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Abstract

The rapid evolution of technology forces the existing electronic devices to be much more
smaller as well as to able to operate at higher frequency with low power consumption.
However, current devices (ex. CMOS (Complementary Metal Oxide Semiconductor))
mostly based on Silicon (Si) and Si based transistor technology is almost saturated in
terms of device size and operating frequency. In order to overcome these issues and re-
alize much faster and smaller transistor with new geometry, 1-D nanostructures (such as
nanowires (NWs) and nanotubes (NTs)) and their electrical transport properties have be-
come focus of tremendous research in recent years. Silicon carbide (SiC) nanostructures,
a wide band gap semiconductor with excellent properties such as as high break-down
voltage, high thermal conductivity, high drift velocity physical and chemical properties
as well as compatibility with existing Si devices, have been intensly studied in terms
of material properties, fabrication, characterization as well as their various applications.
SiCNWs are one of the most promising candidate to be used as channel material or
substrate.

In this study, we synthesize 3C-SiCNWs via Metal-Organic Chemical Vapor Deposition
(MOCVD) method and fabricate SiCNW-FETs in order to examine the channel length
dependent electrical transport characteristic of SiCNW with varying channel lengths
ranging from 120 nm to 1.5 µm. Further we report the important performance param-
eters of SiCNW-FET devices and compare them with recently reported studies. The
device with the 120 nm channel length has led a very high on/off current ratio (Ion/Ioff
= 1.34⇥ 104) and very strong gating effect. Furthermore, the transconductance and the
hole mobility have been determined as 6.9 nS and 1.696 cm2/V.s, respectively, at Vds

of 0.05 V. This study shows good promise of the SiCNW-FET devices to be used in
advanced solid-state nanoelectronic devices capable of operating at high frequency and
high temperature.

Keywords: SiCNW-FET, SiC Nanowire, Transconductance, Channel Length Scaling,
Ion/Ioff Current Ratio, Electrical Characterization



Kanal Uzunluğu Ölçeklemenin Silisyum Karbür Nano Tel Tabanlı
Alan Etkili Transistörlerin (SiCNW-FET) Elektrisel İletim

Özelliklerine Etkileri

Ali Uzun

Öz

Teknolojinin hızlı evrimi, mevcut elektronik cihazların daha küçük boyutta düşük güç
tüketimi ile yüksek frekansta çalışmaya zorlamaktadır. Bunula birlikte, çoğunlukla Sil-
isyum tabanlı transistörler (örn. CMOS - Tamamlayıcı Metal Oksit Yarıiletken), Si
teknolojisinin cihaz boyutu ve çalışma frekansı bakımından neredeyse fiziksel sınıra ulaş-
ması sebebiyle daha fazla küçültülememektedir. Bu problemlerin üstesinde gelmek ve
daha küçük ve verimli transistörlerin üretilebilmesi için 1-boyutlu yapılar (özellikle nano
teller ve nano tüpler) ve bu yapıların elektrisel özellikleri son yıllarda fazlaca çalışıl-
maya başlanmış ve araştırma odağı haline gelmiştir. Geniş bant aralıklı bir yarıiletken
olan Silisyom Karbür, sahip olduğu yüksek kırılma gerilimi, yüksek ısı iletkenliği, yük-
sek sürüklenme hızı, fiziksel ve kimyasal özellikleri ve mevcut Si cihazlarla kolay entegre
edilebilirlik gibi mükemmel özelliklerinden dolayı araştırmacılar tarafından malzeme özel-
likleri, imalat, karaterizasyon ve farklı uygulamamları çokca çalışılmaktadır. SiC, kanal
malzemesi veya substrat olarak kullanılabilecek umut verici aday materyallerden biridir.

Bu çalışmada, Modüler İnce Film Katman Kaplama Sistemi (MOCVD) ile 3C-SiC sentezi
ve kanal uzunluğuna bağlı elektriksel iletim özelliklerini incelemek için kanal uzunluk-
ları 120 nm ile 1.5 µm arasında olan SiCNW-FETs üretimi ve test işlemleri yapılmıştır.
Ayrıca, SiCNW-FET cihazlarının önemli performans parametrelerini raporlanmış ve yakın
zamanda yayınlanmış çalışmalarda elde edilen sonuçların kıyaslaması yapılmıştır. Kanal
uzunluğu 120 nm olan NW-FET cihaz yüksek bir açık-kapalı akım oranı sergilemiştir
(Ion/Ioff = 1.34⇥ 104). Aynı cihaz 0.05 V Vds güç tedariğiyle 6.9 nS geçis iletkenliği
ve 1.696 cm2/V.s yük hareketliliği göstermiştir. Bu çalışma, SiCNW-FET’lerin yüksek
frekans ve yüksek sıcaklıkta çalışabilen gelişmiş katıhal dijital nanoelektronik cihaz ve
develerde kullanılmak üzere iyi bir gelecek vaat ettiğini göstermektedir.

Anahtar Sözcükler: SiCNW-FET, Geçis iletkenliği, Silisyum Karbür Nano tel, Kanal
Uzunluğunlğu Ölçeklemesi, Iaçık/Ikapalı akım oranı
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Chapter 1

Introduction

In this chapter, a brief introduction about one dimensional (1-D) nanostructures, prop-

erties silicon carbide nanowires (SiCNWs) as a promising semiconductor material and

other commonly studied semiconductor materials is given. Additionally, a summary of

previous studies on electrical transport properties of SiCNW-FETs and obtained per-

formance parameters are provided. Finally, the motivation behind the work and thesis

organization are presented.

1.1 Research Background

Recent developments in nanotechnology have attracted researchers interest into nanos-

tructures. It is relatively a new class of materials where the dimensions are less than 100

nm. They are categorized into four groups such as zero-dimensional, one-dimensional,

two-dimensional and three-dimensional nanostructures abbreviated as (0-D), (1-D), (2-

D), and(3-D), respectively. Briefly, 0-D structures such as quantum dots (QDs) have all

dimensions (x,y,x) of less than 100 nm. If the nanostructure has only one dimension

greater than 100 nm, it is called 1-D nanostucture like nanowires (NWs), nanotubes,

nanoroads, nanowhiskers etc. Structures with their two dimentions greater than 100 nm,

are named 2-D nanostructures such as nanoplates and nanoflakes. Finally 3-D nanos-

tructues have all their dimension greater than 100 nm such as nanoballs, nanocoils, and

nanoflowers. A summary of nanostructures and features are given in Table 1.1. Although

different forms of these nanostructures have been studied, 1-D nanostructures have gained

1
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great interest due to their high surface-to-volume ratios, quantum size effects as well as

their promising electrical, mechanical and optical properties. 1-D semiconductor nanos-

tructures, especially nanowires have been examined extensively because of their high

potential to be used in nanoscale electronics, sensors, photonics, flexible circuit, biosens-

ing [6–9] applications as passive element (interconnects) and active element (functional

unit such as transistor, diode). Number of other semiconductor nanowires materials

such as ZnO, Ge, SnO, InP, GaAs, AlN, GaN, SiC [10–14] have been studied. Silicon

carbide nanowires (SiCNWs) combine remarkable properties of 1-D materials with that

of superior intrinsic features of SiC characteristics such as great thermal conductivity,

breakdown electric field, electron drift velocity, chemical stability and biocompability,

offer great opportunities for high power and high frequency devices capable of operating

at high temperatures and harsh environments [15].

Table 1.1: Summary of nanostructures.

Nanostructures # of D. > 100 nm Example Structure

0-D 0 quantum dots,hollow cubes,nanospheres
1-D 1 nanowires, nanotubes, nanoroads,
2-D 2 nanoplates,nanowalls ,nanoflake
3-D 3 Nanoballs,nanocoils,nanoflowers

Silicon Carbide (SiC), a IV–IV group compound semiconductor and exists in nature

more than 200 polytypes and 3C-, 4H- and 6H- are most commonly seen ones. Often

times, 4H- and 6H-SiC polytypes are called as ↵-SiC and 3C-SiC is called as �-SiC and

zinc-blende structure due to its cubic crystal structure. Among the common polytpes

3C-SiC is widely studied one since it can be synthesized on Silicon (Si) substrate with

larger size and low prices in relatively low temperatures compared to 4H- and 6H-SiC

[16]. In this thesis, we studied electrical transport characteristics of a single 3C-SiCNW

based FETs with varying channel length ranging from 120 nm to 1.5 µm.

1.2 Literature Review

Due to its excellent features such as high breakdown voltage, high thermal conductiv-

ity, high drift velocity physical and chemical properties as well as compatibility with

existing Si technology, SiCNWs have drawn tremendous attention. SiCNWs can provide
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significant advantages in order to deal with current limitations of Si in terms of tem-

perature, power consumption and operating frequency. Up to now, few theoretical and

experimental studies had been conducted on electrical transport properties of SiCNW-

FETs devices; and most of the experimental studies show similar performance in terms of

transconductance (gm), carrier mobility (µh), and on/off current ratio (Ion/Ioff ). Fur-

ther, these earlier studies struggle with the issues of very low Ion/Ioff ratio, weak gating

effect, low carrier mobility, and high off-state leakage current.

The first studies on electronic transport through SiCNW-FETs were conducted by Seong

et al. [17, 18] and Zhou et al. [19, 20]. In their studies, Seong et al. designed a SiCNW

based FET device (with NW diameter: ⇠ 90 nm and channel length: 35 µm ) with

transconductance of 0.17 nS and estimated electron carrier mobility of 15 cm2/V.s for

Vds voltage of 0.02 V. When it comes to Zhou et al.’s study, the SiCNW-FET (NW

diameter: ⇠ 10 nm, channel length: 1.5 µm ) showed a carrier mobility of 15.9 cm2/V.s

,which yields transcondcutance of 0.5 nS at Vds equals to 0.05 V. It can be concluded

that second devices had slightly better performance than the study done by Seong and

his team in terms of transconductance (gm) and electron carrier mobility (µn).

Apart from experimental studies, some theoretical analysis were presented by Rogdakis

et al. [21, 22] on electronic transport properties of 3C-SiCNW-FET. Based on the study,

simulated SiCNW-FET (NW diameter: 10 nm, channel length: 750 nm) has resulted an

Ion/Ioff ratio of 20⇥ 104, where the measured value in [19] is 10⇥ 103. Rogdakis et al.

conducted an experiment to investigate the effect of NW doping level and NW-dielectric

interface quality on I-V curve characteristics such as gm and Ion/Ioff ratio by comparing

the performance of SiCNW-FETs in both experimentally and theoretically. In his theo-

retical study [22], the FET device with 9 nm channel length exhibited trasconductance

of 43.2 µS and Ion/Ioff ratio of 1.6⇥ 105. Some other experimental studies [23–25] have

showed similar results with the previous ones. Table 1.2 present summary of previous

studies.

Nevertheless, most of the reported studies of the SiCNW-FETs present n-type semicon-

ductor behavior. First time Chen et al. [26] reported the fabrication of p-type SiC-

NWFETs that exhibit transconductance of 12 nS and hole mobility of 6.4 cm2/V.s with

channel length of 3.2 µm [11], while Li et al. later reported slightly lower values of



Chapter 1. Introduction 4

transconductance (0.75 nS) and hole mobility (4.2⇥ 10�2 cm2/V.s) with channel length

of 3.5 µm [27].

Table 1.2: Summary reported studies with on-off current ratio, transconductance,
hole mobility, and hole density at Vds of 0.05.

C.L. NW Dia. gm (S) µ (cm2/V s) Vds (V) Carrier Ref.

3.5 µm 90 nm 1.7⇥ 10�10 15 0.02 Electron [18]

1.5 µm 10-25 nm 10⇥ 10�10 15.9 0.05 Electron [19]

4.4 mm 90 nm - 0.11 - Electron [22]

500 nm 20-40 nm 9⇥ 10�10 0.11 1 Electron [28]

500 nm 40-80 nm - 1.46⇥ 10�7 - Electron [29]

3.2 µm 200 nm 12⇥ 10�9 6.4 1 Hole [26]

3.5 µm 90 nm 7.5⇥ 10�10 4.2⇥ 10�2 0.5 Hole [27]

Despite the advancement in fabrication of nanodevices, common issues such as weak

gating effect (gm < 1 nS [30]), low Ion/Ioff ratio, low carrier mobility, poor interface

quality between NW/dielectric, and off-state leakage current still persist and indicates

that this technology is not mature enough and requires some more work.

1.3 Motivation Behind the Work

The down-scaling trend in integrated circuit (IC) technology is about to reach an end-

point with conventional Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

(also called planar MOSFET) devices because of physical limitation of silicon [31]. Addi-

tionally, heat dissipation, operating frequency and off-state power consumption are other

challenges in IC with current semiconductor materials. These factors as well as irresistible

demand in processing power lead researchers to explore new semiconductor materials in

order to replace silicon, which is the extensively used semiconductor industry. Due to

superior features of SiC (high breakdown voltage, high operating temperature and high

switching frequency etc.), it is one of promising candidate to enhance the semiconduc-

tor industry to meet the needs. In this study, we have investigated the fabrication and

electrical transport characteristics of SiC nanowire based FETs with different channel

length. Furthermore, the figures of merit for transistor performance such as transcon-

ductance (gm), carrier mobility (µh), on/off current ratio (Ion/Ioff ), and gating effect are
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presented for the fabricated SiCNW-FET devices. The dependence of these key perfor-

mance parameters on SiNW-FETs with varying gaps between electrodes (drain - source)

from 120 nm to 1.5 µm is also discussed.

1.4 Thesis Organization

The purpose of this MS thesis to fabricate SiCNW-FET devices with varying channel

length and observe the effect of channel length on fundamental transistors parameters. In

this scope, different SiCNW-FET devices were fabricated with various channel length and

the I�V characteristics including transconductance (gm), on-off current ratio (Ion/Ioff ),

carrier µ (µ) and carrier concentration (nh) were systematically measured.

The thesis is organized as follows:

XIn the first chapter, an introduction to nanostructues and their properties is discussed.

Further, previously conducted studies on electrical transport properties of SiCNWs are

given with the obtained performance parameters as literature review. At the end, the

motivation behind the work and thesis organization are presented.

XIn the second chapter, fabrication process of SiCNW-FET starting from nanowire syn-

thesis to final device has been explained in details. Furthermore, the equipment used

in nanowire characterizations such as SEM, XRD etc. and fabrication processes such as

MOCVD are also introduced briefly. Finally, the details of fabricated FET devices such

as channel length, nanowire diameter, electrode geometry and thickness etc. have been

explained.

XIn the third chapter, electrical characterizations of devices have been explained. In

addition, the test setup and measurements devices have been described. Further, funda-

mental transistor parameters have been covered and the obtained values for the fabricated

devices have been presented. Additionally, a comprehensive comparison of achieved re-

sults with the previously reported studies has been proposed.

XIn the last chapter, a summary of research results and findings are given with the ex-

isting issues. Further, possible future of SiCNW research and its electronics applications

are discussed.



Chapter 2

SiC Nanowire Synthesis and FET

Device Fabrication

In this chapter, the details about the fabrication process of SiCNW-FETs starting from

nanowire synthesis to final device has been explained in details. Furthermore, the equip-

ment used in nanowire characterizations such as SEM and XRD and growth process also

introduced briefly. Finally, the details of fabricated FET devices such as channel length,

nanowire diameter, electrode geometry and thickness etc. have been explained.

2.1 NW Fabrication Methods

1-D nanostructures can be synthesized by many different methods such as nanoparti-

cles self-assembly, carbon nanotube templating, DNA based templating, top-down and

bottom-up. Among those, top-down and bottom-up methods are commonly preferred

ones as shown in Figure 2.1. Both approaches have advantages and drawback in term

of complexity, process cost, and flexibility with respect to 1-D nanostructures synthesis.

The two approaches are briefly explained below.

6
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Figure 2.1: NW synthesis approaches[1] (a) Top-Down Methods (b) Bottom-Up Meth-
ods

2.1.1 Top Down Methods

Top-down methods involves the process transforming a bulk materials into desired struc-

ture by utilizing several lithography, etching and deposition process. This method allows

to obtain preciously controlled structures and to integrate into dense design. A good

example of top-down method usage is microelectronics (ex. CMOS technology) appli-

cations. Because the structures are getting smaller and smaller, fabrication cost and

complexity are becoming very difficult to handle. So that, semiconductor industry is

searching for new strategies to meet the demands considering economical limits.

NWs can be synthesized by top-down method with highly controlled size in variety ge-

ometry such as vertical and planar. Wang et al. [32] and Henry et al. [33] successfully

demonstrated fabrication of Si nanowires with diameter of 20 nm and nanopillar with

diameter of 50 nm, respectively. Although NWs has been successfully fabricated via this

method, because of the complicated and expensive processes with a low yield of NWs it

is persisting there as drawbacks of this approach.
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2.1.2 Bottom Up Methods

Bottom-down methods involves the process assembling of small nanoscale blocks into

a bigger nanostructures. As the device sizes get close to atomic size, that cannot be

obtained by lithography methods, this method can provide a breakthrough solution to

technological challenges. This method provides more control and flexibility over the

structure geometry and size which can enable to design and realize new devices with

geometry and functionality. However, this method is still in development stage, there

are some issues remaining.

Although there are some challenges in nanostructures fabrication such as surface defects,

doping, and growth orientation, this is the common method used in NW synthesis.

Various ways of bottom-up methods have been demonstrated such as Vapor Liquid Solid

(VLS) and Vapor Solid (VS) methods. The details and sub-methods of VS are going to

be discussed in the following chapter.

2.2 SiCNWs Growth

Variety of methods to synthesize SiC nanowires have been developed. Some of these

methods are Chemical Vapor Deposition (CVD), which includes Metal Organic Vapor

Phase Epitaxy, Chemical Vapor Reaction, Chemical Vapor Infiltration and Metal Or-

ganic Chemical Vapor Deposition, and Physical Vapor Deposition and Sputtering. A

brief overview of mentioned methods with some key parameters used in 3C-SiCNW

growth is given in Table 2.1.

The SiCNWs used in this study were grown via Metal Organic Chemical Vapor Depo-

sition (MOCVD) method. The growth process in a MOCVD system as as follow; a

substrate covered with catalyst material is placed on graphite susceptor and loaded to

the system. Source material is transferred to the reactor chamber using a carrier gas,

where the growth happens, at certain flow rate. At the beginning of the process, the

system is purged a couple of times at low pressure to make sure that all contamination

are deported from the chamber.
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Table 2.1: Typical 3C-SiCNW growth methods and main parameters [5]

Growth Methods Chemical Vapor Deposition (CVD) (includes Metal Organic

Vapor Phase Epitaxy, Chemical Vapor Reaction, Chemical

Vapor Infiltration and Metal Organic Chemical Vapor De-

position), and Physical Vapor Deposition and Sputtering

Precursor Methytrichlorosilane, Drichlorometilsilane, Methane,

Propane, Silane, Diethylsilane, Hexamethyldisilane

Starting Materials Si+SiO2 with methane; Si+C; SiC powder;

Substrate (100),(111) Silicon

Catalyst Ni, Fe, Au, Pt, Pd, Fe/Co, Al

Growth Temperature From 1000 to 1400 �C

Then the system heated up to desired temperature for NW-growth. Next, the deposition

occurs via series of consecutive chemical reaction at the substrate surface and lasts a

few minutes to hours based on the system. After the growth is completed high quality

nanowires were obtained. Figure 2.2 shows a typical flow diagram for an MOCVD system.

Figure 2.2: Flow diadram of a MOCVD system

SiCNWs were synthesized in a horizontal RF-induction heated furnace with hexamethyl-

disilane (HMDS) as a source precursor. The NWs were grown on oxidized Si substrate
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with 300 nm SiO2 layer coated with Ni particles, which have diameter of 30 nm, as cata-

lyst. A Si substrate was cleaned via a two stage solvent bath in order to remove possible

contamination (oils and organic residues from the process or environment) on the surface.

A bath of aceton and isopropanol (IPA) were prepared separately by using glass beaker.

First, the Si wafer was sonicated in aceton bath for about 5 min with an ultrasonic bath

shown in Figure 2.4 a. Once the aceton bath is completed, the substrate was soaked

in the IPA solvent for 2-3 min. Then, the silicon wafer was rinsed in de-ionized (DI)

water. Although the solvent remove contamination on the wafer surface, solvent them-

selves might leave some residue on the surface of the substrate. Thus to have a residue

free wafer, a two-step solvent method was implemented. Finally, a nitrogen (N) gun was

used to wipe out all the remaining DI water and others chemicals from the surface of the

wafer. After the cleaning process, NWs in IPA solution were deposited on the cleaned

wafer (a highly-doped SiO2/Si substrate with oxide layer of 300 nm). When the IPA

solution with SiCNWs dry, the Si wafer was placed in the center of graphite susceptor

(seen in Figure 2.4 b) and loaded to the quartz tube. At the beginning of the process,

the reactor were evacuated to 50 mTorr and purged three times in order to remove

the contamination inside the quartz tube. Then the system was heated to 1100 �C with

100 standard cubic centimeters per minute (sccm) H2 and 500 sccm Ar flow within 5

mins. After the temperature stabilizes at 1100 �C, the growth process begins. During

the growth, the process temperature was maintained for 15 mins where HMDS source

was added to the system via H2 as carrier gas at flow rate of 10 sccm at 1100 �C with

flow of 200 ccm H2 and 500 sccm Ar. The pressure during the growth was measured as

1 ATM. After the growth process, the reactor has cooled down to 300 �C with 100 sccm

H2 and 200 sccm Ar gas flow. The growth process and parameters are also presented in

Figure 2.3 as a function of time. The image of used MOCVD system is shown in Figure

2.5 a.
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Figure 2.3: SiCNW growth process with gas flows and temperature as a function of
time in MOCVD system.

Figure 2.4: (a) Image of ultrasonic bath used for wafer cleaning (b) Image of quartz
tube where the nanowire growth take place.
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Figure 2.5: (a) A photograph of MOCVD system used in SiCNW growth (b) Image
of quartz tube during a run. (c) Image of quartz tube.
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2.3 SiCNW Characterization

The fabricated nanowires have been characterized via the following equipment; scan-

ning electron microscopy (SEM) and x-ray diffraction (XRD). Crystal structure of as-

synthesized nanowires have been analyzed by x-ray diffraction (XRD). Surface morphol-

ogy has been observed by scanning electron microscopy (SEM). A brief introduction

about these equipment and obtained results are discussed in the following section.

2.3.0.1 Scanning Electron Microscope (SEM)

A scanning electron microscope is a microscopy method that provides surface image

of desired specimen by using focused beam of electrons. SEM might be really handy

when it comes to deal with surface topography of the sample. It provides far better

images than the regular optical microscope in terms of resolution and quality. Generally,

SEM consists of an electron gun and a couple of electromagnetic lens which operates

in vacuum. Electrons generated by electron gun are accelerated to energies level in

range of 1-40 keV in the SEM. Then those electrons are used to create focus electron

probe by lenses on the specimen. In order to create image, a detector collects the

reflected electrons from the surface and creates an image of scanned area of surface via

analyzing the observed electrons. Often SEM has two type of detectors, back-scattered

electron (BSE) and secondary electron (SE). Although, BSD can give great image about

morphology and topography, SE detector has capability to detect electrons with low

energy which enables it to provide images at higher magnification. Finally, generated

image is displayed on monitor. Figure 2.6 a displays main components and work flow of

a typical SEM schematically.

In our experiment, we have used a Phenom XL (shown in Figure 2.6 b) desktop scanning

electron microscopy. The microscope can provide images at magnification range from

80⇥ to 1000⇥. with a resolution up to 10 nm.
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Figure 2.6: (a) Schematic representation of a SEM [2] (b) The SEM used in this
study.

A number of SEM images of SiCNWs grown at 1100 �C with Ni nanoparticle on a SiO2/Si

substrate has been captured. The captured SEM images at various magnification (such

as 2K, 5K, 7K and 10K) are given in Figure 2.7. The images demonstrate that SiC

nanowires are distributed over the Si substrate with different densities and have diameter
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ranging from 40 nm to 70 nm. The length of the NWs are in range of few µm to tens of

µm.

Figure 2.7: SEM images of as-synthesized nanowires with diameter of 65 nm and
length of 50 µm on the Si substrate with 300 nm SiO2 layer at different magnifications.
(a) At 2K (Scale bar - 30 µm) (b) At 5K (Scale bar - 10 µm) (b) At 7K (Scale - is 10

µm) (b) At 10K (Scale - is 8 µm)
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2.3.0.2 X-Ray Diffraction (XRD)

X-ray diffraction is a non-destructive method which uses x-ray to analyze the materials’

crystal structure. Based on the measurements in scattering angle, polarization, wave-

length and energy of diffraction of x-ray beams from atoms within the sample, it reveals

crystalline phase and order, structure properties and atomic arrangement of the analyzed

material. Figure 2.8 shows a typical XRD schematic with its main components.

Following the synthesis, XRD analysis was conducted to examine the presence of the SiC

nanowires. Captured plot is given in Figure 2.8 b. The y-axis has no unit and x-axis

shows the diffraction angle (2✓). The figure shows two strong peaks approximately at

35.6� and 59.9�, which correspond to (111) and (220) planes, respectively. The diffraction

patters indicate that 3C-SiC was the main crystalline phase of nanowires (JCPDS card

no. 29-1129).
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Figure 2.8: a) Schematic representation of an XRD [3]. b) XRD pattern of as-grown
SiCNWs have zinc-blend structure.
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2.4 SiCNW-FET Device Design and Fabrication

2.4.0.1 NW-FET

1-D semiconductors in the form of NW are promising candidates to be the main building

blocks in various device applications such as optoelectronics, power electronics, analogue

and digital electronics, flexible electronics and display etc. because of their excellent

electrical transport properties, high sensitivity, high aspect ration and chemical stability.

Further, NW-FETs can sustain the down-scaling in transistor size in IC due to its highly

controllable growth and fabrication process. Additionally, NW-FETs have the capability

to contribute the off state current leakage and power consumption, which are still bottle-

neck in Complementary Metal Oxide Semiconductor (CMOS) based devices. NW-FET

is a transistor type that utilizes a single nanowire or an array of nanowire as channel ma-

terial rather than bulk silicon. NW-FETs are three terminal devices with Drain, Source,

and Gate similar to traditional transistors. Electrical transport characteristic of a NW-

FET is being controlled via an electrical field applied from gate terminal of the device.

There are variety of NW-FET architectures out there. Commonly used ones such as

back-gate, semi-cylindrical top-gate, and cylindrical gate-all-around NW-FETs are given

in Figure 2.9. Each architecture provides particular advantages. The gate-all-around

NW-FET schematic, in which the gate material wrap around the nanowire entirely, pro-

vides fully control over the channel. In other words, the transistor can respond to the

changes in gate voltage very fast and block current flow during the OFF state of the

device. Although this architecture can exhibit superior electrical characteristic such as

low leakage in OFF state and better stability [34], high cost and difficulties in fabrication

process make this structure is not widely used in studies. When it comes to back-gate

NW-FET architecture, it is more optimal for sensing applications because the NW sur-

face (the channel) is not covered with electrode material so it has more active area to

interact with the target matter. Besides the sensing applications, back-gate NW-FET

can also be used in analog and digital electronics. Despite the limited control of back-

gate NW-FET over channel compared to gate-all-around NW-FET, back-gate NW-FET

devices has been studied extensively due to its relatively simple fabrication process and

low cost. It can be fabricated on a commercially available highly doped or degenerated

SiO2/Si wafer used as back-gate terminal of the device. Lastly, semi-cylindrical top-gate
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NW-FET architecture can provide less control over the channel compared to gate-all-

around NW-FET architecture but better than back-gate NW-FET. This is also not a

commonly preferred architecture.

In this study, we fabricated SiCNW-FETs according to the back-gate NW-FET archi-

tecture and electrical measurements were carried out by applying gate voltage from

back-side of highly-doped substrate. Because of high doping, bulk wafer can be used

without metallization.

Figure 2.9: Schematic representations of NW-FET architectures [4]. (a) Back-gate
NW-FET (b) Semi-cylindrical top-gate NW-FET (c) Cylindrical gate-all-around NW-

FET. Insets show the cross section of NW-FET at the midpoint of each device.

2.4.0.2 Design Specifications

In this thesis, effect of scaling in channel length on SiCNW based transistor performance

has been studied. The key performance parameters including transconductance (gm), on-

off current ratio (Ion/Ioff ), carrier mobility (µ) and carrier concentration (nh) have been

calculated for each devices and the effect of channel scaling on these parameters have

been examined. For this purpose, a single SiCNW based FET with multiple electrodes

designed and channel length of the NW-FET devices were determined to be 120 nm, 220

nm and 1.5 µm.

SiCNW-FET devices were fabricated in back gate NW-FET architecture with a bilayer

Cr/Au electrodes, in which the thicknesses are 3 nm and 100 nm) on a highly doped
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SiO2/Si wafer which served as back gate terminal. The width of electrodes are 1 µm

on the NW-electrode contact and 200 µm on the electrode- probe contact. Table 2.2

presents the design specifications of fabricated SiCNW-FETs.

Table 2.2: Device specifications including channel length, electrode materials and
thickness, substrate and FET architecture

C.L. Electrodes Substrate Architecture

120 nm Cr(3nm)/Au(100nm) Highly-Doped p-type SiO2/Si Back gate

220 nm Cr(3nm)/Au(100nm) Highly-Doped p-type SiO2/Si Back gate

1.5 µm Cr(3nm)/Au(100nm) Highly-Doped p-type SiO2/Si Back gate

2.4.0.3 Device Fabrication

One way to investigate the electrical characteristics of SiCNW is to configure a single

SiCNW as back-gate NW-FET architecture (seen in Figure 2.12). In this architecture,

SiCNW-FET devices are fabricated on highly doped or degenerated SiO2/Si wafer. The

fabrication process and details from NW to NW-FET devices will be described below.

Firstly, SiCNWs, synthesized via CVD method using 30 nm Ni catalyst on a Si wafer

coated with 300 nm SiO2 layer, were suspended in some micro-liters of IPA via ultra-

sonic bath. Then, evaporating some of the IPA, a dense IPA solution which includes

SiCNWs was obtained. Then a few drops of NWs dispersed in IPA were deposited on

specifically prepared highly doped p-type SiO2/Si substrate. After the solution dries on

the substrate, an SEM was used to locate the NWs to determine the possible nanowires

to fabricate the FET devices. A low and high magnification images of NWs on highly

doped wafer are given in Figure 2.10. It is obvious that the NWs were distributed over

the substrate. Because of very small size of NWs, in order to make easy to locate their

coordinates aligned markers were placed on the surface. The white rectangles (aligned

markers) seen in the images helps to locate the coordinates of nanowires end points.
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Figure 2.10: SEM image of NWs dropped on SiO2/Si wafer. The FET devices were
fabricated on a selected NW with diameter of 65 nm and length of 50 µm. (a) At 2K

(Scale bar is 30 µm) (b) At 5K (Scale bar is 10 µm)



Chapter 2. SiC Nanowire Synthesis and FET Device Fabrication 22

After the selected nanowire’s location are determined, the next step is to define the

electrodes. The electrodes were defined by the E-beam lithography (EBL) with varying

channel lengths within 120 nm to 1.5 µm range. The EBL process was done via Torr

E-Beam and Thermal Evaporator. To make the lift-off process more easy, a bilayer

coating was applied. First, the Si2/Si substrate was spin coated with 495 polymethyl

methacrylate C4 (PMMA) at 4000 revolutions per minute (rpm) for 55 s. Then, coated

substrate was baked at 160 �C for 2 mins. The thickness of coated layer was 200 nm. The

second layer was coated on top of the first layer using 950 PMMA C2 with a thickness

of 100 nm. Coating and baking conditions were kept same as first layer. Next, the

e-beam exposure and lift off took place in an order. Then, the e-beam exposed sample

was developed in a methyl-isobutyl-ketone (MIBK) mixture and IPA (with 1:3 ratio

respectively) for 1 min and 5 seconds (sec) in MIBK and IPA (1:3). After that, the

sample was kept into IPA for 30 sec and followed by dryimg process with nitrogen (N2)

gas. And then, metal deposition for metal electrodes was performed through E-beam

evaporation with a 3 nm chromium (Cr) as sticking layer and 100 nm gold (Au) layer.

After metallization, the wafer was kept in IPA and dried with N2 gun.

Figure 2.11: A schematic view of back-gate SiCNW-FET

To avoid from peeling off in the Au layer during lift-off process, a Cr with thickness of

3 nm was deposited as an adhesion layer. Cr metal is know as good adhesion material

which ensures obtaining better electrode pattern. Then, a Au layer with a 100 nm

thickness, which is a very good conducting material used in electrical characterization,

was deposited on top of the Cr layer. Figure 2.11 displays a schematic view of back-gate



Chapter 2. SiC Nanowire Synthesis and FET Device Fabrication 23

SiCNW-FET with the details of electrodes and Si substrate. At the end, O2 plasma

treatment was applied to chip in order to remove remaining resists and residues from the

exposed chemicals in previous processes.

After the FET fabrication process completed, the devices were checked with SEM in

order to make sure that the targeted devices with desired pattern and channel length are

achieved. Figure 2.12 a and b show images of actual devices with different magnification.

First images (Figure 2.12 a) ensures that a continues electrodes from NW to probing

points was obtained. Also there is no connection between any of electrodes pair which

might cause a short circuit. Second image (Figure 2.12 b) presents that the electrodes

were fabricated on a single SiCNW and all electrodes are connected to the nanowire.
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Figure 2.12: SEM images of fabricated multi-electrodes FET. (a) Low magnifica-
tion image of FET with four electrodes (b) High magnification image of FET showing

channel length and NW.



Chapter 3

Electrical Characterization of

3C-SiCNW

In this chapter, measurement setup and electrical transport characterization of 3C-

SiCNWs will be introduced. Furthermore, fundamental I � V characteristics including

transconductance (gm), on-off current ration (Ion/Ioff ), carrier mobility (µh), carrier

concentration (⌘h) are briefly explained and obtained results from fabricated NW-FET

devices will be presented. And effect of annealing on these parameters will be discussed.

Finally, electrical characterization of SiCNW-FETs will be given with a comprehensive

comparison with reported devices and performances.

3.1 The Experimental Setup and Equipment

The electrical measurements were carried out with a Keityhly 2634B source-meter and

probe station. A schematic view of electrical measurement setup is given in Figure 3.1.

A two channel source-meter was used to supply desired voltages to the terminals (drain,

source and gate) of the devices. One channel of source-meter was attached to drain

terminal of devices as bias voltage. The second channel of source-meter was used for

gate voltage. During the measurements the source terminal of FETs were grounded. As

it mentioned before, because the FET devices were designed as back-gate NW-FET on a

SiO2/Si wafer used as gate terminal. Measurement process was controlled a computer

connected to Keithly 2634B source-meter via KUSB-488B connector. A LabView script

25
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written for Id � Vds and Id � Vgs curves measurements of 3 terminal devices were used

in order to drive the characterization.

Figure 3.1: Test configuration of SiCNW-FET with Keithley 2634 B Source Meter.

To have electrical measurements, firstly the FET devices were located on the probe

station (seen in Figure 3.2 a). To avoid damaging the electrodes, a small vacuum pump

was used to suck the wafer piece to keep it at the initial position. Figure 3.3 b shows

a zoomed image of the surface where the wafer piece was placed and probed. Then by

using the optical microscopy corresponding electrodes were probed gently via the metal

tips as shown in Figure 3.3 a. Other side of the probes were connected to the two channel

of Keithly 2634B source-meter. A photography of source-meter used in measurement is

given in Figure 3.2 b. After the probing completed, the electrical measurements have

been carried out for each devices under the same condition.
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Figure 3.2: A photography of a) probe station and b) Keithly 2634B source-meter
used in the experiments.

Figure 3.3: a) An image of probed SiCNW-FET devices on probe station. b) A
zoomed image of the plate where the wafer piece was loaded for probing.
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3.2 Contact Issues and Annealing

Poor contact quality between nanowire and electrode degrade NW-FETs performance.

This is a commonly faced issue in NW-FET devices and the reasons might be the shape

of nanowires and possible residues between nanowire-metal junction. Annealing is a

necessary process in order to increase the contact quality between SiCNW and electrodes

by removing the resist residues between the nanowire-metal sandwich [35]. It is known

that annealing lead to formatting a nickel-silicide phases between Ni layer and SiCNW

[36], which reduces the contact resistance and make the device to show better electrical

performance. Therefore, an annealing was done at 400 �C for 5 min under 5 sccm Ar flow.

The annealing process has been very successful such that about twenty-fold increase in

current has been measured in most devices. A comparison of the I � V curves of the

SiCNW-FET device before and after the annealing process is given Figure 3.4 for the

SiCNW-FET with 120 nm channel length.

Figure 3.4: Comparison of I � V characteristics of the SiCNW-FET device with 120
nm channel length before and after the annealing process (Vgs = 0 V). About thirty-fold
current increase is attained after annealing at 400 �C for 5 min with 5 sccm Ar flow.
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3.3 Electrical Characterization of SiCNW-FETs

Electrical transport measurements have been conducted on a probe station with a Keithly

2634B source-meters at room condition. From the I � V curves fundamental transis-

tors parameters (transconductance - gm), on-off current ration - Ion/Ioff ) are obtained.

Further, using measured gm value and the given equations carrier mobility (µh), carrier

concentration (⌘h), and gate capacitance (C) of SiCNWs were calculated.

3.3.1 Electrical Properties of SiCNWs

The electrical characteristics of a NW-FET can be interpreted by several figure of merit

performance parameters such as transconductance (gm), carrier mobility (µh), and on/off

current ratio (Ion/Ioff ) are briefly described and the values for fabricated devices are

given. A higher value of these parameters indicate that the devices have better electrical

performance.

3.3.1.1 Transconductance

Transconductance ( gm) indicates the sensitivity of drain-source current (Id) to change

in gate (Vgs) voltage. In other words, it shows how well the transistor adjusts the Id

current when the Vgs voltage has changed. The SI unit is S which is current over voltage

(A/V ). The value of gm depends on different factors such as channel length, gate width,

mobility etc. of the device. Transconductance can be calculated from slope of linear

portion of Id � Vgs curve.

3.3.1.2 Carrier Mobility

Carrier mobility (µh) also called electron-hole mobility depending on major carrier in

semiconductor, represents how fast electron can move in the medium (metal or semicon-

ductor). The units is cm2/V.s. It depends on mostly material itself but also nanowire

geometry such as width and height of NW. Carrier mobility can be estimated from the

equation 3.3.2 using the obtained gm from Id � Vgs curve of device.
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3.3.1.3 Carrier Concentration

Carrier concentration(⌘h), also knows as carrier density reveals the amount of electron

or hole per unit volume. In other words, it is the total number of carrier (electron or

hole) in conductance band. The SI unit is (cm�3). Carrier concentration of a NW can

be obtained via the equation 3.3.4.

3.3.1.4 On-Off Current Ration

On-Off current ration (Ion/Ioff ) is the ratio of current on on state and off state of a

transistor. It shows how well the transistor can block the current flow in OFF state.

The current leakage is essential because it increase the power consumption and decrease

the efficiency of circuit. It is difficult to realize NW-FET with a high Ion/Ioff value ,

because nanowire based devices cannot be turn off well compared to conventional CMOS

devices.

3.3.2 Current-Voltage (I � V ) Characteristics of 3C-SiCNW-FETs

To determine the figures of merit of the SiCNW-FET devices such transconductance

(gm), carrier mobility (µh), on/off current ratio (Ion/Ioff ), and gating effect drain-source

current versus gate voltage (Id�Vgs) and drain-source current versus grain-source voltage

(Id � Vds) measurements have been conducted for each devices. (Id � Vgs) curves were

obtained by applying a gate voltages from -30 V to 10 V with the bias voltages of Vds

= 0.05 V. The (Id � Vds) curve measurements have been done by a voltage sweep at the

drain-source voltage (Vds) from -1.5 V to 1.5 V at Vgs of -20 V, 0 V and 20 V. Recorded

Id � Vds and Id � Vgs curves were given in Figures 3.5, 3.6, and 3.7 for NW-FET devices

with channel length of 120 nm, 220 nm, and 1.5 µm, respectively. We could not conduct

the Id � Vds measurements at higher Vds bias voltages since the voltages greater than

3 V could damage the electrodes and cause a peel-off. The measured Id � Vds curves

show that all the devices have non-ohmic contact behaviour since the curves are not

linear. Further the reason for quadratic Id � Vds could be due to the NW-Au electrode

contact. This is commonly seen in NW-FET devices since the NW resistant is dominated

by contact resistance. The Id � Vgs curves exhibit very strong decrease in drain-source

current as the gate voltage varies from -30 V to 0 V indicating that the NWs are p-type.
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It can be postulated that host atoms of Si or C are replaced by impurity atoms with

less valence electrons leading to creation of hole carriers in the SiC nanowires. Thus, an

acceptor energy level is established in the band gap close to the valence band resulting

p-type conductivity.
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Figure 3.5: Obtained I � V curves of the SiC-NWFET devices with channel lengths
of 120 nm at Vds = 0.05 V. The device show very strong gating effect. (a) Id � Vds

curve (b) Id � Vgs curve.
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Figure 3.6: Obtained I � V curves of the SiC-NWFET devices with channel lengths
of 1.5 µm at Vds = 0.05 V. (a) Id � Vds curve (b) Id � Vgs curve.
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Figure 3.7: Obtained I � V curves of the SiC-NWFET devices with channel lengths
of 1.5 µm at Vds = 0.05 V.(a) Id � Vds curve (b) Id � Vgs curve.
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Further, the SiC-NWFET devices have shown very high on-off current ratio (Ion/Ioff

= 1.34⇥ 104, 1.04⇥ 104, and 1.5⇥ 103) indicating very strong gating effect unlike the

reported earlier studies. This result is significantly better than that of the values reported

in experimental studies [19, 26, 27] and comparable with the theoretical study [24] in

terms of on-off current ratio. Also, other NW-FET devices with channel length of 220

nm and 1.5 µm showed the Ion/Ioff of 1.0⇥ 104 and 1.5⇥ 103, respectively.

Transconductance (gm) was estimated from the linear portion of Id � Vgs curve, also

known as transfer characteristic curve by using the Eq.3.3.1. In this study, transconduc-

tance was obtained from the slope between -30 V and -20 V and the measured values

are 6.9 nS, 2.73⇥ 10�2 nS, and 7.72⇥ 10�3 nS for SiCNW-FET devices with channel

length of 120 nm, 220 nm, and 1.5 µm, respectively. The gm of NW-FET with 120 nm

channel length is highest reported value at this (120 nm) channel length and bias voltage

(Vds=0.05 V).

gm =
dId
dVgs

(3.3.1)

After obtaining the gm of devices, carrier mobility (µh) can be calculated from the

Eq.3.3.2, where L is the channel length, C is the coupling capacitance between SiCNW

and the substrate (back-gate). C can be estimated from the cylinder-plate capacitance

model shown in Eq.3.3.3, in which ✏ and ✏o are dielectric constants of SiO2 (⇠3.9) and

permittivity of vacuum (8.854⇥ 10�14 F/m), where h is the SiO2 layer thickness and r

is the radius of nanowire.

µh = gmL2/(CVds) (3.3.2)

C = 2⇡✏✏oL/(ln 2h/r) (3.3.3)

The device with 120 nm has an estimated carrier mobility of 1.69 cm2/V.s at Vds=0.05

V, which is highest in previous reported studies for p-type SiCNW-FETs [26, 27]. The

devices with 220 nm and 1.5 µm have the carrier mobility of 6.71⇥ 10�3 and 1.89⇥ 10�3,

respectively, at Vds of 0.05 V.
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Further, the hole carrier concentration (⌘h) can be obtained from the Eq.3.3.4, where p is

the hole carrier concentration, q is the electron charge, and A is the NW cross-sectional

area. The estimated hole concentration is 3.72⇥ 1020 cm�3 at Vds voltage of 0.05 V.

Other devices with 220 nm and 1.5 µm have the carrier concentration of 3.61⇥ 1020

cm�3 and 3.97⇥ 1020 cm�3, respectively, at Vds of 0.05 V. It is important to note that

SiC can become degenerate for acceptor concentrations above 1.0⇥ 1021 cm�3 [37].

I = ⌘hqµhVdsA/L (3.3.4)

A summary of obtained values for parameters including gm, µh, ⌘h, C, Vth and Ron of

SiCNW-FET devices and some other experiments details are given in Table 3.1.

Table 3.1: Summary of performance parameters for fabricated 3C-SiCNW-FETs with
120 nm, 220 nm and 1.5 µm channel length

3C-SiCNW-FETs NW-FET 1 NW-FET 2 NW-FET 3

Diameter (nm) 65 65 65
C.L. (nm) 120 220 1500
C (F) 1.17⇥ 10�17 2.14⇥ 10�17 1.46⇥ 10�16

gm (nS) 6.9 2.73⇥ 10�2 7.72⇥ 10�3

µh (cm2/V.s) 1.69 6.71⇥ 10�3 1.89⇥ 10�3

⌘h (cm�3) 3.72⇥ 1020 3.61⇥ 1020 3.97⇥ 1020

Vth (V) -10.22 -10.24 -10.25
Ron (⌦) 357 K 92.9 M 299 M
Vds (V) 0.05 0.05 0.05

3.4 Results and Comparison with Other Studies

Until now, very few theoretical and experimental studies have been conducted to in-

vestigate electrical transport properties of SiCNWs. All reported results show that the

devices perform similar electrical characteristics. In most of these studies, the nanowires

showed n-type semiconductor behavior but only in two studies [26, 27] NW-FET devices

exhibited p-type behaviour. Thus, we compared our results with these two studies. Be-

cause of the very big difference in values of both Vds and channel length we recalculated

hole mobility (µh) and hole concentration (⌘h) of Chen et al.0s and Li et al.0s parameters

with following assumptions:
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• The channel length of the reported SiCNW-FET devices in [26, 27] are 3.2 µm and

3.5 µm, respectively, where out device has channel length of 120 nm.

• The Id � Vgs measurements were carried out at Vds voltages of 0.5 V and 1 V in

[26] and [27], respectively. In this, we conducted the electrical measurements at

Vds = 0.05 V.

Thus, we calculate the performance parameters as these devices have channel length of

120 nm and Vds of 0.05 V.

Having determined the important FET parameters, a comparison of these parameters

with the recently reported p-type SiCNW-FETs has been provided as seen Table 3.2.

Table 3.2: Comparison of the on-off current ratio, transconductance, hole mobility,
and hole density at the same Vds of 0.05 V with the various channel lengths of the

p-type SiCNW-FETs

C.L. NW Dia. Ion/Ioff gm µh ⌘h Ref.

3.2 µm 100 nm 1.5 12 1.45 7.19⇥ 1019 [26]
3.5 µm 90 nm 1.6 0.75 1.57 2.99⇥ 1020 [27]
120 nm 65 nm 1.34⇥ 104 6.9 1.69 3.72⇥ 1020 T.W.

The devices presented in this study showed far better performance in terms of Ion/Ioff

ration compared to other two studies. A comparable on-off current ratio was achieved

with graphene based tunnelling field effect transistors [38].

3.5 Effect of Channel Scaling on Performance of SiCNW-

FETs

Further, we investigated the channel length dependent transport characteristics including

on-off current ratio, transconductance, hole mobility, and hole concentration of single

SiCNW based FETs with various channel length ranging from 120 nm to 1.5 µm. It can

been seen that the values of Ion/Ioff , gm, and µh decrease with the increase in channel

length as seen in table 3.3. The value of carrier density (⌘h) stayed constant with a small

fluctuation. A similar study was conducted by Jo et al. [39] to examine the effect of

channel length scaling on In2O3 nanowire FETs by utilizing a movable Pt (Platinum)

coated tip act as drain electrode on NW. The same phenomena, a decrease in gm with
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increasing channel length, was observed in their study as well. However, in contrast to

our observation in µh they reported a decrease in µh as the channel length increases.

Table 3.3: Channel length dependence of SiCNW-FETs figure of metrit parameters
on-off current ratio, transconductance, hole mobility, and hole density at Vds of 0.05 V

for the various channel lengths such as 120 nm, 220 nm, and 1.5 µm

C.L. Ion/Ioff gm (nS) µh (cm2/V.s) ⌘h (cm�3)

120 nm 1.34⇥ 104 6.9 1.69 3.72⇥ 1020

220 nm 1.0⇥ 104 2.73⇥ 10�2 6.71⇥ 10�3 3.61⇥ 1020

1500 nm 1.5⇥ 103 7.72⇥ 10�3 1.89⇥ 10�3 3.97⇥ 1020

Apart from the channel scaling analysis, although the device with 120 nm channel length

showed better performance than the other two reported devices in terms of gm and µh,

the devices with 220 nm and 1.5 µm channel length performed a bit poor performance.

Such a low value in gm causes low Id current, might be because of high contact resistance

in some electrode pairs. As we observed from the Id�Vds curves, the Ron values of these

two devices, the contact resistance is too high which could causes poor results.
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Conclusion and Future Work

4.1 Conclusions

The down scaling trend in device size and the increasing demands for faster and more

power efficient devices encourage global efforts to search for alternative materials and

geometry for new device design and integration with current technologies. 1-D nanos-

tructures, namely nanowires, are one of the promising candidate and are being studied

in recent years. In this MS.Thesis, we studied on electrical transport characteristics of

single SiCNW-FETs which have very similar electronic features with Si. The focus of

study was to explore the impact of channel scaling on NW-FET performance parameters

such as Ion/Ioff , gm, and µh. In Chapter 1, I have introduced the class of nanostruc-

tures and their high potential to be used in various areas such as nanoscale electronics,

sensors, photonics etc. Also, similar studies on electrical transport properties of SiCNWs

nanowire based transistors were summarized. In Chapter 2, SiC nanowire synthesis meth-

ods and commonly used bottom-up approach were discussed. Further, the details about

device fabrication from NWs synthesis to final NW-FET processes were explained. The

equipment used in the experiments and their function were explained. In Chapter 3, the

scaling effects on figures of merit of the SiCNW-FET devices such as transconductance

(gm), on/off current ratio (Ion/Ioff ), and mobility (µh) as a function of channel length

was investigated. For that purpose, drain-source current versus gate voltage (Id � Vgs)

and drain-source current versus grain-source voltage (Id � Vds) measurements for each

devices have been done. Performance parameters were calculated for every device and

39
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compared with previously reported studies. It was observed that there is a negative

correlation between the values of Ion/Ioff , gm, and µh and channel length of the device.

Electrical transport characteristics of the MOCVD-grown SiCNW-FET devices with

varying channel lengths from 120 nm to 1.5 µm have successfully been demonstrated.

SiCNW-FETs have shown very high on/off current ratios (Ion/Ioff =1.34⇥ 104, 1.04⇥ 104,

and 1.5⇥ 103) and strong gating effects, particularly with the smallest channel length

of 120 nm. A comprehensive comparison of the important FET parameters with the

recently reported p-type SiCNW-FETs has also been provided. As a consequence, very

high on-off current ratio, strong gating effect, and very low off-state current make SiC-

NWFETs very promising candidates for high frequency and high temperature electronic

and sensing applications.

4.2 Future Work

In this study, electrical transport properties of the MOCVD-grown SiCNW based FET

devices with varying channel lengths ranging from 120 nm to 1.5 µm and impact of

channel scaling on SiCNW-FETs performance have been explored. Although the devices

exhibited very high Ion/Ioff ratios, gm and µh values are relatively low compared to

CMOS devices. This is due to the commonly faced problems degrade performance of

our devices. Despite the advancement in fabrication technologies of nanostructures and

nanodevices, common issues such as weak gating effect, low on/off ratio, low carrier

mobility, poor contact quality and interface quality between NW-dielectric junction, and

high off-state leakage current still persist out there to be resolved. Also, these issues

indicate that the corresponding technology is still in developmental stage and requires

some more work to. In order to realize new devices with high performance (high gm

and µh), it is essential to fully understand the synthesis of high quality nanostructures.

The electronic controllability issues originated from gate architecture of NW-FET such

as weak gating effect, low on/off ratio, high off-state leakage current can be improved

by implementing the gate-all-around NW-FET devices with low cost and complexity.

Apart from the development in fabrication methods, electrical modeling of SiCNW-FET

devices are still out there to be figured out. That might be the next step of the study.
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SiCNWs merge particular features of one-dimensional materials with that of superior

intrinsic SiC characteristics and enable to realize advanced devices that can function at

high frequency, high power and harsh environment.
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