hence outputs vary at each run.

5.2 Experiments

For each experiment; degree5, closeness, betweenness, pagerank, hub, authority, and

eigenvector heuristics (see Section 2.2) are employed as benchmarks in addition to the

random heuristic where seed sets are selected randomly.

When displaying different parameter settings, parameter values are added as a suffix

to the name of our algorithm. For example, TABU-PG_2_1_0.05_5_Inf states that

our algorithm utilizes second method in node selection (i.e., NSMthd), utilizes first

method in potential gain calculation (i.e., PGCMthd), employs minimum potential gain

ratio of 0.05 (i.e., MinPGR), chooses 5 seed nodes before recalculating gain values (i.e.,

NumBefReCalc), and does not put a limit on maximum number of nodes to gain

calculate for (i.e., TopMltp).

The parameters manage which methods are to be employed in the algorithm. Therefore,

different parameter settings of TABU-PG result in different TABU-PG heuristics sharing

the same framework which is explained in Chapter 4.

Detailed information about parameters and the way parameters work can be found in

Section 4.2. The parameters are briefly explained in Table 5.2.

In all experiments, the budget is set as 3000.
5Since networks are directed, indegree is calculated. Higher indegree equates to higher number of

followers.

Chapter 5. Experimental Results and Discussion 44

Table 5.2: Methods Used in the Experiments

NSMthd: Node Selection Method
1 selects the node with maximum gain
2 selects the node with maximum efficiency
3 selects the node with maximum efficiency among top three nodes based on gain
PGCMthd: Potential Gain Calculation Method
1 PGMltp is set to 0, effectively removes the potential gain
2 PGMltp is set to 1, effectively eliminates the impact of PGMltp

3 PGMltp is set to 1− (E/B)

4 PGMltp is set to 1− (E/B)(E −B)

MinPGR: Minimum Potential Gain Ratio
x if iuv to θv ratio lower than x, the potential gain is ignored.
NumBefReCalc: Number of nodes to select before recalculating
Inf all seed nodes are to be selected without recalculating gain values
x up to x nodes are to be selected before recalculating gain values
TopMltp: Multiplier for determining number of top nodes
Inf gain calculations are not limited by any number of top nodes
x gain calculations are limited to top nodes, determined by multiplier x

For all experiments, results are presented in the following way. Final influence spreads

(i.e., total profit) of all heuristics including TABU-PG heuristics and benchmark heuris-

tics are given in a figure. However, these heuristics do not include different values for the

scaling parameters (i.e., NumBefReCalc and TopMltp). Instead, only the default val-

ues of 1 and Inf are employed. Hence, whenever last two parameters are not displayed

when presenting a TABU-PG heuristic, the default values should be assumed. In these

figures, performance of the worst performing parameter setting for TABU-PG is set as

100%. Performances of other parameter settings and benchmark heuristics are presented

by measuring their relative performances.

There are only three heuristics employing Potential Gain Calculation Method 1 (i.e.,

ignoring potential gains altogether) since Minimum Potential Gain Ratio does not play

any role when potential gains are ignored altogether, therefore such heuristics are not

multiplied for different values of MinPGR. There are 12 heuristics each for Potential

Gain Calculation Method 2, 3, and 4. Thus, total of 39 heuristics are initially presented

for each experiment except for experiments on Pokec where a smaller number of heuristics

are presented due to the fact that experiments on Pokec take long time to complete.

Then, results of different TABU-PG heuristics are briefly compared with benchmark

heuristics along with a comparison among themselves. The different values for first three

parameters (i.e., NSMthd, PGCMthd, andMinPGR) are compared by averaging their

performances. While calculating average, TABU-PG heuristics given in the figures are

taken into account. When calculating average values for different values of MinPGR,

heuristics which employs Potential Gain Calculation Method 1 are not accounted for

Chapter 5. Experimental Results and Discussion 45

since that method ignores potential gains altogether. Additional comments on results

are also provided.

Next; best, median, and worst performing TABU-PG heuristics (excluding non-default

values for scaling parameters) in terms of total profit are selected. Two benchmark

heuristics are also selected, one being the best performing benchmark heuristic. Detailed

diffusion results of the selected five heuristics are given in a chart. x-axis shows the

amount spent (i.e., E), and y-axis shows the total profit obtained. Relevant comments

are provided.

Subsequently, effects of different values of scaling parameters on the best performing

heuristic and the median performing heuristic is illustrated in terms of total profit and

also runtime. The exception is Experiment 8 where only one heuristic is employed instead

of two. In these figures, primary axis and columns represent the spread performance (i.e.,

total profit) whereas secondary axis and lines represent the runtime. The performance

of the heuristic with default values for the scaling parameters is set to 100%, in order to

serve as a benchmark. Comments are provided on the results.

Setting NumBefReCalc to Inf would not be relevant to Potential Gain Calculation

Method 3 and 4, however it is still included in figures which employ Method 3 or 4.

These two methods assign value to PGMltp according to the remaining budget whereas

NumBefReCalc = Inf selects all nodes at once in the first iteration instead of spending

budget overtime. Therefore, Potential Gain Methods 3 and 4 is equivalent to Method 2

whenever NumBefReCalc is set to Inf .

Overall, the methodology and structure for presenting experiment results is nearly the

same for all experiments. On the other hand, experiments on Pokec can be considered

as exceptions since they, to a certain extent, diverge from the standard structure we use

to present our results. For this reason, in Section 5.3, results of experiments on Pokec

are treated differently when presenting and discussing overall results.

5.2.1 Experiments on Epinions

Experiment 1

Threshold values are assigned randomly by using the following truncated normal distri-

bution: tn(mean = 0.65, sd = 0.3, lower = 0.1, upper = Inf). Profit values and cost

values are assigned by utilizing the methods which are explained in Section 5.1. Influence

weights are assigned by the ratio model.

Chapter 5. Experimental Results and Discussion 46

Figure 5.1: Comparison of All Heuristics in Experiment 1

Figure 5.1 depicts the comparison of different parameter settings of TABU-PG along

with benchmark heuristics, in terms of achieved influence spread (i.e., total profit). Per-

formance of the worst performing parameter setting for TABU-PG, which is TABU-

PG_1_2_0 in this case, is set as 100%.

TABU-PG with different parameter settings perform 35% to 58% better than the best

benchmark heuristic, that is degree heuristic in this case.

When different parameter settings of TABU-PG are compared between themselves, there

is %17 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) performs consistently worse than the

Method 2 and Method 3 (i.e., efficiency based methods). On average, Method 1 obtains

a performance of 103.6% while Method 2 obtains 114.7% and Method 3 obtains 115.3%.

Chapter 5. Experimental Results and Discussion 47

Among all; the best two heuristics employ Method 2, whereas the following five heuristics

employ Method 3.

Potential Gain Calculation Method 3 and Method 4, which are introduced by us, usually

perform better than Method 1 and Method 2. On average, Method 1, 2, 3, and 4 achieve

performances of 109.2%, 110.1%, 111.6%, and 112.3% respectively. Out of the best 10

heuristics, 7 employ Method 4.

A significant and consistent difference between performances of different Minimum Poten-

tial Gain Ratios is not observed in this experiment. Yet, there exist slight improvements

gained by tuning MinPGR. Minimum Potential Gain Ratio of 0, 0.05, 0.1, and 0.2

achieve average performances of 111.2%, 111.7%, 111.4%, and 111.1% respectively.

Figure 5.2: Detailed Diffusion of Selected Heuristics in Experiment 1

Figure 5.2 shows detailed diffusion results with regard to budget for the selected heuris-

tics: betweenness, degree, the worst parameter setting TABU-PG_1_2_0, the me-

dian parameter setting TABU-PG_2_3_0.05, and the best parameter setting TABU-

-PG_2_4_0.05. As can be interpreted from the figure, there is no observation of any

sudden increase in influence spread as budget is exhausted over time. The influence

spread is close to a linear function of the budget.

Chapter 5. Experimental Results and Discussion 48

Figure 5.3 shows the effects of different values of scaling parameters on the best perform-

ing heuristic TABU-PG_2_4_0.05, in terms of runtime and total profit. As depicted in

the figure, increasing the value of NumBefReCalc from 1 to 5, and to 25 improves the

runtime from 341 to 212, and to 88 seconds respectively. However, as a trade-off, the

total profit decreases by 7.2% and 17.5% respectively.

Figure 5.3: Scaling TABU-PG_2_4_0.05 in Experiment 1

Counter-intuitively, limiting calculations to top nodes by decreasing the value of TopMltp

improves the total profit while also significantly reducing the runtime. The improve-

ment is very slight when NumBefReCalc is set to 1 however is more significant when

NumBefReCalc is set to greater values. On the other hand, decreasing TopMltp from

20 to 10, thus creating a even smaller pool of candidates, reduces the extent of improve-

ment, or eliminates it altogether. This result of improved performance with limited pool

of candidates might be because of the non-optimal nature of the solution due to the

complexity of the problem, hence an exception. Or, it might be a rule which does not

seem intuitive at first. We will refer to this as the counter-intuitive result in Experiment

1, and examine whether this result hold true in other experiments.

A comparison of scaling parameters’ impact for the median performing heuristic TABU-

-PG_2_3_0.5 is given in Figure 5.4. Roughly, the same conclusions for Figure 5.3

apply to this one as well. However, further limiting the pool of candidates by setting

TopMltp to 10 instead of 20 does not necessarily reduce or eliminate the improvement

in performance, as it does in Figure 5.3.

Chapter 5. Experimental Results and Discussion 49

Figure 5.4: Scaling TABU-PG_2_3_0.5 in Experiment 1

Experiment 2

Threshold values are assigned randomly by using the following truncated normal distri-

bution: tn(mean = 1, sd = 0.5, lower = 0.1, upper = Inf). Profit values and cost values

are assigned by utilizing the methods which are explained in Section 5.1.

Influence weights are assigned by the hybrid model. x being the average degree of nodes,

for each node, a value from {x/4, x/2, x, 3x/2} is selected with respective probabilities

of {0.25, 0.25, 0.25, 0.25}. Then, geometric mean of the selected value and the value

which would be resulted from ratio model is set as the influence weight of the node. In

this way, influence weights are more compatible with real life as we explained in Section

4.4.1.

Figure 5.5 shows comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

The results show that TABU-PG with different parameter settings perform 19% to 32%

better than the best benchmark heuristic, that is closeness heuristic in this case.

When different parameter settings of TABU-PG are compared between themselves, there

is %11 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) performs worse than Method 1 and Method

2 (i.e., the efficiency based methods) at almost all times. Method 1 achieves an average

Chapter 5. Experimental Results and Discussion 50

Figure 5.5: Comparison of All Heuristics in Experiment 2

performance of 103.4% while Method 2 achieves 108.4% and Method 3 achieves 108.3%.

Among all heuristics, 4 out of the best 5 heuristics utilizes Method 3, and the remaining

one utilizes Method 2.

Potential Gain Calculation Method 3 and Method 4 usually perform better than Method

1 and Method 2. On average, Method 1, 2, 3, and 4 achieve performances of 102.7%,

104.4%, 108.5%, and 108.3% respectively. All of the best 10 heuristics employ Method

3 or 4.

A meaningful and consistent difference between performances of different Minimum Po-

tential Gain Ratios is not observed in this experiment as well. Minimum Potential Gain

Ratio of 0, 0.05, 0.1, and 0.2 achieve average performances of 107%, 107.1%, 107%, and

106.9% respectively.

Chapter 5. Experimental Results and Discussion 51

Figure 5.6 shows detailed diffusion results with regard to budget for the selected heuris-

tics: hub, closeness, the worst parameter setting TABU-PG_1_2_0, the median param-

eter setting TABU-PG_2_2_0, and the best parameter setting TABU-PG_3_3_0.1.

Figure 5.6: Detailed Diffusion of Selected Heuristics in Experiment 2

As it can be seen in the figure, total profit dramatically increases after reaching a certain

point. It is a reflection of the tipping point phenomenon. Some of the algorithms in the

figure reach the tipping point before others in terms of exhausted budget. Therefore,

in a case where the budget is close to the tipping points, parameter tuning can result

in extraordinarily large improvements. If the algorithm was terminated between 500

and 600 instead of 3000, TABU-PG_3_3_0.1 would perform tens of times better than

TABU-PG_1_2_0 instead of only providing an %11 improvement.

Figure 5.7 shows the effects of different values of scaling parameters on the best perform-

ing heuristic TABU-PG_3_3_0.1. Increasing the value of NumBefReCalc from 1 to

5, and to 25 improves the runtime from 105 seconds to 57 and 59 seconds respectively.

Moreover, the total profit decreases only by 1.9% and by 6.9% respectively.

The counter-intuitive result we encountered in Experiment 1 does not hold true in this

case, except for the observed improvement from ..._25_Inf to ..._25_20. Compared to

Chapter 5. Experimental Results and Discussion 52

Figure 5.7: Scaling TABU-PG_3_3_0.1 in Experiment 2

..._1_Inf , ..._1_20 takes less than one fifth of the time while the performance in terms

of total profit decreases only by 1.2%. The parameter setting which takes the shortest

time, except for the setting of ..._Inf_Inf , reduces the spread performance by less than

4%.

Figure 5.8 shows the effects of different values of scaling parameters on the median

performing heuristic TABU-PG_2_2_0. More or less, the same conclusions for Figure

5.7 are valid for this figure as well.

5.2.2 Experiments on Academia.edu

Experiment 3

Threshold values are assigned randomly by using the following truncated normal distri-

bution: tn(mean = 0.65, sd = 0.3, lower = 0.1, upper = Inf). Profit values and cost

values are assigned by utilizing the methods which are explained in Section 5.1. Influence

weights are assigned by the ratio model.

Figure 5.9 displays a comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

The results show that TABU-PG with different parameter settings perform 11% to 37%

Chapter 5. Experimental Results and Discussion 53

Figure 5.8: Scaling TABU-PG_2_2_0 in Experiment 2

better than the best benchmark heuristic, that is pagerank heuristic in this case. When

compared with the second best benchmark heuristic, which is degree heuristic, TABU-PG

performs 107% to 156% better.

When different parameter settings of TABU-PG are compared between themselves, there

is %24 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) performs always worse than Method 1 and

Method 2 (i.e., the efficiency based methods). Method 1 achieves an average performance

of 108.4% while Method 2 achieves 121.6% and Method 3 achieves 121.6% as well. As

depicted in the figure, Method 2 and Method 3 achieves almost the same results although

slightly different at times. This is probably due to the fact that both methods end up

choosing almost the same seed set.

On average, Potential Gain Calculation Methods 1, 2, 3, and 4 achieve performances of

119.5%, 113.2%, 119.2%, and 118.7% respectively. Out of the best 10 heuristics, 8 employ

Method 3 or 4. In contrast to Experiment 1 and 2, Method 1 is not outperformed by other

methods. Method 3 and Method 4 performs better than Method 2, as in Experiment 1

and 2.

Minimum Potential Gain Ratio of 0, 0.05, 0.1, and 0.2 achieve average performances of

116.5%, 116.7%, 117.1%, and 117.8% respectively. Therefore, tuningMinPGR provides

slight improvements in total profit.

Chapter 5. Experimental Results and Discussion 54

Figure 5.9: Comparison of All Heuristics in Experiment 3

Figure 5.10 shows detailed diffusion results for the selected heuristics with regard to

budget: closeness, pagerank, the worst parameter setting TABU-PG_1_2_0, the me-

dian parameter setting TABU-PG_3_2_0.2, and the best parameter setting TABU-

PG_3_3_0.2.

As can be seen in the figure, there is no observation of any sudden increase in influence

spread as budget is exhausted over time. The advantage of Partial Gain Calculation

Method 3 over Method 2 is clearly displayed. Both methods perform very similar at the

beginning while Method 3 positively distinguishes itself from Method 2 as it gets closer

to the end of budget. This is because Method 3 weighs less on potential gains and more

on actual gains as it gets closer to the end.

Chapter 5. Experimental Results and Discussion 55

Figure 5.10: Detailed Diffusion of Selected Heuristics in Experiment 3

Figure 5.11 shows the effects of different values of scaling parameters on the best per-

forming heuristic TABU-PG_3_3_0.2. Increasing the value of NumBefReCalc from

1 to 5, and to 25 improves the runtime from 1477 seconds to 1212 and 634 seconds

respectively. Moreover, the total profit decreases only by 0.2% in both cases.

The counter-intuitive result we encountered in Experiment 1 does not hold true in this

case as well, except for small improvements of 0.2% and 0.1% in heuristics which sets

TopMltp to 25. The parameter setting taking the shortest runtime takes approximately

one ninth of the time required for the heuristic with default scaling parameter values

while the performance in terms of total profit are virtually the same in both cases.

Figure 5.12 shows the effects of different values of scaling parameters on the median

performing heuristic TABU-PG_3_2_0.2. Nearly, the same conclusions for Figure 5.11

hold true for results given in this figure as well.

Chapter 5. Experimental Results and Discussion 56

Figure 5.11: Scaling TABU-PG_3_3_0.2 in Experiment 3

Figure 5.12: Scaling TABU-PG_3_2_0.2 in Experiment 3

Experiment 4

Threshold values are assigned randomly by using the following truncated normal distri-

bution: tn(mean = 0.8, sd = 0.4, lower = 0.05, upper = Inf). Profit values and cost

Chapter 5. Experimental Results and Discussion 57

values are assigned by utilizing the methods which are explained in Section 5.1.

Influence weights are assigned by the hybrid model. x being the average degree of nodes,

for each node, a value from {x/3, x/2, x, 2x} is selected with respective probabilities

of {0.1, 0.2, 0.3, 0.4}. Then, geometric mean of the selected value and the value which

would be resulted from ratio model is set as the influence weight of the node.

Figure 5.13: Comparison of All Heuristics in Experiment 4

Figure 5.13 shows comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

The results show that TABU-PG with different parameter settings perform 3% to 86%

better than the best benchmark heuristic, that is degree heuristic in this case. When

compared with the second best benchmark heuristic, which is closeness heuristic, TABU-

PG performs 14% to 105% better.

Chapter 5. Experimental Results and Discussion 58

When different parameter settings of TABU-PG are compared between themselves, there

is %80 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) usually performs worse than Method 1 and

Method 2 (i.e., the efficiency based methods). Method 1 achieves an average performance

of 163% while Method 2 achieves 167.2% and Method 3 achieves 173.2%. Among top 5

heuristics, 4 employ Method 3 and the remaining one employs Method 2.

Potential Gain Calculation Methods 1, 2, 3, and 4 achieve average performances of

131.7%, 170.6%, 170.9%, and 171% respectively. Among the top 9 heuristics; Method 2,

3, and 4 are utilized by equal number of heuristics.

Minimum Potential Gain Ratio of 0, 0.05, 0.1, and 0.2 achieve average performances of

172.6%, 169.8%, 170.9%, and 170% respectively. In contrast to previous experiments,

increasing the value of MinPGR slightly decreases the performance in terms of total

profit. Overall, the performance differences are very small thus insignificant.

Figure 5.14 shows detailed diffusion results with regard to budget for the selected heuris-

tics: authority, degree, the worst parameter setting TABU-PG_2_1_0, the median pa-

rameter setting TABU-PG_2_4_0.05, the best parameter setting TABU-PG_3_2_0.

Figure 5.14: Detailed Diffusion of Selected Heuristics in Experiment 4

Chapter 5. Experimental Results and Discussion 59

As can be seen in Figure 5.14, tipping points exist in this experiment as well. For the

best performing two heuristics, there exist two tipping points for each. One is around

700 for both. Other one is through 1200 and 1400 for TABU-PG_3_2_0 and through

1500 and 1700 for TABU-PG_2_4_0.05. As can be recalled from Experiment 2; in

a case where the budget is close to the tipping points, parameter tuning can result in

extraordinarily large improvements.

Figure 5.15: Scaling TABU-PG_3_2_0 in Experiment 4

Figure 5.15 shows the effects of different values of scaling parameters on the best per-

forming heuristic, TABU-PG_3_2_0. Increasing the value of from 1 to 5, 25, and Inf

improves the runtime from 2015 seconds to 1402, 780, and 107 seconds respectively. As

a trade-off, the total profit decreases by 16.3%, 30%, and 84.2% respectively. The reduc-

tions in performance is extraordinarily high in this experiment when compared to other

experiments. Especially the large decrease which emerges when all nodes are selected at

once (i.e., NumBefReCalc = Inf) seems to be an exception since experiments on other

networks do not provide a similar result, hence should be viewed as such. However, we

do not suggest that these exceptions are not expected at all.

When NumBefReCalc is kept as 1, setting the TopMltp as 20 decreases the runtime

from 2015 seconds to 161 seconds. As a trade-off, the total profit is worsened by 6.3%.

On the other hand, the counter-intuitive result we encountered in Experiment 1 neither

holds true nor is falsified in this experiment.

Chapter 5. Experimental Results and Discussion 60

Figure 5.16 shows the effects of different values of scaling parameters on TABU-PG_2_4_0.05.

Overall, the same conclusions for Figure 5.11 are accurate for this figure as well.

Figure 5.16: Scaling TABU-PG_2_4_0.05 in Experiment 4

5.2.3 Experiments on Inploid

For experiments on Inploid network, profit values are assigned in the following way.

There exist over 3000 unique topics which users are shown interest in. STEM (Science

Technology Engineering Mathematics) related topics are manually flagged by us. In the

dataset, a user can have at most 5 associated topics. Number of STEM-flagged topics are

counted and assigned as profit values. If a user is interested in 3 STEM-related topics,

its profit value is assigned as 3. For users who did not specify any topic on their profile

or who are not interested in any STEM-related topic are assigned a profit value of 0.5.

Overall, this profit assignment method might reflect a case where a product’s primary

target group is people who are interested in STEM.

For experiments on Inploid network, cost values are assigned according to following

formula: cv = 1 + 3
√
indegree(v) + 3

√
vrep. 1 represents the fixed cost, indegree(v)

represents the assumption that the cost of a node is correlated to the number of followers

the node has, and vrep represents reputability scores of users. Cube root is employed for

normalization purposes. Overall, this cost assignment method might reflect a case where

Chapter 5. Experimental Results and Discussion 61

users determines their costs by their reputability scores along with the number of their

followers.

Experiment 5

Threshold values are assigned randomly by using the following truncated normal dis-

tribution: tn(mean = 1, sd = 0.33, lower = 0.1, upper = Inf). Profit values and

cost values are assigned by utilizing the methods which are explained in Section 5.2.3.

Influence weights are assigned by the ratio model.

Figure 5.17: Comparison of All Heuristics in Experiment 5

Figure 5.17 displays a comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

Chapter 5. Experimental Results and Discussion 62

The results show that TABU-PG with different parameter settings perform 23% to 32%

better than the best benchmark heuristic, that is pagerank heuristic in this case.

When different parameter settings of TABU-PG are compared between themselves, there

is %7 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) performs usually worse than Method 1 and

Method 2 (i.e., the efficiency based methods). Method 1 achieves an average performance

of 103.1% while Method 2 achieves 105.2% and Method 3 achieves 105.8%. Among all,

top 4 heuristics employ Method 3.

On average, Potential Gain Calculation Methods 1, 2, 3, and 4 achieve performances of

103.8%, 103.7%, 105%, and 105.6% respectively. Out of the best 10 heuristics, 7 employ

Method 4.

Minimum Potential Gain Ratio of 0, 0.05, 0.1, and 0.2 achieve average performances of

104.7%, 104.6%, 104.8%, and 105% respectively.

Figure 5.18 shows detailed diffusion results with regard to budget for the selected heuris-

tics: eigenvector, pagerank, the worst parameter setting TABU-PG_1_2_0, the me-

dian parameter setting TABU-PG_1_4_0.2, and the best parameter setting TABU-

PG_3_4_0.

As can be seen in Figure 5.18, the influence spread does not contain any sudden jumps.

Although all heuristics perform similar at beginning, TABU-PG heuristics distinguish

themselves from benchmark heuristics as budget is spent.

Figure 5.19 shows the effects of different values of scaling parameters on the best per-

forming heuristic TABU-PG_3_4_0. Increasing the value of NumBefReCalc from 1

to 5, and to 25 improves the runtime from 13 seconds to 8 and 6 seconds respectively.

As a trade-off, the total profit decreases by near 5% and 10% respectively.

On the other hand, limiting the candidate pool by setting TopMltp to 20 and 10 reduces

runtime from 13 seconds to 4 and 3 seconds respectively, without any loss in performance

in terms of total profit.

Figure 5.20 shows the effects of different values of scaling parameters on the median

performing heuristic TABU-PG_1_4_0.2. In general, the same conclusions for Figure

5.19 apply to this figure as well except that there are near 1% and 2% decrease in

performance when setting TopMltp to 20 and 10 respectively. However, near 5% and

10% lose of performance which is encountered when NumBefReCalc is set to 5 and 25

are now reduced to approximately 1% and 7%.

Chapter 5. Experimental Results and Discussion 63

Figure 5.18: Detailed Diffusion of Selected Heuristics in Experiment 5

Figure 5.19: Scaling TABU-PG_3_4_0 in Experiment 5

Chapter 5. Experimental Results and Discussion 64

Figure 5.20: Scaling TABU-PG_1_4_0.2 in Experiment 5

Experiment 6

Threshold values are assigned randomly by using the following truncated normal distri-

bution: tn(mean = 0.8, sd = 0.4, lower = 0.1, upper = Inf). Profit values and cost

values are assigned by utilizing the methods which are explained in Section 5.2.3.

Influence weights are assigned by the hybrid model. x being the average degree of nodes,

for each node, a value from {x/3, x/2, x, 3x/2} is selected with respective probabilities

of {0.3, 0.3, 0.2, 0.2}. Then, geometric mean of the selected value and the value which

would be resulted from ratio model is set as the influence weight of the node.

Figure 5.21 displays a comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

The results show that TABU-PG with different parameter settings perform 72% to 91%

better than the best benchmark heuristic, that is degree heuristic in this case.

When different parameter settings of TABU-PG are compared between themselves, there

is %11 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) performs usually worse than Method 1 and

Method 2 (i.e., the efficiency based methods). Method 1 achieves an average performance

of 102.8% while Method 2 achieves 108.5% and Method 3 achieves 108.8%. Among the

top 10 heuristics, 6 employ Method 3 and 4 employ Method 2.

Chapter 5. Experimental Results and Discussion 65

Figure 5.21: Comparison of All Heuristics in Experiment 6

On average, Potential Gain Calculation Methods 1, 2, 3, and 4 achieve performances of

100.7%, 106.5%, 106.7%, and 108.4% respectively. Among all, top 4 heuristics employ

Method 4.

Minimum Potential Gain Ratio of 0, 0.05, 0.1, and 0.2 achieve average performances of

107.4%, 107.3%, 107.2%, and 106.8% respectively.

Figure 5.22 shows detailed diffusion results for the selected heuristics with regard to

budget: authority, degree, the worst parameter setting TABU-PG_2_1_0, the me-

dian parameter setting TABU-PG_2_3_0.05, and the best parameter setting TABU-

PG_3_4_0.

Chapter 5. Experimental Results and Discussion 66

Figure 5.22: Detailed Diffusion of Selected Heuristics in Experiment 6

As can be seen in Figure 5.22, there exist tipping points. Although all heuristics perform

similar at the beginning, some better algorithms reach tipping points before others.

Moreover, after the sudden jump effect of tipping points fades away, TABU-PG heuristics

continue to increase while benchmark heuristics almost stays the same.

Figure 5.23 shows the effects of different values of scaling parameters on the best per-

forming heuristic TABU-PG_3_4_0. Increasing the value of NumBefReCalc from 1

to 5, and to 25 improves the runtime from 11 seconds to 6 and 4 seconds respectively.

As a trade-off, the total profit decreases by 5.5% and 11% respectively.

On the other hand, limiting the candidate pool by setting TopMltp to 20 and 10 reduces

runtime from 11 seconds to 3 and 23 seconds respectively, with performance loss of only

0.6% and 2.1% respectively. The counter-intuitive result in Experiment 1 is not valid

here except for setting TopMltp to 20 when NumBefReCalc is 5.

Figure 5.24 shows the effects of different values of scaling parameters on the median per-

forming heuristic TABU-PG_2_3_0.05. In general, the same conclusions onNumBefRecalc

parameter in Figure 5.23 apply to this figure. However, results on TopMltp is usually

Chapter 5. Experimental Results and Discussion 67

Figure 5.23: Scaling TABU-PG_3_4_0 in Experiment 6

inline with the counter-intuitive result in Experiment 1, that is limiting the candidate

pool results in better performance.

Figure 5.24: Scaling TABU-PG_2_3_0.05 in Experiment 6

Chapter 5. Experimental Results and Discussion 68

5.2.4 Experiments on Pokec

In Pokec social network, not all users have specified their ages on their profile pages. To

fill the missing age data, random integer values between 18 to 45 are assigned.

Profit values are assigned by targeting specific demographics with specified importance

values. Females aged between 18 to 34 are assigned the profit value of 5, males aged

between 18 to 24 are assigned the profit value of 3, males aged between 25 to 34 are

assigned the profit value of 2, males aged between 35 to 44 are assigned the profit

value of 1, and the rest is assigned the profit value of 0. The values are created based

on an arbitrary hypothetical case where given demographics carry specified degrees of

importance or potential profits for the marketer.

Experiment 7

Threshold values are assigned randomly by using the following truncated normal dis-

tribution: tn(mean = 0.65, sd = 0.3, lower = 0.1, upper = Inf). Cost values are

assigned by utilizing the methods which are explained in Section 5.1. Profit values are

assigned by utilizing the method and values given in Section 5.2.4. Influence weights are

assigned by the ratio model.

Figure 5.25 shows comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

Note that, there are 12 TABU-PG heuristics shown instead of 39 which is the case in

experiments on other networks. This is because parameter settings are not multiplied

for different values of MinPGR for experiments on Pokec.

The results show that TABU-PG with different parameter settings perform 96% to 263%

better than the best benchmark heuristic, that is pagerank heuristic in this case.

When different parameter settings of TABU-PG are compared between themselves, there

is %85.2 increase in total profit, from the worst parameter setting to the best one.

Node Selection Method 1 (i.e., based on gain) consistently performs worse than Method

1 and Method 2 (i.e., the efficiency based methods). Method 1 achieves an average

performance of 116.7% while Method 2 achieves 177.8% and Method 3 achieves 177.7%.

On average, Potential Gain Calculation Methods 1, 2, 3, and 4 achieve performances of

165.4%, 139.6%, 164.0%, and 160.8% respectively.

Chapter 5. Experimental Results and Discussion 69

Figure 5.25: Comparison of All Heuristics in Experiment 7

Impact ofMinPGR is only inspected for the best performing heuristic TABU-PG_2_3_0.

The findings are illustrated in Figure 5.26. Although very slight differences can be

achieved by changing the parameter value, the changes are negligible for the most part.

Figure 5.27 shows detailed diffusion results for the selected heuristics with regard to bud-

get: betweenness, pagerank, the worst parameter setting TABU-PG_1_2_0, the median

parameter setting TABU-PG_2_2_0, the best parameter setting TABU-PG_2_3_0.

The median parameter setting is not technically median but one of the two median

parameter settings since the number of TABU-PG heuristics is even in this case.

As can be seen in Figure 5.27, total profit is more or less a linear function of the bud-

get. The advantage of Partial Gain Calculation Method 3 over Method 2 is evidently

shown. Both methods perform very similar at the beginning while Method 3 positively

Chapter 5. Experimental Results and Discussion 70

Figure 5.26: Impact of MinPGR on TABU-PG_2_3 in Experiment 7

Figure 5.27: Detailed Diffusion of Selected Heuristics in Experiment 7

distinguishes itself from Method 2 as it gets closer to the end of budget. This is because

Method 3 weighs less on potential gains and more on actual gains as it gets closer to the

end.

Figure 5.28 shows the effects of different values of scaling parameters on the best perform-

ing heuristic, TABU-PG_2_3_0. Increasing the value of NumBefReCalc from 1 to 5,

and 25 improves the runtime from 11000 seconds to 8382, and 7427 seconds respectively.

As a trade-off, the total profit decreases by 1.5%, and 3% respectively.

Chapter 5. Experimental Results and Discussion 71

Figure 5.28: Scaling TABU-PG_2_3_0 in Experiment 7

Setting TopMltp to 20 instead of Inf reduces the runtime by approximately half while

providing a spread performance only 1.8% worse than that of the original. The counter-

intuitive result we encountered in Experiment 1 does not hold true in this case since

limiting the seed node candidate pool to top nodes results in slight decreases in spread

performances as intuitively expected.

Figure 5.29 shows the effects of different values of scaling parameters on TABU-PG_2_2_0.

In general, the same conclusions for Figure 5.7 are valid for this figure as well.

Experiment 8

Threshold values are assigned randomly by using the following truncated normal dis-

tribution: tn(mean = 0.65, sd = 0.3, lower = 0.1, upper = Inf). Cost values are

assigned by utilizing the methods which are explained in Section 5.1. Profit values are

assigned as explained in Section 5.2.4.

Influence weights are assigned by the hybrid model explained in Section 4.4.1. x being

the average degree of nodes, for each node, a value from {x, 2x, 3x} is selected with

respective probabilities of {0.25, 0.5, 0.25}. Then, geometric mean of the selected value

and the value which would be resulted from ratio model is set as the influence weight of

the node.

Chapter 5. Experimental Results and Discussion 72

Figure 5.29: Scaling TABU-PG_2_2_0 in Experiment 7

Figure 5.30 shows comparison of different parameter settings of TABU-PG along with

benchmark heuristics, in terms of achieved influence spread (i.e., total profit obtained).

Note that, there are 12 TABU-PG heuristics shown instead of 39 which is the case in

other experiments except for experiments on Pokec. This is because parameter settings

are not multiplied for different values of MinPGR for experiments on Pokec. In ad-

dition, results are presented for heuristics which sets TopMltp to 10 due to the fact

that original heuristics takes very long time without scaling parameters. For instance,

TABU-PG_2_2_0 takes more than 11 hours.

The results are quite unusual when compared to other experiments. Some of the bench-

marks perform better than some of TABU-PG heuristics. However, the best TABU-PG

heuristic performs 313% better than the best benchmark heuristic, that is pagerank

heuristic in this case. Since a network with tipping points is employed in this experi-

ment, heuristics which cannot reach to a tipping point before others can suffer greatly

in terms of performance when compared to other heuristics which are able to reach a

tipping point earlier.

Figure 5.31 and 5.32 present detailed diffusion results for the selected heuristics: close-

ness, pagerank, the worst parameter setting TABU-PG_1_1_0_1_10, the median pa-

rameter setting TABU-PG_1_2_0_1_10 (this is not technically median but one of the

two median parameter settings since the number of TABU-PG heuristics is even in this

Chapter 5. Experimental Results and Discussion 73

Figure 5.30: Comparison of All Heuristics in Experiment 8

case), and the best parameter setting TABU-PG_2_3_0_1_10. The latter figure is the

same figure except that y-axis is limited by maximum value of 20, 000.

Figure 5.31 shows that very large differences in terms of performance are caused by

sudden jumps after reaching tipping points. Note that, pagerank heuristic would not

be able to reach its tipping point if the budget was only around 5% lower. Among

the best performing two heuristics in the figure, TABU-PG_2_3_0_1_10 and TABU-

-PG_1_2_0_1_10 , one reaches tipping point clearly before the other although their

final spread results are very similar.

Figure 5.32 shows that although TABU-PG_1_1_0_1_10 performs very similar to

other TABU-PG heuristics at the beginning, it is impressively outperformed by them

since it is not able to reach a tipping point inside the given budget.

Chapter 5. Experimental Results and Discussion 74

Figure 5.31: Detailed Diffusion of Selected Heuristics in Experiment 8

Figure 5.33 shows the effects of different values of scaling parameters on the best per-

forming heuristic, TABU-PG_2_2_0. Increasing the value of NumBefReCalc from 1

to 5, and 25 improves the runtime from 40, 212 seconds to 37, 582, and 22, 412 seconds

respectively. As a trade-off, the total profit decreases by 1.6%, and 4.5% respectively.

Setting TopMltp to 20 instead of Inf reduces the runtime to approximately 11% of

what it originally takes while providing a spread performance only 3.4% worse than that

of the original, given that NumBefReCalc is set to 1. The counter-intuitive result

we encountered in Experiment 1 does not hold true in this case since limiting the seed

node candidate pool to top nodes results in slight decreases in spread performances as

intuitively expected. Overuse of scaling parameters results in very low performance in

terms of total profit, as worse as less than 1% of the original in the case of ..._Inf_Inf .

A similar result is also valid for ..._25_10. This is because extensively utilizing both

methods of limiting the candidate pool and selecting greater number of nodes at once

results in a heuristic which misses the tipping points. Therefore, such heuristics are not

able to perform reasonably close to the default version.

Chapter 5. Experimental Results and Discussion 75

Figure 5.32: Zoom on Detailed Diffusion of Selected Heuristics in Experiment 8

Figure 5.33: Scaling TABU-PG_2_2_0 in Experiment 8

Chapter 5. Experimental Results and Discussion 76

5.3 Discussion

Performances of all heuristics is summarized in Table 5.3. Average performances (µ) and

standard deviation of performances (σ) are calculated without considering experiments

on Pokec since not all heuristics are run on Pokec. The heuristics are sorted based

on their average performances relative to the worst performing TABU-PG heuristic in

the given experiment. Experiments are named with letter E suffixed by the experiment

number.

Table 5.4 and 5.6 show performances of TABU-PG heuristics and benchmarks heuris-

tics respectively. For each experiment, standard scores6 (i.e., z-scores) of heuristics are

calculated and presented. For each heuristic, its average performance (µ) and stan-

dard deviation of its performances (σ) over given experiments are also calculated and

presented, in terms of their standard scores. Table 5.4 does not include experiments

on Pokec since only selected experiments are run on Pokec. In both tables, heuristics

are sorted based on their average performance. In these tables and in all other tables,

negative values are shown inside parenthesis.

As shown in Table 5.4, Node Selection Method 3 is utilized by 4 of the 5 top performing

heuristics, followed by Method 2. When TABU-PG_3_1_0 and TABU-PG_3_2_0 are

excluded, a heuristic which employs Method 1 never performs better than any heuristic

which employs Method 2 or Method 3. On average, Method 1,2, and 3 obtain perfor-

mances of −1, 0.41, and 0.59.

Potential Gain Calculation Method 4 is employed by top performing heuristics followed

by Method 3. On average, Method 1,2,3 and 4 achieve performances of −1.0, −0.32,

0.21, and 0.36.

On average, MinPGR values 0, 0.05, 0.1, and 0.2 achieves performances of 0.09, 0.07,

0.09, and 0.08. Therefore, setting Minimum Potential Gain Ratio to values other than 0

does not result in significant difference in performance. However, it results in a reduction

in performance for heuristics which employ a combination of Node Selection Method 2

and 3, and Potential Gain Calculation Method 3 and 4. For many other heuristics,

it provides better performance. This is most likely because Potential Gain Calculation

Method 3 and 4 weigh lesser on potential gain as remaining budget gets smaller, therefore

already accounting for potential gains which are not likely to be ever realized.
6Standard score is the deviation from the mean score of the group in units of standard deviation.

Chapter 5. Experimental Results and Discussion 77

Table 5.3: Overall Comparison of All Heuristics

Values as percentage (%) E1 E2 E3 E4 E5 E6 E7 E8* σ µ

TABU-PG_3_4_0.1 116 110 123 180 107 111 - - 25 124
TABU-PG_3_4_0 117 111 123 177 107 111 182 4073 24 124
TABU-PG_2_4_0 117 111 123 177 106 111 182 4079 24 124
TABU-PG_3_4_0.05 117 111 123 175 107 110 - - 23 124
TABU-PG_3_4_0.2 116 110 123 175 106 111 - - 24 123
TABU-PG_3_3_0 116 110 123 177 106 109 185 293 24 123
TABU-PG_3_3_0.05 115 110 123 176 106 109 - - 24 123
TABU-PG_2_4_0.05 117 110 123 171 106 111 - - 22 123
TABU-PG_2_3_0 115 110 123 176 106 109 185 4080 24 123
TABU-PG_3_3_0.2 115 110 123 174 106 107 - - 24 123
TABU-PG_3_3_0.1 115 111 123 173 105 109 - - 23 123
TABU-PG_2_3_0.1 115 110 123 175 105 108 - - 24 123
TABU-PG_2_4_0.1 116 110 123 171 106 110 - - 22 123
TABU-PG_2_4_0.2 116 110 123 170 106 110 - - 22 123
TABU-PG_2_3_0.05 114 110 123 175 105 108 - - 24 123
TABU-PG_3_2_0.2 116 106 119 179 106 109 - - 26 123
TABU-PG_3_2_0 114 106 118 180 105 109 159 4063 26 122
TABU-PG_2_3_0.2 114 110 123 170 105 109 - - 22 122
TABU-PG_3_2_0.1 117 106 119 175 106 109 - - 24 122
TABU-PG_3_2_0.05 114 106 118 176 106 109 - - 25 122
TABU-PG_2_2_0.2 114 107 119 174 104 109 - - 24 121
TABU-PG_2_2_0.1 115 106 119 173 105 108 - - 24 121
TABU-PG_2_2_0 112 106 118 174 105 108 159 4068 24 121
TABU-PG_2_2_0.05 115 106 118 169 105 109 - - 22 120
TABU-PG_1_4_0.1 105 104 111 168 105 104 - - 23 116
TABU-PG_1_4_0 105 104 110 167 103 104 119 4057 23 116
TABU-PG_1_3_0.1 104 105 111 164 104 104 - - 22 115
TABU-PG_1_3_0.2 104 105 112 165 105 102 - - 22 115
TABU-PG_1_3_0.05 106 106 111 163 104 103 - - 21 115
TABU-PG_1_3_0 105 105 111 163 104 103 122 4058 21 115
TABU-PG_1_4_0.05 106 105 110 161 104 104 - - 21 115
TABU-PG_1_1_0 105 106 112 160 104 101 126 100 20 115
TABU-PG_1_4_0.2 102 104 111 161 105 102 - - 21 114
TABU-PG_3_1_0 111 100 123 135 104 101 185 122 13 113
TABU-PG_1_2_0.2 103 101 105 161 101 101 - - 22 112
TABU-PG_1_2_0.05 101 100 102 163 100 102 - - 23 112
TABU-PG_1_2_0 100 100 100 163 100 102 100 4061 23 111
TABU-PG_1_2_0.1 100 100 103 159 101 102 - - 22 111
TABU-PG_2_1_0 111 102 123 100 103 100 185 122 8 107
Degree 74 84 48 97 80 58 42 983 16 74
PageRank 72 84 90 27 81 54 51 988 22 68
Closeness 72 84 22 88 76 49 22 30 23 65
Eigenvector 58 83 17 78 76 51 6 11 23 60
Authority 64 83 14 70 76 51 8 13 23 60
Betweenness 60 83 36 47 79 50 26 962 17 59
Hub 32 82 18 59 65 32 6 11 22 48
Random 8 1 3 1 4 5 3 6 3 4

*For Experiment 8, results are reported for heuristics with TopMltp as 10 instead of Inf .

Chapter 5. Experimental Results and Discussion 78

Table 5.4: Overall Comparison of TABU-PG Heuristics

E1 E2 E3 E4 E5 E6 σ µ

TABU-PG_3_4_0 0.95 1.10 0.81 0.65 1.25 1.34 0.24 1.02
TABU-PG_3_4_0.1 0.90 1.08 0.86 0.87 1.15 1.16 0.13 1.00
TABU-PG_2_4_0 1.01 1.11 0.80 0.65 0.92 1.14 0.17 0.94
TABU-PG_3_4_0.05 0.99 1.10 0.80 0.50 1.24 0.90 0.23 0.92
TABU-PG_3_4_0.2 0.77 0.90 0.86 0.51 0.93 1.17 0.20 0.86
TABU-PG_2_4_0.05 1.04 1.02 0.81 0.23 0.71 1.27 0.33 0.85
TABU-PG_2_4_0.2 0.82 0.98 0.86 0.15 0.79 1.04 0.29 0.77
TABU-PG_3_3_0 0.84 1.09 0.83 0.64 0.66 0.58 0.17 0.77
TABU-PG_2_4_0.1 0.83 1.05 0.86 0.21 0.56 0.97 0.29 0.75
TABU-PG_3_3_0.05 0.74 1.04 0.84 0.57 0.60 0.58 0.17 0.73
TABU-PG_2_3_0 0.66 0.95 0.83 0.59 0.59 0.56 0.14 0.70
TABU-PG_3_3_0.1 0.62 1.14 0.84 0.39 0.41 0.74 0.26 0.69
TABU-PG_3_3_0.2 0.76 0.84 0.88 0.48 0.87 0.18 0.26 0.67
TABU-PG_2_3_0.1 0.69 1.02 0.84 0.52 0.06 0.40 0.31 0.59
TABU-PG_2_3_0.05 0.57 0.97 0.84 0.49 0.17 0.44 0.26 0.58
TABU-PG_2_3_0.2 0.59 0.99 0.88 0.19 0.23 0.55 0.30 0.57
TABU-PG_3_2_0.2 0.80 (0.08) 0.31 0.81 0.62 0.67 0.32 0.52
TABU-PG_3_2_0.1 0.98 (0.10) 0.19 0.56 0.68 0.69 0.36 0.50
TABU-PG_3_2_0 0.54 (0.08) 0.11 0.90 0.45 0.76 0.34 0.45
TABU-PG_3_2_0.05 0.55 (0.12) 0.11 0.59 0.57 0.65 0.29 0.39
TABU-PG_2_2_0.2 0.56 (0.02) 0.31 0.46 (0.14) 0.74 0.31 0.31
TABU-PG_2_2_0.1 0.61 (0.14) 0.20 0.35 0.26 0.38 0.22 0.28
TABU-PG_2_2_0.05 0.64 (0.11) 0.12 0.10 0.15 0.55 0.27 0.24
TABU-PG_2_2_0 0.08 (0.10) 0.12 0.46 0.11 0.41 0.20 0.18
TABU-PG_1_4_0.1 (1.18) (0.84) (0.96) 0.01 0.12 (0.63) 0.49 (0.58)
TABU-PG_1_3_0.1 (1.23) (0.51) (0.86) (0.26) (0.14) (0.84) 0.38 (0.64)
TABU-PG_1_3_0.2 (1.34) (0.56) (0.77) (0.19) 0.05 (1.25) 0.51 (0.68)
TABU-PG_1_3_0.05 (0.94) (0.32) (0.86) (0.37) (0.65) (0.97) 0.26 (0.69)
TABU-PG_1_3_0 (1.03) (0.54) (0.86) (0.37) (0.55) (0.97) 0.24 (0.72)
TABU-PG_1_4_0.05 (0.99) (0.60) (1.09) (0.49) (0.47) (0.70) 0.24 (0.73)
TABU-PG_1_4_0 (1.09) (0.74) (1.09) (0.03) (0.71) (0.70) 0.35 (0.73)
TABU-PG_1_1_0 (1.01) (0.21) (0.75) (0.60) (0.40) (1.50) 0.42 (0.74)
TABU-PG_1_4_0.2 (1.59) (0.72) (0.86) (0.51) 0.18 (1.25) 0.56 (0.79)
TABU-PG_3_1_0 0.01 (1.79) 0.87 (2.36) (0.46) (1.66) 1.13 (0.90)
TABU-PG_2_1_0 (0.03) (1.42) 0.87 (4.94) (0.81) (1.90) 1.83 (1.37)
TABU-PG_1_2_0.2 (1.45) (1.73) (1.73) (0.46) (2.00) (1.57) 0.49 (1.49)
TABU-PG_1_2_0.05 (1.79) (1.81) (2.22) (0.32) (2.77) (1.23) 0.77 (1.69)
TABU-PG_1_2_0.1 (1.89) (1.90) (2.08) (0.64) (2.40) (1.47) 0.56 (1.73)
TABU-PG_1_2_0 (1.98) (1.93) (2.49) (0.34) (2.79) (1.23) 0.81 (1.79)

Chapter 5. Experimental Results and Discussion 79

On the other hand, for individual heuristics in individual experiments, tuning MinPGR

can also result in better performance. For instance, TABU-PG_3_4_0.1 obtains stan-

dard score of 0.87 while TABU-PG_3_4_0 obtains 0.65 in Experiment 4. Note that

TABU-PG_3_4_0.1 is the second best performing heuristic for this experiment.

Table 5.5 shows the rankings of places of 39 TABU-PG heuristic for each experiment,

along with mean and standard deviation values. Except for TABU-PG_3_1_0 and

TABU-PG_3_2_0 which performed unusually well in Experiment 3, standard deviations

are all lower than 8.5 with a mean of 4.5 and median of 4.2. It suggests that performance

of a heuristic over different experiments in different datasets are similar in general.

When benchmarks are compared among themselves, degree and pagerank heuristics are

the best two performing heuristics on average. The best performing heuristic in each

experiment is either degree heuristic or pagerank heuristic except for Experiment 2 where

the result of degree heuristics is only very slightly less than the best benchmark heuristic.

Table 5.7 illustrates impacts of scaling parameters over different heuristics in different

experiments in terms of spread performance. The first column specifies the experiment

and heuristic. For instance, 4xM is the median TABU-PG heuristic in Experiment 4

and 5xB is the best TABU-PG heuristic in Experiment 5. Scaling parameter results for

all heuristics which are summarized in this table are previously given in their respective

sections. Since, only one heuristic is investigated for Experiment 8 and that heuristic

is neither the best nor the median performing heuristic, it is specified as such in this

table. Inf is further shortened as I. For example, I_I represents Inf_Inf for scaling

parameters. Heuristics with the default values for scaling parameters are set as 100%

while others are assigned values based on their relative performances.

It can be depicted from Table 5.7 that the counter-intuitive result of improved result

when candidate pool is limited usually holds true when NumBefReCalc is larger and

does not hold true when NumBefReCalc is smaller. However, exceptions to this make

it more appropriate to present this as an initial observation rather than a strong fact.

An explanatory idea for why this is the case could be as follows. When large number of

nodes are selected at once, there is almost always a decrease in spread performance. As

the value of NumBefReCalc grows, the decrease in spread performance becomes larger.

When candidate pool is limited by setting TopMltp to values which are small enough but

not too small, the decrease in performance due to the larger value of NumBefReCalc

is limited.

Table 5.8 illustrates impacts of scaling parameters over different heuristics in different

experiments in terms of runtime. The columns and rows are same as Table 5.7, but

displaying runtimes instead of total profit. The results show that the runtimes can be

Chapter 5. Experimental Results and Discussion 80

Table 5.5: Rankings of TABU-PG Heuristics

E1 E2 E3 E4 E5 E6 σ µ

TABU-PG_3_4_0.1 6 6 7 2 3 4 1.8 4.7
TABU-PG_3_4_0 5 4 15 4 1 1 4.7 5.0
TABU-PG_2_4_0 2 2 18 5 5 5 5.5 6.2
TABU-PG_3_4_0.05 3 3 17 13 2 8 5.6 7.7
TABU-PG_3_4_0.2 11 15 5 12 4 3 4.5 8.3
TABU-PG_2_4_0.05 1 9 16 20 8 2 6.9 9.3
TABU-PG_3_3_0 7 5 14 6 10 15 3.9 9.5
TABU-PG_2_4_0.2 9 12 6 23 7 6 6.0 10.5
TABU-PG_2_4_0.1 8 7 8 21 15 7 5.3 11.0
TABU-PG_3_3_0.05 13 8 10 9 12 16 2.7 11.3
TABU-PG_3_3_0.2 12 16 1 15 6 24 7.4 12.3
TABU-PG_3_3_0.1 17 1 12 18 17 10 5.9 12.5
TABU-PG_3_2_0.2 10 19 20 3 11 13 5.7 12.7
TABU-PG_3_2_0.1 4 21 22 10 9 12 6.5 13.0
TABU-PG_2_3_0 15 14 13 7 13 17 3.1 13.2
TABU-PG_2_3_0.1 14 10 9 11 25 22 6.1 15.2
TABU-PG_2_3_0.2 19 11 2 22 19 18 6.8 15.2
TABU-PG_3_2_0 23 18 26 1 16 9 8.4 15.5
TABU-PG_2_3_0.05 20 13 11 14 21 20 3.9 16.5
TABU-PG_3_2_0.05 22 23 25 8 14 14 6.1 17.7
TABU-PG_2_2_0.2 21 17 19 17 27 11 4.8 18.7
TABU-PG_2_2_0.1 18 24 21 19 18 23 2.4 20.5
TABU-PG_2_2_0.05 16 22 23 24 22 19 2.7 21.0
TABU-PG_2_2_0 24 20 24 16 24 21 2.9 21.5
TABU-PG_3_1_0 25 36 3 38 30 38 12.3 28.3
TABU-PG_1_4_0.1 32 33 33 25 23 25 4.2 28.5
TABU-PG_1_3_0.1 33 27 30 28 28 28 2.0 29.0
TABU-PG_1_3_0.05 27 26 29 31 33 30 2.4 29.3
TABU-PG_2_1_0 26 34 4 39 35 39 12.2 29.5
TABU-PG_1_3_0.2 34 29 28 27 26 34 3.2 29.7
TABU-PG_1_1_0 29 25 27 36 29 36 4.2 30.3
TABU-PG_1_3_0 30 28 31 32 32 29 1.5 30.3
TABU-PG_1_4_0.05 28 30 34 34 31 26 2.9 30.5
TABU-PG_1_4_0 31 32 35 26 34 27 3.3 30.8
TABU-PG_1_4_0.2 36 31 32 35 20 33 5.3 31.2
TABU-PG_1_2_0.05 37 37 38 29 38 31 3.6 35.0
TABU-PG_1_2_0.2 35 35 36 33 36 37 1.2 35.3
TABU-PG_1_2_0 39 39 39 30 39 32 3.8 36.3
TABU-PG_1_2_0.1 38 38 37 37 37 35 1.0 37.0

Chapter 5. Experimental Results and Discussion 81

Table 5.6: Overall Comparison of Benchmark Heuristics

E1 E2 E3 E4 E5 E6 E7 E8 σ µ

Deg. 0.88 0.40 0.67 1.28 0.54 0.89 1.29 1.30 0.33 0.91
Pgr. 0.78 0.40 2.28 (1.04) 0.57 0.64 1.79 1.31 0.94 0.84
Btw. 0.25 0.38 0.21 (0.37) 0.49 0.37 0.30 1.26 0.42 0.36
Cls. 0.76 0.40 (0.36) 0.98 0.36 0.33 0.08 (0.74) 0.53 0.23
Aut. 0.43 0.37 (0.67) 0.38 0.35 0.44 (0.75) (0.78) 0.55 (0.03)
Eig. 0.12 0.37 (0.54) 0.65 0.37 0.42 (0.85) (0.78) 0.56 (0.03)
Hub (1.08) 0.34 (0.49) 0.01 (0.08) (0.71) (0.84) (0.78) 0.46 (0.45)
Rnd. (2.15) (2.65) (1.10) (1.90) (2.60) (2.38) (1.02) (0.79) 0.70 (1.82)

Table 5.7: Overall Impact of Scaling Parameters on Performance

ExH 1_I 1_20 1_10 5_I 5_20 5_10 25_I 25_20 25_10 I_I
1xM 100% 102% 103% 94% 100% 101% 87% 92% 100% 94%
1xB 100% 100% 100% 93% 98% 99% 83% 95% 94% 92%
2xM 100% 98% 97% 98% 97% 97% 95% 96% 96% 92%
2xB 100% 99% 97% 98% 98% 97% 93% 97% 96% 87%
3xM 100% 100% 100% 99% 99% 99% 99% 99% 99% 99%
3xB 100% 100% 100% 100% 100% 100% 100% 100% 100% 96%
4xM 100% 97% 93% 91% 91% 91% 70% 85% 85% 17%
4xB 100% 94% 86% 84% 89% 85% 70% 77% 78% 16%
5xM 100% 99% 98% 99% 98% 98% 94% 95% 95% 89%
5xB 100% 100% 100% 96% 97% 98% 90% 92% 94% 90%
6xM 100% 100% 99% 92% 94% 95% 90% 90% 92% 80%
6xB 100% 99% 98% 94% 96% 94% 89% 87% 88% 78%
7xM 100% 96% 95% 95% 95% 95% 92% 94% 94% 84%
7xB 100% 98% 98% 98% 98% 98% 97% 97% 97% 72%
8x- 100% 97% 96% 98% 96% 95% 96% 95% 6% 1%
σ 0% 2% 4% 4% 3% 4% 9% 6% 6% 26%
µ 100% 99% 98% 95% 96% 96% 89% 93% 93% 78%

reduced to up to 5% of what it originally takes. Limiting the candidate pool to top nodes

reduces the runtime to one fifth on average. Selecting 5 or 25 nodes instead of 1 at a

time reduces the runtime by 34% and 59% on average. Combining these two methods

can further reduce the runtime.

In summary, the new methods and techniques we introduced perform better than the

existing methods and techniques on average, or at least in certain settings as is the

case with MinPGR. The use of scaling parameters which are also introduced by us

significantly reduces the runtime while providing similar results.

Node Selection Method 1 is the most naive method which does not account for budget or

efficiency but only for gain. Hence, it is outperformed by Method 2 which maximizes the

efficiency before gain. Method 3 which is introduced by us performs better than both

methods on average. The intuition behind Method 3 is that efficiency is indeed more

Chapter 5. Experimental Results and Discussion 82

Table 5.8: Overall Impact of Scaling Parameters on Runtime

ExH 1_I 1_20 1_10 5_I 5_20 5_10 25_I 25_20 25_10 I_I
1xM 100% 22% 15% 65% 14% 10% 28% 28% 7% 5%
1xB 100% 19% 13% 62% 12% 9% 26% 8% 7% 5%
2xÃ 100% 21% 17% 67% 17% 16% 36% 16% 15% 12%
2xB 100% 19% 17% 54% 20% 17% 56% 16% 15% 19%
3xM 100% 11% 11% 64% 15% 9% 34% 9% 9% 6%
3xB 100% 17% 14% 82% 19% 12% 43% 12% 11% 8%
4xM 100% 8% 7% 70% 8% 7% 39% 7% 6% 4%
4xB 100% 8% 7% 70% 8% 7% 39% 7% 7% 5%
5xM 100% 23% 15% 54% 15% 15% 23% 8% 8% 8%
5xB 100% 31% 20% 63% 22% 17% 41% 16% 13% 8%
6xm 100% 27% 18% 64% 27% 18% 36% 18% 18% 9%
6xB 100% 27% 18% 55% 27% 18% 36% 18% 18% 9%
7xM 100% 42% 38% 77% 36% 34% 73% 35% 35% 22%
7xB 100% 38% 43% 76% 40% 38% 68% 39% 38% 27%
8x- 100% 12% 10% 93% 11% 10% 56% 16% 11% 7%
σ 0% 10% 10% 8% 9% 9% 14% 10% 10% 7%
µ 100% 22% 18% 66% 20% 16% 41% 15% 15% 11%

important than immediate gain, however it could be the case that selecting the node

with highest gain among the top efficient nodes could be more effective. Experiments

showed that this intuition is a logical one.

Potential Gain Calculation Method 3 and 4 which are introduced by us outperform

Method 1 and 2. Method 1 is the most naive method which do not account for potential

gains altogether, thus it is outperformed by Method 2. Method 2 emphasizes on potential

gains. However, investing in future potential gains when there is only a limited budget

left is not wise. Our methods reflect that and dynamically change the weight between

actual gain and potential gain, hence are able to perform better than other methods.

Minimum Potential Gain Ratio parameter proposed in this work does not result in any

significant difference on average. The average results suggest that the role MinPGR is

supposed to play is already taken care of by the methods we introduced in Node Selection

and Potential Gain Calculation. However, tuning MinPGR is able to produce better

performances in individual cases.

The scaling parameters we created, NumBefReCalc and TopMltp, enables TABU-PG

to run on very large networks in reasonable amounts of time. Especially, limiting the

candidate pool for seed nodes by assigning an appropriate value to TopMltp significantly

reduces the runtime while nearly matching the same influence spread. The runtime can

further be reduced by employing NumBefReCalc by sacrificing a little more influence

spread. However, NumBefReCalc should not be set to values which are too large since

Chapter 5. Experimental Results and Discussion 83

it might cause a dramatic decrease in performance especially in the cases where there

exist tipping points.

In addition, the hybrid influence weight generation method proposed in Section 4.4.1

creates tipping points in the network whereas the ratio model which is the most widely

used method in the literature rather results in a decreasingly growing or a linear influence

spread. This comparison further supports our claim that the hybrid model which is

introduced by us is a better representation of the real world because tipping points also

exist in most real life networks.

Chapter 6

Conclusion

In this thesis, we defined the new Targeted and Budgeted Influence Maximization under

Deterministic Linear Threshold problem. As a solution to the defined problem, we devel-

oped Targeted and Budgeted Potential Greedy (TABU-PG) algorithm. The algorithm

supplies different methods for different operations. Thus, each combination of method

selection results in a distinct TABU-PG heuristic.

The idea behind TABU-PG algorithm is to invest on potential future gains instead of ac-

counting for only immediate gains (i.e., actual gains). In order to obtain a better return

on such investments, we equip TABU-PG with methods which dynamically control such

investments by employing a set of potential gain calculation procedures. One method

discounts the potential gains if the partially influenced node is only very slightly influ-

enced, hence not likely to be activated in future iterations. Another method dynamically

controls the weights of potential gains in comparison to actual gains. As the remaining

budget gets closer to zero, the emphasize given on potential gains is reduced in favour

of actual gains. This is because, the chances of reaping those potential gains decreases

as the budget is spent over time.

Another idea behind TABU-PG is to consider the budget in the node selection step.

Our problem presents a knapsack problem with nodes having cost values which are

heterogeneous (but fixed over time) and returns which might change at each iteration.

Therefore, there is a need to select nodes in a way that the total return is maximized

without violating the budget constraint. For this purpose, we equip TABU-PG with

different node selection (i.e., node comparison) methods which consider gain, efficiency

(i.e., density), or a combination of both.

Extending the problem and solution to enable different nodes to carry different return

values makes it possible to apply our solution to different problems depending on how

84

Chapter 6. Conclusion 85

the return values are generated. Assigning values based on estimated profits makes it a

profit maximization problem whereas assigning values based on distances to the target

location (in real world) makes it a location-based marketing problem. The term Targeted

in TABU-PG is intended to cover all such problems which are mostly the same in essence.

Computational experiments demonstrated that even the worst TABU-PG heuristic per-

forms better than the best benchmark heuristic excluding some rare cases where an

average TABU-PG heuristic still performs better than all benchmarks. The results show

that the difference in performances of TABU-PG heuristics and benchmark heuristics

can vary from significant to very huge.

Some of the methods which are supplied as alternatives in TABU-PG are taken from the

literature while the others are novel methods introduced by us. Experiments showed that

the novel methods proposed by us usually provide better performance than the existing

methods.

TABU-PG is readily designed to minimize the number of calculations by detecting re-

dundant calculations and skipping them. Further to that, we proposed additional novel

methods which significantly improve runtime by providing a trade-off between runtime

and spread performance. The reduction in spread performance is shown to be often

very slight. Utilizing these scalability methods, TABU-PG is able to run on very large

networks in a reasonable amount of time.

Briefly, in this work, we defined a new influence maximization problem and offered a

novel solution algorithm named TABU-PG that is equipped with novel methods along

with methods taken from the literature. Additional methods are utilized for making

the algorithm scalable to very large networks. Extensive computational experiments

are carried out with 8 different datasets on 4 different real life networks. Experimental

results showed that the novel methods we introduced are principally superior to the

existing methods in the literature.

Bibliography

[1] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through

a social network. In Proceedings of the Ninth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 137–146, Washington, DC,

USA, 2003. ACM.

[2] M. Deutsch and H. B. Gerard. A study of normative and informational social influ-

ences upon individual judgment. The Journal of Abnormal and Social Psychology,

51(3):629, 1955.

[3] M. Gladwell. The tipping point: how little things can make a big difference. Little

Brown, New York, NY, USA, 2006.

[4] D. Kahneman. Thinking, fast and slow. Macmillan, New York, NY, USA, 2011.

[5] J. Scott and P. J. Carrington. The SAGE handbook of social network analysis. SAGE

publications, Thousand Oaks, CA, USA, 2011.

[6] J. L. Moreno, H. Hall Jennings, et al. Who shall survive? Beacon House, Beacon,

NY, USA, 1934.

[7] L. Euler. Leonhard euler and the königsberg bridges. Scientific American, 189(1):

66–70, 1953.

[8] E. M. Rogers. Diffusion of innovations. Free Press of Glencoe, New York, NY, USA,

1962.

[9] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Measuring user influence

in twitter: the million follower fallacy. In 4th International AAAI Conference on

Weblogs and Social Media, Washington, DC, USA, 2010.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

bringing order to the web. Technical report, Stanford InfoLab, 1999.

[11] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the

ACM (JACM), 46(5):604–632, 1999.

86

Bibliography 87

[12] P. Bonacich. Power and centrality: a family of measures. American Journal of

Sociology, 92(5):1170–1182, 1987.

[13] D. Easley and J. Kleinberg. Networks, crowds, and markets: reasoning about a

highly connected world. Cambridge University Press, Cambridge, UK, 2010.

[14] P. Domingos and M. Richardson. Mining the network value of customers. In Pro-

ceedings of the Seventh ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 57–66. ACM, 2001.

[15] M. Granovetter. Threshold models of collective behavior. American Journal of

Sociology, 83(6):1420–1443, 1978.

[16] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social net-

works under the linear threshold model. In Data Mining (ICDM), 2010 IEEE 10th

International Conference on, pages 88–97, Sydney, Australia, 2010. IEEE.

[17] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.

Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

420–429, San Jose, CA, USA, 2007. ACM.

[18] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Celf++: optimizing the greedy al-

gorithm for influence maximization in social networks. In Proceedings of the 20th

International Conference Companion on World Wide Web, pages 47–48, Hyderabad,

India, 2011. ACM.

[19] C. Zhou, P. Zhang, J. Guo, X. Zhu, and L. Guo. Ublf: An upper bound based

approach to discover influential nodes in social networks. In Data Mining (ICDM),

2013 IEEE 13th International Conference on, pages 907–916, Dallas, TX, USA,

2013. IEEE.

[20] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 199–208, Paris, France, 2009. ACM.

[21] W. Chen, C. Wang, and Y.Wang. Scalable influence maximization for prevalent viral

marketing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1029–

1038, Washington, DC, USA, 2010. ACM.

[22] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Simpath: An efficient algorithm for

influence maximization under the linear threshold model. In Data Mining (ICDM),

Bibliography 88

2011 IEEE 11th International Conference on, pages 211–220, Vancouver, Canada,

2011. IEEE.

[23] H. Nguyen and R. Zheng. On budgeted influence maximization in social networks.

IEEE Journal on Selected Areas in Communications, 31(6):1084–1094, 2013.

[24] N. Du, Y. Liang, M. F. Balcan, and L. Song. Budgeted influence maximization for

multiple products. arXiv preprint arXiv:1312.2164, 2013.

[25] Y. Singer. How to win friends and influence people, truthfully: influence maximiza-

tion mechanisms for social networks. In Proceedings of the Fifth ACM International

Conference on Web Search and Data Mining, pages 733–742, Seattle, WA, USA,

2012. ACM.

[26] F. Li, C. Li, and M. Shan. Labeled influence maximization in social networks for

target marketing. In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE

Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third

International Conference on, pages 560–563, Boston, MA, USA, 2011. IEEE.

[27] W. Lu and L. V. S. Lakshmanan. Profit maximization over social networks. In

Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 479–

488, Brussels, Belgium, 2012. IEEE.

[28] Y. Li, D. Zhang, and K. Tan. Real-time targeted influence maximization for online

advertisements. Proceedings of the VLDB Endowment, 8(10):1070–1081, 2015.

[29] J. Lee and C. Chung. A query approach for influence maximization on specific users

in social networks. IEEE Transactions on knowledge and Data engineering, 27(2):

340–353, 2015.

[30] C. Song, W. Hsu, and M. L. Lee. Targeted influence maximization in social net-

works. In Proceedings of the 25th ACM International Conference on Information

and Knowledge Management, pages 1683–1692, Indianapolis, IN, USA, 2016. ACM.

[31] Z. Lu, W. Zhang, W. Wu, J. Kim, and B. Fu. The complexity of influence maximiza-

tion problem in the deterministic linear threshold model. Journal of Combinatorial

Optimization, 24(3):374–378, 2012.

[32] Z. Lu, W. Zhang, W. Wu, B. Fu, and D. Du. Approximation and inapproximation

for the influence maximization problem in social networks under deterministic linear

threshold model. In Distributed Computing Systems Workshops (ICDCSW), 2011

31st International Conference on, pages 160–165, Minneapolis, MN, USA, 2011.

IEEE.

Bibliography 89

[33] D. Acemoglu, A. Ozdaglar, and E. Yildiz. Diffusion of innovations in social networks.

In Decision and Control and European Control Conference (CDC-ECC), 2011 50th

IEEE Conference on, pages 2329–2334, Orlando, FL, USA, 2011. IEEE.

[34] F. Zou, Z. Zhang, and W. Wu. Latency-bounded minimum influential node selection

in social networks. In International Conference on Wireless Algorithms, Systems,

and Applications, pages 519–526, Boston, MA, USA, 2009.

[35] X. Zhu, J. Yu, W. Lee, D. Kim, S. Shan, and D. Du. New dominating sets in social

networks. Journal of Global Optimization, 48(4):633–642, 2010.

[36] F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan. On positive

influence dominating sets in social networks. Theoretical Computer Science, 412(3):

265–269, 2011.

[37] W. Zhang, W. Wu, F. Wang, and K. Xu. Positive influence dominating sets in

power-law graphs. Social Network Analysis and Mining, 2(1):31–37, 2012.

[38] G. Askalidis, R. A. Berry, and V. G. Subramanian. Explaining snapshots of net-

work diffusions: Structural and hardness results. In International Computing and

Combinatorics Conference, pages 616–625, Atlanta, GA, USA, 2014. Springer.

[39] R. Xu. An lp norm relaxation approach to positive influence maximization in social

network under the deterministic linear threshold model. In International Workshop

on Algorithms and Models for the Web-Graph, pages 144–155, Montreal, Canada,

2013. Springer.

[40] A. Swaminathan. An algorithm for influence maximization and target set selection

for the deterministic linear threshold model. Master’s thesis, Virginia Polytechnic

Institute and State University, 2014.

[41] J. Leskovec and A. Kreyl. SNAP Datasets: Stanford large network dataset collec-

tion. http://snap.stanford.edu/Data, June 2014.

[42] M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic

web. The Semantic Web-ISWC 2003, pages 351–368, 2003.

[43] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici. Link pre-

diction in social networks using computationally efficient topological features. In

Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational

Conference on Social Computing (SocialCom), 2011 IEEE Third International Con-

ference on, pages 73–80, Boston, MA, USA, 2011. IEEE.

http://snap.stanford.edu/Data

Bibliography 90

[44] M. Fire, L. Tenenboim-Chekina, R. Puzis, O. Lesser, L. Rokach, and Y. Elovici.

Computationally efficient link prediction in a variety of social networks. ACM Trans-

actions on Intelligent Systems and Technology (TIST), 5(1):10, 2013.

[45] L. Takac and M. Zabovsky. Data analysis in public social networks. In International

Scientific Conference and International Workshop Present Day Trends of Innova-

tions, volume 1, 2012.

[46] C. P. Robert. Simulation of truncated normal variables. Statistics and Computing,

5(2):121–125, 1995.

