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Joint Estimation of Direction of Arrival with Unknown Mutual
Coupling in Massive MIMO Networks and LTE Radio Resource

Block Allocation Optimization in Maritime Channels

Amit KACHROO

Abstract

The evolution of technology from one generation to other always brings a better user
experiences in terms of high data rates and improved quality of service parameters like
low latency. However, it also comes with its own challenges. The upcoming 5G technology
is one of those technologies that is now moving from theory to practical implementation
with prototypes being developed all around the world. Massive MIMO is the key enabler
for such 5G networks and one of the concerns with massive MIMO is the mutual coupling
effect that causes wrong direction of arrival (DoA) estimations that leads to low capacity
issues. In this thesis, several optimization techniques related to estimations of DoA and
unknown mutual coupling in antenna arrays are studied and an extended joint iterative
optimization with reduced rank method is proposed in that cause considering massive
MIMO networks. The backbone of the work is based on joint iterative method with
reduced rank matrix optimization, quadratic programming (QP), compressed sensing
and Lo norms that are used to determine the DoAs and unknown mutual coupling with
higher resolution capabilities. The proposed method is dynamic in nature and has very
low complexity order giving it a big advantage over other methods. Furthermore, in
absence of any 5G standards radio resource block allocation methods for LTE over sea
are studied and a max-min optimization is proposed which is then compared with the
previous resource allocation algorithms. The results of the proposed resource allocation
method reflects the superiority of the algorithm in terms of fairness with variable load. In
summary, this thesis shreds light into the application of convex optimization and linear

algebra in wireless communication domain.

Keywords: Massive MIMO, ULA, UCA, MVDR, MUSIC, ESPRIT, DoA, Mutual Cou-
pling, QP, convex optimization, JIO, LTE, 3-Ray Path loss Modelling, Max-min Integer

Linear Programming, SINR, Fairness, Radio Resource Block Allocation



Masif MIMO Aglarinda Bilinmeyen Karsilikli Etkilesimle Ortak Varig
Yonii Tahmini ve Deniz Kanallarida LTE Radyo Kaynak Blogu

Tahsis Optimizasyonu

Amit KACHROO
Oz

Teknoloji bir kusaktan digerine evrilirken, yiiksek veri hizi ve diisiik gecikme gibi hizmet
kalitesini yiikselten parametrelerle daha iyi bir kullanim deneyimi sunmaktadir. Fakat bu
iyilesme, beraberinde baz zorluklar getirmektedir. Yaklagan 5G teknolojisi, gu an tiim
diinyada teoriden pratik uygulamaya ge¢cmekte olan ve prototipleri geligtirilen teknoloji-
lerin baginda yer almaktadir. Coklu (Massive yada Masif) MIMO, 5G kablosuz aglarinin
gergeklendirilmesinde 6nemli bir sathayi olugturmaktadir. Fakat masif MIMO’nun perfor-
mansini 6nemli derecede etkilyen ve diislik kapasite sorunlarina sebep olan etkenler mev-
cuttur. Bunlarin baginda varig agis1 yoniiniin (DoA) hatali olarak kestirimine sebep olan
kargilikli baglagim etkisidir. Bu tezde, DoA ve anten diziliglerindeki bilinmeyen kargilikli
baglagim etkilerinin tahmini i¢in birgok optimizasyon teknigi incelenmig ve masif MIMO
aglar: icin indirgenmis rank metoduyla genisletilmis ortak dongiisel optimizasyon oner-
ilmigtir. Bu ¢aligmanin temel omurgasini olusturan yaklagim indirgenmis rank metoduyla
ortak dongiisel optimizasyonu, kuadratik programlama (QP), sikigtirilmig algilama, ve
DoA ve bilinmeyen kargilikli baglagimin saptanmasinda kullanilan ve de yiiksek ¢6ziiniir-
lilliik kapasitesine sahip L2 normu olusturmaktadir. Onerilen yontemin temelde di-
namik bir yapiya sahip olmasi ve diger yontemlere kiyasla ¢ok diisiik karmasiklik dere-
cesi igermesi en biiyiik avantajlarindandir. Ayrica, 5G standartlarinin netlesmemesinden
dolayisiyla LTE icin mevcut deniz agir1 radyo kaynak blogu tahsis yontemleri incelenmis
ve mevcut kaynak tahsis algoritmalariyla kiyaslanarak max-min optimizasyonu oner-
ilmistir. Onerilen tahsis yonteminin sonuclari, algoritmanin degisebilen yiik ile daha
adil kaynak tahsisi yaptigmi yansitmaktadir. Ozetle, bu tez digbiikey optimizasyon ve

dogrusal cebirin kablosuz iletigim uygulamalarindaki énemini gostermektedir.

Anahtar Sozciikler: Optimizasyon, LTE, 3-Ray Elektromanyetik Yol Kaybi, Max-min
Tamsay1 Linear Programlama, SINR, Radyo Kaynak Blogu Tahsisi
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Chapter 1

Introduction to 5G Networks

1.1 Evolution of Cellular Technologies

The vast advancement in mobile wireless communication since last few decades has been
path breaking. Each generation of wireless technology came up with its own technology
standards that were unique and different than the previous one’s. The first generation
(1G) mobile wireless communication network was meant only for voice calls (analog com-
munication) and was based on frequency division multiple access (FDMA) technology.
On the other hand, second generation (2G) was a digital technology and supported text
messaging with packet rates ranging from 10 Kbps to 64 Kbps. It relied on time domain
multiple access (TDMA). Moving forward, the third generation (3G) mobile technology
revolutionized the data speed and started supporting multimedia platform. This was due
to code division multiple access (CDMA) technology with data rates ranging from 64
Kbps to 2 Mbps. Approximately, after a decade came the fourth generation (4G) tech-
nology which brought the mobile internet broadband concept into picture with maximum
speeds going up to 100 Mbps. This was due to orthogonal frequency division multipli-
cation access (OFDMA) technology. Now, the latest much talked 5G or 5th generation
mobile technology in which not just internet broadband but also networked society is
being considered is supposed to deliver data speeds from 1 Gbps to 10 Gbps. Figure 1.1
shows the evolution of the mobile wireless technology from 1G to 5G. In next section,

massive MIMO, the key enabler behind the 5G technology is discussed in brief.
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FIGURE 1.1: Evolution of cellular technologies from 1G to 5G

1.2 Massive MIMO for 5G

Massive MIMO holds an immense prospects for 5G wireless research and in next-generation
wireless networks as it promises significant gains that offer the ability to accommodate
many users at higher data rates with better reliability while consuming less power. This
much talked 5G technology that gives unprecedented improvements in network through-
put and capacity, enhancements in spectral efficiency, reduced end-to-end latency, and
increased reliability is now being implemented practically. The performance improve-
ment in 5G as is 20 times more than 4G which means 20Gbps as compared to 1Gbps.
In a nutshell, massive MIMO has many (hundreds) of antennas that serve in parallel
tens of terminals. Figure 1.2 shows the typical 5G massive MIMO cell as compared to
that of 4G MIMO cell, where the former is loaded with many more antennas at base
station. Extra antennas brings huge improvements in throughput and radiated energy
efficiency in the network. The other advantages of massive MIMO are the low cost
low-power components, simple MAC layer, and robustness against jamming [1|. Many
deployment configuration with massive MIMO are envisioned as shown in Figure 1.3,

which are cylindrical, rectangular, linear or distributed.

With every new technology comes it’s limitation or challenge set. In massive MIMO,
apart from pilot contamination, hardware impairments, channel characterizations, the
capacity impairments is a very challenging task. The main reason for capacity impair-
ment is the channel correlation that affects the performance in a big way. In general,

if the channel correlation is greater then the channel capacity goes smaller. The main
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reasons for channel correlation are spatial correlation and antenna mutual coupling. In

this work, the focus is especially laid on mutual coupling part.

Current 4G networks

5G networks
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FIGURE 1.2: Multiantenna technology :

Proac

FIGURE 1.3: Massive MIMO antenna configurations [1]

1.3 Motivation Behind the Work

Distributed

4G MIMO to 5G massive MIMO

The main motivation behind this thesis work is not just to understand the estimation of

DoAs but to consider mutual coupling while estimating DoAs in massive MIMO networks
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for 5G. This can be accomplished only by using joint iterative optimization methods. To
our best knowledge, this work is the first to consider joint estimation of DoAs and un-
known mutual coupling in massive MIMO networks for 5G. The results thus obtained
from the proposed method for DoA estimation with unknown mutual coupling show a
big reduction in complexity as compared to other DoA estimation methods, which is
discussed in later chapters. Also, the proposed method can be viewed as an extension
of JIO algorithm [3] with a difference that it estimates the DoAs with unknown mutual
coupling. In addition to that, post optimization techniques for better DoA resolution are
discussed and proposed thereafter. The proposed post optimization methods have supe-
riority over other methods in that they are dynamic with excellent resolution in nature.
Furthermore, in absence of 5G standards, a max-min radio block resource allocation
method is proposed for LTE in marine channels. The results showed better fairness as
compared to other classical methods of radio resource block allocation. In next chapters,
all the assumptions and details regarding joint DoA estimation with unknown mutual
coupling and radio resource block allocation for LTE over sea will be discussed in detail.

Also, proposed methods, comparisons and results thus obtained will be discussed with it.



Chapter 2

DoA Estimation by Classical
Methods in Massive MIMO

2.1 Introduction

Array signal processing has many applications that include sonar, radar and wireless
communication networks [4] and one of the major aim of array processing is to estimate
DoAs in wireless networks. The action starts when an electromagnetic wave impinges
upon an array of antenna’s and the associated signal’s are processed to extract DoAs
with other intelligible information. DoA extraction methods are used to design and
adapt the directivity of array antennas in a better way so as to align the beam towards
signal of interest (Sol) and reject non signal of interest (NSol) or interference. This can
be visualized from the Figure 2.1. By doing so, a high SNR is guaranteed which in turn

reflects in high capacity for the network.

Broadly, the DoA estimation methods are divided into three main domains: classical,
sub space and maximum likelihood methods [5, 6]. Among these algorithms, the maxi-
mum likelihood (ML) method offers high performance with increased computational cost.
On the other hand, subspace methods have better performance and have less cost for
computation. On the contrary, classical methods are simple and offer bad to medium per-
formance with a huge computation load. In this chapter, the classical methods that are
based on simple beamforming method are discussed in detail that serves as an important

background for the proposed method listed thereafter.

5
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FI1GURE 2.1: Antenna array processing for Sol and NSol

The two main classical techniques for DoA estimation are delay-and-sum method and the
minimum variance distortionless response (MVDR) method [4]. The main idea behind
the classical methods is to scan a beam through space and measure the power received
in each direction. However, before formulating these methods, lets describe the system

parameters accordingly.

2.2 Propagation Delay in Uniform Linear Arrays

Consider an uniform linear array geometry with N elements with index numbered as
0,1,2,3...., N — 1. The array elements are considered to have \/2 (half wavelength)
spacing so as to bear minimum effects of mutual coupling. Since the array elements are
closely spaced, it is assumed that the signals received by the different antenna elements
are correlated. The baseband signal s(t) is received on the array and it’s assumed that
the phase of s(t) received at antenna element 0 is zero. By assuming so, the phase of the
other elements is calculated relative to the element 0. This is represented in Figure 2.2.

Now, the time delay of arrival for the signal vector is:

B kdsin 6
- c

Aty, (2.2.1)

where ¢ is the speed of the light.
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FIGURE 2.2: Plane wave received at ULA

Suppose s(t) (narrowband digitally modulated signal) and its lowpass equivalent s — (),

carrier frequency f., and symbol period T'. Then, s(t) is:

s(t) = Re {sl(t)ej%fct} (2.2.2)

The signal at k-th element is then:

24(t) = Re {sl(t - Atk)eﬂ‘%fc(t—“k)} (2.2.3)

If the signal x(t) is then downconverted to baseband, the received signal in that case

would be:
x(t) = sy(t — Aty)e I /tA (2.2.4)

2.3 Narrowband Approximation

The received baseband signal, when sampled with a sampling period of T seconds can

be further represented as:
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2 (nT) = s;(nT — Aty,)e 2™ /etAlk (2.3.1)
In wireless digital communication, T" >> Atg, k =0,1,2....N — 1, that is the symbol

period is much greater than each of the propagation delay. Therefore, the following

approximation can be made |7].

2, (nT) ~ s;(nT)e I3 IctAl (2.3.2)

The element spacing is computed with respect to wavelength as d = D/A and also f. is

related to A as ¢ = Af.. Using these, the equation 2.3.2 can be written as:

zp(nT) & sy(nT)e I2mmdsind (2.3.3)

To avoid aliasing in space the distance between elements d has to be A/2 or less [8]. This

will further simplify the equation 2.3.3 to

2 (nT) ~ s;(nT)e imksinb (2.3.4)

In discrete time notation, sampled signal at the k-th element equation can be expressed

as

xpn] ~ A si[n]a(6;) (2.3.5)

where 7 is the total signals present and the n-th symbol of the i-th signal is denoted by
si[n] for i =0,1,2....r — 1.
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2.4 Matrix Representation for Array Data

In equation 2.3.5, considering all elements of the array, i.e., k =0,1,2,..., N —1 in matrix

form is as follows

) [n] a (90) ag (91) .o ag (97«71) S0 [n] wo [n]
x1[n] a1(6o) ar(61) . . ai(6y—1) s1[n] w1 [n]
= +
|zN-1[n] ] lan-1(00) an-1(61) . . an-1(0r—1)] [sr—1[n]]  [wN-1[n]]
(2.4.1)

where wg[n] is the AWGN assumed at each element. The N x 1 vector @, the N x r
matrix A, the signal vector s, and noise vector w, is further represented in matrix

compact form.

20 = [alo) a(B) . . a(b,_1)| 50+ wa = Asy+w, (2.4.2)

The columns of matrix A: a(6;) are known as steering vectors of signal s;(t). All these
steering vectors together are known as array manifold |9]. In some array configuration the
array manifold can be found analytically but in case of complex geometry the manifold
is determined practically. In this work, analytic computations for such arrays are used
extensively. Since angle of arrival of each r signals is different, the columns of matrix A

will form a linearly independent set. If there is no noise then the array output is:

x, = As, (2.4.3)

Moreover, the received signal vector x,, is a linear combination of matrix A columns.
Hence, these vectors span the signal subspace. The signal subspace idea is common
to many application, for example: DoA, low rank filtering etc [9-11]. Now, antenna
beamforming mechanism for classical DoA estimations will be discussed in the next

section before going on to subspace based methods,
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2.5 Antenna Beamforming Basics

Antenna beamforming is the process of assigning complex weights to the receive antennas
so as to have a desired pattern in the direction of maximum power [12]. The weighted

linear combination of the output from the array elements can be written as

N—
ylnl = ) wizy[n] (2.5.1)
k=0

—_

where w € CV*! (Complex weight). In vector notation:

yln] = wax, (2.5.2)

This process of adjusting the weight vector w in such a way so that the beam is aligned
towards Sol is called as beamforming or spatial filtering. There are numerous designs
to compute efficient weights for a desired pattern. For a signal with an AoA as @, the

beamformer output can be given as:

1 N-1 1 N-1 . ) s []{] N—-1 .
ylk = = 3 wnalk] = - 3 wnsofkle I3 = SO §7y catmdsing (553
n=0 n=0 n=0

The scaling factor with the signal is called the beampattern or array factor, which in

vector notation is:

N-1
1 )
w(f) =+ Y wae 7™ = w'a(9) (2.5.4)
n=0

where w = 2rdsin§ and a(f) represents the steering vector, which is given as

a(0) = [1 e e L eI (2.5.5)
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2.6 Classical Methods

As the systems and beamforming basics are covered in previous sections, the two famous
classical DoA estimation methods that is delay and sum method and MVDR will be

discussed now in detail.

2.6.1 Delay and Sum Method

The delay-and-sum method calculates DoAs by measuring signal power at every possible
angle of arrival and at the end choosing the angle that delivers maximum power [6]. The

beamformer output power is given by:

P(0) = Ely"'y] = Elw"z, > = Ela()" z,|* = a(0)” R,,a(0) (2.6.1)

When w is aligned with the steering vector of the incoming signal then P(6) would have

peaks at those angles.

2.6.2 Capon’s Minimum Variance Distortionless Response Technique

Capon’s minimum variance distortionless response method (MVDR) or Minimum output
energy (MoE) beamformer [13] has a different optimality criterion. The objective is to
minimize output power with gain in the desired direction is kept fixed. So, any reduction
in output power would be by interference suppression. The problem therefore is stated
as:

minimize E[yy]

(2.6.2)
subject to wfa(f) =1

The optimization problem is solved using Lagrange multiplier method that is to find

minimum of |£(w; \)|. As it is know, y = w'’ s[k]a(6). Therefore, y"y :

y"y = (a(0)"ws[k]") - (s[k]w" a(0)) (26.3)
= a'wR,, wa(f) -
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The L(w; \) is given by:
L(w;\) = a(0) wRwa(9) — Mwa(g) — 1) (2.6.4)
Taking derivative (with respect to w!!) and setting the solution to zero.
dL "
Tl = a(0)"wR,za(f) — Na(f) =0
a()"wR,.a(d) = \a(0
@ (6) = Aa(6) 265
wR;, = A\a(0)
w = AR, a(9)
Then, to find A, substitute w to the constraint equation which results to
AR la(0)a(9) =1
1 (2.6.6)
A=——————
a(0)" R a(0)
Hence, the weights of MVDR [5, 14] are given by
R a(f
2 () (2.6.7)

YT a0)" R; a(0)

In summary, classical beamforming method relies on the principal of choosing DoAs

along the direction from which it receives the high power. The difference between the

two classical methods is in the formulation of constraint part, for example, in MVDR

method, interference suppression is the constraint that the method tries to achieve apart

from finding the DoAs. The next chapter will give an insight into another method of

finding DoAs that is subspace based methods for DoA estimation in antenna arrays.



Chapter 3

DoA Estimation by Subspace
Methods in Massive MIMO

3.1 Introduction

The subspace methods of DoA estimation for antenna arrays are based on segregating
the signal and noise subspaces and utilizing these subspaces to determine the power
spectrum. These methods originated from spectral estimation research [10], where the
main feature is to calculate the autocorrelation or autocovariance matrix of signal with
noise and then utilize eigen value decomposition to find signal and noise subspaces.
The advantage of subspace methods is that they have high resolution capabilities, low

complexity and are well implementable in practice.

3.2 Multiple Signal Classification Algorithm or MUSIC

The MUSIC algorithm proposed by Schmidt [11] is one of the most famous methods
for DoA estimation. The method works as follows. Consider the antenna array output,

which in vector form (x,) is given as

x, = As, +w, (3.2.1)

13
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It is assumed that s, and w, to be uncorrelated. The noise vector w,, is AWGN (zero
mean) and correlation matrix of o2I. Defining Rys = E[S,,8]. The spatial covariance

matrix is then:

R,, = E[zx™]
= E[(ASn + wn)(ASy + wy)"]
= AE[S,S,"|AY + Elwp,w,] (3.2.2)
= AR A" + 0 Inen

= R, + 0 Inen

R,: N x N matrix is the signal covariance matrix and has rank M. Therefore, N — M
eigenvectors belong to zero eigenvalue. Let g, be one of those N — M eigen vector.

Then,

ﬁsqm =3 ARSSAqu =0
(3.2.3)
= Aqu =0

From equation 3.2.3, it is clear that N — M eigenvectors (q,,,) of R, are zero eigenvalue
which are orthogonal to M steering vectors. This is the fundamental idea behind the
basics of MUSIC. Defining Q,, : N x (N — M) matrix with these eigen vectors. The

pseudo-spectrum function plotted by MUSIC is then written as

1

(070, Q% alt) (324

Pyusic(9) =

In practice, the covariance matrix R,; is unknown and does require taking average over

many data snapshots. That is

K
1
Rop = o ; xxl! (3.2.5)

where xy is the k-th snapshot. In [15], the author has shown that K > 2N, for SNR <

3 dB of the calculated optimum value.
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3.3 Root MUSIC

Root music [16] is another form of MUSIC algorithm that is only applicable to uniform
arrays. It provides better resolution relative to MUSIC especially at low SNR. The

steering vector is then:

an(0) = exp(j2mndsin(f)), n=0, 1, 2,..., N —1, (3.3.1)

where element spacing d is in A’s and 6 is the DoA. The MUSIC spectrum as defined by

equation 3.2.4 is :

1 1
P 0) = — 3.3.2
music(6) G(H)HQnQTIL{a(Q) a(G)HCa(H) ( )
where C is
C=Q,Q." (3.3.3)
Writing denominator as a double summation [6], that is
N—-1N-1
Pilisic = Z Z exp(—j2mpdsin(8))Crpexp(j2rkdsin(P))
k=0 p=0 (3.3.4)
PJT/[lUSIC = Z Crexp(—j2m(p — k)dsin(0))
p—k=I

where, C; is determined by the sum of the [-th diagonal of C. A polynomial D(z) can
be defined as follows:

N+1

D(z)= Y Cz (3.3.5)

—N+1

The polynomial D(z) is valid on the unit circle, if P};;¢;¢ is equivalent to D(z). Since
in Pyrusic, there are r peaks but in D(z) there will be r valleys or in other terms r zeros
on unit circle. In absence of noise, D(z) will have r zeros on unit circle, however with
noise, the roots will be close to unit circle. The Root music reduces the DoA estimation

to just finding roots for a (2N + 1) the order polynomial.
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3.4 Smooth MUSIC

In a realistic wireless network situation, all the incoming signals are not uncorrelated
and in these scenarios, a famous variant of MUSIC can be utilized which is known as
smooth MUSIC [6]. Since the signals are correlated, the matrix A which was diagonal
for music would not be the same in this case, The N array elements are divided into
overlapping subarrays of size L with each having P elements. Hence, L = N — P+ 1 that
is L correlation matrices are estimated with every matrix having a dimension of P x P.

The smoothed correlation matrix is given as:

Ry = — Z Ry (3.4.1)

This formulation can detect DoA of up to L — 1 correlated signals.

3.5 The Minimum Norm Method

The minimum norm method [17] is a high resolution method in which a vector is defined
such that it lies in the noise subspace and where the first element has the minimum norm

[5, 18]. That is:

g= (3.5.1)

Once the minimum norm vector is found, DoAs are given by largest peaks of the following

function [18§]

Pyn() = —————— (3.5.2)

Let Q. be the matrix whose columns form the signal subspace, Q, can be partitioned as

|5, 18]
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&*

Q.= | _ (3.5.3)
Qs

As vector g lies in the noise subspace, it implies:

QY =0 (3.5.4)

§=-0.(Q./Q.)"a (3.5.5)
From equation 3.5.3, it can be written as
= =H= \_ syl
[=Q,Q,Q,) 'a=(—-ad")a=a/(1-|a]f) (3.5.6)

Using equation 3.5.6, the matrix inverse calculation can be eliminated from equation
3.5.5 that is g can be obtained based on the orthonormal basis of signal subspace. This

is shown as follows:

g=-Q.a/(1~|alf) (3.5.7)

Once g is calculated, the min-norm function is evaluated and the DoAs are found by the

r peaks in the output.

3.6 Estimation of Signal Parameters via Rotational Invari-

ance Techniques or ESPRIT

The ESPRIT method is another famous DoA estimation method that was proposed by
Roy and Kailath [5, 9]. The method function as follows. Consider an array of N elements

that can be further divided into N/2 pairs called as doublets. The displacement vector
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is identical for one sensor in the doublet to its pair. The vector & and y are the data

vectors corresponding to two N/2 element subarrays. The subarray output is then:

ﬁ
I
—

ziln) = silnax(8;) +w”n) (3.6.1)
=0
r—1
yrn] = . si[n)ed?Asin0k g, (9;) + wlgy) [n] (3.6.2)

ﬁ
Il
o

where A is the displacement in wavelengths of the element in the doublet from its pair.
The DoA estimation would be with respect to to this displacement vector. In matrix

form, the output of the two subarrays & and y can be written as:

x, = As, + w® (3.6.3)
y, = A®s, + w¥ (3.6.4)

where r X r diagonal matrix ® has diagonal elements as

(j2mAsinby) (j2wAsinbr) _(j27Asinba) (j2mAsin,_1)
e ,e ,e ,...,€

A single 2N — 2 data vector can be formed as

Xn
Zy = = A,S, +w, (3.6.5)
Yn
A w£§”)
Ap = W, = (3.6.6)
AP 'wsly)

The columns of A span the signal subspace and if V4 is a matrix whose columns are
a basis for signal subspace corresponding to data vector z,,. Then A and V4 can be

related by a 7 x r transformation matrix T" that is given by:

V,=AT (3.6.7)

This can be partitioned as follows:
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E, AT
V= = (3.6.8)
E, A®T

From equation 3.6.8, it can be observed that the range and space spanned by E., E,

and A is same. Defining another rank r matrix E,, as:

E., = |[E.E, (3.6.9)

Also, defining another matrix F' of rank r with dimension of r x 2r that spans the null

space of E.,. Therefore,

0= |E,E,|F = E,F, + E,F, = ATF, + A®TF, (3.6.10)

Defining ¥ as:
U =_—F,[F,]" (3.6.11)

Rearranging equation 3.6.10 gives :

E,¥ =E, (3.6.12)

substituting equation 3.6.8 into equation 3.6.12, that is

ATV = APT — ATIT ' = A® — TIT '=& (3.6.13)

Hence the diagonal elements of ® are equal to eigenvalues of ¥. So, once the eigenvalues:

A’s of matrix ® has been computed, DoAs can be obtained as follows [9]:

A, = ef2asindy (3.6.14)
A
0y, = arcsin <ar2g7§Ak)> (3.6.15)
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Comparison of various DoA methods
MUSIC Spectrum

35 T |

MVDR = = = Min norm = = = Classical

Spectrum in dB

_15 Il Il 1 Il Il Il Il Il 1

Angle in degrees

FI1GURE 3.1: Comparison of various DoA methods

3.7 Simulation Results

The simulation results are plotted respectively in Figure 3.1. It is very clear that the
min norm and MUSIC algorithm generate better resolution as compared to the MVDR
and classical beamformer. Moreover, the output power of min norm, MUSIC algorithm
and classical beamformer is higher than the MVDR. However, the main focus of these
methods is to obtain high resolution DoA estimate rather than concentrate on output
power, which can be managed by attenuators or by compressive sensing methods. Hence,
MUSIC and min norm are the best DoA estimation methods than the other methods
taken in consideration. Till now, the mutual coupling effect was not considered in the
estimation methods. In the coming chapter, firstly the mutual coupling theory will be
discussed in detail and then it’s effect on DoA estimation will be analyzed considering
various famous DoA estimation methods. Also, DoA resolution improvement and a new
DoA estimation with unknown mutual coupling based on joint iterative optimization is

proposed and discussed in details.



Chapter 4

Joint DoA Estimation with Mutual
Coupling in Massive MIMO

4.1 Introduction

The mutual coupling estimation problem given various uncertainty in the environment
such as thermal effects and aging has been a topic of interest for long [7, 19, 20|. In
this chapter, first the fundamentals of mutual coupling will be discussed in brief and
towards the end, a joint iterative subspace optimization with rank reduction to estimate
DoAs with this dynamic unknown mutual coupling in massive MIMO networks will be

proposed and discussed with its advantages.

4.2 Mutual Coupling in Antenna Array

Mutual coupling is defined as an electromagnetic interaction between array elements
[21]. It affects the antenna array mainly in three ways: first is the change in the array
radiation pattern, second is the change in the array manifold, and last is the change in

the matching characteristic of the antenna elements |7, 19].

Consider N antenna elements of a receiver. The mutual impedance between the i-th

(1 =1,2,3,..., N) and j-th element (j =1,2,3,...,N) is formulated as:

21
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= (4.2.1)

N
|
Sl

When i = j, Z;; is called as self impedance and if ¢ # j, Z;; is the mutual impedance.
Also, V; is the voltage on ¢ element’s open-circuited port because of current I; of element

j’s port with other ports being open-circuited. Coupling matrix: Z is thus given as:

Zu Zi2 . . ZIN
Zo1  Zoo ZaN

7Z = ) ) o ) (4.2.2)
| ZN1 Zn2 - - ZNN|

An example of two antenna system, their self and mutual coupling parameters are de-

picted in Figure 4.1.

F;;, Vyy=Excitation voltage source

Zg;, Zzr= Source internal impedance
Z11, £37= Antenna self-impedance
It, I; = Terminal current

V13, i1 = Coupled voltage

FIGURE 4.1: Self and mutual impedance [2]

Z, when scattering matrix S is with terminating load of Zy = 50 Q is :

Z=7¢Iy+8S)In—-8)" (4.2.3)

where I is the identity matrix of dimension N x N. Thus,
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W1 Zun Zi2 . . ZiN| | I
Vo Zoy Zoa . . Zan| | I2
e . (4.2.4)
VN |Zv1 Zn2 - . ZnN] [IN]

The excitation currents for the array radiation pattern to be in a required direction is :

I i eijT" [sin O (x1 cos po+y1 sin ¢o)+2z1 cos b) ]
I e—j%’r [sin 8o (z2 cos ¢o—+y2 sin ¢o)+22 cos O]

_ ] (4.2.5)
IN e—%’*[sin 0o (z N cos po+yn sin ¢g)+2zn cos o]

where (z;,y;, 2;) represent coordinates of the antenna element i. ¢y and 6y are the DoAs

(azimuth and elevation angles). The port i’s driving impedance is then:

Vi
Zp, = — (4.2.6)
I;
On expansion
V N I N
T Z T Z *J - {sin fo[(zi—z;) cos po+(yi—y;) sin o] +(2;—2;) cos o }
(4.2.7)
Also, from circuit theory [21, 22]:
I=(Z,+2)'Vy
(4.2.8)

v=ZI=2Z(Z,+2Z) 'V

The circuit level model is short sighted when it comes to excitation by electromagnetic
fields. Also, the radiation pattern analysis method is only accurate in directions relative

to antenna system and it does require some form of interpolation |7, 23, 24| that are to
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be employed to estimate the radiation patterns. However, it requires a large memory
for good angular resolution. On the contrary, analysis methods minimize memory needs
and hence, they are mainly employed in receiver systems [23, 25]. The main idea is that

the port voltages and incident signals share a mathematical relationship:

Vg (0, 0) = CVigear(0,0) (4.2.9)

where

Cn Ci2 . . Cin
Cy Cop . . (Coy

_CNl CNZ CE CNN_
- ) (4.2.10)
e—j%” [sin Og (1 cos ¢po+y1 sin ¢o)+21 cos bo]
e—j 2{ [sin 8o (@2 cos po+y2 sin ¢g)+22 cos O]

'videal(ﬁba ‘9) =

6727“[5111 0o (x N cos po+yn sin ¢o)+zn cos O]

The matrix C is known as coupling matrix with Cj; as coupling parameters between

elements 4 and j.

4.3 Mutual Coupling Matrices for Different Arrays

Representing mutual coupling as a matrix has the biggest advantage of symmetry and
sparsity that helps to design the DoA estimation system very well. The most common

array configurations are linear arrays and circular arrays |7, 19, 20].

4.3.1 Linear Arrays

Since mutual coupling coeflicients are negatively related to distance between antenna

elements, thus for a uniform linear array (ULA) the matrix C has a banded structure.
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Also, mutual coupling between two elements that are very distant is assumed to be zero.

Therefore, the matrix C has a toeplitz structure that is given as:

CVM = Toeplitz{[Cy, Cy, Cs, ..., Car]} (4.3.1)

where M represents total number of elements.

4.3.2 Circular Arrays

Under the same premise of mutual coupling relationship with distance, in uniform circular
arrays (UCA), the mutual coupling matrix exhibits circulant structure with three bands:

upper hand right band, center band and lower left corner band.

Toeplitz{[C{, Cs, Cs, ...,Cr,Cr_1, ...C M is even
CUCA _ {[C1,Cs,C5 £, Cr-1,...Cal} (4.3.2)

Toeplitz{[01,02,03, ..., Cr,Cr,Cp_1, CQ]} M is odd

where L = {@}, if M is even and L = {%} , if M is odd.

4.4 Direction Finding in Presence of Direction Independent

Mutual Coupling

Consider the array signal model described in Chapter 2, the array output with coupling

is rewritten as

K
=C> a(bp)si(t) + w(t), i=1,2,...,T (4.4.1)
k=1

where C € CM*M is direction independent complex mutual coupling matrix, w(t;) is the
AWGN, sy (t;) is the complex baseband source signal and a(f)) € CM*! is the steering
vector belonging to k-th source. The mutual coupling matrix has a definite structure
on basis of its array configuration given by equation’s (4.3.1, 4.3.2). Since the system
model with coupling is well set up, DoA estimation with and without coupling will be

discussed in next section where the comparisons will be drawn and discussed.
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4.4.1 Comparison and Simulation of DoA Algorithms in Absence and

Presence of Mutual Coupling

In the presence of mutual coupling, the columns of signal subspace will have coupling
induced in the steering vector that is Ca(6). However, the orthogonality between signal
and noise subspace will still hold for subsapce based methods. Hence, the modified DoA

methods will be

R_!Ca(h)
w =
a(0)HCHR_Ca(h)

(4.4.2)

From Section 3.2 of Chapter 3, MUSIC method is given as

R,, = E[zz!]
= E[(AS,, + w,)(AS, +w,)"]
= AFE[S,ST1A" 4 Flw,w!] (4.4.3)
= AR A" + o’ Tnun

=R, + 0 Inxy

and
1

a(0)Q,Q; a(0)

Pyusic(0) = (4.4.4)
With mutual coupling being present, the columns of signal subspace will have coupling
induced in the steering vector that is C'a(f). However, the orthogonality between signal

and noise subspace will still hold. Hence, the music spectrum will be

1
a(0)1C"Q,Q; Ca()

Pryusic(8) = (4.4.5)
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The simulation result comparing the DoA methods with and without coupling are plotted

below in Figure 4.2.

MUSIC Spectrum MVDR Spectrum
40 T T T T 5 T AT T
30
1] 1]
T ©
£ £
5 20 5
it o .
[} [
& &
10 f
S
0 - * * - -20 - * - * .
90 -65 -40 -15 10 35 60 850 90 -60 -30 0 30 60 90
Angle in degrees Angle in degrees
Min-Norm Classical Method
20 T T T 30 : : :

Spectrum in dB
Spectrum in dB

1990 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
Angle in degrees Angle in degrees
| without coupling — — — with coupling|

FIGURE 4.2: Comparison with and without coupling of various DoA methods

It can be easily inferred from the Figure 4.2 that the coupling changes the angular
resolution by 1-4°. Considering the narrow beams in massive MIMO networks (5G), this
can lead to very low SNR and thus reduction in the overall capacity. Hence, it becomes

an important task to auto calibrate coupling effects.

4.5 Joint Estimation of the DOAs and Unknown Mutual
Coupling Matrix

The main problem with the estimation methods is that it lacks the proper formulation
of mutual coupling matrix C. Coupling matrix is a dynamic quantity which depends on
many factors such as temperature, humidity etc. Therefore, it serves us a great value if

it is estimated in parallel without interrupting direction finding method |7, 19, 20].
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4.5.1 Algorithm for Joint Estimation of DoA and Coupling Matrix

The problem of finding DoA with unknown coupling matrix has been studied extensively
in the last decade. Many algorithms have been developed depending upon the subspace
methods, however their DoA resolution suffers a lot. In this section, we will utilize a

simplistic data model.

The output signal vector : x(t) from an antenna array is then:

x(t) = CAs(t) + w(t), CeCMxM (4.5.1)
where
A = [a(¢1), a(12), a(3), ..., a(yn)], A e CM*XN (4.5.2)
and
s(t) = [s1(t), s1(t), 51(t), ..., s1(D)]F,  s(t) € CV¥1 (4.5.3)

Due to the symmetry of the array for the cases of ULA and UCA, the unknown mutual

coupling coefficients can be given by unique values : L. That is,

c=[c1,e,¢3, ., cr)T € CHX!
(4.5.4)
1=cl>|co| > e3> ..... > lep| >0
The music algorithm in Chapter 3 is re-expressed as,
Povsic() ! (4.5.5)
MUSIc\b) = 5.
a(0)1Q,Q; a(¥)
With unknown DoAs and mutual coupling, a cost function J is defined as:
K
J=1QCAl[f: =) _11Q;/ Ca(0y)|? (4.5.6)
k=1
Where || -+ || denotes Frobenius Norm for matrix norm and || - || denotes vector-2 norm.

So, the DoA and coupling parameters is determined by minimizing J |7, 19, 20]. Taking
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the advantage of the symmetry posed by ULA, matrix to vector transformation can be

done, so as to make it into a QP form [7],

Ca(f) = T[a(f)]c € CM*! (4.5.7)

where c is a vector referred in equation 4.5.7, and T'[a(6)] € CM*L is the transformation
matrix whose values are determined by the corresponding array topology. Plugging

equation 4.5.7 into 4.5.6, we obtain

K
J=3"e"T(a(0)Q, Q1 T(a(0)lc = " Q(0)c (45.8)
k=1
where
K
Q0) =>_ T"[a(9))Q,Q T(a(0)] (4.5.9)
k=1

As hermitian matrix Q(#) is independent of ¢, J changes to a quadratic minimization

problem as:
min .J = arg min ¢ Q(f)c (4.5.10)
(87 (0},

In general this problem has a trivial solution that is zero. So, to avoid such case, a

constraint such as ||¢|| > 0 is added to the optimization problem.

In summary, the algorithm [20] for a ULA works as follows:
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Algorithm 1 An autocalibration algorithm with mutual coupling by Min Wang et al
[20]

Z11
that the coupling matrix is hermitian and coupling value more than half of wavelength

are zero.

2: Set iteration counter to 0.

3: Begin: Search for K peaks using peak search method P(6) = J~! = ¢ Q(f)c with
c9). The peaks correspond to the newly estimated DoAs {Hk}szl

4: Calculate the cost function stated in equation 4.5.6

5: Perform 4.5.10 to estimate the coupling matrix with strict constraint of ¢ > 0. The
result of the QP minimization gives us el/*erationtl) yector value of dimension CH*!

6: Normalize the clterationt1) with the first element of the el/teration+1) yector

7. Substitute ¢(® with elterationtl) in the peak searching method P(f) = J~! =
c’Q(0)c to get new DoAs {0}

8: Increment iteration counter and go to the first step again: Begin.

9: Stop at convergence when J(—1) — J() < 5 where § denotes the convergence thresh-
old.

T
1: Init ¢©) = [1 @] as the unique coupling matrix for ULA with the assumption

4.5.2 Proposed Improvement in Resolution of the DoA Estimation us-

ing Convex Optimization

Once we determined the unknown coupling matrix, we can further use Lo norms and
compression sensing theory to obtain a high resolution DoA spectrum |26, 27|]. The
goal is to construct the spectrum for DoA estimation in such a way that achieves the

following.

e Output tracking: The new spectrum should track the original music spectrum

or the reference spectrum, which as a quadratic function is given a:

0r
1 :
Firack = 1 Y (P(0;) = Pruusic(6:))? i € {1,2,...1} (4.5.11)
)

e Compression: The new spectrum should not be large in magnitude. This can be

written as:
01

Frnag = 911“ %:(P(a,-)ﬁ (4.5.12)
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e Smoothness: The new spectrum should be as smooth as possible without spikes

near the peak. Such smoothness can be mathematically written as

011
1
Famooth = 5= ) (P(0i11) = P(6))? (4.5.13)
I
Finally, the function can be written as :
arg min (Frqek + 0F mag + NF smooth) (4.5.14)

Where § > 0 and i > 0 are the two tuning scalars that can be used to trade off the three

objectives of tracking, compression and smoothing.
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4.5.3 Simulation Results

As expected the cost function converges to almost zero with every iteration and thus

produces a least minimum square error as depicted in Figure 4.3.

J with every iteration
error

0.6 T T T T T T T T

erorr

7 8 9 10

5 6
Iteration number

F1GURE 4.3: Cost function error every iteration.

Moreover, on performing post optimization with compressive sensing and norm optimiza-
tion methods, we can further tune the output as can be seen in the Figure 4.4. Here the

two plots show the tuning values as § = 0 and 0.9, while n as 0.005 and 0.9.
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FIGURE 4.4: Result with different tunable 6 and 7
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4.6 Joint Iterative Subspace Optimization with Rank Re-
duction to Estimate the DOAs and Unknown Mutual
Coupling Matrix in Massive MIMO Networks

In this section, a low rank scheme known as joint iterative optimization or JIO (3] is
presented for DoA estimation and then it is extended for the case of unknown coupling
matrix with special emphasis towards massive MIMO networks. The rank reduction
matrix changes the incoming vector into a very low dimension vector space and an
secondary reduced rank vector is used to calculate DOAs. This work utilizes that rank
reduced covariance matrix to calculate the cost function and thereafter estimate the
unknown dynamic mutual coupling as described in the algorithm 1 of previous section.

The proposed algorithm can be visualized as in Figure 4.5

x(1) _ —
£ G
=3 Rank Reduction Matrix > Reduced rank q_] Power estimation
T, Correlation Matrix
R,

DoA and Coupling
estimation algorithm r

FI1GURE 4.5: Proposed joint Iterative optimization method to estimate DoA and un-
known coupling

4.6.1 Proposed Extended JIO

In JIO [3], a reduced rank matrix : T, € CM*" is used to transform the input vector, (i),
to a very lower dimension that is & € CM*! transforms to & € C"*!, where r << M.
The secondary reduced rank vector gy, € C"™! is used to calculate the power for the
DoAs. The reduced correlation matrix is also a lower dimension space of R e T as
compared to R which is of CM*M dimension. As mentioned before, the contribution
of this work is to utilize the new reduced rank correlation function not just to extract
DoAs but also estimate unknown mutual coupling. The main advantage of utilizing this

method is the very high decrement in complexity and high ease of implementation.



Chapter 4. Joint DoA Estimation with Mutual Coupling in Massive MIMO 34

The main goal therefore is to find the rank reduction matrix T, and the secondary
reduced vector gy. These values are estimated with respect to 6 and is formulated as an

optimization problem:

arg minimize g§ TH RT,g,
geT'r

subject to giTHa(9) =1
where R is the covariance matrix. Using lagrange multiplier, the unconstrained opti-

mization problem is then given by:

J =gl TIRT, g, + 2Real{\gi T  a(h) — 1]} (4.6.1)

To determine T, and gy, we assume that g, is known and then we find out T, by

exploiting the gradient of equation 4.6.1 with respect to unknown T',., that is,

VI, = RT,gegy + Mr,a(0)gy (4.6.2)

Equating the gradient V Jr, to zero and determining A7, the rank reduction matrix T,

can be expressed as

. R'a@®,  gl4)
T = atl (6, )R a(6,) o) (4.6:3)

Similarly, taking the gradient of equation 4.6.1 with respect to unknown g,, we obtain

VT = THRT, gy + 25, T a(9) (4.6.4)
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Defining reduced rank covariance matrix : R = E[Z(i)Z (i)] € C"*" and reduced rank
steering vector : a(f) = THa(f) € C™*!. The final solution after determining Az, and

equating the vector equation to zero is

!79 = —1_ (465)

From the values of reduced rank matrix T, secondary reduced rank vector g, and
reduced rank covariance matrix R, we can obtain the DoAs and mutual coupling re-
spectively by utilizing Algorithm 1 mentioned earlier. The rank r has an impact on the

resolution and has been found empirically to be in the range of 7y, = 3 t0 Tae = 7 [3]-

In summary, the proposed extended JIO algorithm can be written as follows:

Algorithm 2 Proposed algorithm

1: Init T,.(0) = [IL,, O(TM 7,)XT]T as the reduced rank matrix.

2: Begin, Update for the time instance i = 1,2, 3, ...... , N

3: New input vectors: &(i) = TH(i — V(i)

4: New steering vector: a(f,) = TH (i — 1)a(6,)

5: Recursive correlation function: R( ) =aR(i — 1)+ x(@)x" (i)

6: New recursive correlation function: R(i) = aR(i — 1) + Z(i)x" (:)
i)—'a(0n)

7. Update, gy (i) = a(on )L?() 1a(0,)

8 Update, T (i) = — (%) il

al(0)R “a(6n) 90(0)?

9: Go to Begin A

10: Utilize new reduced rank correlation function R(i) to jointly estimate the DOAs
with unknown mutual coupling by applying Algorithm 1 mentioned previously. The
power will be given by: P(6,,) = 1

@t (0,)R(i)~1a(0n)
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4.6.2 Simulation Results

On simulating the proposed method with rank reduction matrix of rank » = 7 and given
DoA angles of [0°,30°,70°], the results are plotted in Figure 4.6. The covariance matrix

(C100><100

in the proposed method is of the order of C™*7 as compared to of classical or

subspace based methods. Thus, the computation complexity of the proposed method is
O(M? + (189)r?%) or ~ O(M?) as compared to MUSIC method which is approximately
~ O(M?3), where M = 100 and r = 7. Therefore, it has a great performance advantage

with low computational cost over other methods in massive MIMO networks.
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FIGURE 4.6: Joint iterative method with reduced rank optimization in massive MIMO
networks

Now, the second part of the thesis about radio resource block allocation for LTE over
sea will be discussed in next chapter. The advantages of the proposed method in this

domain will be also highlighted.



Chapter 5

LTE Radio Resource Block
Allocation Optimization in

Maritime Channels

5.1 Introduction

In this chapter, the second leg of the work will be discussed and as earlier mentioned
that in the absence of 5G standards, LTe was chosen to be the fit candidate. LTE net-
works offer diverse services that range from normal voice calls to multiple user on-line
gaming. Every service that LTE offers comes with a minimum set of quality of service
requirements that mainly rely on data throughput and latency. While most of the re-
search nowadays is focused on LTE in urban landscape [28]-[30], LTE in sea environment
is mostly left out. The famous urban channel models are OkumaraHata model, COST
231-Hata model, Ikegami model, or 2-Ray model. Okumara-Hata model considers open
area, suburban area, and urban area for measuring path loss, while COST 231-Hata
Model is just an extended part of Okumara-Hata model that considers frequencies from
1500 MHz to 2000 MHz as compared to 150 MHz to 1500 MHz. On the other hand,
Ikegami Model gives deterministic prediction of field strength at specific points but un-
derestimates loss at large distances in urban or suburban areas. In contrast, not much
work has been contributed for LTE in sea environments. Only, few noted research can be

found in the literature [31]-[33]. From these work, the existence of the evaporation duct

37
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is confirmed over the sea all the time. The evaporation duct is the most dominant duct
among other ducts such as surface ducts or elevated ducts in sea based environments.
The main difference between the path loss propagation in sea environment and the path
loss propagation in urban environment is that in sea environment, apart from direct line
of sight, there are reflections from sea surface and from the evaporation duct, making it
a multipath sea channel model that look like a 3-Ray path loss. Figure 5.1 shows this
typical 3-Ray model.

— o I : Reflection from the

Iy evaporation duct
» Direct Radio Wave
___________ » Reflection from the
sea surface
|pe
i__ & hix
-"’_‘i; i (
Ay - .ﬁ-iﬁﬁ%.
a >

FI1GURE 5.1: 3-Ray path loss model for LTE over sea, where hy, is the height of the
transmitter, A, is the height of receiver, h. is the evaporation duct height and d is the
distance between the transmitter and receiver.

The smallest radio resource unit in a LTE network that can be assigned to a user is called
a Resource Block (RB) [34]. A resource block (RB) has 12 orthogonal frequency division
multiplexing (OFDM) subcarriers that are adjacent to each other with a spacing of 15
kHz between two adjacent sub carriers. Each RB (Figure 5.2) consists of two sub-time
slots of 0.5 ms and each sub-time slot utilizes 6 to 7 OFDMA symbols, depending upon
whether normal cyclic prefix or extended cyclic prefix is utilized. In RB assignment,
the channel state information [35] plays a vital role. Based on the CSI, an eNodeB
periodically decides upon the modulation and coding scheme (MCS) [36] and assigns
the number of radio blocks to its connected users. In LTE downlink, if a user has been
assigned more than one RB, all these RBs have the same MCS which enhances the

complexity of the radio resource allocation problem.
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FIGURE 5.2: A radio resource block of LTE.

spread over 1.4-20MHz

In this work [37], the max-min optimization technique previously used widely in wifi

optimization [38, 39| is extended towards resource block allocation in marine channels.

Earlier research on resource block optimization methods that use max-min technique had

urban channel settings [35, 40| and therefore this much required work was undertaken.

TABLE 5.1: MCS (Modulation and Coding Schemes)

. SINR Efficienc
MCS | Modulation | Code Rate Threshold [dB] | [bits /symb):)l]
MCS1 QPSK 1/12 -6.5 0.15
MCS2 QPSK 1/9 -4 0.23
MCS3 QPSK 1/6 -2.6 0.38
MCS4 QPSK 1/3 -1 0.60
MCS5 QPSK 1/2 1 0.88
MCS6 QPSK 3/5 1.18
MCS7 16QAM 1/3 6.6 1.48
MCS8 16QAM 1/2 10 1.91
MCS9 16QAM 3/5 114 2.41
MCS10 64QAM 1/2 11.8 2.73
MCS11 64QAM 1/2 13 3.32
MCS12 64QAM 3/5 13.8 3.90
MCS13 64QAM 3/4 15.6 4.52
MCS14 64QAM 5/6 16.8 5.12
MCS15 64QAM 11/12 17.6 5.55

5.2 LTE-SINR Path Loss Modelling in Sea Environment

In this section, path loss modelling in sea environment is considered. Equation 5.2.1,

5.2.2 and equation 5.2.3 represent the 2-ray channel, 2 ray modified channel and 3-ray

channel formulation which are simulated and then plotted as seen in Figure 5.3.
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h x ° hm: 2
L27Ray = *10l0910 (W) (521)
AN2 /. 27hihes \ 2
Lo Rayrod. = —10log1o ((M d> <2sm 7; y > ) (5.2.2)

2
L3 Ray = —10logio ((4;1) x (2(1 + A))2> (5.2.3)

with

A = 2sin <27Th;dh) AP (27r(hm« - h;C)l(he . hm)>

with the parameters being

A : Wavelength in meters

htz : Height of transmitter in meters
rz - Height of receiver in meters

h

he : Height of evaporation duct
I : System loss parameter

d

: Distance between transmitting and receiving stations.

Simulations results show that a better estimate of the received signal power in maritime
channels can be acheived by 3-Ray path loss model as it gives near to practical results
[33]. In the simulations, h. is assumed to be around 25 meters and the two ferry ports
selected are Uskudar and Eminonu in Istanbul, Turkey as shown on Google Maps™ in
Figure 5.4. The distance between these two ports is around 3.7 km and the distance
between two base stations on each port is around 500 meters. At any given moment,
there are around 4 to 12 ships travelling from one ferry port to the other. The two lanes
"Uskudar to Eminonu" and "Eminonu to Uskudar" are separated by around 300 - 400

meters. To represent ships or users, we choose equidistant points in the sea lane, and to

represent eNodeBs, 4 points are fixed on the land just near to the port.
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FIGURE 5.3: Simulations for different path loss models for sea channels.
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FIGURE 5.4: Eminonu and Uskudar ferry ports as seen on Google Maps™ with as-

sumed ships and eNodeB positions.

5.3 LTE System Parameters and Problem Formulation

In this section, problem formulation with assumptions and the LTE system parameters

required to describe the radio resource allocation problem are described out in detail.

5.3.1 Assumptions

The two main fundamental assumptions [41]| regarding the detailed allocation method

are: a) Throughput perceived by any user j from the connected eNodeB i depends on
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number of resource block received rather than what those resources are, b) Throughput
is a strictly increasing function with the increase in number of allocated resource blocks.
let 3; is defined as a normalized ratio of radio resource allocated from a eNodeB i to a

user j with g8; € [0,1], then

ATy
S

Bj
where r;; are the RB assigned to to a user j by an eNodeB 7 and s; is the total available

radio resources with the eNodeB i. Therefore, the throughput (7j) as a strictly increasing

function of 8 can be written as:

T = g;(B5)-

These assumptions inherently take the orthogonal resource allocation and channel state

information availability into picture. Intuitively, the throughput can be maximized if

where

5.3.2 LTE System Parameters:

The LTE system parameters required for problem formulation are described as below:

e user j =1,2,3,....,J; a user represents a ship .

eNodeB i=1,2,3,....,1;

e n=1,23, ..., N; where n is the number of RBs.

SINR calculation parameters : SINR for a user j connected to a eNodeB ¢ is

given by:
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POU)@T‘Z"]‘ . FL]'

SINR;; =

1

. . 2

where I'; ; is the channel gain between eNodeB ¢ and user j, o2 is the zero mean
noise variance. The formulation reflects the link conditions for the application in

radio resource block allocation.

e Throughput space matrixz : The throughput space matrix is formulated as:

Th[I|[J]=T;. Vi [1,1),j € [1,J]

The throughput space matrix entries (7j;’s) are defined one by one as throughput
per RB between the user j and eNodeB i. The calculation is done on the mapping

of MCS values to SINR levels [35, 36| as given in Table 5.1.

The demand per user is represented as :
Dj=¢

where ¢ represents the minimum best throughput which is guaranteed to a user in

the network under study.

5.3.3 Problem Formulation:

Taking all these assumptions and system parameters into consideration, problem formu-

lation of the different radio resource allocation methods is worked out as follows

5.3.3.1 Max-min Problem Formulation

Firstly, all users are assumed to be in the transmission range of all eNodeB’s and also
it is assumed that the eNodeB’s in the network have perfect knowledge of channel state
information. The objective function of the max-min method that is maximization of the
minimum throughput of the links in the network can be written as equation 5.3.1. It is

further simplified in two step as equation 5.3.2 and equation 5.3.3.
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I
maxmin  arg (;(Tm X KU)> Vijell,J (5.3.1)
Maximize (¢) (5.3.2)
I
SN (T x Ky) =6, YjellJ] (5.3.3)
=1
The constraint space is given by:
Yi; € {0,1} (5.3.4)
J
Y Kij <N, Viell]] (5.3.5)
j=1
I
Y Yy=1, VjellJ] (5.3.6)
i=1
Kij = Y;j X N, v i,j (537)
Kij > (Dj/Ty) x Yig. Vi, j (5.3.8)

where Y;; denotes connection between an eNodeB and a user, Kj;; is an integer decision
variable that signifies how many number of RBs can be assigned to a user j from an
eNodeB i. Constraint equation (5.3.5) represents the upper cap of the RBs available at a
eNodeB to be N and equation (5.3.6), <Z@'I:1 Yij) is equal to 1 for a successful connection
between eNodeB 7 and a user j else it is zero. Furthermore, equation (5.3.7) makes sure
that a user is connected to only one eNodeB that is RBs (Kj;) are allocated to the
only defined connection (Y;;). Finally, constraint equation (5.3.8) gives the relationship

between capacity and demand D;.

5.3.3.2 Round Robin Method

The round robin allocation method is formulated in such a way so that every user gets
equal equal number of resource block allocation from eNodeB [41]. Hence, for a user j

the throughput Tl-j is given as :

Vi € 1,J], (5.3.9)
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where TJ is the throughput at j* user and J resents all users.

5.3.3.3 Opportunistic Method

In opportunistic case, the objective of the problem is formulated as in such a manner
that each eNodeB allocates maximum RBs to a high throughput link as compared to low
throughput links while assuring that every user is connected to eNodeBs. The constraint
space for such maximization problem [41] will remain the same as of the max-min method

described earlier.

1
1=

(T%j X K,Lj)> Vj (S [1,J]

Yij € {07 1}

max arg
i€l 1

J
Y Ky<N, VielLl
j=1

]~

Yijzla VJE[l,J]
=1
Kij=Y;j XN, Vij

Kij = (D;/Tij) x Yij  Vi,j

5.3.4 Performance Comparisons

The most popular Jain index [42], [43] is used to compare these methods. The Jain index

for a user j with throughput Tj is given as:

N2
i

F:<J€J])2 Vi €L, J].
NZjeJ J

i

Table 5.2 summarizes all the LTE system parameters used in the simulations.
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TABLE 5.2: Simulation parameters

Parameters Values
Carrier Frequency 2750 MHz
Number of RBs per eNodeB | 25

OFDM data symbol per sub .

time slot

Antenna 2x2 MIMO
eNodeB Tx power 43 dBm
Height of Tx 20 meter
Height of Rx 3 meter
Height of Evaporation Duct | 25 meter
Cable loss 3 dBm
Antenna Pattern Omnidirectional
Carriers per RB 12

Noise Variance 1

5.4 Simulation Results

This section describes the simulation results that were done with IBM-CPLEX [44] soft-
ware. The resource allocation fairness index were calculated by Jain Index and the values

are listed in Table 5.3 and a sample 8 user resource allocation is listed in Table 5.4.

TABLE 5.3: Fairness index of different allocation methods with user densities

Number of Users | 4 6 8 10 12

Max-Min 0.96 | 0.85 | 0.56 | 0.52 | 0.94
Opportunistic 0.56 | 0.37 | 0.39 | 0.25 | 0.26
Round Robin 0.5 |0.51|0.59 | 0.58 | 0.47

TABLE 5.4: A sample 8 user resource block allocation

eNodeB index number 2 12 |1 |4 (413 |4 |3
Connected user index number |1 |2 |3 |4 |5|6 |7 |8
Max-Min Method (RB’s) 2 2325128 |21|5 |4
Round Robin Method (RB’s) | 13 | 12 | 25 811219 |13
Opportunistic Method (RB’s) | 25 |1 |25 |1 |11 |21 |25

Also, on close analysis of the simulation results with individual user densities (Fig-
ures. 5.6- 5.8), it can be safely concluded that the max-min method guarantees better
minimum data throughput per user as compared to the other two methods. This is
because the max-min method first allocates RBs to the worst throughput links and then
to better throughput links, thus maximizing the minimum throughput of the links in

the network. Moreover, the max-min method balances the overall network throughput
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uniformly with increasing number of the user density than the other two optimization

methods.
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FIGURE 5.5: Fairness of algorithms with user density.
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Throughput [Mbps]

Throughput [Mbps]

In summary, this work simulates the proper maritime channel (3-ray model) for the
optimization problem and based on that describes the performance of radio resource
allocation methods. It was found out that the max-min methods performs superior than
round robin or opportunistic methods. Furthermore, it was also observed that with even

variable user densities, the max-min optimization method performs significantly better
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FIGURE 5.7: Individual user throughput for 8 and 10 user scenarios
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with good fairness as compared to the opportunistic and round robin methods.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

As we move towards 5G implementation, it becomes very important to study these
systems inside put and work upon their limitations. One of the main goal of this work
was to study and propose a low computation complexity based DoA estimation method
for massive MIMO in 5G. The complete literature survey for the background on various
methods were discussed in Chapter 2 and Chapter 3 with introduction to 5G in Chapter
1. This work extended the use of JIO [3] algorithm with the unique difference being that
it assumes that the mutual coupling is also present and requires to be estimated. It was
also shown in Chapter 4 that the computation complexity of the proposed method is =
O(M?*+(18%)r2) or ~ O(M?) as compared to MUSIC which has computation complexity
of the order of ~ O(M?), where M = 100 and r = 7. That is a big advantage of using
joint iterative methods with rank reduction optimization in massive MIMO rather than
classical or subspace based methods. Furthermore, in absence of any 5G standards, radio
resource block allocation method was also studied for maritime channels considering
LTE network and a max-min method was proposed in that cause in Chapter 5. The
results of the proposed max-min resource allocation method reflected the superiority
over other methods in terms of fairness with variable load. Mathematically speaking,
the core of this thesis was based on the application of convex optimization and linear
algebra theory. It included joint iterative method with reduced rank matrix optimization,
quadratic programming (QP), compressed sensing, Lo norms and max-min optimization
to formulate and solve the problem in hand.

49
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6.2 Future Work

The future work with respect to massive MIMO for 5G has immense potential and
demand. One of the main idea to work upon would be to compare the results from an
implemented 5G system or 5G test bed with the simulation results mentioned in this
thesis. Apart from that, directional dependent mutual coupling will be an interesting
field to prospect and investigate. The joint estimation of DoAs with unknown mutual
coupling in carrier aggregation mode is also an open turf for research in 4G and 5G
as mutual coupling will be different for different frequency bands. Antenna switching
algorithm to tackle mutual coupling in massive MIMO is another open research topic.
Moreover, there are some advances in antenna switching domain too, however, lack of 5G
standards can be an issue with the research. Also, for the radio resource block allocation
method, the joint optimization of power and frequency per sub carrier in LTE network
over the sea extended to 5G networks would be yet another interesting topic. Overall, 5G
is an open field of opportunities to work upon which has the bright prospects of bringing

the next generation of networked society into reality.
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