
Deep Learning in Cyber Security for

Internet of Things

A thesis submitted to the
Graduate School of Natural and Applied Sciences

by

Furkan Yusuf Yavuz

in partial fulfillment for the
degree of Master of Science

in
Cybersecurity Engineering

http://www.sehir.edu.tr/Pages/Akademik/Bolum.aspx?BID=26

"Everyone tells their own stories.”

Mehmet Yavuz

Deep Learning in Cyber Security for Internet of Things

Furkan Yusuf Yavuz

Abstract

Cyber threats are a showstopper for Internet of Things (IoT) which has recently gained

popularity. Network layer attacks on IoT can cause significant disruptions and loss of

information. Among such attacks, routing attacks are especially hard to defend against

because of the ad-hoc nature of IoT systems and resource constraints of IoT devices.

Hence a an efficient approach for detecting and predicting IoT attacks is needed. For the

security of IoT, detecting malicious attacks is vital to avoid of unintended consequences

such as lack of availability, integrity and confidentiality. For secure IoT needs a system

that is able to robust detection against routing attacks. We propose a deep-learning

based for continuous security monitoring analysis for IoT. Application of deep learning for

cyber-security in IoT requires the availability of substantial IoT attack data, however the

lack of IoT attack data is an important issue. In our study, the Cooja IoT simulator has

been utilized for generation of high-fidelity attack data, within IoT networks ranging from

up to 1000 nodes. We propose a highly scalable, deep-learning based attack detection

methodology for detection of IoT routing attacks with high accuracy and precision.

Keywords: deep learning, machine learning, internet of things, cyber-physical systems,

cyber security, routing attacks

Nesnelerin İnternetinin Siber Güvenliği için Derin Öğrenme

Furkan Yusuf Yavuz

Öz

Son zamanlarda önemi hızla artan nesnelerin internetin için siber saldırıların da önemi

hızla artmaktadır. Nesnelerin internetine, ağ katmanında yapılacak saldırılar veri kay-

bına ve bölünmesine yol açabilmektedir. Siber saldırılar içerisinde yönledirme saldırıları,

nesnelerin internetinin yapısı ve kaynak kısıtları sebebiyle, savunmasını hayli zordur. Bu

sebeple nesnelerin internetine yönelik saldırıları tespit edecek bir yönteme ihtiyaç vardır.

Nesnelerin internetini izlemek ve analiz etmek, kötücül saldırıları öngörmek, beklenmeyen

durumlara ayak uydurmak, önlemler almak, hassas verileri korumak ve kayıpları azalt-

mak için hayati önem arz etmektedir. Biz, derin öğrenme tabanlı bir güvenlik sistemi

sunuyoruz. Derin öğrenme çalışmalarının en önemli kısıtlarından biri olan veri seti ek-

sikliğini gidermek için Cooja simülatörü ile ürettiğimiz ve hazırladığımız veri setini de

çalışmamızın ek ürünü olarak sunuyoruz. Veri setimiz 1000’e varan düğümlü kablosuz

sensör ağlarını içeriyor. Bunun yanı sıra, ölçeklendirilebilir derin öğrenme tabanlı yön-

lendirme atak tespit modelleri ile nesnelerin interneti için sağlam bir güvenlik sunuyoruz.

Anahtar Sözcükler: derin öğrenme, nesnelerin interneti, makine öğrenmesi, siber-

fiziksel sistemler, siber güvenlik

This thesis is dedicated to my father, Yakup YAVUZ.

vi

Acknowledgments

First of all, i am appreciative to my elder brother Mehmet YAVUZ for his encouragement

to pursue my MSc Degree and helping me understand and enrich my ideas.

A special thanks goes to my family for their endless support, especially my dear mother

and sister. They have always been there for me whenever I needed it most. Their

constant support has always kept me going ahead. I owe them a great deal of gratitude

for always being there.

I would like to thank to my dear friend Yusuf KOÇYİĞİT for reading my thesis, com-

menting on my views and his valuable feedbacks. I also would like to thank all my friends

for their best wishes for me.

I would also thank to TÜBİTAK BİLGEM for its opportunities and contribution on my

experience on Cyber Security that let me complete my MS study.

Last but not least, a very special thanks goes to my dear grandmother, who motivated

and encouraged me to finish this scientific research. This thesis would never be completed

without her support.

vii

Contents

Abstract iv

Öz v

Acknowledgments vii

List of Figures x

List of Tables xii

Abbreviations xiii

1 Introduction 1
1.1 Context . 1
1.2 Security Problems of Internet of Things 2
1.3 Proposed Methodology in the Thesis . 3
1.4 Contributions . 7
1.5 Outline . 7

2 Background 8
2.1 Internet of Things (IoT) . 8

2.1.1 Cyber-Physical Systems (CPS) . 8
2.1.2 IoT . 10
2.1.3 Challenges of IoT . 10
2.1.4 Threats and Risks of IoT . 11
2.1.5 Simulation of Routing Attacks . 12

2.1.5.1 Routing Attacks to IoT 14
2.2 Deep Learning for Cyber Security . 19

2.2.1 Machine Learning . 19
2.2.2 Deep Learning . 21

3 Related Work 27
3.1 Deep Learning based Cyber Security Methods 34

4 IoT Routing Attack Dataset(IRAD) 36
4.1 Feature Extraction . 37
4.2 Feature Normalization . 42
4.3 Feature Importance and Selection . 43
4.4 Overview of Datasets . 46

viii

Contents ix

5 Deep Learning Based Detection of Routing Attacks 48
5.1 Routing Attack Detection . 48
5.2 Deep Learning Model . 49

6 Evaluation and Conclusion 53
6.1 Performance Evaluation . 53
6.2 Analysis . 54

6.2.1 Decreased Rank Attack . 55
6.2.2 Hello Flood Attack . 56
6.2.3 Version Number Attack . 58

6.3 Conclusion . 60
6.4 Future Works . 60

Appendix 61

Bibliography 75

List of Figures

1.1 Intrusion Detection Approaches . 4
1.2 An overview of IoT attacks . 5
1.3 Methodology Flow Diagram . 6

2.1 CPS Overview . 9
2.2 Components of a CPS . 9
2.3 IoT Architecture . 11
2.4 System of IoT . 12
2.5 Cooja User Interface . 13
2.6 A sample of the Simulation . 13
2.7 Sample 6LoWPAN Concept . 14
2.8 Routing Attacks in IoT . 16
2.9 Decreased Rank Attack . 17
2.10 Before Hello-flood Attack . 18
2.11 After Hello-flood Attack . 18
2.12 Brain Cell and Artificial Neuron . 23
2.13 Step Function . 23
2.14 Sigmoid Function . 24
2.15 Tanh Function . 24
2.16 ReLU Function . 25

3.1 Decision Tree’s Logic . 28
3.2 AODV Protocol . 29
3.3 Sybil Attack . 31
3.4 Wormhole Attack . 33

4.1 Foren6 User Interface . 41
4.2 Transmission Rate before Feature Normalization Process 42
4.3 Transmission Rate after Feature Normalization Process 42
4.4 Feature Importance for Decreased Rank Attack after Feature Selection . . 45
4.5 Significant Feature Histogram of Version Number Attack Dataset 45
4.6 Insignificant Feature Histogram of Version Number Attack Dataset 45
4.7 Pearson Rate of Total Transmission Time Feature 46

5.1 Deep Neural Network Layers . 51

6.1 Model Accuracy of Decreased Rank Dataset 56
6.2 Model Loss of Decreased Rank Dataset . 56
6.3 Model Accuracy of Hello-Flood Dataset 57

x

List of Figures xi

6.4 Model Loss of Hello-Flood Dataset . 58
6.5 Model Accuracy of Version Number Dataset 59
6.6 Model Loss of Version Number Dataset . 59

List of Tables

4.1 Details of Datasets . 36
4.2 A Sample of Raw Dataset . 37
4.3 Encode of Information Feature . 39
4.4 Extracted Features . 40
4.5 Sample Dataset . 41
4.6 Feature Importance of Decreased Rank Attack 44
4.7 Datasets with Numbers . 47
4.8 A Comparsion of Datasets . 47

6.1 Training Performance on Original Dataset 55
6.2 Performance of Decreased Rank Model . 55
6.3 Performance of Hello-Flood Model . 57
6.4 Performance of Version Number Model . 58
6.5 Performance of the Models over Multiple Datasets 60

xii

Abbreviations

CPS Cyber Physical Systems

IoT Internet of Things

DL Deep Learning

ML Machine Learning

GPU Graphical Processing Unit

SVM Support Vector Machines

WSN Wireless Sensor Networks

DODAGs Destination Oriented Directed Acyclic Graphs

DIO Destination oriented directed acyclic graphs Information Object

DAO Destination oriented directed acyclic graphs Advertisement Object

DIS Destination oriented directed acyclic graphs Information Solicitation

6LoWPAN IPv6 over Low-powered Wireless Personal Area Networks

RPL Routing Protocol for Low-Power and Lossy Networks

AODV Ad hoc On demand Distance Vector

CSV Comma Seperated Values

PCAP Packet CAPture

xiii

Chapter 1

Introduction

In this chapter, we will explain the problem definition and demonstrate the methodology,

objectives of our study, then, briefly mention the contributions. Finally, we will outline

the structure.

1.1 Context

We are living in data driven age. Data has been locating (or is going to locate) every

point of our life. Most people think that this influence is a consequences of industry 4.0

that makes our life faster than before as all other industrial revolutions [1]. Industry

4.0 enabled the cooperation between computers (or cyber domain) and physical systems.

This cooperation is called cyber-physical systems (CPS). Physical system then created

the internet of things (IoT) by embedding sensors, controllers, and actuators. Another

consequence of the revolution the enormous data that is generated and must be managed,

called Big Data.

There are many tools to simulate the IoT environment, consequently Big Data, to study

on this innovations easier. Most popular simulators are Cooja [2], GNS-3 [3], Iotify [4] and

MATLAB [5]. Unfortunately, to establish successful communication of IoT is difficult

point to achieve and maintain. While number of generated data has been increasing,

dependently, the term data security has became a crucial term specifically regarding

security of sensitive data in alignment with the Three principles of information security

(Confidentiality, Integrity and Availability). There are many attacks (car hacking, DDoS

1

Chapter 1. Introduction 2

or physical attacks) to IoT because of, particularly, a lack of robust routing protocols.

The statistics claim that DDoS attacks increased 91% in 2017 due to the exploitation of

IoT devices [6]. IoT, which is in all branches of life, is vulnerable against several types

of attacks. However, there is also no effective solution for protecting our life from being

affected by these attacks. Nowadays, machine learning(ML) is the most popular study

topic for detecting cyber attacks for IoT security. Because, ML based solutions can offer

a robust system to unseen attacks. On the contrary, the biggest problem of research on

IoT security is the lack of public datasets. Hence there must be comprehensive studies

to find solutions in these problems.

1.2 Security Problems of Internet of Things

IoT is under risk due to it’s heterogenous structure which in turn enables cooperation

of cyber domain and physical domain. Vulnerabilities of IoT are listed by OWASP

[7]. Insufficient authentication, insecure network services, lack of transport encryption

and integrity verification, privacy concerns, insecure software or firmware, poor physical

security are in the list, additionally, insufficient routing protocols can be appended to

the list.

We are already at the position of meeting face to face with the consequences of these

mentioned vulnerabilities. In October of 2016, the largest DDoS attack was carried out

by using IoT botnets. PayPal, The Guardian, Netflix, Reddit and CNN, particularly,

became the target. The botnets were made by a malware called Mirai. This malware

exploited the security vulnerability of IoT device’s login informations. Exploited devices

were directed to the targets. Using default username, password, non-unique passwords

and lack of software and firmware updates caused the Mirai attack [8].

Full story of Jeep hacking was explained in Black Hat USA 2015 Conference. Researchers

hijacked the jeep by exploiting a firmware update vulnerability. They showed that they

could make the jeep slow down and speed up [9].

Chapter 1. Introduction 3

1.3 Proposed Methodology in the Thesis

The term of IoT is a system of interconnected devices, machines and related software

services. It has been playing an important role in the modern society since it enabled

energy efficient automation for enhancing quality of life. However IoT systems are an

obvious target for cyber-attacks because of their ad-hoc and resource-constrained na-

ture. Therefore, continuous monitoring and analysis is needed for securing IoT systems.

Because of the vast amount of network and sensing data produced by IoT devices and

systems, Big Data and ML methods are highly effective in continuous monitoring and

analysis for the security of IoT systems.

In this thesis we propose a highly-scalable deep-learning based attack detection method

for realistic IoT scenarios. We have processed data with size close to 64x106. We obtained

a high degree of training accuracy (up to 99.5%) and F1-scores (up to 99%). In this study,

we have focused on specific IoT routing attacks, namely, decreased rank, version number

modification and hello-flood.

Systems security requirements depend to robustness against routing attacks. We propose

a deep-learning based for detection for routing attacks to IoT.

There are three main intrusion detection approaches in the literature; misuse detection,

anomaly detection, and specification-based detection. Additionally, hybrid-based system

is also located under the intrusion detection topic and it’s, briefly, a mixture of misuse

detection and anomaly detection. Intrusion detection scheme is also depicted in Figure

1.1.

Chapter 1. Introduction 4

Figure 1.1: Intrusion Detection Approaches

Misuse detection is highly effective in detecting known attacks. However it is insufficient

against unknown or novel attacks because their signatures are not yet known. Addition-

ally, any modification to the signatures can cause an increase in false alarm rate and

that will decrease effectiveness and reliability of the detection system. Specific-based

detection aims to set particular behaviour based on the default deny principles. If the

specifications are violated, the system will think there is an abnormal situation. This

approach is effective to undercover the unseen attack that may be carried out in the fu-

ture. However, setting particular specifications to the system is an overwhelming task in

considering each different problem. Anomaly based detection approach is, basically, con-

structed on normal activity profile and it assumes that any adversary action will conflict

with the normal activity. Anomaly based detection is examined under four subheadings;

advanced statistical models, rule-based techniques, biological models and learning mod-

els. We adopted learning models, because of that even if a misuse detection can give

faster response. Learning models, have a more robust structure against unknown attacks

than others [10].

Traditional ML methods, such as Bayesian Belief Networks (BBN) [11], [12], Support

Vector Machines (SVM) [13], [14], [15], [16] and others [17], [18], [19], [20] have been

applied for cyber security, however the large scale data generation in IoT calls for a deep

learning based method which performs better with large data sizes and is adaptable to

different attack scenarios.

Chapter 1. Introduction 5

IPv6 is a commonly used protocol in IoT and IPv6 based wireless sensor networks (WSNs)

[21] are particularly susceptible to routing attacks. IPv6 over Low-powered Wireless

Personal Area Networks (6LoWPAN) is an IPv6 based WSN protocol [22]. 6LoWPAN

presents some advantages as low power consumption, tiny, small foot print, inexpensive

structure and easy maintenance [23]. Besides, WSNs include many sensors which have

limited resources such as low memory, small bandwidth and low energy. Locations of

routing attacks in IoT are also shown in Figure 1.2.

Cyber Facilities

Services

Humans

Infrastructures

Physical Domain Cyber Domain Cyber-Physical
Connections

Sensor
Manipulation, DoS,
Malicious, Spoofing

Attacks

Cyber Attacks

Routing Attacks

Social Engineering
Attacks

�1

Figure 1.2: An overview of IoT attacks

In our study we have demonstrated the viability of our methodology with simulations up

to 1000 nodes whereas the existing studies, such as [24], [25] and [26], have demonstrated

their methodology with little number of nodes (up to 50), which is not a realistic approach

for an IoT environment. We used data generated by real-life equivalent simulations

because of a lack of availability of public IoT attack datasets. The Cooja simulation

generates raw packet capture files, which are first converted into Comma Separated

Values(CSV) files for text-based processing. The CSV files are then input to the feature

pre-processing module of our system. The features are calculated based on the traffic

flow information in the CSV files. First, feature conversation process is applied to some

features, which is located in raw datasets, then, we have identified 12 features as an

Chapter 1. Introduction 6

initial candidate feature set. Afterwards, feature normalization is applied to all datasets

to reduce the negative effects of marginal values. In the pre-feature selection step, we have

analyzed the importance of features by Randomised Decision Trees [27], histograms and

pearson [28] rate calculation. As a result of this analysis, some of the features are dropped

in pre-feature selection process. After feature preprocessing, the datasets corresponding

to each scenario is labelled and mixed to produce a preprocessed dataset, consisting of

a mixture of attack and benign data. These datasets are fed into the deep learning

algorithm. Deep layers are trained with regularization and dropout mechanisms, their

weights are adjusted and the IoT Attack Detection Models are created. This methodology

is also depicted in Figure 1.3.

Figure 1.3: Methodology Flow Diagram

IoT devices are resource constrained and have power consumption limitations. As a

result of these constraints the security mechanisms devised for IoT should be efficient

and lightweight, putting as little computation and communication burden on the end-

devices as possible. Our proposal puts minimum burden on the IoT network since it

requires only the network packet traces for detection and prediction of attacks which

can be collected externally by a network recording equipment or specially designated

nodes. According to our knowledge we are the first to prepare a deep learning based

methodology for routing attack detection.

Chapter 1. Introduction 7

The objectives of this study are:

• To deeply understand the IoT, threats, risks and routing attacks.

• To create routing attack datasets and their preparetion.

• To build a neural network by deep learning and train them by produced datasets.

• To evaluate the models.

1.4 Contributions

We produced three IoT dataset that include 3 different routing attacks. Then we trained

the neural networks with the preprocessed datasets. After that, we got 3 IoT attack

detection models for each routing attack. The models are also generalisable by taking

into account different network topologies. The training metrics of these models are

listed in Table 6.1 as Training Accuracy (up to 99.5%), Training Loss (max. 5%) and

the performance of these models are listed in Table 6.5 as F1-Score (up to 99%).

1.5 Outline

This thesis is organized into seven chapters. The first chapter provides brief introduction

to thesis and explanation of its methodology. Then:

Chapter 2 explained background and discuss about IoT, its fundamentals, challenges,

threats and risks. Routing attacks to IoT are explained in detail.

Chapter 3 give a literature review on detecting routing attacks by using different ap-

proaches.

Chapter 4 explained the whole dataset generation process, step by step.

Chapter 5 focused on Deep Learning Based Detection of Routing Attacks.

Chapter 6 is evaluation section, performance, analysis of project and discuss differences

and contributions of this thesis and make conclusion.

Appendix includes scripts that we implemented in the thesis.

Chapter 2

Background

2.1 Internet of Things (IoT)

Internet of Things (IoT) is one of the biggest innovations of the this century, considering

the impact on our daily life. The areas of its usage are rapidly increasing. In 2017,

number of devices, that are called IoT, is approximately 27 billion and this number is

estimated to reach 50.1 billion by 2020 [29]. In another aspect, market size of IoT is

estimated to reach approximately $9 trillion by 2020 [30]. Basically, IoT is a network

that contains softwares, nodes and servers.

Before the IoT, CPS’s should be mentioned to comprehend IoT. Because, even if the

term of CPS and IoT have close meanings, CPS includes IoT.

2.1.1 Cyber-Physical Systems (CPS)

CPS have sensitive data, ensure collaborative business, produce high efficient energy

and enhance life’s quality. CPS are smart systems which provides an environment for

cooperation of computational components and things that are well-known with their

physical activities. CPS is kind of a bridge that brings cyber and physical domains

together and takes upon itself an indispensable responsibilities in many areas as clearly

depicted in Figure 2.1. For instance, health sector recently goes towards to use CPS for

getting more information of patients and serving them effectively [31].

8

Chapter 2. Background 9

Figure 2.1: CPS Overview

Sensor, controller and actuator are basic components of CPS that can sense the envi-

ronment with sensors, make a decision with controllers and force the physical domain to

execute the decision with actuators. They are shown in Figure 2.2.

Figure 2.2: Components of a CPS

Chapter 2. Background 10

Heterogeneity and complexity [32] make CPS are susceptible to physical and cyber at-

tacks. For instance, spoofing or denial of service attack violate the supervisory control

and data acquisition (SCADA) systems [33]. The attacks to CPS became more of an

issue, because of the importance of CPS [34].

2.1.2 IoT

IoT is identified as a network of distributed devices that interconnected with softwares,

servers, sensors and etc. If a ’thing’ is mentioned as a part of IoT, it can be reachable,

locatable, addressable within the cyber world [35]. This features makes the devices more

usable and serviceable. The contributions affect the living standard positively. The

reason of market size and usage values of IoT, which are mentioned above, are clearly

understood at this point. People, business and governments prefer this technology for

the ease of reachability it offers.

The list of IoT usage areas is way too long, to name a few; smart home and it’s devices,

wireless sensors, smart locks, smart meters, wearable devices, security cameras, smart

plugs, Radio Frequency Identification (RFID), Machine to Machine(M2M), Machine to

Human(M2H) devices and so on. The usage values and areas revealed that the IoT

touches (or will touch) every point of human life.

2.1.3 Challenges of IoT

IoT devices have the ability of data collecting, transferring and processing in smart ap-

plications [36]. This data types spread to many areas such as health, transportation,

military etc. Security of the sensitive data, thats the biggest risk of IoT, comes into

prominence. This risk roots in two main vulnerabilities. First; heterogeneous devices

and inter-operable connections makes the management of IoT systems more complex.

Second; many devices have resource limitations, lack of computational capability, low

latency. Second reason also makes the detection of possible and unknown attacks to IoT

devices difficult [37]. These reasons make the routing protocols vulnerable. For example,

WSN consist of nodes that include one or more sensors which have low-cost and lim-

ited power. These sensors’ objectives are sensing the environment and communicating

Chapter 2. Background 11

with the base station. The base station has more energy, communication and compu-

tational power than other nodes to assure the network between other nodes and end

user. These abilities ensure monitoring environmental conditions by nodes [38]. WSN

has general characteristics such as, having small number of nodes, power limited nodes,

dynamic network topology and large scale of deployment [21], [39], [40], [41]. WSN has

important issues as sensitive data protection, privacy and authentication. Unfortunately,

the conventional solutions to these issues, as cryptography or key distribution protocols,

couldn’t be applicable due the mentioned constraints of sensor devices[42]. There are

many different routing protocols in WSN. Some of them built on resource awareness or

energy reduction, but none of them are robust routing protocols against the IoT attacks.

2.1.4 Threats and Risks of IoT

Understanding threats and risks of IoT is an introduction to understanding the attacks

to IoT. For this purpose, the architecture of IoT should be examined. In the Figure

2.3, WSN and WSN Border Router stacks are depicted to understand how the data are

conveyed to the server, cloud or database.

Figure 2.3: IoT Architecture

The trust between nodes are assumed by most WSN protocols because the authentication

between the nodes brings communication overhead. This assumption unsurprisingly

creates a risk that enables the malicious nodes to easily manipulate the network [43].

IPv6 is an important root of IoT, like an enabler. Because IPv4 cannot afford the size

of IoT systems. Security suggestions and considerations of IPv6 are the basis of IoT

security [44]. IoT has the same threats with IPv4. Additionally, IoT are subject of the

Chapter 2. Background 12

unprecedented threats due to its location that is at a junction point of cyber domain

and physical domain. Briefly, the expanding attack surface is a threat. An attack could

manipulate the information and that can cause the unintended action in physical domain.

In Figure 2.4, system of IoT is clearly explained from sensors to data analysis stage.

Figure 2.4: System of IoT

There are many type of attacks to IoT that are physical attacks, reconnaissance attacks,

DoS, access attacks, attacks on privacy, cyber crimes, distructive attacks and SCADA

[45].

Routing attacks are performed at network layer and they are more critical than other

attacks, in other saying, they can be an initializer for rest of the attacks to IoT.

2.1.5 Simulation of Routing Attacks

We used the Cooja IoT simulator to simulate different IoT network communication

scenarios. Cooja, coupled with the Contiki operating system, is a cross-level (application,

operating system and machine code layer) simulation tool [2]. Sensors in the simulated

network run with the Contiki operating system and implement the Routing Protocol

for Low-Power and Lossy Networks(RPL) protocol. Contiki makes possible to load and

unload individual programs and services to the simulated sensors [46]. We have conducted

a simulation of each attack as mentioned above, by running real sensor code in Cooja

simulator. We made the simulations on cloud based system. The contiki environment

includes 64-bit Java Runtime Environment on top at 64-bit Ubuntu operating system

and contiki 3.0. Cooja user interface is shown in Figure 2.5.

Chapter 2. Background 13

Figure 2.5: Cooja User Interface

We have generated various attack scenarios at a wide scale number of IoT nodes, ranging

up to 1000, with different percentages (5%, 10% etc.) of malicious nodes for simulating

routing attacks such as decreased rank, hello-flood and version number attack. Scenarios

are listed in Table 4.1. We simulated these scenarios by the Cooja network simulation,

avoiding to produce a synthetic dataset, since Cooja enables to run actual RPL code on

the simulated nodes. A sample of IoT simulation are shown in Figure 2.6. Cooja also

enables to take results of radio messages of the simulated networks as a PCAP files.

Root Node: 0
Normal Nodes: 1-21
Malicious Node: 22

Figure 2.6: A sample of the Simulation

Chapter 2. Background 14

2.1.5.1 Routing Attacks to IoT

IoT applications are located in many fields such as smart homes, smart energy monitor-

ing, healthcare systems, smart cities, logistics and etc. Because of this wide range usage,

security of IoT is important and routing attacks are a very common threat for IoT [22].

RPL [47] is a kind of distance based protocol. First, each node in the network determines

its routing path, then RPL network initializes. In another aspects RPL is a tree-oriented

IPv6 routing protocol for 6LoWPAN and it creates Destination Oriented Directed Acyclic

Graphs (DODAGs), called as DODAG tree. Each network has one or more DODAG root

node as central node and each network has a unique identifier DODAG ID to be identified.

Additionally, each node has a rank number and a routing table due to the other nodes’

rank numbers. The rank number is used to determine the distance between the node

and root [48]. An example of RPL network is depicted in Figure 2.7.

Figure 2.7: Sample 6LoWPAN Concept

Chapter 2. Background 15

In the RPL, there is three type of control packets; DODAG Information Object (DIO),

Destination Advertisement Object (DAO) and DODAG Information Solicitation (DIS).

DIO packets are firstly sent by base (or root) node as broadcasting to create DODAG

tree. The rest of nodes receive this DIO packets and they create their routing table

by selecting parent node. They send DAO packets to parent node to ask permission to

connect to the parent node. Parent node accepts this offer by sending a DIO ACK packet

back. New node sends DIS packets to join DODAG tree. If a new node joins the tree,

all nodes send DIO packets again to reform DODAG (or network topology).

RPL attacks can be examined under three categories depending on the vulnerability

which they aim to exploit. These categories are resource-based, topology based and

traffic based. Resource-based attacks aim to consume energy, power and overload the

memory. Topology-based attacks aim to hinder the normal process of the network. This

could cause that one or more nodes are broken off from the network. Additionally these

attacks threaten the original topology of the network. Traffic-based attacker nodes aim

to join the network as a normal node. Then these attackers use the information of the

network traffic to conduct the attack [49].

Routing attacks take place at the network layer. IoT systems are generally vulnerable

against routing attacks. Among the most significant routing attacks are decreased rank,

hello-flood and version number attacks. Location of routing attacks in IoT systems also

depicted in Figure 2.8.

Chapter 2. Background 16

Physical Domain

Cyber Domain

Controller

Actuator Sensor

Communication
jamming,

Probing attacks

Routing Attacks,
Spoofing Attacks

Sensor
Manipulation

Figure 2.8: Routing Attacks in IoT

The decreased rank attack is such a traffic misappropriation attack. In decreased rank

attacks, malicious nodes advertise lower rank of other nodes to neighbour nodes by

sending DIO packets. So the neighbour nodes change their routing path including the

attacker node by sending DAO packets. Decreased rank attack can be applied to make an

introduction for blackhole, eavesdropping and sinkhole attacks. Decreased rank attack

is also visualized in Figure 2.9. In this figure, node 1 is the DODAG root node and the

others are normal nodes except for node 9, which is the malicious node that conducts

the decreased rank attack in the network. The nodes, 3 to 8, are not effected by the

attack. Nodes 10 and 11 are partially affected from the attack and their communication

is partly interrupted. Some of the packets transmitted over these nodes could be taken

by malicious node because the malicious node is in their routing table, in other words,

they can send some packets over malicious node to convey coming packets to destination.

The nodes, 12 to 18, are the victim nodes whose entire communication is transmitted

over malicious node.

Chapter 2. Background 17

Figure 2.9: Decreased Rank Attack

It’s clearly seen that number of received packet by the malicious node increases when

attack happens. We aim to use this anomaly as features. So we extracted Reception

Rate (RR) (2.1), Reception Average Time (RAT) (2.2), Received Packets Counts (RCP),

Total Reception Time(TRT). Additionally, DIO and DAO packet count are calculated

because of that the attack is started by DIO and DAO packets.

RR =
Received Packet Count of the Node

1000[ms]
(2.1)

RAT =
Total Reception T ime

Received Packet Count of the Node
(2.2)

In equation 2.1 and TR, 1000 is millisecond within all simulation. We have applied

windowing while extracting features. The windowing process will be explained in Chapter

4, section Feature Extraction.

The main purpose of the HELLO message is to introduce and integrate new nodes to

the network. The nodes broadcast HELLO messages with their own metrics such as

signal power and ID number. All the other nodes create their own routing table to send

their messages. A malicious node sends HELLO massages by DIS packets to his victims

by strong signal power and suitable routing metrics, appearing like an neighbour node.

Chapter 2. Background 18

The attacker node becomes the most favorable for the victims. This attack is called the

hello-flood attack. The initialization part of this attack is depicted in Figure 2.10.

Figure 2.10: Before Hello-flood Attack

The malicious node, Node 15, broadcasts HELLO messages to Nodes 4-13, except Nodes

8 and 11. The victim nodes change their routing table because the malicious nodes

advertise high quality metrics. After that, effect of hello-flood attack is depicted in

Figure 2.11.

Figure 2.11: After Hello-flood Attack

Chapter 2. Background 19

It’s obvious that number of transmitted packets of malicious node increase. So we ex-

tracted Transmission Rate (TR) (4.2), Transmission Average Time (TAT) (2.4), Trans-

mitted Packets Counts (TPC), Total Transmission Time(TTT) and DIS features to

identify this attack.

TR =
Transmitted Packet Count of the Node

1000[ms]
(2.3)

TAT =
Total Transmission T ime

Transmitted Packet Count of the Node
(2.4)

In RPL, version numbers of nodes are changed by root node. When the root node changes

them, each node starts the communication for reconstructing of their routing table. So

the network topology is changed. In version number attack, malicious the node changes

its version, then other nodes are forced to change their routing table. So the malicious

node can promote itself to take better a place in the other nodes’ routing tables. This

can jeopardize the network’s information security and performance due to the change in

topology [50].

2.2 Deep Learning for Cyber Security

We investigate the use of deep learning (DL) for detecting routing attacks that target to

IoT. Before giving information about DL, ML should be explained to better understand

DL. Because, ML can be seen as the ancestor of DL.

2.2.1 Machine Learning

Machine Learning(ML) is on of the pathways in leading Artificial Intelligence(AI) re-

search. Popularity of ML comes from two purpose or two task have to be done by ML.

First the task that can be done by machines, second the task that can’t be performed by

humans. Learning activity comes into prominence to be intelligent what refers a system

has ability keeping up with changes of it’s environment. If a system can accord to the

changes, this ability can help it to survive. ML studies are placed at the junction area of

statistics, computer engineering(CE) and computer science(CS). But it can also provide

Chapter 2. Background 20

solutions to other disciplines. Because application of ML depends on using data that

can be from finance, geoscience or archaeology. ML also produce information from the

data. Such that computers use data while working on a process but the data, usually, is

meaningless from human perspective. We can solve deterministic problems easily with

CE. For example, a software to control lighting system in a smart home can do a good

job all the time, using the activity and daylight. But there are lots of non-deterministic

problems that we don’t have enough information about or power and time to solve. We

need statistics for solving these kind of problems. For instance, modeling the fear of

humans against unexpected situation is so hard without statistics. Basically, statistic

builds mathematical models and ML helps to train them.

From this point of view, ML has very similar meaning with classical programming. This

description make easier to see the difference between classical programming and ML; a

classical program is fed by data and rule as an input which transform the answer as an

output after the process, in the contrast, a ML algorithm is fed by data and answer,

which is expected to understand the relationship between them. This relationship can

be used in different forms of data to estimate their outputs.

In ML, there isn’t any explicit programming, it should be called ’training’ because of the

learning process. ML system does not do anything except for exploring the statistical

structure of given data. As an example, which is relevant with the next task, the real

data. For example, someone, who let’s say is our doubting Thomas, wants to know the

cause of a certain activity that happens in the night-time around his home. He puts

surveillance cameras to certain points of his home and one of the important features of

the cameras is taking photos and saving them on the computer when they detect any

activity with their sensors. But the security system of the home is very tedious and bor-

ing, because the owner of the home has to check all the photos, of last night, every day

to be satisfied about his home’s safety. If we wish to establish a better system, it has to

warn Thomas when a real threat occurs. The system shouldn’t give an alarm when the

night activity happens because of a cat or squirrel. So, We can give lots of examples of

pictures to ML algorithm, that are already tagged before, called target variable, before.

All this target variables include the features. Example pictures, called training set, in-

clude objects of humans, cats, leafs etc. Then, the ML algorithm learns statistical rules

Chapter 2. Background 21

for correlating definite picture to definite tags and the output is an ML model that aims

to detect night activity. Finally, the system analyzes all night activity for each day over

taken pictures and if there is a suspicious activity of interest, it gives a notification or an

alert, as our doubting Thomas wanted from the beginning. Some researchers study on

ML process in two parts; the learning part and the inferring part. As mentioned above,

the learning part is feeding the ML algorithm with the training set and the inferring part

is making predictions about the cause of activity by the system.

Supervised learning and unsupervised learning are main types of ML, first of them are

exist by using fully labelled dataset whereas other one are exist fully unlabelled dataset

[51]. In supervised learning, the model receives datasets which includes some features

vectors and labels that are the corresponding outputs of feature vectors. Thus the model

learns to produce correct outputs as a result of a given new input. Classification and

regression are most popular product of supervised learning [52].

In unsupervised learning, the other way round, there is no supervisor who supplies the

labels, that include correct result of corresponding input, to train the models. So the

model, has only input values, observes the results of its action. In the other refer-

ring, Unsupervised learning is an enterprise to describe hidden patterns from input data.

Clustering and dimensionality reduction are two common unsupervised learning example.

2.2.2 Deep Learning

Deep learning (DL) is a kind of Neural Networks(NN) training and has NN architecture.

Difference between ’old school’ NN and deep learning is that DL has many hidden layers

[52]. DL also learns the features itself, which enables the learning process to be more

accurate and also it is shown to be more efficient and accurate than shallow learning [53].

DL has reached success in the computer vision, pattern recognition, image and audio pro-

cessing. It also enabled significant improvement for classification and prediction problems

[54]. Complex deep neural algorithms are trained with the use of powerful GPUs. For

Chapter 2. Background 22

AI, DL represent the state of the art, also for dealing with Big Data especially regarding

scalability and generalization.

In supervised learning, there are three type of datasets. First, training set is one of the

key terms of learning process. It is an enabler for learning algorithm to be supervised

and it contains the expected results under the label feature. The weights of the internal

layers of NN are determined in light of the data and their expected results. And optimal

weights are obtained. Another term is validation set, that assists the learning process for

tuning the parameters of functions to get optimal weights. Finally, the test set is used

for evaluating the performance of training process. Before starting the learning process,

the dataset is separated into the training set and the testing set, that validation dataset

is split from the training set. When preparing the neural network algorithm, epochs are

used as learning time. One epoch means, the training set is passed through the network

completely. NN training algorithms aim to determine the ’best’ possible set of weight

values for the problem under consideration. As expected, determining the optimal set of

weight is often a trade-off between minimizing the network error, computation time and

maintaining the network’s ability to generalize.

Neurons are the main actor of the learning section. They take one or more input from

the previous neurons with the connection weights, sum them up, put it in the activation

function and produce an output (2.6) that is, basically, fired or not. Mathematical

representation of the neuron is shown in 2.5. After this addition, the activation function

puts the Y into process.

Y =
∑

(input) ∗ (weight) + bias (2.5)

Output = f(Y) (2.6)

’Fire’ means to activate, the name is inspired from the biological working of the brain.

The similarity between neurons (or brain cells) and artificial neurons is depicted in Figure

2.12. For the brain cell, electrical signals from other cells are transported to the cell body

by dendrites, then output electrical signals are forwarded along the axon to other brain

cells. Working logic of artificial neurons, are explained above, has similar a process.

Chapter 2. Background 23

Figure 2.12: Brain Cell and Artificial Neuron

Step function is an activation function that takes Y; if Y is above a certain value (or

threshold), the output of step function is activated, otherwise the output is non-activated.

Step function graph is showed in Figure 2.13. In this figure, x is threshold.

Figure 2.13: Step Function

Sigmoid function is like a smooth version of step function. Differences are non-linearity

and better classification result. Sigmoid function graph is showed in Figure 2.14.

Chapter 2. Background 24

Figure 2.14: Sigmoid Function

Tanh function has quite similar function with sigmoid function, it has boundaries (-1,1).

Figure 2.15: Tanh Function

Rectified Linear Unit (ReLU) is the function that is most effective solution for vanishing

gradient problem in our study. The mathematical equation is shown at 2.7.

y = f(x) = maximum(0, x) (2.7)

Output is zero for the input that is less than zero, whereas output is equivalent to input

that is more than zero. For binary classification, ReLU function is more suitable and

we use it in the hidden layers as activation function. ReLU function is also showed as

graphical representation in Figure 2.16.

Chapter 2. Background 25

Figure 2.16: ReLU Function

NN layers include neurons. Input layer is the first layer of NN, there should be same

number of neurons like number of feature or size of dataset. Output layer is the last layer

of NN. For binary classification problem, there should be one neuron with activation

function. NN have also different type of layers, named hidden layer, that are located

between input layer and output layer. Number of hidden layers make NN deep, so,

they are called Deep Neural Network(DNN) and learning process in the DNN is DL.

Number of neurons of hidden layers should be like a triangle according to best practices.

For example, there is three hidden layers and number of neurons might be 100, 200,

100, respectively. The structure of our deep neural networks can be another example

(Chapter 5, Figure 5.1).

Dropout rate (or dropout regularization) is another parameter in DL. Randomly selected

neurons, at the rate of dropout rate, in hidden layers are neglected during the learning

process that means their effect to weight update and activation functions. Briefly, ran-

domly selected neurons are dropped-out. It helps to decrease the sensitivity to particular

weights and supports learning process to avoid the overfitting problem [55]. The over-

fitting problem, in a few words, is that the noises and details in training data that are

focused by the learning model and it learns the training model way too much. If the

learning model are tested with another dataset of same problem, testing results will be

quite a change.

Chapter 2. Background 26

The weights of neurons within each layer are tuned by applying back-propagation for-

mula. Vanishing gradient problem occurs when lack of applied back-propagation formula.

∆Wt = α ∗ ∂MSE

∂Wt
+ µ ∗Wt−1 (2.8)

The formula of back-propagation is shown in Equation 2.8; W is change in the edge

weight of the time t (or t-1 means previous iteration), alpha is learning rate and deriva-

tion within fraction is the gradient.

While the training, loss functions are used for calculate the loss between expected variable

and output and they are very helpful to train a neural network. For example, mean

squared error(MSE) is most popular loss function in the learning study, particularly,

ML/DL beginners are prefer to use it. The function of MSE is shown at 2.9. y_i is

the output of learning process when y_i with accent mark is expected result and n is

number of output classes.

MSE =
1

n

i=1∑
n

(ŷi − yi)2 (2.9)

Cross entropy loss(CEL) is another popular loss function and commonly preferred for

classification or regression problems. CEL is used for determining maximum likelihood

in statistics and it has better results than MSE. Function of CEL is shown at 2.10. i is

the number of training instance, y_i with accent mark is expected result and y_i is the

output of learning process [56]. MSE and CEL are widely used in classification problems.

CrossEntropy =

i=1∑
K

yilog(ŷi) (2.10)

Chapter 3

Related Work

Garofalo et al. present, in their paper [57], an implementation of Intrusion Detection

System (IDS) for WSN. This solution addresses a kind of mesh network. The paper

improves the architecture that was presented with recent studies which presented a hybrid

structure, that are processed by Centre Agent(CA) and Local Agent(LA) for intrusion

detection. Information about implementation of CA isn’t detailed in the recent studies,

so this paper also takes in account this topic. In the presented implementation, CA

makes detection via a decision tree (DT) . LA monitors the gathered data from all

nodes and makes the detection. If there is an attack, LA sends a security alert to CA

and the node, which is source of detected attack, is taken into a blacklist. Then the

node isn’t used anymore for further data packages. Additionally, issues and presented

solutions in recent studies are compared on intrusion detection rate, false positive rate,

low power consumption rate and anomaly detection rate. The dataset is created in a

simulated environment, with ns-3 [3]. Different nodes are sources of data packages and

the data traffic between the nodes is captured for 4 hours. The Ad hoc On demand

Distance Vector (AODV) protocol [57] was used as routing protocol. Specifically, the

dataset involves the sinkhole attack, known as a routing attack. This sinkhole attack is

produced on AODV in the simulated environment.

27

Chapter 3. Related Work 28

Figure 3.1: Decision Tree’s Logic

There are many attacks, that aim to exploit WSNs, from the network layer. Detect-

ing and identifying the attacks analysed in [58]. Attacker tries to prevent the network

traffic that is passing over the base node. This way, all WSN’s traffic is open to the

attacker. The attacker impersonates an ordinary node, sends self routing metrics, that

are designed to be better than others, to his neighbour nodes. After that, neighbour

nodes compare the new metrics to their own metrics. Attacked neighbour nodes replaces

their routing metrics with the new one because of the attackers routing metrics are bet-

ter than theirs. Thus the attacker aims to be the preferred node by other nodes. Two

different communication protocols are also explained in the paper. MintRoute is the

most preferred routing protocol in TinyOS, is a small developed operating system for

WSN. MintRoute isn’t a complex protocol when it is compared the other protocols and

it is also easy to work with sensors in WSN. MintRoute protocol decides to select best

route, to send packets based on link quality. Link quality means signal strength, packet

loss and end to end delay [59]. Link quality is updated at certain intervals by ’Route

Update’ packets and each node calculates the their neighbour’s link quality due to the

’Route Update’ packets. This calculations are recorded with neighbour’s ID in memory.

Then these link qualities are broadcasted periodically. Finally, each node selects their

’parent node’ from the link quality in their memory and changes their ’parent node’ in

two conditions; ’parent node’s link quality drops under 25% or another neighbour’s link

quality becomes 75% better than ’parent node’ [60]. TinyAODV is a lighter version of

AODV protocol. When the source node sends a Route Request (RREQ) packet to select

best route for itself. Adversary node replies a Route Reply (RREP) packet to the source

node immediately, instead of broadcasting it to his own neighbours. Attacker’s RREP

packet includes information of path with lower number of hops to the destination node.

So source node chooses the attacker node as a parent and sends its packets over to the

attacker’s. In the paper, detecting sinkhole attacks are briefly explained. Because what

Chapter 3. Related Work 29

if compromised node is located next to the base station, all the WSN, instead of a few

nodes, is under the threat of the sinkhole attack. The sinkhole attack takes part in the

routing process and this ensures that it can launch new attacks as selectively forwarding

dropping packets.

Figure 3.2: AODV Protocol

Wallgren et al. [22] implemented routing attacks by using Cooja simulator and Contiki

operating system. Their preferred to use RPL protocol depending on the 6LoWPAN

networks. Selective forwarding attacks, sinkhole attacks, HELLO flood attacks, worm-

hole attacks and sybil attacks are examined and implemented in the study. They also

claimed RPL’s weakness against routing attacks. Then they proposed a routing pro-

tocol to defend against selective forwarding attacks, named hearthbeat protocol. They

provided grounds to plan and implement IDS for the IoT.

Multihop, is another routing protocol, and is explained in [61]. It chooses the shortest

way through the base station. Hop-count and power availability are the criteria [59].

Multihop is quite similar with MintRoute protocol. In the paper, two different methods

of intrusion detection are explained before the presentation of their solution. Misused

based approach, or signature based approach, give high accuracy results whereas it isn’t

good at detecting new attacks. An anomaly based approach is good at detecting new

attacks but in many cases it gives high FAR. In their solution they propose, a hybrid

Chapter 3. Related Work 30

approach, where each node has a detection agent to identify suspicious nodes. If a

suspicious node is detected by the detection agent, that is located on the node, an alert

is sent to CA and the suspicious node is taken in blacklist temporarily. Then the last

decision is the CA’s. At the end of the paper, they present low RAM and ROM usage

and high detection rates whereas they claim to use anomaly based approaches. But they

didn’t show and explain the implementation of the anomaly based approach.

The authors in [62] explain the vulnerable points of crowdsourced networks under a threat

of independent attacks such as jamming or spoofing. They also present an attack detec-

tion system to secure civil air traffic control(ATC) using OpenSky. Additionally, they

describe a trust model for connected sensors used in wireless air traffic networks and show

insecurities in the design of ATC systems after briefly explaining new technology of ATC.

Air traffic infrastructure is quite sensitive so injection of Ghost Aircraft, modification of

labels, jamming or Denial of Service are some of wireless attacks to ATC. The presented

system is based on an uncertified systems. ATC signals are verified validated to certified

radar systems separately. Then with classical IDS system, available ATCs are collected

and analysed. If there is a potential wireless attack, they are detected. OpenSky network

is "community-based receiver network which continuously collects air traffic surveillance

data" [63]. In April 2017, network has 260 registered and 300-450 anonymous sensors

streaming data. Operators of registered sensors are known with personal contact but

operators of anonymous sensors are unknown. Non-complex system for joining crowd-

sourcing network is so vital. Because, if the network expands, much more data can be

collected. In the contrast, think about passport verification of identities could cause the

owners to hesitate to supply data. Two kinds of threats are determined in the paper;

outside threats who can make an injection, modifying or jamming signals and inside

threats who can join crowdsourced networks and make ground to new attacks. For dif-

ferent attacks, different detection methods are examined. Mentioned detection methods

are plausibility checks, cross referencing, multilateration and statistical analysis. After

explaining the outside attacks, two insider attack are also examined. The first one is

a single sensor data manipulation. The intruder targets to manipulate a signal sensor

as the attack’s name suggest. Second attack is Sybil Attacks where the intruder uses

different, a normal, node’s identity while communicating with neighbour nodes. Sybil

node creates new ID of 2-bytes integers from previously stolen ID of a neighbour. It is

more crucial then the first one [64]. Intruder targets to collect the multiple sensors under

Chapter 3. Related Work 31

his control then with these sensors, he feeds bogus data to OpenSky.

Figure 3.3: Sybil Attack

There are two approaches for predicting attacks to establish secure CPS; rule-based

approach and behavioural approach.

In the rule-based approach, previous adversary attack signatures are used for identifica-

tion of new adversary attacks. Even the it is faster than other approaches, it remains

unresolved for the attacks that have different signature [65]. Wong et al. [66] proposed

an rule-based solution, however false positive results are so high. Ilgun et al. [67] studied

about state transition analysis on intrusion data. They set different signature for each

state. If the system, named STAT, detects an activity near the sensitive state, alarm is

risen.

New malicious activity can be predicted and a near real-time zero-day attack detection

is made possible by the behavioural-based approach [68]. Duffield et al. [69] studied on

ML based anomaly detection on IP flows. Mascaro et al. [12] tried to create an anomaly

detection model for tracking vessels. The anomalies are identified by bayesian networks.

The study of Tsai et al. [19], includes a comparison of different ML techniques in the

time between 2000 and 2007, a few of the techniques are naive bayes networks, single

classifiers, pattern classification, decision trees etc.

For secure IoT, detecting and if possible, predicting malicious attacks come into promi-

nence to protect the IoT systems against attacks. There are many studies about routing

Chapter 3. Related Work 32

protocol attack detection for IoT with the rule-based approach. In the study of Raza

et al. [70], node IDs and ranks are checked to matching assigned values for detecting

anomalies. If a malicious node detected, an alarm is raised.The security of IoT nodes

against the sinkhole attack is ensured by applying two rules that check the sender field

of route update packets due to network topology [60]. However rule-based detection isn’t

efficient for complex systems and unidentified attacks because many rules are required

which brings management difficulty of rules. Additionally, since rules are determined

over known system and known attacks, new rules need to be added to deal with new

kind of attacks.

Avram et al. [71] aim to detect routing attacks by using Self Organizing Maps (SOM)

algorithm. For the AODV routing protocol, they created scenarios, benign and mixed,

to calculate the proposed system accuracy. Their algorithm detects some routing attacks

with high accuracy, nevertheless the study suffers from a high false positive rate (9.5%).

Banković et al. [26], researchers aim to detect unknown attacks in WSN. In the cen-

tralised routing tree, there are some PDA-like sensors, that have more power resource

and computational capacity to solve node’s constraints issue. They aim to detect Sybil

attacks, a kind of routing attack that malicious nodes try to impersonate other nodes.

Their proposed algorithm has been tested on a 40-node WSN, gets high detection rate

until the percentage of malicious nodes exceed 52%.

Pongle et al. [24] studied on detecting wormhole attacks in IoT. Wormhole attack is

a topology based routing attack that aims to affect the network topology and packet

traffic flows and it is also depicted in Figure 3.4. Their proposed IDS-based detection

system identifies the wormhole attacks by using node’s and neighbour’s location and also

identifies attacker node by using received signal strength. They focus on RPL as a routing

protocol and simulate the IoT network by using Cooja [2]. Their network topology

has up to 24 nodes. The numbers of nodes aren’t realistic for real IoT environment.

Additionally, proposed rule-based system is inefficient against small mutations of know

attacks. Likewise, Nait-Abdesselam et al. [25] proposed a rule-based detection system.

They use OLSR [72], as routing protocol, and ns-2 simulator [73] for creating a network.

In the study of Nait-Abdesselamet al. [25], the number of nodes are more than other

studies [24], such as 10 to 50 nodes.

Chapter 3. Related Work 33

Figure 3.4: Wormhole Attack

Dhamodharan et al. [64] aim to detect sybil attack. In the sybil attack, briefly attacker

uses different (normal) node’s identity while communicating with neighbour nodes. They

create a network, that is based on an AODV protocol, by using an ns-2 simulator [73].

Message authentication is applied to detect sybil node, as a rule-based solution.

The usage and efficiency of various ML and data mining methods for intrusion detection

is discussed by Buczak et al. [17]. ML result metrics (False Positive, False Negative etc.),

core ML methods (SVM, Bayesian, Decision Tree, Clustering etc.), complexity of the ML

methods used on public datasets and features of the datasets are discussed.

As an example of SVM, in the research of Chowdhury et al. [20], ten subsets of dataset

features are created randomly by feature selection, where one of the subsets contains

three features. Then, these feature subsets are input to the support vector machine

(SVM) algorithm respectively. The authors claim to improve detection accuracy from

Chapter 3. Related Work 34

88.03% to 98.76% as a result by using one of the feature subsets instead of using all

features.

Classical ML methods have been applied to attack detection in recent studies. Branch

et al. [74] applied k-NN algorithm to detect outliers in WSN. Janakiram et al. [11] also

applied BBN algorithm to detect outliers in WSN but these studies have no contribution

on routing attacks.

There are some applications of SVM to IoT. SVM is an supervised ML model for solving

classification and regression problems. The researchers proposed outlier detection sys-

tems in WSN. However these studies don’t address routing attacks, see refs. [14], [15],

[16], [13].

In the study of Kaplantzis et al. [14], researchers aim to build a simple classification

based IDS to detect selective-forwarding attacks. IDS generates an alarm depending

upon bandwidth and hop count thresholds. The classification process is designed using

SVM classifiers. Determined features, bandwidth and hop count, can produce accurate

results for the blackhole attack, but for other routing attacks, they are not as efficient.

3.1 Deep Learning based Cyber Security Methods

Attack detection can be possible in two ways; rule-based and behavioral-based. Rule-

based solutions give better results (high accuracy and low false alarm rate) for detecting

attacks that already extent with the characteristics of the attack, additionally, this ap-

proach uses low energy in rule-based detection. Rule-based attacks focus the signature

of the known attacks that enables the good results. However, rule-based attack detection

remained weak against new attacks. Because, nearly 99% of cyber-attacks are the small

mutations of the known cyber-attacks and just 1% of them are unique. So rule-based

approaches couldn’t distinguish the benign and attack behaviour against the mutation

attacks. On the other hand, behavioral-based attack detection focus the behaviour of

the attacks, if it detects any anomalous behaviour, as for that the normal behaviour of

the system, it gives an alarm [75].

Classical ML methods have been applied to attack detection in recent studies. In [74],

Branch et al. applied k-NN algorithm to detect outliers in WSN. Janakiram et al. [11] also

Chapter 3. Related Work 35

implemented BBN algorithm to detect outliers in WSN. Artificial Neural Networks(ANN)

are also applied for intrusion detection [76], [77].

DL prove itself in the big data area that got significant results on classification and

intrusion detection [78], [79] and [80]. Distributed attack detection is done by fog com-

puting [37] in this study. They also used NSL-KDD [81] dataset for detecting attacks.

A promising approach for distributed DL, but does not address IoT attacks specifically.

Diro et al. [53], proposed a DL based distributed attack detection for IoT. They also

compare the traditional ML with DL about performance on distributed attack detection

and prove that DL is the state of the art for attack detection. Distributed attack detec-

tion is done by fog computing [37] in this study. They also used NSL-KDD [81] dataset

for detecting attacks. A promising approach for distributed DL, but does not address

IoT attacks specifically.

Chapter 4

IoT Routing Attack Dataset(IRAD)

First of all, we need the datasets that have routing attacks. In this research area, the lack

of a dataset is one of the biggest challenges. So we simulated the routing attacks within

different scenarios and processed raw datasets to make them ready to detection process.

Subsequently, we transform the PCAP files to CSV with Wireshark. After that, a feature

extraction process is applied to the generated CSV files by using our developed Python

data preprocessing script. Finally we concatenate the same attack datasets to make a

comprehensive dataset. Thus, we have generated an IoT Routing Attack Dataset(IRAD)

for one of the purposes of our study. The details of mentioned scenarios and datasets

are listed in Table 4.1.

Table 4.1: Details of Datasets

Malicious Benign

Datasets Scenarios No. of Nodes No. of M./N. Nodes Total Packet Count Scenarios No. of Nodes Total Packet Count
Decreased Rank DR10 10 2/8 130.240 Benign10 10 121.047

DR20 20 4/16 398.143 Benign20 20 120.897
DR100 100 10/90 456.816 Benign100 100 150.078
DR1000 1000 100/900 801.396 Benign1000 1000 739.845

Hello Flood HF10 10 2/8 100.538 Benign10 10 121.047
HF20 20 4/16 104.302 Benign20 20 120.897
HF100 100 10/90 300.986 Benign100 100 150.078
HF1000 1000 100/900 1.739.226 Benign1000 1000 739.845

Version Number VN10 10 2/8 112.044 Benign10 10 121.047
VN20 20 4/16 203.153 Benign20 20 120.897
VN100 100 10/90 223.275 Benign100 100 150.078
VN1000 1000 100/900 1.585.075 Benign1000 1000 739.845

In the simulation, if there is no malicious node, all nodes are normal, so the benign

scenarios have the same values. We tried to give our best during dataset simulation

process as in the whole thesis. Because the simulation process is getting harder when

36

Chapter 4. IoT Routing Attack Dataset(IRAD) 37

the number of nodes increase in the network topology. For this reasons, the values of

Total Packet Count is different from each other.

After the simulation (that explained in section 2.1.4.1), we need to apply some data

engineering staff to the simulation. In this chapter, how we prepared the IRAD will be

explained in detail.

4.1 Feature Extraction

The ML algorithms need some attributes about data for learning which are obtained by

feature extraction.

After the scenarios are simulated, the datasets are produced as PCAP files. We dissected

the PCAP file to CSV by using Wireshark and preprocessing section is fed by this CSV

files. The data pre-processing step involves extracting useful features from the data for

preventing over-fitting and to obtain problem oriented attributes.

We simulated different scenarios that have different network topologies and size for each

type of attacks. In the result of the simulations we get the raw datasets. Before the

feature extraction section, a sample of raw dataset is shown in Table 4.2.

Table 4.2: A Sample of Raw Dataset

No. Time Source Destination Length Info
4755 14,611416 fe80::c30c:0:0:12 fe80::c30c:0:0:11 102 RPL Control (DODAG Information Object)
4756 14,611886 fe80::c30c:0:0:8 ff02::1a 97 RPL Control (DODAG Information Object)
4757 14,612891 fe80::c30c:0:0:4 fe80::c30c:0:0:18 76 RPL Control (Destination Advertisement Object)

Cooja exports PCAP and CSV files after the end of the simulation. However, the raw

data files aren’t sufficient to be the input to learning algorithm because the raw dataset

includes information such as source/destination nodes address and packet length, which

causes noise and overfitting in the learning algorithm. For this reasons we developed a

feature extraction algorithm named Enrichment of IoT Raw Dataset, in Python by using

Pandas[82] and Numpy [83] libraries. These libraries makes the mathematical operations,

which are necessary for feature extracting, easier. We implemented a dictionary structure

to deal with a large number of nodes. We opted not to calculate global statistics over

total simulated time or total packet count since this kind of a calculation could decrease

the importance of the main extracted features. So we have divided all the simulation to

time frames, or windows of 1000 ms duration. Before this process, it is necessary to sort

Chapter 4. IoT Routing Attack Dataset(IRAD) 38

the datasets by simulation time, because sequence of packet simulation time is highly

important for feature extraction and Cooja extracts PCAP files in wrong time sequence.

It happens especially for wide range network topologies and long simulation times. The

pseudocode of our data preprocessing algorithm is also shown in Algorithm 1.

Algorithm 1 Enrichment of IoT Raw Dataset
function

array← RAWdataset.csv

Sorted array . Sorting by time

Feature conversion

Feature Extraction:

1000ms←Windowing Size

Calculating Feature values within windowing size

Labelling the dataset

End of the Feature Extraction

End the function.

Raw datasets involve both quantitative and qualitative features. However, our learning

algorithm accepts just quantitative values. So we applied feature conversion to qualitative

features to transform their unified format.

We firstly convert the source and destination address from IPv6 format to Node id. For

example:

fe80 :: c30c : 0 : 0 : 12 =⇒ 12 (4.1)

The broadcast packets are handled as follows. In raw dataset, if the destination address

is ff02::1a, that means the source node sends broadcast packets. This value is converted

to 9999 to avoid any coincidence with another node:

ff02 :: 1a =⇒ 9999 (4.2)

We also encoded the information of the packets as shown in Table 4.3. DAO is used

in RPL for unicasting the destination in formation due to the selected parents. DIO is

Chapter 4. IoT Routing Attack Dataset(IRAD) 39

the most important message type in RPL. It keeps the current rank of the node, and

determines the best route through the base node by using specific metrics as distance

or hop-count. Another message type is DIS. Nodes use DIS for joining to WSN. Ack is

an acknowledgment message type for using to give responses by nodes [48]. These are

encoded respectively: 1, 2 3, 4. Other types in our datasets are Protocol Data Unit

(PDU) and UDP packets which are simulated data packets.

Table 4.3: Encode of Information Feature

Info Encode Value

RPL Control (Destination Advertisement Object) 1

RPL Control (DODAG Information Solicitation) 2

RPL Control (DODAG Information Object) 3

Ack 4

Data Packets 5,6,7

First, we calculated the Transmitted and Received Packets Counts (TPC and RCP) for

each node in 1000ms in a specified time frame. Then, we divide these values to 1000ms

and get Transmission Rate and Reception Rate for each node, TR (4.2) and RR (2.1)

respectively, for all time frames. Duration time for each packet transmission and recep-

tion are calculated. Total Transmission Time(TTT) and Total Reception Time(TRT)

are calculated by adding up duration time of each transmission and reception packet in

1000ms. Then Transmission and Reception Average Time for each node, TAT (2.4) and

RAT (2.2), are calculated. These features are listed in Table 4.4. Our last features are

about control packets; DAO, DIO and DIS. Number of transmitted control packets of

each node are calculated within the windowing size, 1000 ms.

Chapter 4. IoT Routing Attack Dataset(IRAD) 40

Table 4.4: Extracted Features

Number Name/Abbreviation Description

1 No. Packet sequence number

2 Time Simulation time

3 Source Source Node IP

4 Destination Destination Node IP

5 Length Packet Length

6 Info Packet Information

7 TR Transmission Rate

8 RR Reception Rate

9 TAT Transmission Average Time

10 RAT Reception Average Time

11 TPC Transmitted Packet Count

12 RPC Received Packet Count

13 TTT Total Transmission Time

14 TRT Total Reception Time

15 DAO DAO Packet Count

16 DIS DIS Packet Count

17 DIO DIO Packet Count

18 Label Normal/Malicious Label

The labelling process is also important. In our datasets, attack packets are labelled 1

and benign packets are labelled 0. We labelled the datasets, which has malicious node

and activity, 1 and labelled the benign datasets 0. Because, malicious nodes affect the

entire network activity and influence normal node communication. For instance, most of

the routing attacks may change the network topology. Accordingly, the routing path of

normal nodes are changed.

A sample of the preprocessed dataset is shown in Table 4.5. This 10 packets are se-

lected randomly from the Version Model 1000 dataset. Feature numbers are increased

respectively from 1 to 18.

After feature extraction process, the datasets include up to 26x106 data items which

shows why a deep learning based methodology is needed.

Chapter 4. IoT Routing Attack Dataset(IRAD) 41

Table 4.5: Sample Dataset

No. Time Src Dst Lngth Info TR RR TAT RAT TPC RPC TTT TRT DAO DIS DIO Label
620.851 48,455665 94 893 76 1 0,197 0,197 197 197 0.012 0.012 0,00006 0,00005 197 0 0 1
620.852 48,455694 389 339 76 1 0,096 0,096 96 96 0,005 0,005 0,00005 0,00005 96 0 0 1
620.854 48,455762 158 620 76 1 0,196 0,166 196 166 0,01 0,008 0,00005 0,00005 166 0 30 1
620.855 48,455774 971 271 76 1 0,22 0,22 220 220 0,008 0,008 0,00004 0,00004 220 0 0 1
620.856 48,455779 994 331 76 1 0,227 0,227 227 227 0,008 0,009 0,00004 0,00004 227 0 0 1
620.857 48,455782 354 894 76 1 0,284 0,128 284 128 0,006 0,006 0,00005 0,00005 284 0 0 1
620.867 48,455816 565 9999 97 3 0,03 1,7 30 1698 0,002 0,097 0,00007 0,00006 0 0 30 1
620.858 48,455836 808 792 76 1 0,263 0,189 263 189 0,01 0,006 0,00004 0,00003 189 0 74 1
620.861 48,455991 691 134 76 1 0,19 0,19 190 190 0,012 0,012 0,00006 0,00006 190 0 0 1
620.874 48,456005 430 33 102 3 0,171 0,171 171 171 0,013 0,013 0,00006 0,00006 0 0 171 1

Briefly, we simulated scenarios as shown in Table 4.1. Than we extracted features.

Finally, we mixed the malicious and benign dataset which has the same network topology.

For example, Version Number 100 and Benign 100 datasets are mixed.

Additionally, Foren6 [84] is a 6LoWPAN network and protocol(RPL, IPv6,...) analysis

tool. It uses the captured file by the sniffers like a The PCAP file from wireshark.

Network topology is also visualized and Foren6 also gives statistics of each node in the

network as total sent control packets, valid life time, MAC address, rank value in the

network etc. Foren6 user interface is shown in Figure 4.1. We also use this analyses tool

to check our extracted feature values such as DIO, DAO, DIS.

Figure 4.1: Foren6 User Interface

Chapter 4. IoT Routing Attack Dataset(IRAD) 42

4.2 Feature Normalization

Feature normalization is a pre-processing method for scaling all values of each feature

into a certain range. It makes the data smoother and cleans the bias from data, ensuring

high accuracy rate [85].

We get different datasets from different scenarios for each routing attack. The datasets

have different data values in different ranges due to their network topology. In this

situation, datasets don’t give relevant results to us and the learning algorithm couldn’t

work effectively. So we performed feature normalization for pulling all datasets in the

same range by using our data normalization algorithm. We applied quantile transform

and min-max scaling to datasets, respectively [86]. Each feature is enforced the normal

quantile transform, separately. The transform aims to spread marginal values, it may

change correlation between the values. However difference between the values, which are

directly comparable and useful for the learning algorithm, are more significant. Than we

scale all values in the datasets to range 0-1 by min-max scaling. The effect of feature

normalization process to features are depicted in 4.2 and 4.3. The figures are transmission

rate of Decreased Rank 20.

Figure 4.2: Transmission Rate before Feature Normalization Process

Figure 4.3: Transmission Rate after Feature Normalization Process

Finally we concatenated all datasets, that have different network topology, for each

attack. So we get three IoT datasets, as clearly seen in Table 4.1. The pseudocode of

our data normalization algorithm is also shown in Algorithm 2.

Chapter 4. IoT Routing Attack Dataset(IRAD) 43

Algorithm 2 Data Normalization Algorithm
function

Mixed Dataset← Benign, Malicious Dataset

Feature Normalization:

Quantile Transform Function← Mixed Dataset

Min Max Scale Function← Transformed Dataset

End of the Feature Normalization

IoT Dataset← Mixed Datasets . concatenating the datasets

End the function.

4.3 Feature Importance and Selection

Feature selection is a key step in ML. Feature selection is generally applied to the dataset

before running the ML algorithm, because it eliminates the irrelevant, weakly relevant

features and selects the optimal subset of all features. It identifies the proper subset of

all data features and makes the data serviceable. There are two main challenges; the

large size of data and its inconvenient form. A dataset has two dimensions; number of

instances and number of features which are usually way too large. This huge volume

also brings a complexity. On the other side, datasets are created without the features or

attributes. Particularly, the network datasets are captured from the Internet or closed

networks as PCAP form.

We used a combination of random decision trees, histograms and pearson coefficient

correlation [28] for feature selection process.

We evaluated the importance of the extracted features by using a number of random-

ized decision trees (extra trees). The main idea of randomized decision trees is bagging

the means to average noisy and unbiased models to create a model with a lower vari-

ance. Random decision trees work as a large collection of uncorrelated decision trees.

In brief, randomized decision trees create different decision trees and extract importance

of features by comparing the created trees [27]. Subsequently we determine the efficient

features. If the importance is high, that means the node dilutes the effect of other nodes

and it may cause over-fitting at the learning process. By the way, different feature se-

lection process’ should apply for each problem. Because, feature importance rates are

Chapter 4. IoT Routing Attack Dataset(IRAD) 44

Table 4.6: Feature Importance of Decreased Rank Attack

Name/Abbreviation Feature Importance Rate Selected Feature
No. 0.018604 No
Time 0.018300 No
Source 0.838269 No
Destination 0.011982 No
Length 0.003977 No
Info 0.004729 No
TR 0.011376 Yes
RR 0.008440 Yes
TAT 0.008773 Yes
RAT 0.006830 Yes
TPC 0.023076 Yes
RPC 0.007300 Yes
TTT 0.012467 Yes
TRT 0.008323 Yes
DAO 0.009123 Yes
DIS 0.000328 No
DIO 0.010139 Yes

different due to dataset content. Decreased rank attack importance rates are listed in

Table 4.6 as a sample. As clearly seen, some features dilute the other features. The rates

in the tables are first importance rates. When the most significant feature is dropped,

the importance rates change.

In the feature selection process, we dropped the features with the most and least im-

portance. We evaluated the importance of selected features again. Feature importance

rates for decreased rank attack is shown in Figure 4.4, as a sample. X axis represents

abbreviation of selected features. Y axis represents the importance rate of features. We

dropped the first five features and keep DIS features while creating hello-flood attack

detection model, because of the dropped features are close to each other and are very

high(first five).Than we keep the DIS feature, because nodes use DIS packets to send

broadcast massages in RPL. For version number attack, we applied the same process

with Decreased Rank model. Briefly, we dropped mentioned features that have highest

and lowest importance rates. Because when we tried to keep them while model training,

they caused overfitting.

Chapter 4. IoT Routing Attack Dataset(IRAD) 45

Figure 4.4: Feature Importance for Decreased Rank Attack after Feature Selection

We also extracted the dataset histograms to observe differences of 0’s and 1’s within

each feature. If the line of 0 label doesn’t follow the line of 1 label in a feature, it is

a significant feature for learning algorithm. Otherwise, the feature is insignificant, the

learning algorithm couldn’t use the feature, effectively. A sample histogram of significant

and insignificant features from Version Number Attack dataset is showed in Figure 4.5

and 4.6, respectively. The significant sample belongs to Transmission Rate and the

insignificant sample belongs to Packet Length.

Figure 4.5: Significant Feature Histogram of Version Number Attack Dataset

Figure 4.6: Insignificant Feature Histogram of Version Number Attack Dataset

We also evaluated the pearson rate of our datasets to measure the correlation between

features. The pearson coefficient correlation is used for understanding how strong de-

pendency is there between features and data. Guyon et al. [28] said that the pearson

coefficient correlation is appropriate for binary classification problems. Additionally,

using pearson coefficient correlation gives some information about linearity and nonlin-

earity of our datasets to us. Pearson coefficient correlation has a value within 1 and

Chapter 4. IoT Routing Attack Dataset(IRAD) 46

-1. 1 means total positive linear correlation, -1 means total negative linear correlation

and 0 means nonlinear correlation. Basic equations of pearson coefficient correlation is

shown in 4.3. In the equation, cov is the covariance, are the standard deviation of x and

y, respectively. Standard deviation of x and y are in the denominator, respectively. It

is more popular than a basic equation. Additionally, pearson rate of total transmission

time feature is also showed in Figure 4.7

ρx,y =
cov(x, y)

σx ∗ σy
(4.3)

Figure 4.7: Pearson Rate of Total Transmission Time Feature

4.4 Overview of Datasets

We created three datasets that are Decreased Rank Attack Dataset, Hello-Flood Attack

Dataset and Version Number Attack Dataset. They consist both of attack and benign

Chapter 4. IoT Routing Attack Dataset(IRAD) 47

activities. The number of values what they include and the size of attack dataset files

are listed in Table 4.7

Table 4.7: Datasets with Numbers

Number of Values Size (Gb)

Decreased Rank Attack Dataset 49,873,385 0.58

Hello-Flood Attack Dataset 64,179,435 0.75

Version Number Attack Dataset 22,868,210 0.27

After the dataset generation, we created an IoT dataset and named it IRAD(IoT Routing

Attack Dataset). We also compared IRAD with most popular public datasets that are

preferred to be used in cyber security researches. Results of the comparison are listed in

Table 4.8.

Table 4.8: A Comparsion of Datasets

Parameters UNSW-NB15 KDDCUP99 IRAD
Simulation Yes Yes Yes

Attack Types 9 4 3
Number of Networks 3 2 16

Data Type Pcap files 3 types (tcpdump, BSM and dump files) Pcap files
Feature Extraction Argus, Bro-IDS and new tools Bro-IDS tool Own Feature Extraction Algorithm
Extracted Features 49 42 18

No. of distinct ip address 45 11 4520

The comparison is the proof that IRAD is the most scalable dataset, considering No. of

distinct ip address. We also supported our deep learning process with the products of

16 different networks, considering Number of Networks. Finally, IRAD is a public IoT

attack dataset, that makes it novel.

Chapter 5

Deep Learning Based Detection of

Routing Attacks

In this section, our deep learning based routing attack detection will be explained. We

evaluate the importance of the features due to the datasets’ index for selecting features to

make the learning process more accurate. The features with too high and low importances

are dropped in order to prevent overfitting. The datasets are normalized by a feature

normalization process to make the training process faster. The output of the feature

preprocessing steps are preprocessed datasets which are taken into the deep learning

algorithm. The learning algorithm is implemented by the help of Python libraries such

as Keras [87], Scikit [86] and Numpy [83]. The learning process outputs the IoT attack

detection model. We tested the model against multiple test scenarios for more accurate

measurement of precision and recall.

5.1 Routing Attack Detection

Routing attacks can be detected by signature based solutions and anomaly solutions.

Signature based solutions are better against routing attacks that have little change of

its nature. So anomaly based solutions are better than signature based solutions about

the detection accuracy of new attacks. Diro et al. [53] explained in their research that

deep learning has better performance than shallow learning. In the light of this brief

information, we used deep learning to detect routing attacks.

48

Chapter 5Deep Learning Based Detection of Routing Attacks 49

5.2 Deep Learning Model

In this study, Keras [87] is utilized as DL framework since it ensures many advantages

like its modularity, and since it enables us to build and test a complex neural networks

quickly. First, Keras is an open source DL library that integrated into the Python

ecosystem. Second, Keras also has wide range community and a detailed user manual.

After that, Keras enables to build complex neural network easily.

Tensorflow [88] is a framework that is developed by Google for DL. It is suitable for

working with CPUs and GPUs. Tensorflow also contains several implementations to

build complex DL models. It is runnable on Mac, Windows and linux, as a python

package. It is also utilities with Keras.

Firstly, we shuffled the dataset to improve the deep model performance and avoid overfit-

ting. Before building the neural layers, the preprocessed dataset are split into two parts.

First one, X, is the part without label feature and the other one is, Y. Briefly, Y is the

part that make this learning algorithm to supervised learning. X and Y are split two

part; X_train, X_test, Y_train and Y_test. Train parts are used in training section.

Test parts are used to evaluate the performance of training process.

For creating a deep neural model, we used a sequential model, Ada Delta [89] function

[90] as an optimizer and mean squared error (MSE) as a loss function. After the training

process, we save the created model and weights as a json file. Finally, we tested our model

for routing attacks detection by applying model.predict function on other datasets. The

pseudocode of our DL algorithm is also shown in Algorithm 3.

Chapter 5Deep Learning Based Detection of Routing Attacks 50

Algorithm 3 Deep Learning Algorithm
1: function

2: dftrain← dataset.csv

3: Shuffling dftrain row by row

4: X,Y ← dftrain . Splitting dataset for learning

5: Feature Importance and Selection:

6: Fit (X, Y) in Randomised Decision Trees

7: Features are dropped . in consideration of Randomised Decision Trees and

Histograms

8: End of the Feature Importance and Selection

9: Define X train, Y train and X test, Y test

10: Deep Learning Model :

11: model← Sequential Model

12: Set Neural Network Layers

13: optimizer← Ada Delta Optimizer . Set Optimizer

14: Compile Classifier as MSE

15: model← X train . Training starts

16: Save Model and Weights as json file

17: Prediction:

18: Load the datasets as dfpredict

19: Xpredict, Y predict← dfpredict

20: X predict← Scaled X predict

21: Classification Report exports

22: End the function.

We build our Neural Network as 7 layer. First layer is Input Layer that has 10 neuron.

Number of input layer should be equal to the number of features (columns) in the dataset.

The last layer is the output layer that has just 1 neuron. This is called a Regression

Model. Our neural network has 5 hidden layers. First and fifth layers have 50 neuron.

Second and fourth layers have 100 neuron. Third layer has 300 neuron. The neural

network layers are depicted in Figure 5.1. Before the training starts, dataset is split

again at the rate of 0.3 as validation dataset to tune the training performance of the

Chapter 5Deep Learning Based Detection of Routing Attacks 51

model. Our neural network model is shown in Figure5.1. The number of neurons in

hidden layers are like a triangle for reason is explained in Section 2.2.2.

Figure 5.1: Deep Neural Network Layers

We use sigmoid function as activation function for output layer. Other functions(we get

0% accuracy rate) are not suitable for our problem and dataset except for softmax and

tanh function. We get 35.3% and 35.8% accuracy rate when we use softmax and tanh

function in output layer, respectively. Sigmoid function has a characteristic ’S’ curve and

mathematical representation is shown at 5.1. The accuracy of model is 98% when we use

sigmoid function in output layer. In training process, we also avoid sharp increases from

approximately 62% to 98% by applying dropout and regularization. We set dropout rate

to 10% to consume less energy. Because, in every epoch, to dropout randomly selected

nodes brings extra cost and time.

y =
1

1 + e−x
(5.1)

Additionally we also apply bias regularization to diminish nonlinearity of training by

limiting the peak results. So the coefficient of our deep layers are much smaller. In brief,

Chapter 5Deep Learning Based Detection of Routing Attacks 52

connections between neurons generally cause overfitting when dealing with very large

datasets. For this reasons we apply dropout and regularization.

Chapter 6

Evaluation and Conclusion

In this chapter, the performance evaluation and analysis of the deep learning based

routing attack detection model will be explained briefly and contribution of the study,

some recommendation and ideas of future work will be given.

6.1 Performance Evaluation

In attack detection, as well as many topics, obtaining high prediction accuracy rate(6.1)

and low error rate(6.2) are main goals. The system’s prediction is true, result is True,

otherwise it is called False. If the prediction is about being attack, this situation is

called Positive, otherwise is Negative. So there is four possibilities; prediction is true

and attack, true and benign, false and attack, false and benign, True Positive (TP), True

Negative(TN), False Positive(FP) and False Negative(FN), respectively. We preferred

the accuracy and error (or loss) rate for evaluating of our deep learning based attack

detection models’ training performance.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(6.1)

Error = 1−Accuracy (6.2)

53

Chapter 6. Evaluation and Conclusion 54

The precision (6.3) tells that how many of the attacks are detected by model, recall (6.4)

tells that how many of the attack detection are correct and F1-Score (6.5) is, basically,

harmonically average of both, precision and precision. We preferred these performance

metrics to evaluate our deep learning based attack detection models’ testing performance,

means the performance against the different datasets. Performance metrics of normal

activity aren’t preferred to show, attack detection metrics usually are presented in many

studies. We preferred to show normal activity performance of our models, too.

Precision =
TP

TP + FP
(6.3)

Recall =
TP

TP + FN
(6.4)

F1− Score =
2 ∗ TP

2 ∗ TP + FP + FN
(6.5)

6.2 Analysis

We created IRAD(IoT Routing Attack Dataset) that will fill the biggest gap in this

research area. We compare our datasets with other novel and popular datasets, UNSW-

NB15 [91] and KDDCUP99 [81] that listed in Table 4.8 in Chapter 4.4.

Briefly, we produced three IoT dataset that include 3 different routing attacks. Than we

trained the neural networks with the preprocessed datasets of each routing attack. So, the

weights of neural networks take different values due to the problems. After that, we got

3 IoT attack detection models for each routing attack. The models are also generalizable

by taking into account different network topologies. The training performance of these

models (Training Accuracy, Training Loss) are listed in Table 6.1. Training accuracy and

loss of Hello Flood Model are better than other models. Because, the features, which

we extracted, are matched successfully to the hello flood attack problem. On the other

hand, detecting hello flood attacks with the features is easier than other attacks.

We tested our deep learning based attack detection models with the multiple datasets

to sure about our models fidelity. Multiple datasets means that they include different

Chapter 6. Evaluation and Conclusion 55

Table 6.1: Training Performance on Original Dataset

Model Name Training Accuracy Training Loss
Decreased Rank Model 94.9% 5%
Hello Flood Model 99.5% 0.8%

Version Number Model 95.2% 4.1%

datasets which have different number of nodes and different design of topology. We prefer

to test with multiple datasets, because, that would prove our attack detection models

are scalable.

Training accuracy and loss figures of all models are also given in the following subsections.

Each figures includes two, different colored, curves. Blue one represents training accuracy

whereas other, orange, represents validation accuracy. The results belongs to different

datasets; training set and validation set. Test curve is more important than other for

understanding the training performance. Because, test curve is the result of tuning

process by using validation set of training dataset, as mentioned in previous chapter.

In the figures test curve are better than training curve. This is also the proof of that

overfitting was avoided. Because if training result better than validation results, it is the

sign of overfitting.

6.2.1 Decreased Rank Attack

We tested our deep learning based Decreased Rank Attack Detection Model with the

multiple datasets and performance metrics are listed in Table 6.2.

Table 6.2: Performance of Decreased Rank Model

Precision Recall F1 Score

0 0.94 0.93 0.93

1 0.96 0.98 0.95

Average 0.95 0.96 0.94

Figure 6.1 and 6.2 are model training graphs of Decreased Rank Model.

Chapter 6. Evaluation and Conclusion 56

Figure 6.1: Model Accuracy of Decreased Rank Dataset

Figure 6.2: Model Loss of Decreased Rank Dataset

6.2.2 Hello Flood Attack

We tested our deep learning based Hello Flood Attack Detection Model with the multiple

datasets and performance metrics are listed in Table 6.3.

Chapter 6. Evaluation and Conclusion 57

Table 6.3: Performance of Hello-Flood Model

Precision Recall F1 Score

0 0.97 0.98 0.99

1 0.98 0.96 0.98

Average 0.98 0.97 0.98

Figure 6.3 and 6.4 are model training graphs of Hello-Flood Model.

Figure 6.3: Model Accuracy of Hello-Flood Dataset

Chapter 6. Evaluation and Conclusion 58

Figure 6.4: Model Loss of Hello-Flood Dataset

6.2.3 Version Number Attack

We tested our deep learning based Version Number Attack Detection Model with the

multiple datasets and performance metrics are listed in Table 6.4.

Table 6.4: Performance of Version Number Model

Precision Recall F1 Score

0 0.94 0.93 0.93

1 0.95 0.95 0.95

Average 0.94 0.94 0.95

Figure 6.5 and 6.6 are model training graphs of Version Number Model.

Chapter 6. Evaluation and Conclusion 59

Figure 6.5: Model Accuracy of Version Number Dataset

Figure 6.6: Model Loss of Version Number Dataset

Training epochs are sufficient as clearly seen in the figures. Because towards the end of

epochs, increments in the accuracy figures and decrements in the loss figures are minor,

little if any. In the end, we had 3 different model for each routing attack. We applied

different feature selection process to each of the problem datasets. Than we trained

the neural networks with the preprocessed datasets. After that, we got 3 IoT attack

Chapter 6. Evaluation and Conclusion 60

Table 6.5: Performance of the Models over Multiple Datasets

Model Name F1-Score
Decreased Rank Model 94.7%
Hello Flood Model 99%

Version Number Model 95%

detection models. The performance of these models are listed in Table 6.5 as F1-Score.

Model’s performance values are a proof of our models’ scalability and accuracy.

6.3 Conclusion

This thesis is the proof of concept that deep learning can successfully deal with IoT

security. The routing attacks (decreased rank attack, hello-flood attack and version

number attack) are easily detected by our proposed attack detection models. This thesis

also fills a highly important gap of the routing attack detection for IoT. The biggest issue

of this kind of areas is the lack of datasets and also the data is not preferable when it has

unrealistic content. Our attack datasets simulated by using real-codes of simulation tools.

The datasets, which we produced and also preprocessed. Actually, the biggest effort of

this work was generating and processing the attack datasets. In this thesis, we made this

effort. The datasets include up to 64.2 million values. Additionally, we constructed a

deep neural network, trained them with the produced routing attack datasets and create

three attack detection models. Performances of the models are approximately up to 99%.

6.4 Future Works

The dataset has three routing attacks; decreased rank attack, hello flood attack and

version number attacks. We are planning to enrich our IoT attack dataset by adding

new routing attacks. We aim to increase the model prediction performance of three

routing attacks and include more routing attacks in the study. We are also planing to

create one deep neural network model to detect multiple attacks. By the way, we will

diversify the scenarios with scenarios that have different rate of malicious and normal

nodes.

Appendix A

##

Script 1 - Enrichment of IoT Raw Dataset

##

import the required packages

import division

...

#readingsourcefile

filename =′ V N1000%10RAW.csv′

df = pd.read_csv(filename, sep =′,′ , header = None, error_bad_lines = False)

removing first row of data then sorting according to time field

array = df.as_matrix()

arr = np.delete(array, 0, axis=0)

array = sorted(arr, key=lambda x: float(x[1]))

storing each packet’s transmission duration

packetDurations = []

naming values of info field

infoList = [’RPL Control (Destination Advertisement Object)’,

’RPL Control (DODAG Information Solicitation)’,

’RPL Control (DODAG Information Object)’,

61

Appendix 62

’Ack’,

’PDUType: 108 t Unknown’,

’PDUType: 112 t Unknown’,

’3000 > 3001 Len=11’]

infoDict = {}

index = 1

for info in infoList:

infoDict[info] = index

index += 1

print(infoDict)

storing malicious nodes

labelNodes = []

rewriting source, destination and info columns

counter = 0

while counter < len(array):

src = array[counter][2]

dst = array[counter][3]

array[counter][2] = int(src.split(":").pop(), 16) if not pd.isnull(src) else src

if dst == ’ff02::1a’:

array[counter][3] = int(9999) if not pd.isnull(dst) else dst

else:

array[counter][3] = int(dst.split(":").pop(), 16) if not pd.isnull(dst) else dst

array[counter][5] = infoDict[array[counter][5]]

if counter != 0 and counter + 1 < len(array):

duration = float(array[counter][1]) - float(array[counter - 1][1])

packetDurations.append([floor(float(array[counter][1])),array[counter][2],array[counter][3],

duration])

counter += 1

Appendix 63

Calculating node counts in per seconds

packetsInEachSecond =

currentSecond = 0.0

lastSecond = floor(float(array[-1][1]))

while currentSecond <= lastSecond:

currentSecondArray = []

currentRow = 1

while currentRow < len(array):

currentPacketSecond = floor(float(array[currentRow][1]))

if currentPacketSecond == currentSecond:

currentSecondArray.append(array[currentRow])

currentRow += 1

packetsInEachSecond[currentSecond] = currentSecondArray

currentSecond += 1.0

Calculating control packet counts in per seconds

sourceCountsBySeconds =

destinationCountsBySeconds =

daoCountsBySeconds =

disCountsBySeconds =

dioCountsBySeconds =

totalDaoDisDioBySecond =

for sec in packetsInEachSecond:

sourceNodeCounts =

destinationNodeCounts =

daoCountsByNode =

disCountsByNode =

dioCountsByNode =

for packet in packetsInEachSecond[sec]:

src = packet[2]

Appendix 64

dst = packet[3]

info = packet[5]

sourceNodeCounts[src] = 1 if src not in sourceNodeCounts else

sourceNodeCounts[src] + 1

destinationNodeCounts[dst] = 1 if dst not in destinationNodeCounts

else destinationNodeCounts[dst] + 1

if info == 1:

daoCountsByNode[src] = 1 if src not in daoCountsByN-

ode else daoCountsByNode[src] + 1

elif info == 2:

disCountsByNode[src] = 1 if src not in disCountsByNode

else disCountsByNode[src] + 1

elif info == 3:

dioCountsByNode[src] = 1 if src not in dioCountsByNode

else dioCountsByNode[src] + 1

if info == 1 or 2 or 3:

totalDaoDisDioBySecond[sec] = 1 if sec not in totalDaoDis-

DioBySecond else totalDaoDisDioBySecond[sec] + 1

sourceCountsBySeconds[sec] = sourceNodeCounts

destinationCountsBySeconds[sec] = destinationNodeCounts

daoCountsBySeconds[sec] = daoCountsByNode

disCountsBySeconds[sec] = disCountsByNode

dioCountsBySeconds[sec] = dioCountsByNode

Calculating total duration times by seconds

transTotalDurBySec =

for sec in sourceCountsBySeconds:

transTotalDurBySec[sec] =

for node in sourceCountsBySeconds[sec]:

transTotalDurBySec[sec][node] = 0

rcvTotalDurBySec =

for sec in destinationCountsBySeconds:

Appendix 65

rcvTotalDurBySec[sec] =

for node in destinationCountsBySeconds[sec]:

rcvTotalDurBySec[sec][node] = 0

counter = 1

while counter < len(packetDurations):

second = packetDurations[counter][0]

try:

nodeTr = packetDurations[counter][1]

nodeRcv = packetDurations[counter][2]

transTotalDurBySec[second][nodeTr] = transTotalDurBySec[second][nodeTr]

+ packetDurations[counter][3]

rcvTotalDurBySec[second][nodeRcv] = rcvTotalDurBySec[second][nodeRcv]

+ packetDurations[counter][3]

except:

print("This is an error message!")

counter += 1

Creating enriched IoT dataset file

monitorArray = []

counter = 0

labelCounter = 0

while counter < len(array):

if not pd.isnull(array[counter][2]):

src = array[counter][2]

dst = array[counter][3]

row = array[counter]

second = floor(float(array[counter][1]))

srcCount = 0.0

dstCount = 0.0

if second in sourceCountsBySeconds:

srcCounts = sourceCountsBySeconds[second]

if src in srcCounts:

Appendix 66

srcCount = srcCounts[src]

if second in destinationCountsBySeconds:

dstCounts = destinationCountsBySeconds[second]

if dst in dstCounts:

dstCount = dstCounts[dst]

transmissionRate = srcCount / 1000.0

receptionRate = dstCount / 1000.0

TrRr = transmissionRate / receptionRate if receptionRate != 0 else

0

trnTtlDur = transTotalDurBySec[second][src]

rcvTtlDur = rcvTotalDurBySec[second][dst]

trnAverageTime = trnTtlDur / srcCount

rcvAverageTime = rcvTtlDur / dstCount

daoSrcCount = 0

disSrcCount = 0

dioSrcCount = 0

if len(daoCountsBySeconds[second]) > 0 and src in daoCountsBy-

Seconds[second]:

daoSrcCount = daoCountsBySeconds[second][src]

else:

daoSrcCount = 0

if len(disCountsBySeconds[second]) > 0 and src in disCountsBySec-

onds[second]:

disSrcCount = disCountsBySeconds[second][src]

else:

disSrcCount = 0

if len(dioCountsBySeconds[second]) > 0 and src in dioCountsBySec-

onds[second]:

dioSrcCount = dioCountsBySeconds[second][src]

else:

dioSrcCount = 0

Appendix 67

dao = daoSrcCount

dis = disSrcCount

dio = dioSrcCount

label = 1

row = np.append(row, str(transmissionRate))

row = np.append(row, str(receptionRate))

row = np.append(row, str(TrRr))

row = np.append(row, str(srcCount))

row = np.append(row, str(dstCount))

row = np.append(row, str(trnTtlDur))

row = np.append(row, str(rcvTtlDur))

row = np.append(row, str(trnAverageTime))

row = np.append(row, str(rcvAverageTime))

row = np.append(row, str(dao))

row = np.append(row, str(dis))

row = np.append(row, str(dio))

row = np.append(row, str(label))

monitorArray.append(row)

counter += 1

headers = [

’No.’, ’Time’, ’Source’, ’Destination’, ’Length’, ’Info’,

’Transmission Rate (per 1000 ms)’,

’Reception Rate (per 1000 ms)’,

’TR / RR’,

’Sources Count Per Sec’,

’Destinations Count Per Sec’,

’Trans Total Duration Per Sec’,

Appendix 68

’Rcv Total Duration Per Sec’,

’Trans Average Per Sec’,

’Rcv Average Per Sec’,

’DAO’,

’DIS’,

’DIO’,

’Label’

]

monitorArray.insert(0, headers)

with open(’forward-blackhole-result.csv’, ’w’) as monitoring:

wr = csv.writer(monitoring, dialect=’excel’, delimiter=’,’)

wr.writerows(monitorArray)

##

##

Script 2 - Data Normalization Algorithm

##

import the required packages

import pandas as pd

...

dataset headers

path1=’./csvs/’

headers_val = [

’Length’, ’Info’,

’Transmission Rate (per 1000 ms)’,

’Reception Rate (per 1000 ms)’,

’TR / RR’,

’Sources Count Per Sec’,

’Destinations Count Per Sec’,

Appendix 69

’Trans Total Duration Per Sec’,

’Rcv Total Duration Per Sec’,

’Trans Average Per Sec’,

’Rcv Average Per Sec’,

’DAO’,

’DIS’,

’DIO’

]

amgPd = pd.DataFrame()

import dataset

for chunk in pd.read_csv(path1+’BH1000%5mix.csv’, chunksize = 250000, low_memory=False):

amgPd = pd.concat([amgPd,chunk])

print (’BH1000%5mix’)

print (amgPd.describe())

transform matrix format

A = amgPd.as_matrix()

row_num = A.shape[1]

X = A[:, 0:row_num - 1]

Y = A[:, row_num - 1].astype(int)

feature normalization

X = preprocessing.quantile_transform (X, output_distribution=’normal’)

X = preprocessing.minmax_scale (X)

data = pd.DataFrame(X, columns=headers_val)

labels = pd.DataFrame(Y)

creating main dataset

Appendix 70

amgPd = data.join(labels.rename(columns=0:’Label’))

print (’BH1000%5mix after scaling’)

print (amgPd.describe())

transform to csv of normalized dataset

amgPd.to_csv(’BH1000%5mix_norm.csv’, index=False)

import another dataset

amgPd1 = pd.DataFrame()

for chunk in pd.read_csv(path1+’BH100%10mix.csv’, chunksize = 250000, low_memory=False):

amgPd1 = pd.concat([amgPd1,chunk])

amgPd1.drop([u’No.’,’Time’, u’Source’, u’Destination’], axis=1, inplace=True)

print (’BH100%10’)

print (amgPd1.describe())

transform matrix format

A = amgPd1.as_matrix()

row_num = A.shape[1]

X = A[:, 0:row_num - 1]

Y = A[:, row_num - 1].astype(int)

feature normalization

X = preprocessing.quantile_transform (X, output_distribution=’normal’)

X = preprocessing.minmax_scale (X)

data = pd.DataFrame(X, columns=headers_val)

labels = pd.DataFrame(Y)

concatenating the datasets

amgPd1 = data.join(labels.rename(columns=0:’Label’))

print (’BH100%10 after scaling’)

Appendix 71

print (amgPd1.describe())

amgPd1.to_csv(’BH100%10mix_norm.csv’, index=False)

appending to main dataset

amgPd = pd.concat ([amgPd, amgPd1])

Another datasets are applied same process

##

Script 3 - Deep Learning Algorithm

##

import the required packages

import csv

...

import dataset

dftrain = pd.read_csv(’BHdataset.csv’, encoding=’utf-8-sig’)

data shuffling

dftrain = shuffle(dftrain)

#feature importance

feat_labels = dftrain.columns[0:]

forest = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1,verbose=1)

forest.fit(X, Y)

importances = forest.feature_importances_

indices = np.argsort(importances)[::-1]

for f in range(X.shape[1]):

print ("%2d %-*s %f" % (f + 1, 30, feat_labels[f], importances[indices[f]]))

Appendix 72

#feature selection

dftrain.drop([], axis=1, inplace=True)

A = dftrain.as_matrix()

row_num = A.shape[1]

X = A[:, 0:row_num - 1]

Y = A[:, row_num - 1].astype(int)

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1)

creating deep learning model

model = Sequential()

model.add(Dense(kernel_initializer="uniform", activation="relu", input_dim=10, units=20,

bias_regularizer=regularizers.l1(0.005)

)

)

setting deep layers

model.add(Dense(50, kernel_initializer="uniform", activation="relu"))

model.add(BatchNormalization())

model.add(Dropout(0.1))

model.add(Dense(100, kernel_initializer="uniform", activation="relu"))

model.add(BatchNormalization())

model.add(Dropout(0.1))

model.add(Dense(300, kernel_initializer="uniform", activation="relu"))

model.add(BatchNormalization())

model.add(Dropout(0.1))

model.add(Dense(100, kernel_initializer="uniform", activation="relu"))

model.add(BatchNormalization())

Appendix 73

model.add(Dropout(0.1))

model.add(Dense(50, kernel_initializer="uniform", activation="relu"))

model.add(BatchNormalization())

model.add(Dropout(0.1))

model.add(Dense(1, init="uniform"))

model.add(Activation(’sigmoid’))

adagrad = optimizers.Adagrad(lr=0.05, epsilon=1e-08, decay=0.0)

model.compile(loss=’binary_crossentropy’,

optimizer=adagrad,

metrics=["accuracy"])

model training starts

history = model.fit(X_train,

Y_train,

nb_epoch=1000,

batch_size=250,

validation_split=0.3,

verbose=2,

class_weight=class_weight)

scores = model.evaluate(X_test, Y_test)

classification report

probabilities = model.predict(X_test)

predictions = [float(x.round()) for x in probabilities]

cr = classification_report(Y_test,predictions)

print(cr)

Appendix 74

saving deep learning model

model_json = model.to_json()

with open("model_bh.json", "w") as json_file:

json_file.write(model_json)

model.save_weights("model_bh.h5")

print("Saved model to disk")

training accuracy

print(history.history.keys()) plt.plot(history.history[’acc’])

plt.plot(history.history[’val_acc’])

plt.title(’model accuracy’)

plt.ylabel(’accuracy’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’test’], loc=’upper left’)

plt.show()

training loss

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’model loss’)

plt.ylabel(’loss’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’test’], loc=’upper left’)

plt.show()

gc.collect()

##

Bibliography

[1] W. Wahlster. From industry 1.0 to industry 4.0: Towards the 4th industrial revo-

lution. In Forum Business meets Research, 2012.

[2] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level sensor

network simulation with cooja. In Local computer networks, proceedings 2006 31st

IEEE conference on, pages 641–648. IEEE, 2006.

[3] Gns-3, 2017. URL https://www.gns3.com/.

[4] Iotify, 2017. URL https://iotify.io/iot-network-simulator/.

[5] Matlab, 2017. URL https://www.mathworks.com/solutions/

internet-of-things.html.

[6] Ddos attacks increased 91 URL https://www.techrepublic.com/article/

ddos-attacks-increased-91-in-2017-thanks-to-iot/.

[7] OWASP. Top iot vulnerabilities. URL https://www.owasp.org/index.php/Top_

IoT_Vulnerabilities.

[8] Symantec. Internet security threat report. Technical report, Volume:22, April 2017.

[9] Kaspersky. Black hat usa 2015: The full story of how that jeep was hacked. URL

https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/

9493/.

[10] A. A. Ghorbani, W. Lu, and M. Tavallaee. Network intrusion detection and pre-

vention: concepts and techniques, volume 47. Springer Science & Business Media,

2009.

[11] D. Janakiram, V. Reddy, and A. P. Kumar. Outlier detection in wireless sensor

networks using bayesian belief networks. In Communication System Software and

75

https://www.gns3.com/
https://iotify.io/iot-network-simulator/
https://www.mathworks.com/solutions/internet-of-things.html
https://www.mathworks.com/solutions/internet-of-things.html
https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/
https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/
https://www.owasp.org/index.php/Top_IoT_Vulnerabilities
https://www.owasp.org/index.php/Top_IoT_Vulnerabilities
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/

Bibliography 76

Middleware, 2006. Comsware 2006. First International Conference on, pages 1–6.

IEEE, 2006.

[12] S. Mascaro, A. E. Nicholso, and K. B. Korb. Anomaly detection in vessel tracks

using bayesian networks. International Journal of Approximate Reasoning, 55(1):

84–98, 2014.

[13] Y. Zhang, N. Meratnia, and P. J. Havinga. Distributed online outlier detection in

wireless sensor networks using ellipsoidal support vector machine. Ad hoc networks,

11(3):1062–1074, 2013.

[14] S. Kaplantzis, A. Shilton, N. Mani, and Y. A. Sekercioglu. Detecting selective

forwarding attacks in wireless sensor networks using support vector machines. In

Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd In-

ternational Conference on, pages 335–340. IEEE, 2007.

[15] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek. Quarter sphere based

distributed anomaly detection in wireless sensor networks. In Communications,

2007. ICC’07. IEEE International Conference on, pages 3864–3869. IEEE, 2007.

[16] Z. Yang, N. Meratnia, and P. Havinga. An online outlier detection technique for

wireless sensor networks using unsupervised quarter-sphere support vector machine.

In Intelligent Sensors, Sensor Networks and Information Processing, 2008. ISSNIP

2008. International Conference on, pages 151–156. IEEE, 2008.

[17] A. L. Buczak and E. Guven. A survey of data mining and machine learning methods

for cyber security intrusion detection. IEEE Communications Surveys & Tutorials,

18(2):1153–1176, 2016.

[18] T. Hurley, J. E. Perdomo, and A. Perez-Pons. Hmm-based intrusion detection

system for software defined networking. In Machine Learning and Applications

(ICMLA), 2016 15th IEEE International Conference on, pages 617–621. IEEE, 2016.

[19] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin. Intrusion detection by machine

learning: A review. Expert Systems with Applications, 36(10):11994–12000, 2009.

[20] M. N. Chowdhury, K. Ferens, and M. Ferens. Network intrusion detection using

machine learning. In Proceedings of the International Conference on Security and

Management (SAM), page 30. The Steering Committee of The World Congress in

Bibliography 77

Computer Science, Computer Engineering and Applied Computing (WorldComp),

2016.

[21] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor

networks: a survey. Computer networks, 38(4):393–422, 2002.

[22] L. Wallgren, S. Raza, and T. Voigt. Routing attacks and countermeasures in the

rpl-based internet of things. International Journal of Distributed Sensor Networks,

9(8):794326, 2013.

[23] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A. Spirito. An ids

framework for internet of things empowered by 6lowpan. In Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security, pages 1337–

1340. ACM, 2013.

[24] P. Pongle and G. Chavan. Real time intrusion and wormhole attack detection in

internet of things. International Journal of Computer Applications, 121(9), 2015.

[25] F. Nait-Abdesselam, B. Bensaou, and T. Taleb. Detecting and avoiding wormhole

attacks in wireless ad hoc networks. IEEE Communications Magazine, 46(4):127–

133, 2008.

[26] Z. Banković, D. Fraga, J. M. Moya, and J. C. Vallejo. Detecting unknown attacks

in wireless sensor networks that contain mobile nodes. Sensors, 12(8):10834–10850,

2012.

[27] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[28] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal

of machine learning research, 3(Mar):1157–1182, 2003.

[29] CompTIA. Sizing up the internet of things, Lastchecked: 15/11/2017.

URL https://www.comptia.org/images/default-source/Insight-Tools/

Thumbnails/internetofthings.png?sfvrsn=0.

[30] L. Columbus. 2017 roundup of internet of things forecasts.

URL https://www.forbes.com/sites/louiscolumbus/2017/12/10/

2017-roundup-of-internet-of-things-forecasts/#1ba8b8651480.

https://www.comptia.org/images/default-source/Insight-Tools/Thumbnails/internetofthings.png?sfvrsn=0
https://www.comptia.org/images/default-source/Insight-Tools/Thumbnails/internetofthings.png?sfvrsn=0
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#1ba8b8651480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#1ba8b8651480

Bibliography 78

[31] S. Sargolzaei, M. Cabrerizo, A. Sargolzaei, S. Noei, and M. Adjouadi. Epilepsy,

a cyberattack on brains’ networked control system. In Machine Learning and Ap-

plications (ICMLA), 2016 15th IEEE International Conference on, pages 622–625.

IEEE, 2016.

[32] A. Humayed, J. Lin, F. Li, and B. Luo. Cyber-physical systems security–a survey.

IEEE Internet of Things Journal, 2017.

[33] B. Zhu, A. Joseph, and S. Sastry. A taxonomy of cyber attacks on scada systems.

In Internet of things (iThings/CPSCom), 2011 international conference on and 4th

international conference on cyber, physical and social computing, pages 380–388.

IEEE, 2011.

[34] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: the next

computing revolution. In Proceedings of the 47th Design Automation Conference,

pages 731–736. ACM, 2010.

[35] R. Roman, P. Najera, and J. Lopez. Securing the internet of things. Computer, 44

(9):51–58, 2011.

[36] J. A. M. M. Jazib Frahim, Carlos Pignataro. Securing the internet of things: A pro-

posed framework. CISCO, 2016. URL https://www.cisco.com/c/en/us/about/

security-center/secure-iot-proposed-framework.html.

[37] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. Fog computing for the internet of

things: Security and privacy issues. IEEE Internet Computing, 21(2):34–42, 2017.

[38] K. Romer and F. Mattern. The design space of wireless sensor networks. IEEE

wireless communications, 11(6):54–61, 2004.

[39] M. A. M. Vieira, C. N. Coelho, D. Da Silva, and J. M. da Mata. Survey on wireless

sensor network devices. In Emerging Technologies and Factory Automation, 2003.

Proceedings. ETFA’03. IEEE Conference, volume 1, pages 537–544. IEEE, 2003.

[40] E. H. Callaway Jr. Wireless sensor networks: architectures and protocols. CRC

press, 2003.

[41] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu. Wireless

sensor networks: A survey on the state of the art and the 802.15. 4 and zigbee

standards. Computer communications, 30(7):1655–1695, 2007.

https://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html
https://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html

Bibliography 79

[42] A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor networks. Com-

munications of the ACM, 47(6):53–57, 2004.

[43] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and

countermeasures. Ad hoc networks, 1(2):293–315, 2003.

[44] F. Gont. Results of a security assessment of the internet protocol version 6 (ipv6).

[45] M. Abomhara et al. Cyber security and the internet of things: vulnerabilities,

threats, intruders and attacks. Journal of Cyber Security and Mobility, 4(1):65–88,

2015.

[46] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight and flexible operating

system for tiny networked sensors. In Local Computer Networks, 2004. 29th Annual

IEEE International Conference on, pages 455–462. IEEE, 2004.

[47] T. Winter. Rpl: Ipv6 routing protocol for low-power and lossy networks. 2012.

[48] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet

of things: A survey on enabling technologies, protocols, and applications. IEEE

Communications Surveys & Tutorials, 17(4):2347–2376, 2015.

[49] A. Mayzaud, R. Badonnel, and I. Chrisment. A taxonomy of attacks in rpl-based

internet of things. International Journal of Network Security, 18(3):459–473, 2016.

[50] A. Aris, S. F. Oktug, and S. B. O. Yalcin. Rpl version number attacks: In-depth

study. In Network Operations and Management Symposium (NOMS), 2016 IEEE/I-

FIP, pages 776–779. IEEE, 2016.

[51] M. A. Maloof. Machine learning and data mining for computer security: methods

and applications. Springer, 2006.

[52] E. Alpaydin. Introduction to machine learning. MIT press, 2014.

[53] A. A. Diro and N. Chilamkurti. Distributed attack detection scheme using deep

learning approach for internet of things. Future Generation Computer Systems,

2017.

[54] L. Deng. A tutorial survey of architectures, algorithms, and applications for deep

learning. APSIPA Transactions on Signal and Information Processing, 3, 2014.

Bibliography 80

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/

v15/srivastava14a.html.

[56] R. DiPietro. A friendly introduction to cross-entropy loss. URL https://

rdipietro.github.io/friendly-intro-to-cross-entropy-loss/.

[57] A. Garofalo, C. Di Sarno, and V. Formicola. Enhancing intrusion detection in

wireless sensor networks through decision trees. In Dependable Computing, pages

1–15. Springer, 2013.

[58] G. Kibirige and C. Sanga. A survey on detection of sinkhole attack in wireless sensor

network. 13:1–9, 05 2015.

[59] S. Sharma and A. Nayyar. Mint-route to avoid congestion in wireless sensor network.

International Journal of Emerging Trends & Technology in Computer Science, 3(2):

91–94March, 2014.

[60] I. Krontiris, T. Dimitriou, T. Giannetsos, and M. Mpasoukos. Intrusion detection

of sinkhole attacks in wireless sensor networks. In International Symposium on

Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed

Robotics, pages 150–161. Springer, 2007.

[61] L. Coppolino, S. D’Antonio, L. Romano, and G. Spagnuolo. An intrusion detection

system for critical information infrastructures using wireless sensor network tech-

nologies. In Critical Infrastructure (CRIS), 2010 5th International Conference on,

pages 1–8. IEEE, 2010.

[62] M. Strohmeier, M. Smith, M. Schäfer, V. Lenders, and I. Martinovic.

Crowdsourcing security for wireless air traffic communications. In Proceed-

ing of the 9th International Conference on Cyber Conflict (CYCON). IEEE,

jun 2017. URL http://www.cs.ox.ac.uk/files/9099/CyCon_2017_Strohmeier_

Smith_Schaefer_Lenders_Martinovic.pdf.

[63] https://opensky network.org. Opensky.

[64] U. S. R. K. Dhamodharan and R. Vayanaperumal. Detecting and preventing sybil at-

tacks in wireless sensor networks using message authentication and passing method.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
http://www.cs.ox.ac.uk/files/9099/CyCon_2017_Strohmeier_Smith_Schaefer_Lenders_Martinovic.pdf
http://www.cs.ox.ac.uk/files/9099/CyCon_2017_Strohmeier_Smith_Schaefer_Lenders_Martinovic.pdf

Bibliography 81

The Scientific World Journal, 2015:7, 2015. URL http://dx.doi.org/10.1155/

2015/841267%]841267.

[65] R. Kaur and M. Singh. Efficient hybrid technique for detecting zero-day polymorphic

worms. In Advance Computing Conference (IACC), 2014 IEEE International, pages

95–100. IEEE, 2014.

[66] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner. Rule-based anomaly pattern

detection for detecting disease outbreaks. In AAAI/IAAI, pages 217–223, 2002.

[67] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A rule-

based intrusion detection approach. IEEE transactions on software engineering, 21

(3):181–199, 1995.

[68] Y. Alosefer and O. F. Rana. Predicting client-side attacks via behaviour analysis

using honeypot data. In Next Generation Web Services Practices (NWeSP), 2011

7th International Conference on, pages 31–36. IEEE, 2011.

[69] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg. Rule-based anomaly

detection on ip flows. In INFOCOM 2009, IEEE, pages 424–432. IEEE, 2009.

[70] S. Raza, L. Wallgren, and T. Voigt. Svelte: Real-time intrusion detection in the

internet of things. Ad hoc networks, 11(8):2661–2674, 2013.

[71] T. Avram, S. Oh, and S. Hariri. Analyzing attacks in wireless ad hoc network with

self-organizing maps. In Communication Networks and Services Research, 2007.

CNSR’07. Fifth Annual Conference on, pages 166–175. IEEE, 2007.

[72] T. Clausen and P. Jacquet. Optimized link state routing protocol (olsr). Technical

report, 2003.

[73] T. Issariyakul and E. Hossain. Introduction to network simulator NS2. Springer

Science & Business Media, 2011.

[74] J. W. Branch, C. Giannella, B. Szymanski, R. Wolff, and H. Kargupta. In-network

outlier detection in wireless sensor networks. Knowledge and information systems,

34(1):23–54, 2013.

[75] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. Intrusion detection in

802.11 networks: empirical evaluation of threats and a public dataset. IEEE Com-

munications Surveys & Tutorials, 18(1):184–208, 2016.

http://dx.doi.org/10.1155/2015/841267 %] 841267
http://dx.doi.org/10.1155/2015/841267 %] 841267

Bibliography 82

[76] J. Ryan, M.-J. Lin, and R. Miikkulainen. Intrusion detection with neural networks.

In Advances in neural information processing systems, pages 943–949, 1998.

[77] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles. Hide: a hierarchi-

cal network intrusion detection system using statistical preprocessing and neural

network classification. In Proc. IEEE Workshop on Information Assurance and Se-

curity, pages 85–90, 2001.

[78] A. Javaid, Q. Niyaz, W. Sun, and M. Alam. A deep learning approach for network

intrusion detection system. In Proceedings of the 9th EAI International Conference

on Bio-inspired Information and Communications Technologies (formerly BIONET-

ICS), pages 21–26. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2016.

[79] Y. Li, R. Ma, and R. Jiao. A hybrid malicious code detection method based on deep

learning. methods, 9(5), 2015.

[80] K. J.-W. Kang M-J. Intrusion detection system using deep neural net-

work for in-vehicle network security. PLoS ONE 11(6): e0155781.

doi:10.1371/journal.pone.0155781, 2016.

[81] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of

the kdd cup 99 data set. In Computational Intelligence for Security and Defense

Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6. IEEE, 2009.

[82] W. McKinney et al. Data structures for statistical computing in python. In Pro-

ceedings of the 9th Python in Science Conference, volume 445, pages 51–56. SciPy

Austin, TX, 2010.

[83] S. v. d. Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure for

efficient numerical computation. Computing in Science & Engineering, 13(2):22–30,

2011.

[84] CETIC. Foren6. URL http://cetic.github.io/foren6/.

[85] N. Moustafa, J. Slay, and G. Creech. Novel geometric area analysis technique for

anomaly detection using trapezoidal area estimation on large-scale networks. IEEE

Transactions on Big Data, PP(99):1–1, 2017. doi: 10.1109/TBDATA.2017.2715166.

http://cetic.github.io/foren6/

Bibliography 83

[86] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[87] F. Chollet. Keras. https://keras.io.

[88] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

[89] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[90] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–

2159, 2011.

[91] N. Moustafa and J. Slay. Unsw-nb15: a comprehensive data set for network intrusion

detection systems (unsw-nb15 network data set). In Military Communications and

Information Systems Conference (MilCIS), 2015, pages 1–6. IEEE, 2015.

https://www.tensorflow.org/

	Abstract
	Öz
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Context
	1.2 Security Problems of Internet of Things
	1.3 Proposed Methodology in the Thesis
	1.4 Contributions
	1.5 Outline

	2 Background
	2.1 Internet of Things (IoT)
	2.1.1 Cyber-Physical Systems (CPS)
	2.1.2 IoT
	2.1.3 Challenges of IoT
	2.1.4 Threats and Risks of IoT
	2.1.5 Simulation of Routing Attacks
	2.1.5.1 Routing Attacks to IoT

	2.2 Deep Learning for Cyber Security
	2.2.1 Machine Learning
	2.2.2 Deep Learning

	3 Related Work
	3.1 Deep Learning based Cyber Security Methods

	4 IoT Routing Attack Dataset(IRAD)
	4.1 Feature Extraction
	4.2 Feature Normalization
	4.3 Feature Importance and Selection
	4.4 Overview of Datasets

	5 Deep Learning Based Detection of Routing Attacks
	5.1 Routing Attack Detection
	5.2 Deep Learning Model

	6 Evaluation and Conclusion
	6.1 Performance Evaluation
	6.2 Analysis
	6.2.1 Decreased Rank Attack
	6.2.2 Hello Flood Attack
	6.2.3 Version Number Attack

	6.3 Conclusion
	6.4 Future Works

	A
	Bibliography

