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Abstract

Attention Deficit Hyperactivity Disorder (ADHD), characterized by the lack of attention

and focus, is one of the most spread cognitive disorders. Since electroencephalogram

(EEG) signals carry extensive information about cognition skills, which include attention,

then the potential of using EEG signals for people with low attention span can be quite

significant. EEG can be read using the new wireless EEG reading devices often used by

Brain-computer Interface (BCI) researchers.

In parallel, serious games have been recently utilized for rehabilitating various cognitive

and emotional deficits. In this thesis, we put the two things together, and we design a

virtual reality serious game controlled using a wireless wearable EEG device to improve

the attentiveness ability of people with ADHD/ADD. Our preliminary experiments with

healthy subjects show an average improvement of 10% in engagement and 8% in focus for

people using our EEG-controlled game compared to using the same game but keyboard-

controlled.

Furthermore, we investigate the integration of an EEG-controlled serious game that

trains and strengthens patients’ attention ability while using machine learning to detect

their attention level. The pilot experiments with healthy individuals show an accuracy

of up to 96% in classifying the EEG data to detect the correct attention state during

gameplay, and the extended experiments with ADHD patients show an accuracy up to

98% in classifying the patients EEG data.

Keywords: EEG classification; Brain-Computer Interface; Brain-Controlled Games;

Serious Games



Odaklanmanın Geliştirilmesi İçin Giyilebilen EEG Temelli

Uygulamalı Oyun ve EEG Sinyal Sınıflandırması ile DEHB

Hastalarına Tanı Koyma

Alaa Eddin Alchalabi

Öz

Dikkat Eksikliği Hiperaktivite Bozukluğu (DEHB) dikkat ve odaklanma eksikliği ile

karakterize edilir ve en yaygın bilişsel işlev bozukluklarından biridir. Elektroenselo-

gram (EEG) sinyalleri dikkatlilik gibi bilişsel yetenekler hakkında çok fazla bilgi taşıdığı

için EEG sinyallerini dikkat eksikliği olan kişiler için kullanmak büyük önem gösterir.

EEG, Beyin-bilgisayar Arayüzü (BBA) araştırmacıları tarafından sıklıkla kullanılan EEG

okuyan kablosuz aletler kullanılarak okunabilir.

Buna parallel olarak, son günlerde uygulamalı oyunlardan muhtelif bilişsel ve duygusal

eksikliklerin iyileştirilmesi bakımından faydalanılmıştır. Bu tezde, bir bu iki alanı bir-

leştirdik ve DEHB’li insanların dikkat yeteneklerini geliştiren, giyilebilen kablosuz EEG

aleti ile control edilen bir sanal gerçeklik uygulamalı oyunu tasarladık. Sağlıklı bireylerle

yaptığımız ilk deneylerde, oyunumuzu klavye kullanarak ve EEG kullanarak oynayan kişi-

leri karşılaştırdığımızda etkileşimde 10%’luk, odaklanmada ise 8%’lik bir gelişme gördük.

Buna ek olarak, hastaların dikkat yeteneğini kuvvetlendiren EEG-kontrollü uygulamalı

oyunların entegrasyonunu incelerken bir yandan da onların dikkat seviyelerini ölçmek için

makine öğrenmesini kullandık. Sağlıklı kişilerle yaptığımız pilot deneylerde EEG veri-

lerini sınıflandırmada, oyun oynama esnasındaki dikkat seviyesini ölçmede 96%’ya ulaşan

bir doğruluk payı elde ettik. Ayrıca DEHB hastaları ile yaptığımız sonraki deneylerde

de EEG verilerini kıyaslamada 98% doğruluk elde ettik.

Anahtar Sözcükler: EEG sınıflandırması; Beyin-Bilgisayar Arayüzü; Beyin-Kontrollü

Oyunlar; Uygulamalı Oyunlar



To my martyred uncle, Aiman Alchalabi, and grandfathers, Youssef

Alchalabi and Khalil Haddal, who would have been proud . . .

To my extended family scattered all over the world who I haven’t

met in years out of Syria . . .

vi



Acknowledgments

I would like to express my wholehearted gratitude to Prof. Shervin Shirmohammadi

for the tremendous support during the past years. He was a great mentor, an awesome

motivator, and an elder friend. Without his tutelage, this thesis would not have been

written.

I also want to address some of the people who I would not have made it to this point

without them. I want to thank my brother and friend, Dr. Mohammed Elsharnouby

for being always there when I needed support, and a special thanks to the his wife,

Ebra Uraloğlu for the consultation in the Psychology field and for her help with ADHD

patients. I thank my fellow labmates Amer Noureddin and Khaled AlSaleh for being a

great company during our sleepless nights of working in the Neurotechnology Lab. A

special thanks goes to the Technology Transfer Office and to Mr. Önder Yılmaz for his

support and patience. I would like also to thank Ayşe Rumeysa Mohammed and all my

other fellow teammates in the Erasmus project for Intelligent Serious Games for Social

Competence for their encouragement, support and stimulating discussions.

Dearest of all is my family, who are behind me on each step and are my greatest source

of strength. I want to acknowledge the endless love and support they have been giving.

Last but not least, I want to thank my friend Taha Moiz and all my other friends for

making the past two years in Istanbul the best years of my life so far. Thanks for making

me feel at home, or more precisely, making Istanbul my new home.

vii



Contents

Abstract iv

Öz v

Acknowledgments vii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Research Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 ADHD & ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 GAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 KNN and DTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 11
3.1 EEG-Based Therapies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 EEG-Based Serious games for ADHD . . . . . . . . . . . . . . . . . . . . . 13
3.3 Limitations of Related Work, and Our Contribution . . . . . . . . . . . . 14

4 Proposed Game: Design, Implementation, Preliminary Test 15
4.1 Game Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Environment and the avatar . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Initial Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Training and Gameplay . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Experimentation and Results . . . . . . . . . . . . . . . . . . . . . . . . . 20

viii



Contents ix

4.2.1 Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Preliminary Testing Results . . . . . . . . . . . . . . . . . . . . . . 21

5 Proposed Classification Models, Experiments, and Results 25
5.1 Data Wrangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Frequency Bands Data Filtering . . . . . . . . . . . . . . . . . . . 26
5.1.2 Data Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Feature Extraction (Extra Attributes) . . . . . . . . . . . . . . . . 26
5.1.4 Data Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Proposed Models: Emotiv-control VS. Keyboard-control Classification . . 27
5.2.1 Pre-recording Instructions . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Data Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3 Data Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.4 Model 1: Support Vector Machine (SVM) . . . . . . . . . . . . . . 29

5.2.4.1 Linear Kernel Model . . . . . . . . . . . . . . . . . . . . . 29
5.2.4.2 RBF Kernel Model . . . . . . . . . . . . . . . . . . . . . . 30
5.2.4.3 RBF Kernel Model with Extra Attributes . . . . . . . . . 30
5.2.4.4 One Subject Data Holdout . . . . . . . . . . . . . . . . . 31
5.2.4.5 Personalized Models: Model Per Subject . . . . . . . . . 31
5.2.4.6 Model for Attributes Importance . . . . . . . . . . . . . . 32

5.2.5 Model 2: Dynamic Time Warping (DTW) and K-Nearest Neigh-
bours (KNN) Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Proposed Models: ADHD VS. non-ADHD Classification . . . . . . . . . . 33

5.3.1 Data Recordings and Data Labeling . . . . . . . . . . . . . . . . . 34
5.3.2 ADHD Classification Model: Support Vector Machine (SVM) . . . 35

5.3.2.1 RBF Kernel with Extra Attributes . . . . . . . . . . . . . 35
5.3.2.2 One ADHD Subject’s Data Holdout . . . . . . . . . . . . 36
5.3.2.3 Two Subjects’ Data Holdout (one ADHD and one non-

ADHD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusion and Future Work 40

A Ethics Committee Decision 42

Bibliography 45



List of Figures

2.1 The EMOTIV EPOC+ EEG Reader . . . . . . . . . . . . . . . . . . . . . 7
2.2 The EEG Frequency Bands . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A Sample SVM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 EEG Classification using SVM . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 A Sample KNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 The DTW Distance Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 The Proposed Game’s Environment . . . . . . . . . . . . . . . . . . . . . . 16
4.2 The Proposed Game’s Avatar . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 EMOTIV Cloud Profile Logging . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 The EMOTIV Contropanel Connectivity Status . . . . . . . . . . . . . . . 17
4.5 The “Push” and “Neutral” Training Buttons . . . . . . . . . . . . . . . . . 18
4.6 A Subject playing the Game In Action . . . . . . . . . . . . . . . . . . . . 19
4.7 Data Collection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8 A Sample of the Performance Metrics . . . . . . . . . . . . . . . . . . . . . 20
4.9 Performance Metrics’ Calibration and Recording . . . . . . . . . . . . . . 21
4.10 A Sample Performance Metrics Report . . . . . . . . . . . . . . . . . . . . 21
4.11 The Focus Levels for the Emotiv-Tested Game . . . . . . . . . . . . . . . 22
4.12 The Focus Levels for the Keyboard-Tested Game . . . . . . . . . . . . . . 23

x



List of Tables

4.1 Performance Metrics Initial Testing Results . . . . . . . . . . . . . . . . . 23

5.1 Linear Kernel Model - Emotiv vs. Keyboard Classification Results . . . . 29
5.2 RBF Kernel Model - Emotiv vs. Keyboard Classification Results . . . . . 30
5.3 Confusion Matrix of RBF Model - Emotiv vs. Keyboard Classification

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 RBF Model with Extra Attributes - Emotiv vs. Keyboard Classification

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 he Models for Attributes Importance - Emotiv vs. Keyboard Classification

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 RBF Kernel - ADHD Classification Model Results Using Emotiv Data . . 35
5.7 RBF Kernel - ADHD Classification Model Results Using Keyboard Data . 36
5.8 1-Hold Out - ADHD Classification Model Results Using Emotiv Data . . . 36
5.9 1-Hold Out - ADHD Classification Model Results Using Keyboard Data . 37
5.10 2-Hold Out - ADHD Classification Model Results Using Emotiv Data . . . 38
5.11 2-Hold Out - ADHD Classification Model Results Using Keyboard Data . 39

xi



Chapter 1

Introduction

1.1 Motivation

In their famous survey, Rego et al. [1] attention is classified as one of the cognitive skills

along with concentration, problem-solving, judgment, language, etc. Attention Deficit

Hyper Activity Disorder (ADHD) is a psychiatric disorder that is related to levels of

inattention, impulsivity, and hyperactivity [2]. ADHD is common in children and adults

while the former have a higher probability of being symptomatic. According to a survey

conducted by the Centers for Disease Control and Prevention (CDC), 11% of children in

the US (4-17 years) had been diagnosed with ADHD as of 2011 [3]. ADHD’s presence in

children is manifested by hindering academic achievement and social interactions.

Cognitive training with different duration and intensity has also been used with the

elderly since they deal with a declination in the cognitive abilities. However, while

encouraging the engagement, illuminating the repetitive monotonic scenes, adapting the

difficulty level and stimulating the users’ interests are considered the main challenges in

this context. With the help of new technologies such as serious games during cognitive

therapies, users’ reinforcement is no longer an obstacle, accommodating different spans

of ages and various cognitive impediments.

In this thesis, one of the motivations behind this work is proposing an EEG-controlled

serious game aimed at training individuals diagnosed with ADHD/ADD to improve their

attentiveness levels. Moreover, to ensure the acceptance of the medical community, the

game is built as an attempt to digitally mimic few existing clinical and rehabilitation

therapies.

1
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Since the brain-controlled FOCUS game [4] has recorded a 10% increase in engagement

and a 8% in focus over the keyboard-controlled game with healthy subjects, we hypoth-

esize that it will be effectively used with those diagnosed with low attentiveness and

ADHD. Along with the previous work, testing with healthy subjects acts as a mile-

stone for reaching our long-term goal of diagnosing ADHD, and hopefully becoming a

rehabilitation alternative.

After obtaining the acceptance of İstanbul Şehir University’s Ethics Committee for test-

ing the game with ADHD subjects, the game was tested with 4 ADHD subjects and

the same diagnostic machine learning classification models were applied on the recorded

data of the ADHD subjects. The classification models obtained a classification accuracy

up to 98%.

This serious game has been developed in the context of the European project titled

“Erasmus+: Intelligent Serious Games for Social and Cognitive Competence”

[5].

1.2 Problem Definition

State-of-the-art therapies for individuals dealing with low attention levels aims at in-

creasing focusing skills while compromising the motivation techniques. When dealing

with children, the existing dilemma of maximizing the attentiveness level in therapies is

a recent optimization research problem. The new wireless EEG recording devices could

fill this gap. The integration of brain EEG signals and serious games is a recent research

trend. Because the brain generates EEG signals, they carry extensive information about

cognition skills, and since attention is one of those skills, then the potential of using EEG

signals for people with low attention span and ADHD treatment/diagnosis can be quite

significant.

Additionally, serious games not only promote inclusivity but also helps to influence knowl-

edge, discoveries, and challenges. Studies have proven the ability of serious games to be

used in sustainability, education, and nutrition. But the amount of information in EEG

signals could be vast, too much for human processing. Machine learning (ML) tech-

niques, which nowadays are more accurate in classifying data with the advancement of

learning algorithms and the availability of big amounts of data, can help process EEG

data to find useful results. Recent works use ML and statistical techniques in diagnosing

different neurological diseases, such as, Epilepsy and Becker Muscular Dystrophy (BMD)

[6], and psychological disorders, such as ADHD [6–8] , schizophrenia [9], and Autism [8],

although none do so within a serious game.
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1.3 Methodology

We propose to integrate and exploit three different components: the ability of serious

games to increase engagement, the importance and the accuracy of the EEG data to

cognitive disorders, and the intelligence of the machine learning classification models.

We also lay the ground for the integration of the aforementioned serious game that is

aimed at providing training to augment attentiveness and a classification model that

identifies to different game control modes (brain-controlled, keyboard-controlled) of non-

ADHD subjects. This is achieved by a pre-designed game (FOCUS Game) that adopts

various techniques which digitally mimic existing clinical and rehabilitation approaches

[4], as well as using an ML classifier, using multiple models, that can diagnose different

attentiveness levels characterized by the game control mode (brain-controlled, keyboard-

controlled).

The serious game was designed using Unity Game Engine as an attempt to digitally

mimic few existing clinical and rehabilitation therapies. The design decisions and im-

plementation details are discussed in later chapters. The wearable wireless EEG device,

EMOTIV, was used to control the the serious game via the open source SDK provided

by the company. Lastly, the raw EEG data was recorded during the testing sessions and

classification models were trained on it.

1.4 Contributions

This thesis presents a wearable EEG-Based serious game aimed at improving the at-

tentiveness skills of ADD/ADHD patients, which was designed according the standards

of the European project, Erasmus+: Intelligent Serious Games for Social and Cogni-

tive Competence. The designed game used an EEG wireless device for controlling the

movement of the avatar, and for the first time, we have laid the ground for integrating a

machine learning classifier with a serious game to detect ADHD patients.

Several contributions are included in this research, which are as follows:

• A user-friendly EEG-controlled serious game that targets improving the focus of

ADHD diagnosed individuals.

• Adaption of traditional tasks in order to stimulate the enhancement of attentive-

ness, in addition to using wearable sensors.
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• Handling player movement using the cognitive skills through the EEG pattern

recognition, and handling the rotation using a wearable gyroscopic sensor on the

scalp.

• A 10% improvement in engagement and 8% in focus recorded during gameplay in

the preliminary results with healthy subjects.

• An up-to 96% accuracy obtained in classifying EEG data to detect the correct

attention state characterized by the type of game control (Emotiv-control, and

Keyboard-control)

• An up-to 98% accuracy obtained in detecting ADHD patients by classifying EEG

recorded data during gameplay.

1.5 Research Publications

The peer reviewed publications related to the topic of this thesis are given below.

Journal Papers:

Alaa Eddin Alchalabi, Shervin Shirmohammadi, Amer Nour Eddin, and Mo-

hamed Elsharnouby. “FOCUS: Detecting ADHD Patients by An EEG-Based

Serious Game,” IEEE Transactions on Instrumentation and Measurement,

(submitted), 2017. [10]

Conference Publications:

Alaa Eddin Alchalabi, Mohamed Elsharnouby, Shervin Shirmohammadi, and

Amer Nour Eddin. “Feasibility of Detecting ADHD Patients’ Attention Lev-

els by Classifying Their EEG Signals,” The 12th Annual IEEE International

Symposium on Medical Measurements and Applications, (accepted, to ap-

pear), 2017. [11]

Alaa Eddin Alchalabi, Amer Nour Eddin, and Shervin Shirmohammadi.

“More Attention, Less Deficit: Wearable EEG-Based Serious Game for Focus

Improvement,” The 5th IEEE Conference on Serious Games and Applications

for Health (SeGAH ’17), Perth, Australia, April 2017. [4]
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Other Conference Publications:

These publication are not related to this thesis, but was published within the duration

of the author’s Masters studies.

Alaa Eddin Alchalabi, Mohammed Elsharnoby, and Saed Khawaldeh. “Rightscope:

Detecting search campaingns positive and negative queries,” International

Conference on Machine Learning and Cybernetics (ICMLC), pp. 290-295.

IEEE, 2016. [12]

Alaa Eddin Alchalabi, Ayşe Rumeysa Mohammed, and Onur Guzey, “Bring-

ing Engineering and Management Education Together in the Age of Big

Data,” Portland International Conference on Management of Engineering

Technology 2017 (PICMET ’17), (accepted, to appear), 2017.

1.6 Thesis Outline

Due to the diversity of technical/medical terms and concepts, Chapter 2 will contain a

background on these terminologies and concepts. Then, Chapter 3 will present the related

works. Following that, Chapter 4 will illustrate the design decisions of the proposed

game along with the implementation details. Chapter 5 will illustrate data collection

methodology, data pre-processing, and will also discuss the proposed classification models

along with experiments and results. Finally, the thesis is concluded in the last section

where the future work opportunities are also presented.

Due to the lack of time and the difficulty of accessing ADHD patients in the early stages

of this work, we will start by presenting the preliminary study with the healthy subjects

which served as a motivation to test our models with actual ADHD patients that will be

presented later.

Major parts of Chapter 3 and Chapter 4 are taken from the recently published paper

[4] at The 5th IEEE Conference on Serious Games and Applications for Health (SeGAH

2017). Chapter 5 also represents another published work [11] at The 12th Annual IEEE

International Symposium on Medical Measurements and Applications (MeMeA 2017),

while the other chapters use some parts from both papers. Some of the work in the end

of Chapter 5 is also submitted as an extended journal paper of [11] to the MeMeA 2017

Special Issue of IEEE Transactions on Instrumentation and Measurement (TIM) at the

same time this thesis was submitted [10].



Chapter 2

Background

In this chapter, we will go over some of the technical and medical terms/concepts that

are used in this research. It will act as a strong technical foundation for the readers to

refer to.

2.1 EEG

Neurofeedback, as a biofeedback technology, as originated in the late 1960s [13] and was

utilized to train the capability of self-control using a real-time analysis of EEG brain

signals, magnetoencephalography, and real-time functional magnetic resonance imag-

ing [14]. Therapeutic enhancements following neurofeedback training (NFT) have been

recorded in association with a normalization of the Quantitative EEG (QEEG) frequency

ranges, which is a protocol used in Signal Processing of EEG signals [15]. An example

of the wireless EEG reader, Emotiv headset, is shown in action in Figure 2.1 below.

EMOTIV EPOC+, a 14 channel wireless EEG system by EMOTIV Inc., is designed for

research related to brain-computer interface. The device can record raw EEG data and

EEG frequency bands data via open source software provided by the company [16].

The EEG signals are divided into multiple frequency bands: Delta δ band (<4 Hz), Theta

θ band 4-7 Hz, Alpha α band 8-12 Hz, Beta β band 12-30 Hz, and Gamma γ band >30

Hz. These frequency bands generated by Emotiv have 0.5 second time step and 2 seconds

of data window size. Each frequency band is associated with a unique brain function:

δ band is dominant in children during sleeping and is related to linguistic acquisition

[17], θ band is predominant in EEG during drowsiness states, α band is important in

relaxation, β band is linked to fast activities, and γ band is related to problem-solving

and memory [18]. Figure 2.2 illustrates the different frequency bands.

6
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Figure 2.1: The EMOTIV EPOC+ EEG Reader.

Figure 2.2: The EEG Frequency Bands.

2.2 ADHD & ADD

Attention Deficit Hyperactivity Disorder (ADHD) is a cognitive disorder that is linked

with levels of inattentiveness, impulsivity, and hyperactivity [2]. It is widely common

in children, while symptoms may take effect in later adultery stages. ADD, Attention

Deficit Disorder, is similar to ADHD with the absence of hyperactivity.

2.3 ASD

Autistic Spectrum Disorder (ASD) is a psychological disorder which symptomatic indi-

viduals often suffer social problems include difficulties with communication and interac-

tion with others, some repetitive behaviors, and limited activities or interests [19, 20].
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2.4 GAD

Generalized Anxiety Disorder (GAD) is a common mental disorders characterized by the

irrationally and extremely uncontrollable anxiety about normal life activities without

distinguishable cause for panic.

2.5 SVM

Support Vector Machines (SVMs) are machine learning supervised learning models that

are used for linearly non-probabilistic binary data classification. SVMs have the ability

to fit a hyperplane that separates between 2 different classes. SVM performs well with

non-linearly separable data using the kernel trick which maps data inputs to higher

dimensional spaces of features in which they are easily separable. An example of an

SVM model using a linear kernel is illustrated by Figure 2.3 below.

The black hyperplane separates the two classes, resulting in the maximum margin be-

tween their closest samples

Figure 2.3: Binary classification using an SVM hyperplance that maximizes the mar-
gin between the two classes [21].

The Radial Basis Function kernel (RBF kernel) was used for obtaining better accuracy

with dealing with complex and a high number of features. Figure 2.4 shows an example

of an EEG classification task. SVMs have a soft margin parameter C which controls the

margin of the separating hyper-plane.
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Figure 2.4: Binary classification of EEG recordings using each time window as a point
in a multidimensional space [22], used with permission.

2.6 KNN and DTW

K-Nearest Neighbors is a supervised classification technique that classifies samples ac-

cording to the k-nearest samples that have known classes as shown in Figure 2.5. The

distance is calculated by an algorithm that is usually used in digital signal processing

called Dynamic Time Warping (DTW) [23]. DTW can compare waves that are non-

aligned and differently scaled and find the optimal match within a specified window as

shown in Figure 2.6. DTW has shown significant results with KNN classification [24].

Figure 2.5: A classification model using a KNN model [21].
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Figure 2.6: The difference between matching waves using Euclidean distance and
using DTW [25].

2.7 Cross-validation

Cross-validation is a performance measurement technique used for many machine learn-

ing models. It is done by splitting data into k-folds, and iteratively repeat taking a single

fold as a test set while training on the other k-1 folds for k different models as shown

in Figure 2.7. This is considered a reliable way of reporting results by averaging the k

accuracies obtained.

Figure 2.7: An exmaple of 5-folds Cross-validation [21].



Chapter 3

Related Work

In this chapter, we will review few medical therapies that are EEG-Based for various

cognitive problems, and EEG-based serious games for ADHD, then we will talking about

some of the limitations of the presented work and our contribution. In this context,

clinical methods for treating ADHD are beyond the scope of this thesis; readers interested

in learning about traditional and clinical ADHD therapies can refer to [26] for more

details.

3.1 EEG-Based Therapies

For various cognitive disorders, NFT was proven to be a non-invasive side-effect-free

substitute [13]. EEG remains a strong candidate for a spot in the clinical setting, de-

pending on continued efforts – via multivariate analyses and advanced studies of EEG

signal generators – to capture additional sources of heterogeneity in ADHD [27]. NFT

has commonly been used with ADHD patients and it has been observed to be associated

with:

• Improved concentration and attention span

• Decline in hyperactivity and impulsiveness

• Enhanced academic performance

• Increased retention, mood stability and memory

• Relaxed sleep patterns

11
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For most learning disabilities, NFT showed a positive results after evaluating pre-NFT

and post-NFT treatment. An increase of an average of 9 IQ points were recorded follow-

ing NFT [13–15, 28]. The treatment effect that NFT has on ADHD is significant as [29]

observed several abnormal behaviors from the EEG distortions of ADHD patients char-

acterized by the ratio of θ/β frequency bands. Furthermore, a distortion in slow cortical

potential (SCP), which is direct-current and slow event-related vacillations in the EEG

signals measured from the upper cortical membrane [30], was observed in [31]. Good

therapeutic results on ADHD could be attained by SCP and NFT trainings [18, 31],

while GAD patients could also have positive results by regularizing and suppressing the

α bands generated by EEG [32].

Some other experiments was done on an 8 years old girl with ASD [18, 29] through a

simple experiment of eye-blinking showed an abnormal activity in the α and θ bands of

the EEG, while the NFT training aimed at resolving the abnormalities and regularizing

the signals. Twenty-one sessions later, the patient was observed to have a better attention

span and reduced the ASD symptoms. A similar experiment on autistic individuals was

done using NFT with typical Quantitative EEG (QEEG) protocol which observed a

decline in the θ band power at the frontal and central zone of the brain of the patients

[20].

A study employed quantified EEG data to analyze subjects learning status during the

experiment. The optimum classification results are obtained when five of the frequency

bands features are used simultaneously. However, each of the features has a different

influence on the classification accuracy. Delta value is recorded to have the most signif-

icant effect on the classification accuracy by up to 6%. The study results indicate the

EEG signals of attention are easier to identify compared to those of inattention [7].

Another study mentioned that during an attentive state, subjects with ADHD are char-

acterized by an under activated state in the EEG with subtype-specific differences. Find-

ings may provide a rationale for applying NFT protocols targeting Theta activity and

Theta/Beta ratio in subgroups of children with ADHD to achieve an attentive state [33].

A similar study on ADHD most reliably associating it with the growth of front-central

Theta band activity and increased Theta to Beta (θ/β) power ratio during rest compared

to non-ADHD. Significant EEG variety also exists across ADHD-diagnosed subjects. In-

tensive re-analysis of existing EEG study data can better describe the neurophysiological

differences between and within ADHD and non-ADHD subjects, and lead to more accu-

rate diagnostic measures and effective NF approaches [34].



Chapter 3. Related Work 13

There has been much work done on EEG in the instrumentation and measurement com-

munity, but none have focused on attention measurement for ADHD. For example, anal-

ysis and detection of seizure have been performed using EEG [35, 36]. In [37], authors

propose a method to remove EEG artifacts occurring during concurrent recordings of

EEG and functional magnetic resonance imaging (fMRI). [38] uses SVM and develops a

classifier to recognize the cognitive and resting state of the brain. As a final example,

the authors in [39] build an implantable micro-apparatus encompassed under the scalp

for monitoring and retrieving electrical cerebral activities.

Other studies used wearable EEG recording devices with the elderly in order to improve

epilepsy detection and ambulatory monitoring [40]. NFT also has been used for age-

related memory impairments in a form of a rehabilitative software [41]. Out of the

medical applications, NFT can also improve the mental abilities of a normal healthy

person.

3.2 EEG-Based Serious games for ADHD

The newly introduced EEG wireless recording devices have revolutionized research in the

area of rehabilitation therapies, and since serious games used to have a big share in this

area, the inclusion of wireless EEG devices in serious games made them more effective

[42]. The same study [42] classified serious games into: neurofeedback EEG-based games

and e-learning based games. Another research surveyed the different BCI-based serious

games that are built for ADHD treatment, then they proposed a design that balances

the entertainment and training levels [43].

A group developed a game that are controlled by the player’s attention via EEG signals.

It asks the player to remember a set of numbers in a given matrix, empty the matrix,

and then, via the players attention, tries to fill the matrix again [44].

Another group designed a BCI-controlled spacecraft game that the player should avoid

obstacles using his mental abilities. The controllers are built based on phase tagging

and steady state visually evoked potentials (SSVEP). The game is built for children that

suffer from attention deficits with Neurofibromatosis Type 1. They tested the game with

healthy individuals and reported a 95% of accuracy for 5-seconds trails [45].

A recent study used P300 event related potential (ERP) and sensorimotor rhythms in

order to control the falling objects of the well-known 2D Tetris game. The BCI-controlled

Tetris was tested with children with ADHD and the game has been experimentally vali-

dated to be effectively controlled by the EEG signals.



Chapter 3. Related Work 14

3.3 Limitations of Related Work, and Our Contribution

EEG-controlled gaming is relatively a new concept. EEG-based therapy in the medical

field traditionally use the wired devices to record EEG signals which puts constrains on

the therapists due to the need of the special laboratory equipment to extact the raw

EEG data from the brain. Additionally, a Fast Fourier Transform (FFT) should be run

on the data in order to obtain the EEG power bands. The new wireless EEG recording

devices; i.e., Emotiv EPOC can be a possible choice that will ease dealing with EEG

data.

As noticed from the serious games in the literature, games built for ADHD lack the Vir-

tual Reality (VR) option with a humanoid avatar, which could improve the engagement

and, therefore, the attention span. Using more than a stimulus in a single game will also

enhance the level of interaction. In the proposed game, EEG signals were used to control

the avatar forward movement, while for turning right and left, the built-in gyroscope in

the Emotiv EPOC was utilized.

Additionally, the difficulty level in most of the existing serious games such as, memory

games, obstacle avoidance games, or time limited games could create a more stressful

environment to the patient that to help him focus. Therefore, our choice of game de-

sign was to simplify the gameplay that will illuminate the side-effect on the player’s

concentration.

Finally, using a fuzzy colored avatars, robots, cubes, or other cartoonish avatars as the

player’s character will cause an stress and annoyance stimulants for people with ADHD.

The choice of light and simple colors avoiding harsh colors was considered, while the

desgin details will be discussed in later stages.



Chapter 4

Proposed Game: Design,

Implementation, Preliminary Test

In this chapter, the design decisions and the implementation details of the developed

serious game will be presented. Additionally, a preliminary test with healthy subjects

will be presented and analyzed.

4.1 Game Design

For the game developed, an initial level of difficulty was only developed. The player in

this level is asked to collect the cubical pick-ups that exist in the environment within the

shortest time possible. The controls used were the mental commands using the Emotiv

kit; i.e., the “push” and the “neutral” states which will be discussed in detail later. Adding

some extra rules to the game to increase the difficulty, such as, collecting cubes in order,

is left as a future work.

4.1.1 Environment and the avatar

Since the targeted group has a relatively short attention span, the choice of the environ-

ment should be a self-relieving and alleviating environment. For this reason a calm and

serene nature-like environment was chosen. The environment design contains a square

shaped floor centered in a jungle, as shown in Figure 4.1 below. The dominant color was

green since according to [46] green has a calmative effects on humans’ cognition, and

therefore, no distractions exist.

15
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Figure 4.1: The proposed game’s environment

Figure 4.2: The Proposed Game’s Avatar

A humanoid character was chosen for this game, as shown in Figure 4.2, opposing to

the games’ typical choice of a cartoonish avatar or a 3D polygon shape for the following

reasons:

• People with ADHD/ADD prefer a simple muted character, since a highly warm-

colored fantasy avatar could create distraction and anxiety rather than maintaining

attention.

• The Humanoid avatar is preferred due to the taste of realism it imposes stimulating

and emboldening real-life attention skills.

• The Humanoid avatar is preferred to 3D geometric objects due to the ability to

convey a deeper level of engagement in the player’s mind since it is easier for

training the cognitive abilities.
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The grey color of the avatar was chosen for avoiding any expected distraction generated

by energetic and warm colors [46]. A background music in accordance with the overall

game’s theme on order to improve patients’ attention span. Emotiv Cloud, shown in

Figure 4.3, allows users to save the settings and the users’ trainings in order to load

them later. Using the EMOTIV ID, the save and load options could be utilized.

Figure 4.3: The profile logging fields

An open-sourced software called “Emotiv Xavier Controlpanel” helps Emotiv develop-

ers with checking the sensors’ connectivity and reporting performance metrics (focus,

engagement, stress, relaxation, interest, and excitement levels).

4.1.2 Initial Setup

To challenge the cognitive ability of the player, the game scenario was built to challenge

the player to finish the task in the shortest time possible. Therapist should assure that

the Emotiv kit is well installed before the game starts, and the kit’s electrodes have good

connection using the EMOTIV Controlpanel [16], as shown in Figure 4.4.

Figure 4.4: The Emotiv control panel connectivity status. Right: perfect connectivity,
middle: some lack of connectivity, left: bad connectivity.

The sensors’ indicators on the control panel are better be green lighted for the best

results. The Emotiv sensors should be watered by a special liquid which comes with the

kit to increase the electrical conductance. Then, the executable file should be run by the

therapist after completing the initial setup.
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4.1.3 Training and Gameplay

The game initializes by creating the humanoid character to the user and by showing

some instructions for using the headset to play the game. The training phase is a crucial

stage that challenges researchers in the field of EEG-based serious games. Since the

EEG signals of different people might have some mutual characteristics, EEG signals are

highly personalized and it is impossible to have a single universal trained system that

works on different people.

By starting the game, there are 2 different states in the game’s algorithm that need to

be trained: “push” and “neutral” states. On the left side of the game’s screen, the player

could use 2 buttons to initiate the trainings: “Train Push”, and “Train Neutral” that can

be seen on Figure 4.5. Instructions will be shown during the game to assist the player

during the training phase.

In order to train the algorithm to push the avatar and make it move, the player is asked

to imagine the avatar walking forward while the kit is recording the brain signals. By

training the neutral state, the player is asked to be idle since the neutral training is

essential for detecting the other state (“Push state”). It is important during the training

phase that players should carefully not associate any facial muscles movement, such as

blinking or raising eyebrows because it generates a different pattern of EEG signals that

the algorithm can easy distinguish.

Figure 4.5: The training buttons

By finishing the training, players should be able to use their mental commands to control

the character forward. the gyroscope of the EPOC headset was associated to turning the

avatar such that players could turn the avatar by turning their heads right and left, as

shown in Figure 4.6. Introducing the head movement to turn the avatar will maximize

the player’s engagement with the game.
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Figure 4.6: The game subject playing the game with the Emotiv kit.

4.1.4 Implementation

The platform used for developing the game was Unity3D along with the EMOTIV open

source SDK. The data collection was done using a 14 channel EPOC kit, then the data

was wirelessly sent to the computer using Bluetooth as shown in Figure 4.7.

Figure 4.7: Data Collection Diagram. Source: [18], used with permission

The open source SDK library was used to detect the “push” state using a simple busy-

wait loop that keeps iterating until it detects a “push” signal. Then, the animation of the

avatar was programmed to move if any “push” event was detected. On the other hand,

rotating the avatar right and left was done by detecting the difference in the gyroscope

readings and then it was linked to the avatar’s rotation and animation.
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4.2 Experimentation and Results

4.2.1 Test Methodology

Before the testing starts, each of the testing subjects is explained how to use to game.

Then, the therapist should install the Emotiv headset on the subject’s scalp. By starting

the game and the timer, the Emotiv Xavier Controlpanel’s performance metrics detection

is run on the background.

The player starts by training the “push” and “neutral” commands in order to be able to

control the avatar with the Emotiv kit. The time each player takes to collect all the

cubical pickups is measured. While the game is being played, the performance metrics

detection which is run in the background is recording the brain activity of each player.

Figure 4.8 has a sample of the focus levels pre-training, during training, and after the

training using the Emotiv controlled game. The peak attentive value was measured

during the training.

Figure 4.8: The performance metrics of the subject’s focus

To test the inclusion of Emotiv control to the game’s effectiveness, the testing method-

ology developed will compare the Emotiv-control to the traditional keyboard-control of

the same game. Therefore, players are asked to play the game using the keyboard arrows

to control the character movement instead of the using Emotiv kit for control. Similarly,

the performance metrics detection was run on the background.

Using the Emotiv Xavier Controlpanel, there are options to perform the brain analysis

performance metrics for certain activities such as studying, brainstorming, gaming, and

etc. The analysis results report a level of each of the following performance metrics: focus,

stress, relaxation, interest, excitement, and engagement. Before the the recording starts,

the software should be calibrated for each person by recording a base EEG session while

the eyes-open and eyes-closed states. The type of recording activity was set to “Gaming”,

and then the recording starts. The software graphs the live metrics during the recording

session as shown in Figure 4.9.

When the recording session is halted by the therapist, the performance report is auto-

matically generated showing the levels of metrics. The report represents the EMOTIV
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Figure 4.9: Calibration and recording

predefined measures which takes into account the ratio between the various frequency

power bands in order to calculate the reported measurements. Figure 4.10 shows a sam-

ple of the generated report. After the measurements are presented, the data is collected

for each subject, compared and analyzed.

Figure 4.10: A sample recording for the Emotiv-tested game.

4.2.2 Preliminary Testing Results

The aforementioned testing methodology was done on 4 healthy subjects due to the

inability to have the access and the approval to test the game with ADHD patients.

This test serves as an initial attempt to prove the effects of the proposed serious game.

Future tests presented in later chapters will contain more test subjects and will include

ADHD patients. For the confidentiality, the test subjects will be referred by S1, S2, S3,

and S4. The focus levels of subjects while playing the Emotiv-controlled game are shown

in Figure 4.11 (a) through (d) respectively.
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(a)

(b)

(c)

(d)

Figure 4.11: The focus levels for the Emotiv-tested game

Similarly, The focus levels of subjects while playing the keyboard-controlled game are

shown in Figure 4.12.

It is noticed from the graphs that the focus levels recorded during the Emotiv-controlled

game are higher on average. Also, it is observed that keyboard-controlled recordings

have less fluctuations.

On the other hand, the activity-based recording software was run in the background for

all subjects. The results has been collected and are presented in Table 4.1 below. The

Emotiv-controlled recordings has average improvement in engagement of 10.25%, while

the focus levels has a 8.25% improvement over the keyboard-recordings.
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(a)

(b)

(c)

(d)

Figure 4.12: The focus levels for the keyboard-tested game

Table 4.1: Performance Metrics Initial Testing Results

Subject Metrics Focus Stress Relaxation Interest Excitement Engagement
Key % .30 .27 .28 .46 .19 .56
Emo % .35 .44 .33 .52 .25 .69S1
Diff. + .05 + .17 + .05 + .06 + .06 + .13
Key % .32 .35 .33 .62 .21 .55
Emo % .35 .38 .32 .62 .25 .64S2
Diff. + .03 + .03 - .01 0 + .04 + .09
Key % .30 .35 .33 .54 .22 .55
Emo % .41 .54 .33 .63 .26 .65S3
Diff. + .11 + .19 0 + .09 + .04 + .10
Key % .30 .42 .33 .62 .19 .54
Emo % .44 .61 .33 .62 .26 .63S4
Diff. + .14 + .19 0 0 + .07 + .09
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After the positive results obtained from the preliminary testing, testing on a wide samples

of subjects that suffer from ADHD symptoms was set as the next milestone. Addition-

ally, newer testing methodologies should be developed. Another milestone is enhancing

the game to support multiplayers, but due to the technical complexity of creating a mul-

tiplayer EEG-controlled serious game, as the first of its kind, it will be kept as a future

goal.

To conclude this chapter, the proposed EEG-based serious game proved its ability to

augment the attentive abilities of the ADHD symptomatic people. The design decisions

and the implementation has been discussed. The preliminary testing results of using the

Emotiv kit as a game controller with healthy individuals showed an average improvement

of 10% in the engagement measurement and 8% in the focusing measurement compared

to using the same people playing the same via the keyboard buttons.



Chapter 5

Proposed Classification Models,

Experiments, and Results

We designed a serious game called "FOCUS" that targets improving the attention of

individuals with low attention spans and those diagnosed with ADHD [4]. The afore-

mentioned game is BCI-controlled and should be played using the EMOTIV EPOC+

kit. The game challenges the players to move an avatar, using mental commands and

focus abilities, to collect all the cubical pickups in the shortest time possible. Using

the training buttons on UI, the user can start associating his mental commands to the

actions of the avatar. The study in [4] showed that the brain-controlled had a 10% in-

crease in engagement and a 8% in focus over the keyboard-controlled game with healthy

subjects, and that acted as a motivation for building more classification models to better

understand the recorded data.

In this chapter, the focus will be on the machine learning classification models that was

built using the data recordings of the test subjects. We will start by explaining the data

wrangling techniques applied on the data. Since the access to ADHD patients was not

possible, as a preliminary study we tried to classify between the data recorded using the

Emotiv Kit and the data recorded using the Keyboard control as they represent different

types of attention levels. Then we will continue by explaining and analyzing the proposed

ADHD classification models.

5.1 Data Wrangling

For the models built in this study, some data wrangling techniques were applied to

enhance the models’ performance to obtain the best detection accuracy.

25
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5.1.1 Frequency Bands Data Filtering

Frequency bands recordings were only used for training the models. Data provided by the

frequency bands is more compact in size, while it conserves the same wave information

as a result of applying Fast Fourier Transform. Raw data recordings were disregarded

and kept for future studies.

5.1.2 Data Windowing

We employed data windowing to improve the accuracy of the initial models. From each

recording session file, a window of n-rows (representing a time step) were considered a

single data sample instead of the recording session as a whole. The windows are not

overlapping to eliminate the duplication of waves. Also, since we had 50 recordings for

models presented in Section 5.2, taking windows of signals increased the data samples

from 50 recordings to approximately 20,000 data samples in a window of size 5. Addi-

tionally, after adding the ADHD subjects’ data, the total number of data samples was

57,790 samples.

5.1.3 Feature Extraction (Extra Attributes)

In this context, we would name the extracted features as attributes in order not to cause

confusion with the features that are input to the model. Since raw data were eliminated

for models built in this study, data attributes represent only the 5 frequency bands.

According to [33] the ratio between Theta and Beta bands reflected the attention levels

of the test subject. Other studies [34] showed that individuals with ADHD produce

comparatively less of the higher frequency band (Beta) and more of the lower frequency

band (Theta), and as a result, the ratio Theta/Beta carries valuable information. Other

studies [47] proved that the ratio between Alpha and Beta bands is as important and

reflects the attention levels. The data recorded contained High Beta and Low Beta, and

consequently, 4 attributes were added: Theta/High Beta, Theta/Low Beta, Alpha/High

Beta, and Alpha/Low Beta.

5.1.4 Data Flattening

This step was done because the models used require each input data sample to be rep-

resented as a vector of features. As we have 5 frequency bands per sample, we flatten

all the bands sequentially in a vector. With the addition of extra data attributes, the
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vector length will be calculated by the window size multiplied by the total number of

attributes as in equation 5.1.

V ector Length = Window size×Num of Attributes (5.1)

After applying the data wrangling techniques, each of the data points was labeled and

input to the training model. The model will be trained accordingly on the training data

folds, then the model will be tested on the remaining fold.

5.2 Proposed Models: Emotiv-control VS. Keyboard-control

Classification

In this section, we lay the ground for the integration of a serious game that’s aimed at

providing training to augment attentiveness and a classification model that identifies to

different game control modes (brain-controlled, keyboard-controlled). This is achieved

by a pre-designed game (FOCUS Game) that adopts various techniques which digitally

mimic existing clinical and rehabilitation approaches, as well as using an ML classifier, us-

ing multiple models, that can diagnose different attentiveness levels characterized by the

game control mode (brain-controlled, keyboard-controlled). Since the brain-controlled

FOCUS game has recorded a 10% increase in engagement and a 8% in focus over the

keyboard-controlled game with healthy subjects, we hypothesize that it will be effectively

used with those diagnosed with low attentiveness and ADHD. Along with the previous

work, this stage acts as a milestone for reaching our long-term goal of diagnosing ADHD,

and hopefully becoming a rehabilitation alternative.

We used two different models to classify the EEG signals according to their attention

states, a.k.a. labels, which in our case are two labels: keyboard controlled and EMOTIV

controlled. Our presumption, according to the previous study, is that the latter requires

more attention, and hence the EEG signals for players using EMOTIV should look more

like each other, compared to the EEG signals for players using the keyboard.

This section uses the study presented on [11] which aims at complementing the con-

clusions obtained in the previous study in order to have a better understanding of the

recorded EEG data. Since the brain-controlled recording sessions showed noticeable re-

sults, it acted as a motivation for extending the previous work to classify the 2 different

game control modes by utilizing some machine learning techniques.
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Due to the fact that the Ethics Committee Approval of Istanbul Sehir University was

not obtained at this stage of time, the access to ADHD patients was not possible. Al-

ternatively, healthy people were tested by assigning them tasks which require levels of

attentiveness. Since keyboard-controlled recordings showed lower attention levels than

Emotiv-controlled recordings, detecting the control type of the game gives a powerful

insight into the ability to classify EEG recordings based on concentration levels.

5.2.1 Pre-recording Instructions

Subjects were instructed on how to play the FOCUS game using both the keyboard and

the Emotiv for control. Subjects played a non-recorded Emotiv-controlled game in the

beginning to remove the training effect. Once the subjects were confident of controlling

the avatar via Emotiv, actual recording was initiated.

5.2.2 Data Recordings

By the time of conducting this study we were not able to clear ethics approval for testing

with ADHD patients, so we used 5 healthy subjects (males, age range 19-26). Each test

subject was asked to play the FOCUS game using the arrow buttons on the keyboard

to control the avatar collecting the pickups. After that, the subject was asked to play

the same game using the EMOTIV kit to control the avatar movement. The subject was

asked to repeat the 2 games for 5 times producing 5 recording sessions for each of the

keyboard-controlled and Emotiv-controlled games, resulting in 10 recordings per person

and 50 sessions in total. The average time measured for a single keyboard-controlled

recording was around 1 minute, as for Emotiv-controlled recordings the average duration

was approximately 2.5 minutes.

While the subjects were playing the game during the recording session, 2 different scripts

were running in the background to collect raw EEG data from the electrodes and the

EEG frequency bands (Alpha, Beta, Theta, and Gamma).

5.2.3 Data Labeling

Before designing the model, data was labeled according to the game control type (Key-

board and Emotiv). Since playing the FOCUS game with Emotiv rather than the key-

board leads to a significant improvement in focus and attention abilities of healthy in-

dividuals, we could say that the ability to detect the game control type with healthy

subjects by EEG data is, conceptually, similar to detection and diagnosis of attention

deficit individuals.
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5.2.4 Model 1: Support Vector Machine (SVM)

In this model, we employ an SVM classifier to classify data samples to one of two labels:

Keyboard-controlled and Emotiv-controlled. Different SVM models were implemented

to increase the prediction accuracy by tuning the models’ parameters. Data windowing,

data subsampling, data shuffling, introducing extra attributes and cross-validation were

utilized and explained in details earlier.

It is important to mention that the SVM’s C parameter (the regularization parameter

that prevents data overfitting and/or underfitting) was tuned iteratively without over-

fitting the data and obtaining the best validation test accuracy, which occurred at C set

to 3. Also, the accuracies obtained are calculated simply by dividing the true positives

over the total number of data points as in 5.2. The true positives include the correctly

classified samples from both brain-controlled and keyboard-controlled data points. We

have also recorded the precision, the recall and the F1-score for some models.

Accuracy = True Positive / Total Data Points (5.2)

We then designed 6 different SVM models, in order to analyze the data and find what

approach would work best for attention classification. These are described next.

5.2.4.1 Linear Kernel Model

This was the first model built which had only 50 data samples such that each data sample

is a complete recording session. Since the data recordings had different lengths, samples

were trimmed to match the shortest. Keyboard ranged from 1000 to 3000 rows of data,

while Emotiv recordings ranged from 1000 to 7000 rows. The last 1000 rows of each

recording data were chosen and shuffled, then the model was trained on the flattened

data features.

The model was trained on 80% of the data (40 samples) and was tested on the other

20% (10 samples). The model was run 300 times, and the average, standard deviation,

min, max and median of the accuracies on the 10 test samples are shown in Table 5.1.

The mean accuracy was 61.97%.

Table 5.1: Linear Kernel Model Results

Count Mean STD Median Max
300 0.6197 0.1402 0.6 1.0



Chapter 5. Proposed Classification Models and Experimentation 30

The low accuracy could be explained by the small number of data samples in the data set

where the number of features to samples were comparatively huge due to data flattening.

Also, linear kernels are too simple kernels which cannot easily separate complex distri-

bution of data points. Without subsampling, the data waves’ fluctuations need more

sophisticated models to be classified. Data trimming resulted in losing a big amount of

meaningful data which could have carried more correlated information.

5.2.4.2 RBF Kernel Model

To enhance the accuracy of the previous model, a more sophisticated kernel was used,

in addition to introducing the non-overlapping windows. Data was split into windows

of a range of 50, 20, and 5 steps resulting in approximately 2000, 5000, and 20,000 data

samples respectively. Data samples were shuffled, flattened, and then inputted to the

model. Data balancing was applied by removing samples from the class that has more

data sample to make the number of data samples equal, so it does not affect the accuracy.

The model was tested by 5-folds cross validation. The average, standard deviation, min,

max and median of the accuracies on the test samples of the 5 folds are shown in Table

5.2.

Table 5.2: RBF Model Results

Window size Count Mean STD Median Max
50 5 0.8110 0.0179 0.8129 0.8295
20 5 0.8769 0.0068 0.8761 0.8840
5 5 0.8926 0.0016 0.8927 0.8944

To validate the accuracies obtained previously, the confusion matrix of the model with

window size 5 was calculated. The confusion matrix accounts the precision, recall, and

f1-score of each keyboard and Emotiv labels. The average precision obtained is 89%,

while the average recall is 89%, and the average f1-score is 89% as well.

Table 5.3: Confusion Matrix of RBF Model (W Size = 5)

Labels Precision Recall F1-Score Samples count
Keyboard 0.86 0.92 0.89 1900
Emotiv 0.93 0.86 0.89 2115

Avg. / Total 0.89 0.89 0.89 4015

5.2.4.3 RBF Kernel Model with Extra Attributes

We implemented some enhancements on the previous model to increase the classification

accuracy. Since the window size of 5 gave the best average accuracy, the model was
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adopted. We added the 4 extra attributes to the data which increased the attributes

count to 9.

Data samples were shuffled, balanced, and inputted to the model. 5-folds Cross-validation

test was used. The accuracies’ mean obtained was 96.1%. The accuracies’ summary on

the test samples of the 5 folds is shown in the Table 5.4.

Table 5.4: RBF Model with Extra Attributes Results

Window size Count Mean STD Median Max
5 5 0.9610 0.0027 0.9601 0.9644

5.2.4.4 One Subject Data Holdout

This was built to have a deeper understanding of the data. We implemented the same

previous model with a different testing methodology. Similar to cross-validation, the

model was trained on data from 4 different subjects and tested on the 5th subject’s data.

The goal was to verify the ability of the model to generalize on data from individuals

were not seen before.

The model was iterated 5 times, taking each person’s data as a testing set and training

on the other 4 persons’ data. Since we iterate over all the subjects’ recordings, it is

similar to a cross validation approach which averages out the accuracies. The results of

the 5 folds were: 70.86%, 62.45%, 60.66%, 58.56%, and 46.39%, with an average of

59.78%.

The low accuracies could be justified by the fact that EEG data differs from a person

to another. As a result, creating a single classifier for different EEG data from differ-

ent people will require a huge data set that covers a different type of people, which is

impractical.

5.2.4.5 Personalized Models: Model Per Subject

Further testing was done on the data to prove the previous claim by building 5 different

models for each person. The goal was to compare the accuracies to the previous results.

Each subject’s model used his recorded data where the training set-test set ratio was

80:20. Testing data was not shuffled to keep the sequential order of the data.

The testing results of the 5 different models were: 94.38%, 86.05%, 81.44%, 79.91%,

and 75.75% with an average of 83.50%.
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The average of the accuracies obtained by the personalized models was much higher than

the one subject holdout models. Comparing the results to the previous model proves

that EEG data is highly personalized.

5.2.4.6 Model for Attributes Importance

To rank the attributes based on their importance, we built different models and compar-

atively presented them to measure the importance of the features to the assigned label,

and conceptually attention levels. Except for the training and testing data, all the other

parameters were the same (RBF Kernel, window size = 5, single subject, data shuffled,

80% training and 20% testing, 5-folds).

Except for the training and testing data, the other parameters were similar (RBF Kernel,

window size = 5, single subject, data shuffled, 80% training and 20% testing, 5-folds).

Table 5.5 below presents the average f1-score for each model.

Table 5.5: The Models for Attributes Importance’ F1-Score

Attributes used F1-score Attributes used F1-score
Alpha only 75% Gamma/High Beta only 59%
Theta only 75% Gamma/Theta only 67%

Low Beta only 74% Alpha/Theta only 57%
High Beta only 78% Theta/Low Beta only 73%
Gamma only 77% Theta/High Beta only 80%

From the table above, we can conclude that the model based on the single attribute

“Theta/High Beta” relatively has the highest f1-score average. These results support the

conclusions by [33, 34] which illustrates the relation of Theta/Beta bands to levels of

attention.

5.2.5 Model 2: Dynamic Time Warping (DTW) and K-Nearest Neigh-
bours (KNN) Classifier

This additional model was built applying the supervised KNN classification using DTW

as a distance function. Using the results obtained by the models earlier, KNN classifiers

were created using the “Theta/High Beta” values only. The goal of the model built

here is trying to measure the temporal similarity of Theta/High Beta waves for different

subjects.

For this KNN classifier, we decided to make a similar model to the SVM "One Subject

Data Holdout" model but using the KNN classifier along with the DTW function. The

window size step was set to 100, the number of neighbors was 3, and the Max warping
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window was 15. These values were selected based on a series of trials showing the best

results. This model is trained on the "Theta/High Beta" data from 4 different subjects,

and it was tested on the 5th subject.

The testing was done iteratively 5 times for all subjects and the models were built on

the other 4 subjects’ data. The resulting test accuracies of the 5 folds were: 66%, 75%,

59%, 71%, and 61%, with an average of 66.4%.

Comparing the SVM model to the KNN model, the latter had a better accuracy than the

same type of a model implemented in SVM. The reasoning goes to the ability of DTW

function to measure the distance between two sequences of non-aligned and differently

scaled waves.

5.2.6 Summary

As our results and previous research showed, EEG signals are highly personalized. The

significant findings support the previous outcomes that emphasize the importance of

the Theta/Beta ratio as an indication of attention. The preliminary experiments with

healthy individuals show an up to 96% accuracy in classifying the EEG data at their

correct attention state during gameplay. This promising result serves as motivation to

test our models further with actual ADHD patients.

5.3 Proposed Models: ADHD VS. non-ADHD Classifica-

tion

In this section, we will present the ML classifiers that aims to diagnose ADHD patients.

Using the same serious game (FOCUS Game) that provide training of attentiveness skills,

the same methodology explained earlier was applied with 4 ADHD subjects. Since the

Keyboard-controlled and the Emotiv-controlled recordings were separable using SVM,

the same testing methodology was applied for ADHD patients where they were asked

to play the game using both control methods: keyboard and Emotiv. Two different

classifiers were built separately using the data recorded from the 2 different methods.

This section uses the study presented on [10] which aims at investigating the ability of

classifying ADHD patients using their EEG data. Since the keyboard-controlled and

brain-controlled recording sessions showed noticeable results of classification, this acted

as a motivation for extending the previous work to classify ADHD patients by utilizing

some machine learning techniques.
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The extended experiments done in this section include testing the game with 4 subjects:

2 males(18 and 23 years old) , and 2 females (21 and 22 years old), who were clinically

diagnosed of suffering from ADHD. After obtaining the approval of the ethics committee

at İstanbul Şehir University, which is attached in Appendix A, it was possible to access

ADHD patients and test the game with them. Similarly, the subjects were asked to play

the FOCUS game using with 2 different ways of controlling the avatar: keyboard-control

and Emotiv-control. Each subject was asked to play the game 6 times using each of the

controlling methods. That results 12 recording sessions per subject and 48 in total for

the ADHD subjects

5.3.1 Data Recordings and Data Labeling

The same pre-recording instructions were presented to ADHD patients before the record-

ing sessions start. Subjects played a non-recorded Emotiv-controlled game in the begin-

ning to make sure that patients are confident how to control the game and to remove

the training effect. Once they are confident of controlling the avatar using the Emotiv,

the recorded sessions can start.

Similar to the previous section, each test subject was asked to play the FOCUS game

using the arrow buttons on the keyboard to control the avatar collecting the pickups.

After that, the subject was asked to play the same game using the EMOTIV kit to

control the avatar movement. The subject was asked to repeat the 2 games for 6 times

producing 6 recording sessions for each of the keyboard-controlled and Emotiv-controlled

games, resulting in 12 recordings per person and 48 sessions in total. The average time

measured for a single keyboard-controlled recording was around 1 minute, as for Emotiv-

controlled recordings the average duration was approximately 4 minutes which is higher

than the time recorded with the healthy subjects.

Also, while the subjects were playing the game during the recording session, 2 different

scripts were running in the background to collect raw EEG data from the electrodes and

the EEG frequency bands (Alpha, Beta, Theta, and Gamma).

Before designing the model, data was labeled according to the subject (non-ADHD -

0, ADHD - 1). Since ADHD patients have lower attention spans and therefore have

different EEG patterns, our goal is to try to detect ADHD patients using the EEG data

that is recorded during gameplay since attention deficit individuals have, conceptually,

similar EEG patterns that could be diagnosed.
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5.3.2 ADHD Classification Model: Support Vector Machine (SVM)

In this subsection, all the classification models targets the diagnosis of ADHD using

different ways of dividing the data into training set and testing set. Data samples will

be labeled accordingly (0 for non ADHD sample, 1 for ADHD sample). Since recording

sessions were using 2 different control methods, all of the models that uses different

data division will be done separately on keyboard-controlled and Emotiv-controlled data.

Accordingly, the results will be compared on this basis.

Since the RBF kernel gave the best results in the models presented above, all of the up-

coming models will use the same kernel. Also, in most of the models the extra attributes

were also used since they are proven to increase the accuracy in previous models.

Since we had 5 non-ADHD subjects and 4 ADHD subjects, the non-ADHD samples were

slightly more than the ADHD samples. The 4 ADHD subjects will be referred to as P1,

P2, P3, and P4, while the 5 non-ADHD subjects will be referred to as S1, S2, S3, S4,

and S5.

5.3.2.1 RBF Kernel with Extra Attributes

Firstly, the model was trained on the data from Emotiv-controlled sessions. The total

number of data samples resulted after applying data wrangling techniques on Emotiv

recording sessions was 37,725 samples, where each model has 7545 samples in each fold

of the 5-fold cross validation to test the model on.

Data samples from the 2 classes were balanced throughout the folds (7545 total sam-

ples) such that in each fold non-ADHD samples were ranged between 4126 - 4176 sam-

ples (54.68% - 55.35%) while ADHD samples were ranged between 3378 - 3419 samples

(44.77% - 45.31%). Also, a 5-folds cross-validation was applied as a testing methodology

for the model.

The mean of the accuracies obtained was 98.62% for the 5-folds cross-validation applied.

The average, standard deviation, min, max and median of the accuracies on the test

samples of the 5 folds are shown in Table 5.6.

Table 5.6: RBF Kernel - ADHD Classification Model Results Using Emotiv Data

Count Mean STD Median Max
5 0.98624 0.0016 0.98701 0.98754

For the keyboard-controlled sessions, the total number of data samples resulted after

applying data wrangling techniques on Keyboard recording sessions was 16,065 samples,
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where each model has 3213 samples in each fold of the 5-fold cross validation to test the

model on.

Similarly, data samples from the 2 classes were balanced throughout the folds (3213

total samples) such that in each fold non-ADHD samples were ranged between 1922 -

2016 samples (59.82% - 62.75%) while ADHD samples were ranged between 1197 - 1291

samples (37.25% - 40.18%). Also, a 5-folds cross-validation was applied as a testing

methodology for the model.

The mean of the accuracies obtained was 98.23% for the 5-folds cross-validation applied.

The average, standard deviation, min, max and median of the accuracies on the test

samples of the 5 folds are shown in Table 5.7.

Table 5.7: RBF Kernel - ADHD Classification Model Results Using Keyboard Data

Count Mean STD Median Max
5 0.98232 0.0027 0.98381 0.98382

5.3.2.2 One ADHD Subject’s Data Holdout

Similar to what was done previously, one of the ADHD subject’s data will be held out

of the training phase and then the model will be tested on. This process will be iterated

4 times taking each of the ADHD subjects as a test set while the non-ADHD subjects’

data is all kept in the training set. This way of testing will help us draw some conclusions

about the ability of classification algorithms and how it performs on data from a subject

that it did not encounter and was not trained on. Similar to the other models, the same

process was repeated twice; once with Emotiv-controlled recordings and another with

the keyboard-controlled sessions.

The results obtained from the 4 models were somehow different from each other, for both

Emotiv-controlled based models and keyboard-controlled.

For Emotiv-controlled data, Table 5.8 will illustrate the obtained test accuracy and the

number of samples in the test set for each of the subjects.

Table 5.8: 1-Hold Out - ADHD Classification Model Results Using Emotiv Data

Subject held-out P1 P2 P3 P4
Test Accuracy 0.7219 0.3875 0.8671 0.8124

No. of Test Data Samples 6310 4356 1648 4681

The total number of data samples is 37,725 samples, and the number of test data samples

was presented in order to validate the credibility of the accuracies obtained. Test data

ranged between 4.37% - 16.73% of the whole data.
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Test accuracies varied from a subject to another. For P1, P3, and P4, at least two-thirds

of the data was labeled as ADHD data, and therefore, the subjects should be diagnosed

as ADHD subjects. Generally, the line should be draw at 50% of the data, but that is

still a naive assumption due to difficulty of accessing ADHD subjects and collecting more

data.

The results obtained by the subject P2 was around 39%, which means around two-fifths

of his data was predicted to be an ADHD subject data. Since there is not enough data,

we could go with the assumption that around 40% of the data is enough to diagnosis a

person with ADHD. Another justification to the result is that P2 was clinically taught

few techniques that helps him to bypass the obstacles of the ADHD effects, while the

other subjects were not. P2 was diagnosed of ADHD since he/she was young and since

the early stages he/she was going to a therapist and learning the techniques to conserve

attention. The results in the upcoming models will support this claim.

On the hand, for keyboard-controlled data, Table 5.9 will illustrate the obtained test

accuracy and the number of samples in the test set for each of the subjects.

Table 5.9: 1-Hold Out - ADHD Classification Model Results Using Keyboard Data

Subject held-out P1 P2 P3 P4
Test Accuracy 0.9060 0.1513 0.7789 0.5529

No. of Test Data Samples 2426 1051 570 2154

The total number of data samples is 16,065 samples. Test data ranged between 3.55% -

15.10% of the whole data.

Test accuracies varied from a subject to another. For P1, P3, and P4, respectively 90%,

78%, and 55% of their data was labeled as ADHD data, and therefore, the subjects

should be diagnosed as ADHD subjects.

The results of P2 showed only 15% of his/her data was labeled as ADHD data. This

result supports our claim earlier, and it shows clearly that the data recorded from P2 is

quite different that the other ADHD subjects.

By comparing Emotiv-based models to keyboard-based models, the earlier has an av-

erage accuracy of 69.72% for all subjects while the later has an average accuracy of

59.73%. Emotiv-based models clearly outperformed the keyboard-based models which

complements the scope of the Emotiv-controlled based game in the treatment/diagnosis

of ADHD subjects.
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5.3.2.3 Two Subjects’ Data Holdout (one ADHD and one non-ADHD)

In this type of model, two subjects were randomly chosen from each the ADHD and

non-ADHD groups. The model was built using the data of the rest of the subjects, and

then it was tested and evaluated using the two subjects’ data. The goal here is to use

the same testing methodology that was used earlier

Similar to the previous model, in this model, two subjects’ data will be held-out of the

training set and then will be used as a testing set. The process will be iterated 4 times,

taking P1 and S1, P2 and S2, P3 and S3, P4 and S4 as testing sets respectively in each

of the 4 iterated models.

This methodology of testing, which includes a non-ADHD subject’s data to the test set,

is important so we can generalize the results obtained earlier.

Table 5.10 contains the results obtains from the 4 Emotiv-based models, which contains

the precision, recall, and f1-score for both the ADHD and non-ADHD classes.

Table 5.10: 2-Hold Out - ADHD Classification Model Results Using Emotiv Data

Subject held-out 1- S1, P1 2- S2, P2 3- S3, P3 4- S4, P4
Non ADHD Non ADHD Non ADHD Non ADHD

Precision (avg) 0.49 0.69 0.41 0.44 0.96 0.53 0.55 0.52
0.62 0.43 0.85 0.54

Recall (avg) 0.39 0.77 0.43 0.42 0.73 0.90 0.15 0.89
0.63 0.43 0.77 0.53

F1-score (avg) 0.43 0.73 0.42 0.43 0.83 0.66 0.23 0.66
0.62 0.43 0.79 0.45

Test Accuracy 0.6327 0.4251 0.7713 0.5273

Test Samples 3566 6310 4082 4356 4922 1648 4410 4681
9876 8438 6570 9091

While the total number of samples is 37,725, the test data samples ranged between

17.42% - 26.18% of the whole data. The overall testing accuracy is better than a random

model with the exception of the second model, while the reasoning might be the data

recorded by the subject P2. The highest accuracy obtained was 77.13%, while the lowest

being 42.51%. Since ADHD is a psychological disorder, the low results obtained by the

4th model could be explained that S4 might suffer from ADHD while he is labeled as a

non-ADHD subject in our experiment.

On the other hand, Table 5.11 contains the results obtains from the 4 keyboard-based

models, which contains the precision, recall, and f1-score for both the ADHD and non-

ADHD classes.
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Table 5.11: 2-Hold Out - ADHD Classification Model Results Using Keyboard Data

Subject held-out 1- S1, P1 2- S2, P2 3- S3, P3 4- S4, P4
Non ADHD Non ADHD Non ADHD Non ADHD

Precision (avg) 0.90 0.66 0.64 0.33 0.94 0.63 0.71 0.64
0.77 0.53 0.87 0.68

Recall (avg) 0.41 0.96 0.80 0.18 0.87 0.80 0.74 0.60
0.71 0.58 0.86 0.68

F1-score (avg) 0.56 0.78 0.71 0.23 0.91 0.71 0.73 0.62
0.68 0.54 0.86 0.68

Test Accuracy 0.7085 0.5763 0.8564 0.6815

Test Samples 2054 2426 1897 1051 2084 570 2786 2154
4480 2948 2654 4940

While the total number of samples is 16,065, the test data samples ranged between

16.52% - 30.75% of the whole data. The overall testing accuracy is better than a random

model with the highest being 85.6% and the lowest being 57.6%.

By comparing Emotiv-based models to keyboard-based models, the earlier has an average

accuracy of 58.91% for all subjects while the later has an average accuracy of 70.57%. In

this case, keyboard-based models performed better than Emotiv-based and the reasoning

could be the existence of the subjects P2 and S4 whose data did not perform well while

testing the classifier.
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Conclusion and Future Work

Taking into account the increasing number of ADHD/ADD diagnosed individuals, com-

bined with the potential applications of the new wireless EEG devices in a variety of

scenarios and with the advancement of machine learning algorithms and the field of se-

rious games, it would be advantageous to make a good use of those technologies in order

to create useful applications to ease the life of those with mental deficits.

In this work, the problems of detecting ADHD patients and improving the attentiveness

skills are studied. The various state-of-the-art methods proposed by the literature are also

reviewed. As detailed in the introduction chapter, there are various traditional methods

that deals with ADHD patients, while such kind of therapies lose the motivation and

the encouragement component in the long term. The new wireless EEG brain reading

devices provide opportunities for researchers to create a more effective serious games

that can revolutionize the serious games industry. Integrating the EEG wireless reading

devices with serious game is a recent trend in research. EEG carries rich information

about the cognition skills, and since attention is one of those skills, EEG signals have a

huge potential to be effectively used for ADHD treatment/diagnosis. Cognitive trainings

have been applied with different duration and intensity with the elderly as they deal

with a declination in the cognitive abilities. With serious games, it is now possible

to encourage more engagement, illuminate repetitive monotonic scenes, adapting levels,

and stimulating the interest of the patients during the cognitive training. Studies have

proven the ability of serious games to be used in sustainability, education, and nutrition.

Machine learning techniques can now help with the classification of EEG data more

accurately due to the advancement of the learning algorithms. For the case of ADHD,

involving the cognition of the patient as a game-control during the therapy will directly

affect the regularization of the EEG signals and results to treating the source of the

deficit, not only its symptoms. Also, the use of machine learning techniques can be

40
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quite significant in the diagnosis of ADHD patients in this context. For this purpose, we

designed a wearable EEG-based serious game that uses the EMOTIV kit for controlling

the character to improve the attentiveness of people with ADHD. The game is built as

an attempt to digitally mimic few existing clinical and rehabilitation therapies. The

brain-controlled FOCUS game in [4] has recorded a 10% increase in engagement and a

8% in focus over the keyboard-controlled game with healthy subjects, that acted as a

motivation to use it with those diagnosed with low attentiveness and ADHD. Due to

the lack of time and the difficulty of accessing ADHD patients in the early stages of

this work, we started by presenting the preliminary study with the healthy subjects.

We laid the ground for a possible integration of the aforementioned game and an ML

classifier using multiple models. By testing the game with healthy individuals, we tested

the classifier’s ability to diagnose different attentiveness levels characterized by the game

control mode (brain-controlled, keyboard-controlled). After obtaining the acceptance of

İstanbul Şehir University’s Ethics Committee for testing the game with ADHD subjects,

the game was tested with 4 ADHD subjects. The classifier was also fed with the data

from the ADHD subjects, and its ability was tested to diagnose between ADHD and

non-ADHD EEG data recordings. The pilot experiments with healthy individuals show

an accuracy of up to 96% in classifying the EEG data to detect the correct attention state

during gameplay, and the extended experiments with ADHD patients show an accuracy

up to 98% in classifying the patients EEG data.

Planning to use more interactive game scenarios is one of the future goals of this research.

More interactive scenarios might have a positive affect on ADHD patients’ attention

span. Additionally, creating serious games that are supported by the Virtual Reality

glasses, such as the Oculus Rift and HTC VIVE, could also enrich the interaction and

the engagement during the rehabilitation session. Lastly, creating a multiplayer platform

that support EEG-based games is a long-term goal. Due to the technical complexity of

creating the communication protocol for such a game, we leave it as a long-term future

work.



Appendix A

Ethics Committee Decision

Appendix A contains İstanbul Şehir University’s Research Ethics Committee Decision

regarding testing the serious game with ADHD patients. The document is presented in

the next page.
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