
Application of Privacy-Preserving

Clustering Methods Using Homomorphic

Encryption Algorithms

A thesis submitted to the

Graduate School of Natural and Applied Sciences

by

�smail Ayd�n

in partial ful�llment for the

degree of Master of Science

in

Cybersecurity Engineering

�Kindness is stronger than fear.�

Cicero

Application of Privacy-Preserving Clustering Methods Using

Homomorphic Encryption Algorithms

�smail Ayd�n

Abstract

The need of protection and processing of the sensitive data in large scale data systems

(for example data derived from �nancial systems, militaristic systems or social media

platforms) is a common problem. Usage of traditional cryptographic methods for data

protection mainly needs at least two of the ciphering, deciphering and data processing

works to be done on the same side. Because of this, with increase of the data size there

will be a need for higher processing power to work on the data.

Using traditional encryption algorithms for protection of the sensitive data on large scale

systems, also brings the need of exchanging the needed keys for protection and processing

the data. Homomorphic encryption schemes have enough �exibility that, they should be

used on data systems that contains data from multiple parts, because of its feature of

allowing to process the encrypted data like its non-encrypted form.

With the usage of homomorphic encryption schemes and proper data learning systems

on encrypted data, distribution of sensitive data to di�erent parties can be done without

violating its privacy. In this thesis, we propose a method to run mathematical computations

which needs high processing power on a common platform which o�ers high processing

power of data but not on parties that the sensitive data will be distributed. As a result

the partners of this systems will not need to have high processing power to function on

the data because the high processing demanding tasks would be done on the common

platform.

In this research Paillier Cryptographic system was used to protect data privacy. Paillier

Cryptographic algorithm's most prominent features are its asymmetrical and partially

homomorphic behavior. We proposed a system that uses privacy preserving distance

matrix calculation as input for several clustering algorithms which are commonly used

in machine learning systems. Our system is evaluated considering di�erent data lengths

and di�erent key lengths. Four di�erent data clustering methods have been tested. By

applying clustering algorithms on both encrypted and plain forms of the same data for

di�erent key and data lengths, we obtained performance results by using six di�erent

metrics.

Keywords: Machine Learning, Cryptography, Homomorphic, Clustering

Homomor�k �ifreleme Algoritmalar� Kullan�larak Mahremiyet

Korumal� Grupland�rma Yöntemlerinin Uygulanmas�

�smail Ayd�n

Öz

Günümüzde �nans, sa§l�k, askeri sistemler veya sosyal platformlarda elde edilmi³ ve

mahremiyeti korunmas� gereken büyük veri topluluklar�n�n i³lenmesi/anlamland�r�lmas�

ihtiyac� mevcuttur. Mahremiyet koruma amac�yla klasik ³ifreleme yöntemlerinin kullan�m�,

verinin kullan�laca§� sistemde ³ifreleme, ³ifre çözme veya verinin anlamland�r�lmas� i³lemle-

rinin en az ikisinin ayn� yerde yap�lmas�n� gerektirir. Veri büyüklü§ünün artmas� ile

beraber bu i³lemlerin ayn� yerde yap�lmas� durumunda büyük miktarlarda bir i³lem gücü

ihtiyac� do§acakt�r.

Klasik anlamda kriptolama yöntemlerinin çok say�da ba§lant� içeren büyük veri sistemle-

rinde kullan�m� durumunda, i³lem yüküne ek olarak çok say�da kullan�c�n�n her birinde

uygun anahtar da§�t�m mekanizmalar�n�n da çal�³mas� gerekecektir. Çok say�da kullan�c�n�n

bir araya gelmi³ oldu§u bir büyük veri sisteminde gerek anahtar da§�t�m mekanizmalar�n�n

ko³mas�n�n, gerekse de büyük veri üzerinde yap�lacak yüksek i³lem gücü gerektiren

i³lemlerin ortak bir platform üzerinde yap�lmas�na imkan vermesi sebebiyle bu çal�³mada

homomor�k ³ifreleme yöntemlerinin kullan�m� önerilmektedir. Homomor�k ³ifreleme

yöntemleri ile beraber ³ifreli veri üzerinde uygun makine ö§renme yöntemleri kullan�lmas�

sayesinde büyük verilerin payda³lara da§�t�m�n�n ve veri i³lemenin mahremiyete ayk�r�

bir durum olu³turmadan yap�labilmesi mümkün hale gelmektedir.

Bu sayede sistem payda³lar�n�n yüksek i³lem kapasitesine sahip olmas�na gerek kalmadan

büyük veri i³leme mekanizmalar�na dahil olup, i³lem yapabilme imkan�na sahip olmas�

sa§lanacakt�r. Tasarlanan sistemin çal�³mas�na uygun olmas� sebebiyle asimetrik bir

³ifreleme algoritmas� olan ve homomor�k özellik göstermesi sebebiyle mahremiyet koruma

amac�yla Paillier kriptolama sistemi kullan�lm�³t�r. Makine ö§renme yöntemlerinin uygu-

lamas� amac�yla tasarlanan sistem üzerinde farkl� veri uzunluklar�, farkl� anahtar uzunluk-

lar� kullan�larak mahremiyeti sa§lanan sistemde 4 ayr� makine ö§renme yöntemi ko³turul-

mu³tur. Her algoritman�n farkl� anahtar ve veri uzunlu§u için göstermi³ oldu§u performans,

ayn� verinin aç�k ve kapal� halleri üzerinde ko³turulan makine ö§renme algoritmalar�n�n

6 farkl� ölçüt üzerinden de§erlendirmeye tutulmas� ile tespit edilmi³tir.

Anahtar Sözcükler: Makine Ö§renimi, Kriptogra�, Homomor�k, Kümeleme

to all people who is in search of wisdom and who treats all branches

of science like their lost belongings while they keep on searching to

�nd them. . .

vi

Acknowledgments

I would like to express my sincere gratitude to my Co. advisor Dr. Ferhat Özgür Çatak

for the continuous support of my study and related research, for his patience, motivation,

and immense knowledge. Whenever I ran into a trouble spot or had a question about my

research or writing, he consistently allowed this paper to be my own work, but steered

me in the right direction whenever he thought I needed it.

I would also like to thank to Prof. Gül. I am gratefully indebted to him for his very

valuable comments and guidence on this thesis.

Finally, I must express my very profound gratitude to my parents and to my spouse

for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them.

Thank you. . .

vii

Contents

Declaration of Authorship ii

Abstract iv

Öz v

Acknowledgments vii

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Current Situation . 1
1.2 Contribution . 3

2 Related Work 4
2.1 Related Work . 4

3 Preliminaries 8
3.1 Data Clustering . 8

3.1.1 K-Means Clustering . 10
3.1.2 Hierarchical Clustering . 11
3.1.3 Spectral Clustering . 12
3.1.4 Birch Clustering . 12
3.1.5 Evaluation Metrics . 13

3.1.5.1 Homogeneity . 13
3.1.5.2 Completeness . 14
3.1.5.3 V-Measure . 14
3.1.5.4 Adjusted Rand Index . 15
3.1.5.5 Adjusted Mutual Information 15
3.1.5.6 Silhouette Coe�cient . 16

3.2 Homomorphic Encryption . 16
3.2.1 Paillier Cryptosystem . 17
3.2.2 Floating Point Numbers . 17

4 System Model 18
4.1 Development Environment . 18
4.2 Sequence Diagram . 18

viii

Contents ix

4.2.1 Client Computaion . 18
4.2.2 Data Authority Computation . 20
4.2.3 Model Building at Client . 21

5 Experiments and Results 24
5.1 Plaintext Results . 25

5.1.1 K-Means Algorithm Results . 25
5.1.2 Hierarchical Algorithm Results . 28
5.1.3 Spectral Algorithm Results . 31
5.1.4 Birch Algorithm Results . 35

5.2 Encrypted Domain Results . 38
5.2.1 K-Means Algorithm Results . 38
5.2.2 Hierarchical Algorithm Results . 45
5.2.3 Spectral Algorithm Results . 52
5.2.4 Birch Algorithm Results . 59

5.3 Results . 66

6 Conclusions and Future Work 67

Bibliography 69

List of Figures

4.1 Sequence Diagram for Client Side . 19
4.2 Sequence Diagram for Data Authority Side 21
4.3 Sequence Diagram for Model Building at Client Side 22

5.1 Plain domain clustering for dataset 500 . 25
5.2 Plain domain clustering for dataset 1000 25
5.3 Plain domain clustering for dataset 1500 26
5.4 Plain domain clustering for dataset 2000 26
5.5 Plain domain clustering for dataset 2500 26
5.6 Plain domain clustering for dataset 3000 27
5.7 Plain domain clustering for dataset 3500 27
5.8 Plain domain clustering for dataset 4000 27
5.9 Plain domain clustering for dataset 4500 28
5.10 Plain domain clustering for dataset 5000 28
5.11 Plain domain clustering for dataset 500 . 28
5.12 Plain domain clustering for dataset 1000 29
5.13 Plain domain clustering for dataset 1500 29
5.14 Plain domain clustering for dataset 2000 29
5.15 Plain domain clustering for dataset 2500 30
5.16 Plain domain clustering for dataset 3000 30
5.17 Plain domain clustering for dataset 3500 30
5.18 Plain domain clustering for dataset 4000 31
5.19 Plain domain clustering for dataset 4500 31
5.20 Plain domain clustering for dataset 5000 31
5.21 Plain domain clustering for dataset 500 . 32
5.22 Plain domain clustering for dataset 1000 32
5.23 Plain domain clustering for dataset 1500 32
5.24 Plain domain clustering for dataset 2000 33
5.25 Plain domain clustering for dataset 2500 33
5.26 Plain domain clustering for dataset 3000 33
5.27 Plain domain clustering for dataset 3500 34
5.28 Plain domain clustering for dataset 4000 34
5.29 Plain domain clustering for dataset 4500 34
5.30 Plain domain clustering for dataset 5000 35
5.31 Plain domain clustering for dataset 500 . 35
5.32 Plain domain clustering for dataset 1000 35
5.33 Plain domain clustering for dataset 1500 36
5.34 Plain domain clustering for dataset 2000 36

x

List of Figures xi

5.35 Plain domain clustering for dataset 2500 36
5.36 Plain domain clustering for dataset 3000 37
5.37 Plain domain clustering for dataset 3500 37
5.38 Plain domain clustering for dataset 4000 37
5.39 Plain domain clustering for dataset 4500 38
5.40 Plain domain clustering for dataset 5000 38
5.41 Encrypted domain clustering results for dataset 500 39
5.42 Encrypted domain clustering results for dataset 1000 39
5.43 Encrypted domain clustering results for dataset 1500 40
5.44 Encrypted domain clustering results for dataset 2000 40
5.45 Encrypted domain clustering results for dataset 2500 41
5.46 Encrypted domain clustering results for dataset 3000 41
5.47 Encrypted domain clustering results for dataset 3500 42
5.48 Encrypted domain clustering results for dataset 4000 42
5.49 Encrypted domain clustering results for dataset 4500 43
5.50 Encrypted domain clustering results for dataset 5000 43
5.51 Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for K-Means Algorithm 44
5.52 Calculation Time Graph for KMeans Algorithm on Key-Data Length

Dimensions . 44
5.53 Encrypted domain clustering results for dataset 500 45
5.54 Encrypted domain clustering results for dataset 1000 46
5.55 Encrypted domain clustering results for dataset 1500 46
5.56 Encrypted domain clustering results for dataset 2000 47
5.57 Encrypted domain clustering results for dataset 2500 47
5.58 Encrypted domain clustering results for dataset 3000 48
5.59 Encrypted domain clustering results for dataset 3500 48
5.60 Encrypted domain clustering results for dataset 4000 49
5.61 Encrypted domain clustering results for dataset 4500 49
5.62 Encrypted domain clustering results for dataset 5000 50
5.63 Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for Hierarchical Algorithm 51
5.64 Calculation Time Graph for Hierarchical Algorithm on Key-Data Length

Dimensions . 51
5.65 Enrypted domain results for dataset 500 52
5.66 Enrypted domain results for dataset 1000 53
5.67 Enrypted domain results for dataset 1500 53
5.68 Enrypted domain results for dataset 2000 54
5.69 Enrypted domain results for dataset 2500 54
5.70 Enrypted domain results for dataset 3000 55
5.71 Enrypted domain results for dataset 3500 55
5.72 Enrypted domain results for dataset 4000 56
5.73 Enrypted domain results for dataset 4500 56
5.74 Enrypted domain results for dataset 5000 57
5.75 Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for Spectral Algorithm 58

List of Figures xii

5.76 Calculation Time Graph for Spectral Algorithm on Key-Data Length
Dimensions . 58

5.77 Encrypted domain clustering results for dataset 500 59
5.78 Encrypted domain clustering results for dataset 1000 60
5.79 Encrypted domain clustering results for dataset 1500 60
5.80 Encrypted domain clustering results for dataset 2000 61
5.81 Encrypted domain clustering results for dataset 2500 61
5.82 Encrypted domain clustering results for dataset 3000 62
5.83 Encrypted domain clustering results for dataset 3500 62
5.84 Encrypted domain clustering results for dataset 4000 63
5.85 Encrypted domain clustering results for dataset 4500 63
5.86 Encrypted domain clustering results for dataset 5000 64
5.87 Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for Birch Algorithm 65
5.88 Calculation Time Graph of Birch Algorithm on Key-Data Length Dimensions 65

List of Tables

5.1 Plain domain evaluation metric scores for dataset 500 25
5.2 Plain domain evaluation metric scores for dataset 1000 25
5.3 Plain domain evaluation metric scores for dataset 1500 26
5.4 Plain domain evaluation metric scores for dataset 2000 26
5.5 Plain domain evaluation metric scores for dataset 2500 26
5.6 Plain domain evaluation metric scores for dataset 3000 27
5.7 Plain domain evaluation metric scores for dataset 3500 27
5.8 Plain domain evaluation metric scores for dataset 4000 27
5.9 Plain domain evaluation metric scores for dataset 4500 28
5.10 Plain domain evaluation metric scores for dataset 5000 28
5.11 Plain domain evaluation metric scores for dataset 500 28
5.12 Plain domain evaluation metric scores for dataset 1000 29
5.13 Plain domain evaluation metric scores for dataset 1500 29
5.14 Plain domain evaluation metric scores for dataset 2000 29
5.15 Plain domain evaluation metric scores for dataset 2500 30
5.16 Plain domain evaluation metric scores for dataset 3000 30
5.17 Plain domain evaluation metric scores for dataset 3500 30
5.18 Plain domain evaluation metric scores for dataset 4000 31
5.19 Plain domain evaluation metric scores for dataset 4500 31
5.20 Plain domain evaluation metric scores for dataset 5000 31
5.21 Plain domain evaluation metric scores for dataset 500 32
5.22 Plain domain evaluation metric scores for dataset 1000 32
5.23 Plain domain evaluation metric scores for dataset 1500 32
5.24 Plain domain evaluation metric scores for dataset 2000 33
5.25 Plain domain evaluation metric scores for dataset 2500 33
5.26 Plain domain evaluation metric scores for dataset 3000 33
5.27 Plain domain evaluation metric scores for dataset 3500 34
5.28 Plain domain evaluation metric scores for dataset 4000 34
5.29 Plain domain evaluation metric scores for dataset 4500 34
5.30 Plain domain evaluation metric scores for dataset 5000 35
5.31 Plain domain evaluation metric scores for dataset 500 35
5.32 Plain domain evaluation metric scores for dataset 1000 35
5.33 Plain domain evaluation metric scores for dataset 1500 36
5.34 Plain domain evaluation metric scores for dataset 2000 36
5.35 Plain domain evaluation metric scores for dataset 2500 36
5.36 Plain domain evaluation metric scores for dataset 3000 37
5.37 Plain domain evaluation metric scores for dataset 3500 37

xiii

List of Tables xiv

5.38 Plain domain evaluation metric scores for dataset 4000 37
5.39 Plain domain evaluation metric scores for dataset 4500 38
5.40 Plain domain evaluation metric scores for dataset 5000 38
5.41 Encrypted domain evaluation metric scores for dataset 500 39
5.42 Encrypted domain evaluation metric scores for dataset 1000 39
5.43 Encrypted domain evaluation metric scores for dataset 1500 40
5.44 Encrypted domain evaluation metric scores for dataset 2000 40
5.45 Encrypted domain evaluation metric scores for dataset 2500 41
5.46 Encrypted domain evaluation metric scores for dataset 3000 41
5.47 Encrypted domain evaluation metric scores for dataset 3500 42
5.48 Encrypted domain evaluation metric scores for dataset 4000 42
5.49 Encrypted domain evaluation metric scores for dataset 4500 43
5.50 Encrypted domain evaluation metric scores for dataset 5000 43
5.51 Encrypted domain evaluation metric scores for dataset 500 45
5.52 Encrypted domain evaluation metric scores for dataset 1000 45
5.53 Encrypted domain evaluation metric scores for dataset 1500 46
5.54 Encrypted domain evaluation metric scores for dataset 2000 47
5.55 Encrypted domain evaluation metric scores for dataset 2500 47
5.56 Encrypted domain evaluation metric scores for dataset 3000 48
5.57 Encrypted domain evaluation metric scores for dataset 3500 48
5.58 Encrypted domain evaluation metric scores for dataset 4000 49
5.59 Encrypted domain evaluation metric scores for dataset 4500 49
5.60 Encrypted domain evaluation metric scores for dataset 5000 50
5.61 Enrypted domain clustering results with dataset 500 52
5.62 Enrypted domain clustering results with dataset 1000 52
5.63 Enrypted domain clustering results with dataset 1500 53
5.64 Enrypted domain clustering results with dataset 2000 54
5.65 Enrypted domain clustering results with dataset 2500 54
5.66 Enrypted domain clustering results with dataset 3000 55
5.67 Enrypted domain clustering results with dataset 3500 55
5.68 Enrypted domain clustering results with dataset 4000 56
5.69 Enrypted domain clustering results with dataset 4500 56
5.70 Enrypted domain clustering results with dataset 5000 57
5.71 Encrypted domain evaluation metric scores for dataset 500 59
5.72 Encrypted domain evaluation metric scores for dataset 1000 59
5.73 Encrypted domain evaluation metric scores for dataset 1500 60
5.74 Encrypted domain evaluation metric scores for dataset 2000 61
5.75 Encrypted domain evaluation metric scores for dataset 2500 61
5.76 Encrypted domain evaluation metric scores for dataset 3000 62
5.77 Encrypted domain evaluation metric scores for dataset 3500 62
5.78 Encrypted domain evaluation metric scores for dataset 4000 63
5.79 Encrypted domain evaluation metric scores for dataset 4500 63
5.80 Encrypted domain evaluation metric scores for dataset 5000 64

Chapter 1

Introduction

There is a need for big data[1] systems that allows users to quickly handle sensitive data

which may be gathered from systems like healthcare systems or �nancial systems and

without violating its privacy.

Machine learning[2] is gaining a high reputation for handling valuable and private data in

an e�cient way on big data systems. Sometimes big data systems contain data batches

related to systems that has di�erent privacy policies from each other but had to be

handled in a mutual way. Because of the di�erent privacy policies that di�erent parties

have, sensitive data can't be distributed everytime.

1.1 Current Situation

It is a hard question that �How can sensitive data be distributed between multiple parties

without making concessions?�. Classically to �nd an answer to this question symmetric

and asymmetric (public-private key cryptography) ciphering algorithms[3] are being used.

The strength of classical cryptographic tools relies on secrecy of crypto key, strength of

the algorithm and randomness that used in algorithm.

When classical ways are appealed, ciphering - deciphering works and processing the open

data takes part in the same place. When it is desired to provide privacy using classical

cryptographic algorithms, the parties need to have proper key or keys from public-private

key pairs and the keys had to be transferred using a safe channel. As it is easy to see

using this type of traditional systems, brings the need to compute all processes that need

high processing power in the same place. Regrettably, this type of systems are being

1

Chapter 1. Introduction 2

incapable for big data systems because classical cryptographic algorithms are mainly

designed for small datasets.

Data handling for machine learning algorithms while considering privacy[4] issues, primarily

has two main approaches;

Firstly; using the distinctive features of big datasets for the suppression and generalization

to sanitize the big data. After that, the sanitized version of data can be distributed[5, 6]

or published to data parties to run any machine learning algorithm.

Secondly, using cryptographically secure multi-party computation algorithms[7�9] to

construct protocols that can compute the same answer when obtained in private and

non-private cases. This approach is applied generally when the relationship between

data parties is symmetrical. Symmetrical relationship means that if the database is

partitioned and distributed to parties and result of the machine learning algorithms

applied to the dataset are same. So the result of the algorithm execution shows that

both parties learn the same output based on the joint database.

The di�erence between these two approaches is in the �rst approach (sanitization approach),

the parties don't execute machine learning algorithms on the data which belong to

themselves and the database owner doesn't get an output of the execution. Depending on

the content and the quiddity of the data there might be a need to develop a classi�cation

model that allows to work just on a speci�c part of the data. To develop a classi�cation

model, compute-intensive processes would be used for sanitization without violating

privacy of the data. Big data classi�ers need an e�cient for distributed learning and

privacy preserving protocol. The method we will suggest aims to allow a user to create

needed classi�ers without reaching any extra information about the data. Therefore

database owner also wouldn't know anything about the data classi�er. Creating a data

classi�er by means of this method would be examined through a prototype application

and the performance will be observed. In this thesis, a framework will be proposed and

used for applying machine learning algorithms to datasets when it is distributed and

shared between parties. We will also use Paillier Cryptographic system for handling big

data.

Chapter 1. Introduction 3

1.2 Contribution

In today's world the data which needs to be preserved privately can reach up to large

scales and may di�er in a wide range of varieties. There are several methods in literature

to provide privacy for these data. Applying classical cryptographic algorithms can't be

enough every time for handling privacy issues of large scale data. It is foreseen that

when a process needs to run on a sensitive dataset, it is not suitable every time to

send the encrypted data to di�erent parties. As classical cryptographic algorithms are

used for encryption, the needed processes can be executed on data only after decryption

of it. This way, although data privacy is highly violated for the side where the data

would be executed in, there are some mechanisms to solve this problem. Considering

their competence level, it is clear that this procedure can't be used in every condition.

In respect to this data privacy violation problem, there is always a necessity for a

system which can both allow to preserve privacy for data and doesn't violate privacy as

exposing the real data to irrelevant parties when needed process execution is performed.

In this thesis, a system that uses the Paillier Cryptography for classifying big data

systems and allows to handle/process the data without violating the privacy has been

proposed/designed. This proposed work can be implemented to any system that gathers

critical, sensitive or private information to run several processes on it. As mentioned

before, health care systems, militaristic systems, �nancial-commercial systems or instant

private image/video processing systems. By changing used algorithms to process the

data or running di�erent algorithms rather than clustering algorithms, this model can

be modi�ed to make the system suitable to handle di�erent needs. The proposed system

would allow to use the data properly while preserving the privacy of data.

The main contributions of this research are as follows:

• Overcoming the need to use actual sensitive data for data handling is achieved by

building a model that allows to use the distance matrix of the same data instead.

• The Paillier cryptosystem encryption-based clustering model building is proposed

for preserving privacy and thus private clustering model training is achieved.

• With usage of the distance matrix of sensitive data, clustering performance of

four di�erent clustering algorithms have been evaluated in respect of 6 di�erent

evaluation metrics and computational time.

• A system model has been o�ered, which allows handling high processing power

demanding tasks to be done on a powerful platform. So that the overall computational

time aimed to be reduced thus it can be handled more e�ectively.

Chapter 2

Related Work

2.1 Related Work

In this section we will examine works related to using machine learning algorithms which

depends on privacy preserving on big data systems.

Lindell Y. and Pinkas B., suggests a system which uses ID3 algorithm for data processing

safety. They have stated that their system needs relatively less communication rounds

and bandwidth. In this system, ID3 algorithm is used with decision tree learning and

while privacy of data is preserved di�erent users work on the data and then the results are

merged by using cryptographic protocols [10]. The main di�erence between our proposed

work and this work is the used cryptographic algorithm, ID3. Lindell Y. and Pinkas B.

also focused on the problem of secure multi-party computation on a joint database but,

their solution for privacy is using ID3 algorithm while the projected computation on the

database is decision tree learning.

Chaudhuri K. and Monteleon C., consider the balance between secrecy and learnability

while designing a privacy preserving algorithm for a database. They focus on privacy

preserving logistic regression algorithm. Bounding the sensitivity due to distortion is

measured when a noise is applied on the system while the regularized logical regression

algorithm is using a classi�er. A privacy-preserving regularized logistic regression algorithm

is provided which is based on solving a perturbed optimization problem [11]. In their

work they tried to construct a new learning method based on logistic regression to create

privacy preserving linear classi�ers, which di�ers from our work that we didn't preserve

privacy by our classi�ers, but with an homomorphic encryption algorithm.

4

Section 2. Related Work 5

Agrawal R. and Srikant R. state that in the future, data processing technics are going to

aim on merging di�erent security requirements on di�erent platforms. They evaluated

mathematical value of the distributed data to its original form and tried to accurately

estimate the true values of the original data from distributed ones [12]. In this work the

privacy is tried to be preserved by perturbing the original data by some randomization

techniques, di�erent from our proposed model. Also decision tree algorithms are used

for classi�cation of both original and reconstructed mutual data and these algorithms

are ByClass and Local. In our work the mutual data is not perturbed for privacy and

with this we also didn't need to reconstruct the original data.

Xu K. , Yue H. and their friends consider the traditional methods of cryptography for

parties that doesn't share open data in respect of adequation. Due to this problem, they

tried to minimize the data that needs to be processed with using the data locality feature

of Apache Hadoop architecture's Map Reduce for protecting the data privacy[13], which

is a big di�erence from our work that we o�er usage of a cryptographic protocol. While

the main focus of this work is similar to our study, the approach to �nd a solution for

privacy preserving while handling big data is the main di�erence from our work because

we didn't consider a commercial platform's instruments to �nd a solution but we tried to

o�er a general system without using any commercial platform. Also this work involves

Hadoop's another feature for getting local training results, Mapper. The data locality is

also a big di�erence from our proposed system because this work obliges the participants

of the system to handle their data locally, not on a common powerful platform. Also

because this system mainly runs on the Hadoop platform, participants must use their

data in HDFS (Hadoop Distributed File System) format.

Merugu S. and Ghosh J. examined the costs of security and communication of distributed

data in supervised and non-supervised scenarios. The suggestion they made is to transmit

the parameters of suitable generative models which built at local data sites to a central

database, instead of sharing the original data. The work showed that generating arti�cial

samples from the original data distributions with using Markov Chain Monte Carlo

techniques, it is mathematically possible to represent all the data with a mean �model�

[14]. In this work, privacy is preserved by the hardness of reconstruction of the original

data from the distributed model which is derived locally, no encryption algorithm is

used. This work also includes distributed model clustering between di�erent parties with

di�erent security concerns, so each party can choose a suitable expectation-maximization

algorithm to use for clustering and the central "model merger" tries to �nd the best

solution for merging these clustering results. On the contrary of this work, in our work

we o�er a single data authority and the calculations are made on encrypted data because

Section 2. Related Work 6

of its homomorphic characteristic and clustering is also not done in locals.

Shokri R. and Shmatikov V. tried to use the ability of gathering information and model

building of arti�cial neural networks from complex datasets. They tried to design a

practical system that allows di�erent parties to jointly learn an accurate neural network

model without sharing their input data. The researchers think that their system has a

strong privacy compared to any existing approach due to minimal data sharing which is

actually a small fraction of network parameters [15]. The usage of arti�cial intelligence

and actuating neural network algorithms are done on the client side and this is on of the

di�erences from our proposed model. Another di�erence is, this study o�ers a model that

uses arti�cial intelligence which aims to work independent from the speci�c algorithm

which is used on training data. Also di�erent from proposed system, participants of

this system share their models with each other,so participants may also learn from other

participants' models.

Yang et al. o�er a system that allows users to use a model for calculating data frequencies

which also preserves privacy. The main logic of the system is to calculate the frequencies

of speci�c values or a group of values of client side's data at the data mining side and

while doing it data privacy is still protected by ElGamal cryptographic algorithm. It

has been stated that there is no information shared except frequency of data values [16].

This work is focusing mainly on the scenario that participants of the system doesn't want

to use the result of the data mining procedure which is the most prominent di�erence

from our proposed system that inn our system client �wants to use� the clustering result.

Another di�erence is thgis work also aims on calculating the frequencies of speci�c values

of the data of client side but, our model clusters data using certain clustering algorithms.

Sahin O.D. , Agrawal A. and El Abbadi A. o�er a system that guarantees the data of

a party which doesn't pertain to another data source won't be revealed. To provide

the privacy and build a distributed decision tree learning algorithm, ID3 algorithm and

Shamir's secret sharing are used [17]. Their work di�ers from our model by the algorithm

used for privacy which is Shamir's secret sharing and the algorithm runs on the data

aiming to create decision trees which is ID3 algorithm. Di�erent from our work, this

work is proposing a non-homomorphic algorithm for data privacy and constrains the

client to use it three times successively on di�erent calculation phases, but we propose

a system model that uses homomorphic algorithm and the clustering algorithms run on

the encrypted data so encryption and decryption costs are signi�cantly lower.

Section 2. Related Work 7

Li et al. suggest usage of multi key-fully homomorphic encryption as well as a hybrid

structure which combines double decryption with fully homomorphic encryption. They

tried to prove that these two privacy-preserving algorithms are proper to use with deep

learning algorithms over encrypted data. Di�erent users choose their keys and encrypt

their data. Encrypted data is sent on a cloud and the execution on the data is made by

these two suggested systems [18]. Di�erent from our model, this work mainly focuses on

the issue of collaborative deep learning. Also we use a classical encryption-decryption

routine in our model but in this work, to preserve privacy double decryption is o�ered

not only to protect the data, but also to protect the model that every participant of the

system created from their data.

Yi X. and Zhang Y. considered a privacy preserving Bayes classi�er method for horizontal-

ly partitioned data and proposed two protocols. One of these protocols are two-party

protocol and the other one is a multi-party protocol. Multi-party protocol is used between

owners of sensitive data and a semi trusted server while two party protocol just broadcasts

the classi�cation result. In this work it is assumed that these two protocols are trusted

and can preserve privacy [19]. This study di�ers from our proposed model by the used

classi�cation protocol which is naive Bayes classi�cation. While we propose a model that

preserves privacy by using a homomorphic encryption algorithm, Paillier cryptographic

system, this study aims for the same objective by enhancing the Bayes classi�cation

model o�ered by Kantarcioglu and Vaidya.

Secretan J. , Georgiopoulos M. , Koufakou A. and Cardona K. approached the hardness

issue of developing a privacy preserving data mining (PPDM) algorithm. PPDM algorithm

are computationally intensive to execute and there is a need in the data mining that

developers need convenient abstraction algorithms for simpli�cation of the system. Di�er-

ent from our work, this study focuses on using parallel computing between di�erent

organizations and it is advised in their study because of its ability to bring high performance

and that can bear on the computationally intensive works of data mining. Their study

mainly considers a system built on the idea of in one tier a simpli�ed use of cluster

and grid resources would exist and at another tier the system would just abstract the

communication for algorithm development [20]. This study mainly di�ers from our

work by two reasons. Firstly, its main focus is trying to integrate a high performance

and parallel computing environment between di�erent organizations and secondly it

suggests usage of APHID (Architecture for Private and High-performance Integrated

Data mining) because of the lack of middleware frameworks that organizations would

need to support PPDM.

Chapter 3

Preliminaries

In this chapter, we will brie�y examine on data clustering, clustering methods, homomor-

phic encryption and Paillier Cryptosystem.

3.1 Data Clustering

Clustering can be described as dividing accumulated elements[21] into di�erent groups

depending on special features they have. Elements that are similar with each other

should be in the same group as much as possible. Same logic is a subject on clustering

algorithms aiming to work together with data mining algorithms.

Clustering analysis has been originally used in anthropology by Driver and Kroeber[22,

23] and then introduced to psychology by Zubin. So, clustering may be done using

di�erent methods due to di�erent needs and di�erent logical reasons with compliance to

several �exibilities. Some of these methods can be described as,

Centroid-Based Clustering: Centralized clustering or centroid-based clustering[24, 25]

represents a group by a central vector which doesn't have to be a member of the dataset

it belongs. This method comes up with a problem: How many clusters there should

be? This question is the main drawback of data mining algorithms that depends on

this method (such as K-Means algorithm) and common approach to this problem is to

�nd approximate solutions. After deciding cluster numbers, then central vectors for each

cluster is calculated by squared distances from the clusters to �nd nearest elements to

form clusters. Due to this logic the squared distances from center should have their

8

Section 3. Preliminaries 9

minimal value.

Distribution-Based Clustering: In this method elements of a big dataset is clustered due

to the statistical model they create[26]. Clusters can be de�ned as elements belonging

most likely to the same distribution. This method can be considered as an excellent

method theoretically but it su�ers a main problem known as over �tting. One prominent

mixture model that is in use with this method is Gaussian mixture[27]. Dataset

is initially modeled with a Gaussian distribution randomly then the parameters are

optimized to �t the dataset better. This will converge into an optimum model, so

iteration is needed to �nd the best model. Distribution-based clustering models are

good for capturing correlation and dependencies between samples although it brings an

extra burden on the user in terms of iterative computing.

Density-based clustering: When clusters are de�ned considering the areas of high density

of elements in a big dataset, that method is density based clustering[28, 29]. Methods

that use density-based clustering use di�erent criterion for de�ning the density. One of

the most popular criterion is called as ′′density reachability′′ [30]. This logic works in

the way of searching for elements in a dataset which are within a certain threshold value

and adding those elements into a same cluster. There are di�erent algorithms that can

forms clusters according to same-density data and because of the working logic these

algorithms have they can form arbitrarily shaped clusters on the contrary of many other

clustering algorithms.

Connectivity-based clustering: This clustering method relies on the idea of clustering

logic which collects elements of a big dataset that are more related to nearby elements

than elements farther away and form a cluster[31�33]. This method forms clusters

according to their distance, so a cluster can be described by the maximum distance needed

to collect elements. Di�erent clusters will form at di�erent distances, so this model can

be represented with a ′′dendrogram′′ [34] because these algorithms provide a hierarchical

model that within a certain model clusters also merge with each other. Distance values

that are in use for clustering can be calculated or selected due to di�erent needs. For

example distance that will be used for clustering can be minimum or maximum distances

between elements or average distances between them.

Di�erent clustering algorithms can be used according to the chosen clustering logic. In

our work, we analyzed four di�erent clustering algorithms in respect to di�erent logical

approaches which are described above and working procedure of these algorithms will be

Section 3. Preliminaries 10

explained below together with the method they use while clustering a dataset.

3.1.1 K-Means Clustering

K-Means clustering method[35] creates clusters from a dataset according to previously

determined cluster number (n clusters) and while doing that, clustering is done in

according to have nearest ′′inertia′′ values for every cluster. Inertia value is calculated

as sum of squared distances between the central point of a cluster and every other point

inside the same cluster. This algorithm is generally useful for big datasets and is used

in many di�erent applications[36]. K-Means algorithm divides a set of N samples into

K disjoint clusters while cluster centroids are and the other points inside a cluster are

X. K-Means algorithm aims to choose centroids that minimize the inertia in accordance

with the equation of:

n∑
i=0

min(||x− µi||2) (3.1)

Inertia, or the within-cluster sum of squares, can be used to measure how internally

coherent clusters are. This criterion also su�ers from several conditions. For example

it is usually assumed that the dataset is ′′complex′′ and ′′isotropic′′ but unfortunately

it isn't always the case, so it makes inertia ine�cient to elongated clusters or irregular

shaped datasets. Furthermore, while smaller values are better and the best case is when

the value is 0, on high-dimensional datasets Euclidean distances[37] tend to become

in�ated. This situation is named as ′′curse of dimensionality′′. To speed up K-Means

algorithm and alleviate this problem, dimensionality reduction algorithms can be used

before running K-Means algorithm on a dataset.

To get the best clustering results, K-Means algorithm should run on the same dataset

multiple times[38]. Because of the need for high processing power and speed, we suggest

that computations such as these algorithms should run on a powerful cloud environment

to eliminate the case that users shall provide that much of processing power to the

system. After enough time, K-Means algorithm will always converge to a local minimum

value.

K-Means algorithm will initially create clusters by grouping elements around chosen

central points and according to inertia values of these clusters. As the iteration goes

on, algorithm shifts central points and re-group elements into clusters and calculate new

inertia to converge into a minimum value. As it easy to see, it is important to choose

accurate central points at the initialization of computing because more accurate cluster

centroids will signi�cantly reduce time or number of iteration to get better clustering.

Section 3. Preliminaries 11

3.1.2 Hierarchical Clustering

Hierarchical clustering is a general name for certain clustering methods that builds nested

clusters by merging or splitting their elements. These clustering methods create clusters

with a logic similar to root-tree structure. The hierarchy of clusters can be represented

as a tree shape (dendrogram) while the roots of the tree represent clusters and leaves

represent only one sample that collect some clusters under itself.

Hierarchical algorithms can be expressed under two main titles, Agglomerative clustering

and Divisive clustering algorithms. In our work we used Agglomerative Clustering

method and this method works with a bottom-up approach like root to tree logic, unlike

Divisive clustering method. The way that Agglomerative clustering method will follow

for clustering depends on the clustering number which is predetermined and the method

the algorithm will use[39]. These methods are:

• Ward: For every group, calculation of inertia is an issue like in the K-Means

Clustering but usage of this value is di�erent from K-Means algorithm due to

structure of Agglomerative clustering. It aims to minimize the inertia di�erences

within all clusters.

dij = d({Xi}, {Xj}) = ||Xi−Xj||2 (3.2)

• Maximum or Complete Linkage: Clustering is done with consideration of minimizing

the maximum distances between di�erent clusters. While the distance between

clusters is d, the logic of this method can be described as:

max{d(x, y) : x ∈ A , y ∈ B} (3.3)

• Average Linkage: Minimizing the mean distance between pairs of clusters are used

for clustering. For example, while x and y represent points belonging to di�erent

clusters, the equation to calculate the mean distance between cluster A and cluster

B is as:

1

|A|.|B|
∑
x∈A

∑
y∈B

d(x, y) (3.4)

Section 3. Preliminaries 12

3.1.3 Spectral Clustering

Spectral clustering mainly work on to embed the a�nity matrix between samples[40],

followed by a clustering algorithm. This method is especially e�cient on relatively small

datasets or if the a�nity matrix is sparse and the dataset is convex[41]. This algorithm

needs cluster number to be speci�ed before working on the dataset.

3.1.4 Birch Clustering

Birch algorithm[42] builds a tree called �the characteristic feature tree� (CFT). CFT

structure consist of �characteristic feature nodes� (CFN) and these CFNs are made of

�characteristic feature sub-clusters� (CFS). With the information gathered from characte-

ristic feature sub-clusters, which is the subsidiary of CFT tree, there is no need to save

the entire data on the memory to create clusters from the dataset. Birch algorithm also

brings e�ectiveness to memory use on the platform it runs and it is done by holding some

information about the dataset. Some of these informations are:

• Number of samples in a sub-cluster.

• Linear Sum: A n-dimensional vector holding the sum of all samples

• Centroids: This avoids recalculation of linear sum for n samples

• Squared Sum: Squared norm of the centroids.

Birch algorithm primarily needs two information to cluster the dataset. These are

threshold value which will be the radiant of clusters which puts a limit for clusters

and branching factor which de�nes maximum number of elements that every cluster can

have. Birch algorithm can only work on dataset after gathering these information. After

the clustering is done, if a new sample is inserted into the dataset, it is then merged with

most proper sub-cluster constrained by the threshold and branching factor conditions.

If the radius of the sub-cluster obtained after the merging the new sample and the

branching factor is exceeded, then a new space shall be allocated for this new sample. In

this condition the easiest solution to this can be splitting the most suitable cluster into

two (if it doesn't result in exceeding the cluster number) [43].

Section 3. Preliminaries 13

3.1.5 Evaluation Metrics

3.1.5.1 Homogeneity

Homogeneity criteria can only be satis�ed if members of each single class are placed into

a distinct cluster in terms of homogeneity[44]. So that each cluster signi�cantly contains

only members of a single class. The class distribution within each cluster should be done

from a single class. Homogeneity gets a value between 0 and 1. For a perfect clustering,

the homogeneity value gets the value 1.

As Y represents the data which belongs to the same class and T represents the clusters

that the data would be clustered into, homogeneity value can be expressed as H(Y |T).
The value of H(Y |T) is dependent on the size of the dataset. We use homogeneity value

by its normalized form by H(Y) instead of its raw entropy value. While H(Y) could

provide the maximum homogeneity value, this form can be expressed as;

(H(Y |T))
(H(Y))

(3.5)

In a perfect homogeneous situation, this normalization, (H(Y |T))
(H(Y)) equals to 0. Thus, as we

know that 1 is desirable and 0 is undesirable condition, the homogeneity can be de�ned

as:

h =

1 if H(Y, T) = 0

1− H(Y |T)
H(Y) else

(3.6)

Where a dataset that consists of N data points and these data points belongs to Y

number of classes which varies between c = 1, ..., Y and placed into T number of clusters

which varies between k = 1, ..., T . xck shows the number of data points belongs to the

class c and is also an element of cluster k. n shows the quantity of number of classes.

H(Y |T) = −
|T |∑
k=1

|Y |∑
c=1

xck
N
log

xck∑|Y |
c=1 xck

H(Y) = −
|Y |∑
c=1

∑|T |
k=1 xck
n

log

∑|T |
k=1 xck
n

(3.7)

Section 3. Preliminaries 14

3.1.5.2 Completeness

This metric, which is symmetrical to the homogeneity metric, expresses the proportion

of data belonging to the same class within the same dataset[44]. If the data belonging

to the same data class is included in the same group as the result of the clustering of

the dataset, this metric which takes the ideal value in this situation regarded as 1, if the

grouping is farthest from ideal, the value of this metric will be 0.

In order to satisfy this criterion each of the clusters should comprise of elements which

belongs only one class. Distribution of cluster assignments within each class is used to

evaluate completeness. As Y represents the data which belongs to the same class and

T represents the clusters that the data would be clustered into, completeness value can

be expressed as H(T |Y). In ideal condition H(T |Y) = 0. The worst case scenario is

when each class is represented by each cluster and in this case H(T |Y) = H(T) = 1.

Completeness can be de�ned as:

c =

1 if H(T, Y) = 0

1− H(T |Y)
H(T) else

(3.8)

Where a dataset that consists of N data points and these data points belongs to Y

number of classes which varies between c = 1, ..., Y and placed into T number of clusters

which varies between k = 1, ..., T , ack shows the number of data points which is an

element of cluster k and is also belongs to the class c. n shows the quantity of number

of classes.

H(T |Y) = −
|Y |∑
c=1

|T |∑
k=1

ack
N
log

ack∑|T |
k=1 ack

H(T) = −
|T |∑
k=1

∑|Y |
c=1 ack
n

log

∑|Y |
c=1 ack
n

(3.9)

3.1.5.3 V-Measure

V-Measure is a criterion which measures how successfully did homogeneity and complete-

ness criteria have been satis�ed[44].V-Measure is calculated by taking the harmonic mean

of the homogeneity and completeness metrics. This criterion takes values between 1 and

0. As described above in homogeneity and completeness sections, these two metric have

working logic that are opposite to each other. Increase in homogeneity results in decrease

in completeness, and vice versa. V-Measure can be calculated as:

Section 3. Preliminaries 15

v −Measure =
(2× homogenity × completeness)
(homogenity + completeness)

(3.10)

3.1.5.4 Adjusted Rand Index

A metric called ′′Rand Index′′ which is a measure of similarities between two data

clusterings, should be calculated in order to get ′′Adjusted RandIndex (ARI)′′[45].

While Rand Index may vary between 0 and 1, Adjusted Rand Index can also yield

negative values. Rand index which is calculated separately for both the clustering which

is expected to be ideal and the clustering that is currently made, and then these index

values are used in the formula below to ′′adjust′′ the Rand Index :

ARI =
(RI − E(RI))

(max(RI)− E(RI))
(3.11)

E(RI) shows the expected value which is a result of a set of calculations obtained from

a contingency table which is formed by amount of the objects of the dataset which had

been put in the same or di�erent clusters with the compared clusters.

Adjusted Rand Index gets its perfect score when the clustering is random and independent

of number of clusters, than the score would be 0. On the contrary if the clusters

are identical and/or similar to each other, then the index becomes 1. This metric is

symmetrical. So:

ARI(x, y) == ARI(y, x) (3.12)

3.1.5.5 Adjusted Mutual Information

This metric is also an �adjusted� metric like ARI. Mutual information tells us how

much information is shared between di�erent clusters and this metric measures this

information. So, adjustedmutualinformation [46] can be considered as a similarity

measure. In our work this metric measures the number of mutual elements between

di�erent clusters. This metric is equal to 1 when the clusters are completely identical,

and when clusters are independent from each other this metric becomes equal to 0. That

means there is no information shared. Adjusted Mutual Information is the adjusted form

of mutual information. The mutual information value is adjusted as below where U and

K are the clusterings which will be under the scope:

AMI(U, T) =
I(U,K)− E(MI(U,K))

max(H(U), H(K))− E(I(U,K))
(3.13)

Section 3. Preliminaries 16

E(MI(U,K)) shows the expected value which is a result of a set of calculations obtained

from a contingency table which is formed by amount of the objects of the dataset which

had been put in the same or di�erent clusters with the compared clusters.

This metric is also symmetrical like adjusted random information.

3.1.5.6 Silhouette Coe�cient

Silhouette coe�cient[47] is calculated by using both intra-cluster distance and mean

nearest-cluster distance which is the distance between a sample and the nearest cluster

that the element is not a part of for each of the elements in a dataset. The formula is:

Silhouette Coeff. =
(y − x)
max(x, y)

(3.14)

where y is the distance between an input instance and the nearest cluster which the

instance doesn't belong and x is the mean value of distances within the cluster which

the instance is a part of. To calculate the Silhouette coe�cient, the dataset should have

at least two clusters. This metric returns the mean value over all calculated Silhouette

coe�cient values for instances in dataset.

Silhouette coe�cient varies between -1 and 1. When this metric is considered for an

instance the more Silhouette coe�cient is closer to -1, the more likely the instance is in

wrong cluster. If this metric is considered for all dataset the more the value gets closer

to -1, the more clustering isn't accurate and instances are more likely misplaced and

clustering had put instances in clusters which they should not belong. On the contrary,

the more this metric gets closer to 1, the more likely the clustering is accurate. When

the value of this metric near 0, then probably clusters are overlapped.

3.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption method that allows computation on

encrypted data and generates result which would have been same result if the same

computation would be performed on the plain data. As it can be seen from this

main property of the method, the purpose of the method is to preserve privacy[48�

51] . Homomorphic encryption can also be used in connecting di�erent services without

exposing their sensitive data. Homomorphical encryption algorithms can be expressed in

two groups as partially homomorphic algorithms and fully homomorphic algorithms[52].

In our work, we used Paillier Cryptosystem and this is a additive partially homomorphic

algorithm[53].

Section 3. Preliminaries 17

3.2.1 Paillier Cryptosystem

Paillier cryptosystem[54] is an asymmetric , probabilistic and public key cryptosystem.

It preserves privacy[55] depending on di�culty of the problem of computing the n-th

residue classes. Paillier cryptosystem is a additive partially homomorphic system, that

means encryption ofM1 andM2 plain datasets with a K public key gives the same result

as the encryption of addition of same two dataset (M1 +M2) with using the same K

public key. This encryption algorithm works by doing two main jobs in an order, �rst

one is key generation and the second one is encryption/decryption of dataset.

As explained before Paillier Cryptographic system has homomorphic properties which

makes this algorithm more convenient to be used in several �elds. These properties are:

• Addition of encrypted data: Result of adding of two encrypted datasets matches

with the result of enciphering and adding two datasets.

• Multiplication of encrypted data with a non-encrypted value: Multiplying an

encrypted data with a number N is same with multiplying the plain form of that

data with the same number N and encrypting it.

3.2.2 Floating Point Numbers

In this work, �oating point numbers are used to express data which has been encrypted

using Paillier Cryptosystem in the python environment and to express the values in the

datasets we used in this work. As a natural consequence, the operations on the data are

also based on the values de�ned in this type.

The number of digits in the fraction part of the data that is de�ned as �oating point

can be very large and if these numbers would be used than it would de�nitely cost more

processing power and processing time, so in this work only the �rst 5 fractional digits

have been used. Because of the 5 digit limit has been put on the fractional digits of

input data and more than these digits are not used, which has been possibly generated

as a result of computational work, are rounded into 5 digits and this situation possibly

creates minimal data losses or deviation of computation [56]. It is seen that these e�ects

on the calculation result depends on the grouping algorithm used, but overall it is low

in e�ectiveness [57].

Chapter 4

System Model

4.1 Development Environment

In this thesis, Python 2017.3.3 community edition is used for algorithm programming

which encrypts data using Paillier cryptography and makes clustering using 4 di�erent

algorithms which have been described in section 3. Each algorithm run on a computer

which has Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz octa core processor (4 real

+4 pseudo) along with 16GB of RAM. Parallel computing has not been used everytime

but while some algorithms allow to use all processor cores while running, that property

has been used.

4.2 Sequence Diagram

In this section, the system which is designed to preserve privacy while handling private

or sensitive data is explained by sequence diagrams. This system doesn't only aim

to preserve privacy, but also aims to handle the data e�ciently in terms of time and

processing power.

4.2.1 Client Computaion

Client side doesn't hold the data which needs to be handled, because management and

maintenance of a big data storage brings unnecessary extra cost. In this work client of

this system is considered as an ordinary PC user, so there is no data storage for big data

systems on client side and the main task of client side is just using/handling sensitive

data when it is needed. The client generates public and private key pair by establishing a

18

Section 4. System Model 19

key exchange session with data authority, then sends its public key and asks for the data

needed. As the data needs to stay encrypted and not revealed to client,at this point,

data computing cloud starts to handle the data.

Data Computing cloud also doesn't store the sensitive data but preserves enough processing

power for handling the encrypted data. On computing cloud servers, the mathematical

computations run to compute an encrypted distance matrix from the encrypted data in

a form that can be used by the client. Cloud servers perform needed calculations for

client side without violating the data privacy and sends the results, which is in our case

the encrypted distance matrix. Client side then uses the encrypted matrix in order to

build a model and evaluate the data. As seen in Figure 4.1, in this system client side

doesn't need the actual data to use because enough information can be derived from the

distance matrix.

Data Authority

Data Producing
App.

Data Computing
Cloud

Calculation App.

Data Using
Environment

Client

M1: Generate Keys

Crypto Key(pub),

Key(priv)
M2: Key Exchange

CryptoKeypub

M3: Call for Encrypted Data(Xenc
m)

M4: Send Encrypted Data (Xenc
m)

M5: Calculate Enc. Distance Matrix

Henc
m

M6: Send Distance Matrix (Henc
m)

Figure 4.1: Sequence Diagram for Client Side

The pseudo code for Client Computation part of the system is shown in Algorithm

1. In key generation step, pseudo code doesn't contain explanation of step-by-step key

generation. As the Paillier key generation is a generic model, we didn't need to explain

those steps in details (choosing two prime numbers or choosing exponents etc.).

Section 4. System Model 20

Algorithm 1: Client Computation

1 begin
2 begin Key Generation & Key Exchange
3 (CryptoKeypub,Keypriv)← Key Generation
4 Send CryptoKeypub to Data Authority
5 Data Auth. ← CryptoKeypub

6 for m ∈ N do
7 begin Asking for Enc. Data
8 ask for (Xenc

m) from Data Auth.
9 Data Auth. ← Client asks for (Xenc

m)
10 Data Comp. Cloud ← Data Auth. sends (Xenc

m)

1212 begin Calculation of Enc. Dist. Matrix
13 send (Xenc

m) to Data Auth.
14 Henc

m is calculated ← from (Xenc
m)

15 Client ← Data Comp. Cloud sends (Henc
m)

4.2.2 Data Authority Computation

In our work client doesn't has to maintain a storage big enough for handling big data,

as this condition is described in client computation section. Providing data storage

for the system is a responsibility for data authority (this was also described in client

computation section), but this is not the main duty. In this system data authority isn't

only the storage location, but also the sensitive data producer which encrypts and stores

the data as its main duty. In respect to our system design, there is no regulation that

forces the system to work with a single data authority. Instead, in reality, there should

be a large number of data authorities.

Data authority creates, stores and most importantly encrypts the data, with using the

keys gathered from the key exchange session conducted between itself and client side,

and sends the encrypted form of the data to data computing cloud as the client needs

to evaluate. In data authority side Paillier Cryptosystem is used as encryption scheme

and the key is the public key of client side. On this side, data privacy is preserved and

pure data isn't revealed to any part of the system. Encryption of pure data and its

transmission is done as explained in Algorithm 2 and it can be seen that pure data is

not revealed to any party, but just its encrypted form is transmitted to data computing

cloud as seen in Figure 4.2.

Section 4. System Model 21

Data Authority

Data Producing
App.

Data Computing
Cloud

Calculation App.

Data Using
Environment

Client

M1: Produce Sensitive Data

(X1 . . . Xn)

M2: KeyExchange

CryptoKeypub

M3: Encrypt(X,CryptoKeypub)

(Xenc
1 . . . Xenc

n)

M4: Call for Encrypted Data(Xenc
m)

M5: Send Encrypted Data to Cloud (Xenc
m)

Figure 4.2: Sequence Diagram for Data Authority Side

Algorithm 2: Data Authority Computation

1 begin
2 begin Producing the Sensitive Data
3 Data Auth. ← (X1 . . . Xn) as n∈ N
4 begin Initiate Key Exchance Session with Client
5 Data Auth.← CryptoKeypub of Client

6 for n ∈ N do
7 begin Encryption of Sensitive Data
8 (Xenc

1 . . . Xenc
n) is calculated ← from ((X1 . . . Xn), CryptoKeypub)

1010 begin Sending Encrypted Data to Data Comp. Cloud
11 Data Comp. Cloud ← (Xenc

1 . . . Xenc
n)

4.2.3 Model Building at Client

In this work, the client side is just an ordinary PC user (as explained before). After

the encrypted distance matrix has been computed on Data Computing Servers, it is

sent to the client side. The distance matrix has enough knowledge to create a model

because of the Paillier Cryptosystem's specialty of homomorphic behavior. Once the

calculated distance matrix reaches to client side, it is decrypted by using the private key

of client. After considering which algorithm will be used in order to build the model,

that algorithm uses the decrypted distance matrix as input and the result is evaluated

as client side's will.

Section 4. System Model 22

As seen in Algorithm 3, the clustering algorithm should be determined every time at

the client side because predetermining the algorithm would be meaningless as every data

wouldn't possess same property and di�erent algorithms would satisfy di�erent needs.

As seen in Figure 4.3, client side receives just the encrypted form of distance matrix

and decrypts it using its private key. Evaluation of data starts just after deciding which

clustering algorithm will be used. Decrypted data enters into the clustering algorithm

and the result of the clustering process is a raw data on client side.

Output of the clustering process possesses valuable information that needs to be modeled

but at this point, client side will need extra info about contents of clusters to explain

them accurately and build up a meaningful model from them. This info can be gathered

by creating an extra session between client and data authority and asking to get it in a

form of a metric to interpret the clusterings.

In this system, this info can be gathered by client while the client calls for the encrypted

data from data authority so the info can be gathered with the needed data. As a second

method, this information can also be gathered by establishing an extra session with

data authority after the clustering process. This information must be asked from data

authority, not from computing cloud because it is not a trusted party and its only job is

to overcome the di�culty of making computations on encrypted data. This info is also

as sensitive as the data itself and must be delivered in encrypted form.

Data Authority

Data Producing
App.

Data Computing
Cloud

Calculation App.

Data Using
Environment

Client

M1: KeyExchange

CryptoKeypub

M2: Call for Encrypted Data(Xenc
m)

M3: Send Enc. Data to Cloud (Xenc
m)

M4: Calculate Dist. Matrix

(Henc
m)

M5: Send Dist. Matrix (Henc
m)

M6:Decrypt(Henc
m ,KeyPriv)

Hm

M7: Model Building&Evaluation

Figure 4.3: Sequence Diagram for Model Building at Client Side

Section 4. System Model 23

Algorithm 3: Model Building at Client

1 begin

2 begin

3 Client ← (CryptoKeypub, Keypriv)

4 Data Auth.← Client asks for (Xenc
m)

5 for m ∈ N do

6 begin Calculation of Enc. Dist. Matrix

7 Data Comp. Cloud ← Data Auth. sends (Xenc
m)

8 (Henc
m) is calculated ← from (Xenc

m)

9 Client ← (Henc
m) from Data Comp. Cloud

10 for m ∈ N do

11 begin Decryption of Distance Matrix

12 (Hm) is calculated at Client← from (Henc
m ,Keypriv)

13 begin Model Building at Client

14 Clustering Algorithm ← (Hm)

15 Client← Clustered Pure Data

Chapter 5

Experiments and Results

In this work, clustering methods which have been described in section 3 have been studied

by running each of them on 10 di�erent datasets (from 500 to 5000 rows) with using 5

di�erent bit lengths of keys. Datasets are produced/chosen di�erent from each other

by their data and data lengths. The computer used in our experiments has limited

computational capacity to calculate distance matrix especially when 512 and 1024 bit

long keys are used on data which has more than 5000 rows. The data length of each

dataset is also the name of the dataset (dataset 500, dataset 1000 etc.) and used key

lengths vary between 64 bit and 1024 bits.

Experimental results have tables which include evaluation metric scores under the name

of ′′Plain/Encrypted domain clustering results′′ based on the chosen dataset and

domain. Plain data results have same time result for each key length , because for

plain domain encryption there is no calculation using a key. Evaluation metrics have

(except silhouette coefficient) maximum scores because of the used data is artificial

and not real.

All algorithms have been run on python environment (as explained in section 4.1.) and

all algorithm codes have been modi�ed to create same number of clusters (20 clusters)

from given data. Just in the case of Birch Algorithm on �gures that show distribution

of clusters, number of clusters is as 19, because the cluster numbers are varying between

0 and 19.

24

Section 5. Experiments 25

5.1 Plaintext Results

5.1.1 K-Means Algorithm Results

From Table 5.1 to 5.10 and Figure 5.1 to 5.10 we will see the distribution of plain data

which its length varies between 500 and 5000 due to K-Means algorithm. K −Means

algorithm forms clusters considering distances between points. This algiorithm is used

generally when the data that needs to be clustered has �at geometry, creating too many

clusters is not necessary and created clusters are even sized.

Table 5.1: Plain domain evaluation metric scores for dataset 500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.362 9.844827

Figure 5.1: Plain domain clustering for dataset 500

Table 5.2: Plain domain evaluation metric scores for dataset 1000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.350 36.957112

Figure 5.2: Plain domain clustering for dataset 1000

Section 5. Experiments 26

Table 5.3: Plain domain evaluation metric scores for dataset 1500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.359 86.728137

Figure 5.3: Plain domain clustering for dataset 1500

Table 5.4: Plain domain evaluation metric scores for dataset 2000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.352 163.580145

Figure 5.4: Plain domain clustering for dataset 2000

Table 5.5: Plain domain evaluation metric scores for dataset 2500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.346 271.935549

Figure 5.5: Plain domain clustering for dataset 2500

Section 5. Experiments 27

Table 5.6: Plain domain evaluation metric scores for dataset 3000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.338 413.855393

Figure 5.6: Plain domain clustering for dataset 3000

Table 5.7: Plain domain evaluation metric scores for dataset 3500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.338 623.065649

Figure 5.7: Plain domain clustering for dataset 3500

Table 5.8: Plain domain evaluation metric scores for dataset 4000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.345 1048.278932

Figure 5.8: Plain domain clustering for dataset 4000

Section 5. Experiments 28

Table 5.9: Plain domain evaluation metric scores for dataset 4500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.349 1292.195140

Figure 5.9: Plain domain clustering for dataset 4500

Table 5.10: Plain domain evaluation metric scores for dataset 5000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.340 1292.195140

Figure 5.10: Plain domain clustering for dataset 5000

5.1.2 Hierarchical Algorithm Results

From Table 5.11 to 5.20 and Figure 5.11 to 5.20 we will see the distribution of plain data

which its length varies between 500 and 5000 due to Hierarchical algorithm. Hierarchical

algorithm forms clusters considering pairwise distances between points. This algiorithm

is used generally when creating too many clusters is necessary and there are possible

connectivity constraints to form clusters.

Table 5.11: Plain domain evaluation metric scores for dataset 500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.295 2.297151

Figure 5.11: Plain domain clustering for dataset 500

Section 5. Experiments 29

Table 5.12: Plain domain evaluation metric scores for dataset 1000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.287 14.892210

Figure 5.12: Plain domain clustering for dataset 1000

Table 5.13: Plain domain evaluation metric scores for dataset 1500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.276 53.347093

Figure 5.13: Plain domain clustering for dataset 1500

Table 5.14: Plain domain evaluation metric scores for dataset 2000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.285 123.057987

Figure 5.14: Plain domain clustering for dataset 2000

Section 5. Experiments 30

Table 5.15: Plain domain evaluation metric scores for dataset 2500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.305 223.921661

Figure 5.15: Plain domain clustering for dataset 2500

Table 5.16: Plain domain evaluation metric scores for dataset 3000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.297 410.769117

Figure 5.16: Plain domain clustering for dataset 3000

Table 5.17: Plain domain evaluation metric scores for dataset 3500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.298 606.139748

Figure 5.17: Plain domain clustering for dataset 3500

Section 5. Experiments 31

Table 5.18: Plain domain evaluation metric scores for dataset 4000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.296 964.552434

Figure 5.18: Plain domain clustering for dataset 4000

Table 5.19: Plain domain evaluation metric scores for dataset 4500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.294 1206.877016

Figure 5.19: Plain domain clustering for dataset 4500

Table 5.20: Plain domain evaluation metric scores for dataset 5000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.304 1592.067019

Figure 5.20: Plain domain clustering for dataset 5000

5.1.3 Spectral Algorithm Results

From Table 5.21 to 5.30 and Figure 5.21 to 5.30 we will see the distribution of plain

data which its length varies between 500 and 5000 due to Spectral algorithm. Spectral

Section 5. Experiments 32

algorithm forms clusters considering nearest − neighbors. This algiorithm is used

generally when the data that needs to be clustered has non-�at geometry, creating many

clusters is not necessary and created clusters are even sized.

Table 5.21: Plain domain evaluation metric scores for dataset 500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.309 4.687996

Figure 5.21: Plain domain clustering for dataset 500

Table 5.22: Plain domain evaluation metric scores for dataset 1000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.320 8.625928

Figure 5.22: Plain domain clustering for dataset 1000

Table 5.23: Plain domain evaluation metric scores for dataset 1500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.288 16.470525

Figure 5.23: Plain domain clustering for dataset 1500

Section 5. Experiments 33

Table 5.24: Plain domain evaluation metric scores for dataset 2000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.300 26.471610

Figure 5.24: Plain domain clustering for dataset 2000

Table 5.25: Plain domain evaluation metric scores for dataset 2500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.304 39.410522

Figure 5.25: Plain domain clustering for dataset 2500

Table 5.26: Plain domain evaluation metric scores for dataset 3000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.289 53.833924

Figure 5.26: Plain domain clustering for dataset 3000

Section 5. Experiments 34

Table 5.27: Plain domain evaluation metric scores for dataset 3500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.301 71.788992

Figure 5.27: Plain domain clustering for dataset 3500

Table 5.28: Plain domain evaluation metric scores for dataset 4000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.296 98.604372

Figure 5.28: Plain domain clustering for dataset 4000

Table 5.29: Plain domain evaluation metric scores for dataset 4500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.294 121.950676

Figure 5.29: Plain domain clustering for dataset 4500

Section 5. Experiments 35

Table 5.30: Plain domain evaluation metric scores for dataset 5000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.310 148.259339

Figure 5.30: Plain domain clustering for dataset 5000

5.1.4 Birch Algorithm Results

From Table 5.31 to 5.40 and Figure 5.31 to 5.40 we will see the distribution of plain data

which its length varies between 500 and 5000 due to Spectral algorithm. Birch algorithm

forms clusters considering Euclidean distance between points. This algiorithm is used

generally when the data that needs to be clustered is large and data reduction in respect

to outlier removal is needed.

Table 5.31: Plain domain evaluation metric scores for dataset 500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.334 2.984673

Figure 5.31: Plain domain clustering for dataset 500

Table 5.32: Plain domain evaluation metric scores for dataset 1000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.299 15.079737

Figure 5.32: Plain domain clustering for dataset 1000

Section 5. Experiments 36

Table 5.33: Plain domain evaluation metric scores for dataset 1500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.299 42.676480

Figure 5.33: Plain domain clustering for dataset 1500

Table 5.34: Plain domain evaluation metric scores for dataset 2000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.289 96.952344

Figure 5.34: Plain domain clustering for dataset 2000

Table 5.35: Plain domain evaluation metric scores for dataset 2500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.294 213.186763

Figure 5.35: Plain domain clustering for dataset 2500

Section 5. Experiments 37

Table 5.36: Plain domain evaluation metric scores for dataset 3000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.294 347.996374

Figure 5.36: Plain domain clustering for dataset 3000

Table 5.37: Plain domain evaluation metric scores for dataset 3500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.282 525.583719

Figure 5.37: Plain domain clustering for dataset 3500

Table 5.38: Plain domain evaluation metric scores for dataset 4000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.261 795.867486

Figure 5.38: Plain domain clustering for dataset 4000

Section 5. Experiments 38

Table 5.39: Plain domain evaluation metric scores for dataset 4500

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.287 1106.477862

Figure 5.39: Plain domain clustering for dataset 4500

Table 5.40: Plain domain evaluation metric scores for dataset 5000

Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

1000 1000 1000 1000 1000 0.276 1509.153672

Figure 5.40: Plain domain clustering for dataset 5000

5.2 Encrypted Domain Results

5.2.1 K-Means Algorithm Results

From Table 5.41 to 5.50 and Figure 5.41 to 5.50 we will see the distribution of encrypted

data which its length varies between 500 and 5000 due to K-Means algorithm. K−Means

algorithm forms clusters considering distances between points. This algiorithm is used

generally when the data that needs to be clustered has �at geometry, creating too many

clusters is not necessary and created clusters are even sized.

Section 5. Experiments 39

Table 5.41: Encrypted domain evaluation metric scores for dataset 500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.787 0.778 0.783 0.615 0.745 0.362 31.094117
128 0.855 0.838 0.846 0.738 0.814 0.362 36.25088
256 0.855 0.838 0.846 0.738 0.814 0.362 56.539257
512 0.855 0.838 0.846 0.738 0.814 0.362 201.91177
1024 0.741 0.724 0.732 0.488 0.705 0.350 1124.906108

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.41: Encrypted domain clustering results for dataset 500

Table 5.42: Encrypted domain evaluation metric scores for dataset 1000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.768 0.742 0.755 0.542 0.724 0.350 125.628153
128 0.741 0.724 0.732 0.488 0.705 0.350 144.886491
256 0.741 0.724 0.732 0.488 0.705 0.350 228.416989
512 0.741 0.724 0.732 0.488 0.705 0.350 725.917815
1024 0.741 0.724 0.732 0.488 0.705 0.350 4186.542025

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.42: Encrypted domain clustering results for dataset 1000

Section 5. Experiments 40

Table 5.43: Encrypted domain evaluation metric scores for dataset 1500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.811 0.802 0.807 0.691 0.794 0.359 293.46373
128 0.905 0.897 0.901 0.863 0.892 0.359 334.0554
256 0.905 0.897 0.901 0.863 0.892 0.359 523.392246
512 0.905 0.897 0.901 0.863 0.892 0.359 1682.56815
1024 0.905 0.897 0.901 0.863 0.892 0.359 8325.129793

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.43: Encrypted domain clustering results for dataset 1500

Table 5.44: Encrypted domain evaluation metric scores for dataset 2000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.834 0.815 0.824 0.753 0.809 0.352 488.452087
128 0.811 0.793 0.802 0.720 0.786 0.352 535.880552
256 0.811 0.793 0.802 0.720 0.786 0.352 849.303891
512 0.811 0.793 0.802 0.720 0.786 0.352 2994.485032
1024 0.811 0.793 0.802 0.720 0.786 0.352 15613.316685

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.44: Encrypted domain clustering results for dataset 2000

Section 5. Experiments 41

Table 5.45: Encrypted domain evaluation metric scores for dataset 2500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.807 0.778 0.793 0.662 0.773 0.346 688.117421
128 0.773 0.766 0.769 0.607 0.759 0.346 785.466996
256 0.773 0.766 0.769 0.607 0.759 0.346 1226.975066
512 0.773 0.766 0.769 0.607 0.759 0.346 4152.607761
1024 0.773 0.766 0.769 0.607 0.759 0.346 23101.712638

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Figure 5.45: Encrypted domain clustering results for dataset 2500

Table 5.46: Encrypted domain evaluation metric scores for dataset 3000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.736 0.720 0.728 0.528 0.714 0.338 1014.156519
128 0.743 0.727 0.735 0.543 0.721 0.338 1157.243526
256 0.743 0.727 0.735 0.543 0.721 0.338 2056.959974
512 0.743 0.727 0.735 0.543 0.721 0.338 5541.251946
1024 0.743 0.727 0.735 0.543 0.721 0.338 34827.048195

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.46: Encrypted domain clustering results for dataset 3000

Section 5. Experiments 42

Table 5.47: Encrypted domain evaluation metric scores for dataset 3500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.810 0.791 0.800 0.685 0.787 0.338 1457.896283
128 0.835 0.822 0.828 0.745 0.819 0.338 1586.997932
256 0.835 0.822 0.828 0.745 0.819 0.338 2471.958513
512 0.835 0.822 0.828 0.745 0.819 0.338 7559.3366
1024 0.835 0.822 0.828 0.745 0.819 0.338 42589.211932

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.47: Encrypted domain clustering results for dataset 3500

Table 5.48: Encrypted domain evaluation metric scores for dataset 4000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.776 0.762 0.769 0.623 0.758 0.345 1823.396682
128 0.795 0.781 0.788 0.671 0.788 0.345 2109.998674
256 0.795 0.781 0.788 0.671 0.788 0.345 3194.871339
512 0.795 0.781 0.788 0.671 0.788 0.345 10375.714473
1024 0.795 0.781 0.788 0.671 0.788 0.345 56810.999143

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.48: Encrypted domain clustering results for dataset 4000

Section 5. Experiments 43

Table 5.49: Encrypted domain evaluation metric scores for dataset 4500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.696 0.686 0.691 0.465 0.682 0.349 2872.369434
128 0.763 0.747 0.755 0.585 0.744 0.349 3251.606473
256 0.763 0.747 0.755 0.585 0.744 0.349 4154.388187
512 0.763 0.747 0.755 0.585 0.744 0.349 14540.128381
1024 0.763 0.747 0.755 0.585 0.744 0.349 74140.224168

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.49: Encrypted domain clustering results for dataset 4500

Table 5.50: Encrypted domain evaluation metric scores for dataset 5000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.746 0.733 0.740 0.574 0.730 0.340 3306.081361
128 0.766 0.751 0.759 0.604 0.748 0.340 4061.713102
256 0.766 0.751 0.759 0.604 0.748 0.340 6257.986052
512 0.766 0.751 0.759 0.604 0.748 0.340 15636.902162
1024 0.766 0.751 0.759 0.604 0.748 0.340 93672.799487

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.50: Encrypted domain clustering results for dataset 5000

Section 5. Experiments 44

Figure 5.51: Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for K-Means Algorithm

Figure 5.52: Calculation Time Graph for KMeans Algorithm on Key-Data Length

Dimensions

Section 5. Experiments 45

5.2.2 Hierarchical Algorithm Results

From Table 5.51 to 5.60 and Figure 5.52 to 5.61 we will see the distribution of encrypted

data which its length varies between 500 and 5000 due to Hierarchical algorithm. Hierarchical

algorithm forms clusters considering pairwise distances between points. This algiorithm

is used generally when creating too many clusters is necessary and there are possible

connectivity constraints to form clusters.

Table 5.51: Encrypted domain evaluation metric scores for dataset 500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.788 0.732 0.759 0.475 0.693 0.295 18.986376
128 0.769 0.723 0.745 0.449 0.682 0.291 22.642983
256 0.786 0.742 0.764 0.482 0.704 0.296 40.160459
512 0.768 0.724 0.745 0.448 0.683 0.289 145.019023
1024 0.796 0.748 0.771 0.493 0.711 0.312 853.861069

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.53: Encrypted domain clustering results for dataset 500

Table 5.52: Encrypted domain evaluation metric scores for dataset 1000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.714 0.662 0.687 0.419 0.639 0.287 83.323777
128 0.705 0.656 0.680 0.422 0.632 0.272 97.465241
256 0.708 0.661 0.684 0.422 0.638 0.272 167.564546
512 0.739 0.679 0.708 0.453 0.657 0.296 579.170437
1024 0.727 0.671 0.698 0.429 0.649 0.277 3534.103834

Section 5. Experiments 46

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.54: Encrypted domain clustering results for dataset 1000

Table 5.53: Encrypted domain evaluation metric scores for dataset 1500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.706 0.661 0.683 0.431 0.646 0.276 196.051964
128 0.741 0.712 0.726 0.507 0.699 0.303 228.930361
256 0.723 0.689 0.705 0.468 0.675 0.265 390.931864
512 0.748 0.717 0.732 0.512 0.704 0.280 1317.826500
1024 0.706 0.731 0.719 0.496 0.693 0.286 10427.998650

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.55: Encrypted domain clustering results for dataset 1500

Section 5. Experiments 47

Table 5.54: Encrypted domain evaluation metric scores for dataset 2000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.680 0.661 0.670 0.390 0.650 0.285 367.038711
128 0.735 0.715 0.725 0.528 0.706 0.294 428.576449
256 0.722 0.706 0.714 0.504 0.696 0.306 725.576526
512 0.747 0.728 0.737 0.540 0.719 0.298 2329.031204
1024 0.706 0.717 0.712 0.490 0.696 0.299 14633.003870

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.56: Encrypted domain clustering results for dataset 2000

Table 5.55: Encrypted domain evaluation metric scores for dataset 2500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.686 0.648 0.667 0.389 0.639 0.305 613.736580
128 0.727 0.713 0.720 0.505 0.706 0.302 710.651168
256 0.716 0.692 0.704 0.470 0.685 0.288 1398.371611
512 0.711 0.699 0.705 0.479 0.691 0.301 4549.038970
1024 0.711 0.724 0.717 0.494 0.703 0.274 21740.579705

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.57: Encrypted domain clustering results for dataset 2500

Section 5. Experiments 48

Table 5.56: Encrypted domain evaluation metric scores for dataset 3000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.695 0.664 0.679 0.442 0.657 0.297 1165.375747
128 0.703 0.675 0.689 0.452 0.668 0.301 1270.462384
256 0.703 0.675 0.689 0.428 0.669 0.295 2163.898116
512 0.699 0.670 0.684 0.454 0.663 0.292 6722.317208
1024 0.673 0.702 0.687 0.455 0.666 0.271 34352.033333

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.58: Encrypted domain clustering results for dataset 3000

Table 5.57: Encrypted domain evaluation metric scores for dataset 3500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.715 0.682 0.698 0.476 0.676 0.298 1334.015664
128 0.712 0.690 0.701 0.474 0.684 0.300 1544.466207
256 0.713 0.688 0.700 0.462 0.682 0.296 2373.623768
512 0.717 0.689 0.703 0.470 0.683 0.307 7435.351474
1024 0.703 0.680 0.691 0.456 0.674 0.289 43162.416905

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.59: Encrypted domain clustering results for dataset 3500

Section 5. Experiments 49

Table 5.58: Encrypted domain evaluation metric scores for dataset 4000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.713 0.684 0.698 0.454 0.679 0.296 1856.406278
128 0.644 0.688 0.665 0.392 0.638 0.264 2839.123717
256 0.641 0.688 0.664 0.384 0.636 0.264 3254.513282
512 0.659 0.703 0.680 0.407 0.654 0.264 9928.278455
1024 0.646 0.689 0.667 0.389 0.640 0.264 58259.589612

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.60: Encrypted domain clustering results for dataset 4000

Table 5.59: Encrypted domain evaluation metric scores for dataset 4500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.615 0.659 0.636 0.348 0.609 0.253 4582.444243
128 0.691 0.710 0.700 0.486 0.686 0.274 2785.228748
256 0.674 0.696 0.684 0.442 0.669 0.274 5738.454688
512 0.684 0.708 0.696 0.461 0.680 0.274 12611.520444
1024 0.675 0.701 0.688 0.457 0.671 0.274 75562.476217

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.61: Encrypted domain clustering results for dataset 4500

Section 5. Experiments 50

Table 5.60: Encrypted domain evaluation metric scores for dataset 5000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.627 0.665 0.645 0.361 0.622 0.250 4082.753650
128 0.639 0.673 0.655 0.390 0.635 0.245 4321.325598
256 0.654 0.686 0.670 0.405 0.649 0.245 5737.903436
512 0.634 0.659 0.646 0.360 0.629 0.245 15691.378081
1024 0.651 0.680 0.665 0.401 0.646 0.245 90506.861951

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.62: Encrypted domain clustering results for dataset 5000

Section 5. Experiments 51

Figure 5.63: Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for Hierarchical Algorithm

Figure 5.64: Calculation Time Graph for Hierarchical Algorithm on Key-Data Length

Dimensions

Section 5. Experiments 52

5.2.3 Spectral Algorithm Results

From Table 5.61 to 5.70 and Figure 5.63 to 5.72 we will see the distribution of encrypted

data which its length varies between 500 and 5000 due to Spectral algorithm. Spectral

algorithm forms clusters considering nearest − neighbors. This algiorithm is used

generally when the data that needs to be clustered has non-�at geometry, creating many

clusters is not necessary and created clusters are even sized.

Table 5.61: Enrypted domain clustering results with dataset 500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.880 0.876 0.878 0.756 0.857 0.312 27.473035
128 0.874 0.871 0.872 0.714 0.852 0.301 32.294984
256 0.886 0.880 0.883 0.762 0.862 0.317 55.222464
512 0.897 0.892 0.894 0.793 0.876 0.310 148.256260
1024 0.874 0.868 0.871 0.730 0.849 0.318 1907.164346

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.65: Enrypted domain results for dataset 500

Table 5.62: Enrypted domain clustering results with dataset 1000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.843 0.858 0.851 0.713 0.833 0.262 97.614100
128 0.816 0.818 0.817 0.640 0.804 0.285 117.100256
256 0.842 0.848 0.845 0.694 0.832 0.291 219.221150
512 0.815 0.819 0.817 0.646 0.803 0.284 770.700724
1024 0.823 0.822 0.822 0.644 0.810 0.295 3458.167745

Section 5. Experiments 53

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.66: Enrypted domain results for dataset 1000

Table 5.63: Enrypted domain clustering results with dataset 1500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.768 0.763 0.765 0.575 0.753 0.259 167.661065
128 0.806 0.803 0.805 0.641 0.795 0.275 204.724721
256 0.834 0.826 0.830 0.691 0.819 0.286 368.695161
512 0.811 0.811 0.811 0.674 0.803 0.269 1318.623197
1024 0.788 0.783 0.785 0.591 0.773 0.275 7844.362055

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.67: Enrypted domain results for dataset 1500

Section 5. Experiments 54

Table 5.64: Enrypted domain clustering results with dataset 2000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.785 0.791 0.788 0.630 0.778 0.247 292.515220
128 0.820 0.827 0.823 0.668 0.814 0.271 358.194028
256 0.822 0.829 0.825 0.676 0.816 0.273 646.240033
512 0.833 0.840 0.836 0.707 0.828 0.270 2298.568044
1024 0.841 0.848 0.845 0.730 0.836 0.271 13878.686489

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.68: Enrypted domain results for dataset 2000

Table 5.65: Enrypted domain clustering results with dataset 2500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.777 0.784 0.780 0.616 0.772 0.261 591.294237
128 0.816 0.820 0.818 0.685 0.812 0.289 714.742061
256 0.799 0.803 0.801 0.636 0.795 0.286 1289.402599
512 0.829 0.832 0.831 0.710 0.825 0.289 4808.001379
1024 0.806 0.806 0.806 0.665 0.801 0.291 23225.882568

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.69: Enrypted domain results for dataset 2500

Section 5. Experiments 55

Table 5.66: Enrypted domain clustering results with dataset 3000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.699 0.725 0.712 0.502 0.693 0.217 698.578957
128 0.792 0.800 0.796 0.622 0.788 0.273 807.522692
256 0.837 0.837 0.835 0.710 0.830 0.277 1427.103635
512 0.817 0.821 0.819 0.678 0.813 0.269 5333.425660
1024 0.814 0.820 0.817 0.688 0.810 0.266 31492.537981

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.70: Enrypted domain results for dataset 3000

Table 5.67: Enrypted domain clustering results with dataset 3500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.704 0.739 0.721 0.503 0.699 0.221 943.595023
128 0.755 0.763 0.759 0.553 0.751 0.270 1104.710917
256 0.760 0.767 0.764 0.563 0.756 0.270 1963.394550
512 0.795 0.798 0.797 0.633 0.792 0.270 6978.438284
1024 0.766 0.772 0.769 0.576 0.763 0.270 45285.358207

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.71: Enrypted domain results for dataset 3500

Section 5. Experiments 56

Table 5.68: Enrypted domain clustering results with dataset 4000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.783 0.802 0.792 0.626 0.779 0.245 1192.235111
128 0.780 0.782 0.781 0.591 0.776 0.284 1464.420077
256 0.777 0.780 0.779 0.579 0.774 0.281 3012.274721
512 0.766 0.770 0.768 0.556 0.762 0.283 11371.570717
1024 0.777 0.780 0.778 0.576 0.773 0.283 56022.390935

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.72: Enrypted domain results for dataset 4000

Table 5.69: Enrypted domain clustering results with dataset 4500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.783 0.788 0.786 0.609 0.780 0.275 1470.769980
128 0.766 0.770 0.768 0.580 0.763 0.276 2437.502503
256 0.820 0.824 0.822 0.702 0.818 0.291 3236.176361
512 0.812 0.819 0.815 0.666 0.810 0.284 11463.184758
1024 0.792 0.794 0.793 0.632 0.789 0.289 81526.500912

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.73: Enrypted domain results for dataset 4500

Section 5. Experiments 57

Table 5.70: Enrypted domain clustering results with dataset 5000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.695 0.728 0.711 0.494 0.691 0.216 1816.478657
128 0.788 0.794 0.791 0.611 0.786 0.289 2205.573661
256 0.793 0.799 0.796 0.625 0.791 0.288 4031.744384
512 0.806 0.813 0.809 0.648 0.804 0.280 14343.408337
1024 0.792 0.798 0.795 0.621 0.790 0.288 96517.342535

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.74: Enrypted domain results for dataset 5000

Section 5. Experiments 58

Figure 5.75: Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for Spectral Algorithm

Figure 5.76: Calculation Time Graph for Spectral Algorithm on Key-Data Length

Dimensions

Section 5. Experiments 59

5.2.4 Birch Algorithm Results

From Table 5.71 to 5.80 and Figure 5.74 to 5.83 we will see the distribution of encrypted

data which its length varies between 500 and 5000 due to Spectral algorithm. Birch

algorithm forms clusters considering Euclidean distance between points. This algiorithm

is used generally when the data that needs to be clustered is large and data reduction in

respect to outlier removal is needed.

Table 5.71: Encrypted domain evaluation metric scores for dataset 500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.754 0.686 0.718 0.474 0.647 0.325 19.439627
128 0.754 0.686 0.718 0.474 0.647 0.325 23.486909
256 0.754 0.686 0.718 0.474 0.647 0.325 41.035640
512 0.754 0.686 0.718 0.474 0.647 0.325 143.734250
1024 0.754 0.686 0.718 0.474 0.647 0.325 1048.355556

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.77: Encrypted domain clustering results for dataset 500

Table 5.72: Encrypted domain evaluation metric scores for dataset 1000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.735 0.610 0.667 0.427 0.588 0.292 83.829280
128 0.735 0.610 0.667 0.427 0.588 0.292 128.729702
256 0.735 0.610 0.667 0.427 0.588 0.292 175.842091
512 0.735 0.610 0.667 0.427 0.588 0.292 580.245359
1024 0.735 0.610 0.667 0.427 0.588 0.292 3977.079074

Section 5. Experiments 60

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.78: Encrypted domain clustering results for dataset 1000

Table 5.73: Encrypted domain evaluation metric scores for dataset 1500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.698 0.595 0.642 0.367 0.580 0.271 211.437032
128 0.698 0.595 0.642 0.367 0.580 0.271 238.995674
256 0.698 0.595 0.642 0.367 0.580 0.271 424.972714
512 0.698 0.595 0.642 0.367 0.580 0.271 2658.128383
1024 0.698 0.595 0.642 0.367 0.580 0.271 8180.718817

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.79: Encrypted domain clustering results for dataset 1500

Section 5. Experiments 61

Table 5.74: Encrypted domain evaluation metric scores for dataset 2000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.706 0.569 0.630 0.364 0.557 0.282 372.510162
128 0.706 0.569 0.630 0.364 0.557 0.282 547.822752
256 0.706 0.569 0.630 0.364 0.557 0.282 1275.947787
512 0.706 0.569 0.630 0.364 0.557 0.282 4679.906635
1024 0.706 0.569 0.630 0.364 0.557 0.282 14160.692468

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.80: Encrypted domain clustering results for dataset 2000

Table 5.75: Encrypted domain evaluation metric scores for dataset 2500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.723 0.562 0.632 0.363 0.553 0.297 663.725682
128 0.723 0.562 0.632 0.363 0.553 0.297 876.060204
256 0.723 0.562 0.632 0.363 0.553 0.297 1158.569366
512 0.723 0.562 0.632 0.363 0.553 0.297 3739.838171
1024 0.723 0.562 0.632 0.363 0.553 0.297 23466.670509

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.81: Encrypted domain clustering results for dataset 2500

Section 5. Experiments 62

Table 5.76: Encrypted domain evaluation metric scores for dataset 3000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.735 0.543 0.625 0.353 0.535 0.272 1091.686250
128 0.719 0.520 0.603 0.296 0.511 0.267 1415.069280
256 0.719 0.520 0.603 0.296 0.511 0.267 3687.206187
512 0.719 0.520 0.603 0.296 0.511 0.267 5497.333181
1024 0.719 0.520 0.603 0.296 0.511 0.267 39601.765869

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.82: Encrypted domain clustering results for dataset 3000

Table 5.77: Encrypted domain evaluation metric scores for dataset 3500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.722 0.547 0.622 0.334 0.540 0.260 1574.051378
128 0.722 0.547 0.622 0.334 0.540 0.260 1822.918705
256 0.722 0.547 0.622 0.334 0.540 0.260 2367.135811
512 0.722 0.547 0.622 0.334 0.540 0.260 10418.645935
1024 0.722 0.547 0.622 0.334 0.540 0.260 42655.888462

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.83: Encrypted domain clustering results for dataset 3500

Section 5. Experiments 63

Table 5.78: Encrypted domain evaluation metric scores for dataset 4000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.716 0.539 0.615 0.381 0.532 0.273 1876.723837
128 0.721 0.533 0.613 0.363 0.527 0.271 2154.585296
256 0.721 0.533 0.613 0.363 0.527 0.271 3222.278868
512 0.721 0.533 0.613 0.363 0.527 0.271 9963.323332
1024 0.721 0.533 0.613 0.363 0.527 0.271 56957.615504

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.84: Encrypted domain clustering results for dataset 4000

Table 5.79: Encrypted domain evaluation metric scores for dataset 4500

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.712 0.559 0.626 0.391 0.553 0.251 2452.598178
128 0.680 0.529 0.595 0.297 0.523 0.256 2818.579733
256 0.680 0.529 0.595 0.297 0.523 0.256 4270.994490
512 0.680 0.529 0.595 0.297 0.523 0.256 13707.474558
1024 0.680 0.529 0.595 0.297 0.523 0.256 81720.847180

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.85: Encrypted domain clustering results for dataset 4500

Section 5. Experiments 64

Table 5.80: Encrypted domain evaluation metric scores for dataset 5000

Key Hom. Comp. V-Measure Adj.Rand. Adj. Mut. Inf Silh. C�. Time (s)

64 0.714 0.601 0.652 0.422 0.596 0.250 3156.384398
128 0.723 0.581 0.644 0.373 0.577 0.245 3498.406328
256 0.723 0.581 0.644 0.373 0.577 0.245 7191.104841
512 0.723 0.581 0.644 0.373 0.577 0.245 16862.456699
1024 0.723 0.581 0.644 0.373 0.577 0.245 90333.516413

Clustering done using 64 Bit Key Clustering done using 128 Bit Key Clustering done using 256 Bit Key

Clustering done using 512 Bit Key Clustering done using 1024 Bit Key

Figure 5.86: Encrypted domain clustering results for dataset 5000

Section 5. Experiments 65

Figure 5.87: Charts that show change of each evaluation metrics score by data length

for di�erent key lengths and for Birch Algorithm

Figure 5.88: Calculation Time Graph of Birch Algorithm on Key-Data Length

Dimensions

Section 5. Experiments 66

5.3 Results

Computations made on encrypted data are done in more time than plain data as expected.

As the key size changes, computational time also changes proportionally in case of

encrypted data computation, but in case of plain data computation time only changes

by the change of data size.

Considering all six evaluation metrics and time, we o�er usage suggestions for each

clustering algorithm to run them in the most e�cient way, while we de�ne the e�ciency

in this work as better scores on evaluation metrics and stronger key usage.

For all algorithms that we examined, it is possible to suggest usage of 1024 bit key

for all of them as evaluation metrics have high enough scores, but when it comes to

computational time it is clearly not e�cient enough. Using 1024 bit key takes almost six

times longer computational time than using 512 bit key. As almost all evaluation scores

are close to each other in case of using 1024 bit and 512 bit keys, computational time for

using 512 bit key is clearly more manageable than using 1024 bit key.

Only Birch and Hierarchical algorithms need slightly less computational time than others

while using 1024 bit key, so it is possible to suggest 1024 bit key for these algorithms,

just in case of running these algorithms on a more powerful processor than we used in

this work or, on the same processor but in the way of parallel computation.

Tables that show evaluation scores of plain data computations indicates that working on

the plain data would get perfect evaluation scores except silhouette coe�cient. Although

the silhouette coe�cient doesn't get the perfect score, it is already so close that it can

be considered as 0,5. In this work, this case is resulted because we used arti�cial data

which produced on python environment by the function of ”make blobs”, instead of a

real data. In terms of real data, evaluation metrics can't get perfect scores for all cases

and probability of getting perfect scores for real data is very low.

Chapter 6

Conclusions and Future Work

Data privacy holds an important place on on-line systems and di�erent kinds of data

brings more sensitivity that needs to be evaluated. As the need for handling sensitive

data and increase of data sizes bring an important need to build e�cient systems for both

privacy preserving and e�ciency on computation. In this work we examined four di�erent

clustering algorithms in terms of six di�erent evaluation metrics and computational time.

Each algorithm brings out relatively similar results, but in detail they have di�erences.

Using our proposed model evaluation scores of clustering models of plain domain and

encrypted domains are quite similar which means that conversion from �oating point

numbers to integer creates negligible di�erences between each clustering algorithm.

In this work plain data is arti�cial data, not real. So the data has already been produced

due to a mathematical logic. This situation caused the clustering of plain domain to get

perfect scores. In real world with using real data, this case won't be occurred because the

real data won't be a result of a certain mathematical logic but instead it will be random

data. So studying with real data would give more similar results to evaluation scores of

encrypted domain. Therefore if the real data and its encrypted forms can be used in a

future study, observation results for clustering algorithms will be more accurate.

Our proposed model preserves privacy for only training phase of clustering algorithms

using encrypted and distributed datasets. The client builds �nal clustering model with

aggregation of each encrypted distance matrix calculated at each party. As a result, the

�nal model is in plain domain and some information such as cluster centroids are plain.

If the client wants to share the model then some information leakage may occur.

As a future work, in order to prevent data leakage from the model, also the model

should be encrypsted using homomorphic encryption algorithms. In order to encrypt the

model, the cluster centroids should be encrypted. The system that we o�er with this

work, doesn't possess the ability to use encrypted cluster centroids while creating models

67

Section 6. Conclusions and Future Work 68

from clustered data. To allow the client to use the encrypted clustering model, a new

system model must be developed.

Based on the properties of the data, client side may need extra information about the

clustered data to explain it accurately and describe the model they create. So as an

another future work, gathering that extra information from data authority can be studied

about. That information gathering should work without violating the data privacy,

should eliminate the need of having a data scientist at data authority to create a metric

(which will be used to discover contents of clustering results) and doing these without

putting on extra processing load onto the client side shall be studied.

Bibliography

[1] R. Bryant, R. H. Katz, and E. D. Lazowska. Big-data computing: creating

revolutionary breakthroughs in commerce, science and society, 2008.

[2] N. M. Nasrabadi. Pattern recognition and machine learning. Journal of electronic

imaging, 16(4):049901, 2007.

[3] G. J. Simmons. Symmetric and asymmetric encryption. ACM Computing Surveys

(CSUR), 11(4):305�330, 1979.

[4] R. M. Redlich and M. A. Nemzow. Data security system and method, September 5

2006. US Patent 7,103,915.

[5] R. R. Kacker, G.. Appenzeller, M. J. Pauker, and T. Spies. Identity-based encryption

system for secure data distribution, February 21 2006. US Patent 7,003,117.

[6] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and

Y. Theodoridis. State-of-the-art in privacy preserving data mining. ACM Sigmod

Record, 33(1):50�57, 2004.

[7] O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version,

pages 86�97, 1998.

[8] R. Cramer, I. Damgård, and U. Maurer. General secure multi-party computation

from any linear secret-sharing scheme. In International Conference on the Theory

and Applications of Cryptographic Techniques, pages 316�334. Springer, 2000.

[9] W. Du and M. J. Atallah. Secure multi-party computation problems and their

applications: a review and open problems. In Proceedings of the 2001 workshop on

New security paradigms, pages 13�22. ACM, 2001.

[10] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Mihir Bellare, editor,

Advances in Cryptology � CRYPTO 2000, pages 36�54, Berlin, Heidelberg, 2000.

Springer Berlin Heidelberg. ISBN 978-3-540-44598-2.

69

Bibliography 70

[11] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression.

In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,

Advances in Neural Information Processing Systems 21, pages 289�296.

Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/

3486-privacy-preserving-logistic-regression.pdf.

[12] R. Agrawal and R. Srikant. Privacy-preserving data mining. SIGMOD Rec., 29

(2):439�450, May 2000. ISSN 0163-5808. doi: 10.1145/335191.335438. URL http:

//doi.acm.org/10.1145/335191.335438.

[13] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang. Privacy-preserving machine learning

algorithms for big data systems. In 2015 IEEE 35th International Conference on

Distributed Computing Systems, pages 318�327, June 2015. doi: 10.1109/ICDCS.

2015.40.

[14] S. Merugu and J. Ghosh. Privacy-preserving distributed clustering using generative

models. In Third IEEE International Conference on Data Mining, pages 211�218,

Nov 2003. doi: 10.1109/ICDM.2003.1250922.

[15] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the

22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS

'15, pages 1310�1321, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3832-

5. doi: 10.1145/2810103.2813687. URL http://doi.acm.org/10.1145/2810103.

2813687.

[16] Z. Yang, S. Zhong, and R. N. Wright. Privacy-Preserving Classi�cation of Customer

Data without Loss of Accuracy, pages 92�102. 2005. doi: 10.1137/1.9781611972757.9.

[17] F. Emekci, O.D. Sahin, D. Agrawal, and A. El Abbadi. Privacy preserving decision

tree learning over multiple parties. Data Knowledge Engineering, 63(2):348 � 361,

2007. ISSN 0169-023X.

[18] P. Li, J. Li, Z. Huang, T. Li, C.-Z. Gao, S.-M. Yiu, and K. Chen. Multi-key

privacy-preserving deep learning in cloud computing. Future Generation Computer

Systems, 74:76 � 85, 2017. ISSN 0167-739X. doi: https://doi.org/10.1016/

j.future.2017.02.006. URL http://www.sciencedirect.com/science/article/

pii/S0167739X17302005.

[19] X. Yi and Y. Zhang. Privacy-preserving naive bayes classi�cation on distributed

data via semi-trusted mixers. Information Systems, 34(3):371 � 380, 2009. ISSN

0306-4379. doi: https://doi.org/10.1016/j.is.2008.11.001. URL http://www.

sciencedirect.com/science/article/pii/S0306437908000914.

http://papers.nips.cc/paper/3486-privacy-preserving-logistic-regression.pdf
http://papers.nips.cc/paper/3486-privacy-preserving-logistic-regression.pdf
http://doi.acm.org/10.1145/335191.335438
http://doi.acm.org/10.1145/335191.335438
http://doi.acm.org/10.1145/2810103.2813687
http://doi.acm.org/10.1145/2810103.2813687
http://www.sciencedirect.com/science/article/pii/S0167739X17302005
http://www.sciencedirect.com/science/article/pii/S0167739X17302005
http://www.sciencedirect.com/science/article/pii/S0306437908000914
http://www.sciencedirect.com/science/article/pii/S0306437908000914

Bibliography 71

[20] J. Secretan, M. Georgiopoulos, A. Koufakou, and K. Cardona. Aphid: An

architecture for private, high-performance integrated data mining. Future

Generation Computer Systems, 26(7):891 � 904, 2010. ISSN 0167-739X. doi:

https://doi.org/10.1016/j.future.2010.02.017. URL http://www.sciencedirect.

com/science/article/pii/S0167739X10000336.

[21] A. L. N. Fred and A. K. Jain. Data clustering using evidence accumulation. In

Object recognition supported by user interaction for service robots, volume 4, pages

276�280 vol.4, 2002. doi: 10.1109/ICPR.2002.1047450.

[22] R. C. Tryon. Cluster analysis: Correlation pro�le and orthometric (factor) analysis

for the isolation of unities in mind and personality. Edwards brother, Incorporated,

lithoprinters and publishers, 1939.

[23] K. Bailey. Numerical taxonomy and cluster analysis. Typologies and Taxonomies,

34:24, 1994.

[24] C.-H. Wu, C.-S. Ouyang, L.-W. Chen, and L.-W. Lu. A new fuzzy clustering validity

index with a median factor for centroid-based clustering. IEEE Transactions on

Fuzzy Systems, 23(3):701�718, 2015.

[25] Z. Sun, G. Fox, W. Gu, and Z. Li. A parallel clustering method combined

information bottleneck theory and centroid-based clustering. The Journal of

Supercomputing, 69(1):452�467, 2014.

[26] X. Xu, M. Ester, H. P. Kriegel, and J. Sander. A distribution-based clustering

algorithm for mining in large spatial databases. In Proceedings 14th International

Conference on Data Engineering, pages 324�331, Feb 1998. doi: 10.1109/ICDE.

1998.655795.

[27] J. D. Ban�eld and A. E. Raftery. Model-based gaussian and non-gaussian clustering.

Biometrics, 49(3):803�821, 1993. ISSN 0006341X, 15410420. URL http://www.

jstor.org/stable/2532201.

[28] F. Cao, M. Estert, W. Qian, and A. Zhou. Density-based clustering over an evolving

data stream with noise. In Proceedings of the 2006 SIAM international conference

on data mining, pages 328�339. SIAM, 2006.

[29] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan. Mr-dbscan: an

e�cient parallel density-based clustering algorithm using mapreduce. In Parallel

and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on,

pages 473�480. IEEE, 2011.

http://www.sciencedirect.com/science/article/pii/S0167739X10000336
http://www.sciencedirect.com/science/article/pii/S0167739X10000336
http://www.jstor.org/stable/2532201
http://www.jstor.org/stable/2532201

Bibliography 72

[30] L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan. A local-density based spatial clustering

algorithm with noise. Information systems, 32(7):978�986, 2007.

[31] W. H. Day and H. Edelsbrunner. E�cient algorithms for agglomerative hierarchical

clustering methods. Journal of classi�cation, 1(1):7�24, 1984.

[32] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query log.

In Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 407�416. ACM, 2000.

[33] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using

dynamic modeling. Computer, 32(8):68�75, 1999.

[34] J.B. Phipps. Dendrogram topology. Systematic zoology, 20(3):306�308, 1971.

[35] Anil K. J. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651 � 666, 2010. ISSN 0167-8655. doi: https://doi.org/10.1016/

j.patrec.2009.09.011. URL http://www.sciencedirect.com/science/article/

pii/S0167865509002323. Award winning papers from the 19th International

Conference on Pattern Recognition (ICPR).

[36] A. Likas, N. Vlassis, and J.J. Verbeek. The global k-means clustering algorithm.

Pattern recognition, 36(2):451�461, 2003.

[37] S. Lele and J. T. Richtsmeier. Euclidean distance matrix analysis: A coordinateâfree

approach for comparing biological shapes using landmark data. American Journal

of Physical Anthropology, 86(3):415�427, 11 1991. ISSN 1096-8644. doi: 10.1002/

ajpa.1330860307. URL http:https://doi.org/10.1002/ajpa.1330860307.

[38] K. Alsabti, S. Ranka, and V. Singh. An e�cient k-means clustering algorithm. 1997.

[39] M. J. Li, M. K. Ng, Y.-M. Cheung, and J. Z. Huang. Agglomerative fuzzy k-means

clustering algorithm with selection of number of clusters. IEEE transactions on

knowledge and data engineering, 20(11):1519�1534, 2008.

[40] S. White and P. Smyth. A spectral clustering approach to �nding communities in

graphs. In Proceedings of the 2005 SIAM international conference on data mining,

pages 274�285. SIAM, 2005.

[41] A. Damle, V. Minden, and L. Ying. Robust and e�cient multi-way spectral

clustering. arXiv preprint arXiv:1609.08251, 2016.

[42] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: A new data clustering algorithm

and its applications. Data Mining and Knowledge Discovery, 1(2):141�182, 1997.

http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http:https://doi.org/10.1002/ajpa.1330860307

Bibliography 73

[43] A. Garg, A. Mangla, N. Gupta, and V. Bhatnagar. Pbirch: A scalable parallel

clustering algorithm for incremental data. In Database Engineering and Applications

Symposium, 2006. IDEAS'06. 10th International, pages 315�316. IEEE, 2006.

[44] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external

cluster evaluation measure. In Proceedings of the 2007 joint conference on empirical

methods in natural language processing and computational natural language learning

(EMNLP-CoNLL), 2007.

[45] L. Hubert and P. Arabie. Comparing partitions. Journal of Classi�cation, 2(1):

193�218, Dec 1985. ISSN 1432-1343. doi: 10.1007/BF01908075. URL https:

//doi.org/10.1007/BF01908075.

[46] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings

comparison: Variants, properties, normalization and correction for chance. J. Mach.

Learn. Res., 11:2837�2854, December 2010. ISSN 1532-4435. URL http://dl.acm.

org/citation.cfm?id=1756006.1953024.

[47] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis. Journal of Computational and Applied Mathematics, 20:53 � 65,

1987. ISSN 0377-0427. doi: https://doi.org/10.1016/0377-0427(87)90125-7. URL

http://www.sciencedirect.com/science/article/pii/0377042787901257.

[48] S. Samet and A. Miri. Privacy-preserving back-propagation and extreme learning

machine algorithms. Data Knowledge Engineering, 79-80:40 � 61, 2012. ISSN

0169-023X. doi: https://doi.org/10.1016/j.datak.2012.06.001. URL http://www.

sciencedirect.com/science/article/pii/S0169023X12000602.

[49] D. Hrestak and S. Picek. Homomorphic encryption in the cloud. In 2014

37th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), pages 1400�1404, May 2014. doi:

10.1109/MIPRO.2014.6859786.

[50] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation

from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran

Canetti, editors, Advances in Cryptology � CRYPTO 2012, pages 643�662, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-32009-5.

[51] F. Zhao, C. Li, and C. F. Liu. A cloud computing security solution based on

fully homomorphic encryption. In 16th International Conference on Advanced

Communication Technology, pages 485�488, Feb 2014. doi: 10.1109/ICACT.2014.

6779008.

https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
http://dl.acm.org/citation.cfm?id=1756006.1953024
http://dl.acm.org/citation.cfm?id=1756006.1953024
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/S0169023X12000602
http://www.sciencedirect.com/science/article/pii/S0169023X12000602

Bibliography 74

[52] L. Morris. Analysis of partially and fully homomorphic encryption. Rochester

Institute of Technology, pages 1�5, 2013.

[53] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be

practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security

Workshop, CCSW '11, pages 113�124, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-1004-8. doi: 10.1145/2046660.2046682. URL http://doi.acm.org/10.

1145/2046660.2046682.

[54] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In J. Stern, editor, Advances in Cryptology � EUROCRYPT '99, pages 223�238,

Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-48910-8.

[55] Z. Min, G. Yang, and J. Shi. A privacy-preserving parallel and homomorphic

encryption scheme. Open Physics, 15(1):135�142, 2017.

[56] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. Mpfr: A

multiple-precision binary �oating-point library with correct rounding. ACM Trans.

Math. Softw., 33(2), June 2007. ISSN 0098-3500. doi: 10.1145/1236463.1236468.

URL http://doi.acm.org/10.1145/1236463.1236468.

[57] M. A. Malcolm. Algorithms to reveal properties of �oating-point arithmetic.

Commun. ACM, 15(11):949�951, November 1972. ISSN 0001-0782. doi: 10.1145/

355606.361870. URL http://doi.acm.org/10.1145/355606.361870.

http://doi.acm.org/10.1145/2046660.2046682
http://doi.acm.org/10.1145/2046660.2046682
http://doi.acm.org/10.1145/1236463.1236468
http://doi.acm.org/10.1145/355606.361870

