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“A joke for semanticists.”

Q: What is the meaning of life?

A: life
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Abstract

After the recent developments in Artificial Neural Networks and deep learning techniques,

representation learning has become the focus of many research interests. In the field of

Natural Language Processing, representation learning techniques have gained many im-

plementation advances and improved different tasks compared to any other method. One

of the primary research topics in this area is to construct compositional representations of

discrete language structures in multilingual joint-vector space. In this thesis study, sev-

eral techniques from deep learning and NLP are combined to investigate their potential

impact on NLP tasks.

For this purpose, four different composition vector models (CVM) by using tokens and

morphemes as basic language structures are studied. To construct tokens and mor-

phemes, first, a parallel corpus is segmented into discrete objects via tokenization and

morphological analysis. Several hierarchical composition methods via bilingual method

are employed to construct the embeddings of these structures. Bilingual models are

trained by using sentence-aligned corpora for four languages. The models learn how to

employ compositional vector models and construct embeddings of sentence constituents

as well.

Two different test scenarios are performed to evaluate different CVMs. The first one is

paraphrase test. In this case, the bilingual models using CVMs are trained with each

language pair L1-L2 ( English, Turkish, German and French) parallel corpus. Then the

models are tested by evaluating their performance in finding the corresponding pairs

correctly from 100 randomly selected sentences from each L1-L2 pair.

The other test scenario is cross-lingual document classification. In this case, the trained

models are employed by a document classifier model to evaluate their performance in

classification task by first training in L1 documents and then testing with L2 documents.

Keywords: Natural Language Processing, Language Modelling, Deep Learning, Neural

Networks, Multilingual Word Embeddings, Distributed Representations, Representation

Learning



Çok Dilli Eklem-Vektör Uzayda Dil Yapılarının Bileşim Temsili

Şaban Dalaman

Öz

Son dönemdeki yapay sinir a ‘gları ve derin ö ‘grenme tekniklerinde ki gelişmelerle beraber,

temsili ö ‘grenme pek çok araştırmanın odak noktasında yer almaya başladı. Do ‘gal dil

işleme(DDÍ) alanında, temsili ö ‘grenme tekniklerinin uygulamasında ve di ‘ger metodlara

göre DDÍ problemlerinin çözümünde ilerleme sa ‘glamıştır. Bu alandaki ana araıstırma

konularından biri, dil yapılarının ortak çok dilli uzayda birleşimsel temsillerini oluştur-

maktır. Bu çalışmanın hedefi derin ö ‘grenme ve DDÍ mede kullanılan bazıtekniklerin

birleştirilerek temsillerin DDÍ uygulamalarındaki etkisini araştırmaktır.

Bu amaçla 4 de ‘gişik birleşim vektör modeli üzerinde çalışılmıştır. Token yada mor-

pheme gibi dil yapılarının temsil uzaylarının oluşturulması için ilk olarak tokenizasyon

yada morfolojik ayrıştırma ile paralel korpus hazırlanmış sonra de ‘gişik hiyerarşik bir-

leşim metodları ikili-dil modelleri üzerinden kullanılmıştır. Íkili-dil modelleri, 4 dil için

hazırlanan cümle sıralı korpuslar kullanılarak e ‘gitilmiştir. Bu sayede, model birleşimsel

vectör modelini kullanarak cümle elemanlarının temsillerini oluşturmayı ö ‘grenmektedir.

De ‘gişik birleşimsel vektör metodlarını de ‘gerlendirmek için iki test senaryosu kullanılmıştır.

Ílki açımlama testidir. Bu senaryoda ikili model, birleşimsel vektör modelini kullanarak

e ‘gitilir. Sonra paralel korpusdan iki dil için seçilen karşılıklı cümle çiftlerinin karşılaştır

ılmaları ile performansları hesaplanır.

Di ‘ger test senaryosu ise gözetimli döküman sınıflama testidir. Bir dilden seçilen dökü-

manlar kullanılarak e ‘gitilen sınıflandırıcı , di ‘ger bir dilden seçilen test dökümanları ile

test edilir. Dökümanlar de ‘gişik konu başlıkları için pozitif ve negatif olarak işaretlen-

miştir. Sınıflandırıcı pozitif ve negatif örnekleri ayırmayı ö ‘grenmektedir.

Anahtar Sözcükler: Do ‘gal Dil Íşleme, Dil Modelleme, Yapay Sinir A ‘gları, Derin

Ö ‘grenme, Gösterimsel Ö ‘grenme
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Chapter 1

Background

1.1 Introduction

Distributed representations have become the basis for many tasks in NLP. Word repre-

sentations provide richer representations than traditional methods. It has been shown

that they capture both syntactic and semantic information of a language. Language

modeling in Bengio et al. [1] and dialog analysis in Blunsom and Kalchbrenner [2] are

among the successful applications of distributed representations.

This approach can be extended to joint-space embeddings for multilingual data. The first

example of this approach was given by Hermann and Blunsom [3]. In their approach, a

novel unsupervised technique has been proposed. The model first learns semantic repre-

sentations using parallel corpora, and employs these representations through composition

models. Instead of learning a single language word representations, in their approach, the

model learns to represent common syntactic and semantic structures across multilingual

joint-representation space.

The primary purpose of this study is to investigate the effect of composition models

combined with basic language structures such as words, tokens or morphemes on com-

puting multilingual embeddings. We present experiment results on parallel corpora for

4 languages: English, French, German, and Turkish. The model first learns multilin-

gual representations among languages. Then we employ the learned representation to

a text classification problem and present the results. We apply two different language

processing steps during the learning process of multilingual representations; tokenization

1



Chapter 1. Background 2

and morphological analysis. Two versions of parallel corpora are prepared. In the first

version, training corpus is segmented into sentences and tokens, and in the second ver-

sion corpus is processed with a morphological analyzer and segmented into morphemes.

Morfessor by Creutz and Lagus is used to create morphological analysis models for each

language [4, 5]. With these analysis models, morphological segmentation of words for

each language is found, and morpheme corpora are prepared. Finally, we prepare se-

mantic representation space for each type of parallel corpora. Then we compare the

classification results with the previously published experiments and our results in the

learning representation with different basic language structures.

1.2 Related Works

Recently, cross-lingual representation has been quite popular. In the literature, one may

find several main approaches for cross-lingual embeddings. They can be grouped as

monolingual mapping, cross-lingual training, and joint-optimization by Ruder [6]. Dif-

ferent types of data representation techniques are used for different purposes. They can

be word-aligned, sentence-aligned or document-aligned corpora. Moreover, depending

on the target task, the corpus can be prepared by bilingual lexicon, for example, for

translation. Our study concentrates mainly on cross-lingual training. In this approach,

training process depends exclusively on optimizing the objective function for cross-lingual

embedding.

The first example was given by Hermann and Blunsom [7]. The authors use a parallel

sentence-aligned corpus. They train two models in parallel to compute sentence represen-

tations. Using the objective function the distance between sentences from two languages

is minimized to reach sentence embedding. In this thesis study, we are going to use and

extend by Hermann and Blunsom approach by adding new composition vector models

[7]. Another approach comes from Larochelle et al. [8]. They use a monolingual tree-

based auto-encoder to encode the input sentence and another encoder to decode to form

target sentence. Kocisky et al. has suggested an approach to learn word embeddings

and alignments at once such that a word in the source sentence is used to predict the

word in the target sentence [9]. Hermann and Blunsom extended their approach in [3]

to cover document embeddings [7]. In their application, first sentence embeddings are

computed then recursively the same composition function applied to compute document
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embeddings. Chandar et al. [10] modified the approach proposed by Larochelle et al.

[8]. Instead of using a tree-based decoder, they suggested a bag of words technique us-

ing a sparse binary vector of word occurrences. Similar to sentence-aligned methods,

Manning, Pham and Luong proposed a method to learn sentence representations by ex-

tending paragraph vectors Mikolov et al. [11] to the multilingual setting [12]. Sentences

of different languages are aligned to share the same vector. In her thesis [13], Sohsah

applied two simple composition function mentioned by Hermann and Blunsom using cor-

pora prepared by morphological analysis [7]. It was the first attempt to use morphemes

in Turkish instead of tokens. Turkish is a morphologically rich language, and easily a

number of words can blow up in the corpus without carrying crucial semantic informa-

tion. So instead of word or token, root morpheme can be more efficient to build up

embeddings in Turkish language.



Chapter 2

Representation Learning

2.1 Distributed Representation

Distributed representations are the continuous representations of discrete objects (token

or morpheme) in a language. Usually, word representations are found for a language

and used for other NLP tasks such as classification, sentiment analysis etc. Here we

concentrate on finding sentence representations from multilingual parallel corpora and

search for how the usage of joint-space representations effect the performances of other

NLP tasks. Our model learns to represent language structures like word, morpheme or

sentence via a composition function such that distributed representations in joint-space

help a model to learn a shared meaning between similar language constituents. Besides,

these representations can be used to capture the syntactic and semantic content of the

documents.

The model uses a multilingual objective function, and as a part of it, a composition

vector model (CVM) is used to compute semantic representations of sentences. CVM

computes and learns the representation in a hierarchical manner, first token or morpheme

and then sentence representation.

CVM models use training signals like parse tree or annotated data additionally. In

our model, CVM uses a sentence-aligned parallel corpora. By using the same objective

function and CVM among all languages, we can learn a joint-semantic representation.

Moreover, CVM models learn how to compute sentence level representation by using a

4
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token or morpheme representations. Common semantic representations can be found by

employing parallel corpora of multiple languages.

Distributed representation can be learned mainly by using two approaches. The first one

is topic modeling techniques. Window method is used to compute embedding. From a

large corpus, the word occurrence frequency is computed within a certain window size

of the target word. These word counts are subsequently used to compute embeddings.

LDA and LSA techniques use this method. The main drawback of these techniques is

that they use document level context and try to capture the topics from whether some

words are used or not. They do not use the syntactic content.

Natural language models have recently become more preferred models for computing

distributed representations. By the work of Collobert and Weston [14], Mnih and Hinton

[15], Mikolov et al. [16], it has been achieved great benefit in language modeling. Neural

network architectures have been used broadly for learning word embeddings and been

shown that they could improve supervised NLP tasks. Unsupervised word embeddings

can easily be used with different NLP tasks and improve their performances.

Most of the research on distributed representations is concentrated on a single language.

English as a language with a large amount of resources has been the main focus. How-

ever, much work can be done by transferring linguistic information among languages by

learning multilingual embeddings. A feasible approach is to learn joint embedding from

shared semantic space across multiple languages.

2.2 Compositional Distributed Semantics

Through representing individual language units such as words or tokens, a distributional

representation encodes the necessary information about the corresponding word or to-

ken. Such information can be encoded by using collocational methods in Collobert and

Weston [14] and Erk et al. [17].

Individual word representations, however, can not be sufficient. A semantic representa-

tion of a larger structure such as sentence or phrase is better to encode the meaning for

a number of reasons. However, the same method for learning word level representation



Chapter 2. Representation Learning 6

may not be so useful for larger structures. Instead, it is better to focus on learning

composition functions for large structures and use them to derive the representation of

its parts. In the literature, one may find from simple composition function like using bi-

grams in Mitchell and Lapata [18] or some mathematical operations like multiplication of

representation of constituents to more complex ones like a matrix or tensor composition

or convolutional networks and LSTMs.

Mitchell and Lapata in list some examples of simple composition functions applied to

bi-grams [18]. Word level representations can be extracted by recursively employing

these functions. Additionally, Clark and Pulman has suggested a tensor-based model as

a semantic composition [19]. Recently, various forms of RNNs have successfully been

used as semantic composition function and applied to the related NLP tasks. Such

models include recursive auto-encoders by Socher and Manning et al. [20], matrix-vector

recursive neural networks by Socher and Huval et el.[21], untied recursive neural networks

Hermann and Blunsom [22] or convolutional networks by Hermann and Blunsom [23].

2.3 Vector Space Models

A vector space is an algebraic model of any object in machine learning in general. Specifi-

cally, in NLP it is a model for the representation of language structures. These structures

can be from lowest level such as a single character or character n-grams to morphemes,

tokens, sentences, paragraphs up to any size of documents. It is usually vector space with

a predefined dimension. There are a matrix or tensor variants of it. Once constructed

by different methods, they can be used for many NLP tasks. Using similarity metrics,

for example, word, sentence or documents similarity can be studied.

A vector model for a language element is called embedding in the corresponding vector

space. Embedding is usually represented as a vector in n-dimensional vector space. In

NLP, embeddings for language structures such as word, token or morpheme are exten-

sively used. One of the methods used to represent language units as vectors is one-hot

encoding. Its dimension is the number of distinct language units in the corpus. Each

vector that represents a unit consists of all elements as zero except the one that indicates
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that feature. That vector element is assigned as one. However, this kind of representation

is not appropriate to represent syntactic and semantic properties of language structures.

Instead, a distribution of values for high dimensional vector can be used. Each com-

ponent of a vector is a real value. Such representations can model language structures

more compactly. Instead of vectors space with huge number of dimension as in the case

of one-hot encoding, a low-dimensional vector is enough to provide the information to

represent the language features. It can also convey syntactic and semantic properties of

language constituent.



Chapter 3

Natural Language Processing

3.1 Terminology

Natural language processing is an inter-disciplinary field that combines computational

linguistics and machine learning or artificial intelligence. Mainly, it is interested in human

languages and text or documents in human languages. Several essential NLP tasks should

be explained to make our thesis study understandable.

Stemming is the process of removing affixes (suffixed, prefixes, infixes, circumfixes) from

a word and obtaining a word stem. For example :

running → run

Lemmatization is a process of capturing canonical forms based on a word’s lemma. For

example, stemming the word "better" would not find its citation form. However, lemma-

tization would result in the following:

better → good

Corpus indicates a collection of documents. Usually, it is formed from a single language

of texts. In our case, we use documents from multiple languages – called multilingual

corpora ( plural of corpus).

8
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3.2 Token And Tokenization

A typical NLP task starts with segmenting corpus into words, sentences, phrases, and

symbols. These language constructs are linguistically significant. Segmenting corpus into

indicative language units is crucial for learning effective representations. Tokenization is

one of these processes. The tokens may be words or numbers or the punctuation mark.

Tokenization is done by locating word boundaries and splitting sentences into words. The

ending point of a word and the beginning of the next word are called word boundaries.

3.3 Morpheme And Morphological Analysis

As indicated before, tokenization is a kind of segmentation of corpus into words. How-

ever, even words can be segmented into meaningful smaller structures. These are called

morphemes. Morpheme is defined as the "minimal unit of meaning". Morphology is the

study of structure and formation of words from morphemes in a language. Most mor-

phemes are called affix. There are two kinds of affix, a prefix, and a suffix. Languages

can be classified according to their morphological structures, and some of them have

rich morphological structure. Depending on the language studied, morphemes can be

more useful in a representation learning task in NLP. English language, from the mor-

phological point-of-view, can be considered a straightforward language. However, the

other languages may behave rather in different ways. In Agglutinative languages, simple

words are usually combined without change of form to express compound ideas. For

example, Turkish and Finnish are such languages. In Finnish, a single verb may appear

in thousands of different forms Creutz and Lagus [5]. While working on learning repre-

sentation of language structures, usually word is taken as the smallest meaningful unit,

and its embedding is computed. However, taking language morphological structures into

account, learning representation can be started from morphemes then ascended up to

words and sentences. The smaller units can be combined to make larger structures.



Chapter 4

Problem Definition

One of the significant problems of working in NLP problems is finding a corpus large

enough to model language structures. Because of this limitation, most of the work has

been done on the high-resources languages like English. Distributed representation is the

most accepted way to encode relations between words. Recent studies have shown compo-

sitional semantic representations can be applied to monolingual applications. Moreover,

some initial work has been conducted successfully on learning representations across lan-

guages.

One of the solutions to data scarcity problem can be solved by learning multilingual rep-

resentations using parallel corpus between a high-resource language and a low-resource

language. Besides, a multilingual representation can capture semantic relations between

languages. In this thesis, we have studied possible solutions to data scarcity problem

by employing compositional vector models to learn embeddings of aligned sentences and

applying them to a cross-lingual document classification problem where training docu-

ment resources of one language are ubiquitous but very scarce for another language.

To tackle the problem of finding the correct compositional vector model to compute

sentence embeddings from its constituents, we have studied two methods for segmenting

sentences and words. Firstly, sentences were segmented into tokens. So the basic lan-

guage unit was token. As a second step, we have applied morphological segmentations

to words as well as tokenization. So the basic language unit was morpheme. Then bilin-

gual models using different CVMs were trained by using the parallel corpus segmented

10
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either by tokenization or morphological analysis. There are two outputs of the training

process of a bilingual model. One of them is embedding of basic language units for each

language, and the other is CVM model parameters to compute sentence embedding from

these basic unit embeddings.

In summary, while studying the problem of extracting distributed representations from

a language corpora, usually two main difficulties are tackled: data scarcity problem for

some languages and the fact that languages are not equal regarding grammar and seman-

tics. It is therefore inappropriate to treat all languages in the same manner. The central

claim of this study is to find an adequate joint-space embedding of common structures

for languages in a hierarchical manner and explore their impact on common NLP tasks

- in this case, document classification.



Chapter 5

Methodology

5.1 Tokenization And Morphological Analysis

In our study, for tokenization, we use The Natural Language Toolkit (NLTK). NLTK

is a collection of open source programs including corpus readers, tokenizers, stemmers,

taggers, parsers, etc. It also provides sample programs written in Python.

Morphology is the study of structure and formation of words in a language. Languages

can be classified according to their morphological structures, and some of them have

rich morphological structure. Depending on the language studied, morphemes can be

more useful in a representation learning task in NLP. In our study, we investigated also

morpheme representations as well as token representations and their effect on NLP tasks.

Constructing a morphological analyzer based on linguistic rules is considerably compli-

cated and requires too much time. Unsupervised morphological analyzers have become

popular because of its unsupervised nature and dependency on only data, not grammat-

ical rules. Therefore to segment corpus into morphemes, we decided to use an unsuper-

vised morphological tool, Morfessor, Creutz and Lagus [4] 1. Morfessor is a family of

methods for unsupervised morphological segmentation. Morfessor first separates words

recursively to achieve an objective called Minimum Description Length. Then it labels

morphemes with affix type as prefix, stem or suffix. Finally, it learns how to form a word

from affixes.
1http://morpho.aalto.fi/projects/morpho/

12
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Morphessor models were trained by using Wikipedia datasets 2 for each language set:

English, Turkish, German and French. By using these models, corpus for each language

and cross-lingual documents are processed and segmented into morphemes.

5.1.1 Out of Vocabulary Issue - OOV

During training of the models to compute distributed representations, there is an impor-

tant issue. It is called out of vocabulary case. During the testing phase, the model may

be in a position to handle some language units (words, tokens or morphemes) whose rep-

resentation it does not know. In NLP tasks, this usually happens because it is impossible

that training set covers all language features. A common approach for solving this issue

is to replace some corpus constituents with UNK symbol either randomly or by selecting

the constituents that have occurrence frequency below the certain limit in the corpus.

By replacing some elements with UNK symbol before training, the model can learn its

representation, and during testing whenever it encounters an unknown language unit,

the representation of UNK symbol can be used instead of the unknown element.

5.2 Compositional Vector Models

Prior work on learning compositional vector representation by Herman and Blunsom [3].

It removes the requirements for parse trees or annotated data limitations. Their idea

is that given enough parallel data finding a shared representation of parallel sentences

would capture the common syntactic and semantic structures between these sentences.

Since languages have different semantic structures, we compute deeper semantic repre-

sentations. First, we define an energy function as follows: two functions are defined

f : x→ Rd and g : y → Rd (5.1)

These functions map sentences from language x and y onto a semantic representation

embedding space Rd . Given a parallel corpora C, an energy function is defined as:
2http://opus.nlpl.eu/Wikipedia.php
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E(x, y) =‖ f(x)− g(y) ‖2 (5.2)

The objective is to minimize E for all aligned sentences in a given parallel corpus. By

using the energy function, we can define an objective function:

J(Θ) =
∑

(x,y)∈C

(E(x, y) +
λ

2
‖ Θ ‖2) (5.3)

Here Θ is the set of model parameters.
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Figure 5.1: CVM Diagram

Figure 5.1 shows the diagram of a model for multilingual representations. It minimizes

the distance between embedding vectors of sentences from two languages in joint-space.

CVM is used to compute sentence representation from low-level components such as

token or morpheme.

The objective function could use any composition function f and g. Since we intend

to find a generic model that could be used for a wide range of languages, composition

function used should not depend on any syntactic information. In our study, we evaluated

four different CVM functions.

5.2.1 Additive

The first function is called additive model - Add . It computes sentence vectors by simply

adding language constituent representations.

f(x) =
n∑

i=1

xi (5.4)

Equation 5.4 is the formula of Additive CVM.
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5.2.2 Bi-Tanh

The second function is called bi-gram model BI-Tanh . This function computes sentence

vectors by adding representations of sentence constituents (tokens or morphemes) as bi-

grams and applying a nonlinear function Tanh to bi-grams and summing all.

Unlike Add model, BI model may capture nonlinear interactions between constituents.

f(x) =

n−1∑
i=1

tanh(xi+1 + xi) (5.5)

Equation 5.5 is the formula of Bi-Tanh CVM.

5.2.3 LSTM

A Recurrent Neural Network (RNN) is a class of artificial neural networks (ANN) where

there are connections between nodes such that it can represent the dynamic model of

an ordered sequence or time-dependent data. This behavior makes them an appropriate

type neural network model to be used in modeling of language structures. Different kind

of neural network blocks can be used to build an RNN model. One of them is Long Short

Term Memory (LSTM) unit.

A vanilla LSTM unit has three gates (input, forget and output), block input, a single

cell, an output activation function, and peephole connections. The output of the block

is recurrently connected back to the block input and all of the gates Schmidhuber et el.

[24].

Here xt is the input vector at time t, W are rectangular input weight matrices, R are

square recurrent weight matrices, p are peephole weight vectors and b are bias vectors.

Functions �, g and h are point-wise non-linear activation functions: logistic sigmoid is

used as the activation function of the gates and hyperbolic tangent is usually used as the

block input and output activation function. The point-wise multiplication of two vectors

is denoted with �:



Chapter 5. Methodology 17

zt = g(Wzx
t +Rzx

t−1 + bz) block input (5.6)

it = σ(Wix
t +Rix

t−1 + pi � ct−1 + bi) input gate (5.7)

f t = σ(Wfx
t +Rfx

t−1 + pf � ct−1 + bf ) forget gate (5.8)

ct = it � zt + f t � ct−1 cell gate (5.9)

ot = σ(Wox
t +Roy

t−1 + po � ct + bo) output gate (5.10)

yt = ot � h(ct) block output (5.11)

The vector equations for a vanilla LSTM layer forward pass are given by 5.6 to 5.11.

LSTM units are widely used for language modeling and other NLP tasks. Since it has

internal memory to keep information from previous steps in the sequence, it is a suitable

example for a compositional function to be used in finding sentence level embeddings

Young and Hazarika et el. [25]. A sentence can be modeled as a sequence of tokes or

morphemes such that LSTM may capture both bag of words approach and nonlinear

interactions between sentence constituents. LSTM model is superior to BI-Tanh model

in taking into account not only bi-grams but all the constituents in the sentence and

their interactions between them. Since LSTM networks have vanishing gradient problem

during training with back propagation, the residual connections can be used to overcome

this issue Boxuan et el. [26]. In LSTM models used in this study, the residual connections

are used between input and cell output layer.
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The third CVM model is a variant of LSTM model. It is a single layer of LSTM called

Lstm-ScAvg . This model has residual connections between inputs and cell outputs of

each step. At the top of the model, all cell outputs are summed up and the average of

cell outputs are computed.

Figure 5.2: Layout of Lstm-ScAVG

Figure 5.2 shows the Lstm-ScAvg diagram used as a CVM in bilingual sentence repre-

sentation learning. LSTM has a residual connection from input to cell outputs. At the

final stage, all cell outputs are summed up and an average of them is taken.

5.2.4 BiLSTM

The fourth CVM model is a single layer bi-directional LSTM called BiLstm-ScAvg .

The basic idea of BiLSTM is to present each training sequence forwards and backwards

to two separate LSTMs and then merge the results. This kind of network structure

provides the compression and the output layers with complete past and future context

for every point in the input sequence Zennaki et el. [27]. In our case, this model has

residual connections between inputs and cell outputs of each step. At the top of the

model, the outputs of the same sequence step from forward pass and backward pass

are concatenated and summed up. The final output of the network is computed as an

average of outputs of all steps.
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Figure 5.3: Layout of BiLstm-ScAVG

Figure 5.3 shows the BiLstm-ScAvg (Bidirectional LSTM) diagram used as a CVM in

bilingual sentence representation learning. Bi-LSTM has residual connections from in-

puts to cell outputs. At the final stage cell outputs of the same steps from both direction

are concatenated. Then resulting vectors from concatenation are summed up and an

average of them is taken.



Chapter 6

Experiments And Tests

6.1 Corpora

We used TED corpus for IWSLT 2013 Cettolo et el. [28] 1. This corpus contains English

transcripts of all talks and their translation of different languages. All four language

sets are sentence-aligned and each contains about 137000 sentences. For document clas-

sification, we used a subset of TED talks and their translations in all four languages.

These talks are tagged with 15 topics to be used for document classification. For each

language, topic and corpus type ( token or morpheme), there are train and test sets.

Morphessor by Creutz and Lagus models were trained by using Wikipedia data sets for

each language [5]. Both corpora were processed using NLTK tokenizer for tokenization

and Morphessor for morphological analysis. Table 1 shows the number of tokens and

morpheme segments in the corpus of each language texts.

6.2 Models Setup

The following parameter list is the list of hyper-parameters of models used as CVM for

learning representations.

Add model hyper-parameters are:

word vector dimension: 64

learning rate: 0.1 for the token set
1https://wit3.fbk.eu/

20
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learning rate: 0.01 for the morpheme set

momentum=0.1

optimization: SGD minibatch

Bi-Tanh model hyper-parameters are :

word vector dimension: 64

learning rate: 0.01 for the token set

learning rate: 0.01 for the morpheme set

winsize=2

momentum=0.1

optimization: SGD minibatch

Lstm-ScAvg model hyper-parameters are : word vector dimension: 64

LSTM cell : 128

learning rate: 0.01,0.001,0.0001 for the token set

learning rate: 0.01,0.001,0.0001 for the morpheme set

step : 60

alpha = 0.95

dropoutProb=0.5

momentum=0.5

optimization: Rmsprop minibatch

BiLstm-ScAvg model hyper-parameters are :

word vector dimension: 64

LSTM cell : 128

learning rate: 0.01,0.001,0.0001 for the token set

learning rate: 0.01,0.001,0.0001 for the morpheme set

step : 60

alpha = 0.95

dropoutProb=0.5

momentum=0.5
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optimization: Rmsprop minibatch

During training mini batch gradient descent optimization was used. The average batch

size was 100. While Stochastic gradient descent was used for training Add and Bi-

Tanh models, for Lstm-ScAvg and Bi-Lstm-ScAvg models, RMSPROP was used as the

optimization method. Different learning rates were assigned depending on which type of

the corpus was used (token or morpheme).

6.3 Hardware and Software Used For Tests

All module developments and tests were performed on TITANX 16GB memory and 12GB

GPU memory with Linux OS. I have developed the modules by using Lua and Python2.

The models were developed by using Lua and Torch deep learning library 3. Torch has

GPU support with CUDA library4. Because of GPU support, the deep learning models

can be trained more faster than using CPU. Without GPU support, it would be almost

impossible to train the models with the huge data set.

6.4 Representation learning

The following procedure was followed during the representation learning for cross-language

embedding for English-German and English-French. First, a bi-lingual model for English-

Turkish was trained by English-Turkish sentence-aligned parallel corpora. After con-

structing joint-space of embeddings for English and Turkish tokens or morphemes, at

the second phase, a new bi-lingual model for English-German was trained by English-

German sentence-aligned parallel corpora. The weights in the models for English set was

kept fixed and the model was trained to learn embeddings for German set. At the last

phase, the same procedure was applied to the English-French set. All bi-lingual models

used the same CVM for each training period and the same segmentation type for the

corpus. In the end, using 4 languages, 4 CVMs and 2 corpus types, 32 different models

were trained and prepared for testing.
2all programs and data files can be found at this github address: https://github.com/sdalaman
3https://github.com/torch/nn
4https://github.com/torch/cutorch
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Figure 6.1: Lstm bi-lingual model for English-Turkish parallel corpora. The weights
of both models are updated.

Figure 6.1 shows learning process of a bi-lingual model for English-Turkish parallel cor-

pora. The models updated the weights of both language sides during training by the

parallel corpus English-Turkish. The bi-lingual model was trained to find the proper

weights of both sides such that the corresponding sentence vectors from English and

Turkish sets were aligned adjacent to each other.

Figure 6.2: Multilingual model training with English-German and English-French
corpora

Figure 6.2 shows learning process of two bi-lingual models trained with English-German

and English-French corpora respectively. Model weights for English set were used as

pivot reference and kept fixed. On the other hand, the model weights for German and

French sets were updated to align the corresponding vectors as much as adjacent to each

other and the English counterpart.



Chapter 6. Experiments And Tests 24

Table 6.1: Statistics for Corpus Segmentation

Language

Segmentation English German French Turkish
Number of Tokens 55885 106855 79951 184475
Number of Morphemes 23664 37812 28728 48721

As indicated before, two type of segmentation models were tested. Table 6.1 shows the

number of tokens and morphemes for each language. In each language corpus, there are

approximately 138000 sentences as can be seen in Table 6.2

Table 6.2: Number of sentences for each language-pair corpus

Language

Number of sentences German French Turkish
English 138500 154500 136796

6.5 Paraphrase Tests

Two experiments were performed and reported during paraphrase test. First, we evalu-

ated models with paraphrase tests. Randomly selected 100 sentences from English set

and their corresponding pair sentences from other languages set were compared according

to the closeness of their embedding vectors. If the corresponding sentence was the closest

one, the score was increased by one. The total score of these comparisons was reported.

This test evaluates how well models compute sentence embeddings for the corresponding

sentence pairs from each language. This test was performed for token and morpheme

segmented corpora with all 4 CVM models. Table 6.3 and 6.4 summarize their results.
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Table 6.3: Paraphrase Test Results of Corpus Split into Tokens

Language Direction CVM German French Turkish

Add 0.4348925411 0.8310589162 0.6417025063En->L2
BI-Tanh 0.0611883692 0.0709224511 0.5043749073

Lstm-ScAvg 0.2371638142 0.3545543585 0.2190150801

BiLstm-ScAvg 0.2621230644 0.3919360104 0.2173656927

Add 0.1730720607 0.6803569085 0.6378466558L2->En
BI-Tanh 0.0987357775 0.258037003 0.5343318997

Lstm-ScAvg 0.157192339 0.2965502231 0.218072573

BiLstm-ScAvg 0.1365118174 0.3147241267 0.1849670123

Table 6.4: Paraphrase Test Results of Corpus Split into Morphemes

Language Direction CVM German French Turkish

Add 0.3032869785 0.522700433 0.4395669583En->L2
BI-Tanh 0.0499367889 0.0856186852 0.3692718375

Lstm-ScAvg 0.2442950285 0.4388943302 0.271795476

BiLstm-ScAvg 0.1145069275 0.1856023506 0.1240574929

Add 0.1403286979 0.3763285658 0.3977458105L2->En
BI-Tanh 0.0798988622 0.0828631413 0.3916654308

Lstm-ScAvg 0.1485330073 0.3203830667 0.2721489161

BiLstm-ScAvg 0.0634678077 0.1628577647 0.1237040528

6.5.1 Paraphrase Test Results Discussion

Test results show percentage of success in finding correct L1-L2 sentence pairs. Tests were

performed in both directions. The first is English sentence against the other language L2

and the second is the other languages sentence against English sentence. Bold indicates

best results. According to the test results, the most successful CVM is Add method

for both token and morpheme sets . For token set, Lstm-ScAvg and BiLstm-ScAvg are

close to each other and they are far better than BiTanh except Turkish set. However,

for morpheme set, Lstm-ScAvg is better than BiLstm-ScAvg. The worst performance

belongs to BiTanh for German and French set. This is probably due to their sensitivity

to the order of words in a sentence. The performance of BiTanh on Turkish set is far

better than other language sets because the meaning of a sentence is less sensitive to the

order of words compared to others in Turkish language.
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6.6 Cross-Lingual Document Classification (CLDC) Tests

There are documents of 4 languages with 15 different topic tags. For each topic, we

have two training sets. One of them is tagged as the positive set, which contains the

documents that belong to the topic. The other one is tagged as the negative set, which

contains the documents that do not belong to the topic. For each topic, a classifier was

trained to differentiate between negative and positive examples. Training of a classifier

for a topic was done with a set of training documents from language L1 and tested with

a set of test documents of Language L2. For this purpose, for each language, a training

and test set of 15 topics were prepared.

The primary target in CLDC test is to use joint-space embeddings for classification. The

representations of language constituents (words, tokens, and morphemes) were learned

by using a parallel corpus. Consequently embedding vectors of corresponding hierarchical

structures like a sentence or document for all languages would be adjacent to each other

in the joint-space. Then the document classifier can use this adjacency such that it can

be trained with data from high-resource language and used to classify the documents

from a low-resource language.
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Figure 6.3: Document Classifier Diagram

Figure 6.3 shows the combined diagram for CVM and a binary classifier. The classifier

uses a CVM model to compute sentence embedding vectors. Then document embeddings

are computed by summing all embedding vectors of sentences in the document. The

document vector is used as input to the binary classifier.
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Figure 6.4: Binary Classifier Diagram

Figure 6.4 shows binary document classifier model with one hidden layer, which is used

for CLDC test. Hidden layer is using Tanh activation function to squash the aggregation

of embedding values of document vector. Sigmoid function is used in the output layer

to differentiate between positive and negative samples.

The classifiers are built upon the sentence embedding models. The training and evalua-

tion of a classifier are as follows: first, a document is prepared either with tokenization

or morphological analysis according to the model type. Then by using a token or mor-

pheme embeddings and CVM model, an embedding vector is computed for each sentence

in the document. Then all sentence embeddings are added to find an embedding vector

for a document. After computing document embedding vectors of all the documents in

the training set, the classifier is trained using document embedding vectors of positive

and negative samples. During this step, a CVM model is employed to compute sentence

embeddings before classifier training. By using these steps, we trained each classifier

with the train set and tested with the test set of the corresponding topic. Train and test

samples were strictly separate sets. After executing the training and testing procedure

10 times, we reported the average accuracy and F1-score for each topic. Finally, as a

test result, we reported the average accuracy score and F1-score of all topic classifiers.

Training sample documents were selected from the set of high-resource language and test

sample documents were from other languages sets.
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Table 6.5: Classifier F1-Scores of Corpus Split into Tokens

Language Direction CVM German French Turkish

Add 0.2078455416 0.381443812 0.328651887En->L2
BI-Tanh 0.106378589 0.158658606 0.231282439

Lstm-ScAvg 0.190603733 0.343417603 0.321859386

BiLstm-ScAvg 0.1991546494 0.1292028734 0.1516834759

Add 0.2530711924 0.3238294718 0.299052239L2->En
BI-Tanh 0.087920122 0.16652522 0.211125728

Lstm-ScAvg 0.25608471 0.28965102 0.308054251 -

BiLstm-ScAvg 0.1344384198 0.1939823552 0.2143356161

Table 6.6: Classifier Acc-Scores of Corpus Split into Tokens

Language Direction CVM German French Turkish

Add 50.6153846154 72.5850340136 76.3636363636En->L2
BI-Tanh 28.81538462 47.42857143 67.68484848

Lstm-ScAvg 68.34871795 72.80272109 77.38181818

BiLstm-ScAvg 55.3230769231 29.7142857143 34.3272727273

Add 60.4242424242 75.5151515152 56.1212121212L2->En
BI-Tanh 25.88484848 48.57575758 65.81818182

Lstm-ScAvg 65.81818182 68.29090909 71.34545455

BiLstm-ScAvg 33.6242424242 55.7212121212 54.7757575758

Table 6.7: Classifier F1-Scores of Corpus Split into Morphemes

Language Direction CVM German French Turkish

Add 0.1329648119 0.370417242 0.3181007909En->L2
BI-Tanh 0.189251966 0.121199969 0.119846185

Lstm-ScAvg 0.182662077 0.3758209 0.327705446

BiLstm-ScAvg 0.1876407684 0.22134477796 0.1863615868

Add 0.1837960883 0.21629 0.2424135911L2->En
BI-Tanh 0.109304131 0.10261755 0.192656384

Lstm-ScAvg 0.303459923 0.327898993 0.345371767

BiLstm-ScAvg 0.1925581865 0.1909009205 0.2071623678
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Table 6.8: Classifier Acc-Scores of Corpus Split into Morphemes

Language Direction CVM German French Turkish

Add 70.6153846154 79.1156462585 76.4848484848En->L2
BI-Tanh 17.3538461538 20.306122449 40.0727272727

Lstm-ScAvg 46.63589744 79.63265306 75.92727273

BiLstm-ScAvg 52.3076923077 54.3809523810 48.9212121212

Add 42.4848484848 56.3636363636 66.7272727273L2->En
BI-Tanh 35.05454545 27.1030303 42.18787879

Lstm-ScAvg 67.9030303 74.41212121 78.32727273

BiLstm-ScAvg 49.1636363636 49.4181818182 6 51.2363636364
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Table 6.9: Cross-Lingual Classifier Acc Scores of Corpora Split into Tokens

CVM=Add (Token) Test Language
Training Language German French Turkish
German 65.93197279 68.01212121
French 55.37435897 70.93333333
Turkish 61.85641026 69.76870748

Table 6.10: Cross-Lingual Classifier Acc Scores of Corpora Split into Morphemes

CVM=Add (Morpheme) Test Language
Training Language German French Turkish
German 57.89115646 62.24242424
French 60.87179487 72.36363636
Turkish 63.12820513 73.80952381

Table 6.11: Cross-Lingual Classifier Acc Scores of Corpora Split into Tokens

CVM=Bi-Tanh (Token) Test Language
Training Language German French Turkish
German 35.31972789 30.2969697
French 20.56923077 65.3636363
Turkish 13.8615384 50.53061224

Table 6.12: Cross-Lingual Classifier Acc Scores of Corpora Split into Morphemes

CVM=Bi-Tanh (Morpheme) Test Language
Training Language German French Turkish
German 13.11564626 19.6
French 20.77948718 29.65454545
Turkish 17.13333333 20.53741497

Table 6.13: Cross-Lingual Classifier Acc Scores of Corpora Split into Tokens

CVM=Lstm-ScAvg (Token) Test Language
Training Language German French Turkish
German 65.93197279 68.01212121
French 55.37435897 70.93333333
Turkish 61.85641026 69.76870748
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Table 6.14: Cross-Lingual Classifier Acc Scores of Corpora Split into Morphemes

CVM=Lstm-ScAvg (Morpheme) Test Language
Training Language German French Turkish
German 69.79591837 67.39393939
French 67.90769231 69.13939394
Turkish 58.87179487 75.55102041

Table 6.15: Cross-Lingual Classifier Acc Scores of Corpora Split into Tokens

CVM=BiLstm-ScAvg (Token) Test Language
Training Language German French Turkish
German 35.4013605442 35.5636363636 -
French 33.1076923077 38.496969697
Turkish 53.9076923077 53.6054421769

Table 6.16: Cross-Lingual Classifier Acc Scores of Corpora Split into Morphemes

CVM=BiLstm-ScAvg (Morpheme) Test Language
Training Language German French Turkish
German 51.48979592 49.9030303
French 49.33333333 51.75757576
Turkish 48.96410256 48.2585034

6.6.1 CLDC Test Results Discussion

The test results were reported for F1-score and accuracy rate for each CVM model and

corpus segmentation type. CLDC tests were performed in both direction ( training

with English documents, tested with L2 documents or vice versa). Bold indicates best

results. In CLDC, English-L2 or L2-English tests, Lstm-ScAvg CVM F1 scores are

better than others. However, morpheme set results of English-L2 or L2-English tests

for Add and Lstm-ScAvg are close to each other compared to the other CVM results.

Cross-lingual test result between languages except English set shows that Turkish and

French representation are close to each other compared to others. Add and Lstm-ScAvg

performances are better than others.

The overall performance of Add CVM is better than others. Lstm-ScAvg is very close to

Add. The training time is very long for Lstm-ScAvg and BiLstm-ScAVG because of their

network structure. Although Add model seems to have better performance, the main
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reason for this is that the order of words in a sentence is not the critical characteristic

of these languages. Add model may not be successful with some other languages where

the order is determinate. Lstm models are proven to perform well at modeling ordered

sequences. Lstm model and its derivatives can be more successful to model semantic and

syntactic representation of a sentence because sentence constituents can be considered

as a sequence and their order is both important and decisive. The main drawbacks of

Lstm models can be listed as their memory requirement, which is much higher than

other simple models and they need huge data set to reach more satisfying performance

increase.
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Summary And Conclusion

In this study, we have presented the applications and performance of compositional vector

models combined with token and morpheme segmentation methods for learning multi-

lingual representations. The distributed representation of tokens and morphemes were

computed by using sentence-aligned parallel corpora. Parallel corpora for four languages

English, Turkish, German and French were used. All embeddings in the joint-space were

computed in conjunction with a multilingual objective function for compositional vector

models.

With this approach, we investigated how to find representations of different language

constituents such as tokens and morphemes in multilingual joint-space and their relative

effect on the performance of an NLP task like document classification. Moreover, we

examined the embeddings learned with different composition functions and their impact

on the performance of cross-lingual document classification.

It has been shown that multilingual language embeddings can be a useful tool for different

NLP tasks where multilingual performance is expected. For example, this method can

be an effective way to improve the performance of document classification models for a

language with low resources by transferring the information from a language with high

resources.

34
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