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“The scientist is not a person who gives the right answers, he is one who asks the right
questions.”

Claude Lévi-Strauss



Efficiency Optimizations on Yao’s Garbled Circuits and Their

Practical Applications

Osman Biçer

Abstract

The advance of cloud computing and big data technologies brings out major changes
in the ways that people make use of information systems. While those technologies ex-
tremely ease our lives, they impose the danger of compromising privacy and security of
data due to performing the computation on an untrusted remote server. Moreover, there
are also many other real-world scenarios requiring two or more (possibly distrustful) par-
ties to securely compute a function without leaking their respective inputs to each other.
In this respect, various secure computation mechanisms have been proposed in order to
protect users’ data privacy. Yao’s garbled circuit protocol is one of the most powerful so-
lutions for this problem. In this thesis, we first describe the Yao’s protocol in detail, and
include the complete list of optimizations over the Yao’s protocol. We also compare their
advantages in terms of communication and computation complexities, and analyse their
compatibility with each other. We also look into generic Yao implementations (including
garbled RAM) to demonstrate the use of this powerful tool in practice. We compare
those generic implementations in terms of their use of garbled circuit optimizations. We
also cover the specific real-world applications for further illustration. Moreover, in some
scenarios, the functionality itself may also need to be kept private which leads to an ideal
solution of secure computation problem. In this direction, we finally cover the problem
of Private Function Evaluation, in particular for the 2-party case where garbled circuits
have an important role. We finally analyse the generic mechanism of Mohassel et al.
and contribute to it by proposing a new technique for the computation of the number of
possible circuit mappings.

Keywords: Secure Multi-Party Computation, Secure Two-Party Computation, Private
Function Evaluation, Yao’s Garbled Circuits, Garbled RAM



Yao’nun Karıştırılmış Devresi Protokolü Optimizasyonlarının

Verimliliği ve Pratik Uygulamaları

Osman Biçer

Öz

Bulut bilişim ve büyük veri teknolojilerinin ilerlemesi insanların bilişim sistemlerini kul-
lanma yollarında büyük değişimler getirmiştir. Bu teknolojiler hayatımızı büyük ölçüde
kolaylaştırırken, aynı zamanda hesaplamaların uzak bir sunucuda yapılması nedeniyle bil-
gilerin mahremiyetini ve güvenliğini tehlikeye atmaktadırlar. Birbirine yeterince güven-
emeyen iki veya daha fazla tarafın bir fonksiyonu güvenli olarak hesaplamasını gerek-
tiren gerçek hayatta karşılaşılabilecek birçok durum vardır. Bu sebeple, kullanıcıların
veri mahremiyetini koruyan çeşitli güvenli hesaplama yöntemleri önerilmiştir. Yao’nun
karıştırılmış devresi protokolü bu güvenli hesaplama problemine karşı önerilmiş en güçlü
çözümlerden biridir. Bu tezde, öncelikle Yao protokolünü ve bu protokolün optimizasy-
onu için önerilmiş gelişmelerin tam listesini anlatmaktayız. Aynı zamanda, bu gelişmeleri
iletişim ve hesaplama zorluğu olarak kıyaslıyoruz ve birbirleriyle uyumluluklarını analiz
ediyoruz. Bu güçlü protokolün pratikteki kullanımını göstermek amacıyla çeşitli genel
Yao uygulamalarını (karıştırılmış RAM dahil) inceliyoruz. Bu uygulamaları kullandıkları
karışık devre optimizasyonlarına göre kıyaslıyoruz. Özel olarak bazı gerçek-hayat uygu-
lamalarıyla Yao protokolünü daha da örneklendiriyoruz. Hesaplanacak fonksiyonun da
gizli bir bilgi olması durumunda, onun da gizlenmesinin tam bi mahremiyet için gerekli
olduğu unutulmamalıdır. Bu doğrultuda geliştirilmiş olan gizli fonksiyon hesaplama yön-
temlerini, özellikle karışık devrelerin önemli bir rolünün olduğu iki taraflı durum için
tezimizde anlatıyoruz. Son olarak Mohassel ve Sadeghian’ın geliştirmiş olduğu mekaniz-
mayı ele alıyoruz ve olası devre haritalarının sayısını hesaplamak için kullanılacak yeni
bir teknik önererek buna katkıda bulunuyoruz.

Anahtar Sözcükler: Güvenli Çok-Taraflı Hesaplama, Güvenli İki-Tarafli Hesaplama,
Gizli Fonksiyonel Hesaplama, Yao’nun Karıştırılmış Devreleri, Karıştırılmış RAM
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Chapter 1

Introduction

Two rich people want to determine which one of them is richer so that he would pay

the bill for the dinner. However, none of them is willing to permit the other learn

more information about his personal wealth than what the mere knowledge of who is

richer does. They start discussing how they could achieve this just by talking to each

other. They are quite sure that both will always tell the truth since they are honourable

businessmen who cannot take the risk of being caught while lying. On the other hand,

both suspect that the other may try to deduce information about his wealth from the

conversation. After some time of discussion, they come to the conclusion that it is

impossible to decide who is richer under these conditions since they do not know much

about secure computation techniques.

This famous problem is known as “millionaires’ problem” proposed by Andrew Yao [6].

He has also proposed a cryptographic solution for this problem, and generalized it to the

secure computation of any function [6, 7]. His later work has showed that any function

that can be computed by a polynomial-size circuit can be computed securely [7]. The

problem has further widened and solved for the case of more than two parties [6, 8]. Yao’s

research is followed by many others’ in constituting an active subfield of cryptography

known as secure multi-party computation (MPC) or secure function evaluation (SFE),

which aims solving the problem of two or more parties computing a function jointly

without revealing their secret inputs to each other.

There are many real-life examples where MPC techniques can be applied, including fi-

nancial systems [9], cooperation of intelligence agencies, companies and governments

1
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[10, 11], electronic elections [12], electronic auctions [13, 14], secure biometric identifi-

cation [15–17], secure e-mail filtering [18], etc. In fact, there is no bound for the areas

where MPC may be used, and it can be adopted in any case some parties are required

to compute a function on their private data.

Various methods have been proposed for MPC, including generic methods and function

specific methods. Although function specific methods usually run more efficiently, they

are limited in use due to the fact that each of them works for only one function. It is

quite inefficient to design a method and to prove its security for each different function

unless the function will be used many times. An example of frequently used functions is

the Hamming distance calculation which is used in many scenarios, including biometric

checks [15] etc. Hence, designing a specific protocol for it while proving its security makes

sense [16, 17]. However, general research approach is towards the generic methods which

can be applied to arbitrary functions.

Generic methods have been developed for usage in an unlimited set of functions. Usually

one method is better than the other for different computational settings. For instance,

homomorphic encryption will be a very good fit for arithmetic circuits if an efficient fully

homomorphic encryption scheme become available in the future [2]. However, currently

the proposed fully homomorphic encryption schemes are inefficient for practical secure

computation.

The most efficient methods for secure computation of functions represented as boolean

circuits include GMW protocol [8] and Yao’s garbled circuit protocol (Yao’s protocol).

The former usually gives better results in the presence of at least three parties, while the

latter is usually better for two-party case.

Yao’s protocol remains one of the most important paradigms for MPC, especially in

the case of secure two-party computation (2PC) [5]. In particular, it is valuable for its

constant round complexity. Since the time it was proposed by Andrew Yao in [7], it has

become one of the major fields in modern cryptographic research. It is constantly being

optimized in terms of communication complexity and computation complexity.

While the research for optimizing Yao’s protocol scheme continues, various practical ap-

plications using Yao’s protocol have also been developed. These applications demonstrate

that it is a promising cryptographic primitive for a wide range of applications, including
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privacy preserving data mining, efficient secure two-party computation, private function

evaluation etc.

In this thesis, we first describe the Yao’s protocol in detail, and include the complete

list of optimizations over the Yao’s protocol. We also compare their advantages in terms

of communication and computation complexities, and analyse their compatibility with

each other. We also look into generic Yao implementations (including garbled RAM)

to demonstrate the use of this powerful tool in practice. We compare those generic im-

plementations in terms of their use of garbled circuit optimizations. We also cover the

specific real-world applications for further illustration. Moreover, in some scenarios, the

functionality itself may also need to be kept private which leads to an ideal solution of

secure computation problem. In this direction, we finally cover the problem of Private

Function Evaluation, in particular for the 2-party case where garbled circuits have an

important role. We finally analyse the generic mechanism of Mohassel et al. and con-

tribute to it by proposing a new technique for the computation of the number of possible

circuit mappings.

1.1 Overview of the Thesis

Research goal:

Our goal in this thesis is to compare the advantages of currently known Yao’s protocol

optimizations in terms of communication and computation complexities, to analyse

their compatibility with each other, to demonstrate their role with a view towards its

practical and real-world applications and in private function evaluation. We intend

to describe the current state of the art for Yao’s protocol, since it is hard to find

many comprehensive works about it. We believe that this work will be quite useful

to cryptography community as a study material as well.

Organization of the thesis:

Chapter 1: Introduction

Chapter 1 is dedicated to introduction and overview of the thesis.
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Chapter 2: Preliminaries

Chapter 2 is dedicated to generic MPC methods, and to cryptographic basis. We also

included a section for circuit concepts which is assumed to be helpful for the people with

potentially different backgrounds.

Chapter 3: Yao’s Garbled Circuit Protocol

Chapter 3 includes general description and formal definition of Yao’s protocol, as well as

the generic Yao’s protocol template together with its security properties.

Chapter 4: Garbled Circuit Optimizations

Chapter 4 presents known garbled circuit optimizations in a chronological order (i.e.,

P&P (§4.2), GRR3 (§4.3), free XOR (§4.4), GRR2 (§4.5), fleXOR (§4.6), half gates (§4.7)).

We analyze these optimizations in terms of their relations and contradictions as well as

their compatibility with each other. One of our aims is to give a clear overview, therefore,

we did not get involved with proofs and other related complex formulas.

Chapter 5: Practical Implementations of Yao’s Protocol

Chapter 5 composes of generic Yao’s protocol applications and some real-world examples,

including pipelining method, garbled RAM, MPC for satellite collusion probability, and

privacy preserving data mining.

Chapter 6: Private Function Evaluation

Chapter 6 is dedicated to private function evaluation. We intend to describe Mohassel

et al.’s generic PFE scheme, which is the most efficient to date, and its application to

Yao’s protocol. We contribute to it by proposing a new technique for the computation

of the number of possible circuit mappings.

Chapter 7: Conclusion and Discussions

Chapter 7 concludes with general discussions of garbled circuit optimization techniques,

Yao’s protocol applications and private function evaluation.



Chapter 2

Preliminaries

In this chapter, we will present the basic concepts of secure computation techniques.

First, we will show the required properties for a secure computation scheme. We will

continue with general adversary models in cryptographic protocols. This will be followed

by circuit concepts useful for MPC techniques which, we suppose, will be quite helpful

for people new to the area. Then, we will present general cryptographic primitives. We

will also give the summary of oblivious transfer protocol, homomorphic encryption, and

GMW protocol.

2.1 Requirements of Secure Multi-Party Computation

To formally claim and prove the security of an MPC protocol, some general security

properties are required [10]. The most central of these properties are described in [10]

by Lindell et al. as follows:

1. Correctness: The output that is delivered to each party (i.e. each participant of

the MPC protocol) is guaranteed to be correct.

2. Privacy : None of the participants is allowed to learn anything more about other

participants’ inputs than what he can learn from the output itself.

3. Independence of inputs: The protocol may not allow any of the parties to choose

his input based on other parties’ inputs. This property is different from privacy

since choosing an input dependent on another party’s unknown input is possible .

5



Chapter 2. Preliminaries 6

4. Guaranteed output delivery: In the end of the protocol, honest parties should receive

their outputs no matter how hard corrupt parties try to prevent it.

5. Fairness: A party whether he is corrupt or not can receive his output if all of

the parties receive their outputs. For detailed information about how to achieve

efficient fair MPC, we refer the reader to [19, 20].

Lindell et al. stress that this list does not define security, but rather compose of the

requirements that any secure protocol must conform [10].

2.2 Adversary Models

Security of cryptographic protocols are formalized and proved against adversaries with

different capabilities [2].

2.2.1 Semi-Honest Adversaries

The semi-honest (also known as passive, or honest-but-curious) threat model is the

standard adversary model for MPC. Here parties typically follow the protocol as they

are supposed to but may try to deduce information about another party’s input from the

protocol transcript [21]. If a protocol is secure against semi-honest adversaries, it does

not allow them to learn any extra information from the protocol.

2.2.2 Covert Adversaries

Covert adversaries constitute the type of adversaries that are allowed to deviate from

the protocol with a restriction that they must evade being caught while they are doing

so [2]. It can be safely assumed that in many political, social and business scenarios, the

gain from cheating is overweighted by the results of being caught. If those deviations

are detected with a certain frequency (e.g., 1 out of 10 times), such a protocol can be

considered secure enough. If a protocol is secure against covert adversaries, it allows

catching those adversaries with a certain probability if they deviate from the protocol.



Chapter 2. Preliminaries 7

2.2.3 Malicious Adversaries

The strongest type of adversaries is the malicious adversaries (also known as active

adversaries), which may deviate from the protocol arbitrarily so that they can extract

the other parties private inputs or alter the computation outcome [2]. If a protocol is

secure against malicious adversaries, a corrupt party will be caught whenever he deviates

from the protocol.

Throughout this thesis, we focus on the security against semi-honest adversaries due to

the following reasons [21]:

1. There are many real-world situations where modelling the parties as semi-honest

adversaries is appropriate:

(a) where parties are legitimately trusted but there is a legal need for preventing

them from divulging information, or for protection against break-ins in the

future.

(b) where the software used for MPC can hardly be changed by participants

without being detected, either due to software attestation use or the fact that

internal controls are in place (e.g., when parties are government agencies, or

large corporations).

2. Securing protocols against semi-honest adversaries is an important step toward

construction of secure protocols against stronger adversaries. There are generic

ways of altering them to achieve security against covert or malicious adversaries

[20, 22].

2.3 Corruption Models

Apart from the above adversary models, there also exist static and adaptive corruption

models.

Static corruption model: This model implies that if a party is honest in the beginning,

he always remains honest; whereas if a party is corrupted in the beginning, he always

remains corrupted [10].
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Adaptive corruption model: Instead of including a fixed number of corrupted parties,

adaptive corruption model suggests that the number of corrupted parties may increase

during the computation. However, if a party gets corrupted, it remains that way from

then on [10]. Therefore, there may never be a decrease in the number of corrupted

parties.

2.4 Circuit Concepts

For a generic MPC protocol to take place, first a function must be written as a com-

bination of common building blocks, i.e., they must be represented as circuits. The

number of types of building blocks is limited. Therefore, by showing how to compute

each building block, a generic MPC scheme permits calculation of unlimited functions.

Standard circuit representations generally used in MPC protocols are boolean circuits

and arithmetic circuits [2].

2.4.1 Boolean circuits

In engineering and computer science, functions are classically represented as Boolean

circuits [2]. A boolean circuit basically composes of logic gates and wires connecting

them [23]. Figure 2.1 shows an example boolean circuit whose wires are a, b, c, d, e, f ,

h, k, and o, and gates are g1, g2, g3, g4, and g5.

a, b, and c are the inputs of the circuit in Figure 2.1, d, e, f , h, and k are the intermediate

wires, and o is the output wire. A boolean circuit may have more than one output as

well. A wire is exactly 1 bit that may have one of the two truth values, i.e., either TRUE

(also denoted as 1 or High) or FALSE (also denoted as 0 or Low). When 2 wires cross each

other, they are connected if there is a big dot in the connection point, otherwise they

are not connected. For example a and b cross each other but not connected (the same

applies to d and e in Figure 2.1).

A logic or boolean gate generally takes 1 or 2 wires as input (although there is no certain

limitation) and outputs exactly 1 wire. Formally a d-input gate Gd is a boolean function

mapping d > 0 bits input to 1-bit output, i.e. [2]:
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Figure 2.1: An example boolean circuit.

Gd : (in1, . . . , ind) 2 {0, 1}d ! (out) 2 {0, 1} (2.1)

For the gates of the circuit in Figure 2.1, the left sides are used for the input, the right

side are used for the output. For example g1 in Figure 2.1 takes a and b as inputs and

outputs d. However, gates may be rotated in a different circuit. In this case, one needs

to look at the two asymmetric sides of a gate. Generally, the larger assymetric side of

the gate is the side of inputs and the narrower assymetric side is for the output. A wire

can only be an output of exactly 1 gate, although it can be input to multiple gates [23].

In Figure 2.1, g1 is an OR gate (d a _ b), g4 is an XOR gate (h d� e), and g5 is an

AND gate (k  d ^ f). If there is a bubble on the wire, its truth value is inverted after

the bubble. For example, g2 would have been an AND gate without the bubble on its

output. But the bubble means the output is inverted. Actually, there is a special name

for the type of g2, it is a NAND gate (e  (a ^ b)0). g3 would have been a buffer gate

without the bubble on its output. A buffer gate outputs the input as it is. However,

with the bubble g2 is a NOT gate (f = c0). g6 would have been an OR gate without

the bubbles on its inputs. Now, it takes the inputs inverted, and ORs them afterwards

(o  h0 _ k0). Actually g6 is another representation of a NAND gate due to the logic

identity h0 _ k0 = (h ^ k)0. There also exist NOR gates represented as an OR gate with a

bubble on its output.

The truth table of a gate shows the relation between its possible inputs and its possible

outputs. The truth table of a gate has 2k rows where k is the number of its input wires.
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Table 2.1: Truth table of an AND gate (g5 in Figure 2.1).

d f k = d ^ f
0 0 0
0 1 0
1 0 0
1 1 1

The truth table of the AND gate g5 in Figure 2.1 can be seen in Table 2.1.

In fact, there are basically 24 different 2-input gates in total. However, some of them are

trivial (i.e., the ones whose output depends only one of the inputs and the ones whose

output depends none of the inputs). Those gates can be replaced by more efficient

representations, e.g., wires, NOT gates, etc. The remaining non-trivial gates fall into the

category of either even gates or odd gates [24].

Definition 2.1. Even gates are the 2-input gates whose truth table has 2 FALSE outputs

and 2 TRUE outputs.

Definition 2.2. Odd gates are the 2-input gates whose truth table has either 3 FALSE

outputs and 1 TRUE output or 1 FALSE output and 3 TRUE outputs.

There are only 2 non-trivial even gates which are XOR and XNOR, and 8 non-trivial odd

gates, including OR, AND, NOR, NAND, etc [24].

The size of a boolean circuit means the number of its gates [25]. The depth of a boolean

circuit means the number of gates in the longest path that must be taken from any input

to any output [25]. The topology of a boolean circuit means the connections between its

gates [25]. A boolean circuit can uniquely be defined by its topology and its gates.

The topological order of a boolean circuit is that when its gates are indexed as G1, . . . , Gn,

ith, a gate Gi does not get the output of a succeeding gate Gj>i as its input [2]. Intuitively,

in order to compute a gate, all of its input wires must be known, which can be ensured

by computing the gates in topological order. By computing the gates one-by-one in

topological order the whole boolean circuit can be computed. The topological order is

not necessarily unique for a given boolean circuit [2].

A group of gate types (G1, . . . , Gn) is Turing-complete, if and only if any probabilistic

polynomial time algorithm can be represented by a combination of those gates [26].
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Figure 2.2: An example arithmetic circuit [2].

Examples are (AND,XOR) and (NAND). Building a NAND gate from a group of gates is an

easy way to see whether that group of gates is Turing-complete or not.

A decrease in the number of gates in a circuit also means a decrease in overall cost of

an MPC protocol in terms of computation complexity, and communication complexity.

There are various techniques for circuit optimizations. Some circuit optimization tech-

niques intend to reduce the number of odd gates at the cost of increasing the even gates.

They could also be useful in some MPC techniques [27, 28].

2.4.2 Arithmetic circuits

A more compact representation for functions is arithmetic circuits [2]. Unlike boolean

circuits where wires are chosen from Z2, here wires have values chosen from Zm�2. The

gates operations are either modular addition + or modular multiplication ⇥. Figure 2.2

shows an example arithmetic circuit.

One can express any boolean circuit as an arithmetic circuit over Z2. However, if Zm has a

modulus m which is sufficiently large, then the resulting arithmetic circuit representation

of a function will probably have much lower size than its boolean circuit representation,

since a single operation will be enough for each integer addition or multiplication [2].

Computations on both positive and negative integers x can be simulated by arithmetic

circuits, since one can map them into elements of Zm : Z! Zm, x! x mod m [2].
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2.5 Cryptographic Basis

As the cryptographic basis for this thesis, we present symmetric and public key encryp-

tions, cryptographic hash functions, pseudo-random functions and message authentica-

tion codes. We will include only a brief summaries of them due to the fact that the

details of them are not necessary for understanding protocols and that vast majority of

our readers will probably have an acquaintance with them. However, at the end of this

section we present dual-key ciphers in more detail because of their intensive use in Yao’s

protocol and supposed unfamiliarity of some readers with them.

2.5.1 Symmetric Encryption

A symmetric encryption scheme uses the same cryptographic key k for both encryption

of plaintext and decryption of ciphertext [29]. A well-known example is AES encryption

[29]. The notation c  Ek(m) means that a plaintext message m is encrypted with a

key k resulting in a ciphertext c.

Decryption is generally denoted as either m  Dk(c) or the inverse of E, namely m  

E�1k (c) .

2.5.2 Public Key Encryption

A public key encryption scheme uses different keys for encryption and decryption. Public

keys which are known publicly as their name implies are used for encryption, while

private keys which are known only to their owners are used for decryption [30]. Any user

can encrypt a message with the public key of the receiver, but the resulting ciphertext

can be decrypted only with the receiver’s private key. The notation c Epk
i

(m) means

that a plaintext message m encrypted with a public key pki of ith person results in a

ciphertext c.

Decryption with the secret key ski of the ith person is denoted as either m Dsk
i

(c) or

m E�1pk
i

(c). The well-known public key cryptosystems are ElGamal [31] and RSA [30].
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2.5.3 Cryptographic Hash Function

A cryptographic hash function H(m) maps an arbitrary size message m to a fixed size

`-bit string c H(m) [32]. Throughout this thesis when we say hash function, we refer

to a cryptographic hash function.

Hash functions are ideally modelled in the random oracle model [33]. A random oracle

is a theoretical black-box responding to every unique query with a true random number

picked from its output domain. It records its responses to unique queries so that it can

respond a query the same way every time it is repeated. A well-known hash function

scheme is SHA256 [34].

2.5.4 Pseudo-Random Function

A pseudo-random function (PRF) is a function that can be used for pseudo-random gen-

eration, i.e., it can be modelled as random oracle. It is denoted as PRF(x) on an input x.

Its representation can be extended as PRFk(x) to include the use of a private key k [2].

An instantiation of PRF can be achieved with a block cipher, e.g., AES, or a hash function,

e.g., SHA256. In case a PRF with the same key k is repeatedly used, the AES instantiation

would be more efficient since its key schedule needs to be run just once [2].

2.5.5 Message Authentication Code (MAC)

A message authentication code (MAC) is a fixed-sized data that is used for authentica-

tion of a message. It is denoted as MACk(m) on an input message m that needs to be

authenticated and a private key k [2].

The MAC value provides protection for both data integrity and authenticity of a message

since it allows the detection of any changes in the message content by the verifiers

possessing the private key k.

2.5.6 Dual-Key Cipher

A dual-key cipher (DKC) is a cryptographic notion proposed by Bellare et al. in [3]. A

DKC formally represents a two-key lockbox where both keys are required for openning
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the box. A DKC is a function E associating a security parameter k 2 N where N is

the set of positive integers and keys A,B 2 {0, 1}k with a k-bit pseudo-random number

EA,B : {0, 1}k ! {0, 1}k. Let DA,B : {0, 1}k ! {0, 1}k denote the inverse of this function

[3].

Decryption of DKC may also be denoted by the inverse function notation E�1A,B : {0, 1}k !

{0, 1}k instead of DA,B : {0, 1}k ! {0, 1}k.

Throughout this thesis an encryption with two keys mean a DKC unless it is stated

otherwise.

So far, a variety of DKC schemes have been proposed. Among them, an earlier one is

Equation (2.2) proposed by Naor et al. in [14]. For every encryption, PRF is called twice.

PRF may be implemented as a keyed hash.

EA,B(C)! PRF(A, gateID)� PRF(B, gateID)� C (2.2)

Lindell et al. proposed a more efficient DKC scheme Equation (2.3) in [35]. It requires

one hash per encryption, which reduces the computational cost significantly.

EA,B(C)! H(A||B||gateID)� C (2.3)

Kreuter et al. proposed the DKC scheme Equation (2.4) in [36]. An AES256 encryption is

used instead of a hash function. Kreuter et al. shows that this improvement reduces the

computational cost around 25%.

EA,B(C)! AES256(A||B||gateID)� C (2.4)

Bellare et al. proposed the state-of-the-art DKC scheme Equation (2.5)1 in [37] which

eliminates the need for key precessing in each AES encryption by using a constant key

kc for all of them.

EA,B(C)! AES128k
c

(K)�K � C (2.5)
1K = 2A� 4B � gateID
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2.6 Secret Sharing

Secret sharing refers to the methods where a secret value is distributed amongst a group

of parties, each having a share from the secret [38]. To reconstruct the secret, parties

need to combine a sufficient number of shares together; since individual share of a party

is useless on its own. There have been various secret sharing schemes proposed so far.

Here we will introduce only some of them which will be helpful throughout this thesis.

2.6.1 XOR Sharing

XOR sharing (also known as boolean sharing) is a secret sharing type where for an `-bit

value x shared by m parties, the share of a party i is an `-bit value xi, and when the

shares of all m parties XORed bitwise together the result is x, i.e., x = x1� . . .�xm [39].

There is no number limit for parties in XOR sharing. However, if any of the parties keeps

his share, the rest of the parties cannot even get close to learning the shared value.

2.6.2 Arithmetic Sharing

Arithmetic sharing is similar to XOR sharing in that there is no number limit for parties

and that if any of the parties keeps his share, the rest of the parties cannot even get close

to learning the shared value [39]. It is a secret sharing type where for an `-bit value x

shared by m parties, the share of a party i is an `-bit value xi, and when the shares of

all m parties added together in a modulus n which conforms 2  n  2` the result is x,

i.e., x = x1 + . . .+ xm mod n.

2.6.3 Yao Sharing

Yao sharing is a secret sharing type where 1 bit is shared by 2 parties [39]. In order to

share a bit b, the first party P1 picks 2 random `-bit strings B0 and B1. The second

party P2, without knowing b, keeps only Bb. P1 does not know which of the 2 strings

kept by P2, and P2 does not know the other string picked by P1. Only together, they

can evaluate b. Although keeping costly strings for a bit does not look very efficient at

first, Yao sharing has certain advantages for 2PC which will be obvious when we describe

Yao’s protocol in §3.
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2.6.4 Shamir’s Secret Sharing

Shamir’s secret sharing is an effective secret sharing scheme proposed by Adi Shamir

[38, 40] where a group of n users share a secret data D. The scheme permits any

predefined (k+1)  n or more users to reconstruct the secret. However, no information

about D can be recovered by k or less users. This scheme can also be referred to as

(k + 1, n)-threshold secret sharing scheme, where (k + 1) is the threshold and n is the

number of users sharing the secret.

All users have a different point in two-dimensional plane, (x1, y1), . . . , (xn, yn). All of the

points must be chosen such that they are on a k-degree polynomial. Therefore, any k+1

of these shares suffices for Lagrange’s interpolation. The secret value is the evaluation

of the polynomial on axis x = 0.

2.7 Oblivious Transfer

An 1-out-of-m oblivious transfer (1-out-of-m OT) protocol is a two-party asymmetric2

protocol where one of the parties is the sender, and the other one is the receiver [4]. The

sender has the set of values {x1, . . . , xm} and the receiver has an index i. At the end

of the protocol, the receiver should only learn one of the sender’s inputs, which is xi;

whereas the sender should not learn anything about the index i. An efficient 1-out-of-m

OT technique can be found in [41].

The high computational complexity of OT is a major source of inefficiency. In order to

reduce this cost, some optimizations (e.g., extended OT [42]) have been proposed.

There also exist OT protocols for settings with more parties, known as multi-party obliv-

ious transfer. A multi-party OT is a protocol where one of the parties holds the values

x1, . . . , xm, but multiple parties secret share the choice index i. At the end of the pro-

tocol, the parties learn shares of xi instead of learning it as a whole. The party holding

the initial values is called the sender, whereas the other ones are called the receivers.
2An asymmetric protocol means that parties play different roles during the protocol.
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2.8 Homomorphic Encryption

Homomorphic Encryption (HE) schemes are used for secure evaluation of arithmetic cir-

cuits since they permit computation of multiplication and addition on ciphertexts [2]. An

additively HE scheme allows only unlimited addition on encrypted data; whereas a mul-

tiplicative HE scheme allows only unlimited multiplication on it. An encryption scheme

having both multiplicatively and additively HE property is called fully homomorphic

encryption (FHE).

There was a wide-spread belief that FHE does not exist until recently. Gentry has been

the inventor of the first FHE scheme [43]. Unfortunately, huge sizes and computational

costs of current FHE schemes make them too inefficient to be used in practical applica-

tions no matter how much effort has been given for improving their performances. The

problem is that a FHE scheme must allow algebraic operations while providing strong

security assumptions, which makes the costs grow substantially.

2.9 Goldreich-Micali-Wigderson (GMW) Protocol for MPC

One of the commonly used MPC schemes is Goldreich-Micali-Wigderson (GMW) pro-

tocol that uses XOR sharing (§2.6), and is proposed in [8]. It proposes MPC of boolean

circuits with gates AND and XOR against semi-honest adversaries (§2.2.1).

XOR gates can be computed locally and are communication free [4]. To illustrate, to

compute c = a � b, each party i only needs to use its shares ci = ai � bi in order to

receive his output share ci. However, to compute an AND gate, parties are required to

communicate for 1-out-of-4 OT (§2.7). In the case of 2 parties, to compute their output

shares of a ^ b, P1 constructs the evaluation table for both input shares of P2 and they

engage in a 1-out-of-4 OT (§2.7) where P2’s inputs are used as the choice index. To

extend the protocol for m parties,
�
m
2

�
runs of the OT protocol is required. One can also

see it as one run of a multi-party 1-out-of-4 OT protocol where the choice indices are a

and b [4].
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Yao’s Garbled Circuit Protocol

Even though Yao’s protocol has more than two-party applications, its use will be held

limited to 2PC. It is an asymmetric protocol, which means that parties play different

roles while the protocol is running. One of the parties has the role of the garbler,

whereas the other one becomes the evaluator. The protocol is intended to be secure in

the semi-honest model (§2.2.1). It runs on boolean functions, so first a function must

be converted to a boolean circuit. Figures 3.1, 3.2 and 3.3 have been taken from Mike

Rosulek’s presentation in Simons Institute, University of California, Berkeley, namely A

Brief History of Practical Garbled Circuit Optimizations.

A gentle introduction. Yao’s garbled circuit protocol is briefly as follows (later we

propose it in a more formal model):

Assume Alice and Bob are trying to compute a function f whose boolean circuit is given

in Figure 3.1. Throughout this thesis, Alice will be the garbler, Bob will be the evaluator.

Alice’s input is x including bits a and c, and Bob’s input is y including bits b and d.

Garbling:

1. Alice picks random and computationally indistinguishable masking values for pos-

sible truth values FALSE and TRUE of each wire.

2. She encrypts the output masking values of each gate using their corresponding

input masking values as the DKC key (§2.5.6). This way she gets four ciphertexts

for each gate in the circuit as in Figure 3.2.

18
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Input Transfer:

3. She sends all ciphertexts for each gate, as well as her masked input values for a

and c to Bob. He takes his own masked input values from Alice using 1-out-of-2

OT (§2.7).

Evaluating:

4. Bob decrypts the related ciphertext (we will come to this later) gate-by-gate in

topological order, reaching the output masking values of the circuit. Topological

order means from the inputs to the output. The rule is that if the output of a gate

g1 is input to another gate g2, g1 must be evaluated before g2. In this case the gate

order might be chosen as 1, 2, 3, 4, 5.

Output Reveal:

5. Bob tells Alice the output masking values, and Alice sends the output of the func-

tion f(x, y) to Bob.

The flow of communication between the garbler and the evaluator is summed up in Figure

3.3.

3.1 Formal Definiton of Yao’s Protocol

The Yao’s protocol scheme proposed by Bellare et al. in [3] brought a significant jump

by defining the procedures involved in a secure Yao’s protocol. A conventional circuit

Figure 3.1: A boolean circuit of a function f with the truth table of the gates included.
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Figure 3.2: Garbling the circuit in Figure 3.1

can be defined as f = (n,m, q, A,B,G) where the numbers of its inputs, its outputs, and

its gates are n � 2, m � 1, and q � 1, respectively. The number of its wires is denoted as

r = n+ q. The sets of the circuit Inputs, Wires, OutputWires and Gates are defined as

Inputs = {1, . . . , n}, Wires = {1, . . . , n+ q}, OutputWires = {n+ q�m+1, . . . , n+ q},

and Gates = {n+1, . . . , n+ q}. Then the function identifying each gate’s first incoming

wire is A : Gates ! Wires\OutputWires. The function identifying each gate’s second

incoming wire is B : Gates ! Wires\OutputWires. The function determining the

functionality of each gate is G : Gates ⇥ {0, 1}2 ! {0, 1}. The requirement is that

A(g) < B(g) < g for all g 2 Gates.

Bellare et al. defines the generic garbling scheme consisting of Gb, En, Ev, and De algo-

rithms which are described as folows (see also Figure 3.4 and Algorithm 1) [3]:

1. Garble (Gb): Gb procedure takes 1k and a boolean circuit f as input, and outputs

Figure 3.3: Communication flow in the semi-honest Yao’s protocol.
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Figure 3.4: The flow of procedures in Yao’s protocol in [3].

(F, e, d), where F is a garbled circuit, e is the encoding information, and d is the

decoding information. The for-loop on Line 3 of Algorithm 1 assigns masking

values for every wire in the circuit for both TRUE and FALSE. It also assures that

the last bits of the assigned masking values for a wire, which we call label bits,

differ from each other. The for-loop on Line 6 of Algorithm 1 encrypts the possible

output masked with their corresponding input masking values for each gate. It also

orders the ciphertexts with respect to the label bits (lsb) of input masking values

so that the order does not leak information (we will call this technique point and

permute).

2. Encode (En): En procedure takes (e, x) as input, where e is as we mentioned above

and x is a suitable input for f , and outputs a garbled input X. In this scheme,

encoding is directly assigning the pre-known masking values for the inputs.

3. Evaluate (Ev): Ev procedure takes (F,X) as input, and outputs a garbled output

Y . The for-loop on Line 22 of Algorithm 1 decrypts only one ciphertext related to

a gate with its input masking values and with respect to their label bits.

4. Decode (De): De procedure takes (d, Y ) as input, and outputs a plain output y. In

this scheme, decoding is directly assigning the pre-known outputs for the masking

values obtained by the Ev procedure.

Correctness property is that Equation (3.1) holds for all possible input x where (F, e, d) 

Gb(1k, f).

De(d, Ev(F, En(e, x))) = f(x) (3.1)
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Algorithm 1 Garbled circuit scheme [3].
1: procedure Gb(1k, f) . Garbling phase
2: (n,m, q,A0, B0, G) f
3: for i 2 {1, . . . , n+ q} do

4: t {0, 1}, X0
i

 {0, 1}k�1t, X1
i

 {0, 1}k�1t
5: end for

6: for (g, i, j) 2 {n+ 1, . . . , n+ q}⇥ {0, 1}⇥ {0, 1} do

7: a A0(g), b B0(g), A Xi

a

, a lsb(A), B  Xi

b

, b lsb(B)

8: T  g k a k b, P [g, a, b] E
A,B

(X
Gg(i,j)
g

)
9: end for

10: F  (n,m, q,A0, B0, P )
11: e (X0

1 , X
1
1 , . . . , X

0
n

, X1
n

)
12: d (X0

n+q�m+1, X
1
n+q�m+1, . . . , X

0
n+q

, X1
n+q

)

13: return (F, e, d)
14: end procedure

15: procedure En(e, x) . Encoding phase
16: (X0

1 , X
1
1 , . . . , X

0
n

, X1
n

) e
17: x1 . . . xn

 x, X  (Xx1
1 , . . . , Xxn

n

)
18: return X
19: end procedure

20: procedure Ev(F,X) . Evaluating phase
21: (n,m, q,A0, B0, P ) F , (X1, . . . , Xn

) X
22: for g  n+ 1 to n+ q do

23: a A0(g), b B0(g), A Xi

a

, a lsb(A), B  Xi

b

, b lsb(B)
24: T  g k a k b, X

g

 D
A,B

(P [g, a, b])
25: end for

26: return (X
n+q�m+1, . . . , Xn+q

)
27: end procedure

28: procedure De(d, Y ) . Decoding phase
29: (Y1, . . . , Ym

) Y , (Y 0
1 , Y 1

1 , . . . , Y 0
m

, Y 1
m

) d
30: for i 2 {1, . . . ,m} do

31: if Y
i

= Y 0
i

then y
i

 0
32: else if Y

i

= Y 1
i

then y
i

 1
33: else return ?
34: end if

35: end for

36: return y  y1 . . . ym
37: end procedure

3.2 Security Properties of Yao’s Protocol

We need some parameters in order to appreciate the security of a garbling scheme. The

security parameters defined by Bellare et al. are privacy, obliviousness, and authenticity

[3].

3.2.1 Privacy

Privacy is achieved by a garbling scheme if no more information about the input x

must be revealed by the collection (F,X, d) than that is revealed by f(x) [3, 5]. Let

(f, x) be chosen by the adversary. Then either the circuit is garbled to (F, e, d)  

Gb(1k, f), the input is encoded as X  En(e, x), the adversary getting (F,X, d); or the
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simulator S devises a fake (F̄ , X̄, d̄) depending solely on the security parameter k, the

side information1 � = �(f), and the output y = Ev(f, x). The (F̄ , X̄, d̄) produced by

the simulator must be indistinguishable from the ones coming from the actual garbling

scheme.

3.2.2 Obliviousness

Obliviousness is achieved by a garbling scheme if (F,X) reveals nothing more than the

side information1 �(f) about f or x [3, 5]. To compare obliviousness with privacy

(§3.2.1), where the output is learned by the evaluator, here, he does not learn that since

d is kept hidden. The output can be revealed by a private scheme even without d, while

x can be revealed by an oblivious scheme once d is exposed. Let (f, x) be chosen by the

adversary. Either the circuit is garbled to (F, e, d)  Gb(1k, f), the input is encoded as

X  En(e, x), and the adversary getting (F,X); or the simulator S to devises a fake

(F̄ , X̄) depending solely on k, and � = �(f). The (F̄ , X̄) produced by the simulator

must be indistinguishable from from the ones coming from the actual garbling scheme.

3.2.3 Authenticity

Authenticity is achieved by a garbling scheme if from (F,X), an adversary cannot con-

struct a garbled output Ȳ which is not authentic, i.e. De(d, Ȳ ) 6= ? only if Ȳ = Ev(F,X),

except for negligible probability [3, 5].

1Side-information means any information about the circuit which the protocol does not intend to
hide, like its size or its topology. �(f) is the side-information function which maps f to �.



Chapter 4

Garbled Circuit Optimizations

Since we have introduced the generic garbled circuit framework, it is time to present

the optimizations on it in detail. We start with describing the parameters of a garbled

circuit scheme that can be optimized and their relevant importance. We then continue

with optimization techniques, along with comparing them with each other and present-

ing the relations between them. At the end, we have included a useful table to show

the compatibility of various garbling techniques. Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6

have been taken from Mike Rosulek’s presentation in Simons Institute, University of

California, Berkeley, namely A Brief History of Practical Garbled Circuit Optimizations.

Mainly, there are three parameters related to Yao’s protocol that can be optimized:

the size of the garbled circuit which limits the communication complexity cost, the

computation time required both for encryption and decryption, and the security of the

protocol [44]. The size of the garbled circuit is important because it usually needs to

be transmitted to the evaluator over a limited channel. Clearly, the computation time

required is also an important parameter for both parties.

4.1 General Focus

4.1.1 The Size Parameter

The size of the garbled circuit is usually the primary parameter due to the limits of

the communication channel. The most effort in the garbled circuit research has been

24
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dedicated to make it smaller. Reducing it even in the expense of worse computation

times or weaker hardness assumptions is often preferable [44].

A reduction in the size of a garbled circuit generally comes from a decrease in the number

of ciphertexts needed per gate. Circuits can grow to contain billions of gates, meaning

each garbled circuit can be gigabytes in size. Our primary goal in this chapter is to cover

garbled gate size optimization techniques.

4.1.2 The Computation Time Parameter

Computation time is related to time consumptions of Gb and Ev procedures. Naturally

the research aims to make them shorter. The computation time may be even more

important when the CPU resource of a party is restricted, such as a mobile device. The

improvements in DKC schemes (§2.5.6) schemes proposed are also for this parameter. The

gate garbling techniques may also improved for this parameter as well [44].

4.1.3 Security Parameter

A garbling scheme must conform the security properties (§3.2) although in some cases

authenticity parameter may be omitted. If the hardness assumptions of the building

blocks of a scheme (e.g., DKC scheme (§2.5.6), gate garbling technique) is stronger, the

protocol will also be more secure [44].

The rest of this chapter is especially dedicated to the techniques related to the optimiza-

tions in the size parameter. However, the techniques will also be compared for the other

parameters whenever it is necessary. After the description of each technique, there will be

a size and computation time scoreboard for comparing that technique with the previous

ones (see Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6). The time for encryptions and decryptions

for both DKC schemes and symmetric schemes assumed to be the same and denoted as

edt (for encryption/decryption time). ct stands for ciphertexts.
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Figure 4.1: (a) The gate to be evaluated. (b) Label assignment. (c) Rearrangement
of ciphertexts canonically with respect to input labels.

4.2 Point and Permute

The evaluator needs to know which one of the ciphertexts for a gate must be decrypted

during the evaluation process. However, he cannot be allowed to deduce the truth value

of any of inputs or outputs. The oldest and yet secure method achieving is point and

permute (P&P), and suggested by Beaver et al. in [45].

Garbling:

1. Alice and Bob want to compute the output of the gate in Figure 4.1 (a) where a

and b is the input c is the output.

2. Alice chooses masking values of wires such that each masking value has one of the

two possible labels (the one for a is either A0 or A1, the one for b is either B0 or

B1, and the one for c is either C0 or C1), and for a given wire both masking values

have different labels (see Figure 4.1 (b)). The label needs to be something that

can be directly detectable from the masking value (e.g., its last bit). For example,

if the masking value on the wire a corresponding to the truth value FALSE (A0)

has 0 on the last bit, then the masking value for the truth value TRUE (A1) must

have 1 on the last bit. The truth value cannot be detected from the label of the

masking value. Alice encrypts the possible output masking values of the gate with

the corresponding input masking values (EA0,B0(C0), EA0,B1(C1), EA1,B0(C0), and

EA1,B1(C0)).

3. Alice rearrange the ciphertexts with respect to the input labels, as in Figure 4.1

(c). During the evaluation, Bob will know which ciphertext he must decrypt from
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Figure 4.2: Garbled row reduction 3 ciphertexts.

the labels of the inputs. This way, ciphertexts are ordered unrelated to the truth

values of wires and any information leakage is prevented.

The number of ciphertexts per gate that needs to be transmitted is 4 in this method. 4

encryption and 1 decryption are the computational cost for each gate (see Table 4.1).

4.3 Garbled Row Reduction 3 Ciphertexts

Instead of choosing the masking values of the output of a gate randomly as in P&P (§4.2),

in [14] Naor et al. suggested a smarter way, called garbled row reduction 3 ciphertexts

(GRR3).

Garbling:

1. Alice and Bob want to compute the output of the gate in Figure 4.2.

Table 4.1: Optimization Scoreboard (P&P)

Method Odd / Even Gate Size Enc. Time per Dec. Time per
Odd / Even Gate Odd / Even Gate

P&P 4 ct / 4 ct 4 edt / 4 edt 1 edt / 1 edt

ct: ciphertexts; edt: total encryption and/or decryption time
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2. Alice choose the masking value of the first output in label order such that all bits

of the resulting ciphertext is 0 (i.e., by decrypting all 0, C1  E�1A0,B1
(0n)). The

masking value reached will still be pseudo-random.

3. Since there is no need to send the first ciphertext, sending 3 ciphertexts per gate

suffices.

Although GRR3 results in smaller-sized garbled circuits than the ones resulted from P&P

(§4.2), it has little affect on the computation cost since the gain coming from one less

encryptions goes to the decryption of the first ciphertext (see Table 4.2).

4.4 Free XOR

One of the greatest jumps in the garbled circuit technology has been the free XOR tech-

nique, which is proposed by Kolesnikov and Schneider in [46]. It basically eliminates the

need for any ciphertext transmission and any calculation for XOR gates. The function can

be compiled such that the number other gates are minimized. Usually they are just AND

gates, since (XOR, AND) is Turing complete.1

Garbling:

1. Alice and Bob want to compute the output of the XOR gate in Figure 4.3 (a).

2. The masking value for TRUE in a wire a can be written as the one for FALSE in

that wire A XORed with some offset 4A, which is a random value having the same

number of bits as A and B, as in Figure 4.3 (b). The masking value for FALSE

becomes A, and the masking value for TRUE becomes A�4A. Alice also writes the

masking values of b and c the same way.
1The number of AND gates in the Boolean functions is called multiplicative complexity. Reducing it

at the expense of increasing XORs is already an active research topic [27].

Table 4.2: Optimization Scoreboard (GRR3)

Method Odd / Even Gate Size Enc. Time per Dec. Time per
Odd / Even Gate Odd / Even Gate

P&P (§4.2) 4 ct / 4 ct 4 edt / 4 edt 1 edt / 1 edt
GRR3 3 ct / 3 ct 4 edt / 4 edt 1 edt / 1 edt

ct: ciphertexts; edt: total encryption and/or decryption time
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Figure 4.3: (a) XOR gate with masked values on its wires. (b) XOR gate whose masked
values interpreted with offsets. (c) XOR with the same offset in the masked values on

wires. (d) XOR gate arranged for free XOR technique

3. Alice sets the offsets of all wires be the same secret value 4 as in Figure 4.3 (c).

Even if there are more than one gate in a circuit, all wires must be given the same

offset so that the free XOR method can be applied. Offset must be kept as a secret

by the garbler.

4. Alice choose the masking value for FALSE in the output, XOR of those for FALSE in

the inputs as in Figure 4.3 (d). This makes transmitting any ciphertext for an XOR

gate unnecessary.

Evaluating:

5. Bob just XORs the masking value of the inputs to calculate the masking value of

the output.

AND gates can be encrypted as in GRR3 (§4.3), and 3 cipher texts needs to be transmitted

(see Figure 4.4). Labels still exist, and ciphertexts must be ordered accordingly. The

offset must be chosen such that for a given wire both masking values have different labels

(e.g., its lsb must be 1 if the label is the last bit). Since the same offset is used in both

inputs and the payload, there is a need for a circularity assumption for the encryption

scheme used [47].

Free XOR technique, makes XORs completely free for transmission and computation in

both the garbler’s side and the evaluator’s side. This has a huge impact, not just for

freeing XORs but also permitting the minimization of the other gates at the expense of

increasing XORs (see Table 4.3).
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Figure 4.4: Encryptions of a gate other than XOR in the free XOR technique.

4.5 Garbled Row Reduction 2 Ciphertexts

Pinkas et al. proposed a method called garbled row reduction 2 ciphertexts (GRR2) in

order to reduce the number of transferred ciphertexts in [24]. GRR2 is based on Shamir’s

secret sharing (§2.6). It is especially good for reducing the size in case of abundant AND

gates [24].

Garbling:

1. Alice and Bob want to compute the output of the odd gate in Figure 4.5 (a).

2. Alice calculates K1, K2, K3, and K4 by decrypting all 0 for all possible input

combinations (e.g., K1  E�1A0,B0
(0n), K2  E�1A0,B1

(0n), K3  E�1A1,B0
(0n), K4  

E�1A1,B1
(0n)).

3. Using the rows which give the same output (in this case the rows 1, 3, 4) Alice

plots a 2nd degree polynomial P (x) (e.g., the red parabolas in Figure 4.5 (b)).

4. Alice also plots another 2nd degree polynomial Q(x) from the excluded row (here

the row 2), P (5), and P (6) (e.g., the blue parabolas in Figure 4.5 (b)).

Table 4.3: Optimization Scoreboard (Free XOR)

Method Odd / Even Gate Size Enc. Time per Dec. Time per
Odd / Even Gate Odd / Even Gate

P&P (§4.2) 4 ct / 4 ct 4 edt / 4 edt 1 edt / 1 edt
GRR3 (§4.3) 3 ct / 3 ct 4 edt / 4 edt 1 edt / 1 edt
Free XOR 3 ct / free 4 edt / free 1 edt / free

ct: ciphertexts; edt: total encryption and/or decryption time
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Figure 4.5: (a) The odd gate to be garbled. (b) Plots of two polynomials obtained
from K
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Evaluating:

5. Alice sends only the intersection points P (5) and P (6). Bob will get another point

by decrypting all 0 with the masking values that he gets in the input. He will be

able to reaching only one of the polynomials, not knowing which one. The output

masking value will be the evaluation of this polynomial at x = 0 (e.g., C0 = P (0)

and C1 = Q(0)).

The position in this scheme leaks information. Moreover, since the wire masking values

are not chosen but calculated pseudo-random values, it is impossible to directly use the

P&P (§4.2) technique. Instead, Pinkas et al. proposed adding a one bit external value

ci for each wire. External values, like labes, are different for the TRUE and FALSE truth

values unrelated to the truth value. Just like labels, external values are used for ordering.

To calculate the external value of the output of a gate, 4 additional Mr bits are sent.

The evaluator, then, just needs to XOR the first bits of both input masking values and

the related Mr bit to find out the output external value. Since he does not know the

masking values for other truth values of the input wires, he cannot find out the external

values for the other output.

Garbling:
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Table 4.4: Optimization Scoreboard (GRR2)

Method Odd / Even Gate Size Enc. Time per Dec. Time per
Odd / Even Gate Odd / Even Gate

P&P (§4.2) 4 ct / 4 ct 4 edt / 4 edt 1 edt / 1 edt
GRR3 (§4.3) 3 ct / 3 ct 4 edt / 4 edt 1 edt / 1 edt
Free XOR (§4.4) 3 ct / free 4 edt / free 1 edt / free
GRR2 2 ct / 2 ct 4 edt / 4 edt 1 edt / 1 edt

ct: ciphertexts; edt: total encryption and/or decryption time

1. For an even gate, Alice similarly calculates K1, K2, K3, and K4 as in the odd gate

case, in order of the external values.

2. Somewhat differently from the previous procedure, she plots the two 1st degree

polynomials each passing through the two points which correspond to the same

output value. For instance, if both K1 and K3 are for the rows corresponding to

TRUE, she plots P (x) passing through (1,K1) and (3,K3) and Q(x) passing through

(2,K2) and (4,K4). She sends P (5) and Q(5), along with the 4 additional Mr bits.

She makes sure that ordering P (5) and Q(5) is according to the external value

of the output of the gate just like using them the same as label bits, so that the

evaluator know which one to use.

Evaluating:

3. The evaluator decrypts all 0 with the masking values of the inputs. With two

points in hand he plots the 1st degree polinomial evaluate it at x = 0 and reaches

the output masking value.

Referring to Shamir’s secret sharing (§2.6), two t-length values and 4 Mr bits (2t + 4)

are needed to be sent per gate. For the sake of simplicity, we can take it as 2 ciphertexts

per gate (see Table 4.4).

Although GRR2 is good for reducing the sizes of odd gates, it has a major drawback:

incompatibility with free XOR (§4.4). This is because the output masking values of the

gates garbled with the GRR2 technique are pseudo-random numbers which cannot be

set to the same offset.
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Figure 4.6: (a) An XOR gate with different offsets in its inputs and output. (b) A
buffer gate to carry the offset of a wire. (c) An XOR gate offsets of whose inputs are
carried to the offset of its output by two imaginary buffer gates. (d) An XOR gate the
offset of whose an input is carried to the offset of its output by an imaginary buffer

gate.

4.6 FleXOR

The incompatibility of free XOR (§4.4) and GRR2 (§4.5) causes an inconvenient situation

where both may be better for different circuits depending on the proportion of XOR and

AND gates. To solve this issue, Kolesnikov et al. proposed the fleXOR technique in [44].

FleXOR may reduce the number of ciphertexts for an XOR gate even if it has different

offsets on its wires. With this technique, XOR gates requires 1 or less ciphertext most of

the time. It may cost 2 ciphertexts, only if the output masked value of the XOR gate

has different offset from its inputs. Actually, most of the time, the output masked value

may be chosen such that it has the same offset at least one of the inputs

Garbling:

1. Alice and Bob want to compute the output of the XOR gate in Figure 4.6 (a).

2. The idea is that if it was possible to carry the input wires to the same offset level

with the output wire, which is 4C , the XOR gate would be free. Figure 4.6 (b)

depicts an imaginary buffer gate which can be used to carry the offset of a wire.

Alice encrypts the output masked values with their corresponding inputs as EA(A⇤)

and EA�41(A
⇤ � 42). She order them by P&P (§4.2), and since A⇤ can be any

random value, she can let the first one in order all 0. Therefore, sending just one

cipher text for a buffer gate suffices.
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Table 4.5: Optimization Scoreboard (FleXOR)

Method Odd / Even Gate Size Enc. Time per Dec. Time per
Odd / Even Gate Odd / Even Gate

P&P (§4.2) 4 ct / 4 ct 4 edt / 4 edt 1 edt / 1 edt
GRR3 (§4.3) 3 ct / 3 ct 4 edt / 4 edt 1 edt / 1 edt
Free XOR (§4.4) 3 ct / free 4 edt / free 1 edt / free
GRR2 (§4.5) 2 ct / 2 ct 4 edt / 4 edt 1 edt / 1 edt
FleXOR 2 ct / {0,1,2} ct 4 edt / {0,2,4} edt 1 edt / {0,1,2} edt

ct: ciphertexts; edt: total encryption and/or decryption time

3. Alice needs at most two imaginary buffer gates for an XOR gate to carry the inputs

to the same offset level as the outputs (see Figure 4.6 (c)).

4. Most of the time, one imaginary buffer per XOR gate will be enough since Alice can

let the offset of the output the same as one of the inputs (see Figure 4.6 (d)). And

if the inputs and the output have the same offset, the XOR gate will be free.

fleXOR technique can be combined with GRR2 (§4.5) in order to reduce the number of

ciphertexts for AND gates (see Table 4.5). The combined scheme proposed by Kolesnikov

et al. can be seen in Algorithm 2.

The notation used in Algorithm 2 is similar to the one in Algorithm 1. XORGates(f)

denotes the set of XOR gates in f . CX
i

denotes the external value of the wire whose

masking value is Xi. Vij denotes the value used in the interpolation related to the order

ij. mij denotes the one bit value used to mask the external value. Xai denotes the

masking value on the wire a, i being the external value. wai denotes the truth value on

the wire a, i being the external value. cij denotes the bits sent for the calculation of the

external value of the output of a gate, ij being the order coming from the input external

values [44].

4.7 Half Gates

The half gates method, which is proposed by Zahur et al. in [5], proves that sending 2

ciphertexts can be enough for an AND gate while XOR gates are still free. The same offset

is kept throughout the whole circuit wires, like the free XOR (§4.4). It is based upon the

idea that if one of the sides knows the truth value on an input wire of an AND gate, it
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Algorithm 2 The combined fleXOR and GRR2 scheme proposed by Kolesnikov et al. in
[44].
1: procedure Gb(1k, f) . Garbling phase
2: (n,m, q,A0, B0, G) f
3: for i 2 {1, . . . , n} do t {0, 1}, X0

i

 {0, 1}k�1t, X1
i

 {0, 1}k�1t
4: end for

5: for g 2 {n+ 1, . . . , n+ q} in a safety-respecting order do a A0(g), b B0(g)
6: if g 2 XORGates(f) then

7: if X0
a

�X1
a

= X0
b

�X1
b

then X0
g

 X0
a

�X0
b

, X1
g

 X0
a

�X1
b

, P [g] ?
8: else

9: if C
X

0
a
= 0 then X 0̄

a

 H(X0
a

, g k 00), X 1̄
a

 X 0̄
a

�X0
b

�X1
b

10: X0
g

 X 0̄
a

�X0
b

, X1
g

 X 0̄
a

�X1
b

, P [g] H(X1
a

, g k 00)�X 1̄
a

11: else X 1̄
a

 H(X1
a

, g k 00), X 0̄
a

 X 1̄
a

�X0
b

�X1
b

12: X0
g

 X 0̄
a

�X0
b

, X1
g

 X 0̄
a

�X1
b

, P [g] H(X0
a

, g k 00)�X 0̄
a

13: end if

14: end if

15: C
X

0
g
 C

X

0
a
� C

X

0
b
, C

X

1
g
 ¯C

X

0
g

16: else

17: C

X

0
g
 {0, 1} C

X

1
g
 ¯C

X

0
g

18: for (i, j) 2 {0, 1}2 do V
ij

k m
ij

 H(X
ai

, X
bj

, g k i k j), c
ij

 C
X

wai^wbj
g

�m
ij

19: end for

20: Q interp{(2i+ j, V
ab

) | w
ai

^ w
bj

= 0}
21: R interp{(2i+ j, V

ab

| w
ai

^ w
bj

= 1), (4, Q(4)), (5, Q(5))}
22: X0

g

 Q(�1), X1
g

 R(�1), P [g] (Q(4), Q(5), c00, c01, c10, c11)
23: end if

24: end for

25: F  (n,m, q,A0, B0, P ), e (X0
1 , X

1
1 , . . . , X

0
n

, X1
n

), d (X0
n+q�m+1, X

1
n+q�m+1, . . . , X

0
n+q

, X1
n+q

)

26: return (F, e, d)
27: end procedure

28: procedure En(e, x) . Encoding phase
29: (X0

1 , X
1
1 , . . . , X

0
n

, X1
n

) e, x1 . . . xn

 x, X  (Xx1
1 , . . . , Xxn

n

), return X
30: end procedure

31: procedure Ev(F,X) . Evaluating phase
32: (n,m, q,A0, B0, P ) F , (X1, . . . , Xn

) X
33: for g  n+ 1 to n+ q do a A0(g), b B0(g)
34: if g 2 XORGates(f) then

35: if P [g] ? then X
g

 X
a

�X
b

36: else

37: if C
Xa = 0 then X̄

a

 H(X
a

, g k 00)
38: else X̄

a

 P [g]�H(X
a

, g k 00)
39: end if

40: end if

41: C
Xg  C

Xa � C
Xb

42: else

43: V ⇤ k m⇤  H(X
a

, X
b

, g k C
Xa k CXb

)
44: R⇤  interp{(2C

Xa + C
Xb

, V ⇤), (4, Q(4)), (5, Q(5))}
45: X

g

 R ⇤ (�1), C
Xg  cCXa CXb

�m⇤
46: end if

47: end for

48: return (X
n+q�m+1, . . . , Xn+q

)
49: end procedure

50: procedure De(d, Y ) . Decoding phase
51: (Y1, . . . , Ym

) Y , (Y 0
1 , Y 1

1 , . . . , Y 0
m

, Y 1
m

) d
52: for i 2 {1, . . . ,m} do

53: if Y
i

= Y 0
i

then y
i

 0
54: else if Y

i

= Y 1
i

then y
i

 1
55: else return ?
56: end if

57: end for

58: return y  y1 . . . ym
59: end procedure
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is enough to send just one ciphertext. The method divides the AND gate into two AND

gates where one of the parties knows the truth value on an input wire. The name of the

method comes from this division.

A, B, C, C1, and C2 are the masking values for the wires a, b, c (output of the AND

gate), c1 (output of the garbler half gate), and c2 (output of the evaluator half gate),

respectively. 4 denotes the common offset as in free XOR (§4.4).

Garbling:

1. Alice and Bob want to compute the output of an AND gate whose inputs are a and

b.

2. An AND gate can be written as an XOR of two AND gates as in Equation (4.1) where

r is a randomly chosen bit only known to Alice. Alice chooses it to be the label bit

of the B, which is the masked value for FALSE on the wire b. r is still unknown to

Bob.

a ^ b = (a ^ r)� [a ^ (b� r)] (4.1)

Garbler Half Gate:

3. a ^ r is the garbler half gate, whereas a ^ (b � r) is the evaluator half gate. For

the output of the garbler half gate c1  a ^ r, Alice needs to send EB(C1) and

EB�4(C1 � r4). Since she knows the value of r, there is just 2 input combina-

tions. She orders the ciphertexts with respect to the label bit of b. Row reduction

(§4.3) is also possible by letting the 1st ciphertext in all 0. She calculates the 2nd

ciphertext from the value she reaches by decrypting the first one. Thus, sending

just 1 ciphertext is enough for the garbler half gate.

4. During the evaluation of the garbler half gate, Bob decrypts the related cipher text

depending on the label bit of the masking value on the wire b. Since the order is

by labels he can not learn the truth value of b.

Evaluator Half Gate:
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5. For the evaluator half gate, Alice needs to let Bob learn q = b� r without learning

b or r. Actually, it is whatever Bob gets as the label bit of the masked value on

wire b. This was the main reason why r was chosen as the label bit of B in the

beginning.

6. To garble the evaluator half gate c2  a ^ q, there are two ways Alice may go

depending on the value of r. If r is FALSE, Alice sends two ciphertexts EB(C2)

and EB�4(C2 � A) in this order strictly. Otherwise, Alice sends two ciphertexts

EB�4(C2) and EB(C2�A) in this order strictly. Moreover, the 1st ciphertext can

be let all 0 and the 2nd one can be calculated from it. Therefore, sending only one

ciphertext for the evaluator half gate also suffices.

7. If Bob gets FALSE as q, he decrypts the first ciphertext using the masking value on

the wire b, arriving at the masking value of the output of the evaluator half gate.

Otherwise, he decrypts the second ciphertext using the value on the wire b, and

XORs the result with the masking value on the wire a, arriving at the masking value

of the output of the half gate.

The evaluator does not learn the truth values of a, b, r, or c2 (if q = 1, of course,

otherwise he learns c2). In the end, the results of the half gates must be XORed, in order

to obtain the final output of the AND gate.

With the half gates technique, an AND gate costs 2 cipher texts and XORs are free, which

makes the half gates technique the optimum from size point of view among the methods

developed so far (see Table 4.6). Zahur et al. have also proven that decreasing the size

of an AND gate further is impossible.

Table 4.6: Optimization Scoreboard (Half Gates)

Method Odd / Even Gate Size Enc. Time per Dec. Time per
Odd / Even Gate Odd / Even Gate

P&P (§4.2) 4 ct / 4 ct 4 edt / 4 edt 1 edt / 1 edt
GRR3 (§4.3) 3 ct / 3 ct 4 edt / 4 edt 1 edt / 1 edt
Free XOR (§4.4) 3 ct / free 4 edt / free 1 edt / free
GRR2 (§4.5) 2 ct / 2 ct 4 edt / 4 edt 1 edt / 1 edt
FleXOR (§4.6) 2 ct / {0,1,2} ct 4 edt / {0,2,4} edt 1 edt / {0,1,2} edt
Half Gates 2 ct / free 4 edt / free 2 edt / free

ct: ciphertexts; edt: total encryption and/or decryption time



Chapter 4. Garbled Circuit Optimizations 38

The Complete Scheme. For a boolean circuit f , a numeric index is assigned to

each wire in the circuit. The sets of input wires, output wires, output wires of XOR

gates in faredenotedasInputs(f), Outputs(f), and XORGates(f), respectively. These

functions can also be applied to garbled version F of f as Inputs(F ), Outputs(F ), and

XORGates(F ). vi denotes the one bit truth value on the ith wire in a circuit. If the output

wire of a gate has index i, that gate is named as ith gate. The wire masking values for

FALSE and TRUE on the ith wire is denoted as W 0
i ,W

1
i 2 {0, 1}k, respectively. The security

parameter of the scheme is denoted as k. For each wire masking value W , the label bit

is its least significant bit lsbW . For the ith wire, define pi = lsbW 0
i . Being named as

the permute bit of the wire, that value is a secret kept by the generator. Intuitively, if

label bit a masking value on a wire is si, that masking value is W s
i

�p
i

i , and corresponds

to the truth value si � pi. Wi implies that the evaluator does not know vi. The free XOR

offset is denoted as R 2 {0, 1}k. We have lsbR = 1 so that lsbW 0
i 6= lsbW 1

i , and the

complementary masking values on wires have different label bits. Sometimes ^ is omitted

and two symbols is juxtaposed to imply AND (ab = a ^ b). H : {0, 1}k ⇥ Z ! {0, 1}k

denotes a hash-function that is usable in garbled circuits.

(v
a

, v
b

)! (a
a

� v
a

) ^ (a
b

� v
b

)� a
c

(4.2)

The technique can be further generalized such that it can be applied any odd gate (OR,

NOR, NAND, etc.), since all of them can be written as in Equation (4.2) where a
a

, a
b

, a
c

are constants. For example, an AND gate results from setting all to FALSE, an OR gate

results from setting all to TRUE. The construction of half gate is shown step-by-step in

Table 4.7. Note that the a values does not affect what the evaluator does.
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Table 4.7: The construction of half gates for computing Equation (4.2) [5].

Generator half gate: p
b

known to generator Evaluator half gate: v
b

�p
b

known to evaluator

Computes:

f
G

(v
a

, p
b

) (v
a

� a
a

)(p
b

� a
b
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The complete garbling procedure for an entire circuit proposed by Zahur et al. is shown

in Algorithm 3 [5]. All gates are assumed to be either an AND or an XOR gate. Since De

never returns ?, this scheme does not satisfy the authenticity criterion. In order to make

it authentic, Zahur et al. propose the following changes:

• The for-loop on Line 13 of Algorithm 3 must be changed as:

for i 2 Outputs(f) do

j  NextIndex()
d
i

 (H(W 0
i

, j), H(W 1
i

, j))
end for

• The for-loop on Line 54 of Algorithm 3 must be changed as:

for d
i

2 d do j  NextIndex(), parse (h0, h1) d
i

if H(Y
i

, j) = h0 then y
i

 0

else if H(Y
i

, j) = h1 then y
i

 1

else return ?

end if

end for
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Algorithm 3 The complete half gates garbling scheme proposed by Zahur et al. in [5].
1: procedure Gb(1k, f) . Garbling phase
2: R ⌘ {0, 1}k�11
3: for i 2 Inputs(f) do

4: W 0
i

⌘ {0, 1}k, W 1
i

 W 0
i

�R, e
i

 W 0
i

5: end for

6: for i /2 Inputs(f) do {in topo. order}

7: {a, b} GateInputs(f, i)
8: if i 2 XORGates(f) then W 0

i

 W 0
a

�W 0
b

9: else (W 0
i

, T
Gi

, T
Ei

) GbAnd(W 0
a

,W 0
b

), F
i

 T
Gi

, T
Ei

10: end if

11: W 1
i

 W 0
i

�R
12: end for

13: for i 2 Outputs(f) do

14: d
i

 lsb(W 0
i

)
15: end for

16: return (F, e, d)
17: end procedure

18: private procedure GbAnd(W 0
a

,W 0
b

) . Garbling AND gates
19: p

a

 lsb(W 0
a

), p
b

 lsb(W 0
b

)
20: j  NextIndex(), j0  NextIndex()
21: {First half gate}

22: T
G

 H(W 0
a

, j)�H(W 1
a

, j)� p
b

R
23: W 0

G

 H(W 0
a

, j)� p
a

T
G

24: {Second half gate}

25: T
E

 H(W 0
b

, j0)�H(W 1
b

, j0)�W 0
a

26: W 0
E

 H(W 0
b

, j0)� p
b

(T
E

�W 0
a

)
27: {Combine two halves}

28: W0  W 0
G

�W 0
E

29: return (W 0, T
G

, T
E

)
30: end private procedure

31: procedure En(e, x) . Encoding phase
32: for e

i

2 e do X
i

 e
i

� x
i

R
33: end for

34: return X
35: end procedure

36: procedure Ev(F,X) . Evaluating phase
37: for i 2 Inputs(F ) do

38: W
i

 X
i

39: end for

40: for i /2 Inputs(F ) do {in topo. order}

41: {a, b} GateInputs(F, i)
42: if i 2 XORGates(F ) then W

i

 W
a

�W
b

43: else s
a

 lsb(W
a

), s
b

 lsb(W
b

), j  NextIndex(), j0  NextIndex()
44: T

Gi

, T
Ei

 F
i

, W
Gi

 H(W
a

, j)� s
a

T
Gi

, W
Ei

 H(W
b

, j0)� s
b

(T
Ei

�W
a

)
45: W

i

 W
Gi

�W
Ei

46: end if

47: W 1
i

 W 0
i

�R
48: end for

49: for i 2 Outputs(F ) do Y
i

 W
i

50: end for

51: return Y
52: end procedure

53: procedure De(d, Y ) . Decoding phase
54: for d

i

2 d do y
i

 d
i

� lsbY
i

55: end for

56: return y
57: end procedure
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4.8 Our Compatibility Analysis of Garbled Circuit Opti-

mizations

We conclude this chapter with a useful table which reflects the compatibility of garbled

circuit optimizations with each other (see Table 4.8). and X stand for compatible and

non-compatible, respectively. For the use of external value (Ext. Val.), see Section 4.5.

Table 4.8: Compatibility of Garbled Circuit Optimization Techniques.

P&P GRR3 Free XOR GRR2 FleXOR Half Gates

P&P (Ext. Val.) (Ext. Val.)

GRR3 X

Free XOR X X

GRR2 (Ext. Val.) X X X

FleXOR (Ext. Val.) X X

Half Gates X X

Ext. Val.: External Value (§4.5)



Chapter 5

Practical Implementations of Yao’s

Protocol

Various implementations have been developed so far based on Yao’s protocol. Many

of them utilize Yao’s protocol for MPC applications, although some targets Private

Function Evaluation (PFE). A comprehensive catalogue of them would have been far

from the reach of just a master’s thesis work. So, we will explain only some of them

which are supposed to be helpful for people to see Yao’s protocol in practise. They also

reflect the importance of Yao’s protocol and the areas it can be applied in the future.

First, we will start with introducing some of the generic MPC solutions that use Yao’s

protocol. We compare those generic implementations in terms of their use of garbled

circuit optimizations. At the end, we will present some real-world applications.

5.1 Generic Usage of Yao’s Protocol in Practice

5.1.1 Pipelined Implementation (FastGC)

The memory required to store the entire garbled circuit is generally a limitation. Huang

et al. proposed pipelining optimization in their framework in [21] to reduce the required

memory. The garbled circuit generation and evaluation procedures can be done simul-

taneously, eliminating the need for keeping the entire garbled circuit in memory and the

need for preparation of the entire garbled circuit before its transmission to the evaluator,

42
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which results in a decrease in total Yao’s protocol time. FastGC framework automates

pipelined implementation, so that the only need remaining is the construction of the

desired circuit [21].

At the beginning of the computation the circuit structure is instantiated by both the gar-

bler and the evaluator. While the protocol is being executed, the generator garbles each

gate in topological1 order, and transmits it over the network as soon as it is produced.

When a garbled gate is received by the evaluator, it is associated with the corresponding

gate of the circuit and evaluated. A gate is eliminated as soon as it has been evaluated,

so that the memory use would be minimal. This technique is called pipelined implemen-

tation. Note that it also reduces total Yao’s protocol time of at the expense that both

parties needs to be online at the same time.

5.1.2 Garbled RAM

The notion of garbled RAM was introduced by Lu and Ostrovsky in [48]. Gentry et al.

have later improved it using identity-based encryption (IBE)2 in [50] for provable security.

It differs from Yao’s garbled circuits in that it permits direct garbling of a RAM program,

without converting it into a boolean circuit. A RAM program whose run-time is T can be

converted into a Turing Machine whose run-time is O(T 3) resulting in a boolean circuit

of size O(T 3logT ), whereas the size and computation time of a garbled RAM program

is only proportional to its running time on a RAM [50]. The inefficiency is even more

prominent in the setting of big data [50]. In this case, efficient programs, such as binary

search, run in sub-linear time with the size of the data, however their boolean circuit

representations run in linear time with the size of the data.

Just like garbled circuits, garbled RAM includes a garbler who garbles the program, and

sends it to the evaluator. Evaluator evaluates the garbled program using the garbled

inputs and, unlike the case of Yao’s protocol, outputs the actual output of the RAM

program. Like the garbled circuits, garbled RAM targets security againist semi-honest

adversaries ((§2.2.1). Gentry et al.’s scheme of garbled RAM is explained in detail below

[50].
1Safety-respecting if the garbling method is fleXOR.
2Identity based encryption (IBE) is a form of public key encryption (§2.5.2) where a user’s public key

is his identity. In generic public key cryptosystems, private keys are chosen randomly and public keys
are produced from them. However, in IBE the private keys are generated from users’ public keys [49].
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The notation PD(x) denotes a RAM program P which accesses a memory containing data

D and takes an input x. Imagining D as a huge database controlled by the evaluator and

P as a database query that has read or write access to the database and whose parameter

is a value x (like P searches x in D) would help for understanding the notions.

A garbled RAM scheme can be used to garble P , D, x into P̄ , D̄, x̄, such that P̄ , D̄,

x̄ reveals only PD(x). Furthermore, the sizes of P̄ , D̄, x̄ are only proportional to their

corresponding plain texts. Similar to Yao’s the garbled circuits, garbling x consists of

providing a subset of masking values.

A RAM program P can be represented as a colleciton of CPU-Step Circuits which execute

a single CPU step. Equation (5.1) shows the execution of CPU step j. The input to the

circuit CP
CPU is the current CPU statej and a bit breadj which resides in the memory location

assigned in the previous cycle. Its outputs are an updated statej+1, the next reading

location i(j+1)read, a location iwritej+1 for writing to (maybe ?), a bit bwritej+1 to write into

that location. The start of the computation PD(x) is in the initial state state1 = x and

bread0 = 0, and it proceeds step-by-step. In each step j, first breadj is set to D[ireadj ], and if

iwritej 6= ?, D[iwritej ] is set to bwritej . The output of the last CPU step is the output of the

computation y = PD(x) as state. P has read-only memory access if it never overwrites

any values in memory D (i.e., iwritej is always ?).

CP
CPU(statej , b

read
j , iwritej , bwritej ) = (statej+1, i

read
j+1 , i

write
j+1 , bwritej+1 ) (5.1)

Gentry et al. propose their scheme with security against unprotected memory access

(UMA) in which the initial contents of the memory D and the complete memory access

pattern of MemAccess (including the contents) may be learned by the intruder, [50].

They also propose that encrypting the memory contents and applying oblivious RAM is

enough for transforming any garbled RAM scheme with UMA security into one providing

full security.

Read-only Solution. The garbled memory is made of D̄[i]’s, each containing an IBE2

secret key sk(i,b) for the public key (i, b) where i is the location and b is the data bit

D[i]. Another future of D̄[i] is that it can remain and be used by the future programs.

The garbled input x̄j to the CPU step j is the masking value for the statej , and x̄0
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is the masking input x̄. The CPU step in Equation (5.1) simply becomes the one in

Equation (5.2).

CP
CPU(statej , b

read
j ) = (statej+1, i

read
j+1 ) (5.2)

(5.3) shows the garbled circuit C̄P
CPU,j of the step j. The problem with garbling the

CPU step j is that the location of breadj is not pre-known since it is the output of the

previous cycle. Let b̄read0j denote the masking value of breadj for FALSE and b̄read1j denote

the masking value of breadj for TRUE. Each garbled step j outputs a translation mapping

translatej+1 = (ct0(j+1), ct1(j+1)) where ctb(j+1) = E((ireadj+1 , b), rbj , b̄
read
b(j+1)) calculated3

by using IBE so that the evaluator can only learn the masking value of D[ireadj+1 ] using the

key D̄[ireadj+1 ]. b̄read0(j+1), b̄
read
1(j+1), r0j and r1j are hardcoded in the step circuit j and cannot

be learned directly by the evaluator due to the garbling process. ireadj+1 is not private since

the target is UMA security, and so it does not require a masking value.

(x̄j+1, i
read
j+1 , translatej+1) C̄P

CPU,j(x̄j , b̄
read
bj ) (5.3)

Each garbled cycle j starts with the decryption of ctbj (the evaluator may know which one

to decrypt due to UMA security) to get b̄readbj , except for the first cycle where b̄readbj = ?.

The last cycle directly outputs y = PD(x).

Writing to the Memory. Similar to the read-only case, the garbled memory is made

of D̄[i]’s, each containing an timed IBE secret key sk(u,i,b) for the public key (u, i, b)

where u is the cycle that i is written last time. The full step given in Equation (5.1)

needs to be evaluated. Equation (5.4) shows the garbled circuit C̄P
CPU,j of the step j.

Unlike the read-only case, each step j writes sk(j,i,b) to the garbled memory address

iwritej (if they are not ?), and outputs sk(j+1,i,b) and iwritej+1 for writing in the next cycle.

Each garbled step j outputs a translation mapping translatej+1 = (ct0(j+1), ct1(j+1))

where ctb(j+1) = E((uj+1, ireadj+1 , b), rbj , b̄
read
b(j+1)) calculated by using timed IBE. Here, the

assumption is that there exists a polynomial size circuit WriteTime such that uj+1 =

WriteTime(j, x̄j , ireadj+1 ), and step j can call it. Just like the read-only case, the evaluator

can only learn the masking value of D[ireadj+1 ] using the key D̄[ireadj+1 ]. b̄read0(j+1), b̄read1(j+1),

3r
bj

is the randomization value to provide semantic security.
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r0j and r1j are hardcoded in the step circuit j and cannot be learned directly by the

evaluator due to the garbling process. ireadj+1 and iwritej+1 are not private since the target is

UMA security.

(x̄j+1, i
read
j+1 , translatej+1, i

write
j+1 , sk(j+1,i,b)) C̄P

CPU,j(x̄j , b̄
read
bj , iwritej , sk(j,i,b)) (5.4)

Full Security. Gentry et al. propose that any garbled RAM scheme that only pro-

vides UMA security and only supports program executions with WriteTime calls can be

transformed into a fully secure garbled RAM scheme for arbitrary programs [50]. This

transformation uses oblivious RAM (ORAM)4 to first compile the original program P

into a new program P ⇤ that stores/accesses its memory using ORAM. This ensures that

the memory contents and access pattern of the compiled program do not reveal anything

about those of the original program. Some ORAM schemes already ensure that the

compiled program provides WriteTime calls.

5.1.3 JustGarble

In [37], Bellare et al. proposed JustGarble framework, which targets optimized garbling

of any circuit. It is entirely open-source and can be freely downloaded from http:

//cseweb.ucsd.edu/groups/justgarble. It implements Ga (P&P (§4.2)), GaX (Free

XOR (§4.4) without GRR3 (§4.3)), and GaXR (Free XOR with GRR3), using constant

key 128-bit AES as the DKC (§2.5.6) as in Equation (2.5). It works both ways: garble a

boolean circuit, and evaluate a garbled circuit.

JustGarble uses a circuit representation called Simple Circuit Description (SCD). It

is based on the circuit formulation from [3]. An SCD file consists of values n, m, q,

and arrays A, B, and G. If G is not present the file is a topological circuit representa-

tion. In JustGarble, there are modules for building circuits, garbling boolean circuits,

and evaluating garbled circuits. The Build module is useful for constructing circuits,

permitting working at the individual gate level or higher. SCD files are written with
4Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky et al. [51], permit a user to

hide its access pattern to a remote storage. Although the physical storage locations accessed can be
observed by an adversary, it is ensured by ORAM that anything about the real access pattern may not
be learned [52].

http://cseweb.ucsd.edu/groups/justgarble
http://cseweb.ucsd.edu/groups/justgarble
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constructed circuits. The Garble module is utilized for realizing the Gb algorithm of the

three garbling schemes given. Garble takes a circuit f = (n,m, q, A,B,G) described in

an SCD as input and outputs the garbled tables P that compose of the related garbled

circuit F = (n,m, q, A,B, P ). The inputs to the Evaluate module are a topological

circuitf̄ = (n,m, q, A,B), the garbled tables P needed for evaluating, and a garbled

input X. The garbled output Y is produced. JustGarble also composes of procedures to

realize De, mapping the garbled output Y to the plain output y [37].

The JustGarble implementation of GaXR (Free XOR (§4.4) with GRR3 (§4.3)) for 36.5K

gate optimized AES boolean circuit whose 82% are XOR gates has resulted in 5.40 bytes

per gate (bpg) as the size, 35.0 cycles per gate (cpg) as the evaluation time, and 63.3

cpg as the garbling time. The JustGarble implementation of GaX for the same circuit,

however, has yielded 23.2 cpg as the evaluation time, 55.6 cpg as the garbling time, and

11.5 as the size [37]. (With a 3.201 GHz processor, evaluating the garbled circuit is 7.25

nsec/gate and garbling it is 17.4 nsec/gate.)

5.1.4 ABY

ABY is a framework for 2PC, proposed by Demmler et al. in [39]. Most of the time, a

mixture of MPC primitives (GMW protocol (§2.9), Yao, HE (§2.8). . .) may yield more

efficient implementations than what would have been if just one of them is used. Based

on this idea, ABY uses Arithmetic sharing, Boolean sharing, and Yao sharing (§2.6).

The framework aims security in the semi-honest model (§2.2.1). ABY works like a virtual

machine, and high-level languages can be compiled to it. Variables may be either in

Cleartext (i.e. one of the parties knows its value, e.g. inputs and outputs) or secret

shared among the two parties. ABY also allows efficient conversion between the different

types of sharings. The user of the framework may decide which sharings to be used

depending on the application.

5.1.5 Obliv-C

Obliv-C is built by Zahur and Evans as an extension of C programming language with

secure computation infrastructure [53]. It supports various C features like pointers,

typedef, struct, etc., and provides new data types and constructions so that programs
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would run on private inputs. It is especially designed for scalable MPC protocols, and

to enhance research on new MPC techniques by easing implementation such that just

writing a new library is enough instead of building a new compiler for each technique.

The source code for Obliv-C can be found at https://oblivc.org.

5.1.6 ObliVM

Liu et al. proposed ObliVM as a programming framework for MPC [54]. It offers a

domain-specific language (ObliVM-lang) useful for compilation of programs into suitable

representations required for MPC protocols. It also provides high-level programming con-

structions for MPC infrastructure which can be adapted by non-specialist programmers

on security as well. The source code for ObliVM can be found at http://oblivm.com.

5.1.7 Frigate

Frigate is designed by Mood et al. as a compiler and a circuit interpreter for MPC [55].

It can implement any function that can be written as a boolean circuit and run any MPC

primitive that operates on boolean circuits. Frigate permits the use of C-like language

with constructs and operators specifically designed for representing Boolean circuit effi-

ciently. To improve the efficiency, the compiler is designed to favor XOR gates, utilizing

structures like Boyar et al.’s full adder with four XOR and one AND [28]. Frigate is also

significantly fast in terms of compilation, interpretation and execution times. The source

code for Frigate can be found at https://bitbucket.org/bmood/frigaterelease.

5.1.8 Comparison Based on Garbling Optimizations Used

Now, we compare the generic frameworks for Yao’s protocol based on their use of garbled

circuit optimizations (see Table 5.1). and X stand for compatible and non-compatible,

respectively.

https://oblivc.org
http://oblivm.com
https://bitbucket.org/bmood/frigaterelease
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Table 5.1: Comparison of Generic Frameworks Techniques Based on Their Use of
Garbled Circuit Optimizations.

P&P GRR3 Free XOR GRR2 FleXOR Half Gates

JustGarble (2013) [37] X X X

ABY (2015) [39] X X X

Obliv-C (2015) [53]

ObliVM (2015) [54] X X X

Frigate (2016) [55]

Obliv-C and Frigate make the use of any garbled circuit optimization possible since they

permit the alterations of garbling schemes although those garbling circuit techniques are

not built-in. On the other hand, JustGarble, ABY, and ObliVM do not allow changing the

built-in garbling constructions, therefore, is limited for the use of state-of-the-art garbled

circuit optimization techniques. All of the frameworks allow compilations optimized for

reducing the number of odd gates. We can deduce that Frigate is the optimum for

working with garbled circuits since it offer maximum optimization options while being

the most efficient one.

5.2 Real-World Applications

We give two real-world examples indicating the importance of Yao’s protocol in practise.

5.2.1 Secure Computation of Satellite Collusion Probabilities

Satellite operators are very eager to protecting their satellites since they are extremely

costly. One of the issues that operators are interested in is preventing collisions with other

satellites. However, the operators also want to keep the trajectories of their satellites

private, which makes coordination between different operators difficult. Hemenway et

al. proposed an 2PC framework that combines GMW protocol (§2.9) and Yao’s protocol

for high-precision computation of satellite collusion probabilities in [11]. The framework

does not target just the semi-honest model (§2.2.1) since in the case of satellite operators,

it does not provide sufficient security. Instead, first, they prove the security of the
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protocol in semi-honest (§2.2.1) setting. Then, they strengthen their construction by

using standard arithmetic MACs against malicious adversaries (§2.2.3).

For the sake of simplicity, the model of each satellite is a spherical object on a linear

path in any short time window. Each satellite may deviate from its position, p, and the

distribution of these deviations are assumed to be covariance matrix2 C. The private

input of a satellite a includes four parts: its position pa in R3, its velocity va in R3, the

covariance matrix Ca in R3⇥3, and its radius Ra in R. The algorithm which needs to be

calculated securely for satellites a and b is the conjunction analysis calculation, which

returns the collision probability p (see Algorithm 4).

Algorithm 4 The conjunction analysis calculation proposed in [11].
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6: return p

Hemenway et al. propose GMW protocol (§2.9) for computing integer addition and

multiplications [11]. To compute comparison and shift operations, they are represented

as Boolean circuits and then evaluated using Yao’s protocol. For compatibility with

GMW protocol the garbled circuit must take secret inputs of both parties and the output

of the gate must be computed as an arithmetic secret sharing (§2.6) among both sides.

• A shift operation is computed as follows: x0 and x1 are Alice and Bob’s arithmetic

shares, respectively. (x0+x1) needs to be shifted by an amount N which is known

publicly. This can be accomplished by using Yao’s protocol to compute Algorithm

5, where Alice is the garbler, and Bob is the evaluator. Bob uses OT (§2.7) to get

the masking values for his inputs.

• A shift comparison is computed as follows: x0 and x1 are Alice and Bob’s arithmetic

shares, respectively. They would like to detect whether (x0+x1) is positive or not.

This can be done by using Yao’s protocol to compute Algorithm 6, where Alice

is the garbler, and Bob is the evaluator. Bob uses OT (§2.7) to get the masking

values for his inputs.
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Algorithm 5 The shift operation computation proposed in [11].
1: Hardwired: M = 2m and c, which are a modulus and a shift constant, respectively.
2: Inputs: x0 and x1, held by Alice and Bob, respectively. In addition a random R is

provided by Alice.
3: x x0 + x1 (mod M) using standard m-bit addition circuit.
4: y  x >> c by dropping c rightmost wires.
5: Return: z1  y +R (mod M) to Bob. She sets z0 = �R (mod M) for herself.

Algorithm 6 The comparison operation computation proposed in [11].
1: Hardwired: M = 2m, which is a modulus.
2: Inputs: x0 and x1, held by Alice and Bob, respectively. In addition a random R is

provided by Alice.
3: x x0 + x1 (mod M) using standard m-bit addition circuit.
4: b sgn(x)
5: Return: z1  b+R (mod M) to Bob. She sets z0 = �R (mod M) for herself.

Now, we return the computation of Algorithm 4. In the rest of this section, we provide the

methods proposed by Hemenway et al. for the implementation of functions in Algorithm

4 [11].

Circuit Representation for Division: Integer division is implemented by repeated

subtractions.

Circuit Representation for exp(·): The function exp(·) must be implemented by

representing it as a degree-24 Taylor series. Then the Taylor coefficients can be hard-

coded constants in the circuit [11].

Circuit Representation for
p
·: Iterative Babylonian Algorithm can be used to ap-

proximate a square root. The Babylonian Algorithm computes Equation (5.5) on an

input S, and an initial estimate x0 [11].

xn+1 =
1

2

✓
xn +

S

xn

◆
(5.5)

The double integral on Line 5 of Algorithm 4 can be written as in Equation (5.6) where

g(x) is a sum of erfs. Simpson’s Rule approximation to this integral (i.e., using arcs of

parabola) is suggested by Alfano in [56].

p =
3p
8⇡�x

Z R

�R
g(x)dx (5.6)
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Circuit Representation for erf(·): approximate 1�erf(x) using the degree 96 ratio-

nal function in Equation (5.7) where a1 = .3275911, a2 = .254829592, a3 = .0092705272,

a4 = .0001520143, a5 = .0002765672, and a6 = .0000430638.

1� erf(x) ⇡ 1

(1 + a1x+ a2x2 + a3x3 + a4x4 + a5x5 + a6x6)
16 (5.7)

Hemenway et al. demonstrate that their framework is highly efficient. The collision

probability calculation scheme proposed requires numerical estimation of a complicated

integral. The work of Hemenway et al. proves that evaluating very complex functions is

now possible by using MPC technology [11].

5.2.2 Privacy-Preserving Data Mining

Privacy-preserving data mining deals with the problem of how to run data mining al-

gorithms on private data [10]. Mainly, privacy-preserving data mining is applied to two

classic settings [10]:

1. Instead of a single party having the whole data set, two or more parties hold

different parts of it. Running a data mining algorithm on the union of the parties’

databases is aimed while each party’s input is being kept private [10].

2. Some part of statistical data that needs to be released may be confidential. Hence,

it can be first altered so that

(a) no one’s privacy is compromised by it,

(b) Data mining algorithms can be run on the modified data set to obtain mean-

ingful results [10].

Although both privacy problems are important, we will only deal with the first one where

MPC techniques suit better. An example of the first type problem occurs in the field of

medical research [10]. A group of hospitals would like to mine their patient data jointly

for the medical research purposes but they also need to keep their patients’ personal data

private. Another example would be a cooperation scenario of intelligence agencies. These

agencies cannot grant each other free access to their confidential databases because of

the high security standards they must obey [10].
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The relationship of privacy preserving techniques and MPC is so wide that we cannot

cover it here comprehensively. Instead here we will examine and explain common notions

of classification problem and ID3 algorithm and their relationships with MPC.

Classification problem. The input of a classification problem is a database structured

such that each of its rows is a transaction and each of its columns is an attribute which

may have different values (e.g., each row may be a patient, and each column may be a

different type of symptoms that is found in the patient) [10]. One of those attributes in

the database is the main one, named as the class attribute (e.g., it may represent whether

the patient has lung cancer or not) [10]. We aim to use the database for prediction of

the class of a new transaction by examining only its non-class attributes [10].

Another example would be credit risk analysis of a bank that wishes to identify which cus-

tomers are likely to be profitable before giving them a loan [57]. Then the class attribute

is defined as Profitable-customer (its values may be YES or NO) by the bank. The

database attributes used for prediction include: Home-Owner, Income, Years-of-Credit,

and Other-Delinquent-Accounts. In order to ensure proper decision making, various

rules are defined by the bank. For example [57]:

If (Other-Delinquent-Accounts = 0) and (Income > 30k or Years-of-Credit > 3)

then Profitable-customer = YES [accept credit-card application]

The collection of those rules that cover all possible transactions can be used for classifi-

cation of a customer as profitable or not. The classification may include a probability of

error [57].

Decision tree. Being a rooted tree, a decision tree has internal nodes, each correspond-

ing to an attribute, and the edges leaving each node, corresponding to the possible values

of the attribute [10]. The tree also has leaves, each containing the expected class value

for a transaction that has the attribute values in the path from the root to that leaf. By

using a decision tree, the class of a new transaction can be predicted by following the

nodes from the root until the leaf. [10].

Figure 5.1 shows an example decision tree for identifying profitable customers as in the

previous scenario. However, it reflects only a small portion of the tree. The whole tree

would have many more nodes, edges, and leaves.
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Figure 5.1: A decision tree for credit eligibility.

ID3 Algorithm. One of the well-known ways for designing decision trees is the use of

ID3 algorithm [10]. The construction of the tree starts from the root node, goes top-down

recursively. At each node the attribute is chosen based on its ability of classifying the

transactions on its own. If an attribute is chosen for a node, the remaining transactions

are partitioned by it, resulting in a smaller database which composes of the related

transactions [10].

The main principle of ID3 is choosing the attribute which is best at predicting the class

of the transaction. This is done by searching the attribute that decreases the information

of the class to the maximum degree [10]. Namely, by choosing the attribute maximizing

the information gain, which is the difference between the entropies of the class attribute

for all transactions and for ones having the same value for a give attribute [10]. The

resulting decision tree is a smaller one consistent with the database due to the greedy

algorithm used in searching [10].

Privacy preserving distributed computation of ID3. We include a setting involv-

ing two parties, each having a database with different transactions to which the same set

of attributes applies [10]. The parties aim at computing a decision tree of the union of

their databases by using the ID3 algorithm [10]. Lindell and Pinkas describe an efficient

privacy preserving protocol to solve this problem in [57].

According to Lindell and Pinkas, direct application of Yao’s protocol faces some ma-

jor problems, mainly the large sizes of input databases require too many OTs (§2.7),

resulting in huge communication and computation costs [10]. Moreover, the boolean
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circuit conversion of ID3 results in a very large circuit, because of myriad repetitions of

information gain calculation which is the basic step of the algorithm [10].

Lindell and Pinkas observe that MPC of each node can be done separately [10, 57].

Starting with the root node, for each node a secure computation is invoked. Its output is

revealed to both parties and the computation goes with the next node in the path. This

does not compromise the protocol security since the assigned attribute to each node is

also a part of the final output. Just like the non-privacy preserving implementation of

ID3, both parties separately partition the rest of their transactions after an attribute is

assigned to a node. This way, Lindell and Pinkas reduce the whole protocol to proper

attribute assignments for node, namely the ones resulting in the highest information

gains [10]. They also show how to apply Yao’s protocol to proper attribute assignment

[10].



Chapter 6

Private Function Evaluation

Consider the case that one invents an algorithm which can be used for efficiently diag-

nosing various diseases based on some information about a person’s general health [4].

It is obvious that this algorithm would be precious, and healthcare institutions would

volunteer to pay millions in order to use it. However, the inventor of the algorithm

would prefer keeping it as a secret since he is regularly payed for it a lot of money. The

problem is that medical institutions generally prefer keeping their patients’ data private,

preventing them from just giving it to the algorithm owner. Here the following question

might be asked: How can those parties compute an algorithm which is known by only

one of the parties while its input is known by only the other one? This problem is known

as private function evaluation (PFE) [4]. The problem may also be widened to involve

the case that the algorithm owner may also have his private inputs.

PFE is a special case of MPC in which n participants needs to compute a private function

f using their private inputs (x1, . . . , xn)), resulting in f(x1, . . . , xn). One of the parties

P1 holds a boolean circuit Cf of the function f , while each party Pi holds a private input

xi, and the parties aim to learn only the output of the circuit Cf (x1, . . . , xn) while f

or all other partys’ inputs remain unknown to each of them except for P1 who already

knows f [1]. The difference of this scheme from the standard MPC setting is that here

the function f and its boolean circuit representation C are not known publicly. There

are many situations where such a PFE scheme would be useful, e.g. the ones where the

function itself contains private information, or reveals security weaknesses, or the ones

where service providers may prefer hiding their function or its specific implementation

56
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as their Intellectual Property. Design of efficient special or generic PFE protocols is

considered in a variety of papers in literature [1].

Most generic PFE solutions target the MPC of a universal circuit Ug taking the circuit

C with a number of gates less than g and the inputs x1, . . . , xn of parties as input,

and outputing f(x1, . . . , xn). The works based on this approach mainly aim to reduce

the size of universal circuits, and to optimize their implementations with the help of

various MPC techniques, such as Yao’s protocol. However, they have a main source of

inefficiency the massive sizes of known universal circuits. The complexity in their designs

and implementations also increases the need for searching better alternatives.

In this section, we will explain the concepts and constructions for PFE proposed by

Mohassel and Sadeghian in [1], especially for two-party case where Yao’s protocol is

involved.1 The target security is in the semi-honest (§2.2.1) setting. Their work remains

the most efficient PFE scheme to this date.

6.1 Mohassel and Sadeghian’s Generic PFE Scheme [1]

Mohassel and Sadeghian present a generic PFE framework in [1]. In addition to the

private inputs of parties which is hidden by any proper MPC scheme, hiding the topology

of a boolean circuit C and the functionality of its gates suffices for hiding a circuit

completely [1].

There are three types of information that Mohassel and Sadeghian’s PFE scheme does

not intend to hide about a circuit [1]:

1. The number of its inputs,

2. The number of its outputs,

3. The number of its gates.

Mohassel and Sadeghian suggest two different functionalities that make up the complete

task of PFE [1]:
1For a clear explanation of multi-party case where GMW protocol is privately evaluated, we must

refer the reader to [4].
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Figure 6.1: (a) An example circuit [4]. (b) The mapping of the circuit [4].

1. Circuit Topology Hiding (CTH) Functionality. The full description of the

topology of a circuit C can be accomplished with the use of a mapping ⇡C : OW! IW.

Let g, n and m denote the size, the number of inputs and the number of outputs

of C, respectively. OW (outgoing wires) is the union of the input wires of the circuit

and the output wires of its non-output gates: {ow1 = x1, . . . , own = xn, own+1 =

Output(G1), . . . , own+g�m = Output(Gg�m)}. IW (incoming wires) is the set of

input wires to all the gates in the circuit: {iw1, . . . , iw2g}. ⇡C maps i to j (i.e.,

⇡C(i) ! j), if and only if owi 2 OW and iwj 2 IW correspond to the same wire in

the circuit C. Because an outgoing wire can correspond to more than one incoming

wire, ⇡C is rarely a function. However, its inverse ⇡�1C is a function since a wire

can be either an output of only one gate or an input. Figure 6.1 shows an example

circuit (a) and its mapping ⇡C (b). The main target of the CTH functionality is the

oblivious application of this mapping ⇡C : OW! IW.

It is useful to include a computation of the number of possible mapping since it is directly

related to the security of the PFE scheme. Although one may expect the number of

possible mappings to be MN due to the ability of any owi to go to any iwj , the exact value

is smaller since an owi must go at least one iwj . Since ⇡�1 is an onto function, computing

the number of possible onto functions suffices. Applying the inclusion-exclusion principle,

we get Equation (6.1) which shows the number (⇢) of possible mappings for a circuit

where OW has M elements and IW has N elements [58].

⇢ =
MX

i=0

(�1)i
✓
M

i

◆
(M � i)N (6.1)
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2. Private Gate Evaluation (PGE) Functionality. The PGE functionality deals

with hiding the functionality of each gate in a circuit. It can be seen as a black-box

gate mechanism where only one of the parties (P1) knows its functionality. The

input of the mechanism is the shares of all parties for both inputs of the hidden

gate, and it returns to the parties their shares for the output of the gate.

6.2 CTH Functionality Realization

Before describing Mohassel and Sadeghian’s construction in more detail, the concept of an

extended permutation needs to be explained [1]. A mapping ⇡ : {1 . . .M}! {1 . . . N} can

be regarded as a permutation if it is one-to-one and onto (i.e. a bijection). This notion

can be generalized to an extended permutation as follows: Given the positive integers M

and N , a mapping ⇡ : {1 . . .M} ! {1 . . . N} is called as an extended permutation (EP)

if and only if there exists exactly one x 2 {1 . . .M} for every y 2 {1 . . . N} such that

⇡(x) = y. x is often denoted by ⇡�1(y). Unlike the mapping of a standard permutation,

the mapping of an EP may also replicate or discard elements in the domain, allowing the

domain to be larger or smaller than the range.

n + q � m oblivious mapping (OMAP) queries and 2q Reveal queries are needed to be

implemented in order to realize the CTH functionality (an OMAP query for each owi, and

a Reveal query for each iwi). These OMAP/Reveal queries can be combined to construct

a problem known as oblivious evaluation of the extended permutation (OEP) to which

Mohassel and Sadeghian’s CTH scheme mainly address.

OEP Definition. Two-party OEP Problem 2-OEP(~⇡, ~x,~t) is defined as follows: The first

party P1 holds an EP ⇡ : {1 . . .M} ! {1 . . . N}, and a blinding vector for outputs

~t = (t1, . . . , tN ); whereas the other party P2 holds a vector of inputs ~x = (x1, . . . , xM ).

Both the xis and tis are `-bit strings. The protocol ends in P2 learning (x⇡�1(1) �

t1, . . . , x⇡�1(N) � tN ), while P1 learning nothing.

Mohassel and Sadeghian construct a solution for OEP from switching networks which they

observe as more efficient than the previous constructions.

Switching Networks. A switching network SN composes of 2-switches which are inter-

connected. Its inputs are N `-bit strings and a set of selection bits of each switches, while
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its outputs are N `-bit strings. Each switch takes two `-bit strings and two selection bits

as input, outputting two `-bit strings. Each of the outputs may get the value of any of

the input strings depending on the selection bits. This means for input values (x0, x1)

and output values (y0, y1), there are four different switch output possibilities. The two

selection bits s0 and s1 are used for determining the switch output. In particular, the

switch will output y0 = xs0 , and y1 = xs1 .

The mapping ⇡ : {1 . . . N}! {1 . . . N} of an SN is defined as ⇡(i) = j if and only if after

the SN is evaluated, the string on the output wire j becomes that on the input wire i.

There is no need for the mapping ⇡ to be a function because the value of any input wire

can be mapped to any number of output wires. However, its inverse ⇡�1 must always be

a function.

A permutation network PN is a switching network whose mapping is a permutation of its

inputs. In contrast to switching networks, permutation networks compose of 1-switches.

Unlike 2-switches, they have only one selection bit s. For an input (x0, x1), a 1-switch

outputs one of the two possible outputs: (x0, x1) if s = 0, and (x1, x0) if s = 1. 1-switch

may also be called a permutation cell.

Waksman proposed an efficient construction for a permutation network in [59]. Mainly,

his work suggests that a permutation network with N = 2k can be constructed with

Nlog2N�N+1 switches, that the switch depth of the constructed PN will be 2log2N�1,

and that its computational complexity will be O(Nlog2N).

Extended Permutation from Switching Networks. Mohassel and Sadeghian pro-

pose the general method for construction of an extended permutation from switching

and permutation networks [1]. However, extended permutations differ from switching

networks in that the number of their inputs M and that of their outputs N need not be

equal (M  N) [1]. N �M additional dummy inputs are added to the real inputs of an

EP ⇡ : {1 . . .M}! {1 . . . N} in order to simulate it as an SN.

Mohassel and Sadeghian divide a switching network into three components [1]:

1. Dummy-value placement component. This component takes N input strings

composing of real and dummy ones. For each real input that ⇡ maps to k different

outputs, the dummy-value placement component’s output is the real string followed
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Figure 6.2: The switching network for EP of the circuit in Figure 6.1 [4].

by k � 1 dummy strings. An efficient implementation of this process can be via a

Waksman permutation network [59].

2. Replication component. This component takes the output of the dummy-value

placement component as input. If a value is real, it goes unchanged. If it is a

dummy value, it is replaced by the real value which precedes it. This can be

computed by a series of N � 1 2-switches whose selection bits (s0, s1) are either

(0,0) or (0,1). If the selection bits are (0,0), that means x1 is dummy, and x0 goes

both of the outputs. If they are (0,1), that means both inputs are real, and both

are kept on the outputs in the same order. At the end of this step, all the dummy

inputs are replaced by the necessary copies of the real inputs.

3. Permutation component. This component takes the output wires of the replica-

tion component as input and outputs a permutation of them so that each string is

placed on its final location according to the prescription of mapping ⇡. An efficient

implementation of this process can also be via a Waksman permutation network

[59].

Adding up the three components, the number of switches needed for implementation of

EP is 2(Nlog2N � N + 1) + N � 1 = 2Nlog2N � N + 1. The topology of the whole

switching network is the same for all N input EPs and the output depends on the selection

bits.
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Table 6.1: P
1

must learn one of these (y
0

,y
1

) according to his selection bits.

(s0u,s1u) y0 y1
(0,0) xi � rk xi � rl
(0,1) xi � rk xj � rl
(1,0) xj � rk xi � rl
(1,1) xj � rk xj � rl

Oblivious Evaluation of Switching Networks (OSN). Now, we can return to our

OEP problem. If the EP construct from switched and permutation networks can be eval-

uated oblivously, we have a solution. Mohassel and Sadeghian propose a method for

oblivious evaluation of their building blocks, i.e., 1-switches and 2-switches [1].

Recall that P1 holds the selection bits of the switching network, and an output blinding

vector ~t while P2 holds the input vector ~x. P2 must learn the switching network’s blinded

output which is the EP of her input vector blinded with the vector ~t; while P1 learns ?.

Secure evaluation of a single 2-switch. The express the general idea of the secure

computation of whole network, Mohassel and Sadeghian describe the secure evaluation

of its building block, a single 2-switch u [1]. Let the input wires of the 2-switch be wi

and wj , and its output wires be wk and wl. P2 assigns four uniformly random values ri,

rj , rk, rl to the four wires of the switch. P1 has the blinded values xi� ri and xj � rj as

his shares for the two input wires. The aim is letting P1 obtain his output shares which

is the blinded values on the output wires (see Table 6.1). In fact, there are four possible

output pairs (xi � rk, xi � rl), (xi � rk, xj � rl), (xj � rk, xi � rl), or (xj � rk, xj � rl)

which P1 may obtain based on the values of his selection bits s0u and s1u.

P2 prepares a table with four rows: (ri � rk, rj � rl), (ri � rk, ri � rl), (rj � rk, ri � rl),

and (rj � rk, rj � rl) as shown in Table 6.2. Then, P1 and P2 engage in a 1-out-of-4 OT

(§2.7) in which P2 inputs the four rows that he just prepared, and P1 inputs his selection

bits for the switch u. Suppose that P1’s selection bits are (0,0). This means P1 retrieves

Table 6.2: P
1

gets one of these (T
0

,T
1

) by engaging in 1-out-of-4 OT (§2.7) with P
2

.

(s0u,s1u) T0 T1

(0,0) ri � rk ri � rl
(0,1) ri � rk rj � rl
(1,0) rj � rk ri � rl
(1,1) rj � rk rj � rl
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Figure 6.3: Basic procedures of topology hiding: (1)The function f known by P
1

. (2)
Circuit representation of f . (3) Circuit mapping of f . (4) OEP for P

2

learning blinded
values. (5) The blinded values learnt by P

2

. (6) Yao’s protocol with the blinded values.

the first row, i.e., (ri � rk, rj � rl). He then XORs xi � ri and ri � rk, as well as xj � rj

and ri � rl, reaching his output shares xi � rk and xi � rl.

Constant round protocol. Using the OT-based protocol proposed for 2-switches, the

entire switching network can be securely computed in constant round since the protocol

permits parallel OT (§2.7) runs [1]. In an offline stage, a set of random strings for each

wire is generated, and a table for each switch is prepared by P2. Then P1 and P2 run

the parallel OTs (§2.7) as described above, leading to that a single row of each table is

learned by P1 according to his selection bits.

In the online stage, P2 blinds his input vector with the blinding strings on the inputs

of the input switches before sending them to P1. P1 is now able to compute the entire

switching network. He just need to perform sequential XORs (in topological order) to

reach the blinded values on the output wires. He then applies his own blinding vector ~t

and sends the result to P2. P2 removes her blinding, and obtains the output of the OEP

[1].

Efficiency of the Mohassel and Sadeghian’s OEP. As we mentioned before, to im-

plement an extended permutation ⇡ : 1 . . .M ! 1 . . . N , 2NlogN � N + 1 switches

are needed. In fact, 1-out-of-2 OTs (§2.7) are enough to implement PNs which consist of

1-switches. Moreover, 2-switches in replication component can also be implemented with

1-out-of-2 OTs (§2.7) since their outputs have 2 possibilities unlike the generic 2-switches

[1]. To sum up, this protocol costs 2NlogN�N+1 1-out-of-2 OTs (§2.7). Mohassel and

Sadeghian suggests the use of OT extension [60], which reduce total number of public

key operations for their OEP to a constant value depending on the security parameter of

protocol, i.e. O(k) [1]. In this case, the number of symmetric key operations will be

twice the number of OTs, which is 4NlogN � 2N + 2 [1].
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Figure 6.3 summarizes the basic procedures of topology hiding via OEP. P1 owns a function

f (1). He converts f to a circuit representation Cf (2). Then he extracts the circuit

mapping ⇡f (3). P1 and P2 engage in an OEP (4) of ⇡f where P2 learns the blinded values

of her input masking values (5) which she will later use in Yao’s protocol (6).

Mohassel and Sadeghian show applications of their framework to arithmetic circuits,

GMW protocol (§2.9), and Yao’s protocol. Since the main topic of this thesis Yao’s

protocol and two-party cases, we will continue with its application to Yao’s protocol [1].

6.3 Two-Party PFE of Yao’s Protocol

Alice and Bob would like to compute a function f(x0, x1), where x0 is Alice’s input, x1 is

Bob’s input. Bob acts like P1, and Alice acts like P2 in Mohassel and Sadeghian’s generic

PFE scenario [1]. So, only Bob knows f , and the topology of the circuit C of f . Since

(NAND) is Turing complete, all gates in the circuit are let to be a NAND gate, so that the

need for PGE functionality can be eliminated. Alice may learn the number of gates, but

she should know the circuit topology. Now, one may ask the following question: How

can someone garble a circuit which she does not know? Well, cryptography can achieve

many incredible things.

The protocol goes as follows [1]:

Offline Preparation:

1. Bob sorts the gates topologically and computes the extended permutation ⇡C cor-

responding to circuit C.

2. Alice randomly generates a masking value pair (W 0
i ,W 1

i ) for each owi 2 OW. This

yields a total of M = n+ g � o pairs. Each masking value is k bits long, where k

is the security parameter. The lsb of 2 masking values belonging to the same pair

must be different so that they have different labels.

3. Alice generates a bit vector ~v = (v1, . . . , vM ) where vi = lsbW 0
i . She arranges each

masking value pair with respect to their labels. So, they become (W v
i

i ,W v̄
i

i ). This

arrangement will be important during the garbled circuit evaluation. Moreover,

she assigns those pairs to 2 vectors ~p = (p1, . . . , pM ) and ~q = (q1, . . . , qM ) where

pi = W v
i

i and qi = W v̄
i

i .



Chapter 6. Private Function Evaluation 65

4. Bob generates a random bit vector ~v0 = (v01, . . . , v
0
N ) where v0j is a random bit.

This yields a total of N = 2g bits. He also generates random blinding pairs (t0j ,t1j )

for each iwj 2 IW such that lsb(t0j ) = lsb(t1j ). He assigns those pairs to 2 blinding

vectors ~t0 = (t01, . . . , t
0
N ) and ~t1 = (t11, . . . , t

1
N ).

Oblivious Evaluation of Switching Networks:

5. Alice and Bob engage in an OEP protocol where his input is the extended permu-

tation ⇡C and ~v0, while her input is ~v. As a result, Alice learns v00 = (v001 , . . . , v
00
N )

where v00j = v⇡�1(j) � v0j .

6. Alice and Bob engage in a slightly modified OEP protocol where his input is the

extended permutation ⇡C and ~t0, while her input is ~p. The output is a vector

p0 = (p01, . . . , p
0
N ) where p0j = p⇡�1(j) � t0j . The modification is that the output is

not learned by Alice but fed to a new permutation network ŜN.

7. Alice and Bob engage in a slightly modified OEP protocol where his input is the

extended permutation ⇡C and ~t1, while her input is ~q. The output is a vector

q0 = (q01, . . . , q
0
N ) where q0j = q⇡�1(j) � t1j . The modification is that the output is

not learned by Alice but fed to ŜN as well.

8. ŜN is a switching network including N 1-swiches whose switch depth is 1. Each

1-switch uj takes (p0j ,q0j) as input, v0j as the selection bit and outputs either (p0j ,q0j)

if v0j = 0 or (q0j ,p0j) if v0j = 1.

9. After oblivious evaluation of ŜN, Alice learns the output which is a set of N pairs

whose jth element is either (p0j ,q0j) if v0j = 0 or (q0j ,p0j) if v0j = 1.

Garbling:

10. Alice needs to arrange the blinded pairs into their original position since the truth

values must be known for garbling. This can be done by using v00. If v00j = 0, the

pair remains unchanged, otherwise it is swapped. jth element of the output will be

(Ŵ 0
⇡�1(j),Ŵ

1
⇡�1(j)) where Ŵ b

i means a blinded value for W b
i .

11. For all gates, Bob tells Alice which two of the incoming wires and which one of

the outgoing wires belong to the same gate. He also tell her the outgoing wires

corresponding to his and her input bits.
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12. Alice garbles each gate by encrypting the masking values on the outgoing wires

using the blinded values on the incoming wires as the keys. She sends Bob the

garbled gates and the masking values for her inputs in OW. Bob gets his input

masking values from her using 1-out-of-2 OT (§2.7).

Evaluating:

13. Using the circuit mapping ⇡C , his blinding vectors ~t0 = (t01, . . . , t
0
N ) and ~t1 =

(t11, . . . , t
1
N ), and the garbled gates told by Alice, Bob evaluates the whole garbled

circuit in topological order. When an outgoing wire i is mapped to an incoming

wire j, the masking value Wi on that outgoing wire is XORed with tlsbWi

j on the

incoming wire j. These XORed (blinded) values are used as the decryption keys in

the corresponding garbled gates to reveal the next masking value on the outgoing

wire of the gate.

14. In the end, Bob reaches the output masking values. He tells Alice those output

masking values. She decodes them and reaches f(x0, x1). Alice tells Bob the

output.

Complexity. The steps 5, 6 and 7 can be combined for only one OEP. Hence, this

protocol requires 2Nlog2N �N + 1 OTs for OEP and N OTs for ŜN, i.e. 2Nlog2N + 1

OTs in total. OTs for Bob’s input masking values increases the total OT requirement

of complete two-party PFE protocol but they do not change its round complexity since

they can be implemented in parallel with the OTs for OEP.



Chapter 7

Conclusion and Discussions

In this thesis, we were interested in surveying all known Yao’s protocol optimizations

and showing practical applications of Yao’s protocol.

We have presented P&P (§4.2), GRR3 (§4.3), free XOR (§4.4), GRR2 (§4.5), fleXOR (§4.6),

and half gates (§4.7) techniques in the descending order for size of garbled gates. We have

compared those optimizations in terms of communication and computation complexities,

and showed their compatibilities with each other.

What else can be done for optimization? Well, in science, especially in cryptography

there is no end. Although Zahur et al. have proved that the half gates method gives the

most size-optimum technique for an odd gate and yet compatible with free XOR [5], there

are still two more optimization parameters that can be improved. There may be faster

and/or more secure garbling techniques in the future. To improve on the size parameter

there is a need for a revolutionary change in the traditional approach. This improvement

may be a method which garbles a group of gates together instead of garbling each gate

separately, resulting in a lower size.

We have also presented some generic applications as well as some real-world application

examples. The generic applications include pipelining method (§5.1.1) which is useful

for reducing total protocol time when the both parties of a garbling scheme is online

at the same time. We also included garbling RAM (§5.1.2) which is a quite useful

technique especially for applications within the realm of big data. Some generic MPC

tools JustGarble (§5.1.3), ABY (§5.1.4), Obliv-C, ObliVM, and Frigate (§5.1.7) are also

introduced briefly. We compared them in terms of the use of garbling optimization

67
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techniques. At the end of the chapter, we have given some real-world applications,

including MPC of satellite collusion probabilities (§5.2.1) and privacy preserving data

mining.

We have explained private function evaluation, and Mohassel et al.’s PFE scheme. It

is the most efficient PFE scheme known. Although their PFE scheme is limited for use

right now, we know that cryptography is one of the fastest fields in computing science.

It is hard to say whether it will be in use soon but someday generic PFE schemes will be

in every day use for many applications, where one of the parties is also willing to hide

her function since the path to developing such a technique is already open.
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