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Low Power CMOS Thermometer Sensor with a Bandgap Reference
for LSI Applications

Muhammad Arsalan ATHAR

Abstract

Life-assisting medical devices such as CMOS (LSIC)s, which operate with low power
and occupy a minimum area for long time operation and minimum cost, are becoming
more and more important in health care industry. Most of the life log devices use two
major blocks containing thermometer sensor along with bandgap circuits. These on-chip
voltage reference(BGC)s and temperature sensors are the most fundamental blocks for
analog circuits that play an important role in internet of things or low cost system on
chip applications. Moreover, voltage references are very common in mixed-signal designs
such as ADCs, DACs, PLLs and most significantly used in power management circuits.
Regarding the second part related to on-chip thermometer sensors, CMOS based ther-
mometers are prominent for their small area using low power consumption. These sensors
are employed in thermal applications to monitor the features of the circuits in terms of
temperature variation at process corners and mismatches. In this thesis, we explain the
design of a thermometer circuit that utilizes a BGR for low cost, low power applications.
The proposed CMOS thermometer sensor enunciates a linear characteristic between tem-
perature range from —40°C to 125°C with an inaccuracy of 3°C. This circuit operates
for voltage supply ranges from 0.6 to 0.8V and with a static power consumption of 64nW
at typical 27°C. The circuit utilizes the temperature dependency of threshold voltage of
MOSFET. Results of the sensor is verified across different corner and mismatch cases
with Monte Carlo Simulations. In the second part of the thesis, two low power (BGC)s
designs in CMOS 65nm technology, which are optimized for low power, and area, are
presented. First design can generate a reference voltage between temperature ranges
—40°C to 125°C with 2mV inaccuracy. Temperature Coeflicient for this design is around
62ppm/°C and the PSRR is 57dB @ 1 KHz in the supply range from 1V to 2V. The
design consumes 5uW in the overall temperature range. Second design works in the
same temperature range of —40°C to 125°C with an uncertainty of 8mV. Temperature
coefficient is approximately 111ppm/°C and the PSRR is 33.3dB @ 1 KHz between 1.2V
to 2V supply voltage range. Power consumption is less than 1uW and requires much less
area compared to the first design. Both designs are simulated using Cadence Spectre
using UMC 65nm CMOS technology.

Keywords: CMOS Thermometer, Low Power Bandgap, LSI, Temperature Sensors,

Voltage References



LSI Uygulamalar: i¢in Diisiik Gilic Tabanli Genis Bant ve

Termometre Sensorii

Muhammad Arsalan ATHAR
Oz

Diisiik gii¢ tiiketimine sahip, minimum alan kullanan ve diiglik fabrikasyon maliyetiyle
uzun sure ¢aligan CMOS LSI gibi yagam destekli tibb1 cihazlarina ilgi saglk sektoriinde
giderek artmaktadir. Yagam boyu kullanimi olan cihazlarin ¢ogunda termal sensor ve
genig bant aralig1 devreleri igeren iki ana blok kullanilir. Chip-iistii gerilim referans BGR
ve sicaklik sensorleri nesnelerin internet (IoT) ve diigiik maliyetli SOC uygulamalarinda
onemli rol oynayan analog devrelerin en temel kisimlaridir. Dahasi, gerilim referans
devreleri ADC, DAC ve PLL gibi karigik sinyal tasarimlarinda da ¢ok yaygindir ve en
onemlisi gii¢ yonetim devrelerinde kullanmilmaktadirlar. Tezin ikinci kisminda deginilen
¢ip-iistii sicaklik sensorleriyle ilgili olaral, CMOS tabanl termometreler digiik gii¢ tiike-
timi ve kiiciik alanlariyla on plana ¢ikmaktadirlar. Bu sensorler thermal uygulamalarda
slire¢ koselerinde sicaklik degisimi ve uyusmazliklar: degisimini izlemek i¢in kullanilmak-
tadir. Bu tezde, diigiik maliyetli ve diiglik gii¢ kullanimina sahip uygulamalar i¢in BG

referansi kullanan bir termometre devresi tarasimi agiklanmaktadir.

Onerilen CMOS termometre sensorii, —40°C ila 125°C araligindaki sicakliklarda ve
3°C’lik yanhglikla dogru dogrusallik géstermektedir. Bu devre 0.5 ila 0.8 V aralhiginda
calismakta ve 27°C de 64nW gii¢ tiiketimine sahiptir. Devre, tek nokta kalibrasyonlu
MOSFET’in egik voltajinin sicakliga bagimlihigini faydali hale getirmektedir. Sensor
sonuclar1 farkli kiivselerde ve uyumsuzluklarda test edilip dogulanmigtir. Sicakli sen-
soriiyle ¢aligsacak gekilde iki BGR devresi de 6nerilmig ve tasarlanmigtir. Ilk tasarim -40
A°C ila 125A°C arasmda calisacak sekilde tasarlanmis olup, 2mVlik yanhslik ile sonu
vermektedir. Sicaklik katsayisi ise 62ppm/°Cdir. Bu tasarimin PSRR degeri 1V ila 2V
araliginda, 1KHzéate 33.9dBadir, ve gii¢ tiiketimi yaklagik olarak 5uW. Ikinci tasarim ise
—40°C ila 125°C sicaklik araliginda 8mV hata orani ile galigmaktadir. Sicaklik katsayisi
111ppm/°Cdir. PSRR degeri ise 1KHz 1.2V ve 2V araliginda 33.3dB. Giig tiiketimi
1uW diigiiktiir. Sistem UMC 65nm CMOS teknolojisine sahip Cadence analog ve dijital

tasarim araclari kullanilarak tasarlanmis ve simiile edilmigtir.

Anahtar Sozciikler: CMOS termometre, Diigitk Giig¢ Bant Araligi, LSI, Sicakli Sen-

sorleri, Gerilim Referanslar:
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Chapter 1

Motivation

1.1 Thesis Motivation

= In modern technology, there is a big demand for CMOS based temperature sensors
to be used in thermal management. These solutions are used in various fields such

as industrial, medical, space and defense systems.

m A wide use of temperature sensors are built on bipolar junction based transistors

(BJTs).

m The accuracy of BJT sensors are usually limited due to the effect of saturation

currents. In addition, they usually require more power and are bulky.

m CMOS based thermometer designs which have less complexity and low power, have

been explored in this design.

m Additionally, design of BGRs were explored to be used with the temperature sensor

as a reference.

m Main design consideration for the BGR is to achieve low power operation in the

micro or nano-watt region for smart sensors or medical applications.

m Two BGR designs are proposed that meet the target specifications.
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1.2 Thesis Objective

The main objective of this thesis is to develop a CMOS thermometer sensor and a
bandgap circuit with new proposed designs to reduce the power consumption and the
area of the chip. The proposed CMOS thermometer sensor enunciates a linear charac-
teristics between temperatures range from —40°C to 125°C with inaccuracy of 3°C. This
circuit operates from voltage supply ranges from 0.6 to 0.8V and with a static power
consumption of 64nW at typical 27°C. The circuit utilizes the temperature dependency
of threshold voltage of MOSFET. Results of the sensor are verified across different cor-
ners and mismatches with Monte Carlo simulations. In the second part of the thesis,
two low power bandgap reference (BGR) circuits designs in CMOS 65nm technology,
which are optimized for low power and area, are presented. First Design can generate a
reference between temperature ranges —40°C to 125°C with 2mV inaccuracy. Tempera-
ture Coefficient for this design is around 62ppm/°C and the PSRR is 57dB @ 1 KHz in
the supply range from 1V to 2V. The design consumes 5uW in the whole temperature
range. Second design works in the same temperature range of —40°C to 125°C with an
uncertainty of 8mV. Temperature coefficient is approximately 111ppm/°C and the PSRR
is 33.3dB @ 1 KHz between 1.2V to 2V supply voltage range. Power consumption is less
than 1uW and requires much less area compared to the first design. Both designs are

simulated using Cadence spectre using UMC 65nm CMOS technology.

1.3 Thesis Organization

This thesis is organized as follow; Chapter 2 reviews the CMOS based conventional low
power thermometer sensors. In addition, it also analyzes the design of bandgap circuits.
Chapter 3 proposes the low power thermometer design. Chapter 4 explains the design
of the low power bandgap circuit designs. Chapter 5 concludes this work, summarizes

the results, and recommends future work for these systems.



Chapter 2

Introduction

2.1 SoC based CMOS Thermometer Sensors

2.1.1 On-chip Thermometer Sensors

Thermometer sensors are often used to measure the temperature in analog or digital de-
vices. There are different types of temperature sensors used in market today. Previously,
off chip components such as thermocouplers and RTDs were commonly used for sensing
temperature [1|. However, mostly integrated CMOS Sensors are used recently due to

their low cost, low power consumption and small area requirements.

2.1.2 Conventional CMOS Based Temperature Measurement

A literature survey illustrates in CMOS technology, different kinds of temperature sen-
sors have been focused in CMOS technology. Most customary temperature based sen-
sors are constructed on bipolar junction transistors (BJTs) [2]. These measuring device
estimates temperature by relating a temperature-dependent voltage to a temperature-
insensitive voltage. These two voltages are generated by means of two appropriately-
defined temperature features of a vertical PNP transistor. First is the complementary-
to-absolute temperature (CTAT) aspect of the base to emitter voltage Vpp and Second
is the proportional-to-absolute temperature (PTAT) element of the difference between
two base to emitter voltages Vpg. The accuracy of BJT sensor is limited by effect of
saturation currents that leads to errors of few degrees. In addition, it requires more

3
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power consumption and area. For this project, the topologies of CMOS designs have
been selected on the basis of their less complexity and low power consumption. Out of
these topologies, two CMOS designs [3, 4| are shown in Figure 2.1. Sensitivity, which
is change in output voltage with respect to the change in temperature is an important
key performance indicator (KPI) for our design. After simulating, we decided against
the use of these two circuits due to their high sensitivity limitation while reducing power
which is more than 2mV. To overcome this constraint, a new design has been proposed

with low temperature sensitivity which will be discussed in Chap 3.

Vob
"2 Ra Ro-
Vourt
Vhode
1 M2
ng.
VIND—H; M1
pp— GND _
Vob
T— - |
PM1 PM2 PM3
VNTC

I;NMl NMz:|

VPTAT

FIGURE 2.1: First design uses two-transistor topology with source degeneration and
second design uses PMOS active loads with two outputs VNTC and VPTAT[5].
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2.2 Voltage Reference Circuit

2.2.1 Bandgap Reference Circuit

BGRs are one of the basic building blocks of analog, digital and mixed-signal designs.
They provide a constant reference voltage for Opamps, LDOs and ADCs regardless of
temperature, supply and process variations. There is an enormous demand of low power
CMOS BGR circuits due to their use in power management units in RF receivers and
transmitters. Literature survey shows that various types of BGRs have been designed in

the past. Here Brokaw and classical Widlar BGR circuits are worth-mentioning [6, 7.

2.2.2 Conventional CMOS based BGRs

Most conventional design for CMOS based BGR is shown in Figure 2.2. However, this
design is not suitable for ultra-low power and low area solutions. Our main design
consideration is to achieve low power even at the cost of larger chip area. We require
it to operate in few p Watts or Nano-Watt range for smart sensors or medical sensors.
Conventional designs use relatively high power and large resistors to achieve voltage

reference functionality [8]. It produces a voltage of bandgap energy of silicon i.e 1.2V.

Vbp

T

M

i

Tt

M1 M2
§ R1 R2

—‘i Q Q2 ;'— Q3

<
a

|||—-

FIGURE 2.2: Conventional CMOS bandgap design using BJTs and resistors.
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2.3 Parameters Defining Both Thermometer Sensors and

Bandgaps Circuits

2.3.1 Temperature Coefficient (TC)

It is the stability of the generated bandgap Voltage with respect to temperature. The
principle of bandgap designs is to equalize the negative (T'C) of PN junction with the
positive (TC) of the thermal Voltage V. TC is measured in ppm/°C.

2.3.2 Power Supply Rejection Ratio (PSRR)

It is the ability of the bandgap to maintain its output voltage against the changes in

voltage supply. PSRR is measured in decibels (dB).

2.3.3 Supply Independent Variation

It is the same as Power Supply Rejection Ratio. Cadence parametric analysis has been
used to show the behavior of the bandgap circuits in terms of supply independent vari-

ation.

2.3.4 Temperature Inacccuracy

The maximum inconsistency from the real value at a certain temperature in a specific
range of the thermometer sensor is called the Inaccuracy of the thermometer. This
is usually corrected with one point or two point calibration methods. Temperature

inaccuracy is measured in degrees Celsius.

2.3.5 Variation Across Process Corners

Corner analysis is the method widely used to simulate and check the design perfor-
mance for process and parameter variations. Predefined parameter sets (corner models)
representing the worst case combinations in terms of circuit parameters are used. The

disadvantages of corner analysis include: a) the designer may not know what the critical
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corners are in terms of mismatches and correlation parameters b) the possibility that
a design may function satisfactorily at the corners but fail within the envelope of the

corners [9].

2.3.6 Monte Carlo Simulations

The designer can choose between two non-identical types of parameter variation or use
them in conjunction with each other.

Process: This type of Monte Carlo mode simulates the deviation of the electrical param-
eters originated by unavoidable process instabilities in production. These instabilities
disturb all the devices in a circuit in the same manner. Therefore, the process param-
eters, which are randomly selected in each simulation run, are globally allocated to all
device instances in a design.

Matching: The type of variation processes statistical dissimilarities between matched
designed devices, which is produced by roughness of edges, variation in doping, effects
of boundary, etc. A device with each and every instance owns that takes an individual
random value around typical mean. Matching parameters are derived from real measure-
ments of special test typologies circuits that are designed in an optimal way with respect

to perfect matching.



Chapter 3

Low Power Thermometer Sensor

This chapter briefly presents the main blocks for low power thermometer design that
uses common source degeneration topology[10]. Our purpose is to design the circuit at

ultra-low power with decent performance.

3.1 Proposed thermometer Sensor

The design contains two parts. First part consists of the startup circuit and the second

part contains the sensing circuit.

3.1.1 Start-Up Circuit

In transient operation, the sensor works in a stable operating region and there are two
regions of operation that satisfy this. One is the normal condition when constant DC
voltage supply is applied and all the transistors are in active mode to allow the proper
functioning of the sensor. The second region is unusual zero current operation. This
condition also remains stable and the Vrgpr output becomes 0V. In order to avoid this
zero current operation, additional circuitry is used to disrupt this condition. This ad-
ditional startup circuit does not affect the normal operation of the sensor and turns off

after startup.
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3.1.2 Sensing Mechanism

For our selected design proposed in Figure 3.1, we obtain current which has a linear
relation with varied temperature as shown in Eq.3.1. This is achieved by using a PTAT
current source with a resistor Rs. Due to the design’s lower voltage characteristics
of 0.6V, thin oxide LVT of 0.2V threshold voltage are preferred to overcome the low
headroom limitation. In addition to minimize the short channel effects, devices with
long channels are chosen. Transistors M1 and M2 are sized in such a way that their
drain-source voltages (Vpg) are more than 3¢, (¢;=kT/q), known as the sub threshold
Vrg MOSFET saturation region.

For Vps > 3¢ (¢1=kT/q), The current at drain Ip is given by:

Ip = Lexp((Vas — Vrm) /né)) (3.1)

where I, is the current at drain side when gate-source voltage (Vig) equals Vipp:

Since

I, = 1oCor(W/L)(n — 1) ¢y (3.2)

W and L are the channel width and length, p, is the mobility of the carrier,n is the
subthreshold slope factor and C,, is the capacitance of gate oxide. Using Kirchhoffas

voltage law:

Vas1 = Vase + lourRs (3.3)

Substituting the value of Ip from Eq. 3.1 in Eq. 3.3, we get

noiloge(Irer/1o) + Vra = nédoge(lovr/K1,) + Vras + IourRs (3.4)

In order to make the currents equal, we have Vg1 = Vrgs , Irpr = lour

Therefore,

Iour = ngiloge(K/Rs) (3.5)
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So the output voltage depends upon the Iout as given below,

Vrer = Vova + IourRs (3.6)

Where K is the constant value to keep the currents equal. Vpys is overdrive voltage
of M2 in subthreshold region. Comparing it to conventional PTAT designs discussed in
Chapter 2, the sub-Vpg voltages allows the use of comparatively smaller resistor [10].
To generate currents in the region of nano nAmperes, a 450K polysilicon resistor Rg is

used. The absolute temperature dependence of ¢; provides a PTAT Ioyr current.

\VVbD

(w/L), || | E (W/L),

Iref vlout

VREF

(W/L), ]| | E K(W/L),

Rs g

GND

FIGURE 3.1: Proposed design of temperature sensor.
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3.1.3 Complete Schematic Using Start-Up

The startup circuit for our proposed design is composed of transistors M5-M9. The sizes
of M7-M9 are intentionally kept small to increase the On-resistance and a high voltage
amount drops across them during normal operation of the circuit. For zero current
operation, the gate voltages of M3-M4 are pulled to VDD and the gate voltages of M1-
M2 are pulled to GND. This makes the drain of transistor M6 approach VDD, which
in turn sets M5 on, therefore, transistors M3 M4 start conducting. Figure 3.2 shows
complete schematic with the startup circuit. The Startup circuit is integrated with the
main thermometer design. The design was simulated for supply voltages from 0.6 to

0.8V.

3.1.4 Simulation Results

This section contains the process variations and Monte Carlo simulation results for our
proposed thermometer sensor. All the simulation results have been plotted using UMC

65nm Technology.

3.1.4.1 Process Corners

In order to see the response of the circuit across process corners of SS, TT and FF,
the temperature was swept from —40°C to 125°C for three supply voltages 0.6V, 0.7V
and 0.8V. The output voltage ranges between 370mV and 740mV in these simulations
simulations as shown in Figure 3.3. The circuit was able to maintain its direct propotional
relation between output voltage and temperature across the whole temperature range.

Sensitivity of the sensor is around 2mV per degree celsius.

3.1.4.2 Monte Carlo Results

The Monte Carlo simulation were run with 100 points at typical 27°C using three supply
voltages that are 0.6V,0.7V and 0.8V. Figure 3.4 shows the mean value and the standard
deviation for the output voltage. The mean voltage are measured to be 452mV, 547mV

and 643mV respectively with the standard deviation of around 8mV for all values.
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VoD
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FIGURE 3.2: Proposed design of temperature sensor with startup circuit.

Figure 3.5 shows the direct relation of Output voltage curves over the entire temperature

range in Monte Carlo simulations.
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FIGURE 3.3: Proposed corners results of sensor output voltage with respect to tem-
perature. Supply voltage sweeps from 0.6 - 0.8V. The headroom for output voltage is
in between 370 - 740mV at TT, FF and SS corners.
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The temperature inaccuracy of the sensor is shown in Figure 3.6. When the temperature
sensor is modeled with a straight curve using the minimum and the maximum values,
the inaccuracy of the sensors was determined to be less than 3°C. The layout of our
proposed thermometer sensor is shown in Figure 3.7. The area of our sensor is 42um by

18um which is equal to 756um?.
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FIGURE 3.6: Inaccuracy of the temperature sensor is approximately 3°C.
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FIGURE 3.7: Process layout of the proposed thermometer sensor(Area = 756um?).
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The performance of the proposed thermometer sensor is compared with other published

work in Table 3.1 of our work is given as follows:

TABLE 3.1: System Performance Comparison of thermometer Sensor.

References [11] [12] [13] [14] This work
CMOS 180 180 180 65 65
Tech.(nm)

Supply (V) 12 |12 |12 |1 0.6-0.8
Sensitivity - - - - 2

(mV/C)

Inaccuracy (C) | (+1.3/1 (+1.5/1 (+0.5/1 (+1.5/1 (+3.5/ —3.5)®
14) | 14) |05) |15)
Temp.Range (C) [ (0 -] (0 -] (0O -[(0 -] (-40-125)
100) | 100) | 100) | 110)
Power Cons (W) | 65n 71n 20u 500u | 64n(0.6V)

e Simulated Results.



Chapter 4

Low Power Bandgap References

4.1 Proposed Bandgap Design

This part explains the designs of two separate bandgap circuits. Both designs utilize
startup circuits for zero current state operation. The first design is a sub-1V bandgap

reference and the other is known as subthreshold bandgap voltage reference.

4.1.1 Sub-1V Bandgap Reference

The startup for our proposed design comprises of transistors M8 through M11. Out of
these, M8 and M9 perform the role of inverter. The size of M8 is intentionally kept
large to decrease the On-resistance for a minimum voltage drop across it during normal
operation of the circuit. The chain of series connected transistors (M9) are designed
to have high impedance which results in high voltage drop across it. For zero current
operation, the gate voltages of M5 - M7 and M8 are pulled to Vpp, making them high
impedance. Consequently, output of the inverter comprising of M8 and M9 pulled down.
This turns on M10 and M11 which forces the injection of current by M11 in the bandgap
core and by M10 in operational transconductance amplifier (OTA). The drain voltage of
M5 increases and the OTA starts to operate. In return, the OTA pushes the drain voltage
of M6 to increase by pulling down the gate voltages of M5 - M7. As the gate voltage of
MBS reduces, it causes the drain voltages of M8 and M9 to increase and therefore M10

and M11 cuts off.

18
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The proposed design for the first bandgap reference circuit is shown in Figure 4.1 which
includes a number of features. Firstly, the design has a lowered power consumption due
to reduction of power supply to as low as 1V [15, 16]. The design consists of BJTs which
helps in achieving a low temperature coefficient (TC).

Another feature of the proposed design is its low area occupies due to the utilization of a
relatively smaller resistor compared to traditional design as discussed earlier in Chapter2.
The minimum supply voltage is limited to 1V in this design. If the supply voltage
falls below this minimum requirement, the voltage across the bandgap bias transistor
(M5-M6) does not allow the BJT to operate in active mode. In order to generate the
Bandgap output voltage, Vrgr, both PTAT and CTAT voltages are combined. The
CTAT component is generated by the Vpg of Q1 and the PTAT component is generated
by the difference in Vpg of Q1 and Q2.
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FIGURE 4.1: First projected design sub-1V bandgap reference circuit. It consumes
5uW power at 27°C Temperature.

The two BJTs in the circuit Q1 and Q2 act as a pn-junction diodes. The general diode

equation for the current is given by

Ip = Igexp<ql‘§§,E> (4.1)

For a unit size diode,

I
Ve = Vrln <D> (4.2)
Is
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For N unit diode,

NI
VBE = VT In (D) (4.3)
I

The difference in the two Vpgg is defined as,
AVpg = Vel - VBE?
AVpg = Vp In(Nlpy/Is)- Vrin(Nlps/Is). By solving this equation, we get

AVBE = VT In N (44)

If Ry = Ry, the OTA tries to to keep the Voltages A and B equal.
Va=Vg (4.5)

Setting R; = R, also causes the currents in the two branches of the bandgap to be

equal. As I3 is mirror of I; and I,
LH=1=1I; (4.6)
Furthermore, the following currents are set equal as well.
Iia=1Ia (4.7)

Iig = I (48)

Then, we can conclude from the schematic that,

AV,
o ( RBE> (Ing o V) (4.9)
0
[ VBE1
9B = R (IQB x VBEl) (4.10)

Iy =Ia+ Ip (4.11)
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Therefore, we can calculate the reference voltages Vrgr as,

Vrer = (R3)(I3) (4.12)

AVee VB
\% = (R 4.13
rEF = ( 3)( o + ) ) (4.13)

Or
Vrln N V]

VREF = (Rg)( TRn + ZEl) (4.14)

0 1

Eq. 4.14 presents the generated bandgap voltage. The bandgap uses symmetrical op-
erational transcondactance amplifier (OTA) which has input common mode of around
700mV. The output voltage of the OTA drives all the PMOS transistors in the bandgap
circuit. The loop gain A, and gain bandwidth product GBW of the symmetrical OTA

are calculated as [17],

AV = gmlBRM4 (415)
Bgml

GBW = 4.16
27 C, ( )

where g,,1 is the transcondance of input transistors.
B is the width multiplier.
Rpzyq is the impedance at the drain side of input transistor M2.

and Cp, is the capcitances seen at the output of the OTA.
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4.1.1.1 Simulation Results

The stability of the Opamp used in the bandgap shown in Figure 4.1 was verified in
spectre simulations. Using the stability analysis, the loop gain is 40db and phase margin

is 61degree as shown in Figure 4.2.
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FIGURE 4.2: Loop gain and loop phase of the operational transconductance amplifier.
The OTA has a gain of 40dB and 61° phase margin at 1.02MHz frequency.

The temperature is swept across the whole range of —40°C to 125°C and the output
reference voltage fluctuates between 498mV to 500mV (AV=2mV). This yields in the

temperature coefficient of the bandgap circuit around 62ppm/°C, as shown in Figure4.3.
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FIGURE 4.3: Temperature coefficient of bandgap circuit is approximately at 62ppm/°C
with a temperature variation of 2mV.

In order to simulate the Power Supply Rejection Ratio, 1V AC voltage was applied on
top of the supply voltage. PSRR of the circuit is 57 dB at low frequencies as shown in
Figure 4.4.

Mo Mar § 12:5713 2018 1

5.0 3

-20.0—% / =i
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Q
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FIGURE 4.4: The power supply rejection ratio is -57dB at 1 KHz frequency.

The supply independent variation was also simulated for the circuit. For this simulation,

parametric analysis was used for determining the variation in output voltage, as the
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supply changes from 0 to 2.0V. The output voltage remains stable around 500mV with

an error of 0.5mV at typical 27°C as shown in Figure 4.5
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FIGURE 4.5: The supply independent output voltage variations is around 0.5mV at
27°C typical corner .

This circuit was also tested in transient operation to check the output when the supply
is raised from 0 to full value in 100us and 10ns respectively. Figure 4.6 shows the settling
of the output voltage for different process corners. The simulation was repeated with

Monte Carlo mismatches and in all cases the output settles down successfully as shown

in Figure 4.7.



Chapter 4. Low Power Bandgap References

Wed Jan 10 13:14:03 2018 2

El VDD
1.2 -
i .H:W‘Rise Tlme 10n
B Fall Tim 10n ==EE
= VREF
- 0.5 3 ;
3l /
0.0 {3 !
7‘\\‘\“\‘;1.\.\.\\”\\\\\\\\\\|\\\\|I\\.\|\\\\‘\\\\\‘\I\\\\I\\\\
0.0 250.0 500.0
time (us)
e i 1
! TR o e e
T Fall Time = 1.00u -
HlE=== VREF
i
. L
7\'i'\“\‘\‘.\‘:\‘f\‘i‘V\ii':\‘.\‘\‘\‘\‘\‘\‘\'l'l
0.0 0.4 0.8 1.3 1.7 2.0

time (ms)
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4.1.2 Subthreshold Bandgap Reference

The startup circuit for our proposed design comprises of transistors M15-M20 of which,
M17-M18 make up the first inverter and M19-M20 make up the second inverter. The size
of M17 is intentionally kept large to decrease the on-resistance. This causes minimum
voltage drop across it during normal operation of the circuit. The chain of series con-
nected transistors (M18) have high impedance which results in high voltage drop across
it. For zero current operation, the gate voltages of M12-M13 are pulled to Vpp which
results in the output of first inverter (M17-M18) to be low and the output of the second
inverter becomes Vpp. This makes the transistors M15-M16 to turn on which in turn
decreases the gate voltages of M10-M11. As M15 turns on, the input of first inverter
goes low, which causes the output of second inverter to go low, therefore M15 and M16

are turned off in response.

This design uses less current while generating acceptable temperature coefficient. All
the transistors work in subthreshold regions and the design is resistorless, achieving
the functionality with less area and power consumption. The design incorporates a
combination of CTAT and PTAT voltages Of which, CTAT voltage is generated from the
threshold voltage of MOSFET M3 while PTAT is produced by self-cascode configuration
from M4 through M9 in bandgap part [18, 19]|. The output voltage is obtained by adding
gate source voltages of M3, M5 and M7 transistors and subtracting those of M4, M6, M8
and M9 [20, 21]. This produces a Vrgr output voltage of 925mV. The supply voltage
used here is 1.2V for good PSRR and there is no need to use an OTA in this design.

Figure 4.8 shows the circuit schematic of our proposed design.
The working principle can be explained as follows:

The subthreshold drain current Ip of a MOSFET is given as,

Vas — Vry —Vbs
Ip=KI, A 4.17
o = Khear () (1= () ) (@
Also,
Iy = 116Cos <n - 1> 1% (4.18)

For Vpg > 0.1V. current Ip is independent of Vpg and is given by,
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Ves — Vi
Ip = KIOe:(:p<GSTH> (4.19)
nVr
From the schematic, we have
Vast = Vas2 + VDsy (4.20)

The Currents Ip in M1 and in M2 are equal to each other and Eq. 4.18 can be rewritten

as,

K.
VDSya = NVr In (KZ) (4.21)
1

The resistance of the MOS M14 is approximated as,

1

R = 4.22
M Kvnat0Cor (VrEF — V) (4.22)

From Eq. 4.18, Eq. 4.19 and Eq. 4.20, the expression for Ip can be written as,

Vi
Ip = VDsM (4.23)
Rar14
Or
K

Ip = KyiapoCos(VrREF — VrE)nVr In " (4.24)

The output reference voltage of the circuit is generated from coupled transistors of M3

to M9. Therefore,

VreEr = Vass — Vasa + Vass — Vase — Vass — Vaso + Vasr (4.25)
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Transistor M14 acts as current controlled resistor while threshold voltage of transistor
M3 manifests as CTAT. In addition, transistors from M4 through M9 function as PTAT

of the bandgap circuit. Therefore, reference voltage Vrgppr can written as

2K, KgKgKg
= 1 . — 4.2
Vrer = Vass +nVrln < KK > (4.26)
Or
31p 2K KgKgKy
V =V Vrln | —— Viln| ——— 4.27
REF TH+77TD<K3IO)+77TH< e ) (4.27)

Eq.4.27 shows that output voltage is the addition of the gate source voltage Vg3 and the
thermal Voltage V7 scaled through transistor aspect ratios. Because Vg has a negative
temperature coefficient TC and Vr has a positive temperature coefficient TC. Hence,
we can get output reference voltage Vrpr independent of temperature by adjusting the

transistor sizes.
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FIGURE 4.8: Second projected design subthreshold bandgap reference circuit. It con-
sumes approximately 1uW power consumption at 27°C temperature.
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4.1.2.1 Simulation Results

The temperature was swept across range of —40°C to 125°C to observe the dependence
of the output voltage and it ranges between 925mV to 933mV (AV=8mV). This results
in the temperature coefficient of the bandgap circuit of around 111ppm/°C, as shown in

Figure 4.9

EEL NI} * -39.73846C 933.6483mY |

932,03 N I dx: 72.43846C
EIREERERN  dy 5.05906mV [ . ;
£ 930.0 i
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925'5 : P R0 RARANE" SR RERE) W VL R B G P T R WS LT AR A I'\‘\‘\ T I B L AR A R
40.0 0.0 30.0 70.0 120.0

temp (C)

FiGURE 4.9: Temperature coefficient of bandgap circuit is approximately at
111ppm/°C with a temperature variation of 8mV.

To plot power supply rejection ratio, 1V AC voltage was applied on top of the supply
voltage. The gain from the supply to the output, which shows that the PSRR value is
33dB as shown in Figure 4.10.

The supply independent variation was also simulated for the circuit. For this simulation,
parametric analysis was used to determine the variation in output voltage as supply
changes from 0 to 2.0V. The output voltage remains stable around 925mV with an error

of 6mV at typical 27°C as shown in Figure 4.11.
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FIGURE 4.10: The power supply rejection ratio is 33.3dB at 1 KHz frequency.
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FIGURE 4.11: The supply independent output voltage variations is around 6mV.
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The performance of the proposed Bandgap circuit is compared with other published
works in Table 4.1 below.
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TABLE 4.1: System Performance of Comparison of Proporsed Bandgap Circuits.

References [22] | [23] [24] [25] | This work
CMOS Tech.(nm) | 180 | 180 | 180 | 180 65
Supply (V) 1.8 1.1 0825 1.2 | 1*|1.2f
Power Cons (uWW) 12 | 21 33 [432| 51T
Temp. Coeff (ppm/C) | 65 | 6.5 271 4.5 | 627 ] 1117
PSSR (dB) 40 | - - - | 577 33.37
VREF (mV) 266 | 1012 | 221 | 767 | 500* | 925

* Sub-1V bandgap voltage reference.

1 Subthreshold bandgap voltage reference.
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Conclusion and Future Work

5.1 Conclusion and Future Work

This thesis presents the design of a thermometer circuit that utilizes a Bandgap refer-
ence for low cost, low power applications. The design pronounces a linear characteristics
between temperatures range from —40°C to 125°C with an inaccuracy of less than 3°C.
This circuit works in supply ranges from 0.6 to 0.8V with a static power consumption of
64nW at typical corner and 27°C. Results of the sensor are verified at different process
corners and with mismatches. Two BGR designs are proposed and designed to operate
with the temperature sensor. First design attains an inaccuracy of 2mV for temperature
ranges from —40°C to 125°C. temperature coefficient of around 62ppm/°C is achieved.
The PSRR of this design is 57dB at 1 KHz in the range from 1V to 2V.Power Consump-
tion is around 5uW . Second design operates under the same temperature range of —40°C
to 125°C with an error of 8mV. Temperature coefficient is approximately 111ppm/°C.
The PSRR is 33.3dB at 1 KHz between 1.2V and 2V supply range and the power con-
sumption is less than 1uW. The schematics, simulations and post-layout are done with
Cadence design tools using UMC 65nm CMOS technology.

The next step for this work is to reduce inaccuracy of thermometer sensor by using any
calibration methods.The sub threshold bandgap circuit requires more PSRR and less

temperature coefficient and supply limitation.
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