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“An equation means nothing to me unless it expresses a thought of God. ”
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Abstract

The evolution of technology from one generation to other always brings a better user

experiences in terms of high data rates and improved quality of service parameters like

low latency. However, it also comes with its own challenges. The upcoming 5G technology

is one of those technologies that is now moving from theory to practical implementation

with prototypes being developed all around the world. Massive MIMO is the key enabler

for such 5G networks and one of the concerns with massive MIMO is the mutual coupling

effect that causes wrong direction of arrival (DoA) estimations that leads to low capacity

issues. In this thesis, several optimization techniques related to estimations of DoA and

unknown mutual coupling in antenna arrays are studied and an extended joint iterative

optimization with reduced rank method is proposed in that cause considering massive

MIMO networks. The backbone of the work is based on joint iterative method with

reduced rank matrix optimization, quadratic programming (QP), compressed sensing

and L2 norms that are used to determine the DoAs and unknown mutual coupling with

higher resolution capabilities. The proposed method is dynamic in nature and has very

low complexity order giving it a big advantage over other methods. Furthermore, in

absence of any 5G standards radio resource block allocation methods for LTE over sea

are studied and a max-min optimization is proposed which is then compared with the

previous resource allocation algorithms. The results of the proposed resource allocation

method reflects the superiority of the algorithm in terms of fairness with variable load. In

summary, this thesis shreds light into the application of convex optimization and linear

algebra in wireless communication domain.

Keywords: Massive MIMO, ULA, UCA, MVDR, MUSIC, ESPRIT, DoA, Mutual Cou-

pling, QP, convex optimization, JIO, LTE, 3-Ray Path loss Modelling, Max-min Integer

Linear Programming, SINR, Fairness, Radio Resource Block Allocation



Masif MIMO Ağlarında Bilinmeyen Karşılıklı Etkileşimle Ortak Varış

Yönü Tahmini ve Deniz Kanallarıda LTE Radyo Kaynak Bloğu

Tahsis Optimizasyonu

Amit Kachroo

Öz

Teknoloji bir kuşaktan diğerine evrilirken, yüksek veri hızı ve düşük gecikme gibi hizmet

kalitesini yükselten parametrelerle daha iyi bir kullanım deneyimi sunmaktadır. Fakat bu

iyileşme, beraberinde bazı zorluklar getirmektedir. Yaklaşan 5G teknolojisi, şu an tüm

dünyada teoriden pratik uygulamaya geçmekte olan ve prototipleri geliştirilen teknoloji-

lerin başında yer almaktadır. Çoklu (Massive yada Masif) MIMO, 5G kablosuz ağlarının

gerçeklendirilmesinde önemli bir safhayı oluşturmaktadır. Fakat masif MIMO’nun perfor-

mansını önemli derecede etkilyen ve düşük kapasite sorunlarına sebep olan etkenler mev-

cuttur. Bunların başında varış açısı yönünün (DoA) hatalı olarak kestirimine sebep olan

karşılıklı bağlaşım etkisidir. Bu tezde, DoA ve anten dizilişlerindeki bilinmeyen karşılıklı

bağlaşım etkilerinin tahmini için birçok optimizasyon tekniği incelenmiş ve masif MIMO

ağları için indirgenmiş rank metoduyla genişletilmiş ortak döngüsel optimizasyon öner-

ilmiştir. Bu çalışmanın temel omurgasını oluşturan yaklaşım indirgenmiş rank metoduyla

ortak döngüsel optimizasyonu, kuadratik programlama (QP), sıkıştırılmış algılama, ve

DoA ve bilinmeyen karşılıklı bağlaşımın saptanmasında kullanılan ve de yüksek çözünür-

lülük kapasitesine sahip L2 normu oluşturmaktadır. Önerilen yöntemin temelde di-

namik bir yapıya sahip olması ve diğer yöntemlere kıyasla çok düşük karmaşıklık dere-

cesi içermesi en büyük avantajlarındandır. Ayrıca, 5G standartlarının netleşmemesinden

dolayısıyla LTE için mevcut deniz aşırı radyo kaynak bloğu tahsis yöntemleri incelenmiş

ve mevcut kaynak tahsis algoritmalarıyla kıyaslanarak max-min optimizasyonu öner-

ilmiştir. Önerilen tahsis yönteminin sonuçları, algoritmanın değişebilen yük ile daha

adil kaynak tahsisi yaptığını yansıtmaktadır. Özetle, bu tez dışbükey optimizasyon ve

doğrusal cebirin kablosuz iletişim uygulamalarındaki önemini göstermektedir.

Anahtar Sözcükler: Optimizasyon, LTE, 3-Ray Elektromanyetik Yol Kaybı, Max-min

Tamsayı Linear Programlama, SINR, Radyo Kaynak Bloğu Tahsisi
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Chapter 1

Introduction to 5G Networks

1.1 Evolution of Cellular Technologies

The vast advancement in mobile wireless communication since last few decades has been

path breaking. Each generation of wireless technology came up with its own technology

standards that were unique and different than the previous one’s. The first generation

(1G) mobile wireless communication network was meant only for voice calls (analog com-

munication) and was based on frequency division multiple access (FDMA) technology.

On the other hand, second generation (2G) was a digital technology and supported text

messaging with packet rates ranging from 10 Kbps to 64 Kbps. It relied on time domain

multiple access (TDMA). Moving forward, the third generation (3G) mobile technology

revolutionized the data speed and started supporting multimedia platform. This was due

to code division multiple access (CDMA) technology with data rates ranging from 64

Kbps to 2 Mbps. Approximately, after a decade came the fourth generation (4G) tech-

nology which brought the mobile internet broadband concept into picture with maximum

speeds going up to 100 Mbps. This was due to orthogonal frequency division multipli-

cation access (OFDMA) technology. Now, the latest much talked 5G or 5th generation

mobile technology in which not just internet broadband but also networked society is

being considered is supposed to deliver data speeds from 1 Gbps to 10 Gbps. Figure 1.1

shows the evolution of the mobile wireless technology from 1G to 5G. In next section,

massive MIMO, the key enabler behind the 5G technology is discussed in brief.

1
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Figure 1.1: Evolution of cellular technologies from 1G to 5G

1.2 Massive MIMO for 5G

Massive MIMO holds an immense prospects for 5G wireless research and in next-generation

wireless networks as it promises significant gains that offer the ability to accommodate

many users at higher data rates with better reliability while consuming less power. This

much talked 5G technology that gives unprecedented improvements in network through-

put and capacity, enhancements in spectral efficiency, reduced end-to-end latency, and

increased reliability is now being implemented practically. The performance improve-

ment in 5G as is 20 times more than 4G which means 20Gbps as compared to 1Gbps.

In a nutshell, massive MIMO has many (hundreds) of antennas that serve in parallel

tens of terminals. Figure 1.2 shows the typical 5G massive MIMO cell as compared to

that of 4G MIMO cell, where the former is loaded with many more antennas at base

station. Extra antennas brings huge improvements in throughput and radiated energy

efficiency in the network. The other advantages of massive MIMO are the low cost

low-power components, simple MAC layer, and robustness against jamming [1]. Many

deployment configuration with massive MIMO are envisioned as shown in Figure 1.3,

which are cylindrical, rectangular, linear or distributed.

With every new technology comes it’s limitation or challenge set. In massive MIMO,

apart from pilot contamination, hardware impairments, channel characterizations, the

capacity impairments is a very challenging task. The main reason for capacity impair-

ment is the channel correlation that affects the performance in a big way. In general,

if the channel correlation is greater then the channel capacity goes smaller. The main
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reasons for channel correlation are spatial correlation and antenna mutual coupling. In

this work, the focus is especially laid on mutual coupling part.

Figure 1.2: Multiantenna technology : 4G MIMO to 5G massive MIMO

Figure 1.3: Massive MIMO antenna configurations [1]

1.3 Motivation Behind the Work

The main motivation behind this thesis work is not just to understand the estimation of

DoAs but to consider mutual coupling while estimating DoAs in massive MIMO networks
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for 5G. This can be accomplished only by using joint iterative optimization methods. To

our best knowledge, this work is the first to consider joint estimation of DoAs and un-

known mutual coupling in massive MIMO networks for 5G. The results thus obtained

from the proposed method for DoA estimation with unknown mutual coupling show a

big reduction in complexity as compared to other DoA estimation methods, which is

discussed in later chapters. Also, the proposed method can be viewed as an extension

of JIO algorithm [3] with a difference that it estimates the DoAs with unknown mutual

coupling. In addition to that, post optimization techniques for better DoA resolution are

discussed and proposed thereafter. The proposed post optimization methods have supe-

riority over other methods in that they are dynamic with excellent resolution in nature.

Furthermore, in absence of 5G standards, a max-min radio block resource allocation

method is proposed for LTE in marine channels. The results showed better fairness as

compared to other classical methods of radio resource block allocation. In next chapters,

all the assumptions and details regarding joint DoA estimation with unknown mutual

coupling and radio resource block allocation for LTE over sea will be discussed in detail.

Also, proposed methods, comparisons and results thus obtained will be discussed with it.



Chapter 2

DoA Estimation by Classical

Methods in Massive MIMO

2.1 Introduction

Array signal processing has many applications that include sonar, radar and wireless

communication networks [4] and one of the major aim of array processing is to estimate

DoAs in wireless networks. The action starts when an electromagnetic wave impinges

upon an array of antenna’s and the associated signal’s are processed to extract DoAs

with other intelligible information. DoA extraction methods are used to design and

adapt the directivity of array antennas in a better way so as to align the beam towards

signal of interest (SoI) and reject non signal of interest (NSoI) or interference. This can

be visualized from the Figure 2.1. By doing so, a high SNR is guaranteed which in turn

reflects in high capacity for the network.

Broadly, the DoA estimation methods are divided into three main domains: classical,

sub space and maximum likelihood methods [5, 6]. Among these algorithms, the maxi-

mum likelihood (ML) method offers high performance with increased computational cost.

On the other hand, subspace methods have better performance and have less cost for

computation. On the contrary, classical methods are simple and offer bad to medium per-

formance with a huge computation load. In this chapter, the classical methods that are

based on simple beamforming method are discussed in detail that serves as an important

background for the proposed method listed thereafter.

5
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Figure 2.1: Antenna array processing for SoI and NSoI

The two main classical techniques for DoA estimation are delay-and-sum method and the

minimum variance distortionless response (MVDR) method [4]. The main idea behind

the classical methods is to scan a beam through space and measure the power received

in each direction. However, before formulating these methods, lets describe the system

parameters accordingly.

2.2 Propagation Delay in Uniform Linear Arrays

Consider an uniform linear array geometry with N elements with index numbered as

0, 1, 2, 3...., N − 1. The array elements are considered to have λ/2 (half wavelength)

spacing so as to bear minimum effects of mutual coupling. Since the array elements are

closely spaced, it is assumed that the signals received by the different antenna elements

are correlated. The baseband signal s(t) is received on the array and it’s assumed that

the phase of s(t) received at antenna element 0 is zero. By assuming so, the phase of the

other elements is calculated relative to the element 0. This is represented in Figure 2.2.

Now, the time delay of arrival for the signal vector is:

∆tk =
kd sin θ

c
(2.2.1)

where c is the speed of the light.
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Figure 2.2: Plane wave received at ULA

Suppose s(t) (narrowband digitally modulated signal) and its lowpass equivalent s− l(t),

carrier frequency fc, and symbol period T . Then, s(t) is:

s(t) = Re
{
sl(t)e

j2πfct
}

(2.2.2)

The signal at k-th element is then:

xk(t) = Re
{
sl(t−∆tk)e

j2πfc(t−∆tk)
}

(2.2.3)

If the signal xk(t) is then downconverted to baseband, the received signal in that case

would be:

xk(t) = sl(t−∆tk)e
−j2πfct∆tk (2.2.4)

2.3 Narrowband Approximation

The received baseband signal, when sampled with a sampling period of T seconds can

be further represented as:
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xk(nT ) = sl(nT −∆tk)e
−j2πfct∆tk (2.3.1)

In wireless digital communication, T >> ∆tk, k = 0, 1, 2....N − 1, that is the symbol

period is much greater than each of the propagation delay. Therefore, the following

approximation can be made [7].

xk(nT ) ≈ sl(nT )e−j2πfct∆tk (2.3.2)

The element spacing is computed with respect to wavelength as d = D/λ and also fc is

related to λ as c = λfc. Using these, the equation 2.3.2 can be written as:

xk(nT ) ≈ sl(nT )e−j2πnd sin θ (2.3.3)

To avoid aliasing in space the distance between elements d has to be λ/2 or less [8]. This

will further simplify the equation 2.3.3 to

xk(nT ) ≈ sl(nT )e−jπk sin θ (2.3.4)

In discrete time notation, sampled signal at the k-th element equation can be expressed

as

xk[n] ≈
r−1∑
i=0

si[n]a(θi) (2.3.5)

where r is the total signals present and the n-th symbol of the i-th signal is denoted by

si[n] for i = 0, 1, 2....r − 1.
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2.4 Matrix Representation for Array Data

In equation 2.3.5, considering all elements of the array, i.e., k = 0, 1, 2, ..., N−1 in matrix

form is as follows

x0[n]

x1[n]

.

.

xN−1[n]


=



a0(θ0) a0(θ1) . . a0(θr−1)

a1(θ0) a1(θ1) . . a1(θr−1)

. . . . .

. . . . .

aN−1(θ0) aN−1(θ1) . . aN−1(θr−1)





s0[n]

s1[n]

.

.

sr−1[n]


+



w0[n]

w1[n]

.

.

wN−1[n]


(2.4.1)

where wk[n] is the AWGN assumed at each element. The N × 1 vector xn, the N × r

matrix A, the signal vector sn and noise vector wn is further represented in matrix

compact form.

xn =
[
a(θ0) a(θ1) . . a(θr−1)

]
sn + wn = Asn + wn (2.4.2)

The columns of matrix A: a(θi) are known as steering vectors of signal si(t). All these

steering vectors together are known as array manifold [9]. In some array configuration the

array manifold can be found analytically but in case of complex geometry the manifold

is determined practically. In this work, analytic computations for such arrays are used

extensively. Since angle of arrival of each r signals is different, the columns of matrix A

will form a linearly independent set. If there is no noise then the array output is:

xn = Asn (2.4.3)

Moreover, the received signal vector xn is a linear combination of matrix A columns.

Hence, these vectors span the signal subspace. The signal subspace idea is common

to many application, for example: DoA, low rank filtering etc [9–11]. Now, antenna

beamforming mechanism for classical DoA estimations will be discussed in the next

section before going on to subspace based methods,
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2.5 Antenna Beamforming Basics

Antenna beamforming is the process of assigning complex weights to the receive antennas

so as to have a desired pattern in the direction of maximum power [12]. The weighted

linear combination of the output from the array elements can be written as

y[n] =

N−1∑
k=0

wkxk[n] (2.5.1)

where w ∈ CN×1 (Complex weight). In vector notation:

y[n] = wHxn (2.5.2)

This process of adjusting the weight vector w in such a way so that the beam is aligned

towards SoI is called as beamforming or spatial filtering. There are numerous designs

to compute efficient weights for a desired pattern. For a signal with an AoA as θ, the

beamformer output can be given as:

y[k] =
1

N

N−1∑
n=0

wnxn[k] =
1

N

N−1∑
n=0

wns0[k]e−j2πnd sin θ =
s0[k]

N

N−1∑
n=0

wne
−j2πnd sin θ (2.5.3)

The scaling factor with the signal is called the beampattern or array factor, which in

vector notation is:

w(θ0) =
1

N

N−1∑
n=0

wne
−jnω = wHa(θ) (2.5.4)

where ω = 2πd sin θ and a(θ) represents the steering vector, which is given as

a(θ) =
[
1 e−jω e−2jω . . e−j(N−1)ω

]
(2.5.5)
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2.6 Classical Methods

As the systems and beamforming basics are covered in previous sections, the two famous

classical DoA estimation methods that is delay and sum method and MVDR will be

discussed now in detail.

2.6.1 Delay and Sum Method

The delay-and-sum method calculates DoAs by measuring signal power at every possible

angle of arrival and at the end choosing the angle that delivers maximum power [6]. The

beamformer output power is given by:

P (θ) = E[yHy] = E|wHxn|2 = E|a(θ)Hxn|2 = a(θ)HRxxa(θ) (2.6.1)

When w is aligned with the steering vector of the incoming signal then P (θ) would have

peaks at those angles.

2.6.2 Capon’s Minimum Variance Distortionless Response Technique

Capon’s minimum variance distortionless response method (MVDR) or Minimum output

energy (MoE) beamformer [13] has a different optimality criterion. The objective is to

minimize output power with gain in the desired direction is kept fixed. So, any reduction

in output power would be by interference suppression. The problem therefore is stated

as:
minimize E[yHy]

subject to wHa(θ) = 1
(2.6.2)

The optimization problem is solved using Lagrange multiplier method that is to find

minimum of |L(w;λ)|. As it is know, y = wHs[k]a(θ). Therefore, yHy :

yHy = (a(θ)Hws[k]H) · (s[k]wHa(θ))

= aHwRxxw
Ha(θ)

(2.6.3)
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The L(w;λ) is given by:

L(w;λ) = a(θ)HwRxxw
Ha(θ)− λ(wHa(θ)− 1) (2.6.4)

Taking derivative (with respect to wH) and setting the solution to zero.

dL
dwH

= a(θ)HwRxxa(θ)− λa(θ) = 0

a(θ)HwRxxa(θ) = λa(θ)

wRxx = λa(θ)

w = λR−1
xxa(θ)

(2.6.5)

Then, to find λ, substitute w to the constraint equation which results to

λR−1
xxa(θ)Ha(θ) = 1

λ =
1

a(θ)HR−1
xxa(θ)

(2.6.6)

Hence, the weights of MVDR [5, 14] are given by

w =
R−1
xxa(θ)

a(θ)HR−1
xxa(θ)

(2.6.7)

In summary, classical beamforming method relies on the principal of choosing DoAs

along the direction from which it receives the high power. The difference between the

two classical methods is in the formulation of constraint part, for example, in MVDR

method, interference suppression is the constraint that the method tries to achieve apart

from finding the DoAs. The next chapter will give an insight into another method of

finding DoAs that is subspace based methods for DoA estimation in antenna arrays.



Chapter 3

DoA Estimation by Subspace

Methods in Massive MIMO

3.1 Introduction

The subspace methods of DoA estimation for antenna arrays are based on segregating

the signal and noise subspaces and utilizing these subspaces to determine the power

spectrum. These methods originated from spectral estimation research [10], where the

main feature is to calculate the autocorrelation or autocovariance matrix of signal with

noise and then utilize eigen value decomposition to find signal and noise subspaces.

The advantage of subspace methods is that they have high resolution capabilities, low

complexity and are well implementable in practice.

3.2 Multiple Signal Classification Algorithm or MUSIC

The MUSIC algorithm proposed by Schmidt [11] is one of the most famous methods

for DoA estimation. The method works as follows. Consider the antenna array output,

which in vector form (xn) is given as

xn = Asn + wn (3.2.1)

13
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It is assumed that sn and wn to be uncorrelated. The noise vector wn is AWGN (zero

mean) and correlation matrix of σ2I. Defining Rss = E[SnS
H
n ]. The spatial covariance

matrix is then:

Rxx = E[xxH ]

= E[(ASn + wn)(ASn + wn)H ]

= AE[SnSn
H ]AH + E[wnwn

H ]

= ARssA
H + σ2IN×N

= R̃s + σ2IN×N

(3.2.2)

R̃s: N ×N matrix is the signal covariance matrix and has rank M . Therefore, N −M

eigenvectors belong to zero eigenvalue. Let qm be one of those N −M eigen vector.

Then,

R̃sqm = ARssA
Hqm = 0

=⇒ AHqm = 0
(3.2.3)

From equation 3.2.3, it is clear that N −M eigenvectors (qm) of R̃s are zero eigenvalue

which are orthogonal to M steering vectors. This is the fundamental idea behind the

basics of MUSIC. Defining Qn : N × (N −M) matrix with these eigen vectors. The

pseudo-spectrum function plotted by MUSIC is then written as

PMUSIC(θ) =
1

a(θ)HQnQ
H
n a(θ)

(3.2.4)

In practice, the covariance matrix Rxx is unknown and does require taking average over

many data snapshots. That is

Rxx =
1

K

K∑
k=1

xkx
H
k (3.2.5)

where xk is the k-th snapshot. In [15], the author has shown that K > 2N , for SNR ≤

3 dB of the calculated optimum value.
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3.3 Root MUSIC

Root music [16] is another form of MUSIC algorithm that is only applicable to uniform

arrays. It provides better resolution relative to MUSIC especially at low SNR. The

steering vector is then:

an(θ) = exp(j2πnd sin(θ)), n = 0, 1, 2, ..., N − 1, (3.3.1)

where element spacing d is in λ’s and θ is the DoA. The MUSIC spectrum as defined by

equation 3.2.4 is :

PMUSIC(θ) =
1

a(θ)HQnQ
H
n a(θ)

=
1

a(θ)HCa(θ)
(3.3.2)

where C is

C = QnQn
H (3.3.3)

Writing denominator as a double summation [6], that is

P−1
MUSIC =

N−1∑
k=0

N−1∑
p=0

exp(−j2πpd sin(θ))Ckpexp(j2πkd sin(θ))

P−1
MUSIC =

∑
p−k=l

Clexp(−j2π(p− k)d sin(θ))

(3.3.4)

where, Cl is determined by the sum of the l-th diagonal of C. A polynomial D(z) can

be defined as follows:

D(z) =

N+1∑
−N+1

Clz
−l (3.3.5)

The polynomial D(z) is valid on the unit circle, if P−1
MUSIC is equivalent to D(z). Since

in PMUSIC , there are r peaks but in D(z) there will be r valleys or in other terms r zeros

on unit circle. In absence of noise, D(z) will have r zeros on unit circle, however with

noise, the roots will be close to unit circle. The Root music reduces the DoA estimation

to just finding roots for a (2N + 1) the order polynomial.
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3.4 Smooth MUSIC

In a realistic wireless network situation, all the incoming signals are not uncorrelated

and in these scenarios, a famous variant of MUSIC can be utilized which is known as

smooth MUSIC [6]. Since the signals are correlated, the matrix A which was diagonal

for music would not be the same in this case, The N array elements are divided into

overlapping subarrays of size L with each having P elements. Hence, L = N−P +1 that

is L correlation matrices are estimated with every matrix having a dimension of P × P .

The smoothed correlation matrix is given as:

RL =
1

L

L−1∑
l=0

Rl (3.4.1)

This formulation can detect DoA of up to L− 1 correlated signals.

3.5 The Minimum Norm Method

The minimum norm method [17] is a high resolution method in which a vector is defined

such that it lies in the noise subspace and where the first element has the minimum norm

[5, 18]. That is:

g =

1

ĝ

 (3.5.1)

Once the minimum norm vector is found, DoAs are given by largest peaks of the following

function [18]

PMN (θ) =
1∣∣∣∣∣∣a(θ)H

1

ĝ

∣∣∣∣∣∣
(3.5.2)

Let Qs be the matrix whose columns form the signal subspace, Qs can be partitioned as

[5, 18]
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Qs =

α∗
Q̄s

 (3.5.3)

As vector g lies in the noise subspace, it implies:

QH
s

1

ĝ

 = 0 (3.5.4)

The minimum frobenius norm for this equation is given by:

ĝ = −Q̄s(Q̄
H
s Q̄s)

−1α (3.5.5)

From equation 3.5.3, it can be written as

I = Q̄s(Q̄
H
s Q̄s)

−1α = (I − αα∗)−1α = α/(1− ||α||2) (3.5.6)

Using equation 3.5.6, the matrix inverse calculation can be eliminated from equation

3.5.5 that is g can be obtained based on the orthonormal basis of signal subspace. This

is shown as follows:

ĝ = −Q̄sα/(1− ||α||2) (3.5.7)

Once g is calculated, the min-norm function is evaluated and the DoAs are found by the

r peaks in the output.

3.6 Estimation of Signal Parameters via Rotational Invari-

ance Techniques or ESPRIT

The ESPRIT method is another famous DoA estimation method that was proposed by

Roy and Kailath [5, 9]. The method function as follows. Consider an array of N elements

that can be further divided into N/2 pairs called as doublets. The displacement vector
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is identical for one sensor in the doublet to its pair. The vector x and y are the data

vectors corresponding to two N/2 element subarrays. The subarray output is then:

xk[n] =

r−1∑
i=0

si[n]ak(θi) + w
(x)
k [n] (3.6.1)

yk[n] =

r−1∑
i=0

si[n]ej2π∆ sin θkak(θi) + w
(y)
k [n] (3.6.2)

where ∆ is the displacement in wavelengths of the element in the doublet from its pair.

The DoA estimation would be with respect to to this displacement vector. In matrix

form, the output of the two subarrays x and y can be written as:

xn = Asn + w(x)
n (3.6.3)

yn = AΦsn + w(y)
n (3.6.4)

where r × r diagonal matrix Φ has diagonal elements as

e(j2π∆ sin θ0), e(j2π∆ sin θ1), e(j2π∆ sin θ2), . . . , e(j2π∆ sin θr−1)

A single 2N − 2 data vector can be formed as

zn =

Xn

yn

 = AbSn + wn (3.6.5)

Ab =

 A

AΦ

 ,wn =

w(x)
n

w
(y)
n

 (3.6.6)

The columns of Ab span the signal subspace and if V s is a matrix whose columns are

a basis for signal subspace corresponding to data vector zn. Then Ab and V s can be

related by a r × r transformation matrix T that is given by:

V s = AbT (3.6.7)

This can be partitioned as follows:
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V s =

Ex

Ey

 =

 AT

AΦT

 (3.6.8)

From equation 3.6.8, it can be observed that the range and space spanned by Ex,Ey

and A is same. Defining another rank r matrix Exy as:

Exy = [ExEy] (3.6.9)

Also, defining another matrix F of rank r with dimension of r × 2r that spans the null

space of Exy. Therefore,

0 = [ExEy]F = ExF x + EyF x = ATF x + AΦTF y (3.6.10)

Defining Ψ as:

Ψ = −F x[F y]
−1 (3.6.11)

Rearranging equation 3.6.10 gives :

ExΨ = Ey (3.6.12)

substituting equation 3.6.8 into equation 3.6.12, that is

ATΨ = AΦT =⇒ ATΨT−1 = AΦ =⇒ TΨT−1 = Φ (3.6.13)

Hence the diagonal elements of Φ are equal to eigenvalues of Ψ. So, once the eigenvalues:

λ’s of matrix Φ has been computed, DoAs can be obtained as follows [9]:

λk = ej2∆sinθk (3.6.14)

θk = arcsin

(
arg(λk)

2π∆

)
(3.6.15)
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Figure 3.1: Comparison of various DoA methods

3.7 Simulation Results

The simulation results are plotted respectively in Figure 3.1. It is very clear that the

min norm and MUSIC algorithm generate better resolution as compared to the MVDR

and classical beamformer. Moreover, the output power of min norm, MUSIC algorithm

and classical beamformer is higher than the MVDR. However, the main focus of these

methods is to obtain high resolution DoA estimate rather than concentrate on output

power, which can be managed by attenuators or by compressive sensing methods. Hence,

MUSIC and min norm are the best DoA estimation methods than the other methods

taken in consideration. Till now, the mutual coupling effect was not considered in the

estimation methods. In the coming chapter, firstly the mutual coupling theory will be

discussed in detail and then it’s effect on DoA estimation will be analyzed considering

various famous DoA estimation methods. Also, DoA resolution improvement and a new

DoA estimation with unknown mutual coupling based on joint iterative optimization is

proposed and discussed in details.



Chapter 4

Joint DoA Estimation with Mutual

Coupling in Massive MIMO

4.1 Introduction

The mutual coupling estimation problem given various uncertainty in the environment

such as thermal effects and aging has been a topic of interest for long [7, 19, 20]. In

this chapter, first the fundamentals of mutual coupling will be discussed in brief and

towards the end, a joint iterative subspace optimization with rank reduction to estimate

DoAs with this dynamic unknown mutual coupling in massive MIMO networks will be

proposed and discussed with its advantages.

4.2 Mutual Coupling in Antenna Array

Mutual coupling is defined as an electromagnetic interaction between array elements

[21]. It affects the antenna array mainly in three ways: first is the change in the array

radiation pattern, second is the change in the array manifold, and last is the change in

the matching characteristic of the antenna elements [7, 19].

Consider N antenna elements of a receiver. The mutual impedance between the i-th

(i = 1, 2, 3, ..., N) and j-th element (j = 1, 2, 3, ..., N) is formulated as:

21



Chapter 4. Joint DoA Estimation with Mutual Coupling in Massive MIMO 22

Zij =
Vi
Ij

(4.2.1)

When i = j, Zij is called as self impedance and if i 6= j, Zij is the mutual impedance.

Also, Vi is the voltage on i element’s open-circuited port because of current Ij of element

j’s port with other ports being open-circuited. Coupling matrix: Z is thus given as:

Z =



Z11 Z12 . . Z1N

Z21 Z22 . . Z2N

. . . . .

. . . . .

ZN1 ZN2 . . ZNN


(4.2.2)

An example of two antenna system, their self and mutual coupling parameters are de-

picted in Figure 4.1.

Figure 4.1: Self and mutual impedance [2]

Z, when scattering matrix S is with terminating load of Z0 = 50 Ω is :

Z = Z0(IN + S)(IN − S)−1 (4.2.3)

where IN is the identity matrix of dimension N ×N . Thus,
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

V1

V2

.

.

VN


=



Z11 Z12 . . Z1N

Z21 Z22 . . Z2N

. . . . .

. . . . .

ZN1 ZN2 . . ZNN





I1

I2

.

.

IN


(4.2.4)

The excitation currents for the array radiation pattern to be in a required direction is :



I1

I2

.

.

IN


=



e−j
2π
λ

[sin θ0(x1 cosφ0+y1 sinφ0)+z1 cos θ0]

e−j
2π
λ

[sin θ0(x2 cosφ0+y2 sinφ0)+z2 cos θ0]

.

.

e−
2π
λ

[sin θ0(xN cosφ0+yN sinφ0)+zN cos θ0]


(4.2.5)

where (xi, yi, zi) represent coordinates of the antenna element i. φ0 and θ0 are the DoAs

(azimuth and elevation angles). The port i’s driving impedance is then:

ZDi =
Vi
Ii

(4.2.6)

On expansion

ZDi =
Vi
Ii

=

N∑
j=1

Zij
Ij
Ii

=

N∑
j=1

Zije
−j 2π

λ
{sin θ0[(xi−xj) cosφ0+(yi−yj) sinφ0]+(zi−zj) cos θ0}

(4.2.7)

Also, from circuit theory [21, 22]:

I = (Zg + Z)−1V tx

v = ZI = Z(Zg + Z)−1V tx

(4.2.8)

The circuit level model is short sighted when it comes to excitation by electromagnetic

fields. Also, the radiation pattern analysis method is only accurate in directions relative

to antenna system and it does require some form of interpolation [7, 23, 24] that are to
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be employed to estimate the radiation patterns. However, it requires a large memory

for good angular resolution. On the contrary, analysis methods minimize memory needs

and hence, they are mainly employed in receiver systems [23, 25]. The main idea is that

the port voltages and incident signals share a mathematical relationship:

vrx(φ, θ) = Cvideal(φ, θ) (4.2.9)

where

C =



C11 C12 . . C1N

C21 C22 . . C2N

. . . . .

. . . . .

CN1 CN2 . . CNN



videal(φ, θ) =



e−j
2π
λ

[sin θ0(x1 cosφ0+y1 sinφ0)+z1 cos θ0]

e−j
2π
λ

[sin θ0(x2 cosφ0+y2 sinφ0)+z2 cos θ0]

.

.

e−
2π
λ

[sin θ0(xN cosφ0+yN sinφ0)+zN cos θ0]



(4.2.10)

The matrix C is known as coupling matrix with Cij as coupling parameters between

elements i and j.

4.3 Mutual Coupling Matrices for Different Arrays

Representing mutual coupling as a matrix has the biggest advantage of symmetry and

sparsity that helps to design the DoA estimation system very well. The most common

array configurations are linear arrays and circular arrays [7, 19, 20].

4.3.1 Linear Arrays

Since mutual coupling coefficients are negatively related to distance between antenna

elements, thus for a uniform linear array (ULA) the matrix C has a banded structure.
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Also, mutual coupling between two elements that are very distant is assumed to be zero.

Therefore, the matrix C has a toeplitz structure that is given as:

CULA = Toeplitz{[C1, C2, C3, ..., CM ]} (4.3.1)

where M represents total number of elements.

4.3.2 Circular Arrays

Under the same premise of mutual coupling relationship with distance, in uniform circular

arrays (UCA), the mutual coupling matrix exhibits circulant structure with three bands:

upper hand right band, center band and lower left corner band.

CUCA =


Toeplitz{[C1, C2, C3, ..., CL, CL−1, ...C2]} M is even

Toeplitz{[C1, C2, C3, ..., CL, CL, CL−1, ...C2]} M is odd
(4.3.2)

where L =
{
M+2

2

}
, if M is even and L =

{
M+1

2

}
, if M is odd.

4.4 Direction Finding in Presence of Direction Independent

Mutual Coupling

Consider the array signal model described in Chapter 2, the array output with coupling

is rewritten as

y(ti) = C

K∑
k=1

a(θk)sk(ti) + w(ti), i=1,2,...,T (4.4.1)

where C ∈ CM×M is direction independent complex mutual coupling matrix, w(ti) is the

AWGN, sk(ti) is the complex baseband source signal and a(θk) ∈ CM×1 is the steering

vector belonging to k-th source. The mutual coupling matrix has a definite structure

on basis of its array configuration given by equation’s (4.3.1, 4.3.2). Since the system

model with coupling is well set up, DoA estimation with and without coupling will be

discussed in next section where the comparisons will be drawn and discussed.
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4.4.1 Comparison and Simulation of DoA Algorithms in Absence and

Presence of Mutual Coupling

In the presence of mutual coupling, the columns of signal subspace will have coupling

induced in the steering vector that is Ca(θ). However, the orthogonality between signal

and noise subspace will still hold for subsapce based methods. Hence, the modified DoA

methods will be

w =
R−1
xxCa(θ)

a(θ)HCHR−1
xxCa(θ)

(4.4.2)

From Section 3.2 of Chapter 3, MUSIC method is given as

Rxx = E[xxH ]

= E[(ASn + wn)(ASn + wn)H ]

= AE[SnS
H
n ]AH + E[wnw

H
n ]

= ARssA
H + σ2IN×N

= R̃s + σ2IN×N

(4.4.3)

and

PMUSIC(θ) =
1

a(θ)HQnQ
H
n a(θ)

(4.4.4)

With mutual coupling being present, the columns of signal subspace will have coupling

induced in the steering vector that is Ca(θ). However, the orthogonality between signal

and noise subspace will still hold. Hence, the music spectrum will be

PMUSIC(θ) =
1

a(θ)HCHQnQ
H
n Ca(θ)

(4.4.5)
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The simulation result comparing the DoA methods with and without coupling are plotted

below in Figure 4.2.
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Figure 4.2: Comparison with and without coupling of various DoA methods

It can be easily inferred from the Figure 4.2 that the coupling changes the angular

resolution by 1-4◦. Considering the narrow beams in massive MIMO networks (5G), this

can lead to very low SNR and thus reduction in the overall capacity. Hence, it becomes

an important task to auto calibrate coupling effects.

4.5 Joint Estimation of the DOAs and Unknown Mutual

Coupling Matrix

The main problem with the estimation methods is that it lacks the proper formulation

of mutual coupling matrix C. Coupling matrix is a dynamic quantity which depends on

many factors such as temperature, humidity etc. Therefore, it serves us a great value if

it is estimated in parallel without interrupting direction finding method [7, 19, 20].
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4.5.1 Algorithm for Joint Estimation of DoA and Coupling Matrix

The problem of finding DoA with unknown coupling matrix has been studied extensively

in the last decade. Many algorithms have been developed depending upon the subspace

methods, however their DoA resolution suffers a lot. In this section, we will utilize a

simplistic data model.

The output signal vector : x(t) from an antenna array is then:

x(t) = CAs(t) + w(t), C ∈ CM×M (4.5.1)

where

A = [a(ψ1), a(ψ2), a(ψ3), ....., a(ψN )], A ∈ CM×N (4.5.2)

and

s(t) = [s1(t), s1(t), s1(t), ...., s1(t)]T , s(t) ∈ CN×1 (4.5.3)

Due to the symmetry of the array for the cases of ULA and UCA, the unknown mutual

coupling coefficients can be given by unique values : L. That is,

c = [c1, c2, c3, ....., cL]T ∈ CL×1

1 = c1 > |c2| > |c3| > ..... > |cL| > 0
(4.5.4)

The music algorithm in Chapter 3 is re-expressed as,

PMUSIC(θ) =
1

a(θ)HQnQ
H
n a(θ)

(4.5.5)

With unknown DoAs and mutual coupling, a cost function J is defined as:

J = ||QH
n CA||2F =

K∑
k=1

||QH
n Ca(θk)||2 (4.5.6)

Where || · ||F denotes Frobenius Norm for matrix norm and || · || denotes vector-2 norm.

So, the DoA and coupling parameters is determined by minimizing J [7, 19, 20]. Taking
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the advantage of the symmetry posed by ULA, matrix to vector transformation can be

done, so as to make it into a QP form [7],

Ca(θ) = T [a(θ)]c ∈ CM×1 (4.5.7)

where c is a vector referred in equation 4.5.7, and T [a(θ)] ∈ CM×L is the transformation

matrix whose values are determined by the corresponding array topology. Plugging

equation 4.5.7 into 4.5.6, we obtain

J =
K∑
k=1

cHTH [a(θ)]QnQ
H
n T [a(θ)]c = cHQ(θ)c (4.5.8)

where

Q(θ) =

K∑
k=1

TH [a(θ)]QnQ
H
n T [a(θ)] (4.5.9)

As hermitian matrix Q(θ) is independent of c, J changes to a quadratic minimization

problem as:

min J
{θk}Kk=1

= arg min cHQ(θ)c
{θk}Kk=1

(4.5.10)

In general this problem has a trivial solution that is zero. So, to avoid such case, a

constraint such as ||c|| > 0 is added to the optimization problem.

In summary, the algorithm [20] for a ULA works as follows:
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Algorithm 1 An autocalibration algorithm with mutual coupling by Min Wang et al
[20]

1: Init c(0) =
[
1 z12

z11

]T
as the unique coupling matrix for ULA with the assumption

that the coupling matrix is hermitian and coupling value more than half of wavelength
are zero.

2: Set iteration counter to 0.
3: Begin: Search for K peaks using peak search method P (θ) = J−1 = cHQ(θ)c with

c(0). The peaks correspond to the newly estimated DoAs {θk}Kk=1

4: Calculate the cost function stated in equation 4.5.6
5: Perform 4.5.10 to estimate the coupling matrix with strict constraint of c > 0. The

result of the QP minimization gives us c(Iteration+1) vector value of dimension Cl×1

6: Normalize the c(Iteration+1) with the first element of the c(Iteration+1) vector
7: Substitute c(0) with c(Iteration+1) in the peak searching method P (θ) = J−1 =

cHQ(θ)c to get new DoAs {θk}Kk=1

8: Increment iteration counter and go to the first step again: Begin.
9: Stop at convergence when J (l−1)−J (l) ≤ δ, where δ denotes the convergence thresh-

old.

4.5.2 Proposed Improvement in Resolution of the DoA Estimation us-

ing Convex Optimization

Once we determined the unknown coupling matrix, we can further use L2 norms and

compression sensing theory to obtain a high resolution DoA spectrum [26, 27]. The

goal is to construct the spectrum for DoA estimation in such a way that achieves the

following.

• Output tracking: The new spectrum should track the original music spectrum

or the reference spectrum, which as a quadratic function is given a:

F track =
1

θI + 1

θI∑
θ0

(P (θi)− Pmusic(θi))
2 i ∈ {1, 2, ....I} (4.5.11)

• Compression: The new spectrum should not be large in magnitude. This can be

written as:

Fmag =
1

θI + 1

θI∑
θ0

(P (θi))
2 (4.5.12)
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• Smoothness: The new spectrum should be as smooth as possible without spikes

near the peak. Such smoothness can be mathematically written as

F smooth =
1

θI

θI−1∑
θ0

(P (θi+1)− P (θi))
2 (4.5.13)

Finally, the function can be written as :

arg min (F track + δFmag + ηF smooth) (4.5.14)

Where δ > 0 and η > 0 are the two tuning scalars that can be used to trade off the three

objectives of tracking, compression and smoothing.
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4.5.3 Simulation Results

As expected the cost function converges to almost zero with every iteration and thus

produces a least minimum square error as depicted in Figure 4.3.
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Figure 4.3: Cost function error every iteration.

Moreover, on performing post optimization with compressive sensing and norm optimiza-

tion methods, we can further tune the output as can be seen in the Figure 4.4. Here the

two plots show the tuning values as δ = 0 and 0.9, while η as 0.005 and 0.9.
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4.6 Joint Iterative Subspace Optimization with Rank Re-

duction to Estimate the DOAs and Unknown Mutual

Coupling Matrix in Massive MIMO Networks

In this section, a low rank scheme known as joint iterative optimization or JIO [3] is

presented for DoA estimation and then it is extended for the case of unknown coupling

matrix with special emphasis towards massive MIMO networks. The rank reduction

matrix changes the incoming vector into a very low dimension vector space and an

secondary reduced rank vector is used to calculate DOAs. This work utilizes that rank

reduced covariance matrix to calculate the cost function and thereafter estimate the

unknown dynamic mutual coupling as described in the algorithm 1 of previous section.

The proposed algorithm can be visualized as in Figure 4.5

Figure 4.5: Proposed joint Iterative optimization method to estimate DoA and un-
known coupling

4.6.1 Proposed Extended JIO

In JIO [3], a reduced rank matrix : T r ∈ CM×r is used to transform the input vector, x(i),

to a very lower dimension that is x ∈ CM×1 transforms to x̄ ∈ Cr×1, where r << M .

The secondary reduced rank vector ḡθ ∈ Cr×1 is used to calculate the power for the

DoAs. The reduced correlation matrix is also a lower dimension space of ˆ̄R ∈ Cr×r as

compared to R̂ which is of CM×M dimension. As mentioned before, the contribution

of this work is to utilize the new reduced rank correlation function not just to extract

DoAs but also estimate unknown mutual coupling. The main advantage of utilizing this

method is the very high decrement in complexity and high ease of implementation.
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The main goal therefore is to find the rank reduction matrix T r and the secondary

reduced vector ḡθ. These values are estimated with respect to θ and is formulated as an

optimization problem:

arg minimize
ḡθT r

ḡHθ T
H
r RT rḡθ

subject to ḡHθ T
H
r a(θ) = 1

where R is the covariance matrix. Using lagrange multiplier, the unconstrained opti-

mization problem is then given by:

J = ḡHθ T
H
r RT rḡθ + 2Real{λ[ḡHθ T

H
r a(θ)− 1]} (4.6.1)

To determine T r and ḡθ, we assume that ḡθ is known and then we find out T r by

exploiting the gradient of equation 4.6.1 with respect to unknown T r, that is,

∇JTr = RT rḡθḡ
H
θ + λTra(θ)ḡHθ (4.6.2)

Equating the gradient ∇JTr to zero and determining λTr , the rank reduction matrix Tr

can be expressed as

T r(i) =
R̂
−1

a(θn)

aH(θn)R̂
−1

a(θn)

ḡHθ (i)

ḡθ(i)
2

(4.6.3)

Similarly, taking the gradient of equation 4.6.1 with respect to unknown ḡθ, we obtain

∇Jḡθ = TH
r RT rḡθ + λḡθT

H
r a(θ) (4.6.4)
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Defining reduced rank covariance matrix : R̄ = E[x̄(i)x̄H(i)] ∈ Cr×r and reduced rank

steering vector : ā(θ) = TH
r a(θ) ∈ Cr×1. The final solution after determining λḡθ and

equating the vector equation to zero is

ḡθ =
R̄
−1

ā(θ)

ā(θ)HR̄
−1

ā(θ)
(4.6.5)

From the values of reduced rank matrix T r, secondary reduced rank vector ḡθ and

reduced rank covariance matrix R̄, we can obtain the DoAs and mutual coupling re-

spectively by utilizing Algorithm 1 mentioned earlier. The rank r has an impact on the

resolution and has been found empirically to be in the range of rmin = 3 to rmax = 7 [3].

In summary, the proposed extended JIO algorithm can be written as follows:

Algorithm 2 Proposed algorithm
1: Init T r(0) = [ITr×r 0T(M−r)×r]

T as the reduced rank matrix.
2: Begin, Update for the time instance i = 1, 2, 3, ......, N
3: New input vectors: x̄(i) = TH

r (i− 1)x(i)
4: New steering vector: ā(θn) = TH

r (i− 1)a(θn)
5: Recursive correlation function: R̂(i) = αR̂(i− 1) + x(i)xH(i)

6: New recursive correlation function: ˆ̄R(i) = α ˆ̄R(i− 1) + x̄(i)x̄H(i)

7: Update, ḡθ(i) =
ˆ̄R(i)−1ā(θn)

ā(θn)H ˆ̄R(i)−1ā(θn)

8: Update, T r(i) = R̂
−1

a(θn)

aH(θn)R̂
−1

a(θn)
· ḡ

H
θ (i)

ḡθ(i)2

9: Go to Begin
10: Utilize new reduced rank correlation function ˆ̄R(i) to jointly estimate the DOAs

with unknown mutual coupling by applying Algorithm 1 mentioned previously. The
power will be given by: P (θn) = 1

āH(θn) ˆ̄R(i)−1ā(θn)
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4.6.2 Simulation Results

On simulating the proposed method with rank reduction matrix of rank r = 7 and given

DoA angles of [0o, 30o, 70o], the results are plotted in Figure 4.6. The covariance matrix

in the proposed method is of the order of C7×7 as compared to C100×100 of classical or

subspace based methods. Thus, the computation complexity of the proposed method is

O(M2 + (180
∆ )r2) or ≈ O(M2) as compared to MUSIC method which is approximately

≈ O(M3), where M = 100 and r = 7. Therefore, it has a great performance advantage

with low computational cost over other methods in massive MIMO networks.
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Figure 4.6: Joint iterative method with reduced rank optimization in massive MIMO
networks

Now, the second part of the thesis about radio resource block allocation for LTE over

sea will be discussed in next chapter. The advantages of the proposed method in this

domain will be also highlighted.



Chapter 5

LTE Radio Resource Block

Allocation Optimization in

Maritime Channels

5.1 Introduction

In this chapter, the second leg of the work will be discussed and as earlier mentioned

that in the absence of 5G standards, LTe was chosen to be the fit candidate. LTE net-

works offer diverse services that range from normal voice calls to multiple user on-line

gaming. Every service that LTE offers comes with a minimum set of quality of service

requirements that mainly rely on data throughput and latency. While most of the re-

search nowadays is focused on LTE in urban landscape [28]-[30], LTE in sea environment

is mostly left out. The famous urban channel models are OkumaraHata model, COST

231-Hata model, Ikegami model, or 2-Ray model. Okumara-Hata model considers open

area, suburban area, and urban area for measuring path loss, while COST 231-Hata

Model is just an extended part of Okumara-Hata model that considers frequencies from

1500 MHz to 2000 MHz as compared to 150 MHz to 1500 MHz. On the other hand,

Ikegami Model gives deterministic prediction of field strength at specific points but un-

derestimates loss at large distances in urban or suburban areas. In contrast, not much

work has been contributed for LTE in sea environments. Only, few noted research can be

found in the literature [31]-[33]. From these work, the existence of the evaporation duct

37
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is confirmed over the sea all the time. The evaporation duct is the most dominant duct

among other ducts such as surface ducts or elevated ducts in sea based environments.

The main difference between the path loss propagation in sea environment and the path

loss propagation in urban environment is that in sea environment, apart from direct line

of sight, there are reflections from sea surface and from the evaporation duct, making it

a multipath sea channel model that look like a 3-Ray path loss. Figure 5.1 shows this

typical 3-Ray model.

Figure 5.1: 3-Ray path loss model for LTE over sea, where htx is the height of the
transmitter, hrx is the height of receiver, he is the evaporation duct height and d is the

distance between the transmitter and receiver.

The smallest radio resource unit in a LTE network that can be assigned to a user is called

a Resource Block (RB) [34]. A resource block (RB) has 12 orthogonal frequency division

multiplexing (OFDM) subcarriers that are adjacent to each other with a spacing of 15

kHz between two adjacent sub carriers. Each RB (Figure 5.2) consists of two sub-time

slots of 0.5 ms and each sub-time slot utilizes 6 to 7 OFDMA symbols, depending upon

whether normal cyclic prefix or extended cyclic prefix is utilized. In RB assignment,

the channel state information [35] plays a vital role. Based on the CSI, an eNodeB

periodically decides upon the modulation and coding scheme (MCS) [36] and assigns

the number of radio blocks to its connected users. In LTE downlink, if a user has been

assigned more than one RB, all these RBs have the same MCS which enhances the

complexity of the radio resource allocation problem.
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Figure 5.2: A radio resource block of LTE.

In this work [37], the max-min optimization technique previously used widely in wifi

optimization [38, 39] is extended towards resource block allocation in marine channels.

Earlier research on resource block optimization methods that use max-min technique had

urban channel settings [35, 40] and therefore this much required work was undertaken.

Table 5.1: MCS (Modulation and Coding Schemes)

MCS Modulation Code Rate SINR
Threshold [dB]

Efficiency
[bits/symbol]

MCS1 QPSK 1/12 -6.5 0.15
MCS2 QPSK 1/9 -4 0.23
MCS3 QPSK 1/6 -2.6 0.38
MCS4 QPSK 1/3 -1 0.60
MCS5 QPSK 1/2 1 0.88
MCS6 QPSK 3/5 3 1.18
MCS7 16QAM 1/3 6.6 1.48
MCS8 16QAM 1/2 10 1.91
MCS9 16QAM 3/5 11.4 2.41
MCS10 64QAM 1/2 11.8 2.73
MCS11 64QAM 1/2 13 3.32
MCS12 64QAM 3/5 13.8 3.90
MCS13 64QAM 3/4 15.6 4.52
MCS14 64QAM 5/6 16.8 5.12
MCS15 64QAM 11/12 17.6 5.55

5.2 LTE-SINR Path Loss Modelling in Sea Environment

In this section, path loss modelling in sea environment is considered. Equation 5.2.1,

5.2.2 and equation 5.2.3 represent the 2-ray channel, 2 ray modified channel and 3-ray

channel formulation which are simulated and then plotted as seen in Figure 5.3.
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L2−Ray = −10log10

(
(htx · hrx)2

d4 · I

)
(5.2.1)

L2−RayMod. = −10log10

((
λ

4πd

)2(
2 sin

2πhtxhrx
λd

)2
)

(5.2.2)

L3−Ray = −10log10

((
λ

4πd

)2

× (2(1 +4))2

)
(5.2.3)

with

4 = 2 sin

(
2πhtxhrx

λd

)
× sin

(
2π(htx − he)(he − hrx)

λd

)

with the parameters being

λ : Wavelength in meters

htx : Height of transmitter in meters

hrx : Height of receiver in meters

he : Height of evaporation duct

I : System loss parameter

d : Distance between transmitting and receiving stations.

Simulations results show that a better estimate of the received signal power in maritime

channels can be acheived by 3-Ray path loss model as it gives near to practical results

[33]. In the simulations, he is assumed to be around 25 meters and the two ferry ports

selected are Uskudar and Eminonu in Istanbul, Turkey as shown on Google MapsTM in

Figure 5.4. The distance between these two ports is around 3.7 km and the distance

between two base stations on each port is around 500 meters. At any given moment,

there are around 4 to 12 ships travelling from one ferry port to the other. The two lanes

"Uskudar to Eminonu" and "Eminonu to Uskudar" are separated by around 300 - 400

meters. To represent ships or users, we choose equidistant points in the sea lane, and to

represent eNodeBs, 4 points are fixed on the land just near to the port.



Chapter 5. LTE RRB Allocation Optimization in Maritime Channels 41

Distance [m]

0 500 1000 1500 2000 2500 3000 3500

R
e

c
e

iv
e

d
 S

ig
n

a
l 

[d
B

m
]

-120

-100

-80

-60

-40

-20

0

20

40 2-ray path loss Modified 2-ray path loss 3-ray path loss

Figure 5.3: Simulations for different path loss models for sea channels.

Figure 5.4: Eminonu and Uskudar ferry ports as seen on Google MapsTM with as-
sumed ships and eNodeB positions.

5.3 LTE System Parameters and Problem Formulation

In this section, problem formulation with assumptions and the LTE system parameters

required to describe the radio resource allocation problem are described out in detail.

5.3.1 Assumptions

The two main fundamental assumptions [41] regarding the detailed allocation method

are: a) Throughput perceived by any user j from the connected eNodeB i depends on
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number of resource block received rather than what those resources are, b) Throughput

is a strictly increasing function with the increase in number of allocated resource blocks.

let βj is defined as a normalized ratio of radio resource allocated from a eNodeB i to a

user j with βi ∈ [0, 1], then

βj
∆
=
rij
si

where rij are the RB assigned to to a user j by an eNodeB i and si is the total available

radio resources with the eNodeB i. Therefore, the throughput (Tj) as a strictly increasing

function of β can be written as:

Tj = gj(βj).

These assumptions inherently take the orthogonal resource allocation and channel state

information availability into picture. Intuitively, the throughput can be maximized if

J∑
j=0

βj =
J∑
j=0

ψj (Tj) = 1

where

ψj(Tj)
∆
= g−1

j .

5.3.2 LTE System Parameters:

The LTE system parameters required for problem formulation are described as below:

• user j = 1, 2, 3, ...., J ; a user represents a ship .

• eNodeB i = 1, 2, 3, ...., I;

• n = 1, 2, 3, ...., N ; where n is the number of RBs.

• SINR calculation parameters : SINR for a user j connected to a eNodeB i is

given by:
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SINRi,j =
Poweri,j · Γi,j∑I

m=1,m 6=i Powerm,j · Γm,j + σ2

where Γi,j is the channel gain between eNodeB i and user j, σ2 is the zero mean

noise variance. The formulation reflects the link conditions for the application in

radio resource block allocation.

• Throughput space matrix : The throughput space matrix is formulated as:

Th [I] [J ] = T̄ij . ∀i ∈ [1, I], j ∈ [1, J ]

The throughput space matrix entries (T̄ij ’s) are defined one by one as throughput

per RB between the user j and eNodeB i. The calculation is done on the mapping

of MCS values to SINR levels [35, 36] as given in Table 5.1.

The demand per user is represented as :

Dj = φ

where φ represents the minimum best throughput which is guaranteed to a user in

the network under study.

5.3.3 Problem Formulation:

Taking all these assumptions and system parameters into consideration, problem formu-

lation of the different radio resource allocation methods is worked out as follows

5.3.3.1 Max-min Problem Formulation

Firstly, all users are assumed to be in the transmission range of all eNodeB’s and also

it is assumed that the eNodeB’s in the network have perfect knowledge of channel state

information. The objective function of the max-min method that is maximization of the

minimum throughput of the links in the network can be written as equation 5.3.1. It is

further simplified in two step as equation 5.3.2 and equation 5.3.3.
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max min
i∈I

arg

(
I∑
i=1

(T̄ij ×Kij)

)
∀ j ∈ [1, J ] (5.3.1)

Maximize (φ) (5.3.2)
I∑
i=1

(
T̄ij ×Kij

)
≥ φ, ∀ j ∈ [1, J ] (5.3.3)

The constraint space is given by:

Yij ∈ {0, 1} (5.3.4)
J∑
j=1

Kij ≤ N, ∀ i ∈ [1, I] (5.3.5)

I∑
i=1

Yij = 1, ∀ j ∈ [1, J ] (5.3.6)

Kij = Yij ×N, ∀ i, j (5.3.7)

Kij ≥ (Dj/T̄ij)× Yij . ∀ i, j (5.3.8)

where Yij denotes connection between an eNodeB and a user, Kij is an integer decision

variable that signifies how many number of RBs can be assigned to a user j from an

eNodeB i. Constraint equation (5.3.5) represents the upper cap of the RBs available at a

eNodeB to be N and equation (5.3.6),
(∑I

i=1 Yij

)
is equal to 1 for a successful connection

between eNodeB i and a user j else it is zero. Furthermore, equation (5.3.7) makes sure

that a user is connected to only one eNodeB that is RBs (Kij) are allocated to the

only defined connection (Yij). Finally, constraint equation (5.3.8) gives the relationship

between capacity and demand Dj .

5.3.3.2 Round Robin Method

The round robin allocation method is formulated in such a way so that every user gets

equal equal number of resource block allocation from eNodeB [41]. Hence, for a user j

the throughput T̄ij is given as :

T̄ij =

∑
j∈J T̃j

J
∀j ∈ [1, J ], (5.3.9)
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where T̃j is the throughput at jth user and J resents all users.

5.3.3.3 Opportunistic Method

In opportunistic case, the objective of the problem is formulated as in such a manner

that each eNodeB allocates maximum RBs to a high throughput link as compared to low

throughput links while assuring that every user is connected to eNodeBs. The constraint

space for such maximization problem [41] will remain the same as of the max-min method

described earlier.

max
i∈I

arg

(
I∑
i=1

(
T̄ij ×Kij

))
∀j ∈ [1, J ]

Yij ∈ {0, 1}
J∑
j=1

Kij ≤ N, ∀ i ∈ [1, I]

I∑
i=1

Yij = 1, ∀ j ∈ [1, J ]

Kij = Yij ×N, ∀ i, j

Kij ≥ (Dj/T̄ij)× Yij ∀ i, j

5.3.4 Performance Comparisons

The most popular Jain index [42], [43] is used to compare these methods. The Jain index

for a user j with throughput T̃j is given as:

F =

(∑
j∈J T̃j

)2

N
∑

j∈J T̃j
2 ∀j ∈ [1, J ].

Table 5.2 summarizes all the LTE system parameters used in the simulations.
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Table 5.2: Simulation parameters

Parameters Values
Carrier Frequency 2750 MHz
Number of RBs per eNodeB 25
OFDM data symbol per sub
time slot 7

Antenna 2x2 MIMO
eNodeB Tx power 43 dBm
Height of Tx 20 meter
Height of Rx 3 meter
Height of Evaporation Duct 25 meter
Cable loss 3 dBm
Antenna Pattern Omnidirectional
Carriers per RB 12
Noise Variance 1

5.4 Simulation Results

This section describes the simulation results that were done with IBM-CPLEX [44] soft-

ware. The resource allocation fairness index were calculated by Jain Index and the values

are listed in Table 5.3 and a sample 8 user resource allocation is listed in Table 5.4.

Table 5.3: Fairness index of different allocation methods with user densities

Number of Users 4 6 8 10 12
Max-Min 0.96 0.85 0.56 0.52 0.94
Opportunistic 0.56 0.37 0.39 0.25 0.26
Round Robin 0.5 0.51 0.59 0.58 0.47

Table 5.4: A sample 8 user resource block allocation

eNodeB index number 2 2 1 4 4 3 4 3
Connected user index number 1 2 3 4 5 6 7 8
Max-Min Method (RB’s) 2 23 25 12 8 21 5 4
Round Robin Method (RB’s) 13 12 25 8 8 12 9 13
Opportunistic Method (RB’s) 25 1 25 1 1 1 21 25

Also, on close analysis of the simulation results with individual user densities (Fig-

ures. 5.6- 5.8), it can be safely concluded that the max-min method guarantees better

minimum data throughput per user as compared to the other two methods. This is

because the max-min method first allocates RBs to the worst throughput links and then

to better throughput links, thus maximizing the minimum throughput of the links in

the network. Moreover, the max-min method balances the overall network throughput
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uniformly with increasing number of the user density than the other two optimization

methods.
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Figure 5.5: Fairness of algorithms with user density.
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Figure 5.6: Individual user throughput for 4 and 6 user scenarios
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Figure 5.7: Individual user throughput for 8 and 10 user scenarios
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Figure 5.8: Individual user throughput for 12 user scenario

In summary, this work simulates the proper maritime channel (3-ray model) for the

optimization problem and based on that describes the performance of radio resource

allocation methods. It was found out that the max-min methods performs superior than

round robin or opportunistic methods. Furthermore, it was also observed that with even

variable user densities, the max-min optimization method performs significantly better

with good fairness as compared to the opportunistic and round robin methods.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

As we move towards 5G implementation, it becomes very important to study these

systems inside put and work upon their limitations. One of the main goal of this work

was to study and propose a low computation complexity based DoA estimation method

for massive MIMO in 5G. The complete literature survey for the background on various

methods were discussed in Chapter 2 and Chapter 3 with introduction to 5G in Chapter

1. This work extended the use of JIO [3] algorithm with the unique difference being that

it assumes that the mutual coupling is also present and requires to be estimated. It was

also shown in Chapter 4 that the computation complexity of the proposed method is ≈

O(M2 +(180
∆ )r2) or ≈ O(M2) as compared to MUSIC which has computation complexity

of the order of ≈ O(M3), where M = 100 and r = 7. That is a big advantage of using

joint iterative methods with rank reduction optimization in massive MIMO rather than

classical or subspace based methods. Furthermore, in absence of any 5G standards, radio

resource block allocation method was also studied for maritime channels considering

LTE network and a max-min method was proposed in that cause in Chapter 5. The

results of the proposed max-min resource allocation method reflected the superiority

over other methods in terms of fairness with variable load. Mathematically speaking,

the core of this thesis was based on the application of convex optimization and linear

algebra theory. It included joint iterative method with reduced rank matrix optimization,

quadratic programming (QP), compressed sensing, L2 norms and max-min optimization

to formulate and solve the problem in hand.

49
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6.2 Future Work

The future work with respect to massive MIMO for 5G has immense potential and

demand. One of the main idea to work upon would be to compare the results from an

implemented 5G system or 5G test bed with the simulation results mentioned in this

thesis. Apart from that, directional dependent mutual coupling will be an interesting

field to prospect and investigate. The joint estimation of DoAs with unknown mutual

coupling in carrier aggregation mode is also an open turf for research in 4G and 5G

as mutual coupling will be different for different frequency bands. Antenna switching

algorithm to tackle mutual coupling in massive MIMO is another open research topic.

Moreover, there are some advances in antenna switching domain too, however, lack of 5G

standards can be an issue with the research. Also, for the radio resource block allocation

method, the joint optimization of power and frequency per sub carrier in LTE network

over the sea extended to 5G networks would be yet another interesting topic. Overall, 5G

is an open field of opportunities to work upon which has the bright prospects of bringing

the next generation of networked society into reality.
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