
Parametric Guess and Determine Attack

on Stream Ciphers

A thesis submitted to the

Graduate School of Natural and Applied Sciences

by

Ebru Küçükkuba³

in partial ful�llment for the

degree of Master of Science

in

Cybersecurity Engineering

http://www.sehir.edu.tr/Pages/Akademik/Bolum.aspx?BID=26






Parametric Guess and Determine Attack on Stream Ciphers

Ebru Küçükkuba³

Abstract

The need for lightweight cryptography for resource-constrained devices gained a great

importance due to the rapid evolution and usage of IoT devices in the world. Although it

has been common in the cryptology community that stream ciphers are more e�cient in

speed and area than symmetric block ciphers, it has been seen in the last 10-15 years that

most of ciphers designed for resource-constrained devices to take up less area and less

energy on hardware-based platforms, such as ASIC or FPGA, are lightweight symmetric

block ciphers.

On the other hand, the design and analysis of stream ciphers using keyed internal update

function is put forward against this belief and it has become one of the popular study

subjects in the literature in the last few years. Plantlet, proposed in 2017, its predecessor

Sprout, proposed in 2015 and Fruit proposed in 2016, are famous algorithms as instances

of stream ciphers using keyed internal update function. Sprout was broken after a short

time by many researchers but Plantlet hasn't been successfully broken yet and there has

been only one attack mounted on Fruit since it was proposed.

Traditionally, key stream generators of stream ciphers update their internal states only

by using their current internal state. Since the use of the key in the internal update is

a new approach, the security analysis of this approach is not fully understood. In this

study, the security analysis of the key stream generators with keyed update function has

been studied. A new attack algorithm for internal state recovery and key recovery has

been developed and mounted on Plantlet algorithm as an instance of stream ciphers with

keyed update function. The state bits and key bits are successfully recovered. In the

second phase, the attack algorithm was mounted on Fruit algorithm and state bits and

key bits are also recovered successfully.

Keywords: Stream Ciphers, lightweight, Grain family, Sprout, Plantlet, Fruit



Dizi �ifreleme Algoritmalar� için Parametrik Tahmin Et ve Belirle

Sald�r�s�

Ebru Küçükkuba³

Öz

Dünyadaki IoT cihazlar�n�n h�zl� evrimi ve kullan�m� nedeniyle, kaynak k�s�tl� cihazlar için

ha�f s�klet kriptogra� ihtiyac� büyük önem kazanm�³t�r. Dizi ³ifreleme algoritmalar�n�n,

özellikle belli platformlarda daha h�zl� çal�³malar� ve ya daha az yer kaplamalar� aç�s�n-

dan blok ³ifreleme algoritmalar�na nazaran daha verimli oldu§u konusunda kriptoloji

camias�nda olu³mu³ ortak bir kan� olsa da son 10-15 y�lda tasarlanm�³ blok ³ifreleme

algoritmalar� bu kan�y� y�kacak niteliktedir. Özellikle ASIC ya da FPGA gibi donan�m

tabanl� platformlarda az yer kaplayacak ya da az enerji harcayacak ³ekilde tasarlan-

m�³ simetrik ³ifreleme algoritmalar�n�n birço§unun blok ³ifreleme algoritmalar� oldu§u

görülmektedir.

Di§er taraftan bu kan�ya ayk�r� olacak ³ekilde ortaya at�lan anahtarl� içsel durum gün-

celleme tekni§iyle kayan anahtar üreci kullanan dizi ³ifreleme algoritmalar�n�n tasar�m�

ve analizi literatürde son birkaç y�l içinde popüler çal�³ma konular�ndan birisi olmu³tur.

2015'te yay�nlanan Sprout algoritmas� ve 2017'de yay�nlanan Sprout'un üst versiyonu

olarak tasarlanm�³ Plantlet algoritmas� ve ve 2016 y�l�nda yay�nlanan Fruit algoritmas�

anahtarl� içsel durum güncellemesi yapan dizi ³ifreleme algoritmalar�n�n ünlü örnekleridir.

Sprout yay�nlad�ktan k�sa bir süre sonra birçok ara³t�rmac� taraf�ndan farkl� kriptoanaliz

metodlar�yla k�r�lm�³t�r ancak Plantlet algoritmas� henüz ba³ar�l� olarak k�r�lamam�³t�r.

Fruit algoritmas�na da yay�nlad�§�ndan beri bir adet atak yap�lm�³t�r.

Genellike dizi ³ifreleme algoritmalar�n�n kayan anahtar üreteçleri içsel durumlar�n� sadece

mevcut içsel durumlar�n� kullanarak güncellemektedir. Anahtar kullan�m� ile içsel durum

güncelleme yeni bir yakla³�m olmas� nedeniyle, bu yakla³�m�n güvenlik analizleri tam

olarak olgunla³mam�³t�r.

Bu tezde anahtar kullan�m� ile içsel durum güncellemesi yapan kayan anahtar üreteç-

lerinin güvenlik analizi çal�³�lm�³t�r. Yap�lan analizin literatürdeki belirli algoritmalara

uygulanmas� çal�³malar� yap�lm�³t�r. Bu kapsamda içsel durum ve anahtar elde etme için

genel bir atak algoritmas� geli³tirilmi³ ve bu atak algoritmas� örnek olarak Planlet ve

Fruit algoritmalar�na uygulanm�³, içsel durum ve anahtar bitleri elde edilmi³tir.

Anahtar Kelimeler: Dizi �ifreleme, Grain Ailesi, Sprout, Plantlet Algoritmas�, Fruit

Algoritmas�
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Chapter 1

Introduction

As the use of the IoT devices like RFID tags, wireless sensors becomes more and more

pervasive and ubiqutious, the need for exchange of con�dential and sensitive data through

unsecure channels such as the Internet by these resource-constrained devices and systems

increases and these sensitive data become susceptible to various attacks. Since these de-

vices are resource-constrained, conventional cryptographic algorithms are not convenient

for these devices. Lightweight cryptography aims to provide algorithms for resource-

constrained devices having restricted hardware environments where the power or energy

consumption, gate count and the memory is limited.

Many ultra lightweight block ciphers have been developed in the last 10 decade like

Midori [1], KTANTAN [2], PRESENT [3], LED [4], SIMON/SPECK [5], Simeck [6] and

Piccolo [7] but ultra lightweight stream ciphers are not so easily designed because of the

design principle that to achieve a K-bit security, internal state size of the cipher must

be at least 2K bits.

At FSE (Fast Software Encrytion) 2015, Armknecht and Mikhalev proposed a new stream

cipher, Sprout [8] with a novel idea for keystream generators having internal state size

shorter than 2K by using a �xed key in the internal state update function. They de�ned it

as keystream generator with keyed update function. Sprout was broken after a short time

by many researchers [9], [10], [11], [12], [13], so the designers of Sprout developed another

algorithm, Plantlet [14] by �xing the bugs and the weaknesses of Sprout. Plantlet has

been in the literature for about 2 years and there has been no successful attack proposed

for Plantlet yet. Another algorithm Fruit [15] having keyed update function like Sprout

1



Chapter 1. Introduction 2

and Plantlet was proposed in 2016 and there has been only one attack on Fruit since it

was proposed.

One of the attacks mounted on Sprout is internal state recovery attack by Kara and Esgin

[9]. Sprout's main weakness lies on its round key function. The key bits are not always

used in the internal state update function where feedback values can be determined or

guessed without knowing the key bits for some of the internal states. Just after their

attack on Sprout, they generalized the attack idea and introduced a new algorithm that

can be successfully mounted on any keystream generator with keyed update function

where the key bits are incorporated into the states during state update in a biased

manner [11]. It may still be possible to guess the feedback value without knowing the

key with an overwhelming probability.

They de�ne the notion of "guess capacity" as the probability of guessing the feedback

value correctly for a given internal state without knowing the key. Their generic attack

is successful if the guess capacity is strictly higher than one-half. The guess capacity of

Sprout is much higher than one-half because of the weak structure of round key function;

incorporating the key bits into the feedback function.

After introducing the notion of guess capacity of the feedback function of a keystream

generator with keyed update function, it was immediately adopted as a security criterion.

Indeed, the �xed version of Sprout, Plantlet has the guess capacity of one-half. Similarly,

the guess capacity of Fruit is �xed to one-half in its ultimate version. As a conclusion,

the Kara and Esgin attack is applicable to neither Plantlet nor Fruit. In fact, there are

no successful attacks so far on any of the both ciphers. Hence, the security analysis of the

keystream generators with keyed update function having the guess capacities of one-half

is an open problem in such stream cipher designs.

In this study, we proposed a new generic internal state and key recovery attack for

stream ciphers with keyed update function having guess capacity one-half and applied

it on Plantlet and Fruit. We used the attack developed by Kara and Esgin [11] as the

starting point. Their attack was applied to Sprout but could not be applied to Plantlet

because of the round key function of Plantlet. We developed a new attack using the

weakness of involving the key bit directly into the internal state update function. By

this new attack, we recovered key bits and internal state bits at the same time. Since

the internal state size of Plantlet is greater than key size, the attack complexity is bigger
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than exhaustive key search. To decrease the complexity of the attack, we made two

extensions. First, we modi�ed the new attack by using variables for some taps of the

LFSR and also added another phase by solving nonlinear equations during key recovery.

As a proof of concept, we tested the idea of decreasing complexity practically with six

variables and successfully implemented the attack and recovered internal state and key

bits. This test decreased the attack complexity but it is still slower than exhaustive key

search. The attack complexity should be decreased using more variables but this would

need precomputation and memory to generate and solve nonlinear equations e�ciently.

As a second extension to decrease the attack complexity, we combined our attack with

trade-o� attacks and made a generalization for the internal state size for Plantlet like

ciphers to be resistant to TMDTO attacks.

In the second phase of our study, we mounted our generic attack on Fruit algorithm

which has guess-capacity one-half like Plantlet. The state and key bits are also recovered

successfully. Unlike Plantlet, Fruit was that it has internal state size equal to key size,

80 bits. Our attack is faster than the exhaustive key search even without using variables

since initialization phase is not considered and implemented during attack which should

be taken into consideration for exhaustive key search attack.

1.1 Related Work

Since the notion of stream ciphers with keyed update function is a new topic in lightweight

cryptography, the research on stream ciphers with keyed update function are made in

the last few years. [9], [10], [11], [12], [13], [16] are some examples of them.

Kara and Esgin introduced a guess and determine attack combined with a divide and

conquer attack on full Sprout [9]. Lallemand and Plasencia proposed a divide-and-

conquer attack for recovering the key bits of Sprout [10]. Kara and Esgin introduced

generalized divide and conquer attack on stream ciphers with keyed update function.

It is an internal state recovery attack and can be mounted if guess capacity of the

cipher is greater than one-half [11]. Zhang and Gong introduced TMD tradeo� attack

developed by for stream ciphers having shorter internal states [12]. Dey and Santanu

Sarkar proposed a divide and conquer attack for cryptanalysis of full round Fruit using

the weakness in round key generation [16].
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1.2 Contributions

The main contribution of this thesis is the introducing a novel and generic internal state

and key recovery attack for stream ciphers with keyed update function having guess

capacity one-half. This was an open question for the security of stream ciphers having

keystream generators with keyed update function.

Stream ciphers with keyed update function was born four years ago with an algorithm,

Sprout [8] proposed in FSE 2015. This algorithm with the keyed update function design

has attracted the attention of many researchers since using the key in the update function

of internal state enables using shorter internal state size which is critical in lightweight

cryptography. Sprout was broken practically after a short time [9], [11] and then the

designers of Sprout �xed the bugs in Sprout and proposed another algorithm, Plantlet

[14], two years later. Planlet hasn't been broken yet successfully. The attacks mounted

on Sprout couldn't be applied to Plantlet. Another algorithm Fruit [15] having keyed

update function was proposed in 2016. The algorithm has internal state size like in

Sprout but the authors claimed that their design rationale doesn't have the weaknesses

of Sprout and there has been only one attack against [16] Fruit since it was published.

As one of the rule of thumb of a keystream generator with keyed update function, its

guess capacity should be one-half in order not to be exploited by the Kara and Esgin

attack [11]. We see that the ultimate versions of such designs are in compliance with

this security criterion. Indeed, both Plantlet and the latest version of Fruit have guess

capacities exactly one-half. There are no successfull attacks mounted on them yet using

guess capacity, thanks to the new criterion.

In this thesis, we study the security of Plantlet and Fruit like ciphers. We introduce the

question whether divide and conquer type attacks can be mountable on ciphers with the

guess capacities of one-half to recover their keys or to distinguish the correct internal

state among arbitrary states.

We proposed a new generic attack and mounted it on Plantlet and Fruit. This attack can

be applied to any stream cipher with keyed update function having guess capacity one-

half. Guess capacity is the probability of guessing the feedback value of the internal state

without knowing the key. Since the key bit is directly involved in the update function of
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Plantlet and Fruit, the probability of guessing the feedback value of the internal state is

one-half.

Our generic attack uses the weakness of involving key bits directly and cyclically in

the update function of keystream generator. The attacker has an output stream and

his aim is to recover the internal state bits which generated this output stream among

arbitrary internal state candidates and recover key bits used during this generation.

Using algorithm output function, feedback values of the keystream generator is either

determined from output stream or guessed. In Plantlet, keystream generation is run

and formulated in backward direction and feedback values are directly determined from

output stream values. In Fruit, no need to formulate in backward direction since the

feedback values can be directly determined from output stream. After determining the

feedback values for each internal state candidate, the key bits are determined using the

update function of the keystream generator for each internal state candidate. Since the

key bits are used cyclically, after cycle period, key bits determined should be equal to

each other as kt = kt−period for the correct internal state. Using these equalities, wrong

internal state candidates are eliminated and correct internal state key bits conform this

equality. Correct internal state is recovered and at the same time key bits are also

determined at the end of the attack.

For internal state recovery, the attack complexity is 2internalstatesize. The attack algo-

rithm should use all possible internal states to recover the correct internal state. If the

internal state size is greater than key size like in Plantlet, the attack is not e�cient since

exhaustive key search would be preferable. We reduced the attack complexity with two

novel ideas. The �rst one is using variables for some bits of the internal state. Since

in keystream generators, internal state update and output functions are simple XOR

and multiplication functions of internal state bits, using variables for some bits of inter-

nal state and running and parameterizing our generic algorithm using these variables is

successful in reducing complexity. At the end of the attack, the key bits are nonlinear

equations of the variables. These equations are solved for the variables and a unique

solution is achieved for the correct internal state and other internal states are elimi-

nated. After solving equations and recovering the correct internal state, the key bits

are determined using the solved equations. The second idea to reduce attack complexity

is to combine our algorithm with trade-o� attack. Given an output stream sequence,

the attacker makes a guess for internal state and using our attack, he can determine
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key bits and the following output stream sequence. This can be formulized as a one-

way function of internal state bits and output stream sequences. Using Hellman tables

with our attack, instead of searching all 2internalstatesize, attack complexity is reduced to

280 time complexity, 261 memory complexity and 280 data complexity where the data

complexity can be decreased by increasing the memory complexity. This would be the

trade-o� for the attacker. Using this trade-o�, a generalization is made for Plantlet like

ciphers where guess capacity is one-half and key cycle is equal to number of key bits as

T (DM)2 = (NK)2. By using this formula, two corollaries are achieved. The �rst one is

that for Plantlet like ciphers, the internal state size must be at least keysize∗(3/2) to be

resistant to TMDTO attacks. The second one is that using our new guess and determine

attack with trade-o� attack, the attack complexity for Planlet is reduced to 272.4.

The contributions of the thesis are summarized as:

• Guessing and determining the feedback values and key bits of the keystream ge-

nerators having guess capacity one-half.

• Designing a new guess and determine attack for internal state recovery and key

recovery at the same time.

• Keystream generation in backward direction to simplify the attack.

• Using variables for internal state bits in order to decrease the complexity of the

attack.

• Combining the attack with trade-o� attacks to decrease complexity.

• Making a generalization for the internal state size of Plantlet like ciphers to be

resistant to TMDTO attacks.

1.3 Outline

This thesis is organized into six chapters.

The �rst two chapters contain introductory information about the subject of the thesis.

The third chapter contains related information about the generic attack introduced in

the thesis. The fourth chapter gives speci�cations and the security of the algorithms we
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studied for our attack. The �fth chapter give the new information about the details of

the generic attack developed and the sixth chapter gives a brief conclusion of the study.

Some �gures are used from literature in the thesis. Their sources are cited in the caption

of the �gures.

The summary of chapters are:

Chapter 1 provides brief introduction to the stream ciphers with keyed update function,

the generic attack mounted on Sprout and the new successor attack mounted on Plantlet

and Fruit.

Chapter 2 gives an introduction on cryptology, symmetric ciphers, stream ciphers, types

and basic cryptological concepts of stream ciphers, attacks and make an introduction to

lightweight stream ciphers with Grain family. Design criteria of Grain family is discussed.

Chapter 3 is dedicated on Sprout algorithm and guess and determine attack applied to

Sprout which is the starting point of parametric guess and determine attack.

Chapter 4 is focused on Planlet algorithm and Fruit algorithm speci�cations.

Chapter 5 is focused on the new guess and qetermine attack and parametric guess

and determine attack mounted on Plantlet and Fruit algorithms. An extension made to

improved guess and determine attack for Plantlet like ciphers is also given.

Chapter 6 gives a brief conclusion of the thesis.



Chapter 2

Preliminaries

2.1 Stream Ciphers

Cryptography is the science of using mathematics for data security. By cryptography,

data is stored or transmitted across insecure networks so that only receiver can read it.

While cryptography's aim is the data security, cryptanalysis is used to analyze and break

secure communications of data. Application of mathematical tools, analytical reasoning,

pattern �nding, determination and patience are basic items of cryptanalysis. Cryptology

comprises both cryptography and cryptanalysis.

The most common service of cryptology is con�dentiality (by encryption) but it is also

used for authentication, integrity, non-repudiation, anonimity, availability, privacy, etc..

Con�dentiality is provided by encryption algorithms; ciphers. Ciphers are classi�ed as

symmetric and asymmetric ciphers. In symmetric ciphers, same key is used in encryption

and decryption. Symmetric key ciphers are also classifed as block ciphers and stream

ciphers.

Stream cipher is a symmetric key cipher where a pseudorandom cipher digit stream,

called keystream is combined with plaintext digits. The basic structure of encryption and

decrytion of stream ciphers is shown in Figure 2.1 . A secret key and a public initialization

vector is shared between two parties. After an initialization stage, keystream is generated

by a keystream generator and plaintext digits are XOR'ed with generated keystream

forming ciphertext digits. At the receiver side same scenario is applied. The keystream

bits generated by the same key stream generator are XOR'ed with the ciphertext digits

8
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forming the plaintext digits. Use of IV is necessary, otherwise the same stream will be

produced each time unless the key is not changed.

Figure 2.1: Stream Ciphers [17]

2.1.1 Types Of Stream Ciphers

Stream ciphers are classi�ed as synchronous and asynchronous(self-synchronizing) with

respect to the key stream generation.

Synchronous Stream Ciphers

In synchronous stream ciphers, the plaintext message and the ciphertext have no e�ect on

keystream generation. Basic structure is shown in Figure 2.2. Changing a bit in cipher-

text during transmission only a�ects corresponding plaintext on receiver side. There

is no error propagation but inserting/deleting a bit in ciphertext during transmission

a�ects the rest of the plaintext on the receiver side and synchronization is lost.

Asynchronous (self-synchronizing) Stream Ciphers

In asynchronous stream ciphers, the key and a �xed number of previous ciphertext digits

are used in keystream generation. Basic structure is shown in Figure 2.3. Changing a

bit in ciphertext during transmission a�ects some number of plaintext on receiver side.

Figure 2.2: Synchronous Stream Ciphers [18]
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Figure 2.3: Self-synchronizing Stream Ciphers [19]

There is small error propagation. Inserting/deleting a bit in ciphertext will be recovered

after some bits on the receiver side which implies self-synchronization.

2.1.2 Keystream Generator Internal Structure

Keystream generation is the focus of the stream ciphers. Designing a stream cipher con-

sists of designing the keystream generator mainly. The formal de�nition of a keystream

generator(KSG) is given below: A KSG is executed on three space sets;

• the key space K = GF (2)k

• the IV space IV = GF (2)v

• the state space S = GF (2)s

and consists of three functions

• an initialization function, Init : IV xK → S

• an update function, Upd : S → S

• an output function, Out : S → GF (2)

A keystream generator operates in two phases:

• An IV and a secret key are used as inputs and the internal state is set to an initial

state in the initialization phase, st0 := Init(iv, k)

• Then, the following operations are executed repeatedly in the keystream generation

phase:
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� Generate the next keystream bit zt = Out(stt)

� Update the internal state stt to stt+1 := Upd(stt)

Keystream generation does not directly involve key anymore in the conventional scenario.

In stream ciphers, since encryption or decryption is just an XOR operation, an adversary

can easily recover the keystream for the known plaintext scenario. For a stream cipher

to be secure:

• Adversary can not generate the keystream in forward or backward direction or can

not recover the key, if she knows some part of the keystream.

• Adversary can not recover any internal state of the cipher at time t where t > 0. If

adversory recovers the state, he can generate the keystream in forward or backward

direction.

The basic expectation for a generated keystream is that using a polynomial time algo-

rithm, the keystream must be indistinguishable from a truly random sequence . This is

achieved by cryptographically secure pseudo random number generators (PRNG). Cryp-

tographically secure PRNGs are generally implemented in two ways:

• Using block ciphers in CFB, CTR, OFB mode

• Using shift registers with feedback.

2.1.3 Shift Register Based Stream Ciphers

In stream ciphers, traditionally one or multiple linear feedback shift registers(LFRS) are

used. An LFSR is shift register having a linear feedback function. An example LFSR is

shown in Fig 2.4.

LFSRs are constructed by clocked storage elements (�ip-�ops) and a feedback path. Flip-

�op count determines the degree of an LFSR. The input for the last �ip-�op is computed

by the feedback network. It is the XOR-sum of some certain �ip-�ops in the shift register

which is called the feedback function.
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Figure 2.4: LFSR [20]

The maximum sequence length produced by an LFSR of degree m is 2m -1 because all-

zero state is excluded. Feedback function can be represented by a polynomial and for a

maximum sequence, polynomial must be primitive. Feedback functions should be chosen

to create maximum sequence length.

Although the sequence generated by an LFSR has good statistical properties, it is un-

fortunately cryptographically weak because of linearity. If an attacker knows 2m output

bits of an LFSR of size m, she can exactly construct the LFSR by solving a system of

linear equations. It is assumed that feedback coe�cients of LFSR are also not known.

If feedback coe�cients are known, m output bits are enough. Since using an LFSR is

not a secure solution for keystream generation design in stream cipher, cipher designers

used the following solutions:

1. Multiple LFSR with irregular clocking

2. Combination with nonlinear feedback shift register(NFSR) (A NFSR has a nonlin-

ear feedback function)

3. Nonlinear output function

GSM A5/1 is an example of LFSR based stream ciphers. Its multiple LFSR with irregular

clocking structure is shown in Fig 2.5. Key Generation is done with XORing of 3 LFSR

outputs but at each clock three LFSRs are not clocked. Some LFSR bits are used to

decide which LFSR to clock.Probability of one LFSR to clock is 6/8.
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Figure 2.5: GSM A5/1 Structure [21]

2.1.4 Stream Cipher Attack Models

Attacker Goals

For stream cipher cryptanalysis, attacker aim is to generate the keystream. This can be

done in three ways.

1. The attacker tries to recover key. This is a standard attack for all ciphers like in

symmetric block ciphers.

2. The attacker tries to recover a state value at any time t>0in order to generate

the keystream in forward or backward direction. With an invertible initialisation

function, she can also recover the key.

3. The attacker tries to �nd a distinguisher and predicts next-bit value.

Attacker Access

For stream cipher cryptanalysis, attacker can have access to ciphertexts,or chooses plain-

texts and receives corresponding ciphertexts or chooses IVs and receives the correspond-

ing ciphertexts.
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2.1.5 Basic Attacks To Stream Ciphers

Using the attack models above, basic attacks [22], [23], [24], [25], [26] againts stream

ciphers are listed below:

• Correlation Attack: The attacker tries to �nd a statistical dependence between the

keystream and the output of one of LFSRs/a linear combination of few inputs and

tries to �nd the initial state of this LFSR independently of the other LFSRs.

• Distinguishing Attack: The attacker's aim is to �nd a distinguisher for the gener-

ated keystream from a truly random sequence and identi�es the relations between

internal state variables and output keystream.

• Fault Attack:

1. A fault is injected and the keystream is produced.

2. A guess is made for the e�ect of the fault.

3. Guess is checked whether the guess is correct, otherwise a new guess is made.

4. Steps 1-3 are repeated many times

5. Linear equations are solved to �nd the initial state of the LFSR.

• Guess-and-Determine Attack: A part of the internal state is guessed and the re-

maining state elements and running key sequence is determined. The resulting key

sequence is compared with the real key sequence.

• Time-Memory Trade-o� Attack: The attack has two phases. The general structure

of the algorithm is explored and �ndings are summarized in large tables in the

preprocessing phase. In real time phase, using the real data generated from a

particular unknown key, the precomputed tables are used to �nd the unknown key.

• Chosen-IV Attack: The attacker chooses IVs many times and combines the relations

of resulting keystream and state bits. He then derives simple relations between the

state bits and secret key bits.
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2.2 Grain Family

2.2.1 History of Grain Family

Lightweight cryptography algorithms should be either very fast in software or should be

very small in hardware to be preferrable against block ciphers in OFB or CTR mode.

This idea has been re�ected by the eSTREAM Project [27], which was launched in 2004

as part of ECRYPT, the European Network of Excellence in Cryptology. The aim of

eSTREAM was to promote the design of new stream ciphers that would be either very

fast in software or very resource-e�cient in hardware.

A new stream cipher Grain[28] was developed by Hell, Johansson and Meier for e-

STREAM Project and Grain v1[28] was one of the seven �nal ciphers of the eSTREAM

portfolio for the hardware-oriented part in 2008. Since Grain v1 has 80 bit key length,

the designers developed Grain128 [29] and Grain128a [30] for the 128 bit key security.

2.2.2 Grain Family Structure

The Grain family algorithm structure is shown in Figure 2.6. The Grain family algorithm

is a synchronous stream cipher. Its design is based on two shift registers, an LFSR and

an NFSR and an output function. Both NFSR and LFSR sizes are 80/128 bits. The key

size is 80/128 bits and the IV size is 64/96 bits.

Grain128 design speci�cation is given as an example of Grain family. The notation of

the LFSR is shown as si, si+1, ..., si+ 128 and the NFSR is shown as bi, bi+1, ..., bi+128.

The LFSR update function is de�ned as:

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

The NFSR update function is de�ned as:

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13 + bi+17bi+18 +

bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

An h(x) function is de�ned as:

h(x) = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95
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Figure 2.6: Grain Family Structure [31]

The output function is de�ned as zi =
∑

j∈A bi+j + h(x) + si+93 where

A = 2, 15, 36, 45, 64, 73, 89

Cipher Initialization

The cipher is initialized with the key and the IV before the generation of the keystream.

Grain-128 key and IV initalization structure is shown in Figure 2.7

Figure 2.7: Grain Key and IV Initalization [29]

The steps followed in initalization are:

• All 128 bits of NFSR are �lled with the key bits.
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• The 96 bit IV is loaded to the �rst 96 bits of LFSR. The remaining 32 bits of LFSR

are loaded by ones. In Grain 128a last bit is set to zero.

• Without producing any keystream, the cipher is clocked 2K(number of key bits)

times.

• The output function is fed back and combined (XORed) with the inputs of the

LFSR and the NFSR.

2.2.3 Grain Family Design Criteria/Choices

In this section, reasons and usage of the NFSR, LFSR and output functions will be given

against cryptanalytic attacks.

Usage of NFSR

An NFSR is used since using an LFSR without an NFSR would be vulnerable to alge-

braic attacks. Nonlinear update of the NFSR makes it impossible to solve equations for

160/256 bit state

Size of LFSR and NFSR

Internal state size must be at least twice of key size, so the state size is chosen as 160/256

bit (state size of LFSR + state size of NFSR). Computational complexity will be 280 or

2128 for TMDTO attacks.

Choice of f()

Feedback polynomial of LFSR is primitive polynomial assuring a period at least 280 − 1

or 2128 − 1. Number of taps entering the polynomial should be greater than �ve for

correlation attacks. Big number of taps is not preferrable for hardware implementation.

In Grain family LFSR feedback polynomials have 6 taps.

Choice of g()

Feedback function of NFSR, g() is used to achieve high nonlinearity. NFSR is masked

with output of LFSR and add linear terms for balancedness against linear approximation

attacks.
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Choice of Output Function

Output function depend on both registers. h(x) is a nonlinear and balanced function.

Output function uses this non linearity and linear terms added to prevent unbalancedness

for linear approximation attacks.

Initialization Choice

Contents of shift registers are scrambled by the initialization phase before the keystream

generation. The number of clockings for initialiation phase is a tradeo� between speed

and security. The number of clocking of the initialization phase will be criticalif the

cipher is initialized often with a new IV. The LFSR is �lled with the IV and ones at

the beginning. The initialization with two di�erent IVs, di�ering by only one bit, should

end with shift register bits are the same for both initializations should be close to 0.5.

160/256 clockings provides this probability.

Throughput Rate

At regular clocking the output rate is 1 bit/clock in Grain128 design but it is possible to

increase the speed of cipher with using more hardware since last 31 bits of shift registers

are not used in update and output function. Using this, speed can be multiplied by 32.

The output rate can be 32 bits/clock.If speed is multiplied by 32 , shift registers should

be designed to be shifted by 32.
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Sprout

In this chapter, Sprout algorithm and the generic guess and determine attack which is

the starting point of our proposed attack, mounted on Sprout is explained in detail.

3.1 Sprout

A new algorithm named as Sprout using the basic design of Grain family was developed

at 2015 by Armknecht and Mikhalev [8]. The aim was to achieve a resistancy to TMDTO

attacks for stream ciphers even using shorter internal states.

TMDTO attacks against keystream generators can be done in two ways:

• Recover key: It is like exhaustive key search but it is precomputed. Search space

is 2k.

• Recover the internal state: The attacker takes an internal state and generates

output stream and saves the result. Search space is 2s. To achieve a k bit security,

the internal state size should be greater than k since knowing one internal state

provides computing all succeeding and preceeding keystreams, there is no need to

search all 2s space. It is calculated as the internal state size should be greater than

2k.

19
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3.1.1 Keystream-equivalent states

Two states, st and st' are called as keystream-equivalent states if there exists an integer

m such that after we update st by Upd() function m times, we get the same keystream

for both st and st'. The structure of key stream equivalent states is shown in Figure 3.1.

Figure 3.1: Key Stream Equivalent States [32]

Using key equivalent states, state space S is composed of L di�erent equivalence classes.

A TMDTO attack will be the combination of TMDTO attacks, each of them will be for

each equivalence class. So aim is to design a cipher where L> 2k.

In order to decrease the state size of the cipher, the designers of Sprout developed a

strategy for key stream equivalent states. The design was adding a distinct �xed part to

state. State will have a �xed and a variable part.Since �xed part can not be changed,

two di�erent values of �xed part result in two di�erent equivalent classes. A KSG with

�xed internal state parts is shown in Figure 3.2.

Figure 3.2: Keystream Generator with Fixed Internal State Parts [32]
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3.1.2 Keystream Generator With Keyed Update Function

The designers of Sprout developed a novel keystream generator using the �xed part idea

in the state of the stream cipher. They de�ned it as "Keystream generator with keyed

update function".

Figure 3.3: Keystream Generator With Keyed Update Function [32]

A keystream generator with keyed update function (KSGUF) works on three spaces

• the key space K = GF (2)k

• the IV space IV = GF (2)v

• the state space S = GF (2)s

and has three functions

• an initialization function Init : IV xK− > S

• a bijective update function Upd : KxS− > S

• an output function Out : S− > GF (2)

A variable st and a �xed k composes the internal state. The �xed secret key is involved

in the state update. Simplifed structure of a KSG is shown in Figure 3.3.

The advantage of using a �xed key is that the cipher would have at least 2k di�erent

key-stream equivalence since (st,k) and (st',k') when k is not equal to k' will not generate

the same keystream so it is possible to use shorter internal state and save area size. Using

a �xed value is preferred because it uses less area than using a variable value.



Chapter 3. Sprout 22

3.1.3 Sprout Structure

Sprout has an NFSR, an LFSR and an output function which have similar structure like

Grain family.

Figure 3.4: Sprout [8]

There are three basic di�erences between Grain family and Sprout.

1. Round Key Bits: A round key function is added in Sprout. At each clock cycle, the

next key bit is selected cyclically and added to NFSR if the sum of some certain

LFSR and NFSR bits are equal to 1. Sprout design is shown in Figure 3.4.

2. Counter: Counter is used in initialization like in Grain. Selection of the current

round key bit is done by the part of the counter. Since shifted keys can generate

shifted keystreams, one of the counter bits is used in the update function of NFSR.

3. Register Lengths: Size of FSRs reduced to 40 bits, IV size 70 bits

The details of Sprout speci�cation are:

• LFSR uses primitive polynomial having a period of 240-1.

• NFSR feedback function g(x) is like in Grain128a with di�erent indexes.
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• 9 bit counter splits into 2 parts. 7 bits for index of key bit. 2 bits for initialization

phase to count until 4x80 = 320

• Round Key Function is:

The content of the LFSR : li, li+1, ..., li+39

The content of the NFSR : ni, ni+1, ..., ni+39

Key : k0, k1, ..., k79

k∗t : the round key bit produced at the clock-cycle t

k∗t = kt, 0 ≤ t ≤ 79

k∗t = (ktmod80) ∗ (l4 + l21 + l37 + n9 + n20 + n29), t ≥ 80

The circuit design of round key function is shown in Figure 3.5.

Figure 3.5: Round Key Function [32]

• Output function is a nonlinear function of the LFSR and the NFSR bits.

• Initialization Phase: Since the IV is 70 bits, the 40 bit NFSR is loaded with �rst

40 bits of IV and the 30 bit LFSR is loaded with last 30 bits of IV. Remaining 9 bit

of LFSR is loaded with 1 and last bit of LFSR, l39 is loaded with 0. Algorithm is

clocked 320 times. During this stage, the keystream is not generated. The output

function is fed back into the inputs of LFSR and NFSR.

The Initialization Phase of Sprout is shown in Figure 3.6.
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Figure 3.6: Initialization Phase of Sprout [32]

3.1.4 Guess-and-Determine Attacks Against Sprout

Cryptanalysis of Sprout was done by many researchers and many attacks were done and

published [9], [10], [12], [13] in a very short time. One of them was guess and determine

attack combined with a divide and conquer attack developed by Kara and Esgin [9]. It

was an internal state recovery attack. Later they generalized their attack in [11].

It was a generic attack not only for Sprout. They made a new de�nition as keystream

generators with Boolean Keyed Feedback Function (KSGs with Boolean KFF) where

the key-dependent part of the Keyed Update Function (KUF) is a Boolean function and

only one bit of the output of KUF depends on the key. They didn't focus on output and

feedback functions, internal state size or bits of NFSR and LFSR used in the update

functions of Sprout. Their attack can be mounted on any KSGs with Boolean KFF with

a limitation that the cipher should have the average guess capacity higher than one-half.

They applied the generic attack on Sprout as an instance for KSG with Boolean KFF.

They de�ned guess capacity as guessing a feedback value of an internal state alone

without knowing the key. Formally, the average guess capacity is the average probability

of guessing a feedback value correctly for an arbitrary internal state without knowing the

key. If this guess capacity is higher than one-half, it means that it would be possible to
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suggest a feedback value and check whether this guess is correct or not using the output

stream.

In the attack, the attacker has a keystream and she tries to �nd the internal state which

produced this keystream in a set of candidate states. The attacker predicts feedback

values of candidate states and and also checks whether the feedback value can be deter-

mined from the keystream. They used the guess capacity of the state to check whether

the feedback value is the expected one or not. They de�ned the mismatch as the un-

expected value for the feedback value. The number of mismatches for a correct state

would be much less than the number of mismatches for the wrong states but for a wrong

state, the number of mismatches is expected to be half of the total number of iterations.

The attacker goes on recovering the next feedback value for each candidate state and

also keeps the counts of mismatched feedback values for each candidate. The recovering

feedback value and counting procedure continues for each state candidate until the state

is eliminated because of exceeding the threshold value for mismatch count.

The mismatch count for a wrong state is approximately one half of the iteration where

mismatch count for the correct state is (1- guesscapacity) times number of iterations.

Hence, the attack can be applied to keystream generators with KFF having guess capaci-

ties greater than one half. If guess capacity is one-half , number of mismatches for correct

and wrong states will be the same and correct states can not be distinguished. After

determining the internal state, the next issue will be to recover the key. This is done by

computing real feedback values from the internal state and determine the information

about the key from the feedback values by solving a system of equations.

The main weakness in Sprout round key function was that key bits are not directly

used in the NFSR update function which determines the feedback value of NFSR. Guess

capacity is not one-half for Sprout which makes Sprout as an instantination of KSGs

with Boolean KFF having guess capacity greater than one-half and the attack could be

applied to Sprout.

The designers of Sprout proposed a new algorithm Plantlet [14] having guess capacity

equal to one-half where this attack can not be applied. This new algorithm type having

guess capacity euqal to one-half is the target of our study.
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Plantlet and Fruit

In this chapter, Plantlet algorithm and Fruit algoritm are explained in detail.

4.1 Plantlet

4.1.1 Plantlet Design Goals

Planlet [14] is a lightweight 80 bit stream cipher designed for low area requirements. It

inherits the overall structure of Sprout but implements �xes for discovered vulnerabilities

of Sprout. The �xes done in Planlet design are:

• LFSR size is enlarged from 40 bits to 61 bits, IV size enlarged from 70 to 90 bits.

• Key selection round key function is updated. At each update a key bit is involved.

• Double-layer LFSR is introduced for high period and avoids LFSR being initialized

with the all-zero case.

4.1.2 Planlet Speci�cation

The Planlet structure is shown in Figure 4.1. The following notation is given below which

will be used to understand Plantlet speci�cation and the generic attack we applied on it.

26



Chapter 4. Plantlet and Fruit 27

Figure 4.1: Plantlet Structure [14]

• t - the clock-cycle number

• Lt = (lt0, l
t
1, l

t
2, ..., l

t
60) - the content of the LFSR at the clock-cycle t

• N t = (nt
0, n

t
1, n

t
2, ..., n

t
39) - the content of the NFSR at the clock-cycle t

• Ct = (ct0, c
t
1, c

t
2, ..., c

t
8) - counter bits at the clock-cycle t

• k = (k0, k1, k2, ..., k79) -key

• iv = (iv0, iv1, iv2, ..., iv89) - initialization vector

• kt - the round key bit used at the clock-cycle t

• zt - the keystream bit produced at the clock-cycle t

Initialization Phase

The NFSR and LFSR are �lled by 90 bit IV and ones and zero. The cipher is clocked

320 times and output is fed back and also XORed with the inputs of LFSR and NFSR.

Double-Layer LFSR

Two di�erent phase dependent 61 bit LFSRs are used. They both use the same hardware

and almost same primitive polynomials.
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lt+1
59 = lt54 + lt43 + lt34 + lt20 + lt14 + lt0 for 0 ≤ t ≤ 319

lt+1
60 = lt54 + lt43 + lt34 + lt20 + lt14 + lt0 for t ≥ 320

NFSR and Counter

40 bit NFSR and 9 bit counter are adopted from Sprout. NFSR update function is XOR

of non-linear combination of several NFSR bits, current key bit, output of the LFSR lt0

and a counter bit.

nt+1
39 = kt + lt0 + ct4 + nt
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2.n

t
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33.n
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36.n

t
37.n

t
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t
11.n

t
12 + nt

27.n
t
30.n

t
31

The counter is a 9 bit register. The �rst seven bits of the counter are used to count

cyclically from 0 to 79. The two most signi�cant bits is used with the �rst seven bits for

320 clock cycles during initialization phase.

Round Key Function

80 bit key is used. The next key bit is selected cyclically for the NFSR update function.

kt = ktmod80, t ≥ 0

Output Function Original output function of Sprout is used. It has nonlinear parts

from both LFSR and NLFSR and linear XOR of bits from both LFSR and NFSR.

zt = nt
4.l

t
6+ lt8.l

t
10+ lt32.l

t
17+ lt19.l

t
23+ lt30+nt

4.l
t
32.n

t
38+nt

1+nt
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15+nt
17+nt

23+nt
28+nt

34

4.1.3 Planlet Design Rationale

Round Key Function

Imbalanced key involvement in Sprout was a major weakness by looking at longer periods

where no key bit is used. In Plantlet, the key always in�uences the state feedback value.

Internal State Size

Having internal size equal to key size equal to key size made Sprout vulnerable to guess-

and-determine attacks. The size of LFSR is increased by 21 bits and also this allows for

a higher period of the output sequence. The designers calculated that enlarging with 15

bits is enough but 6 bits are also added to increase security margin.
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Double Layer LFSR / Weakness of Initialization Phase of Sprout

In Sprout, output is fed back into LFSR and NFSR to ensure that the whole internal state

depends on all of the key and IV bits. This may cause LFSR fall into an all-zero state.

LFSR would remain in the all zero state during all encryption and causes keystream to

have a very short period. Using this weakness, a key recovery attack was mounted on

Sprout.

A countermeasure will be setting one LFSR bit to 1 after initialization but this may cause

another weakness of having the same initial state of two inputs. Two di�erent LFSR are

used in di�erent phases of the cipher. The LFSR of the initialization is extended by one

additional bit which is set to 1. For lightweight hardware implementation, almost same

polynomials are used di�ering only in the maximum degree term.

4.2 Fruit

4.2.1 Fruit Speci�cation

Fruit [15] is a lightweight 80 bit stream cipher like Sprout and Planlet designed for low

area requirements. The Fruit structure is shown in Figure 4.2. The internal state consists

of 43 bit LFSR, 37 bit NFSR and two counters; one 7 bit Cr, the other 8 bit Cc counter.

The following notation is given below which will be used to understand Fruit speci�cation

and the generic attack we applied on it. Since the generic attack is an internal state

recovery attack, initialization speci�cation is ignored.

• t - the clock-cycle number
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2, ..., l
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t
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t
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t
9, ..., c

t
14) - the content of the Cc counter at the clock-cycle t

• k = (k0, k1, k2, ..., k79) -key

• kt - the round key bit generated at the clock-cycle t
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• zt - the keystream bit generated at the clock-cycle t

Figure 4.2: Fruit Structure [15]

Counter

The seven bits of the counter, Cr, is used for round key function and the last eight bits of

the counter, Cc, is used in initialization and key generation. These two counters increase

at each clock independently. Cr is shown as ct0c
t
1c

t
2c

t
3c

t
4c

t
5c

t
6 and ct6 is the least signi�cant

bit.

LFSR

LFSR update function is de�ned as:

lt+1
43 = lt0 + lt8 + lt18 + lt23 + lt28 + lt37
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NFSR

NFSR update function is de�ned as:
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Round Key Function

80 bit key is used. Indexes of the key bits used in NFSR update function are determined

with Cr counter and they change at each clock. Some variables are de�ned as:
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t
4 , y = ct5c

t
6c

t
0c

t
1c

t
2, u = ct3c

t
4c

t
5c

t
6, p = ct0c

t
1c

t
2c

t
3, q = ct4c

t
5c

t
6c

t
0c

t
1, r = ct2c

t
3c

t
4c

t
5c

t
6

Round key value is determined as: kt = ks.ky+32 + ku+64.kp + kq+16 + kr+48

Output Function

Output function is de�ned as:

zt = lt6.l
t
15+ lt1.l

t
22+nt

35.l
t
27+ lt11.l

t
33+nt

1.n
t
33.l

t
42+nt

0+nt
7+nt

13+nt
19+nt

24+nt
29+nt

36+ lt38

4.3 Guess Capacities of Plantlet and Fruit

Since kt is XOR'ed in the update functions of Plantlet and Fruit, the average guess

capacities of Plantlet and Fruit are one-half. Formally, the guess capacity for an internal

state is formulated in [11] as:

Prg(S) =
1

2
+

∣∣∣∣#{K : fF (K,S) = 0}
2k

− 1

2

∣∣∣∣ ,
For Plantlet,the NFSR update function or feedback value of NFSR is:

nt+1
39 = kt + lt0 + ct4 + nt

0 + nt
13 + nt

19 + nt
35 + nt

39 + nt
2.n

t
25 + nt

3.n
t
5 + nt

7.n
t
8 + nt

14.n
t
21 +

nt
16.n

t
18 + nt

22.n
t
24 + nt

26.n
t
32 + nt

14.n
t
21 + nt

33.n
t
36.n

t
37.n

t
38 + nt

10.n
t
11.n

t
12 + nt

27.n
t
30.n

t
31

For Fruit, the NFSR update function or feedback value of NFSR is:

nt+1
37 = kt+lt0+ct3+nt

0+nt
10+nt

20+nt
12.n

t
3+nt

14.n
t
25+nt

5.n
t
23.n

t
31+nt

8.n
t
18+nt

28.n
t
30.n

t
32.n

t
34

In the guess capacity formula, the function in the absolute value calculates the number

of keys where feedback value of the NFSR equals to zero. Since k bit is directly XOR'ed
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in the NFSR update functions of both Plantlet and Fruit and the other bits are same for

all possible keys for an internal state, half of the possible keys make the feedback value

zero, half of the possible key values make the feedback value one. The formula becomes:

Prg(S) =
1

2
+

∣∣∣∣2k−12k
− 1

2

∣∣∣∣ = 1

2

For all internal states of Plantlet and Fruit, the guess capacity is one-half, so the average

guess capacity is one-half for Plantlet and Fruit.



Chapter 5

New and Parametric Guess and

Determine Attack

In this chapter, new guess and determine attack and parametric guess and determine

attack mounted on Plantlet and Fruit algorithms and improving new guess and determine

attack through trade-o� mounted on Plantlet algorithm are explained in detail.

5.0.1 New Guess and Determine Attack Mounted On Plantlet

The Plantlet round key function is an improved version of Sprout. It cyclically selects

the next key bit for the NFSR update function. It is impossible to use guess capacity as

a distinguisher for Kara and Esgin attack [11] but this design, involving key bit cyclically

in the NFSR update function created a new weakness. The same key bit is used at clocks

t and t + keysize for an internal state and this is used for both internal state recovery

and key bit recovery at the same time.

We improved and changed Kara and Esgin algorithm [11] for our attack. The internal

state candidates are not eliminated for their mismatch counts. Since all of them would

have approximately same mismatch counts because of having same guess capacity, one-

half. Number of iterations is a little above key size, 90 for Plantlet. The feedback value

is either determined from the output stream or guessed. Since the key bit is directly

XOR'ed in the NFSR update funtion, we calculated the key value at each clock from

feedback value and internal state values and saved the key value at each clock. After

33
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80 clocks, we begin also comparing key value of the internal state candidate at clock t

and the key value we saved at (t − 80). For the correct state, they would be same at

the corresponding clocks but for an incorrect internal state candidate, they would be

randomly equal and after a few clocks, the state will be eliminated since key values will

not match. The correct state will exist until the end of clocks (iteration) and at the same

time key bits are also determined.

Determination of feedback value from output stream is given below:

zt = nt
4.l

t
6+ lt8.l

t
10+ lt32.l

t
17+ lt19.l

t
23+ lt30+nt

4.l
t
32.n

t
38+nt

1+nt
6+nt

15+nt
17+nt

23+nt
28+nt

34

zt+1 = nt
5.l

t
7+lt9.l

t
11+lt33.l

t
18+lt20.l

t
24+lt31+nt

5.l
t
33.n

t
39+nt

2+nt
7+nt

16+nt
18+nt

24+nt
29+nt

35

zt+2 = nt
6.l

t
8+lt10.l

t
12+lt34.l

t
19+lt21.l

t
25+lt32+nt

6.l
t
34.n

t+1
39 +nt

3+nt
8+nt

17+nt
19+nt

25+nt
30+nt

36

nt
6.l

t
34.n

t+1
39 = zt+2+nt

6.l
t
8+lt10.l

t
12+lt34.l

t
19+lt21.l

t
25+lt32+nt

3+nt
8+nt

17+nt
19+nt

25+nt
30+nt

36

This implies for a internal state candidate at clock t when nt
6 and lt34 are equal to 1,

feedback value of NFSR can be calculated from zt+2, LFSR and NFSR tap values.

Determination of key value at clock t is given below:

nt+1
39 = kt + lt0 + ct4 + nt

0 + nt
13 + nt

19 + nt
35 + nt

39 + nt
2.n

t
25 + nt

3.n
t
5 + nt

7.n
t
8 + nt

14.n
t
21 +

nt
16.n

t
18 + nt

22.n
t
24 + nt

26.n
t
32 + nt

14.n
t
21 + nt

33.n
t
36.n

t
37.n

t
38 + nt

10.n
t
11.n

t
12 + nt

27.n
t
30.n

t
31

We just replaced key and feedback values and get the key value at clock t.

kt = nt+1
39 + lt0 + ct4 + nt

0 + nt
13 + nt

19 + nt
35 + nt

39 + nt
2.n

t
25 + nt

3.n
t
5 + nt

7.n
t
8 + nt

14.n
t
21 +

nt
16.n

t
18 + nt

22.n
t
24 + nt

26.n
t
32 + nt

14.n
t
21 + nt

33.n
t
36.n

t
37.n

t
38 + nt

10.n
t
11.n

t
12 + nt

27.n
t
30.n

t
31

The generic attack algorithm named as "New Guess and Determine Attack" steps can

be summarized as follows:

• Input: Output stream bits, internal state candidates,

• Output: The key bits and the correct internal state which generated the given

output stream bits,

• Attack Phase

� For each internal state candidate execute the following steps:
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1. Determine or guess the feedback value of the NFSR from output stream

bit, NFSR and LFSR bits at each clock.

2. Determine the key value from the feedback value of NFSR, the other

NFSR and LFSR bits.

3. Eliminate internal state if guessed feedback value is incorrect in the next

clock.

4. Check key bits which should be equal after key bits start repeating. (e.g.

kt == kt−80 for Plantlet)

5. Eliminate internal state candidate if key bits are not equal.

� The correct internal state which generated the output stream will be left at

the end of iterations. Key bits are automatically determined during iterations

for the correct internal state.

This algorithm can be used for any KSGs with Boolean KFF where key size and internal

state size are equal but it is not e�ective for Plantlet since Plantlet internal state size

is 101 bits. (61 bits from LFSR and 40 bits from NFSR) For this attack, the attacker

should use 2101 internal state candidates to recover the correct internal state and key

bits which is much higher than 280 key candidates of exhaustive key search. In order to

decrease the complexity of the attack, two novel ideas/extensions are implemented and

combined with the "New Guess and Determine Attack":

• Parametric Guess and Determine Attack

• Improving New Guess and Determine Attack Through Trade-O�

5.0.2 Parametric Guess and Determine Attack Mounted On Plantlet

Before applying the �rst idea on the attack, two improvements are done to simplify

the attack for Plantlet. In the �rst step, cipher was run in backward direction and the

keystream generation and feedback functions are formulated in backward direction as

in [9]. This improvement is done since in the output function of the cipher, nt
1 alone

is XORed with other taps. In backward direction, nt+1
0 will be the feedback value and

nt
1 will be the feedback value after two clocks which can be determined from output

stream value zt+2 and the output function. In the previous attack, the feedback value
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was either determined or guessed, but in our new attack, the feedback values can be

always determined from the output stream. The derivations are shown below:

LFSR update in forward direction:

lt+1
60 = lt0 + lt54 + lt43 + lt34 + lt20 + lt14,

lt+1
i = lti+1

LFSR update in backward direction:

lt+1
0 = lt60 + lt53 + lt42 + lt33 + lt19 + lt13 ,

lt+1
i = lti−1

NFSR update in forward direction:

nt+1
39 = kt + lt0 + ct4 + nt

0 + nt
13 + nt

19 + nt
35 + nt

39 + nt
2.n

t
25 + nt

3.n
t
5 + nt

7.n
t
8 + nt

14.n
t
21 +

nt
16.n

t
18 + nt

22.n
t
24 + nt

26.n
t
32 + nt

14.n
t
21 + nt

33.n
t
36.n

t
37.n

t
38 + nt

10.n
t
11.n

t
12 + nt

27.n
t
30.n

t
31,

nt+1
i = nt

i+1

NFSR update in backward direction:

nt+1
0 = kt+ct4+(lt60+lt53+lt42+lt33+lt19+lt13)+nt

39+nt
12+nt

18+nt
34+nt

38+nt
1.n

t
24+nt

2.n
t
4+

nt
6.n

t
7 + nt

13.n
t
20 + nt

15.n
t
17 + nt

21.n
t
23 + nt

25.n
t
31 + nt

13.n
t
20 + nt

32.n
t
35.n

t
36.n

t
37 + nt

9.n
t
10.n

t
11 +

nt
26.n

t
29.n

t
30,

nt+1
i = nt

i−1

Output function does not change:

zt = nt
4.l

t
6+ lt8.l

t
10+ lt32.l

t
17+ lt19.l

t
23+ lt30+nt

4.l
t
32.n

t
38+nt

1+nt
6+nt

15+nt
17+nt

23+nt
28+nt

34

In the second step, we simulated Plantlet running in backward direction as if it runs in

forward direction.

LFSR update function:

lt+1
60 = lt0 + lt7 + lt18 + lt27 + lt41 + lt47,

lt+1
i = li+1t

NFSR update function:
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nt+1
39 = kt+ct4+(lt0+lt7+lt18+lt27+lt41+lt47)+nt

0+nt
27+nt

21+nt
5+nt

1+nt
38.n

t
15+nt

37.n
t
35+

nt
33.n

t
32 + nt

26.n
t
19 + nt

24.n
t
22 + nt

22.n
t
24 + nt

18.n
t
16 + nt

14.n
t
8 + nt

7.n
t
4.n

t
3.n

t
2 + nt

30.n
t
29.n

t
28 +

nt
13.n

t
10.n

t
9,

nt+1
i = ni+1t

Output function:

zt = nt
35.l

t
54+lt52.l

t
50+lt28.l

t
43+lt41.l

t
37+lt30+nt

35.l
t
28.n

t
1+n

t
38+nt

33+nt
24+nt

22+nt
16+nt

11+nt
5

Derivation of the determination of the feedback value from output function is given

below:

zt = nt
35.l

t
54+lt52.l

t
50+lt28.l

t
43+lt41.l

t
37+lt30+nt

35.l
t
28.n

t
1+n

t
38+nt

33+nt
24+nt

22+nt
16+nt

11+nt
5

zt+1 = nt
36.l

t
55+lt53.l

t
51+lt29.l

t
44+lt42.l

t
38+lt31+nt

36.l
t
29.n

t
2+n

t
39+nt

34+nt
25+nt

23+nt
17+nt

12+nt
6

zt+2 = nt
37.l

t
56+ lt54.l

t
52+ lt30.l

t
45+ lt43.l

t
39+ lt32+nt

37.l
t
30.n

t
3+nt+1

39 +nt
35+nt

26+nt
24+nt

18+

nt
13 + nt

7

nt+1
39 = zt+2+nt

37.l
t
56+ lt54.l

t
52+ lt30.l

t
45+ lt43.l

t
39+ lt32+nt

37.l
t
30.n

t
3+nt

35+nt
26+nt

24+nt
18+

nt
13 + nt

7

As it can be seen above, feedback value of the NFSR can always be determined from the

output stream. This simpli�ed our attack, since we didn't have to guess and check the

feedback value of NFSR. Using output stream values, the feedback values of NFSR are

directly determined at each clock.

The �rst new idea in order to decrease the complexity of the attack was replacing some

taps/elements of the LFSR with variables during the attack. We randomly de�ned some

taps of the LFSR as variables and implemented the attack algorithm using the internal

state candidates with LFSR having variables in some taps instead of values. The key

bits determined would be nonlinear equations of the variables. A new stage is added

to attack algorithm as solving equations for the variables and the correct internal state

would have the unique solution for the variables. After determining variable values, key

bits are also determined using them.

The generic attack algorithm named as "Parametric Guess and Determine Attack" steps

can be summarized as follows:
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• Input: Output stream bits, internal state candidates,

• Output: The key bits and the correct internal state which generated the given

output stream bits,

• Initialization Phase:

� Check if the NFSR feedback value can be determined from output stream in

forward or backward direction. If the NFSR feedback value can be determined

from output stream, formulate feedback functions in backward direction.

� Replace a �xed number of random bits of LFSR with variables.

• Attack Phase

� For each internal state candidate execute the following steps:

1. Determine the feedback value of the NFSR from output stream bit, NFSR

and LFSR bits as a nonlinear function of variables of LFSR at each clock.

2. Determine the key value from the feedback value of NFSR, the other

NFSR and LFSR bits as a nonlinear function of variables of LFSR at

each clock.

3. Generate equations for the keys which should be equal after key bits start

repeating. (e.g. kt == kt+80 for Plantlet)

4. Solve the nonlinear equations generated in the previous step.

5. Eliminate internal state candidate if there is no solution.

� The correct internal state which generated the output stream will be left with

a unique solution for the variables.

� Calculate the key bits using the unique solution of the variables.

As a proof of concept, we implemented algorithm using six variables and recovered the

correct internal state bits and key bits successfully. Six random taps of the LFSR are

chosen as variables x, y, z, w, k, u. The LFSR update function is simple XOR of LFSR

bits but the NFSR update function has both XOR and multiplication of NFSR bits.

Because of the multiplication e�ect, the bits and the feedback values of the NFSR and

the key values determined from the feedback values are calculated as nonlinear equations

of x, y, z, w, u, k variables consisting both XOR and multiplication operations. Since

there are six variables, nonlinear equations have 26 = 64 combination of x, y, z, w, k,
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u. The number of variables is chosen as six to write the code for multiplication of two

bits of the NFSR having both 64 combinations of x, y, z, w, u, k easily, e.g. if we

chosed the number of the variables as seven, multiplication code should be written for

multiplying two taps both having 128 di�erent combinations of the variables. At the

end of the implementation of the algorithm, we have nonlinear equations of the variables

representing key values kt, t = 0, 1, 2, ...90 where kt = kt−80 which should be equal to

each other for the correct internal state candidate.

In the second stage, an exhaustive search is done to recover the variables; x, y, z, w,

k, u. There are 26 = 64 di�erent candidates for them. The equations are solved for a

unique solution using 6.2 equations on average. A candidate is either eliminated or a

unique solution is left. For the correct internal state candidate, the unique x, y, z, w, k,

u solution satis�es all equations and key is also recovered by solving the equations for k0

to k80.

In the previous attack, the attacker should use 2101 internal state candidates for Plantlet

but this improvement decreased internal state candidate number to 295. Same attack

algorithm is used but comparison of the key values di�ered. Key values are nonlinear

equations of variables where kt should be equal to kt−80 . At the end of iterations, the

correct internal state and the key values are recovered since wrong internal candidates are

eliminated during solving equations for variables or checking whether the next equation

is satis�ed for the left unique solution of variables. The time for multiplying the NFSR

bits as nonlinear equations and solving the nonlinear equations should be added to attack

complexity.

The elapsed times for both attacks are compared for 1000 internal state candidates.

Both new guess and determine attack and parametric guess and determine attack with

6 variables are executed on a standard PC. The time elapsed during new guess and

determine attack is 0.12 seconds and the time elapsed during parametric guess and

determine attack is 6.6 seconds. The new guess and determine attack is about 55 times

faster than the parametric guess and determine attack, but this is normal since each bit is

represented by 64 bits and multiplication of two bits transformed into the multiplication

of two 64 bits. This test coding is done as a proof of concept not for performance but it

is still faster than new guess and determine attack using 2101 candidates.



Chapter 5. New and Parametric Guess and Determine Attack 40

For Plantlet, the attacker should use the attack algorithm with 22 variables to be faster

than exhaustive key search but implementation of using 22 variables would not be similar

to using 6 variables. We have two problems to solve:

1. Generating nonlinear equations for 222 combinations of variables and multiplication

of two nonlinear equations having 222 combinations of variables.

2. Solving nonlinear equations having 222 combinations of 22 variables.

These two items can not be done online during attack since it would decrease the attack

speed exponentially. For the �rst item, the multiplication of two nonlinear equations

having 222 combinations of variables can be implemented as multiplication of two poly-

nomials and can be precomputed o�ine and saved in a table. During the attack, when

two NFSR bits are multiplied, the result will be read directly from this table. The

memory access should be done for each multiplication of NFSR bits. For the second

item, solving nonlinear equations having 222 combinations of 22 variables can also be

precomputed o�ine saved in group of tables as (222, 23) solutions. Since the nonlinear

equations will be solved on average 23 equations but this will need a huge memory. When

the nonlinear equations for key equalities are created at the end of the attack algorithm,

the solutions should be searched from these tables.

The memory needed for the attack for p variables can be formulated as 22p for multipli-

cation table and
(

2p

p+1

)
for solving the nonlinear equations. The attack complexity would

be 2n−p if the generation and solving the nonlinear equations would be done by table

lookups and the memory needed for the attack would be 22p +
(

2p

p+1

)
. Multiplication

table would be accesed for each multiplication of two NFSR bits.

5.0.3 Improving New Guess and Determine Attack Through Trade-O�

The second idea to decrease the complexity of the attack was to use our new guess and

determine attack with trade-o� . We made an extension for the new guess and determine

attack for Plantlet like ciphers where the key bit is directly and cylically XOR'ed in the

internal state update function and key cycle period is equal to key bit size and we

combined our attack with TMDTO attacks.

The extension attack steps applied for Plantlet are :
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• The attacker has a generated 80 bit output stream, z1.

• Make a guess for the internal state which generated this output stream, z1.

• Using this internal state candidate and output stream, run our new guess and

determine attack and determine 80-bit key bits.

• Using the determined key bits and internal state candidate, generate the 101 bit

output stream, z2, following the z1 sequence.

• For a constant z1, for each guess of the internal state, we determine a unique 101

bit z2.

• For a constant z1, this can be called as a one way function between internal state

candidate and output stream z2. If we have internal state candidate, we can de-

termine the following output stream z2 for a constant z1, but if we have z2, we can

not determine internal state value for a constant z1.

• Using Hellman [33] tables, the formula T.M2 = N2 and our new guess and deter-

mine attack, for a constant z1, to recover the internal state and key bits, instead of

making exhaustive search for internal state candidates as 2101 trials, with T = 280

complexity, we need a memory M as 261 to determine the internal state value which

generated this output stream. Data complexity would be 280 for this case.

• Data complexity can be reduced by increasing memory in Hellman tables. In the

previous item, we have a constant z1 and we prepare Hellman tables for z1 and

search z1 in the given data. If we use another 80 bit output stream as input, we

can decrease data complexity. Since we would prepare Hellman tables for each of

output stream sequence as 2.261. Memory complexity, M, would be 262 where data

complexity, D, would decrease to 279 to search for the target output stream. There

is a trade-o� between memory M and data D where M.D is �xed.

Using the trade-o� attack with our new guess and determine attack, we developed a

theorem for Plantlet like ciphers as:

Theorem: For Plantlet like ciphers where the key bit is directly and cylically XOR'ed in

the internal state update function and key cycle period is equal to the key size, internal
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state recovery can be done using new guess and determine attack with trade-o� attack

with a formula as:

T (DM)2 = (NK)2

where T: Time Complexity, D: Data Complexity, N: Internal State Size Complexity, K :

Key Complexity

Sketch: Assume attacker has k bit output stream. Using this k bit output stream, for

n bit internal state, he generates the following n bit output stream.

This can be de�ned as a one-way function between n bit internal state to n bit output

stream.

Using Hellman tables for this function, the time and memory complexity would be:

T.M2 = N2 and for this ciphers D = K since length of the input data to be searched

should be equal to size of the key to determine key bits.

If we multiply both side of the equation with M : D.M = K.N/
√
T which implies when

T is �xed D.M is �xed.

We generalize the equation as:

T (DM)2 = (NK)2

Corollary1:

For Planlet like ciphers, for the cipher to be resistant to TMDTO attacks, the internal

state size complexity should be as N ≥ K3/2 so for Plantlet, the internal state size be

120 bits in order to resist TMDTO attacks.

Proof : When T = D = M = K, using the above formula K5 = K2.N2 → N = K3/2

For Plantlet, internal state size complexity should be 2(80∗3/2) = 2120 bits in order to

resist TMDTO attacks.

Corollary2:

The attack complexity reduced to 272.4 for Plantlet by using the trade-o� attack with

our new guess and determine attack.
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Proof : For Plantlet N = 2101 and K = 280, using the above formula: T (DM)2 = 2362

for the best trade-o� when T = D = M , T = D = M = 272.4

5.0.4 New and Parametric Guess and Determine Attacks Mounted On

Fruit

Since kt is directly involved and XOR'ed with the other elements in the Fruit NFSR

update function, guess capacity is one-half and our generic attack can be applied to

Fruit algorithm. The same key bit is used at clocks t and t + 128 for an internal state.

The key period is di�erent from Plantlet because of the round key function of Fruit. The

key bits start repeating at Cr counter roll over as 27 = 128.

Since nt
36 is directy XOR'ed in the output function alone, feedback value of NFSR can be

determined directly from output stream. Determination of feedback value from output

stream is given below:

zt = lt6.l
t
15+ lt1.l

t
22+nt

35.l
t
27+ lt11.l

t
33+nt

1.n
t
33.l

t
42+nt

0+nt
7+nt

13+nt
19+nt

24+nt
29+nt

36+ lt38

zt+1 = lt7.l
t
16+lt2.l

t
23+nt

36.l
t
28+lt12.l

t
34+nt

2.n
t
34.l

t
43+nt

1+nt
8+nt

14+nt
20+nt

25+nt
30+nt

37+lt39

zt+2 = lt8.l
t
17+lt3.l

t
24+nt

37.l
t
29+lt13.l

t
35+nt

3.n
t
35.l

t+1
43 +nt

2+nt
9+nt

15+nt
21+nt

26+nt
31+nt+1

37 +lt40

nt+1
37 = zt+2 + lt8.l

t
17 + lt3.l

t
24 + nt

37.l
t
29 + lt13.l

t
35 + nt

3.n
t
35.(l

t
0 + lt8 + lt18 + lt23 + lt28 + lt37) +

nt
2 + nt

9 + nt
15 + nt

21 + nt
26 + nt

31 + lt40

As it can be seen above, feedback value of the NFSR can always be determined from the

output stream, zt+2, LFSR and NFSR tap values.

Determination of key value at clock t is given below:

nt+1
37 = kt+lt0+ct3+nt
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t
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t
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t
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Just replace key and feedback value and get the key value at clock t.

kt = nt+1
37 +lt0+ct3+nt
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t
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5.n
t
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t
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t
18+nt

28.n
t
30.n

t
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t
34

Since Fruit algorithm key size and internal state size are equal, to test our attack, in the

�rst step, we didn't use any variables and applied the new guess and determine attack

whose details are given in the previous chapter directly to the cipher. In the second step,

we mounted the parametric guess and determine attack. The counter Cr value is set to
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zero at the beginning of the attacks. For each internal state candidate, we determined

key bits for 128 clocks and after clock 128, key bits are determined but we also started

comparing key values. If key values are not equal (kt = kt−128 ), internal state candidate

is eliminated and correct internal state candidate having key values equal is left after a

few clock cycles and key value included in the NFSR update function is also determined

at the same time with internal state bits.

Round key function of Fruit enables nonlinear combination of key bits at each round.

Since resulting key bit involved in NFSR update function is determined, in order to

determine real key bits, solving nonlinear equations will be needed at the end of the

attack.

In Fruit, Cr counter starting value is determined at the end of initialization phase of the

cipher and it is based on the key, NFSR and LFSR bits, so an attacker would not know

the Cr counter starting value to mount the attack. This issue can be easily solved since

counter bit ct3 is directly involved in NFSR update function. Even the Cr counter starting

value is not correct, during comparison of key values at t and t−128, ct3 and ct−1283 values

are equal which will not a�ect equality. Correct feedback values are determined from

output stream and our generic attack recovers the correct internal state using the key

comparisons but key bits recovered depend on the Cr counter starting value. At the end

of our attack, 128 bit values of (kt + ct3) are recovered.

To recover the correct key bits of the Fruit algorithm:

• Mount improved or parametric guess and determine attack.

• Recover the correct internal state and key bits involved in the NFSR update func-

tion depending on Cr counter value. (kt + ct3)

• Solve nonlinear equations for 128 key bits and get candidate key bits for each

counter value.

• Apply exhaustive search for 128 candidate key bits to recover the real key bits.

The attack complexity without using any variables is 280 and this is faster than exhaustive

search since initialization phase is not included in the attack which should be included

in the exhaustive search. The attack complexity can be reduced to 274 when we have
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applied parametric guess and determine attack using six variables since instead of using

280 internal state candidates for the attack, we used 280−6 internal state candidates.

Solving equations for six variables are done during attack as a proof of concept for our

attack implementation but multiplication of the NFSR bits and solutions of the nonlinear

equations for six variables must be done o�ine and saved in tables as explained in Plantlet

section to achieve 274 complexity.



Chapter 6

Conclusion

In this thesis, the security analysis of stream ciphers having keystream generator with

keyed update function is studied and a generic internal state and key recovery attack is

introduced for keystream generators with keyed update function having guess capacity

one-half for the �rst time. This generic attack is mounted on Plantlet and Fruit algo-

rithms and internal state and key bits are recovered successfully for both of the ciphers.

Involving key bits directly and cyclically in the update function of a keystream generator

leads to a weakness for recovering key bits where key bits can be determined from the

feedback values at the correponding clocks. Since it is an internal state recovery attack,

the initialization phase is not considered and implemented during attack which should

be taken into consideration for the exhaustive key search attack. When the internal

state size is greater than key size like in Plantlet, the exhaustive key search is faster than

this attack so the complexity of the attack is reduced by two novel ideas and two new

extensions are added on the new generic attack.

The �rst idea to decrease the complexity of the attack is using variables and solving

nonlinear equations during key recovery. As a proof of concept, the number of variables

is chosen as six and the attack is successfully mounted on Plantlet and Fruit algorithms

and internal state bits and key bits are recovered. Increasing number of variables will

reduce attack complexity, but it would not be easy to generate and multiplicate the

nonlinear combinations of the variables and to �nd the solution of the generated non-

linear equations. Precomputation and memory would be needed for both generation and
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multiplication of nonlinear combinations of these variables and for �nding the solution

of the generated nonlinear equations.

The second idea to decrease the complexity of the attack is combining the attack with

trade-o� attack. Using Hellman tables with the new generic guess and determine attack,

instead of searching all 2internalstatesize, the attack complexity can be reduced to 280 time

complexity, T, 261 memory complexity, M, and 280 data complexity, D where the data

complexity can be decreased by increasing the memory complexity since M.D is �xed.

This would be the trade-o� for the attacker.

Using this trade-o�, for Plantlet like ciphers where the key bit is directly and cylically

XOR'ed in the internal state update function and key cycle period is equal to the key size,

a generalization is made as T (DM)2 = (NK)2. By using this formula, two corollaries

are achieved. The �rst one is that for Plantlet like ciphers, the internal state size must

be at least keysize ∗ (3/2) to be resistant to TMDTO attacks. The second one is that

using our new guess and determine attack with trade-o� attack, the attack complexity

for Planlet is reduced to 272.4.
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