
Sensor Based Cyber Attack Detections in

Critical Infrastructures using Deep

Learning Algorithms

A thesis submitted to the
Graduate School of Natural and Applied Sciences

by

Murat Yilmaz

in partial fulfillment for the
degree of Master of Science

in
Cybersecurity Engineering

Sensor Based Cyber Attack Detections in Critical Infrastructures

using Deep Learning Algorithms

Murat Yilmaz

Abstract

The technology that has evolved with innovations in the digital world has also caused

an increase in many security problems. Day by day the methods and forms of the

cyber attacks began to become complicated, and therefore their detection became more

difficult.

In this work we will use datasets prepared in collaboration with Raymond Borges and

Oak Ridge National Laboratories. These datasets include measurements of the Industrial

Control Systems related to chewing attack behavior. These measurements include syn-

chronized measurements and data records from Snort and relays with simulated control

panel.

In our work, we developed two models using this dataset. The first is the model we

call the Deep Neural Network (DNN) Model and build using the latest Deep Learning

algorithms. Second is the model which we created by adding the AutoEncoder (AE)

structure to the DNN Model. All of the variables used when developing our models were

set parametrically. A number of variables such as Activation Method, number of hidden

layers in the model, number of nodes in the layers, number of iterations were analyzed

to create the optimum model design.

When we run our model with optimum settings, we obtained better results than related

publications. The learning speed of the model we have obtained 100% accuracy rate

is also quite satisfactory. While the training speed of the dataset containing about 4

thousand different operations lasts about 90 seconds, the model which completes the

learning process is at the level of milliseconds to detect new attacks. This increases

the applicability of the study. Detailed information about the results of the model is

interpreted in Chapter 5 and the proposals for the development of the model are discussed

in Chapter 6.

In our work, we intend to minimize the cost of recognizing and learning new attacks

by using deep learning methods to more effectively protect industrial systems such as

critical infrastructures.

Keywords: Engineering, Critical infrastructures, Industrial Systems, Information Se-

curity, Cyber Security, Cyber Attack Detections

iii

Kritik Altyapılarda Sensör Tabanlı Veri Kontrolü ile Derin Öğrenme

Algoritmaları Kullanılarak Siber Saldırı Tespiti

Murat Yilmaz

Öz

Dijital dünyadaki yeniliklerle beraber gelişen teknoloji, bir çok güvenlik probleminde de

artışa neden oldu. Gün geçtikçe siber saldırıların yöntem ve şekilleri karmaşık bir hal

almaya ve dolayısıyla bunların tespiti de daha zor olmaya başladı.

Bu çalışmada Raymond Borges ve Oak Ridge Ulusal Laboratuarları’nın işbirliği ile hazır-

lanan veri setlerini kullandık. Bu veri setleri Endüstriyel Kontrol Sistemlerinin siber

saldırı davranışlarıyla ilgili ölçümleri içermektedir. Bu ölçümler, simüle kontrol paneli

Snort ve rölelerden gelen senkronize veri kayıtlarını içermektedir.

Çalışmamızda bu veri setini kullanarak iki model geliştirdik. Birincisi, DNN Model

dediğimiz ve en güncel Deep Learning algoritmaları kullanarak oluşturduğumuz modeldir.

İkincisi, bu modele AutoEncoder yapısı ekleyerek oluşturduğumuz modeldir. Modeller-

imizi geliştirirken kullanılan tüm değişkenler parametrik olarak ayarlandı. Aktivasyon

Methodu, modelin gizli katman sayısı, katmanlarda bulunan düğüm sayıları, iterasyon

sayısı gibi bir çok değişken optimum model tasarımını oluşturmak için analiz edildi.

Modelimizi optimum ayarlarla çalıştırdığımızda referans çalışmalardan çok daha iyi sonuçlar

elde ettik. 100% doğruluk oranı ile çalıştırmayı başardığımız modelimizin çalışma hızı

da öğrenme süreciyle birlikte oldukça tatminkardır. Yaklaşık 4 bin farklı işlem içeren

veri setinin eğitim hızı yaklaşık 90 sn sürerken, öğrenme sürecini tamamlayan modelin

yeni gelen saldırıları tespit süresi milisaniyeler seviyesindedir. Bu da çalışmanın uygu-

lanabilirliğini artırmaktadır. Modelin sonuçları ile ilgili detaylı bilgi 5.bölümde verilmiş

ve modelin geliştirilmesi amaçlı öneriler 6.bölümde tartışılmıştır.

Yaptığımız tez çalışması ile her yeni saldırının fark edilip öğrenilmesi maliyetinin makine

ve derin öğrenme yöntemleri ile sınıflandırma metotları kullanılarak minimuma indirilmesini

ve kritik altyapılar gibi endüstriyel sistemlerin, siber saldırılardan daha etkin korun-

abilmesini amaçlamaktayız.

Anahtar Sözcükler: Mühendislik, Kritik altyapılar, Endüstriyel Sistemler, Bilgi Güven-

liği, Siber Güvenlik, Siber saldırı tespiti

iv

Acknowledgments

I am grateful to my thesis co-advisor Dr.Ferhat Özgür ÇATAK who spent a great deal

of time for me during this work and always supported from the beginning to the end of

this work. I also grateful to my thesis advisor Prof.Dr.Ensar GÜL who guided my study

with his valuable ideas.

I would like to express my gratitude to my valuable wife Sena YILMAZ who supported

me during all of this works, I would also like to express my gratitude to my valuable

children Mehmet Kerem YILMAZ and Elif Bilge YILMAZ who have sacrificed their

playing time and waiting for me.

Finally, I would like to thank my valuable managers Tahir ALTINDİŞ, Ertuğrul DURAN,

Teoman DİKMEN and all my teammates who support me in this work.

v

Contents

Declaration of Authorship ii

Abstract iii

Öz iv

Acknowledgments v

List of Figures viii

List of Tables xi

Abbreviations xiii

1 Introduction 1
1.1 Contribution . 4

2 Related Work 5
2.1 Developing a Hybrid Intrusion Detection System Using Data Mining for

Power Systems . 5
2.2 Classification of Disturbances and Cyber-attacks in Power Systems Using

Heterogeneous Time-synchronized Data 6
2.3 A Specification-based Intrusion Detection Framework for Cyber-physical

Environment in Electric Power System . 6
2.4 Machine Learning for Power System Disturbance and Cyber-attack Dis-

crimination . 7

3 Preliminaries 8
3.1 Datasets . 8
3.2 Autoencoder . 12
3.3 Deep Learning . 13

4 Methodology 14
4.1 System Model without Autoencoder . 14
4.2 System Model with Autoencoder . 16

5 Experiments 19
5.1 Experimental Setup . 19
5.2 Experiments Results . 20

5.2.1 DNN Model Results . 20

vi

Contents vii

5.2.1.1 Binary Data Class Results 22
5.2.1.2 Triple Data Class Results 30
5.2.1.3 Multi Data Class Results 36

5.2.2 AutoEncoder Results . 42
5.2.2.1 Binary Data Class Results with AutoEncoder Model . . . 44
5.2.2.2 Triple Data Class Results with AutoEncoder Model . . . 53
5.2.2.3 Multi Data Class Results with AutoEncoder Model . . . 60

5.2.3 Classification Models Results . 66
5.2.3.1 Binary Data Class Results with Classification Models . . 66
5.2.3.2 Triple Data Class Results with Classification Models . . . 67
5.2.3.3 Multi Data Class Results with Classification Models . . . 68

6 Conclusuion and Future Work 69

Bibliography 70

List of Figures

1.1 Cyber Attack Detection Time Globally . 3
1.2 Cyber Attack Detection Time Regional . 3
1.3 Cyber Attacks Rate In Industries . 3

3.1 Lab design in which the dataset is created 9
3.2 Distributions of the columns-1 . 11
3.3 Distributions of the columns-2 . 11
3.4 AutoEncoder Model . 12
3.5 Deep Learning Model . 13

4.1 Deep Learning Neural Network Model Without AE 15
4.2 Deep Neural Network Model With AutoEncoder 17
4.3 Math Models of the Activation Functions [29] 18

5.1 DNN Model Structure . 21
5.2 Binary Class Layer Mode 1 tanh Accuracy 23
5.3 Binary Class Layer Mode 1 tanh Loss . 23
5.4 Binary Class Layer Mode 1 softplus Accuracy 23
5.5 Binary Class Layer Mode 1 softplus Loss 23
5.6 Binary Class Layer Mode 1 softsign Accuracy 24
5.7 Binary Class Layer Mode 1 softsign Loss 24
5.8 Binary Class Layer Mode 1 Linear Accuracy 24
5.9 Binary Class Layer Mode 1 Linear Loss 24
5.10 Binary Class Layer Mode 2 tanh Accuracy 26
5.11 Binary Class Layer Mode 2 tanh Loss . 26
5.12 Binary Class Layer Mode 2 softsign Accuracy 26
5.13 Binary Class Layer Mode 2 softsign Loss 26
5.14 Binary Class Layer Mode 3 relu Accuracy 28
5.15 Binary Class Layer Mode 3 relu Loss . 28
5.16 Binary Class Layer Mode 3 softsign Accuracy 28
5.17 Binary Class Layer Mode 3 softsign Loss 28
5.18 Binary Class Layer Mode 3 linear Accuracy 28
5.19 Binary Class Layer Mode 3 linear Loss . 28
5.20 Triple Class Layer Mode 1 tanh Accuracy 31
5.21 Triple Class Layer Mode 1 tanh Loss . 31
5.22 Triple Class Layer Mode 1 softsign Accuracy 31
5.23 Triple Class Layer Mode 1 softsign Loss 31
5.24 Triple Class Layer Mode 2 tanh Accuracy 33

viii

List of Figures ix

5.25 Triple Class Layer Mode 2 tanh Loss . 33
5.26 Triple Class Layer Mode 2 softsign Accuracy 33
5.27 Triple Class Layer Mode 2 softsign Loss 33
5.28 Triple Class Layer Mode 3 tanh Accuracy 35
5.29 Triple Class Layer Mode 3 tanh Loss . 35
5.30 Triple Class Layer Mode 3 softsign Accuracy 35
5.31 Triple Class Layer Mode 3 softsign Loss 35
5.32 Multi Class Layer Mode 1 tanh Accuracy 37
5.33 Multi Class Layer Mode 1 tanh Loss . 37
5.34 Multi Class Layer Mode 1 softsign Accuracy 37
5.35 Multi Class Layer Mode 1 softsign Loss 37
5.36 Multi Class Layer Mode 2 tanh Accuracy 39
5.37 Multi Class Layer Mode 2 tanh Loss . 39
5.38 Multi Class Layer Mode 2 softsign Accuracy 39
5.39 Multi Class Layer Mode 2 softsign Loss 39
5.40 Multi Class Layer Mode 3 tanh Accuracy 41
5.41 Multi Class Layer Mode 3 tanh Loss . 41
5.42 Multi Class Layer Mode 3 softsign Accuracy 41
5.43 Multi Class Layer Mode 3 softsign Loss 41
5.44 Autoencoder Model Structure . 43
5.45 DNN Model Structure with Layer Mode 1 43
5.46 Binary Class Layer Mode 1 tanh Accuracy with AutoEncoder 45
5.47 Binary Class Layer Mode 1 tanh Loss with AutoEncoder 45
5.48 Binary Class Layer Mode 1 softplus Accuracy with AutoEncoder 45
5.49 Binary Class Layer Mode 1 softplus Loss with AutoEncoder 45
5.50 Binary Class Layer Mode 1 softsign Accuracy with AutoEncoder 45
5.51 Binary Class Layer Mode 1 softsign Loss with AutoEncoder 45
5.52 Binary Class Layer Mode 2 tanh Accuracy with AutoEncoder 48
5.53 Binary Class Layer Mode 2 tanh Loss with AutoEncoder 48
5.54 Binary Class Layer Mode 2 softsign Accuracy with AutoEncoder 48
5.55 Binary Class Layer Mode 2 softsign Loss with AutoEncoder 48
5.56 Binary Class Layer Mode 2 linear Accuracy with AutoEncoder 48
5.57 Binary Class Layer Mode 2 linear Loss with AutoEncoder 48
5.58 Binary Class Layer Mode 3 tanh Accuracy with AutoEncoder 51
5.59 Binary Class Layer Mode 3 tanh Loss with AutoEncoder 51
5.60 Binary Class Layer Mode 3 relu Accuracy with AutoEncoder 51
5.61 Binary Class Layer Mode 3 relu Loss with AutoEncoder 51
5.62 Binary Class Layer Mode 3 softsign Accuracy with AutoEncoder 51
5.63 Binary Class Layer Mode 3 softsign Loss with AutoEncoder 51
5.64 Triple Class Layer Mode 1 tanh Accuracy with AutoEncoder 54
5.65 Triple Class Layer Mode 1 tanh Loss with AutoEncoder 54
5.66 Triple Class Layer Mode 1 softsign Accuracy with AutoEncoder 54
5.67 Triple Class Layer Mode 1 softsign Loss with AutoEncoder 54
5.68 Triple Class Layer Mode 2 relu Accuracy with AutoEncoder 56
5.69 Triple Class Layer Mode 2 relu Loss with AutoEncoder 56
5.70 Triple Class Layer Mode 2 softsign Accuracy with AutoEncoder 56
5.71 Triple Class Layer Mode 2 softsign Loss with AutoEncoder 56

List of Figures x

5.72 Triple Class Layer Mode 3 relu Accuracy with AutoEncoder 58
5.73 Triple Class Layer Mode 3 relu Loss with AutoEncoder 58
5.74 Triple Class Layer Mode 3 softsign Accuracy with AutoEncoder 58
5.75 Triple Class Layer Mode 3 softsign Loss with AutoEncoder 58
5.76 Triple Class Layer Mode 3 linear Accuracy with AutoEncoder 58
5.77 Triple Class Layer Mode 3 linear Loss with AutoEncoder 58
5.78 Multi Class Layer Mode 1 tanh Accuracy with AutoEncoder 61
5.79 Multi Class Layer Mode 1 tanh Loss with AutoEncoder 61
5.80 Multi Class Layer Mode 1 softsign Accuracy with AutoEncoder 61
5.81 Multi Class Layer Mode 1 softsign Loss with AutoEncoder 61
5.82 Multi Class Layer Mode 2 tanh Accuracy with AutoEncoder 63
5.83 Multi Class Layer Mode 2 tanh Loss with AutoEncoder 63
5.84 Multi Class Layer Mode 2 softsign Accuracy with AutoEncoder 63
5.85 Multi Class Layer Mode 2 softsign Loss with AutoEncoder 63
5.86 Multi Class Layer Mode 3 tanh Accuracy with AutoEncoder 65
5.87 Multi Class Layer Mode 3 tanh Loss with AutoEncoder 65
5.88 Multi Class Layer Mode 3 softsign Accuracy with AutoEncoder 65
5.89 Multi Class Layer Mode 3 softsign Loss with AutoEncoder 65

List of Tables

3.1 Features in the dataset . 9
3.2 Event Scenarios (Binary) . 10
3.3 Event Scenarios (Triple) . 10
3.4 Event Scenarios (Multi) . 10

4.1 Model Variables . 16

5.1 Nodes in the layers . 22
5.2 Binary Data Class Results for Layer Mode 1 22
5.3 Confusion Matrix for Layer Mode 1 with Test Dataset 22
5.4 Binary Data Class Results for Layer Mode 2 25
5.5 Confusion Matrix for Layer Mode 2 with Test Dataset 25
5.6 Binary Data Class Results for Layer Mode 3 27
5.7 Confusion Matrix for Layer Mode 3 with Test Dataset 27
5.8 Triple Data Class Results for Layer Mode 1 30
5.9 Confusion Matrix for Layer Mode 1 with Test Dataset 30
5.10 Triple Data Class Results for Layer Mode 2 32
5.11 Confusion Matrix for Layer Mode 2 with Test Dataset 32
5.12 Triple Data Class Results for Layer Mode 3 34
5.13 Confusion Matrix for Layer Mode 3 with Test Dataset 34
5.14 Multi Data Class Results for Layer Mode 1 36
5.15 Confusion Matrix for Layer Mode 1 with Test Dataset 36
5.16 Multi Data Class Results for Layer Mode 2 38
5.17 Confusion Matrix for Layer Mode 2 with Test Dataset 38
5.18 Multi Data Class Results for Layer Mode 3 40
5.19 Confusion Matrix for Layer Mode 3 with Test Dataset 40
5.20 Nodes in the layers with AutoEncoder . 44
5.21 Binary Data Class Results for Layer Mode 1 44
5.22 Confusion Matrix for Layer Mode 1 with Test Dataset 44
5.23 Binary Data Class Results for Layer Mode 2 47
5.24 Confusion Matrix for Layer Mode 2 with Test Dataset 47
5.25 Binary Data Class Results for Layer Mode 3 50
5.26 Confusion Matrix for Layer Mode 3 with Test Dataset 50
5.27 Triple Data Class Results for Layer Mode 1 53
5.28 Confusion Matrix for Layer Mode 1 with Test Dataset 53
5.29 Triple Data Class Results for Layer Mode 2 55
5.30 Confusion Matrix for Layer Mode 2 with Test Dataset 55
5.31 Triple Data Class Results for Layer Mode 3 57

xi

List of Tables xii

5.32 Confusion Matrix for Layer Mode 3 with Test Dataset 57
5.33 Multi Data Class Results for Layer Mode 1 60
5.34 Confusion Matrix for Layer Mode 1 with Test Dataset 60
5.35 Multi Data Class Results for Layer Mode 2 62
5.36 Confusion Matrix for Layer Mode 2 with Test Dataset 62
5.37 Multi Data Class Results for Layer Mode 3 64
5.38 Confusion Matrix for Layer Mode 3 with Test Dataset 64
5.39 Binary Data Class Results with Classification Models 66
5.40 Confusion Matrix for Binary Data Class with Test Dataset 66
5.41 Triple Data Class Results with Classification Models 67
5.42 Confusion Matrix for Triple Data Class with Test Dataset 67
5.43 Multi Data Class Results with Classification Models 68
5.44 Confusion Matrix for Multi Data Class with Test Dataset 68

Abbreviations

DNN Deep Neural Network

AE AutoEncoder

EMEA European MEdicines Agency

APAC Asia PACific

IDS Intrusion Detection System

GPU Graphics Processing Unit

SGD Stochastic Gradient Descent

SVM Support Vector Machine

KNN K-Nearest Neighbors

DTs Decision Trees

xiii

Chapter 1

Introduction

Nowadays, the rapidly developing technology has taken the place of human power in

many places. Especially in large industrial systems, such as critical infrastructures that

can not be managed by human power, security problems could be occur to their computer

systems. Their computer systems have been installed many years ago and then they are

vulnerable for almost every current attacks.

While the definition of critical infrastructure systems varies little from country to country,

it is generally defined as systems or entities that are necessary for the maintenance of

vital social processes, security and economic security [1].

Critical infrastructures can generally be classified as:

• Agriculture and food

• Water

• Public health and safety

• Emergency services

• Government

• Defense Industry Base

• Information and telecommunication

• Energy

• Transportation

• Banking and finance

1

1. Introduction 2

• Industry and manufacturing

• Mail and Shipping

Each of these sectors are critical infrastructures, and the interruption of transactions or

the damage to these infrastructures may be a vital element in people’s life standards

that can have a life-saving impact that can even threaten human life. However, since

they have large infrastructural investments, they can cause serious economic losses and

weakness of states.

Critical infrastructures are not isolated systems. Any one of these infrastructures that

are interacting with each other will cause damage to the chain [2]. For all these reasons,

protection of these systems is vital [3].

The STUXNET attack, one of the closest examples of attacks on critical infrastructures,

has shown this effect. This attack, which caused Iran to take its nuclear development

activity back two years, caused only economic losses. However, in a worse scenario, it

also revealed the possibility that the nuclear plant would be damaged and that it could

lead to hundreds of years of disaster in that area [4, 5].

Day by day the methods and forms of the cyber attacks began to become complicated,

and therefore their detection became more difficult [6].

1. Introduction 3

According to a report by FireEye dated 2018, Dwell time of a cyber attack’s detection is

101 days globally, 175 days for the European Medicines Agency(EMEA) region and 498

days for the Asia Pacific (APAC) region [7, 8]. Figure 1.1 shows the Cyber Attack Dwell

Time, and Figure 1.2 shows the Cyber Attack Dwell Time information of the EMEA,

APAC and Americas regions.

Figure 1.1: Cyber Attack Detection
Time Globally

Figure 1.2: Cyber Attack Detection
Time Regional

In 2017, the rate of cyber attack on industrial systems is given in detail in the Figure 1.3

Figure 1.3: Cyber Attacks Rate In Industries

1. Introduction 4

The purpose of this study is to reduce and automate the perception of increasing Dwell

Time of cyber threats by using Deep Learning algorithms, as evidenced in M-Trend’s

report.

1.1 Contribution

• We worked with an up-to-date dataset created by the Mississippi State University

and Oak Ridge National Laboratory in 2014. The dataset is a reliable dataset used

by many academic studies [9, 10].

• We used the latest in-depth learning algorithms.

– AutoEncoder Model

– Tensorflow 1.4.0

– Keras 2.1.1

– Sklearn 0.19.1

– Scipy 1.0.0

– Numpy 1.13.3

– Pandas 0.21.0

• We obtained better results than the classification performance obtained from the

related publications which we examined in detail in Chapter 2. Detailed output is

given in Chapter 5.

The rest of this article is arranged as follows. The introduction about our work is

given in Chapter 1. Chapter 2 examines related works. Datasets, Structures used like

AutoEncoder and Deep Learning are presented in Chapter 3. Introduces the proposed

Deep Neural Network Model and AutoEncoder Model in Chapter 4. The experiment

and the results are discussed in Chapter 5. The conclusion and future Work are given in

Chapter 6.

Chapter 2

Related Work

Various studies used this critical infrasturcture dataset:

• Developing a Hybrid Intrusion Detection System Using Data Mining for Power

Systems [11].

• Classification of Disturbances and Cyber-attacks in Power Systems Using Hetero-

geneous Time-synchronized Data [12].

• A Specification-based Intrusion Detection Framework for Cyber-physical Environ-

ment in Electric Power System [13].

• Machine Learning for Power System Disturbance and Cyber-attack Discrimination

[14].

Detailed explanations of the papers listed above are given in the coming subsections.

2.1 Developing a Hybrid Intrusion Detection System Using

Data Mining for Power Systems

In this article, it was made to create an IDS that uses signature-based and feature-based

Intrusion Detection System (IDS) features. IDS is a system that automates cyber attack

detection [15]. Many cyber attacks have similar characteristics. A signature is extracted

from these properties and these signatures for a similar cyber attack simplify the work

of IDS systems. In this study, besides signature based systems, it also uses feature based

systems. In this work, the normal system interruptions such as maintenance, normal

operation and cyber attack situations are taught to IDS, and the IDS system’s capabilities

5

2. Related Work 6

are developed for a possible cyber attack, which is aimed at detecting previously unseen

cyber attacks such as zero day clearance.

In this study, accuracy rate was obtained 90.4%. An operation with an accuracy rate

of 90.4% means that nearly 10 attacks can not be detected per 100 attacks. When it is

considered that this number is much higher in living systems, it is expected that such

automatic systems will work with near zero error.

2.2 Classification of Disturbances and Cyber-attacks in Power

Systems Using Heterogeneous Time-synchronized Data

It is mentioned that this study has 3 contributions in the literature. First, they point

out that cyber attacks, which show themselves as a normal system interruption, can be

recognized and discerned from system outages and achieve better results than the work

done with [14]. The second, concerns memory usage. They use the common path mining

algorithm in their work, thus indicating that they use less memory than traditional

data mining methods that use more memory. The third, it learns by separating the

set of algorithm scenarios and the dataset that they use. Here a common path finding

algorithm is developed to prevent over-adaptation.

The algorithm used in the study has better results than the algorithms like Random

forest, JRip, and it performed behind the algorithm application like Adaboost + JRip.

The accuracy rate of the algorithm in 7 class applications is 93%. This rate is not suitable

when considering the number of today’s attacks.

2.3 A Specification-based Intrusion Detection Framework

for Cyber-physical Environment in Electric Power Sys-

tem

In this article, a method has been proposed to detect scabby attacks on power systems or

scans on physical breaks. This method reveals a specification based intrusion detection

system by monitoring the records of many devices including the existing cyber intru-

sion detection systems, simule control panel, snort and relays and network monitoring

software, control room computers. Depending on the different control data, causal rela-

tions between the cyber attacks and the interruptions are established. In this work, the

probabilistic network for generating IDS rules provides a method for mapping such data

to the Bayesian network. The Bayesian network is known for its powerful heuristic for

2. Related Work 7

modeling interdependencies between variables and its ability to graphically show causal

relationships from data and workflow records [16, 17]. This work, based on a specific

control scheme, illustrates the process of building such a Bayesian network and deriving

different system scenarios. With the proposed method, the IDS tracks the transmission

line, and if there is any interruption in the power grid, the operator may be informed

that it is caused by system problems or by cyber attacks.

The accuracy of the method used in the study is not explained with numeric results.

However, it seems that the method is more effective against physical effects. It has been

stated that the development of the IDS system based on the specification specified in

the proposed method may be expensive and require expertise. This is not the preferred

case either.

2.4 Machine Learning for Power System Disturbance and

Cyber-attack Discrimination

In this work, a network specialist has developed a policy to decide whether an interruption

is due to a cyber attack or a natural event. It is difficult for a person to distinguish

between cyber attacks and natural phenomena because they have the same effect. For

this reason, an algorithm that can be used as a decision support tool to automate this

work has been studied. In this study, it was determined that the methods of learning

the machine are sufficient to establish the relationship between the measurements in the

power system and the causes of interruption. The classification performance of various

machine learning methods is evaluated and the accuracy level of the proposed method

is given.

In the study, many algorithms are used and the performances of these algorithms are

classified. When we analyzed the results of the study, the Adaboost + jRipper algorithm

showed the best accuracy rate of 99.1%. In our study, it is obvious that we get better

results than the existing algorithms when we think that the ratio for binary and triple

class is 100% and for multi class is 99.8%.

Chapter 3

Preliminaries

3.1 Datasets

Uttam Adhikari, Shengyi Pan, and Tommy Morris in collaboration with Raymond Borges

and Justin Beaver of Oak Ridge National Laboratories have created 3 datasets which in-

clude measurements related to electric transmission system normal, control-maintenance,

cyber attack behaviors. Measurements in the dataset include synchrophasor measure-

ments and data logs from Snort, a simulated control panel, and relays.

The design of the Lab environment in which the dataset used in the study is created is

given in the Figure 3.1 [18].

8

3. Preliminaries 9

Figure 3.1: Lab design in which the dataset is created

The features information in the Dataset is detailed in the Table 3.1.

Table 3.1: Features in the dataset

Features Description
PA1:VH – PA3:VH Phase A - C Voltage Phase Angle
PM1: V – PM3: V Phase A - C Voltage Phase Magnitude
PA4:IH – PA6:IH Phase A - C Current Phase Angle
PM4: I – PM6: I Phase A - C Current Phase Magnitude
PA7:VH – PA9:VH Pos. – Neg. – Zero Voltage Phase Angle
PM7: V – PM9: V Pos. – Neg. – Zero Voltage Phase Magnitude
PA10:VH - PA12:VH Pos. – Neg. – Zero Current Phase Angle
PM10: V - PM12: V Pos. – Neg. – Zero Current Phase Magnitude

F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Appearance Impedance for relays
PA:ZH Appearance Impedance Angle for relays

S Status Flag for relays

The datasets used in the study are classified according to their output labels. The label

distribution of the binary class dataset is given in the Table 3.2.

The label distribution of the triple class dataset is given in the Table 3.3.

The label distribution of the multi class dataset is given in the Table 3.4.

3. Preliminaries 10

Table 3.2: Event Scenarios (Binary)

Scenario Description Number of Rows
0 Normal operation 1100
1 Attack 3866

Table 3.3: Event Scenarios (Triple)

Scenario Description Number of Rows
-1 Natural Events 927
0 Normal operation 173
1 Attack 3866

Table 3.4: Event Scenarios (Multi)

Scenario Description Number of Rows
-2 Fault from Line (Natural Events) 264
-1 Line maintenance (Natural Events) 663
0 Regular Operation (Normal operation) 173
1 Data Injection - SLG fault replay (Attack) 569

2 Command injection against single relay to
R1,R2,R3,R4 (Attack) 346

3 Command injection against single relay to
R1 and R2 or R3 and R4 (Attack) 106

4 Disabling relay function - single relay
disabled & fault (Attack) 1675

5 Disabling relay function - two relays
disabled & fault (Attack) 898

6 Disabling relay function - two relay
disabled & line maintenance (Attack) 272

The row-based distributions of the columns in the dataset are given below. Some fields

in the dataset have balanced distribution, as shown in Figure 3.2. However, as you can

see from the Figure 3.3, there are also stacked areas on one side.

3. Preliminaries 11

Figure 3.2: Distributions of the columns-1

Figure 3.3: Distributions of the columns-2

3. Preliminaries 12

3.2 Autoencoder

AutoEncoder is a type of Neural Network that compresses multidimensional data first

into the hidden area and then reconstructs the data from the compressed hidden area.

AutoEncoders have three type layers. In the Figure 3.4, the green nodes represent the

input layer, the blue nodes represent the hidden area or hidden layer, and the red nodes

represent the output layer. The number of nodes in the input layer is equal to the number

of nodes in the output layer, because AutoEncoder is to reconstruct the intended data. It

is called the input layer and the hidden area encoder. The Encoder allows you to reduce

multidimensional data to a smaller size. The decoder is called the decoder between the

hidden area and the output layer. The decoder tries to reconfigure the entry by increasing

the size of the compressed hidden area [19, 20].

Input #1

Input #2

Input #3

Input #4

Input #5

Input #6

Output

Output

Output

Output

Output

Output

Encode=> Compressed
Data

Decode=>
Input
layer

Output
layer

Figure 3.4: AutoEncoder Model

The dataset we use includes voltage measurements and consists of fractional numeric

values that will not affect the end result.

In our work, we used the AutoEncoder Model to avoid slowing down with these fractional

numeric values and avoiding false positives in the learning process.

The purpose of the AutoEncoder Model is to increase the accuracy of the system by

deleting unnecessary detail. For example, the detail in a 3-D image is unnecessary

and must be reduced to 2 dimensions only for a shape-separating operation. Another

example is the most commonly used noise reduction method. Noise-canceling images can

be obtained when used with AutoEncoder model [21, 22].

3. Preliminaries 13

3.3 Deep Learning

A class of machine learning techniques, where many layers of information processing

stages in hierarchical architectures are exploited for unsupervised feature learning and

for pattern analysis/classification. The essence of deep learning is to compute hierarchical

features or representations of the observational data, where the higher-level features or

factors are defined from lower-level ones [23].

In the Figure 3.5, the green nodes represent the input layer, the blue nodes represent the

hidden area or hidden layer, and the red nodes represent the output layer.

Input #1

Input #2

Input #3

Output

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Figure 3.5: Deep Learning Model

The data set we use contains voltage information. It is not possible for a person to

interpret this data coming from 128 sensors and create an attack pattern. But Deep

Neural Network approaches can easily do this, which is impossible for people. For this

reason, in our study, we used Deep Neural Network Algorithms, which have a very high

ability to analyze nonlinear data.

Chapter 4

Methodology

We will examine the methods we use in this section. Our work mainly consists of two

main topics. The first model we created without using the AutoEncoder structure, the

second the model we created using the AutoEncoder structure. We will examine the

details of the structure of these two models, such as activation methods, Epoc numbers,

node and layer numbers, and discuss their strengths and weaknesses.

Accuracy, Precision, Recall, F-Score and Confusion Matrix information were obtained as

a result of the study of these two models [24, 25]. These results have been compared in

detail in Experiments section.

4.1 System Model without Autoencoder

In the DNN model, all variables are defined as array parameters. So we did not have to

constantly intervene in the variables to determine the design that would give the model

the best possible result, just watching all the outputs of the work was enough. Based on

the output results, we revised the algorithm and ran the model again. This gave us a lot

of speed during implementation.

An example of the structure of the model is given in the Figure 4.1. According to the

number of Epoc, the number of layers and nodes in these layers are increased.

14

4. Methodology 15

...
...

...

...

...

...

I1

I2

I3

In

H1

H2

H3

H4

H5

Hn

H1

H2

H3

H4

H5

H6

H7

Hn

H1

H2

H3

H4

H5

Hn

H1

H2

H3

Hn

O1

On

129
Nodes

400
Nodes

650
Nodes

400
Nodes

150
Nodes

2/3/9
Nodes

Figure 4.1: Deep Learning Neural Network Model Without AE

The mathematical expression of the example model in the Figure 4.1 is given in formula

4.1 [26];

In = 129 inputs;

Hn = 400, 650, 400, 150 hidden layers;

On = 2 outputs;

On = (O1, O2) = ψ4(ψ3(ψ2(ψ1(Inw
(1))w(2))w(3))w(4)) (4.1)

w(1) ∈ R129

w(2) ∈ R400

w(3) ∈ R650

w(4) ∈ R400

4. Methodology 16

These are the matrix of weights from the hidden to the output layer and ψ1, ψ2, ψ3, ψ4

are activation functions.

Fifteen samples of three class datasets, Binary, Triple and Multi, were tested individually

with the above model and Epoc numbers for 7 activation methods. Accuracy and Loss

graphs of each were taken together with Presicion, Recall information and the status of

the working status of the model.

We dynamically designed our model to give the optimum result [27]. The dataset used,

the activation methods, the number of iterations and the number of nodes in the Neural

Network are all defined as variables. These variables were run with Cartesian mapping

and the results were followed to determine the most accurate sequence. Further work

was done by developing this model. The variables used when developing the model are

given in the Table 4.1.

Table 4.1: Model Variables

Data
Classes Datasets Activation

Methods Epocs Layers and Nodes

binary data1.csv tanh 200 Mode1 : 129-400-150-2/3/9
triple data2.csv relu 300 Mode2 : 129-400-650-400-150-2/3/9
multi data3.csv sigmoid 500 Mode3 : 129-400-650-900-650-400-150-2/3/9

. softplus

. softsign

. softmax
data15.csv linear

4.2 System Model with Autoencoder

The reason we intended to use the AutoEncoder Model with our Deep Learning Model

was that the data from the Sensors was Float. As the information in the numbers does

not affect the measurement result very much, we have tried to progress faster and more

accurately with the weighted information by squeezing unnecessary detail information.

AutoEncoder part we added to my model is given in the Figure 4.2. Here, as in the

main model, we have created a dynamic model using the array parameters to obtain the

most accurate result, and by analyzing the results, we made the necessary revisions in

the algorithm and brought it closer to the optimum result.

4. Methodology 17

...

...
...

...
...

...

...

...

I1

I2

I3

In

H1

Hn

H1

H1

Hn

O1

O2

O3

On

I1

I2

I3

In

H1

H2

H3

H4

H5

Hn

H1

H2

H3

Hn

O1

On

129
Nodes

64
Nodes

32
Nodes

64
Nodes

129
Nodes

129
Nodes

400
Nodes

150
Nodes

2/3/9
Nodes

Auto-Encoder Model Deep Neural Network Model

Figure 4.2: Deep Neural Network Model With AutoEncoder

An autoencoder always consists of two parts, the encoder and the decoder, which can be

defined as transitions φ and ψ, Calculation of φ and ψ is given in formula 4.2.[28]:

φ : X− > F

ψ : F− > X

φ,ψ = argminφψ||X − (ψoφ)X||2 (4.2)

In the simplest case, where there is one hidden layer, the encoder stage of an autoencoder

takes the input x ∈ Rd and maps it to z ∈ Rp. z is calculated as in formula 4.3:

z = σ(Wx+ b) (4.3)

z is usually referred to as code, latent variables, or latent representation. Here, σ is an

element- wise activation function such as a sigmoid function or a rectified linear unit. W

4. Methodology 18

is a weight matrix and b is a bias vector. After that, as given in formula 4.4 below, the

decoder stage of the autoencoder maps z to the reconstruction x′ of the same shape as

x :

x′ = σ(Wx+ b) (4.4)

The mathematical models of 7 activation methods used in DNN Model and DNN Model

with Autoencoder models are given in Figure 4.3.

Figure 4.3: Math Models of the Activation Functions [29]

Chapter 5

Experiments

5.1 Experimental Setup

For the deep learning, the latest version of the Tensorflow library, developed by Google

and it was open source, was used, version 1.4.0. This library is highly preferred for

Machine Learning and especially because it allows for quick and easy implementation

in conjunction with the Python programming language for deep learning [30, 31]. It

also allows Graphics Processing Unit (GPU) programming in applications where high

processing power is required [32].

In the study, Keras 2.1.1 version, which is preferred in deep learning applications and

able to use Theano and Tensorflow as a backend, was used [33].

The library sklearn 0.19.1 (Scikit-learn), which allows you to get the output of the appli-

cation in a practical way, was used. This library is very useful when doing data analysis.

There is a lot of ability to compare and classify the results of artificial intelligence training

[34, 35].

The most up to date version of the Numpy library, 1.13.3, was used for processing

sequences, vectors, and matrices [36].

The frequently used mathematical routines and the Scipy 1.0.0 library were used to allow

easy and rapid use of physical problems in a computer environment [37].

For the distribution histogram of the fields in the dataset to be used before the model

was created and at the end of the model, 0.21.0 version of the Pandas library was used

for graphical display of functions such as analysis of outputs, accuracy and presicion

[38, 39].

19

5. Experiments 20

5.2 Experiments Results

Two separate models were designed in the study. The first is the DNN Model, which is

a model in which the activation methods, the hidden layer and the number of nodes are

changed dynamically.

The second is the AutoEncoder Model. In this model, input values of the DNN Model

are not directly read from the file. The inputs were first passed through the AutoEncoder

Model and simplified, and these outputs were given as DNN Model inputs.

The results of these two studies are separately analyzed and presented in detail below.

5.2.1 DNN Model Results

The structure of the DNN Model is given in the Figure 5.1. Dropout rate in the DNN

Model is 20%

5. Experiments 21

dense_25_input: InputLayer
input:

output:

(None, 129)

(None, 129)

dense_25: Dense
input:

output:

(None, 129)

(None, 129)

dropout_19: Dropout
input:

output:

(None, 129)

(None, 129)

dense_26: Dense
input:

output:

(None, 129)

(None, 400)

dropout_20: Dropout
input:

output:

(None, 400)

(None, 400)

dense_27: Dense
input:

output:

(None, 400)

(None, 150)

dropout_21: Dropout
input:

output:

(None, 150)

(None, 150)

dense_28: Dense
input:

output:

(None, 150)

(None, 2)

Figure 5.1: DNN Model Structure

5. Experiments 22

In the model there are 3 designs called Layer Mode 1, Layer Mode 2, Layer Mode 3.

The number of layers and nodes in these designs are given in the Table 5.1.

Table 5.1: Nodes in the layers

Layer Mode DNN Model
1 129(input)-400-150-2/3/9(Output)
2 129(input)-400-650-400-150-2/3/9(Output)
3 129(input)-400-650-900-650-400-150-2/3/9(Output)

There are too many parameters in the operation. To provide a more meaningful rep-

resentation of the outputs of the study, the results of data classes called binary, triple,

multi are presented separately below.

5.2.1.1 Binary Data Class Results

The model is run separately for 15 datasets in binary data class with binary tags with

0-Normal, 1-Attack.

The Layer Mode 1 design results of the Binary Data Class is given in detail in the Table

5.2

Table 5.2: Binary Data Class Results for Layer Mode 1

tanh relu sigmoid softplus softsign softmax linear
Epochs 200 200 200 200 200 200 200
Accuracy 1.0 0.9990 0.7031 1.0 1.0 0.6933 1.0
Presicion 1.0 0.9990 0.4944 1.0 1.0 0.4807 1.0
Recall 1.0 0.9990 0.7032 1.0 1.0 0.6933 1.0
F Score 1.0 0.9990 0.5806 1.0 1.0 0.5677 1.0

Process Time(minute) 01:55 01:53 02:21 03:36 02:16 01:52 04:05

Analysis of the data in the Layer Mode 1 design is shown that the four most successful

results are obtained with the ’tanh’, ’softplus’, ’softsign’ and ’linear’ activation methods.

The Confusion Matrix of these four methods is given in the Table 5.3

Table 5.3: Confusion Matrix for Layer Mode 1 with Test Dataset

P N
P 303 0
N 0 711

tanh

P N
P 304 0
N 0 710
softplus

P N
P 310 0
N 0 704
softsign

P N
P 317 0
N 0 697

linear

The Accuracy and Loss graphs of the model using ’tanh’, ’softplus’, ’softsign’ and ’linear’

activation methods are given in the Figure 5.2 - 5.9.

5. Experiments 23

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.2: Binary Class Layer Mode
1 tanh Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.3: Binary Class Layer Mode
1 tanh Loss

0 25 50 75 100 125 150 175 200
Epoch

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.4: Binary Class Layer Mode
1 softplus Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.5: Binary Class Layer Mode
1 softplus Loss

5. Experiments 24

0 25 50 75 100 125 150 175 200
Epoch

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.6: Binary Class Layer Mode
1 softsign Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.7: Binary Class Layer Mode
1 softsign Loss

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.8: Binary Class Layer Mode
1 Linear Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.9: Binary Class Layer Mode
1 Linear Loss

When we run our model with the binary data class, we obtained 100% accuracy rate

after nearly 30 Epochs. We obtained this accuracy rate with the DNN Model created

with the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input) - 400 - 150 - 2(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Tanh

- Epochs : 200

- Output Activation Method : sigmoid

- Output Loss Method : binary_crossentropy

With these parameters, the training duration of our model is 1:55 minutes for 4055

different processes. The test duration is approximately 280 milliseconds for 1014 different

5. Experiments 25

processes and the detection time of the new incoming attack is 0.28 milliseconds.

The Layer Mode 2 design results of the Binary Data Class is given in detail in the Table

5.4.

Table 5.4: Binary Data Class Results for Layer Mode 2

tanh relu sigmoid softplus softsign softmax linear
Epochs 300 300 300 300 300 300 300
Accuracy 1.0 0.9990 0.6755 0.6972 1.0 0.6864 0.9970
Presicion 1.0 0.9990 0.4564 0.4861 1.0 0.4711 0.9971
Recall 1.0 0.9990 0.6755 0.6972 1.0 0.6864 0.9970
F Score 1.0 0.9990 0.5447 0.5729 1.0 0.5587 0.9970

Process Time(minute) 18:33 09:48 10:08 10:58 11:05 12:58 09:48

Analysis of the data in the Layer Mode 2 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.5.

Table 5.5: Confusion Matrix for Layer Mode 2 with Test Dataset

P N
P 292 0
N 0 722

tanh

P N
P 304 0
N 0 710
softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.10 - 5.13.

5. Experiments 26

0 50 100 150 200 250 300
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.10: Binary Class Layer
Mode 2 tanh Accuracy

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.11: Binary Class Layer
Mode 2 tanh Loss

0 50 100 150 200 250 300
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.12: Binary Class Layer
Mode 2 softsign Accuracy

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.13: Binary Class Layer
Mode 2 softsign Loss

When we run our model with the binary data class, we obtained 100% accuracy rate

after nearly 50 Epochs. We obtained this accuracy rate with the DNN Model created

with the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input) - 400 - 650 - 400 - 150 - 2(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Softsign
- Epochs : 300
- Output Activation Method : sigmoid
- Output Loss Method : binary_crossentropy

With these parameters, the training duration of our model is 11 minutes for 4055 dif-

ferent processes. The test duration is approximately 514 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.5 milliseconds.

5. Experiments 27

The Layer Mode 3 design results of the Binary Data Class is given in detail in the Table

5.6.

Table 5.6: Binary Data Class Results for Layer Mode 3

tanh relu sigmoid softplus softsign softmax linear
Epochs 500 500 500 500 500 500 500
Accuracy 0.9970 0.9990 0.7032 0.7130 0.9990 0.6903 0.9990
Presicion 0.9970 0.9990 0.4944 0.5084 0.9990 0.4766 0.9990
Recall 0.9970 0.9990 0.7032 0.7130 0.9990 0.6903 0.9990
F Score 0.9970 0.9990 0.5806 0.5936 0.9990 0.5639 0.9990

Process Time(minute) 40:07 40:47 41:12 44:28 40:32 50:50 41:03

Analysis of the data in the Layer Mode 3 design is shown that the three most successful

results are obtained with the ’relu’, ’softsign’ and ’linear’ activation methods.

The Confusion Matrix of these three methods is given in the Table 5.7.

Table 5.7: Confusion Matrix for Layer Mode 3 with Test Dataset

P N
P 295 1
N 0 718

relu

P N
P 312 1
N 0 701
softsign

P N
P 297 0
N 1 716

linear

The Accuracy and Loss graphs of the model using ’relu’, ’softsign’ and ’linear’ activation

methods are given in the Figure 5.14 - 5.19.

5. Experiments 28

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.14: Binary Class Layer
Mode 3 relu Accuracy

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.15: Binary Class Layer
Mode 3 relu Loss

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.16: Binary Class Layer
Mode 3 softsign Accuracy

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.17: Binary Class Layer
Mode 3 softsign Loss

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.18: Binary Class Layer
Mode 3 linear Accuracy

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.19: Binary Class Layer
Mode 3 linear Loss

5. Experiments 29

When we run our model with the binary data class, we obtained 99.9% accuracy rate

after nearly 80 Epochs. We obtained this accuracy rate with the DNN Model created

with the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input)-400-650-900-650-400-150-2(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Softsign

- Epochs : 500

- Output Activation Method : sigmoid

- Output Loss Method : binary_crossentropy

With these parameters, the training duration of our model is 40 minutes for 4055 different

processes. The test duration is approximately 1 second for 1014 different processes and

the detection time of the new incoming attack is 0.98 milliseconds.

5. Experiments 30

5.2.1.2 Triple Data Class Results

The model is run separately for 15 datasets in triple data class with triple tags with -1

Natural, 0-Normal, 1-Attack.

The Layer Mode 1 design results of the Triple Data Class is given in detail in the Table

5.8.

Table 5.8: Triple Data Class Results for Layer Mode 1

tanh relu sigmoid softplus softsign softmax linear
Epochs 200 200 200 200 200 200 200
Accuracy 1.0 0.9951 0.6963 0.9990 1.0 0.7071 0.9960
Presicion 1.0 0.9953 0.4848 0.9990 1.0 0.5000 0.9961
Recall 1.0 0.9951 0.6963 9990 1.0 0.7071 0.9961
F Score 1.0 0.9951 0.5716 0.9990 1.0 0.5858 0.9960

Process Time(minute) 01:54 02:03 01:55 02:11 01:53 02:43 01:46

Analysis of the data in the Layer Mode 1 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.9.

Table 5.9: Confusion Matrix for Layer Mode 1 with Test Dataset

-1 0 1
-1 221 0 0
0 0 70 0
1 0 0 723

tanh

-1 0 1
-1 241 0 0
0 0 67 0
1 0 0 706

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.20 - 5.23.

5. Experiments 31

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.20: Triple Class Layer Mode
1 tanh Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.21: Triple Class Layer Mode
1 tanh Loss

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.22: Triple Class Layer Mode
1 softsign Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.23: Triple Class Layer Mode
1 softsign Loss

When we run our model with the triple data class, we obtained 100% accuracy rate after

nearly 60 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input) - 400 - 150 - 3(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Softsign
- Epochs : 200
- Output Activation Method : softmax
- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 1:53 minutes for 4055

different processes. The test duration is approximately 241 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.23 milliseconds.

5. Experiments 32

The Layer Mode 2 design results of the Triple Data Class is given in detail in the Table

5.10.

Table 5.10: Triple Data Class Results for Layer Mode 2

tanh relu sigmoid softplus softsign softmax linear
Epochs 300 300 300 300 300 300 300
Accuracy 0.9990 0.9970 0.7041 0.6696 0.9990 0.7258 0.9980
Presicion 0.9990 0.9972 0.4958 0.4484 0.9990 0.5268 0.9980
Recall 0.9990 0.9970 0.7041 0.6696 0.9990 0.7258 0.9980
F Score 0.9990 0.9971 0.5819 0.5371 0.9990 0.6105 0.9980

Process Time(minute) 09:49 09:49 09:55 11:04 09:47 13:01 09:37

Analysis of the data in the Layer Mode 2 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.11.

Table 5.11: Confusion Matrix for Layer Mode 2 with Test Dataset

-1 0 1
-1 257 0 1
0 0 54 0
1 0 0 702

tanh

-1 0 1
-1 237 0 0
0 0 68 0
1 1 0 708

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.24 - 5.27.

5. Experiments 33

0 50 100 150 200 250 300
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.24: Triple Class Layer Mode
2 tanh Accuracy

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.25: Triple Class Layer Mode
2 tanh Loss

0 50 100 150 200 250 300
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.26: Triple Class Layer Mode
2 softsign Accuracy

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.27: Triple Class Layer Mode
2 softsign Loss

When we run our model with the triple data class, we obtained 99.9% accuracy rate after

nearly 100 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input) - 400 - 650 - 400 - 150 - 3(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Softsign
- Epochs : 300
- Output Activation Method : softmax
- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 9:46 minutes for 4055

different processes. The test duration is approximately 751 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.74 milliseconds.

5. Experiments 34

The Layer Mode 3 design results of the Triple Data Class is given in detail in the Table

5.12.

Table 5.12: Triple Data Class Results for Layer Mode 3

tanh relu sigmoid softplus softsign softmax linear
Epochs 500 500 500 500 500 500 500
Accuracy 0.9990 0.9961 0.6992 0.7071 0.9990 0.7061 0.9980
Presicion 0.9990 0.9961 0.4889 0.5000 0.9990 0.4986 0.9980
Recall 0.9990 0.9961 0.6992 0.7071 0.9990 0.7061 0.9980
F Score 0.9990 0.9960 0.5754 0.5858 0.9990 0.5845 0.9980

Process Time(minute) 43:27 41:56 42:16 48:44 41:10 51:24 40:41

Analysis of the data in the Layer Mode 3 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.13.

Table 5.13: Confusion Matrix for Layer Mode 3 with Test Dataset

-1 0 1
-1 233 0 0
0 0 66 0
1 0 1 714

tanh

-1 0 1
-1 258 1 0
0 0 55 0
1 0 0 700

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.28 - 5.31.

5. Experiments 35

0 100 200 300 400 500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.28: Triple Class Layer Mode
3 tanh Accuracy

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.29: Triple Class Layer Mode
3 tanh Loss

0 100 200 300 400 500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.30: Triple Class Layer Mode
3 softsign Accuracy

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.31: Triple Class Layer Mode
3 softsign Loss

When we run our model with the triple data class, we obtained 99.9% accuracy rate after

nearly 120 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input)-400-650-900-650-400-150-3(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Softsign
- Epochs : 500
- Output Activation Method : softmax
- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 41 minutes for 4055 different

processes. The test duration is approximately 1 second for 1014 different processes and

the detection time of the new incoming attack is 1 milliseconds.

5. Experiments 36

5.2.1.3 Multi Data Class Results

The model is run separately for 15 datasets in multi data class with multi tags with -2

Natural(Fault From Line), -1 Natural(Line maintenance), 0-Normal, 1-Attack (Data In-

jection), 2-Attack (Command Injection), 3-Attack (Command Injection), 4-Attack (Dis-

abling relay function), 5-Attack (Disabling relay function), 6-Attack (Disabling relay

function).

The Layer Mode 1 design results of the Multi Data Class is given in detail in the Table

5.14.

Table 5.14: Multi Data Class Results for Layer Mode 1

tanh relu sigmoid softplus softsign softmax linear
Epochs 200 200 200 200 200 200 200
Accuracy 0.9911 0.9852 0.2061 0.3018 0.9980 0.2406 0.9073
Presicion 0.9913 0.9858 0.0425 0.1244 0.9980 0.0579 0.9192
Recall 0.9911 0.9852 0.2061 3018 0.9980 0.2406 0.9073
F Score 0.9911 0.9853 0.0704 0.1740 0.9980 0.0933 0.9068

Process Time(minute) 02:04 02:05 02:05 02:23 02:05 03:00 02:03

Analysis of the data in the Layer Mode 1 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.15.

Table 5.15: Confusion Matrix for Layer Mode 1 with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 50 0 0 0 0 0 0 0 0
-1 0 179 0 1 0 0 0 0 0
0 0 0 61 0 0 0 0 0 0
1 0 0 0 134 0 0 0 0 0
2 0 0 0 0 81 0 0 0 0
3 0 0 0 0 0 43 1 0 0
4 0 0 0 0 0 1 231 6 0
5 0 0 0 0 0 0 0 163 0
6 0 0 0 0 0 0 0 0 63

tanh

-2 -1 0 1 2 3 4 5 6
-2 72 0 0 0 0 0 0 0 0
-1 0 183 0 0 0 0 0 0 0
0 0 0 63 0 0 0 0 0 0
1 0 0 0 122 0 0 0 0 0
2 0 0 0 0 82 0 0 0 0
3 0 0 0 0 0 50 0 0 0
4 0 0 0 0 0 0 219 0 0
5 0 0 0 0 0 0 1 135 0
6 0 0 0 0 0 0 0 0 86

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.32 - 5.35.

5. Experiments 37

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.32: Multi Class Layer Mode
1 tanh Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Loss History model.h5
train
test

Figure 5.33: Multi Class Layer Mode
1 tanh Loss

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.34: Multi Class Layer Mode
1 softsign Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Loss History model.h5
train
test

Figure 5.35: Multi Class Layer Mode
1 softsign Loss

When we run our model with the multi data class, we obtained 99.8% accuracy rate after

nearly 160 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input) - 400 - 150 - 9(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Softsign
- Epochs : 200
- Output Activation Method : softmax
- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 2:04 minutes for 4055

different processes. The test duration is approximately 332 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.32 milliseconds.

5. Experiments 38

The Layer Mode 2 design results of the Multi Data Class is given in detail in the Table

5.16.

Table 5.16: Multi Data Class Results for Layer Mode 2

tanh relu sigmoid softplus softsign softmax linear
Epochs 300 300 300 300 300 300 300
Accuracy 0.9892 0.9448 0.2485 0.2436 0.9951 0.2249 0.2564
Presicion 0.9892 0.9448 0.0618 0.0496 0.9951 0.0506 0.1111
Recall 0.9892 0.9448 0.2485 0.2436 0.9951 0.2249 0.2564
F Score 0.9892 0.9446 0.0989 0.0954 0.9951 0.0826 0.1548

Process Time(minute) 10:15 10:11 10:31 11:46 10:25 13:40 10:10

Analysis of the data in the Layer Mode 2 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.17.

Table 5.17: Confusion Matrix for Layer Mode 2 with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 77 1 0 0 0 0 0 0 0
-1 1 171 0 2 0 0 0 0 0
0 0 0 63 0 0 0 0 0 0
1 0 0 0 131 1 0 0 0 0
2 0 0 0 0 70 0 0 0 0
3 0 0 0 0 0 42 0 0 0
4 0 0 0 0 0 1 242 3 0
5 0 0 0 0 0 0 2 156 0
6 0 0 0 0 0 0 0 0 51

tanh

-2 -1 0 1 2 3 4 5 6
-2 85 0 0 0 0 0 0 0 0
-1 0 187 1 1 0 0 0 0 0
0 0 0 65 0 0 0 0 0 0
1 0 0 0 111 1 0 0 0 0
2 0 0 0 0 69 0 0 0 0
3 0 0 0 0 0 40 0 0 0
4 0 0 0 0 0 0 224 2 0
5 0 0 0 0 0 0 0 156 0
6 0 0 0 0 0 0 0 0 72

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.36 - 5.39.

5. Experiments 39

0 50 100 150 200 250 300
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.36: Multi Class Layer Mode
2 tanh Accuracy

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

Lo
ss

Loss History model.h5
train
test

Figure 5.37: Multi Class Layer Mode
2 tanh Loss

0 50 100 150 200 250 300
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.38: Multi Class Layer Mode
2 softsign Accuracy

0 50 100 150 200 250 300
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Loss History model.h5
train
test

Figure 5.39: Multi Class Layer Mode
2 softsign Loss

When we run our model with the multi data class, we obtained 99.5% accuracy rate after

nearly 200 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input) - 400 - 650 - 400 - 150 - 9(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Softsign
- Epochs : 300
- Output Activation Method : softmax
- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 10:25 minutes for 4055

different processes. The test duration is approximately 912 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.9 milliseconds.

5. Experiments 40

The Layer Mode 3 design results of the Multi Data Class is given in detail in the Table

5.18.

Table 5.18: Multi Data Class Results for Layer Mode 3

tanh relu sigmoid softplus softsign softmax linear
Epochs 500 500 500 500 500 500 500
Accuracy 0.9941 0.7949 0.2465 0.2387 0.9931 0.2505 0.1252
Presicion 0.9941 0.7127 0.0608 0.0570 0.9932 0.0627 0.0505
Recall 0.9941 0.7949 0.2465 0.2387 0.9931 0.2505 0.1252
F Score 0.9941 0.7313 0.0975 0.0920 0.9931 0.1004 0.0710

Process Time(minute) 43:41 43:47 43:49 46:55 42:42 53:38 42:44

Analysis of the data in the Layer Mode 3 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.19.

Table 5.19: Confusion Matrix for Layer Mode 3 with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 58 1 0 0 0 0 0 0 0
-1 0 194 0 0 0 0 0 0 0
0 0 0 73 0 0 0 0 0 0
1 0 0 1 125 0 0 0 0 0
2 0 0 0 0 66 0 0 0 0
3 0 0 0 0 0 36 0 0 0
4 0 0 0 0 0 0 233 1 0
5 0 0 0 0 0 0 3 142 2
6 0 0 0 0 0 0 0 0 81

tanh

-2 -1 0 1 2 3 4 5 6
-2 72 0 0 0 0 0 0 0 0
-1 0 170 0 0 0 0 0 0 0
0 0 0 66 0 0 0 0 0 0
1 0 0 0 97 0 1 0 0 0
2 0 0 0 1 82 0 0 0 0
3 0 0 0 0 0 51 1 0 0
4 0 0 0 0 0 1 233 0 0
5 0 0 0 0 0 0 3 135 1
6 0 0 0 0 0 0 0 0 101

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.40 - 5.43.

5. Experiments 41

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.40: Multi Class Layer Mode
3 tanh Accuracy

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

6

Lo
ss

Loss History model.h5
train
test

Figure 5.41: Multi Class Layer Mode
3 tanh Loss

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.42: Multi Class Layer Mode
3 softsign Accuracy

0 100 200 300 400 500
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Loss History model.h5
train
test

Figure 5.43: Multi Class Layer Mode
3 softsign Loss

When we run our model with the multi data class, we obtained 99.4% accuracy rate after

nearly 300 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)
- Nodes in the layers : 129(Input)-400-650-900-650-400-150-9(Output)
- Dropout Rate : 20%
- Kernel Initializer : Uniform
- Activation Method : Tanh
- Epochs : 500
- Output Activation Method : softmax
- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 43:40 minutes for 4055

different processes. The test duration is approximately 1.1 seconds for 1014 different

processes and the detection time of the new incoming attack is 1 millisecond.

5. Experiments 42

5.2.2 AutoEncoder Results

For the best result of the AutoEncoder model, the activation methods were designed and

run as sequence parameters as in the Deep Neural Network model.

The results were analyzed and the best result with the DNN Model was obtained by

using the linear activation method, and the Linear activation method was used in the

Encode and Decode layers of the AutoEncoder model.

The structure of the AutoEncoder Model is given in The Figure 5.44, 5.45. Dropout rate

in the DNN Model and the Autoencoder Model is 20%

5. Experiments 43

input_1: InputLayer
input:

output:

(None, 129)

(None, 129)

dense_1: Dense
input:

output:

(None, 129)

(None, 64)

dropout_1: Dropout
input:

output:

(None, 64)

(None, 64)

dense_2: Dense
input:

output:

(None, 64)

(None, 32)

dropout_2: Dropout
input:

output:

(None, 32)

(None, 32)

dense_3: Dense
input:

output:

(None, 32)

(None, 64)

dropout_3: Dropout
input:

output:

(None, 64)

(None, 64)

dense_4: Dense
input:

output:

(None, 64)

(None, 129)

dropout_4: Dropout
input:

output:

(None, 129)

(None, 129)

Figure 5.44: Autoencoder
Model Structure

dense_103_input: InputLayer
input:

output:

(None, 129)

(None, 129)

dense_103: Dense
input:

output:

(None, 129)

(None, 129)

dropout_93: Dropout
input:

output:

(None, 129)

(None, 129)

dense_104: Dense
input:

output:

(None, 129)

(None, 400)

dropout_94: Dropout
input:

output:

(None, 400)

(None, 400)

dense_105: Dense
input:

output:

(None, 400)

(None, 150)

dropout_95: Dropout
input:

output:

(None, 150)

(None, 150)

dense_106: Dense
input:

output:

(None, 150)

(None, 9)

Figure 5.45: DNN Model Structure
with Layer Mode 1

5. Experiments 44

In the model there are 3 designs called Layer Mode 1, Layer Mode 2, Layer Mode 3.

The number of layers and nodes in these designs are given in the Table 5.20.

Table 5.20: Nodes in the layers with AutoEncoder

Layer
Mode AutoEncoder Model DNN Model

1 129(input)-64-32-64-129(Output) 129(input)-400-150-2/3/9(Output)
2 129(input)-64-32-64-129(Output) 129(input)-400-650-400-150-2/3/9(Output)
3 129(input)-64-32-64-129(Output) 129(input)-400-650-900-650-400-150-2/3/9(Output)

There are too many parameters in the operation. To provide a more meaningful rep-

resentation of the outputs of the study, the results of data classes called binary, triple,

multi are presented separately below.

5.2.2.1 Binary Data Class Results with AutoEncoder Model

The model is run separately for 15 datasets in binary data class with binary tags with

0-Normal, 1-Attack.

The Layer Mode 1 design results of the Binary Data Class is given in detail in the Table

5.21.

Table 5.21: Binary Data Class Results for Layer Mode 1

tanh relu sigmoid softplus softsign softmax linear
Epochs 200 200 200 200 200 200 200
Accuracy 1.0 0.9980 0.7081 0.9990 0.9990 0.7002 0.9980
Presicion 1.0 0.9980 0.5014 0.9990 0.9990 0.4903 0.9980
Recall 1.0 0.9980 0.7081 0.9990 0.9990 0.7002 0.9980
F Score 1.0 0.9980 0.5871 0.9990 0.9990 0.5767 0.9980

Process Time(minute) 04:00 03:49 03:50 03:45 04:00 04:44 04:00

Analysis of the data in the Layer Mode 1 design is shown that the three most successful

results are obtained with the ’tanh’, ’softplus’ and ’softsign’ activation methods.

The Confusion Matrix of these three methods is given in the Table 5.22.

Table 5.22: Confusion Matrix for Layer Mode 1 with Test Dataset

P N
P 303 0
N 0 711

tanh

P N
P 307 1
N 0 706
softplus

P N
P 302 0
N 1 711
softsign

The Accuracy and Loss graphs of the model using ’tanh’, ’softplus’ and ’softsign’ acti-

vation methods are given in the Figure 5.46 - 5.51.

5. Experiments 45

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.46: Binary Class Layer
Mode 1 tanh Accuracy with AutoEn-

coder

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.47: Binary Class Layer
Mode 1 tanh Loss with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.48: Binary Class Layer
Mode 1 softplus Accuracy with Au-

toEncoder

0 25 50 75 100 125 150 175 200
Epoch

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Lo
ss

Loss History model.h5
train
test

Figure 5.49: Binary Class Layer
Mode 1 softplus Loss with AutoEn-

coder

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.50: Binary Class Layer
Mode 1 softsign Accuracy with Au-

toEncoder

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.51: Binary Class Layer
Mode 1 softsign Loss with AutoEn-

coder

5. Experiments 46

When we run our model with the binary data class, we obtained 100% accuracy rate

after nearly 75 Epochs. We obtained this accuracy rate with the DNN Model created

with the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- AutoEncoder, Nodes in the layers : 129(Input) - 64 - 32 - 64 - 129(Output)

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- DNN, Nodes in the layers : 129(Input) - 400 - 150 - 2(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Tanh

- Epochs : 200

- Output Activation Method : sigmoid

- Output Loss Method : binary_crossentropy

With these parameters, the training duration of our model is 4 minutes for 4055 dif-

ferent processes. The test duration is approximately 341 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.33 milliseconds.

5. Experiments 47

The Layer Mode 2 design results of the Binary Data Class is given in detail in the Table

5.23.

Table 5.23: Binary Data Class Results for Layer Mode 2

tanh relu sigmoid softplus softsign softmax linear
Epochs 300 300 300 300 300 300 300
Accuracy 1.0 0.9980 0.6854 0.7051 0.9990 0.6775 0.9990
Presicion 1.0 0.9980 0.4698 0.4972 0.9990 0.4590 0.9990
Recall 1.0 0.9980 0.6854 0.7051 0.9990 0.6775 0.9990
F Score 1.0 0.9980 0.5575 0.5832 0.9990 0.5473 0.9990

Process Time(minute) 11:24 11:41 11:53 13:14 12:04 15:36 12:38

Analysis of the data in the Layer Mode 2 design is shown that the three most successful

results are obtained with the ’tanh’, ’softsign’ and ’linear’ activation methods.

The Confusion Matrix of these three methods is given in the Table 5.24.

Table 5.24: Confusion Matrix for Layer Mode 2 with Test Dataset

P N
P 303 0
N 0 711

tanh

P N
P 322 1
N 0 691
softsign

P N
P 308 1
N 0 705

linear

The Accuracy and Loss graphs of the model using ’tanh’, ’softsign’ and ’linear’ activation

methods are given in the Figure 5.52 - 5.57.

5. Experiments 48

0 50 100 150 200 250 300
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.52: Binary Class Layer
Mode 2 tanh Accuracy with AutoEn-

coder

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.53: Binary Class Layer
Mode 2 tanh Loss with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.54: Binary Class Layer
Mode 2 softsign Accuracy with Au-

toEncoder

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.55: Binary Class Layer
Mode 2 softsign Loss with AutoEn-

coder

0 50 100 150 200 250 300
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.56: Binary Class Layer
Mode 2 linear Accuracy with AutoEn-

coder

0 50 100 150 200 250 300
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.57: Binary Class Layer
Mode 2 linear Loss with AutoEncoder

5. Experiments 49

When we run our model with the binary data class, we obtained 100% accuracy rate

after nearly 75 Epochs. We obtained this accuracy rate with the DNN Model created

with the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- AutoEncoder, Nodes in the layers : 129(Input) - 64 - 32 - 64 - 129(Output)

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- DNN, Nodes in the layers : 129(Input) - 400 - 650 - 400 - 150 - 2(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Tanh

- Epochs : 300

- Output Activation Method : sigmoid

- Output Loss Method : binary_crossentropy

With these parameters, the training duration of our model is 11:24 minutes for 4055

different processes. The test duration is approximately 844 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.83 milliseconds.

5. Experiments 50

The Layer Mode 3 design results of the Binary Data Class is given in detail in the Table

5.25.

Table 5.25: Binary Data Class Results for Layer Mode 3

tanh relu sigmoid softplus softsign softmax linear
Epochs 500 500 500 500 500 500 500
Accuracy 1.0 0.9980 0.7110 0.6667 0.9980 0.6953 0.9961
Presicion 1.0 0.9980 0.5056 0.4444 0.9980 0.4834 0.9961
Recall 1.0 0.9980 0.7110 0.6667 0.9980 0.6953 0.9961
F Score 1.0 0.9980 0.5910 0.5333 0.9980 0.5703 0.9961

Process Time(minute) 45:15 45:22 45:06 48:45 45:02 53:58 45:17

Analysis of the data in the Layer Mode 3 design is shown that the three most successful

results are obtained with the ’tanh’, ’relu’ and ’softsign’ activation methods.

The Confusion Matrix of these three methods is given in the Table 5.26.

Table 5.26: Confusion Matrix for Layer Mode 3 with Test Dataset

P N
P 316 0
N 0 698

tanh

P N
P 299 2
N 0 713

relu

P N
P 338 2
N 0 674
softsign

The Accuracy and Loss graphs of the model using ’tanh’, ’relu’ and ’softsign’ activation

methods are given in the Figure 5.58 - 5.63.

5. Experiments 51

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.58: Binary Class Layer
Mode 3 tanh Accuracy with AutoEn-

coder

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.59: Binary Class Layer
Mode 3 tanh Loss with AutoEncoder

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.60: Binary Class Layer
Mode 3 relu Accuracy with AutoEn-

coder

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.61: Binary Class Layer
Mode 3 relu Loss with AutoEncoder

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.62: Binary Class Layer
Mode 3 softsign Accuracy with Au-

toEncoder

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Loss History model.h5
train
test

Figure 5.63: Binary Class Layer
Mode 3 softsign Loss with AutoEn-

coder

5. Experiments 52

When we run our model with the binary data class, we obtained 100% accuracy rate

after nearly 120 Epochs. We obtained this accuracy rate with the DNN Model created

with the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- AutoEncoder, Nodes in the layers : 129(Input) - 64 - 32 - 64 - 129(Output)

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- DNN, Nodes in the layers : 129(Input)-400-650-900-650-400-150-2(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Tanh

- Epochs : 500

- Output Activation Method : sigmoid

- Output Loss Method : binary_crossentropy

With these parameters, the training duration of our model is 45:14 minutes for 4055

different processes. The test duration is approximately 1.5 seconds for 1014 different

processes and the detection time of the new incoming attack is 1.4 milliseconds.

5. Experiments 53

5.2.2.2 Triple Data Class Results with AutoEncoder Model

The model is run separately for 15 datasets in triple data class with triple tags with -1

Natural, 0-Normal, 1-Attack.

The Layer Mode 1 design results of the Triple Data Class is given in detail in the Table

5.27.

Table 5.27: Triple Data Class Results for Layer Mode 1

tanh relu sigmoid softplus softsign softmax linear
Epochs 200 200 200 200 200 200 200
Accuracy 0.9990 0.9941 0.7081 0.9980 0.9990 0.7002 0.9970
Presicion 0.9990 0.9944 0.5014 0.9980 0.9990 0.4903 0.9971
Recall 0.9990 0.9941 0.7081 9980 0.9990 0.7002 0.9970
F Score 0.9990 0.9941 0.5871 0.9980 0.9990 0.5767 0.9970

Process Time(minute) 02:52 03:41 03:32 03:57 04:15 04:35 03:44

Analysis of the data in the Layer Mode 1 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.28.

Table 5.28: Confusion Matrix for Layer Mode 1 with Test Dataset

-1 0 1
-1 250 0 0
0 0 53 0
1 1 0 710

tanh

-1 0 1
-1 233 0 0
0 0 69 0
1 0 1 711

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.64 - 5.67.

5. Experiments 54

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.64: Triple Class Layer Mode
1 tanh Accuracy with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

5

6

7

Lo
ss

Loss History model.h5
train
test

Figure 5.65: Triple Class Layer Mode
1 tanh Loss with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.66: Triple Class Layer Mode
1 softsign Accuracy with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.67: Triple Class Layer Mode
1 softsign Loss with AutoEncoder

When we run our model with the triple data class, we obtained 99.9% accuracy rate after

nearly 150 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input) - 400 - 150 - 3(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Tanh

- Epochs : 200

- Output Activation Method : softmax

- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 2:52 minutes for 4055

different processes. The test duration is approximately 413 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.4 milliseconds.

5. Experiments 55

The Layer Mode 2 design results of the Triple Data Class is given in detail in the Table

5.29.

Table 5.29: Triple Data Class Results for Layer Mode 2

tanh relu sigmoid softplus softsign softmax linear
Epochs 300 300 300 300 300 300 300
Accuracy 0.9961 0.9990 0.7130 0.7081 0.9970 0.7012 0.9951
Presicion 0.9961 0.9990 0.5084 0.5014 0.9971 0.4917 0.9951
Recall 0.9961 0.9990 0.7130 0.7081 0.9970 0.7012 0.9951
F Score 0.9960 0.9990 0.5936 0.5871 0.9971 0.5780 0.9951

Process Time(minute) 13:50 14:00 14:29 15:59 14:33 17:52 14:14

Analysis of the data in the Layer Mode 2 design is shown that the two most successful

results are obtained with the ’relu’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.30.

Table 5.30: Confusion Matrix for Layer Mode 2 with Test Dataset

-1 0 1
-1 244 0 1
0 0 71 0
1 0 0 698

relu

-1 0 1
-1 241 1 0
0 0 73 0
1 1 1 697

softsign

The Accuracy and Loss graphs of the model using ’relu’ and ’softsign’ activation methods

are given in the Figure 5.68 - 5.71.

5. Experiments 56

0 50 100 150 200 250 300
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.68: Triple Class Layer Mode
2 relu Accuracy with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.69: Triple Class Layer Mode
2 relu Loss with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.70: Triple Class Layer Mode
2 softsign Accuracy with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.71: Triple Class Layer Mode
2 softsign Loss with AutoEncoder

When we run our model with the triple data class, we obtained 99.7% accuracy rate after

nearly 150 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input) - 400 - 650 - 400 - 150 - 3(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Softsign

- Epochs : 300

- Output Activation Method : softmax

- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 14:33 minutes for 4055

different processes. The test duration is approximately 745 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.73 milliseconds.

5. Experiments 57

The Layer Mode 3 design results of the Triple Data Class is given in detail in the Table

5.31.

Table 5.31: Triple Data Class Results for Layer Mode 3

tanh relu sigmoid softplus softsign softmax linear
Epochs 500 500 500 500 500 500 500
Accuracy 0.9970 0.9980 0.6933 0.6953 0.9980 0.6893 1.0
Presicion 0.9971 0.9980 0.4807 0.4834 0.9980 0.4752 1.0
Recall 0.9970 0.9980 0.6933 0.6953 0.9980 0.6893 1.0
F Score 0.9970 0.9980 0.5677 0.5703 0.9980 0.5626 1.0

Process Time(minute) 47:33 46:36 49:52 51:53 46:33 1:00:11 49:44

Analysis of the data in the Layer Mode 3 design is shown that the three most successful

results are obtained with the ’relu’, ’softsign’ and ’linear’ activation methods.

The Confusion Matrix of these three methods is given in the Table 5.32.

Table 5.32: Confusion Matrix for Layer Mode 3 with Test Dataset

-1 0 1
-1 229 0 1
0 0 65 0
1 1 0 718

relu

-1 0 1
-1 233 0 1
0 0 58 0
1 1 0 721

softsign

-1 0 1
-1 250 0 0
0 0 53 0
1 0 0 711

linear

The Accuracy and Loss graphs of the model using ’relu’, ’softsign’ and ’linear’ activation

methods are given in the Figure 5.72 - 5.77.

5. Experiments 58

0 100 200 300 400 500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.72: Triple Class Layer Mode
3 relu Accuracy with AutoEncoder

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Loss History model.h5
train
test

Figure 5.73: Triple Class Layer Mode
3 relu Loss with AutoEncoder

0 100 200 300 400 500
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.74: Triple Class Layer Mode
3 softsign Accuracy with AutoEncoder

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Loss History model.h5
train
test

Figure 5.75: Triple Class Layer Mode
3 softsign Loss with AutoEncoder

0 100 200 300 400 500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.76: Triple Class Layer Mode
3 linear Accuracy with AutoEncoder

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Loss History model.h5
train
test

Figure 5.77: Triple Class Layer Mode
3 linear Loss with AutoEncoder

5. Experiments 59

When we run our model with the triple data class, we obtained 100% accuracy rate after

nearly 80 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input)-400-650-900-650-400-150-3(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Linear

- Epochs : 500

- Output Activation Method : softmax

- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 49:43 minutes for 4055

different processes. The test duration is approximately 1.7 seconds for 1014 different

processes and the detection time of the new incoming attack is 1.6 milliseconds.

5. Experiments 60

5.2.2.3 Multi Data Class Results with AutoEncoder Model

The model is run separately for 15 datasets in multi data class with multi tags with -2

Natural(Fault From Line), -1 Natural(Line maintenance), 0-Normal, 1-Attack (Data In-

jection), 2-Attack (Command Injection), 3-Attack (Command Injection), 4-Attack (Dis-

abling relay function), 5-Attack (Disabling relay function), 6-Attack (Disabling relay

function).

The Layer Mode 1 design results of the Multi Data Class is given in detail in the Table

5.33.

Table 5.33: Multi Data Class Results for Layer Mode 1

tanh relu sigmoid softplus softsign softmax linear
Epochs 200 200 200 200 200 200 200
Accuracy 0.9753 0.8294 0.2347 0.5039 0.9832 0.2633 0.7081
Presicion 0.9757 0.8648 0.0551 0.3673 0.9980 0.0693 0.7843
Recall 0.9753 0.8294 0.2347 5039 0.9832 0.2633 0.7081
F Score 0.9752 0.8144 0.0892 0.3992 0.9831 0.1098 0.6805

Process Time(minute) 03:59 04:14 04:17 04:47 04:35 05:33 04:43

Analysis of the data in the Layer Mode 1 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.34.

Table 5.34: Confusion Matrix for Layer Mode 1 with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 53 2 0 0 0 0 0 0 0
-1 3 161 1 2 0 0 0 0 0
0 0 0 81 1 0 0 0 0 0
1 0 0 0 121 0 0 0 0 0
2 0 0 0 1 76 0 0 0 0
3 0 0 0 1 5 41 1 0 0
4 0 0 0 1 0 1 230 2 0
5 0 0 0 0 0 0 3 153 0
6 0 0 0 0 0 0 0 0 73

tanh

-2 -1 0 1 2 3 4 5 6
-2 79 2 0 0 0 0 0 0 0
-1 2 176 0 0 0 0 0 0 0
0 0 0 52 1 0 0 0 0 0
1 0 0 1 112 0 0 0 0 0
2 0 0 0 1 73 1 0 0 0
3 0 0 0 0 4 36 2 0 0
4 0 0 0 1 0 0 252 0 0
5 0 0 0 0 0 0 1 141 1
6 0 0 0 0 0 0 0 0 76

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.78 - 5.81.

5. Experiments 61

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.78: Multi Class Layer Mode
1 tanh Accuracy with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

1.0

1.5

2.0

2.5

3.0

Lo
ss

Loss History model.h5
train
test

Figure 5.79: Multi Class Layer Mode
1 tanh Loss with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.80: Multi Class Layer Mode
1 softsign Accuracy with AutoEncoder

0 25 50 75 100 125 150 175 200
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Loss History model.h5
train
test

Figure 5.81: Multi Class Layer Mode
1 softsign Loss with AutoEncoder

When we run our model with the multi data class, we obtained 98.3% accuracy rate after

nearly 200 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input) - 400 - 150 - 9(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Softsign

- Epochs : 200

- Output Activation Method : softmax

- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 4:35 minutes for 4055

different processes. The test duration is approximately 576 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.56 milliseconds.

5. Experiments 62

The Layer Mode 2 design results of the Multi Data Class is given in detail in the Table

5.35.

Table 5.35: Multi Data Class Results for Layer Mode 2

tanh relu sigmoid softplus softsign softmax linear
Epochs 300 300 300 300 300 300 300
Accuracy 0.9872 0.9172 0.2288 0.2347 0.9773 0.2229 0.8008
Presicion 0.9872 0.9203 0.0523 0.0551 0.9776 0.0497 0.8073
Recall 0.9872 0.9172 0.2288 0.2347 0.9773 0.2229 0.8008
F Score 0.9872 0.9146 0.0852 0.0892 0.9774 0.0812 0.7856

Process Time(minute) 17:54 15:28 16:18 19:31 19:12 18:03 15:12

Analysis of the data in the Layer Mode 2 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.36.

Table 5.36: Confusion Matrix for Layer Mode 2 with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 63 0 0 0 0 0 0 0 0
-1 1 184 0 1 1 0 0 0 0
0 0 0 52 1 0 0 0 0 0
1 0 3 0 113 0 0 0 0 0
2 0 0 0 0 77 0 0 0 0
3 0 0 0 0 0 45 2 0 0
4 0 0 0 0 0 0 236 2 0
5 0 0 0 0 0 0 2 150 0
6 0 0 0 0 0 0 0 0 81

tanh

-2 -1 0 1 2 3 4 5 6
-2 78 1 0 0 0 0 0 0 0
-1 1 173 1 2 0 0 0 0 0
0 0 0 67 0 0 0 0 0 0
1 0 0 0 103 3 0 0 0 0
2 0 0 0 1 66 2 0 0 0
3 0 0 0 0 2 32 1 0 0
4 0 0 0 0 0 1 229 1 0
5 0 0 0 0 0 0 7 169 0
6 0 0 0 0 0 0 0 0 74

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.82 - 5.85.

5. Experiments 63

0 50 100 150 200 250 300
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.82: Multi Class Layer Mode
2 tanh Accuracy with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Loss History model.h5
train
test

Figure 5.83: Multi Class Layer Mode
2 tanh Loss with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.84: Multi Class Layer Mode
2 softsign Accuracy with AutoEncoder

0 50 100 150 200 250 300
Epoch

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Loss History model.h5
train
test

Figure 5.85: Multi Class Layer Mode
2 softsign Loss with AutoEncoder

When we run our model with the multi data class, we obtained 98.7% accuracy rate after

nearly 300 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input) - 400 - 650 - 400 - 150 - 9(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Tanh

- Epochs : 300

- Output Activation Method : softmax

- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 17:54 minutes for 4055

different processes. The test duration is approximately 894 milliseconds for 1014 different

processes and the detection time of the new incoming attack is 0.88 milliseconds.

5. Experiments 64

The Layer Mode 3 design results of the Multi Data Class is given in detail in the Table

5.37.

Table 5.37: Multi Data Class Results for Layer Mode 3

tanh relu sigmoid softplus softsign softmax linear
Epochs 500 500 500 500 500 500 500
Accuracy 0.9813 0.6943 0.2485 0.2308 0.9901 0.2594 0.1667
Presicion 0.9813 0.6475 0.0618 0.0533 0.9903 0.0673 0.0890
Recall 0.9813 0.6943 0.2485 0.2308 0.9901 0.2594 0.1667
F Score 0.9812 0.6331 0.0989 0.0865 0.9902 0.1068 0.0985

Process Time(minute) 49:14 55:22 1:02:20 49:04 44:07 56:39 46:23

Analysis of the data in the Layer Mode 3 design is shown that the two most successful

results are obtained with the ’tanh’ and ’softsign’ activation methods.

The Confusion Matrix of these two methods is given in the Table 5.38.

Table 5.38: Confusion Matrix for Layer Mode 3 with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 60 1 0 0 0 0 0 0 0
-1 2 185 0 0 0 0 0 0 0
0 0 0 69 0 0 0 0 0 0
1 0 0 1 111 1 0 0 0 0
2 0 0 0 0 86 1 0 0 0
3 0 0 0 1 0 41 3 0 0
4 0 0 0 1 1 1 218 4 0
5 0 0 0 0 0 1 0 148 2
6 0 0 0 0 0 0 0 0 77

tanh

-2 -1 0 1 2 3 4 5 6
-2 60 0 0 0 0 0 0 0 0
-1 0 203 2 2 0 0 0 0 0
0 0 0 73 0 0 0 0 0 0
1 0 0 0 114 1 0 0 0 0
2 0 0 0 1 69 0 0 0 0
3 0 0 0 0 0 33 0 0 0
4 0 0 0 0 0 0 239 1 0
5 0 0 0 0 0 0 1 145 1
6 0 0 0 0 0 0 0 0 68

softsign

The Accuracy and Loss graphs of the model using ’tanh’ and ’softsign’ activation methods

are given in the Figure 5.86 - 5.89.

5. Experiments 65

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

Accuracy History model.h5
train
test

Figure 5.86: Multi Class Layer Mode
3 tanh Accuracy with AutoEncoder

0 100 200 300 400 500
Epoch

0.5

1.0

1.5

2.0

2.5

Lo
ss

Loss History model.h5
train
test

Figure 5.87: Multi Class Layer Mode
3 tanh Loss with AutoEncoder

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy History model.h5
train
test

Figure 5.88: Multi Class Layer Mode
3 softsign Accuracy with AutoEncoder

0 100 200 300 400 500
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Loss History model.h5
train
test

Figure 5.89: Multi Class Layer Mode
3 softsign Loss with AutoEncoder

When we run our model with the multi data class, we obtained 99% accuracy rate after

nearly 500 Epochs. We obtained this accuracy rate with the DNN Model created with

the following parameter sequence.

- AutoEncoder Optimizer Algorithm : Adam

- DNN Optimizer Algorithm : Stochastic Gradient Descent(SGD)

- Nodes in the layers : 129(Input)-400-650-900-650-400-150-9(Output)

- Dropout Rate : 20%

- Kernel Initializer : Uniform

- Activation Method : Softsign

- Epochs : 500

- Output Activation Method : softmax

- Output Loss Method : categorical_crossentropy

With these parameters, the training duration of our model is 44 minutes for 4055 different

processes. The test duration is approximately 1.8 seconds for 1014 different processes

and the detection time of the new incoming attack is 1.8 milliseconds.

5. Experiments 66

5.2.3 Classification Models Results

We used 3 different algorithms in the classification models. Support Vector Machine

(SVM) algorithm, K-Nearest Neighbors (KNN) algorithm and Decision Trees (DTs) al-

gorithm. We used four different kernel types in the SVM algorithm; ’rbf’, ’linear’, ’poly’,

’sigmoid’.

5.2.3.1 Binary Data Class Results with Classification Models

The models are run in binary data class with binary tags with 0-Normal, 1-Attack.

The results of the three algorithms used in classification models are given in detail in the

following Table 5.39.

Table 5.39: Binary Data Class Results with Classification Models

SVM SVM SVM SVM KNN DTs
Kernel Types rbf linear poly sigmoid - -
Accuracy 0.9941 0.9901 0.9951 0.9941 0.9596 1.0
Presicion 0.9941 0.9903 0.9951 0.9941 0.9598 1.0
Recall 0.9941 0.9901 0.9951 0.9941 0.9596 1.0
F Score 0.9941 0.9901 0.9951 0.9941 0.9591 1.0

Process Time(minute) 00:02 00:02 00:02 00:02 00:04 00:00.08

When the results of Classification Models using Binary Data Class are analyzed, the best

result is obtained with DTs algorithm.

The Confusion Matrix of this classification model using the DTs algorithm is given in

the Table 5.40.

Table 5.40: Confusion Matrix for Binary Data Class with Test Dataset

P N
P 303 0
N 0 711

5. Experiments 67

5.2.3.2 Triple Data Class Results with Classification Models

The models are run in triple data class with triple tags with -1 Natural, 0-Normal,

1-Attack.

The results of the three algorithms used in classification models are given in detail in the

following Table 5.41.

Table 5.41: Triple Data Class Results with Classification Models

SVM SVM SVM SVM KNN DTs
Kernel Types rbf linear poly sigmoid - -
Accuracy 0.9951 0.9921 0.9892 0.9941 0.9162 1.0
Presicion 0.9951 0.9921 0.9892 0.9941 0.9153 1.0
Recall 0.9951 0.9921 0.9892 0.9941 0.9162 1.0
F Score 0.9951 0.9921 0.9891 0.9941 0.9141 1.0

Process Time(minute) 00:04 00:04 00:04 00:04 00:04 00:00.09

When the results of Classification Models using Triple Data Class are analyzed, the best

result is obtained with DTs algorithm.

The Confusion Matrix of this classification model using the DTs algorithm is given in

the Table 5.42.

Table 5.42: Confusion Matrix for Triple Data Class with Test Dataset

-1 0 1
-1 270 0 0
0 0 59 0
1 0 0 685

5. Experiments 68

5.2.3.3 Multi Data Class Results with Classification Models

The models are run in multi data class with multi tags with -2 Natural(Fault From Line),

-1 Natural(Line maintenance), 0-Normal, 1-Attack (Data Injection), 2-Attack (Command

Injection), 3-Attack (Command Injection), 4-Attack (Disabling relay function), 5-Attack

(Disabling relay function), 6-Attack (Disabling relay function).

The results of the three algorithms used in classification models are given in detail in the

following Table 5.43.

Table 5.43: Multi Data Class Results with Classification Models

SVM SVM SVM SVM KNN DTs
Kernel Types rbf linear poly sigmoid - -
Accuracy 0.6815 0.6588 0.6755 0.6805 0.5996 1.0
Presicion 0.7074 0.6813 0.6974 0.6981 0.5972 1.0
Recall 0.6815 0.6588 0.6755 0.6805 0.5996 1.0
F Score 0.6445 0.6338 0.6489 0.6519 0.5947 1.0

Process Time(minute) 00:14 00:14 00:14 00:14 00:04 00:00.3

When the results of Classification Models using Multi Data Class are analyzed, the best

result is obtained with DTs algorithm.

The Confusion Matrix of this classification model using the DTs algorithm is given in

the Table 5.44.

Table 5.44: Confusion Matrix for Multi Data Class with Test Dataset

-2 -1 0 1 2 3 4 5 6
-2 58 0 0 0 0 0 0 0 0
-1 0 169 0 0 0 0 0 0 0
0 0 0 61 0 0 0 0 0 0
1 0 0 0 113 0 0 0 0 0
2 0 0 0 0 87 0 0 0 0
3 0 0 0 0 0 40 0 0 0
4 0 0 0 0 0 0 246 0 0
5 0 0 0 0 0 0 0 167 0
6 0 0 0 0 0 0 0 0 73

Chapter 6

Conclusuion and Future Work

Industrial systems, which do a lot of important work to raise people’s living standards,

are partially isolated environments, but like any electronic system, cyber attacks are

open. Research shows that attacks on these systems are increasing day by day. With

the increase of cyber attacks, the methods of attack have also begun to differentiate. So

it has become increasingly difficult to detect these cyber attacks quickly. The detection

speed of the cyber attacks on industrial systems, including critical infrastructures, must

be very high.

In this study, a model was developed to quickly detect the cyber attacks on industrial

systems. The proposed model is based on deep learning methods. The reason for choosing

deep learning methods in the study is the high maturity levels of the algorithms and

technologies used. Hence, these technologies have high level robustness, they are used in

many commerical products.

In this study we used new published dataset created by the Mississippi State University

and Oak Ridge National Laboratory. Our proposed model’s classification performance

are better than the orginal work’s results. The original works results are; 90.4%, 93%

and 99.1%, respectively.

In our study; We obtained 100%, 100% and 99.8% accuracy rates with binary, triple and

multi labeled dataset respectively.

Our plan is to convert the proposed attack detection model with transfer learning method.

Applying transfer learning model with autoencoder algorithm, the new developed model

shall be have lower training time.

69

Bibliography

[1] A. Kovacevic and D. Nikolic. Cyber attacks on critical infrastructure: Review and

challenges (draft), 01 2015.

[2] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. Identifying, understanding, and

analyzing critical infrastructure interdependencies. IEEE Control Systems, 21(6):

11–25, Dec 2001. ISSN 1066-033X. doi: 10.1109/37.969131.

[3] G. Dondossola, J. Szanto, M. Masera, and I. Nai Fovino. Effects of intentional

threats to power substation control systems. 4:129–143, 01 2008.

[4] D. Kushner. The real story of stuxnet. 50:48–53, 03 2013.

[5] N. Falliere, L. O Murchu, and E. Chien. W32.stuxnet dossier. 02 2011.

[6] G. Weimann and United States Institute of Peace. Cyberterrorism: how real is the

threat? Number 31. c. in Special report. United States Institute of Peace, 2004.

URL https://books.google.com.tr/books?id=ozVRrXAzHA0C.

[7] The trends behind today’s breaches and cyber attacks, 2018. URL https://www.

fireeye.com/current-threats/annual-threat-report/mtrends.html.

[8] What is dwell time: A cybersecurity metric, Feb 2018. URL https://www.armor.

com/blog/dwell-time-cyber-security-metric/.

[9] T. H. Morris. Industrial control system (ics) cyber attack data set, 2014. URL

http://www.ece.msstate.edu/wiki/index.php/ICS_Attack_Dataset.

[10] T. H. Morris and W. Gao. Industrial control system cyber attacks. In Proceedings

of the 1st International Symposium on ICS & SCADA Cyber Security Research

2013, ICS-CSR 2013, pages 22–29, UK, 2013. BCS. ISBN 978-1-780172-32-3. URL

http://dl.acm.org/citation.cfm?id=2735338.2735341.

[11] S. Pan, T. Morris, and U. Adhikari. Developing a hybrid intrusion detection system

using data mining for power systems. IEEE Transactions on Smart Grid, 6(6):

3104–3113, Nov 2015. ISSN 1949-3053. doi: 10.1109/TSG.2015.2409775.

70

https://books.google.com.tr/books?id=ozVRrXAzHA0C
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
https://www.armor.com/blog/dwell-time-cyber-security-metric/
https://www.armor.com/blog/dwell-time-cyber-security-metric/
http://www.ece.msstate.edu/wiki/index.php/ICS_Attack_Dataset
http://dl.acm.org/citation.cfm?id=2735338.2735341

Bibliography 71

[12] S. Pan, T. Morris, and U. Adhikari. Classification of disturbances and cyber-attacks

in power systems using heterogeneous time-synchronized data. IEEE Transactions

on Industrial Informatics, 11(3):650–662, June 2015. ISSN 1551-3203. doi: 10.1109/

TII.2015.2420951.

[13] S. Pan, T. H. Morris, and U. Adhikari. A specification-based intrusion detection

framework for cyber-physical environment in electric power system. I. J. Network

Security, 17:174–188, 2015.

[14] R. C. Borges Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and S. Pan.

Machine learning for power system disturbance and cyber-attack discrimination. In

2014 7th International Symposium on Resilient Control Systems (ISRCS), pages

1–8, Aug 2014. doi: 10.1109/ISRCS.2014.6900095.

[15] K. Scarfone and P. Mell. Intrusion Detection and Prevention Systems, pages

177–192. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-

04117-4. doi: 10.1007/978-3-642-04117-4_9. URL https://doi.org/10.1007/

978-3-642-04117-4_9.

[16] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach.

Learn., 29(2-3):131–163, November 1997. ISSN 0885-6125. doi: 10.1023/A:

1007465528199. URL https://doi.org/10.1023/A:1007465528199.

[17] D. Heckerman. A tutorial on learning with bayesian networks. Technical report,

Learning in Graphical Models, 1996.

[18] U. Adhikari, T. H. Morris, N. Dahal, S. Pan, R. L. King, N. H. Younan, and

V. Madani. Development of power system test bed for data mining of synchrophasors

data, cyber-attack and relay testing in rtds. In 2012 IEEE Power and Energy Society

General Meeting, pages 1–7, July 2012. doi: 10.1109/PESGM.2012.6345109.

[19] P. Baldi. Autoencoders, unsupervised learning and deep architectures. In Proceed-

ings of the 2011 International Conference on Unsupervised and Transfer Learn-

ing Workshop - Volume 27, UTLW’11, pages 37–50. JMLR.org, 2011. URL

http://dl.acm.org/citation.cfm?id=3045796.3045801.

[20] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow. Adversarial autoencoders. In

International Conference on Learning Representations, 2016. URL http://arxiv.

org/abs/1511.05644.

[21] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P. Manzagol, and A. Manzagol.

Stacked denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, December 2010.

ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.1953039.

https://doi.org/10.1007/978-3-642-04117-4_9
https://doi.org/10.1007/978-3-642-04117-4_9
https://doi.org/10.1023/A:1007465528199
http://dl.acm.org/citation.cfm?id=3045796.3045801
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
http://dl.acm.org/citation.cfm?id=1756006.1953039

Bibliography 72

[22] F. Chollet. Building autoencoders in keras, May 2016. URL https://blog.keras.

io/building-autoencoders-in-keras.html.

[23] L. Deng. A tutorial survey of architectures, algorithms, and applications for deep

learning. APSIPA Transactions on Signal and Information Processing, 3:e2, 2014.

doi: 10.1017/atsip.2013.9.

[24] J. Han, M. Kamber, and J. Pei. Data mining concepts and

techniques, third edition, 2012. URL http://www.amazon.de/

Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_

hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1.

[25] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

SIGMOD Rec., 29(2):1–12, May 2000. ISSN 0163-5808. doi: 10.1145/335191.335372.

URL http://doi.acm.org/10.1145/335191.335372.

[26] R. Vidal, J. Bruna, R. Giryes, and S. Soatto. Mathematics of deep learning. CoRR,

abs/1712.04741, 2017. URL http://arxiv.org/abs/1712.04741.

[27] R. C. Holte. Very simple classification rules perform well on most commonly used

datasets. Mach. Learn., 11(1):63–90, April 1993. ISSN 0885-6125. doi: 10.1023/A:

1022631118932. URL http://dx.doi.org/10.1023/A:1022631118932.

[28] Wikipedia contributors. Autoencoder — Wikipedia, the free encyclope-

dia, 2018. URL https://en.wikipedia.org/w/index.php?title=Autoencoder&

oldid=849677574. [Online; accessed 13-July-2018].

[29] Wikipedia contributors. Activation function — Wikipedia, the free encyclope-

dia, 2018. URL https://en.wikipedia.org/w/index.php?title=Activation_

function&oldid=849872393. [Online; accessed 13-July-2018].

[30] G. Rossum. Python reference manual. Technical report, Amsterdam, The Nether-

lands, The Netherlands, 1995.

[31] G. Rossum. Python tutorial. Technical report, Amsterdam, The Netherlands, The

Netherlands, 1995.

[32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://doi.acm.org/10.1145/335191.335372
http://arxiv.org/abs/1712.04741
http://dx.doi.org/10.1023/A:1022631118932
https://en.wikipedia.org/w/index.php?title=Autoencoder&oldid=849677574
https://en.wikipedia.org/w/index.php?title=Autoencoder&oldid=849677574
https://en.wikipedia.org/w/index.php?title=Activation_function&oldid=849872393
https://en.wikipedia.org/w/index.php?title=Activation_function&oldid=849872393
https://www.tensorflow.org/

Bibliography 73

[33] F. Chollet et al. Keras. https://keras.io, 2015.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[35] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,

P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,

and G. Varoquaux. API design for machine learning software: experiences from the

scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and

Machine Learning, pages 108–122, 2013.

[36] S. Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A structure for efficient

numerical computation. Computing in Science and Engg., 13(2):22–30, March 2011.

ISSN 1521-9615. doi: 10.1109/MCSE.2011.37. URL https://doi.org/10.1109/

MCSE.2011.37.

[37] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for

Python, 2001–. URL http://www.scipy.org/. [Online; accessed <today>].

[38] W. McKinney. pandas: a foundational python library for data analysis and statistics.

[39] W. McKinney. Data structures for statistical computing in python. In Stéfan van der

Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Con-

ference, pages 51 – 56, 2010.

https://keras.io
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/

	Abstract
	Öz
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Contribution

	2 Related Work
	2.1 Developing a Hybrid Intrusion Detection System Using Data Mining for Power Systems
	2.2 Classification of Disturbances and Cyber-attacks in Power Systems Using Heterogeneous Time-synchronized Data
	2.3 A Specification-based Intrusion Detection Framework for Cyber-physical Environment in Electric Power System
	2.4 Machine Learning for Power System Disturbance and Cyber-attack Discrimination

	3 Preliminaries
	3.1 Datasets
	3.2 Autoencoder
	3.3 Deep Learning

	4 Methodology
	4.1 System Model without Autoencoder
	4.2 System Model with Autoencoder

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments Results
	5.2.1 DNN Model Results
	5.2.1.1 Binary Data Class Results
	5.2.1.2 Triple Data Class Results
	5.2.1.3 Multi Data Class Results

	5.2.2 AutoEncoder Results
	5.2.2.1 Binary Data Class Results with AutoEncoder Model
	5.2.2.2 Triple Data Class Results with AutoEncoder Model
	5.2.2.3 Multi Data Class Results with AutoEncoder Model

	5.2.3 Classification Models Results
	5.2.3.1 Binary Data Class Results with Classification Models
	5.2.3.2 Triple Data Class Results with Classification Models
	5.2.3.3 Multi Data Class Results with Classification Models

	6 Conclusuion and Future Work
	Bibliography

