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“Under capitalism, man exploits man. Under communism, it’s just the opposite. ”

John Kenneth Galbraith



Revealing the regional and global carbon and energy hotspots of
Turkish Manufacturing Supply Chains: A global multiregional

input-output analysis

Biinyamin CANSEV

Abstract

This thesis analyzes the energy-climate-manufacturing nexus within the context of re-
gional and global supply chains. Also this shows the significance of full coverage of entire
supply chain tiers in order to prevent significant underestimations, which might lead to
invalid policy conclusions. With this motivation, a multi region input-output (MRIO)
sustainability assessment model is developed. The World Input-Output Database, which
is a dynamic MRIO framework on the world’s 40 largest economies covering 1445 eco-

nomic sectors, is used to develop MRIO model.

The method presented in this study is the first environmentally-extended MRIO model
that harmonizes energy and carbon footprint accounts for Turkish manufacturing sectors.
Moreover, a global trade-linked carbon and energy footprint analysis of Turkish manufac-
turing sectors is performed as a case study. The results were presented by distinguishing
the contributions of five common supply chain phases such as upstream suppliers, onsite
manufacturing, transportation, wholesale, and retail trade. The findings showed that
onsite and upstream supply chains are found to have over 90% of total energy use and
carbon footprint for all industrial sectors. Electricity, Gas and Water Supply sector was
usually found to be as the main contributor to global climate change, and Coke, Re-
fined Petroleum, and Nuclear Fuel sector is the main driver of energy use in upstream
supply chains. Overall, the largest portion of total carbon emissions of Turkish manu-
facturing industries was found in Turkey’s regional boundary that ranged between 40 to
60% of total carbon emissions. In 2009, China, United States, and Rest-of-the-World’s

contribution is found to be more than 50% of total energy use of Turkish manufacturing.

This thesis envisions that a global MRIO framework can provide a vital guidance for
policy makers to analyze the role of global manufacturing supply chains and prevent
significant underestimations due to inclusion of limited number of tiers for sustainable

supply chain management research.

Keywords: Energy-Climate-Manufacturing Nexus; Multi-Region Input-Output Analy-
sis; World Input-Output Database; Global Supply Chains; Sustainable Manufacturing



Tiirk Sanayi Tedarik Zincirinin Bolgesel ve Kiiresel Karbon - Enerji
Etkin Noktalarimin Ac¢iga Cikarilmasi: Bir Kiiresel Cok Bolgeli
Girdi-Cikt1 Analizi

Biinyamin CANSEV
Oz

Bu tez, enerji-iklim-iiretim irtibatini bélgesel ve kiiresel tedarik zinciri baglaminda analiz
etmektedir. Ayrica, gecersiz politika yargilarina neden olan eksik degerlendirmeleri en-
gellemek icin, biitiin tedarik zinciri agsamalarinin kugatilmasinin 6nemini gostermektedir.
Bu motivasyonla, bir cok bélgeli girdi-cikt1 siirdiiriilebilirlik analiz modeli gelistirildi.
Bu modelin geligtirilmesi i¢in "World Input-Output Database’ isimli, diinyanin 40 biiyiik

ekonomisini ve 1445 ekonomik sektor igin verileri kapsayan veritabani kullanildi.

Bu caligmadaki metod, Tiirkiye’deki iiretim sektorlerinin enerji ve karbon ayakizi hesapla-
malar1 i¢in uyumlu olacak gekilde genigletilmig ilk modeldir. Ayrica, bu iiretim sektor-
lerinin, kiiresel ticaret ile baglantili karbon ve enerji ayakizi analizi vaka caligmasi olarak
uygulanmigtir. Sonuglar 5 ortak tedarik zinciri agamalarinin ayrimimi yaparak sunuldu.
Bulgular, her bir endiistriyel sektoriin tedarik zincirindeki ’onsite’ ve 'upstream’ asa-
malarinin karbon ayakizi ve enerji kullaniminin %90’ dan fazlasindan sorumlu oldugunu
gosterdi. Elektrik, Gas ve Su Uretimi sanayi kiiresel iklim degisikliginin, Niikleer yakit,
Rafine petrol ve Komiir sanayi ise enerji kullaniminin, tedarik zincirinin "upstream’ aga-
masindaki ana saglayicisi olarak bulunmusgtur. Genel itibariyle, Tiirk sanayinin karbon
salimminin en biiytik kism %40 ve %60 arasinda Tiirkiye sinirlar i¢inde oldugu bulun-
musgtur. Tirk sanayinin 2009 yilinda enerji kullaniminin %50 den fazlasi Cin, Amerika
Birlesik Devletleri ve kullanilan veritabaninda 'Rest of the World’ olarak tanimlanmas,

40 biiyiik ekonomi digindaki {ilkeler olarak tespit edildi.

Bu tez, kiiresel Cok Bolgeli Girdi-Cikt1(MRIO) modeliyle politika yapicilar: i¢in kiiresel
iiretim tedarik zincirinin roliinii analiz edebilmeyi ve tedarik zincirinin tamamini kap-

samayan eksik degerlendirmelerin &niine gecmeyi sagladigini géz 6niine sermektedir.

Anahtar Sozciikler: Enerji-Tklim-Uretim Baglantis;; Cok Bélgeli Girdi-CiktiAnalizi;
World Input-Output Database; Kiiresel Tedarik Zinciri; Siirdiiriilebilir Uretim
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Chapter 1

Introduction

According to the World Energy Outlook Energy Special Report published by the Inter-
national Energy Agency, the world is unfortunately not on the track to achieve the global
climate change targets set by the world leaders and we are running out of time to mitigate
the rise of global temperature to 2 degrees Celsius [1]. While we have already fallen far
behind the sustainable development goals that we have to reach for our common future,
the human beings have found themselves in the middle of the environmental, economic,
social and political issues fueled by absence of an energy security and steeply increasing
carbon emissions. European economy has also become an energy and resource depen-
dent economy and exposed to increasing energy prices and raw material supply shocks
[2]. These facts inevitably lead the policy makers to take solid actions toward a greener
and resource efficient economy, and therefore the European manufacturing industry has

been identified asone of the most important policy areas that need urgent attention.

Statistics indicate that, European manufacturing represented approximately 26.8% of
the European Union (EU)’s GDP and 22.6 % of its employment, providing more than
30 million jobs |2]. While manufacturing activities contribute significantly to the Euro-
pean economies and create critical socio economic benefits to the societies, their shares
in the overall energy consumption and global climate change impacts are also colossally
high in comparison with other industries due to the resource and energy intensity embed
in the processes. Recent reports indicated that manufacturing sectors responsible for
substantial amount of greenhouse gas (GHG) emissions in the Europe, which are the

third largest contributors after the power generation and transportation sectors [3]. In
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addition, European manufacturing is responsible for around 25% of total energy con-
sumption, which is the third biggest energy consumer industry after the transportation

sector and household consumption [2].

Sustainable manufacturing has inevitably become an integral part of EU’s sustainable
development plans to support the EU’s 2020 strategic plan on promoting sustainable
industrial growth through low-carbon and energy-efficient production and economy|4].
To realize these goals, the European Union developed an integrated policy strategy for
climate and energy policies which aims to combat with global climate change and improve
the EU’s energy security, simultaneously [5]. Such an integrated approach is necessary
since energy consumption and climate change are fundamentally connected issues and it
is not practical to look at these environmental challenges in isolation (WBCSD, 2009). In
this regard, EU’s 2020 strategies on analyzing "energy-climate nexus" are covered under
the "20-20-20" targets and identified as accomplishing a 20% reduction in GHG emissions
from 1990 levels, raising the share of renewable energy resources to 20%, and having a
20% improvement in the EU’s energy efficiency [4].Going along with the EU’s "20-20-
20" targets, the Turkish Ministry of Environment and Urban Planning has recently made
the carbon footprint reporting mandatory for industrial facilities and started to develop
pilot projects on carbon emissions of selected industrial sectors. Based on the information
released in the Ministry’s official website, manufacturing sectors in Turkey must annually
measure, report and validate their carbon emissions starting from 2015 [6]. Furthermore,
the Turkish Ministry of Energy and Natural Resources developed an energy strategy plan
in which a 20% primary energy intensity reduction is targeted for 2023 compared with

the 2008 level [7].

To realize sustainable development goals based on the aforementioned climate and energy
strategies, sustainability impacts of European and Turkish manufacturing have to be
analyzed from a supply chain perspective. The supply chain encompasses all activities
associated with the flow of goods and information from raw material extraction and
processing through the customer [8]. The concept of sustainability in the supply chain
management has become a topic of colossal interest globally and highly discussed in the
regional policy making [9-15|. Especially, system thinking in sustainable supply chain
management is very crucial by virtue of the fact that environmental impacts are variably
located in the first, second, third, and even higher tiers of the supply chains of the

manufacturing industries. The results of past studies also indicated that focusing solely
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on the onsite or limited tiers of upstream supply chain impacts could result in significant
underestimation about the overall impacts, which might lead to invalid policy outcomes

[16-18].

This thesis analyzes the carbon and energy footprints of Turkish manufacturing industries
with regard to international supply chain between 2000 and 2009. In roder to achieve this
goal, economic input-output based LCA approach is used by developing multi regional
input-out model. This thesis has been organised as follows; in the Chapter 1 after here,
LCA and its brief history, literature review and the research questions that this thesis
answers are explained. LCA and its brief history section under Chaper 1 explaines its
roots and different approaches for LCA. Following section after the literature review,
the objectives of the thesis is explained so as to fill the research gaps, to answer policy
questions. In the Chapter 2, the method (multi regional input-out analysis) and the data
(World Input-Output Database) are described. The answers to the questions mentioned
in chapterl as research questions are given in the Chapter 3 as results. Discussion and
conclusions are given in the Chapter 4. And finally, future remarks for considering not
only enviromental aspect, but also economic and social aspects of manufacturing are

explained in the Chapter 5.

1.1 Historical Bacground of Sustainability and LCA

Today’s meaning of sustainability, as a term, was first used and recognized by Hans Carl
von Carlowitz in 1713 indicating that "only as much wood is removed from the forests as
grows again in the long run" [19]. Therefore, he might be referred as the father of sustain-
ability in today’s modern sense. Even though a variety of definitions of sustanibility in
several contexts might be found [20], all definitions have shared core components, which
are environment, economy, society. These are called as three pillars of sustanablity. In
the course of history of sustainability, it was first concerned as an environmental issue
by biologists and ecologists [21], then it took steps into economics in terms of natural
resources, and social aspects [20, 22]. For a sound sustainability assessment, these three
aspects, which are environmental, economic and social, should be taken into consider-
ation. But relative weights of these aspects differ from country to country, and from
researchers in the scientific world to businessmen in the globolized competitive world.

In other words, developed countries tend to give more weight to environmental aspect,
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while developing countries to economic aspects. Similarly, there has been a lack harmony
between academia and business world [23]. Without relative weights, sustainability as-
sessment can be expressed as in equation 1.1 (can be found in [24]). LCSA stands for
Life Cycle Sustainability Assessment, LCA for life cycle assessment, LCC for life cy-
cle costing, SLCA for social life cycle assessment. This equation defines sustainability
assessment in term of the summation of environmental aspect (LCA), economic aspect

(LCC), and social aspect (SLCA).

LCSA =LCA+ LCC + SLCA (1.1)

There are lists of indicators in order to measure sustainability in terms of aforemen-
tioned three pillars, as environmental, economic and social footprints. In the literature,
the footprint family has been mostly applied to environmel pillar of sustainale develep-
ment. There are many ecological footprints used to measure environmental sustainabiliy.
Ecological, carbon, water, energy footprints are most common indicators in the footprint
family [25]. These footprints as indicators for environmental sustainability assessment
can be used alone or together. When these footprints are intagrated, there are some
difficulties which are not concerned in this thesis. For the difficulties and methodologies
in aggregating footprint family, it is referred to the studies in the literature [26-28]. As
it has been mentioned above, for other two pillars of sustainability, social and economic
pillars, some other indicators should be added to the footprint family. In terms of so-
cial and economic footprints, there might be found variable indicators in the literature,
including unemployment, inequality, child labor, health, safety and so on [25]. The com-
binations of footprints or indicators so as to achive triple bottom line aims require solving

multi-objective optimisation problems [29].

This thesis is focusing on only LCA part in the equation 1.1 above, in other words,
environmental aspect of sustainability assessment. It does not take LCC and SLCA
into account. Moreover, it is not combining indicators mentioned above. Carbon and
energy footprints for Turkish manufacturing sectors were calculated in order to evaluate
the nexus of carbon, energy and manufacturing sectors from the global supply chain
perspective. It is not corcerned with any combination of aforementioned members of
footprint family. Because of the fact that it interests in carbon and energy footprint, it

is worthy to explain what are carbon and energy footprints.
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Carbon footprint might be the most often heard one amongs footprint family from media,
news to scientific researches and business. Even though carbon footprint is one of the
most famous indicators, there is no standardised definition for carbon footprint in the
literature. Carbon Trust defines carbon footprint as "A carbon footprint measures the
total greenhouse gas emissions caused directly and indirectly by a person, organisation,
event or product" [30], Global Footprint Network as "The carbon Footprint measures
CO2 emissions associated with fossil fuel use" [31]. Wiedmann and Minx give the com-
mon baseline as " the carbon footprint stands for a certain amount of gaseous emissions
that are relevant to climate change and associated with human production or consump-
tion activities." [32]. According to definition, carbon footprint measurement unit differs.
For example, if carbon footprint is calculated by only carbon emissions, measurement
unit will be in terms of tonnes. It also might be interms of area based unit for land
appropriation and tonnes of CO2 equavalents for GWP. In this thesis, as it will be ex-
plained in the Chapter 2 (Method), carbon footprint calculated as GWP with respect to

metric tons of CO2-equivalent (mt CO2-eqv).

Energy use or energy footprint was firstly recognized as a subindicator of ecological
footprint. However, recently it has become independent of ecological footprint [27, 28|.
In this thesis, again as it will be explained in detail in the Chapter 2 (Method), sum of

all types of energy commodities in terms of tera-joules (TJ).

Now, LCA’s root goes back to 1960s, such as the World Energy Conference in 1963,
global modeling studies like "The Limits to Growth" [33]. The first initiatives to im-
prove a suitable LCA tool carried out during 1990s. SETAC (Society of Environmental
Toxicology and Chemistry) developed ’cradle-to-grave’ approach with two conferences in
1990. ’cradle-to-grave’ approach means that not only environmental impacts of a prod-
uct (process, service) throughout its utilization, but also manufacturing, tranportation,
disposal and so on. And then, ISO came up with ISO 14040 family for internation-
ally standardized LCA [34]. The ISO family, such as ISO 14041 (ISO 1998) [35], ISO
14042 (ISO 2000a) [36], ISO 14043 (ISO 2000b) [37], formalized product (process, ser-
vice) based LCA. Process-based LCA is a very detailed approach to specific products,
processes, services. Even though it provides very detailed answers to research questions,
it has also some downsides such as system boundry setting problem. As the second
approach, economic input-output (EIO) based LCA covers the whole economy, which

draw no boundry. However, EIO-based LCA approach does not provide detailed answers
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as one of its downside. It obtaines aggregate views, comprehensive assessments. The
advantages and disadvatages of these two approaches is given figure 1.1 [38]. In order
to defeat some disadvatages of both, process-based and EIO-based LCA, and in order
to take some advantages of the both there is a third approach, hybrid LCA. Hybrid ap-
proach combines the accuracy of process analysis and the completeness of input-output
analysis [39].

TABLE 1.1: Advatages and Disadvatages of Two Life Cycle Assessment Approaches

Process Models

EIO-LCA

setting subjective
eoTend to be time
intensive and costly
eNew process

design difficult

eUse of proprietary
data

eCannot be replicated
if confidential data
are used

eUncertainity in data

Advantages eDetailed process- eEconomy-wide, comprehensive

specific analyses assessments (all direct and indirect
(all direct and indirect

eSpecific product environmental effects included )

comparisons eSystem LCA:industries,products,
products, services, national economy

eProcess improvements eSensitivity analyses, scenario

weak pointanalyses planning
ePublicly available data,

eFuture product reproducible results

development assessments | eFuture product development
assessments
eInformation on every commodity
in the economy

Disadvantages | eSystem boundry eSome product assessments

contain aggregate data

eProcess assessments difficult
eDifficulty in linking dollar

values to physical units

eEconomic and environmental data
may reflect past practices
eDifficult to apply to an economy
(with substantial

non-comparable imports)

eUncertainity in data

1.2 Literature Review

In the literature, process-based life-cycle assessment (LCA), economic input-output based
LCA, and hybrid LCA are extensively used to quantify the environmental impacts of

products or processes [40-43]. In fact, when focusing on the holistic environmental
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burdens of large-scaled systems such as industrial sectors, Input-Output (I-O) based
sustainability assessment models are more comprehensive approaches, which provide a
macro-level analysis [44-47]. The necessity of using system-based I-O models arises from
the fact that process-based models involve the limited number of processes and inclu-
sion or exclusion of processes is decided on the basis of subjective choices, which create
the so-called system boundary problem [43, 48|. Earlier studies on the carbon and en-
ergy footprints of economic sectors showed that process-based life-cycle inventories suffer
from significant truncation errors which can be order of 50% or higher [18, 49-51]. At
this point, I-O based models provide a top-down analysis that uses sectoral monetary
transaction matrices considering complex interactions between the sectors of national
economies|32; 52, 53]. 1-O analysis is widely used and accepted as a suitable method-
ological approach for calculation of energy and carbon footprints [54-58|. Although, the
majority of studies using I-O analysis were case studies that focus on carbon or energy
footprint analysis of a single country for a single year [59], a Multi Region Input-Output
(MRIO)analysis is critical in order to take into account the role of international trade
over a period of time [60-62]. MRIO analyses for some period of time have been becom-
ing very attractive by virtue of the fact that global input-output databases have been
available for the last couple of years. For three Baltic countries, Estonia, Latvia and
Lithuania, CO2 equivalent emissions related to household consumption between 1995
and 2011 were analyzed using MRIO model [63]. In that study significant emission
increases were found from 1995 to 2011, and the indirect emissions mostly related to
imports from Russia and China. In order to decrease those Baltic countries’ emissions
related to their consumption, it was suggested to change consumption behaviors towards
lower carbon options, and to decrease trade related indirect emissions by producing do-
mestically or importing from low carbon areas. A study used MRIO model to analyse
emissions and resource consumption of sectors for the determined coutries [64]. In that
study, it was found that; Electricity production and Chemical industry were the most
responsible sectors for pollution amongst the countries in the study for time horizon
between 1995 and 2009. These two studies [63, 64] used MRIO analysis over a perod of
time. However, the next one is an example of MRIO analysis for just one year. Mercury
emissions between 186 individual economies in 2010 by MRIO model were analyzed|65].
[66] analyzes sustainability assessment of Turkish manufacturing sectors between 2000
and 2009 from a global supply chain perspective, which is the main foundation for my

thesis. In other words, this thesis is the output of the mentioned study.
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This is important since the majority of countries in the world prefer open economic
structure, which allows the importing goods and services from foreign countries. Hence,
single-region models could lead to erroneous results due to unrealistic domestic technol-

ogy assumption [67, 68].

In this regard, MRIO models have extensively used in carbon and energy footprint studies
[69-73]. Currently, there are a number of global MRIO models available in the literature
and/or online.These databases are named as EoRA, Externality Data and Input-Output
Tools for Policy Analysis (EXIOPOL), Global Trade Analysis Project (GTAP), and
World Input-Output Database (WIOD) [74-79|. Several studies based the methodologi-
cal framework on the aforementioned MRIO initiatives and focused on tracing the carbon
and energy footprints of households [80, 81], consumption and production [73, 82-85],
international trade [58, 78, 86], cities [87], and nations [88-90)].

1.3 State-of-the-Art and Research Objectives

Although there are solid actions taken to realize a low-carbon economy and energy-
efficient manufacturing simultaneously, many policy questions still remain unanswered
regarding the use of methodological approaches that can better estimate the Turkish
manufacturing industries’ carbon footprint and energy use and identify significant energy
and carbon hotspots for effective policy making. In addition, majority of research efforts
focuses on particular parts of the manufacturing activates from products or processes
with limited focus on regional impacts and supply chain phases. Although such efforts
are necessary and useful, they lack of system perspective and therefore, underestimate
the impacts from upper tiers of global supply chains. Based on the aforementioned
research needs, this thesis aims to advance the body of knowledge by filling three major
research gaps: '"lack of application of MRIO methodology for global supply chain of
national economies” and "lack of understanding of carbon-energy-manufacturing nexus",
and "lack of holistic system-based decision-support methods for effective policy making".
With this regard in this thesis, it has been aimed to provide answers the following

questions:

e What are the direct and indirect carbon and energy footprint of Turkish manufac-

turing sectors at national and global level?
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e What are the contributions of individual supply chain phases such as upstream sup-
pliers, onsite manufacturing, transportation, wholesale and retail trade to overall

carbon and energy footprint?

e What is the global distribution of upstream energy use and carbon footprints over

a period of time?

e What is the nexus between energy and carbon footprints of each manufacturing

sector based on major supply chain phases?

e What is the trend for national and global energy and carbon footprints of indus-

tries?

To be able to respond to the aforementioned policy questions adequately, a system-based
holistic carbon and energy footprint accounting framework,which can capture all direct
and indirect impacts at regional and global scale over a period of time, is required. Hence,
in this thesis, a global MRIO model is developed by utilizing the WIOD on the world’s
40 largest economies covering 1440 economic sectors. By answering these questions, this

thesis will help the policy makers to

(i) identify the key industrial sectors and supply chain phases (onsite, upstream, trans-
portation, wholesale and retail trade) with the greatest carbon and energy footprints for

the period between 2000 and 2009,
(ii) determine the energy-climate nexus based on each supply chain phase,

(iii) propose effective carbon and energy footprint reduction strategies considering the

regional and global supply chains of Turkish manufacturing sectors, and

(iv) show the importance of complete coverage of all supply chain tiers in order to prevent

the erroneous results due to narrowly defined system boundary.

The rest of the thesis is organized as follows. Chapter 2 introduces the methods. Results
are provided in Chapter 3. Discussion and conclusions were made in Chapter 4, and,
Chapter 5 provides the policy recommendations and future directions of the current

research.
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Method

The MRIO models consist of trade flow matrices covering all countries or regions in the
model. These matrices are able to track international supply chains of world economies
and the global trade links among the trading partners [91-93]. A MRIO model typi-
cally involves national input output (I-O) tables, which represent financial transactions
between economic sectors within a country and international trade flows. In a typical
MRIO framework, monetary flows present the amount of imports and exports made by
economic sectors of countries. All these import and export flows are then merged into
one consistent financial accounting framework [67]. This combined inter-industry trans-
action matrix is linked to primary inputs between economic sectors and final demand
categories including household consumption, private fixed investments, and government

purchases and investments [94, 95].

In this thesis, The WIOD has been used to acquire fiscal flows amongst the world’s major
economies represented by 40 countries. This database is supported by the European
Commission under the 7th framework programme and developed a time series of symetric
I-O tables during the period from 1995 to 2011 for 40 countries (27 EU member states
and 13 other major countries, see Table 2.1 [68], and RoW as 41th one) distinguishing
35 industries and 59 products [68]. The National Accounts Statistics (NAS) are used so
as to acquire I-O tables in the WIOD. For constructing a symetric sector-by-sector I-O

tables and elaborate sector classifications, it is refered to Timmer [96] and EuroStat [97].

10
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TABLE 2.1: WIOD countries and their regional aggregation

Euro-Zone | Non-Euro EU | NAFTA | China | East Asia | BRITAT
Austria Bulgaria Canada | China Japan Brazil
Belgium Czech Rep. Mexico Korea Russia
Cyprus Denmark USA Taiwan India
Estonia Hungary Indonesia
Finland Latvia Australia
France Lithuania Turkey
Germany Poland

Greece Romania

Ireland Sweden

Italy UK
Luxembourg

Malta
Netherlands

Portugal

Slovakia

Slovenia

Spain

2.1 The countries and industries in the WIOD

As mentioned before, the dataset used in this thesis includes 40 countries in the Table
2.1. These 40 countries covers more than 85% of gross domestic produt (GDP) of the
world [98]. Other than those 40 countries, as 41th one, there is also RoW including
all other countries as if they are all one country. As for the industries, there are 35
industries (see the Table A, also can be found in [99]|) containing the overall economy
for each of 41 countries. In other words, there are 1435 industry-country couples (41
country*35 industry =1435) that supply outputs needed or used by again these 1435
industry-counry couples as their inputs. The dataset, in a nutshell, shows the monetary
transactions between those 1435 industry-country couples. In order to picture what it

has been explained, the Table2.2 [98] might be very helpful.



TABLE 2.2: Structure of the dataset

Country R Country S Country T Country R Country S Country T
Intermadiate | Intermadiate | Intermadiate Final Final Final Total
industry industry industry domestic domestic domestic
Intermediate | Intermediate | Intermediate | Final use of | Final use by | Final use by
Country R | Industry use of use by S of | use by T of domestic S of exports | T of exports | Output in R
domestic exports from | exports from output from R from R
output R R
Intermediate | Intermediate | Intermediate | Final use by | Final use of | Final use by
Country S | Industry | use by R of use of use by T of | R of exports domestic T of exports | Output in S
exports from domestic exports from from S output from S
S output S
Intermediate | Intermediate | Intermediate | Final use by | Final use by | Final use of
Country T | Industry | use by R of | use by S of use of R of exports | S of exports domestic Output in T
exports from | exports from domestic from T from T output
T T output

Value Added

Value Added

Value Added

Output in R

Output in S

Output in T

poyzay g w3der)

¢l
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The MRIO model in this thesis, A;j matrix consists of multiple rows which present the
input of sector 4 from country r (= 1,...,n) into industry j in country s (=1,...,n).
In this matrix,s and j equal to 35 which is the total number of sectors in each coun-
try. Also, r and s are equal to 41 which is the total number of countries including
the Rest-of-the-World (RoW). The matrix goes by the name of the direct requirement
matrix. In this matrix, rows represent the accretions from other industries (domestic
inputs plus inputs from other countries) to manufacture a dollar of output. Overall, the
MRIO analysis produces a set of multipliers that show the total environmental impacts
based on per dollar economic output, and therefore quantifies a global multi regional
environmental footprint of supply chains [58]. After the MRIO model is constructed and
total requirement matrix is derived from the direct requirement matrix using the taylor
series approximation [92|, carbon and energy footprints of the Turkish manufacturing
sectors (presented in the Table 2.3) could be estimated by multiplying the output of
each sector by its carbon or energy impact per million dollar ($M) of economic output.
The mathematical foundation of a multi region input-output analysis explained in the

following sub-section.
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2.2 A Multi-region Input-Output Analysis

For a brief explaination, the MRIO model is illustrated for the case of 3 regions with n
sectors. However, this illustration can be applied to any number of regions and sectors
as discussed in the Arto et al. [100]. In a typical MRIO economy, there are 3 main

components such as inter-industry transactions matrix (Z), final demand vector (f), and

TABLE 2.3: WIOD manufacturing sectors and their abbreviations

Manufacturing Sectors Abbreviations
Agriculture, Hunting, Forestry and Fishing AHFF
Basic Metals and Fabricated Metal BMFM
Chemicals and Chemical Products CCP
Coke, Refined Petroleum and Nuclear Fuel CRPNF
Electrical and Optical Equipment EOE
Food, Beverages and Tobacco FBT
Leather, Leather and Footwear LLF
Machinery, Nec MN
Manufacturing, Nec; Recycling MNR
Mining and Quarrying MQ
Other Non-Metallic Mineral ONMM
Pulp, Paper, Paper, Printing and Publishing PPPPP
Rubber and Plastics RP
Textiles and Textile Products TTP
Transport Equipment TE
Wood and Products of Wood and Cork WPWC

total industry output vector (x).

zr zrr + zrs + Zrt
7 = 75| = | 25" + 755 + Zst

Zt Ztr + Zts + Ztt
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fr frr + frs + frt
f = fs — fsr + fss +f5t :
ft ftr + fts + ftt

As an element of Z"%, z;7 accounts for the purchases of industry j in country s from
industry ¢ in country r. In addition, f™® represents a column vector with final demands
that can be household demand, government consumption and investments, private fixed
investments, etc. For example,f/® represents the final demand of country s for com-
modities produced by sector 7 in country r. Also, 2" denotes the column vector of total
industry outputs in region r.Overall, the linear relation between total industry output
(x), inter-industry transactions (Z) and final demand (f) is given in the Equation 2.1

[92]:

Zi4 fi=X(i=r, s 1) (2.1)

In a standard input-output model, total industry output vector ,x can be expressed as

[92]:

r=Ax+ f (2.2)

where A is known as the technical coefficients matrix or direct requirements matrix.
Using the Leontief’s inverse function, the solution of the Equation 2.2 is given by x = Lf,
where L = (I — A)™! is called as the Leontief inverse [101]. Because of the Taylor
series expansion, the Leontief inverse covers the entire supply chains as (I — A)~! =
I+ A+ A% + ..., where I is for onsite, A is for the first layer in its supply chain, and so

on so forth.

In the MRIO analysis, the multiregional technical coefficients matrix is defined as:
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AT ATS Art
A= Asr Ass Ast ;
Atr Ats Att
where
A=27Zz1 (2.3)

In the Equation 2.3, Z matrix represents the monatary transactions, in other words
internal consumption, between industries. Z~! is the diagonalized matrix of the reciprocal

of each total output as given in the followings,

grr grs Zrt
7 = VAL/AL Zst 3

Zt’r‘ Zts Ztt
1/X" /X" 0 0
! = diag /xXs| =1 0 1/X° 0 |;
1/xt 0 0 1/xt

and the direct requirements matrx A is calculated as

ATT ATS Art grr . grs Zrt l/Xr 0 0
A = | AS" ASS Ast = |z zss Zst X 0 1/Xs 0 = ...
Atr Ats Att Ztr Zts Ztt 0 0 1 / Xt

er/Xr er/XS Zrt/Xt
= ZST‘/X’I‘ Zss/Xs Zst/Xt
Zt’r/Xr Zts/Xs Ztt/Xt

After that, Leontief matrix and Leontief inverse matrix are calculated using the Equation

2.4 and the Equation 2.5, respectively:
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J— A _ AT _ ATt
[I _ A} — —AST I — ASS — Ast (24)
_Atr _Ats T — Att

-1

I — A" —_A”S _Art B™ PBrs Brt
L = [[ _ A]_l — —AST I — ASS _Ast = | Bsr PBss Bst (25)
_Atr _Ats J— Att Btr Bts Btt

Furthermore, our MRIO model is extended with two environmental impact matrices,
where C is a diagonal matrix of carbon emission coeflicients and E is a diagonal matrix
of energy use coefficients. Then, the total sectorial emissions and energy use are given

by the Equation 2.6 and the Equation 2.7, respectively:

c=CBf (2.6)

e = EBf (2.7)

where c is a column vector of total carbon emissions, and e is a column vector of total
energy use. Hence, the sectorialemissions of a specific country r are given in the Equation

2.8:

o= CrBrrfr 4 CrBrchs 4 CrBrtft (28)

Finally, the sectorial energy uses of a specific country r are given in the Equation 2.9:

er — ErBrrfr 4 EITBTSfS 4 ETBrtft (29)

2.3 Data Collection and Preparation

In this thesis, the majority of its dataset has been gathered from the WIOD to obtain sec-

toral transactions table and GHG emissions and energy consumption data. Each sector’s
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global warming potential (GWP) is computed by multiplying the total GHG emission
of each sector with conversion factors acquired from the United States Environmental
Protection Agency (U.S EPA, 2013). The GHG emission dataset involves the direct car-
bon dioxide (CO2), methane (CH4) and nitrous oxide (N20) emissions of each sector.
The GWP results are given in terms of metric tons of CO2-equivalent (mt CO2-eqv).
Table 2.4 [102] presents the GWPs of GHG emissions relative to CO2 for a 100-year time
horizon.

TABLE 2.4: Direct Global Warming Potentials relative to CO2

Common Name Chemical Formula Conversion factors of GWP for

100-year time horizon

Carbon Dioxide CO2 1
Methane CH4 25
Nitrous Oxide N20 298

For total energy consumption, the sectorial energy use data are obtained from the WIOD.
The energy data include the total fossil and non-fossil gross energy use of each sector

and presented in tera-joules (TJ). The structure is given in the Table 2.5.

TABLE 2.5: Energy Use Data Structure in WIOD

WIOD Fuels

Energy Carrierl | Energy Carrier2 | ... | Energy CarrierX | TOTAL
Sectorl
Sector2
Sector3dh

In order to prevent a double counting issue in energy accounts, the primary energy
carries (crude oil, coal, natural gas, nuclear energy, hydropower, and renewables) were
only summed up, which are shown in the WIOD energy accounts. Similar approach was
also used by Bortolamedi [103] and the primary energy carriers and their WIOD codes
are presented in the Table 2.6 [103]. All operations related to matrices are dealt with
using a MatLab programming software MATLAB, 2012 [104].
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TABLE 2.6: Primary Energy Carriers in WIOD

Primary Energy Carriers WIOD Code
Crude Oil Crude
Coal HCoal, BCoal, Coke
Natural Gas NatGas, OthGas

Nuclear Energy Nuclear

Hydropower Hydro
Renewables Waste, Biogasol, Biodiesel, Biogas
Geotherm, Solar, Wind, Othsourc

The followings briefly summarize the major research steps:

e First, total economic transaction table is acquired from the WIOD and total re-

quirement matrix is created by using the Leontief’s inverse,

e Second, total economic output of each sector from all countries are gathered. Then,
by dividing GWP and energy use of sectors to corresponding economic output, we
obtain the C and E matrices. Each element of this matrices demonstrates the direct

carbon and energy impact of 1435 sectors,

e Finally, by using the MRIO framework, we calculate the onsite, upstream and
T+W-+R related GWP and energy use of 16 major Turkish manufacturing sectors
between 2000 and 2009.
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Results

3.1 Carbon footprint and energy use of manufacturing sec-

tors and their supply chains

Figures 3.1, 3.2, 3.3, 3.4 demonsrates the total average carbon footprint and energy use
of 16 manufacturing sectors based on per $M and total economic output between 2000
and 2009. The results show the contributions of upstream, onsite manufacturing and
transportation (T), wholesale (W) and retail (R) trade (hereafter called the "T+W-+R")
to carbon emissions and energy use inventory. Figure 3.1 indicates that AHFF, FBT,
TTP, ONMM, BMFM and CCP are the top-6 industrial sectors based on total amount
of carbon emissions. These sectors account for over 50% of the total carbon emissions
in the MRIO economy. In terms of the contribution to the supply chain phases, onsite
manufacturing activities were found to be dominant only for AHFF and ONMM. For
the rest of the sectors, the industries in the upstream supply chains were found to be
responsible for over 90% of the total impacts and the contribution of onsite and T+W+R

activities were found to be minimal.

20
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FIGURE 3.1: carbon footprint based on total output (t CO2-eqv/total $M)

Figure 3.2 presents the total carbon footprint of 16 manufacturing sectors based on the
per $M as an average of carbon footprints during the period between 2000 and 2009.
The results showed that ONMM, WPWC, CRPNF, BMFM, CCP, and RP were found
to be as the top-6 industrial sectors based on total carbon footprints against per $M
output. These sectors were found to be responsible for around 60% of total carbon
footprints. When we look at more closely at contribution of supply chain phases, onsite
manufacturing activities were found to be the major driver of footprints only for AHFF,
ONMM and WPWC. The same as total carbon footprint results, upstream supply chains
are responsible for over 90% of the total impacts and the contribution of direct and
T-+W-+R related supply chain phases are quite low. Although AHFF, FBT and TTP
have the largest total carbon emissions based on total economic output, their carbon
emissions based on $M output are found to be lower when compared to emissions based
on total economic output. On the other hand, sectors with low total carbon footprints

such as WPWC and CRPNF have the highest carbon emissions per $M output. Among
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the major manufacturing sectors, ONMM sector is found to have high carbon emissions
for both per $M and total output. In both cases, LLF sector has the lowest carbon

emissions when compared with other sectors.

m Upstrezm o Cnsize T+l eR

3,5E-03

30E-03

2,5E-03

E-E,I]E-IB

>

T

h
g 1cp
S 15E03
-

1,0E-03

- IIIIIIII
0,0E-00

'44'
o“g ,Qﬁ‘ s & f "é" gy

FIGURE 3.2: carbon footprint based on per $M output (t CO2-eqv/ $M)

Figure 3.3 demonsrates the total energy use of 16 manufacturing sectors based on total
economic output as an average of total energy use for the period 2000 and 2009. The
results showed that TTP, FBT, BMFM, CRPNF and AHFF represent the top- industrial
sectors in total energy use category based on total economic output. The top sectors
are found to be responsible for more than two third of total energy use. When we look
at more closely at contribution of supply chain phases, onsite manufacturing is found
to be dominant only for TTP and FBT. On the other hand, for the majority of the
manufacturing sectors, upstream supply chains are responsible for over 65% of the total
energy use. The contribution of direct and T+W+R related supply chain phases have a
little contribution to overall energy use. LLF and WPWC are responsible for the least

amount of energy in comparison with other sectors.
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FIGURE 3.3: energy use based on total output (TJ / total$M)

Figure 3.4 shows the total carbon footprint of 16 manufacturing sectors based on per
$M activity. The results revealed that CRPNF, EOE, TTP, BMFM, and TE use the
biggest energy resources within the manufacturing sectors. These sectors are found to
have approximately more than 50% of total energy use among the 16 manufacturing
sectors. The results analyzing the contribution of supply chain stages to total energy use
showed that onsite energy use of manufacturing is found to be dominant only for AHFF
and ONMM. The same as total carbon footprint results, upstream supply chains were
found to be guilty for more than 90% of the total impacts. The contribution of direct and
T+W-+R related supply chain phases were seen as having nonsignificant impact share.
It is also important to emphasize that FBT is found to be as the second largest energy
consumer; however its total energy use based on per $M economic output was found to
be lower compared to total energy use. Furthermore, sectors with high total energy use
such as TTP and BMFM have the high energy use for both per $M and economic output
basis. Among the major manufacturing sectors, AHFF sector was found to be among the

top-5 energy consumer based on total economic activity. However, the total energy use
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of AHFF based on per $M economic output was observed as the lowest when compared

to other sectors.
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FIGURE 3.4: energy use based on per $M output(TJ / $M)

Figure 3.5 depicts the contribution of each supply chain phase to carbon footprint and en-
ergy use extents. This analysis is important to understand the degree of nexus between
supply chain phases for carbon footprint and energy utilization. The results demon-
srated that the percentage contribution of upstream suppliers, onsite manufacturing and
T+W-+R phases were found to be similar for the sectors of BMFM, CRPNF, EOE, LLF,
MN, MNR and TE for both carbon and energy categories. For these sectors, upstream
supply chain impacts were identified to be dominant compared to onsite manufacturing
activities and T+W+R. For the manufacturing sectors such as AHFF, CCP, FBT, MQ),
ONMM and WPWC, the contributions of different supply chain phases to total carbon
emissions and energy use were found to be substantially different. For instance, up-
stream supply chains were found to be highly dominant in the total energy use of three
manufacturing sectors: AHFF, ONMM, and WPWC. On the other hand, onsite man-
ufacturing activities were found to have the biggest carbon emissions for these sectors
in comparison with upstream supply chains and T+W+R phages. For CCP and MQ
sectors, upstream supply chains were identified to be the major driver of total energy

use; whereas upstream supply chains and onsite manufacturing equally shared the total
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carbon emissions. For FB'T, which is the secondary manufacturing sector in terms of to-
tal energy use and carbon emissions, upstream supply chains were identified to be highly
dominant and the percentage contribution of transportation and T-+W+R phases are
responsible for the minimum share of total impacts. On the average, the contribution of
upstream supply chains to total energy use of the majority (75%) of the manufacturing

sectors was found to 80% or higher.

In carbon emissions category, only four sectors’ impacts were found to be driven by the
onsite manufacturing activities and the rest of the sectors’ impacts (accounts for 75%
of all sectors)were found to have the largest shares attributed to the upstream supply
chain industries. For most of the sectors with an exception of CRPNF, the contribution

of T+W+R was found to have less than 5% of overall carbon emissions and energy use.
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After analyzing the direct and supply chain components as two major groups, it is
important to analyze the impact share of each of the sectors in the upstream supply
chains to the total energy and carbon impacts. Therefore, a supply chain decompositions
analysis was utilized to trace the effect of top-5 upstream suppliers(here, the top 5 sector
phrase indicates the five sectors with the greatest shares in the upstream supply chain-
related impacts). Table 3.1 shows the upstream supply chains sectors’ contribution to
carbon emissions based on total economic output. AHFF, FBT, TTP, ONMM and
BMFM industries were identified as emitting the biggest amount of carbon emissions in

comparison with the remaining 11 sectors. Among these sectors, total carbon footprint of
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AHFF and ONMM was found to be largely driven by onsite activities; whereas upstream
supply chains of BMFM, FBT, and TTP were found to be responsible for the greatest
shares in terms of total carbon footprint. For AHFF and ONMM; the percentage shares of
onsite manufacturing activities were found to be 75% and 80%, respectively. For BMFM,
FBT, and TTP; upstream supplier industries accounted for around 70.2%, 87.4%, and
80.3% of total carbon footprint inventory. After a detailed analysis of top-5 driving
sectors’ supply chain-linked impacts; Electricity, Gas and Water Supply sector was mostly
found to be as the main contributor to total carbon emissions. For instance, the carbon
footprint shares of Electricity, Gas and Water Supply industry within the total supply
chain-linked impacts of ONMM, BMFM and TTP were found to be critically high,
accounting for 42.3%, 38.2% and 33.65% of total supply chain-related carbon emissions.
On the contrary, inland transportation was found to have the least amount of carbon

emissions with less than 5% impact share.
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TABLE 3.1: Supply chain decomposition analysis of carbon footprint for top 5 sectors

based on total output

AHFF Share (%)
Avg. Onsite Carbon Footprint 75.0%
Avg. Supply Chain Carbon Footprint 25.0%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 29.5%
Agriculture, Hunting, Forestry and Fishing 17.8%
Chemicals and Chemical Products 11.6%
Mining and Quarrying 8.1%
Coke, Refined Petroleum and Nuclear Fuel 7.3%
FBT

Avg. Onsite Carbon Footprint 12.6%
Avg. Supply Chain Carbon Footprint 87.4%
Top 5 Sectors in Supply Chains

Agriculture, Hunting, Forestry and Fishing 56.1%
Electricity, Gas and Water Supply 15.4%
Chemicals and Chemical Products 4.5%
Mining and Quarrying 3.7%
Other Non-Metallic Mineral 3.5%
TTP

Avg. Onsite Carbon Footprint 19.7%
Avg. Supply Chain Carbon Footprint 80.3%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 33.6%
Chemicals and Chemical Products 14.7%
Agriculture, Hunting, Forestry and Fishing 12.1%
Mining and Quarrying 71%
Inland Transport 4.2%
ONMM

Avg. Onsite Carbon Footprint 80.0%
Avg. Supply Chain Carbon Footprint 20.0%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 42.3%
Mining and Quarrying 20.3%
Chemicals and Chemical Products 6.3%
Other Non-Metallic Mineral 4.9%
Inland Transport 4.5%
BMFM

Avg. Onsite Carbon Footprint 29.8%
Avg. Supply Chain Carbon Footprint 70.2%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 38.2%
Basic Metals and Fabricated Metal 24.1%
Mining and Quarrying 9.9%
Other Non-Metallic Mineral 8.3%
Inland Transport 3.2%
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Table 3.2 depicts the upstream supply chains sectors’ contribution to carbon emissions
based on per $M economic activity. ONMM, WPWC, CRPNF, BMFM and CCP were
found to have the highest carbon emissions per $M economic output. Among these sec-
tors, carbon footprint of ONMM, WPWC and CCP is largely driven by onsite activities
whereas upstream supply chains of CRPNF and BMFM were identified as guilty for the
largest percentage of the total carbon footprint. For ONMM, WPWC and CCP, the
percentage shares of direct impacts were found to be as 75% and 80%, respectively. For
BMFM, FBT and TTP, upstream suppliers accounted for around 80%, 68.9% and 53.2%
of total carbon footprint based on per $M output. When analyzing top-5 contributors
in upstream supply chains, Electricity, Gas and Water Supply sector was again found to
be as the main contributor of the total carbon emissions. The share of the Electricity,
Gas and Water Supply among the upstream suppliers ONMM, WPWC, CRPNF, and
BMFM had the greatest values, accounting for 41.9%, 29.2%, 33.5%,and 38.3 of total
supply chain-related carbon impacts. The same as overall carbon emissions based on
total economic output, inland transportation had the least amount of carbon emissions,
which account for less than 5% of total carbon emissions with an exception of CRPNF.
For this sector, the percentage contribution of transportation sector was identified to be

almost 15% of total upstream carbon footprints.
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TABLE 3.2: Supply chain decomposition analysis of carbon footprint for top 5 sectors

based on per $M output

ONMM Share (%)
Avg. Onsite Carbon Footprint 80.0%
Avg. Supply Chain Carbon Footprint 20.0%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 41.9%
Mining and Quarrying 21.1%
Chemicals and Chemical Products 6.7%
Inland Transport 4.6%
Coke, Refined Petroleum and Nuclear Fuel 4.2%
WPWC

Avg. Onsite Carbon Footprint 68.9%
Avg. Supply Chain Carbon Footprint 31.1%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 29.2%
Agriculture, Hunting, Forestry and Fishing 27.1%
Chemicals and Chemical Products 13.4%
Mining and Quarrying 6.7%
Inland Transport 3.5%
CRPNF

Avg. Onsite Carbon Footprint 25.1%
Avg. Supply Chain Carbon Footprint 74.9%
Top 5 Sectors in Supply Chains

Mining and Quarrying 34.8%
Electricity, Gas and Water Supply 33.5%
Inland Transport 15.0%
Coke, Refined Petroleum and Nuclear Fuel 3.0%
Basic Metals and Fabricated Metal 2.4%
BMFM

Avg. Onsite Carbon Footprint 29.8%
Avg. Supply Chain Carbon Footprint 70.2%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 38.3%
Basic Metals and Fabricated Metal 23.2%
Mining and Quarrying 10.1%
Other Non-Metallic Mineral 8.5%
Inland Transport 3.2%
CCP

Avg. Onsite Carbon Footprint 53.2%
Avg. Supply Chain Carbon Footprint 46.8%
Top 5 Sectors in Supply Chains

Electricity, Gas and Water Supply 28.6%
Chemicals and Chemical Products 17.5%
Mining and Quarrying 13.2%
Agriculture, Hunting, Forestry and Fishing 6.6%

Other Non-Metallic Mineral

5.5%
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Table 3.3 presents the upstream supply chains sectors’ contribution to energy use based
on total economic output. TTP, FBT, BMFM, CRPNF and AHFF had the highest en-
ergy use when compared to other manufacturing sectors. The total energy consumption
of these sectors was mainly driven by upstream supply chains whereas onsite manufactur-
ing sectors have the least amount of energy use. For AHFF and BMFM, the percentage
shares of onsite manufacturing were found to be noncritical, accounting for 13.38% and
17.23% of the total energy use, respectively. For TTP, FBT and CRPNF, upstream
suppliers accounted for approximately 47.36%, 64.36% and 73.26% of total energy con-
sumption. The Coke, Refined Petroleum and Nuclear Fuel sector was usually found to
be as the main driver of energy use in upstream supply chains. For example, the share
of Coke, Refined Petroleum and Nuclear Fuel within the supply chain paths of AHFF,
CRPNF and FBT had the following energy use shares: 19.78%, 7.12% and 11.27%, re-
spectively. In contrast, the percentage contribution of transportation and trade activities

were not listed among the top-5 upstream suppliers for the energy use category.
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TABLE 3.3: Supply chain decomposition analysis of energy use for top 5 sectors for

total economic outputs

1.TTP Share (%)
Average Onsite Carbon Footprint 52.64%
Average Supply Chain Carbon Footprint 47.36%
Top 5 Sectors in Supply Chains

Textiles and Textile Products 9.27%
Coke, Refined Petroleum and Nuclear Fuel 6.84%
Chemicals and Chemical Products 6.23%
Renting of M&Eq and Other Business Activities 4.57%
Mining and Quarrying 4.20%
2.FBT

Average Onsite Carbon Footprint 35.64%
Average Supply Chain Carbon Footprint 64.36%
Top 5 Sectors in Supply Chains

Coke, Refined Petroleum and Nuclear Fuel 11.72%
Food, Beverages and Tobacco 7.45%
Renting of M&Eq and Other Business Activities 4.53%
Chemicals and Chemical Products 4.18%
Mining and Quarrying 4.69%
3.BMFM

Average Onsite Carbon Footprint 17.23%
Average Supply Chain Carbon Footprint 82.77%
Top 5 Sectors in Supply Chains

Basic Metals and Fabricated Metal 17.46%
Mining and Quarrying 9.14%
Renting of M&Eq and Other Business Activities 7.88%
Coke, Refined Petroleum and Nuclear Fuel 5.20%
‘Wholesale Trade and Commission Trade, 3.09%

Except of Motor Vehicles and Motorcycles

4.CRPNF

Average Onsite Carbon Footprint 26.74%
Average Supply Chain Carbon Footprint 73.26%
Top 5 Sectors in Supply Chains

Mining and Quarrying 26.40%
Coke, Refined Petroleum and Nuclear Fuel 7.12%
‘Wholesale Trade and Commission Trade, 3.49%
Except of Motor Vehicles and Motorcycles

Renting of M & Eq and Other Business Activities 1.43%
Inland Transport 1.02%
5.AHFF

Average Onsite Carbon Footprint 13.38%
Average Supply Chain Carbon Footprint 86.62%
Top 5 Sectors in Supply Chains

Coke, Refined Petroleum and Nuclear Fuel 19.78%
Chemicals and Chemical Products 6.19%
Mining and Quarrying 7.24%
Food, Beverages and Tobacco 4.76%

Renting of M & Eq and Other Business Activities 4.22%
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Lastly, Table 3.4 shows the contribution of upstream suppliers to total energy consump-
tion based on per $M economic activity. The results revealed that CRPNF, EOE, TTP,
BMFM and TE have the highest energy use against per $M economic output. For these
manufacturing sectors, total energy use was only dominated by upstream suppliers. Es-
pecially, the upstream supply chain portions of energy use are the highest for EOE and
TE which are 96.34% and 90.31% of total energy use. For BMFM, CRPNF and TTP, the
percentage shares of onsite manufacturing are 17.98%, 27.29% and 53.72%, respectively.
When the researchers analyzed the drivers of upstream supply chains, the Coke, Refined
Petroleum and Nuclear Fuel sector is again observed as the main contributor. The share
of the Coke, Refined Petroleum and Nuclear Fuel among the upstream suppliers includ-
ing CRPNF, TTP and BMFM had the highest shares, which were found as 7.63%, 7.73%

and 6.60% of the total upstream energy consumption.
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TABLE 3.4: Supply chain decomposition analysis of energy use for top 5 sectors based
on per$M output

1.CRPNF Share (%)
Average Onsite Carbon Footprint 27.29%
Average Supply Chain Carbon Footprint 72.711%
Top 5 Sectors in Supply Chains

Mining and Quarrying 27.94%
Coke, Refined Petroleum and Nuclear Fuel 7.63%
Wholesale Trade and Commission Trade, 3.84%

Except of Motor Vehicles and Motorcycles

Renting of M&Eq and Other Business Activities 1.63%
Inland Transport 1.09%
2.EOE

Average Onsite Carbon Footprint 3.66%
Average Supply Chain Carbon Footprint 96.34%
Top 5 Sectors in Supply Chains

Electrical and Optical Equipment 31.75%
Basic Metals and Fabricated Metal 9.10%
Renting of M&Eq and Other Business Activities 6.46%
Coke, Refined Petroleum and Nuclear Fuel 5.52%
Chemicals and Chemical Products 4.01%
3. TTP

Average Onsite Carbon Footprint 53.72%
Average Supply Chain Carbon Footprint 46.28%
Top 5 Sectors in Supply Chains

Textiles and Textile Products 8.90%
Coke, Refined Petroleum and Nuclear Fue 17.73%
Chemicals and Chemical Products 6.98%
Renting of M&Eq and Other Business Activities 4.88%
Mining and Quarrying 4.50%
4. BMFM

Average Onsite Carbon Footprint 17.98%
Average Supply Chain Carbon Footprint 82.11%
Top 5 Sectors in Supply Chains

Basic Metals and Fabricated Metal 18.09%
Mining and Quarrying 9.95%
Fuel Renting of M&Eq and Other Business Activities 8.05%
Coke, Refined Petroleum and Nuclear 6.60%
Wholesale Trade and Commission Trade, 4.71%

Except of Motor Vehicles and Motorcycles

5. TE

Average Onsite Carbon Footprint 9.69%
Average Supply Chain Carbon Footprint 90.31%
Top 5 Sectors in Supply Chains

Transport Equipment 19.59%
Basic Metals and Fabricated Metal 13.67%
Renting of M&Eq and Other Business Activities 8.56%
Coke, Refined Petroleum and Nuclear Fuel 6.46%

Mining and Quarrying 4.17%




Chapter 3. Results 35

The aforementioned analysis indicates that the total carbon and energy impacts of sectors
were largely attributed to the upstream suppliers and onsite activities; whereas T+W+R
have the lowest contribution. Although these sectors have a little contribution, Figure
3.6 presented the contribution of transportation and trade activities to the total energy
consumption for the top-5 manufacturing sectors: TTP, FBT, BMFM, CRPNF and
AHFF. The results indicated that inland transportation had higher share compared to
water and air transportation. On average, the share of transportation was found to be
50% or over among the downstream supply chain phases. The wholesale and retail trade
phases had lower impact share than inland transportation with an exception of CRPNF
sector. For this sector, until 2007, wholesale trade had the biggest share compared to
retail trade and allother transportation sectors. In general, the total share of transporta-
tion phase started to increase during the period between 2008 and 2009, and showed a
decreasing trend for wholesale and retail trade. This proved the growing dependency
of manufacturing sectors to inland transportation sector, mainly the truck mode. The
contribution of air transport was found to have a minimal impact in comparison with

inland air transportation.
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Figure 3.7 represents the contribution of air, water and inland transport, wholesale and
retail trade to total carbon emissions. The sectors presented in Figure 3.7 were the
ones which had the highest total carbon footprints between 2000 and 2009. The results
showed that inland and water transportation modes had the biggest carbon emissions
whereas the share of air transport in carbon emissions is found to be minimal. After
air transportation, retail and wholesale trade were found to have the lowest portion of
total carbon footprint. For ONMM, the share of inland transportation in total emissions
was observed as the largest. On the other hand, the water transportation’s share in
carbon footprint of AHFF and FBT was found to be as highly dominant compared
to other transportation sectors and trade activities. Overall, the percentage share of
transportation modes and trade activities were not changed significantly between 2000
and 2009 period. Although water transportation was found to be responsible for the

lowest energy use; its contribution to total carbon emissions was found to be quite high.
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3.2 Global distribution of energy use and carbon footprint

Figure 3.8 presents the global carbon and energy distribution of each sector based on
major world countries and RoW. For carbon emissions, the results showed that Indonesia
(IDN), Russia (RUS), and RoW had the largest share in total carbon emissions. For TTP
and EOE sectors, China (CHN)was also listed among the major contributing countries
such as IND, RUS, and RoW. Overall, the carbon footprints of majority of manufacturing
sectors were found in Turkish region and the RUS, CHN, and RoW were listed after
Turkey (TUR) as major contributors. Among the manufacturing sectors, FBT had the
highest regional carbon emissions and the contribution of global supply chains are found
to be lower compared to other countries (see Figure 3.8a). The situation was also similar
for MQ industry and the highest portion of carbon emission were located in TUR. As
an important finding, for CRPNF sector, RUS was found to have the largest carbon

emissions due to high dependence of Turkey to Russian energy.

Figure 3.8b shows the share of world countries in total energy use of each manufacturing
sector. The RoW wasfound to have the largest share in total global energy footprint of all
manufacturing sectors. This is because TUR is a highly energy dependent country and
imported the significant amount of its energy demand from neighbouring countries such
as Iran, Iraq, Azerbaijan, etc. Overall, CHN, Deutschland (DEU), TUR and USA were
the most dominant countries based on total global energy use of Turkish manufacturing.
Especially, the China’s contribution to the total energy footprint is observed as the
highest for TTP and EOE sectors. This was an expected result due to high import
of textile and electronic products produced in CHN to Turkey. For the majority of
manufacturing sectors, the contribution of Turkish energy production sector wasaround
10% of the total produced energy worldwide. Interestingly, the share of USA in total
energy footprint of each manufacturing sector was found to be close enough to the share
of Turkey. The results also showed that the energy shares of other world countries such
as GBR, ITA, JPN, NLD, KOR and RUS were ranged between 1% and 5% and did not

show significant variations among the production sectors.
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Finally, Figure 3.9 presents the global distribution of energy and carbon impacts of man-
ufacturing sectors for the period between 2000 and 2009. This analysis is significant to
see the variation of global distribution of energy and carbon effects of each manufacturing
sector. The results indicated that CHN, RUS, TUR and RoW had the greatest shares
of carbon emissions over the 9-year period. The shares of CHN and RUS showed a de-
clining trend from 2000 to 2009. On the other hand, TUR’s share started to increase in
2007. Overall, the largest portion of total carbon emissions was found in TUR’s regional
boundary,which ranged between 40% and 60% of total carbon emissions. For instance,
in 2009, TUR was identified to be guilty for around 60% of total carbon emissions and

the rest was distributed to other world countries (see Figure 3.9a).

Figure 3.9b also showed the contribution of trading countries to total energy use of
Turkish manufacturing. Among the nations, CHN, DEU, FRA, TUR, USA and RoW
had the biggest share of energy production to support Turkish manufacturing sectors.
As an important finding, the share of CHN showed a steady increase between 2000 and
2009. In 2009, China, United States, and Rest-of-the-World’s contributions, as a whole,
werefound to be more than 50% of total energy use of Turkish manufacturing. The CHN’s
contribution in 2009 wasfound to be more than 10% of total energy use while over 20%
of total energy was attributed to production activities of other countries grouped under
RoW. Starting from 2001, USA has shown a declining trend for its contribution to total
energy use. TUR’s energy share varied between 9% and 23% of total impacts, and
had its highest value in 2008, and 2009. The countries such as ESP, FIN, FRA, GBR,
ITA, JPN, KOR and RUS had the least portion among the global trading partners of
TUR, and their share in total energy footprint of Turkish manufacturing did not show a

considerable fluctuations over the 10-years period.
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Discussion and Conclusions

This study addresses the energy-climate-manufacturing nexus for the Turkish manufac-
turing industries and showed the importance of consumption-based approaches with the
inclusion of global manufacturing supply chains. Furthermore, it provides crucial insights
for policy makers, industry stakeholders, and the scientific community and can pave the
way for further development in manufacturing sustainability assessment research. For
practical applications, the proposed decision-support framework should include further
collaborations with industry stakeholders. Since the major hotspots in global supply
chains were revealed, policy makers can identify the major stakeholders in each sector
and can investigate the root causes. The major insights and conclusions are presented

as follows:

4.1 One size does not fit all: The need for sector-specific

strategies

The international trade-linked carbon footprint and energy consumption of the manu-
facturing industries highlighted the need for sector-specific strategies to mitigate GHG
emissions and shift to a more energy-efficient economy. Consequently, strategies should
be developed based on the supply chain characteristics reflecting the contribution of
onsite, upstream and T+W+R segments, and energy and carbon footprint reduction po-

tential of each sector. While carbon and energy intensity of some sectors were attributed

43
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to supply chain, for other sectors such as ONMM, WPWC, TTP, FBT and AHFF, re-
ducing onsite impacts should be prioritized. The percentage contribution of upstream
suppliers to the total carbon emissions is found to be much higher (80% or higher) for
majority of the sectors (about 75% of the sectors), whereas onsite emissions of sectors
such as WPWC, ONMM, and AHFF have much greater shares. On the other hand,
upstream energy consumption of these sectors is greater than their onsite emissions.
Hence, the policies aiming to increase energy efficiency may not necessarily reduce the
GHG emissions effectively. While AHFF sector had the highest carbon emissions based
on their total output, the total energy use of AHFF was not the highest. Although
there might be strong correlation between energy and carbon footprints, different trends
can also be observed in such sectors. Another example is the ONMM sector:The results
showed that ONMM is the most carbon-intensive sector with respect to emissions per
$M of output and it is the fourth largest contributor in the terms of its relative size.
However, ONMM sector was not found to be among the top-5 sectors based on its total
and per $M output energy consumption. Similarly, WPWC was responsible for the least
amount of energy in comparison with other sectors; whereas it was found to be asone of

the top contributors of carbon emissions per $M basis.

4.2 Carbon and energy hotspots: Insights for Turkish man-

ufacturing sectors and supply chains

Revealing the most carbon and energy intensive supply chain components is crucial to
be able to identify the root causes and detect the right domains to focus on. Results
indicate that the total carbon and energy impacts of sectors are largely attributed to
upstream suppliers and onsite activities; whereas T+W-+R have relatively much smaller
impact. Among the upstream suppliers,Electricity, Gas and Water Supply (EGWS)was
found to be most dominant supply chain component of the top carbon intensive sectors.
Although this is an expected finding, it highlights the fossil fuel dependence of electric
power generation. Hence, use of renewable energy for electricity production is vital to
mitigate carbon emissions and stabilize the global warming threat in the long run. Fur-
thermore, any improvement in EGWS sector can result in credible footprint reductions
compared to other supply chain components since it is a major component of the supply

chain of manufacturing sectors and the largest contributor to carbon emissions. On the
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other hand, major supply chain contributors to the energy consumption of manufactur-
ing sectors have a different structure. The Coke, Refined Petroleum and Nuclear Fuel
sector was found to be the main driver of energy use in upstream supply chains. Sim-
ilarly, energy efficiency improvement for this sector will increase performance of other
sectors significantly. Furthermore, CRPNF was the most energy intensive sector and
supply chain energy consumption account for about 70% of the sector’s total. The most
influential component of its supply chain is the MQ) sector whose energy consumption

trend is expected to increase due to expanding coal mining in Turkey in recent years.

4.3 Lack of Communication in a Globalized World

In a globalized world, which is woven by highly complex web of global supply chains,
sustainability of any region depends on the sustainability of many other regions [105].
Considering that individual companies does not have control over their higher order
upstream suppliers; top-down approaches and communication among international au-
thorities, organizations, policy makers are essential actions need to be taken in order to
address issues related to climate change as well as energy efficiency, and trigger trans-
formation of long talks into actions. Lack of communication about the risks of climate
change is a major problem preventing science contributing the decision making processes
and playing appropriate role in policies addressing issues related to Climate [106, 107].
Mental models of individuals and prejudices prevent the communications and result in
biases [108]. A long term commitment and strategy is needed to coordinate and improve

the effectiveness of policies.
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Recommendations & Future

Remarks

This thesis is an important step toward integrating a global MRIO perspective into macro
level energy and climate effects of manufacturing supply chains. While the majority of
researchers have been focusing on particular parts of the manufacturing activities from
product or process perspectives with a limited focus on regional impacts and supply
chain phases, sustainability assessment research often lacks a systems-level approach. In
this context, current research methodology will be a robust framework since it provides
a comprehensive sustainability assessment that addresses the supply chains and global
impacts as an "umbrella" type of research methodology. For future research, it is also
proposed that the important extensions of current sustainable supply chain research
for manufacturing activities as 'using high sector and country resolution global MRIO
frameworks’, ’considering the social and economic aspects of manufacturing in addition
to the environment’ and finally ’considering the dynamics relationships between the
indicators of sustainability and their ripple effects on the long-term sustainability of

manufacturing’.

46
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5.1 High-resolution sectors, more detailed regions, improved

data availability, quality, and accuracy

In this thesis, the WIOD, which has become very popular and is widely cited global MRIO
database [109], was used. Although the proposed methodology is robust and sound as it
is capable of capturing global trade-links through time, there is need for certain improve-
ments to develop more effective and accurate framework. First, the level of aggregation
is crucial mark that needs to be addressed in future. Additionally, the findings of cur-
rent researches demonstrated that disaggregation of I-O data are superior to aggregating
environmental data in determining I-O multipliers and minimize uncertainties in LCI
results [110, 111]. Second, the comprehensive review on I-O studies strongly emphasized
that sustainability implications of manufacturing sectors must be analyzed with a set
of environmental metrics as extensive as possible, covering the globe and discerning as
many as possible sectors and countries, including long-time series [59, 67]. Therefore,
this thesis aims to expand the methodology of current analysis with high country and
sector resolution MRIO data and even more intra-country regional detail. This level of
disaggregation will be so critical for analysis of industrial sectors with upstream supply
chain dominance. For instance, the EXIOPOL covers the 27 EU member states as well as
16 non-EU countries with RoW accounts [79]. This global MRIO database aims to have
a detailed view of economic sectors discerning 129 sectors. This global MRIO database
used more detailed sector and product accounts to split up product and industry totals;
however current version is limited to 2000 data which does not enable us to conduct
a time series analysis. Furthermore, it should be noted that global MRIO modes are
subject to uncertainties due to sectoral aggregation and gathering the environmental ac-
counts data [112]|. Also, combining regional models with MRIO analysis can be a sound

methodology in order to consider the role of regional variations |71, 113].
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5.2 The Balancing Act: Towards triple bottom line sustain-

ability assessment of manufacturing sectors

Although the primary goal of supply chain management is considered as supply chain
surplus through minimizing total supply chain cost and maximizing profits, this under-
standing has to be shifted to a broader concept that aims to find balance between the
economiic, social and ecological consequences of supply chain operations. To be able to
manage the technological advancements towards realizing the goals of sustainable devel-
opment, it is crucial to evaluate the TBL sustainability impacts of industrial activities
in order to achieve economically viable, environmentally benign and socially acceptable
policies towards realizing the objectives of sustainable development|[114]. In the liter-
ature, several studies emphasized the importance of the three pillars of sustainability
in supply chain management research [8, 115, 116]. However, only a handful of studies
have focused on integrating all dimensions of sustainability into sustainable supply chain
management research [46, 117, 118].Furthermore, globalization is an important factor for
shaping the global supply chain networks of production activities and associated TBL
impacts. There are important efforts towards presenting the critical TBL measures for
domestic economies and their global effects. In near future, a global MRIO analysis can
be primary policy making framework for world economies in order to trace the TBL
sustainability performance of their production supply chains at regional and global scale

[119].

5.3 Revealing the causal relationship and the system be-

havior

Effective decision-making requires a system thinking approach and an understanding
of the behavior of the growing dynamic complexity of the globally linked manufacturing
sectors [120—-123|.The global warming, energy consumption and economic output of man-
ufacturing sectors are interconnected with feedback relationships, ripple and side effects.
While MRIO models are very significant, they are not capable of capturing the causal
relationships among the manufacturing sectors and environmental impacts. System dy-

namics modeling serves best to reveal these relationships since it helps to quantitatively
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define the feedback mechanisms, potential delays, and multi-dimensional causal rela-
tionships of a particular system [124, 125]. With the integration of system dynamics
modeling, the nexusbetween the energy use and global climate change and the system’s

behavior over time can be identified and more effective policies can be developed.
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35 Industries in WIOD
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TABLE A.1: Sectors in WIOD

Sectors H

Agriculture, Hunting, Forestry and Fishing
Mining and Quarrying
Food, Beverages and Tobacco
Textiles and Textile Products
Leather, Leather and Footwear
Wood and Products of Wood and Cork
Pulp, Paper, Paper , Printing and Publishing
Coke, Refined Petroleum and Nuclear Fuel
Chemicals and Chemical Products
Rubber and Plastics
Other Non-Metallic Mineral
Basic Metals and Fabricated Metal
Machinery, Nec
Electrical and Optical Equipment
Transport Equipment
Manufacturing, Nec; Recycling
Electricity, Gas and Water Supply
Construction
Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles
Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods
Hotels and Restaurants
Inland Transport
Water Transport
Air Transport
Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies
Post and Telecommunications
Financial Intermediation
Real Estate Activities
Renting of M&Eq and Other Business Activities
Public Admin and Defence; Compulsory Social Security
Education
Health and Social Work
Other Community, Social and Personal Services
Private Households with Employed Persons
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